C-746-S&T Landfills First Quarter Calendar Year 2015 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

5/26/15 Date anis LATA Kentucky Classification Support

PAD-ENM-0094/V1

C-746-S&T Landfills First Quarter Calendar Year 2015 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—May 2015

Prepared for the U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC managing the Environmental Remediation Activities at the Paducah Gaseous Diffusion Plant under contract DE-AC30-10CC40020

FI	GURES.			v
TÆ	ABLES			v
A	CRONY	MS	v	ii
1.	1.1 E 1.2 M 1 1 1 1.3 E	BACKG MONITO 1.2.1 (1.2.2 M 1.2.3 S L.2.3 S KEY RE	ON ROUND ORING PERIOD ACTIVITIES Groundwater Monitoring Aethane Monitoring Surface Water Monitoring SULTS	1 2 2 4 4
2.			JATION/STATISTICAL SYNOPSIS	
3.	DATA	VALID	ATION 1	3
4.	PROFI	ESSION	AL GEOLOGIST AUTHORIZATION1	5
5.	REFEF	RENCES	51	7
AI	PPENDE	X A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	1
AI	PPENDE	X B:	FACILITY INFORMATION SHEETB-	1
AI	PPENDE	X C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS C-	1
AI	PPENDE	X D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENTD-	1
AI	PPENDE	X E:	GROUNDWATER FLOW RATE AND DIRECTION E-	1
AI	PPENDE	X F:	NOTIFICATIONSF-	1
AI	PPENDE	X G:	CHART OF MCL AND UTL EXCEEDANCES	1
AI	PPENDE	X H:	METHANE MONITORING DATAH-	1
AI	PPENDE	X I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTSI-	1

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network
2.	C-746-S&T Landfills Surface Water Monitoring Locations

TABLES

1.	Summary of MCL Exceedances	6
	Exceedances of Statistically Derived Historical Background Concentrations	
3.	Exceedances of Current Background UTL in Downgradient Wells of Constituents That Also	
	Exceed the Historical Background UTL	7
	C-746-S and T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	9

ACRONYMS

CFR COD	Code of Federal Regulations chemical oxygen demand
CY	calendar year
KAR	Kentucky Administrative Regulations
KDWM	Kentucky Division of Waste Management
KRS	Kentucky Revised Statutes
LATA Kentucky	LATA Environmental Services of Kentucky, LLC
LEL	lower explosive limit
LRGA	Lower Regional Gravel Aquifer
MCL	maximum contaminant level
MW	monitoring well
PGDP	Paducah Gaseous Diffusion Plant
RGA	Regional Gravel Aquifer
UCRS	Upper Continental Recharge System
URGA	Upper Regional Gravel Aquifer
UTL	upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills First Quarter Calendar Year 2015 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 for the C-746-S Residential Landfill and for the C-746-T Inert Landfill. This report was written using the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) groundwater reporting forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) listed in 401 *KAR* 47:030 § 6 for Kentucky solid waste facilities and for all permit required parameters listed in 40 *CFR* § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred, since the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-S&T Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 *KAR* 48:090 § 4.

Surface water was monitored, as specified in 401 *KAR* 48:300 § 2 and the approved surface water monitoring plan. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled for reporting only, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water results are provided in Appendix I.

1.1 BACKGROUND

The C-746-S&T Landfills are closed solid waste landfills located north of the Paducah Gaseous Diffusion Plant (PGDP) and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a cover of compacted soil. The C-746-S Landfill was a sanitary landfill for PGDP. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from PGDP. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: (1) the Upper Continental Recharge System (UCRS), (2) the Upper Regional Gravel Aquifer (URGA), and (3) the Lower Regional Gravel Aquifer (LRGA).

A map of the monitoring well (MW) locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is in a north-northeasterly direction in the vicinity of the C-746-S&T Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for the UCRS wells located in the same direction (relative to the landfill) as nearby UCRS wells. Results from UCRS wells are identified using the RGA wells located in the same direction (relative to the landfill) as nearby UCRS wells. Results from UCRS wells are identified using the RGA wells located in the same direction (relative to the landfill) as nearby UCRS wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the first quarter 2015 during January using LATA Environmental Services of Kentucky, LLC, (LATA Kentucky) procedure PAD-ENM-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water measurements were collected on January 28 and 29, 2015, in MWs of the C-746-S&T Landfills (see Table E.1), in MWs of the C-746-U Landfill, and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA.¹ Regional flow in the RGA in January was northeastward, toward the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in January was 3.78×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 2.95×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.50 to 1.10 ft/day (see Table E.3).

1.2.2 Methane Monitoring

Landfill operations staff monitored for the occurrence of methane on March 12, 2015, in 1 on-site building location, 4 locations along the landfill boundary, and 27 gas-passive vents located in Cells 1, 2, and 3 of the C-746-S Landfill. See Appendix H for a map of the monitoring locations. Monitoring

¹ Although depth-to-water is measured in the UCRS wells, the UCRS has a strong vertical hydraulic gradient that varies locally. The UCRS wells are screened over different elevations; therefore, the UCRS well measurements are not sufficient for mapping the potentiometric surface.

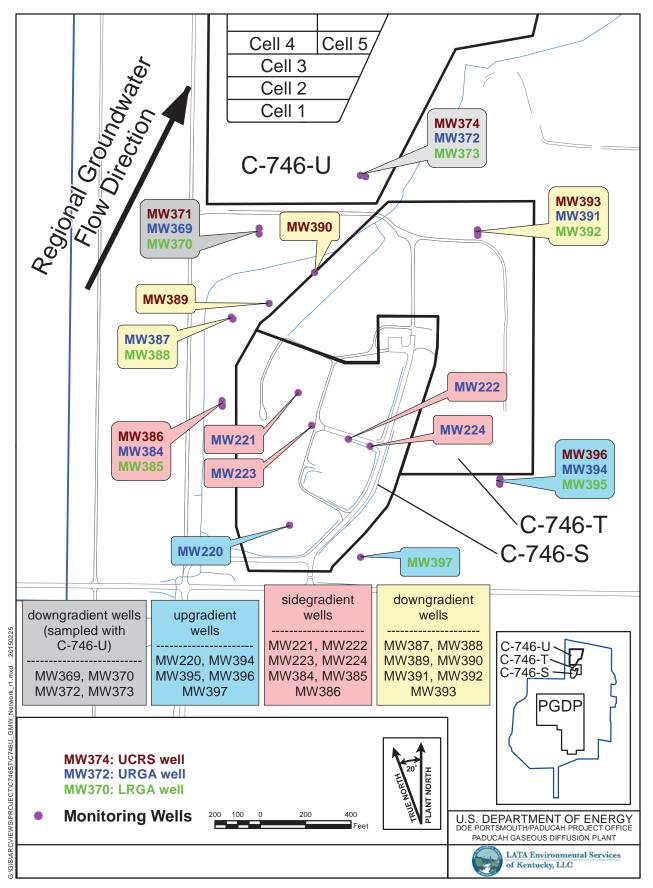


Figure 1. C-746-S&T Landfills Groundwater Monitoring Well Network

identified 4.2% of the lower explosive limit (LEL) of methane at Cell 1 Gas Vent 3 and 1.2% of the LEL of methane at Cell 1 Gas Vent 16, which are compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. Methane monitoring identified 0% of the LEL of methane at all other locations. The results are documented on the approved C-746-S&T Landfill Methane Monitoring Report form provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was sampled in accordance with 401 *KAR* 48:300 § 2 and the approved surface water monitoring plan. Sampling was performed in three locations within the C-746-S&T Landfills. The landfills have an upstream location, L135; a downstream location, L154; and a location capturing runoff from the landfill surface, L136. A map of the surface water monitoring locations is presented in Figure 2. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled for report only format, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Parameters that had concentrations that exceeded the respective MCL are listed in Table 1. Those constituents (present in downgradient wells) that exceeded their respective MCL were further evaluated against their historical UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL for the first quarter 2015, as well as parameters that exceeded their MCL (beta activity) that also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical UTL were evaluated against their current-background UTL derived using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM in accordance with 401 *KAR* 48:300 § 7 prior to the submittal of this report.

There were no new MCL exceedances for this quarter. The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. Because the trichloroethene concentration did not exceed the historical UTL, the MCL exceedances for trichloroethene in MW372, MW373, MW391, MW392, and MW394 are not attributable to a C-746-S&T Landfill source and are considered a Type I exceedance per the approved Groundwater Monitoring Plan (LATA Kentucky 2014).

The MCL exceedances for beta activity in MW372, MW387 and MW388 (downgradient wells) also were shown to exceed both the historical background UTL and the current background UTL; therefore, they preliminarily were considered to be Type 2 exceedances (source unknown). Sidegradient wells MW384 and MW385 also had exceedances; however, they are not considered to be Type 2 exceedances.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 8; and 401 *KAR* 48:300 § 7.

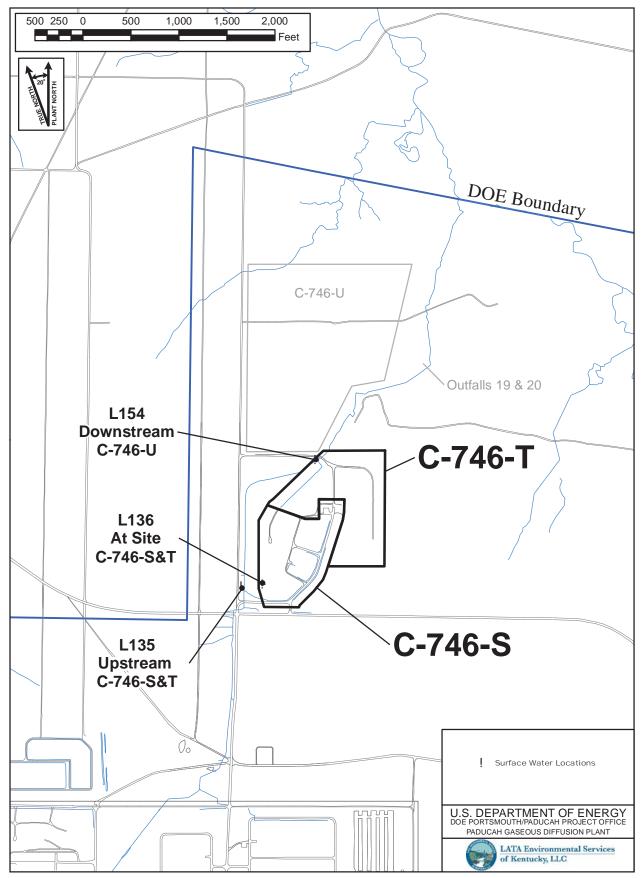


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
NONE	MW372: Beta activity,	MW373:Trichloroethene
	trichloroethene	
	MW384: Beta activity	MW385: Beta activity
	MW387: Beta activity	MW388: Beta activity
	MW391: Trichloroethene	MW392: Trichloroethene
	MW394: Trichloroethene	

Table 2. Exceedances of Statistically Derived Historical Background Concentrations (Parameters with MCLs are included only if listed in Table 1.)

UCRS	URGA	LRGA
MW386: Oxidation-reduction	MW220: Oxidation-reduction	MW370: Oxidation-reduction
potential	potential	potential, sulfate
MW390: Oxidation-reduction	MW221: Oxidation-reduction	MW373: Calcium, conductivity,
potential, technetium-99	potential	dissolved solids, magnesium,
		oxidation-reduction potential, sulfate
MW393: Oxidation-reduction	MW222: Oxidation-reduction	MW385: Beta activity, ^a oxidation-
potential	potential	reduction potential, sulfate,
		technetium-99
MW396: Oxidation-reduction	MW223: Oxidation-reduction	MW388: Beta activity, ^a oxidation-
potential	potential	reduction potential, sulfate,
		technetium-99
	MW224: Oxidation-reduction	MW392: Oxidation-reduction
	potential	potential
	MW369: Oxidation-reduction	MW395: Oxidation-reduction
	potential, technetium-99	potential
	MW372: Beta activity, ^a calcium,	MW397: Oxidation-reduction
	conductivity, dissolved solids,	potential
	magnesium, oxidation-reduction	
	potential, sulfate, technetium-99	
	MW384: Beta activity, ^a sulfate,	
	technetium-99	
	MW387: Beta activity, ^a calcium,	
	magnesium, oxidation-reduction	
	potential, sodium, sulfate,	
	technetium-99	
	MW391: Oxidation-reduction	
	potential	
	MW394: Oxidation-reduction	
	potential	

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386 Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393

Upgradient wells: MW220, MW394, MW395, MW396, ^bMW397^a ^a Beta activity has an MCL; the exceedances of the MCL were subjected to a comparison against the statistically derived historical background.

^b In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

Table 3. Exceedances of Current Background UTL in Downgradient Wells of Constituents That Also Exceed the Historical Background UTL

URGA	LRGA
MW369: Technetium-99	MW373: Calcium, conductivity,
	dissolved solids, magnesium, sulfate
MW372 : Beta activity, calcium, conductivity, magnesium, sulfate, technetium-99	MW388: Beta activity, sulfate, technetium-99
MW387: Beta activity, calcium, magnesium, sodium, sulfate, technetium-99	

(Parameters with MCLs are included only if listed in Table 1.)

In accordance with Permit Condition GSTR0003, Variance 2, of the Solid Waste Permit (Permit), the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the Permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

Of the constituents that had exceedances of the statistically derived historical background UTL, these parameters underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient to identify if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. Constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance. Those constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and could have the C-746-S or C-746-T Landfills as a source. These preliminarily are considered to be Type 2 exceedances per the approved monitoring plan.

1.3.1 Summary of C-746-S&T Results and Discussion

Groundwater monitoring identified parameters (TCE, beta activity) that exceeded their respective MCL (see Table 1); however, the TCE exceedances did not exceed their respective historical UTL and are considered Type 1 exceedances (not attributable to the landfill).

The beta activity MCL exceedances also exceeded their historical UTL.

Groundwater monitoring identified parameters that exceeded their respective historical UTL (see Table 2) but did not exceed the current UTL; thus, these also are considered to be Type I exceedances (not attributable to the landfill). The gradients in UCRS wells are downward. Thus, none of the UCRS wells are properly considered to be downgradient of the landfill. However, the statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS wells with parameters that exceeded both the historical and current background. These exceedances are not attributable to C-746-S&T landfills and are considered Type 1 exceedances. These exceedances are identified in Appendix D2.

Groundwater monitoring identified parameters that exceeded both their historical UTL (see Table 2) and their current UTL (see Table 3). The source(s) of these exceedances are not determined and are considered to be preliminary Type 2 exceedances.

To further evaluate these preliminary Type 2 exceedances, these parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. These preliminary Type 2 exceedances in downgradient wells did not have an increasing trend and are considered to be Type 1 exceedances (not attributable to the landfill).

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Var(S) ⁴	Sen's Slope ⁵	Kendall Correlation ⁶	Decision ⁷
	MW369	Technetium-99	8	0.05	0.451	2.000	65.33	1.065	0.071	No Trend
		Beta Activity	8	0.05	0.355	-4.000	65.33	-5.205	-0.143	No Trend
		Calcium	8	0.05	0.087	-12.00	65.33	-1.100	-0.429	No Trend
	CLEININ	Conductivity	8	0.05	0.133	-10.00	65.33	-10.85	-0.357	No Trend
	7/ CM 1/	Magnesium	8	0.05	0.106	-11.00	64.33	-0.575	-0.400	No Trend
		Sulfate	8	0.05	0.265	-6.000	63.33	-5.000	-0.222	No Trend
		Technetium-99	8	0.05	0.402	-3.000	64.33	-1.963	-0.109	No Trend
		Calcium	8	0.05	0.159	-9.000	64.33	-0.752	-0.327	No Trend
		Conductivity	8	0.05	0.054	-14.00	65.33	-3.450	-0.500	No Trend
C-746-S and T	MW373	Dissolved Solids	8	0.05	0.054	-14.00	65.33	-8.333	-0.500	No Trend
Downstadiant		Magnesium	8	0.05	0.018	-18.00	65.33	-0.446	-0.643	Negative Trend
Wells		Sulfate	8	0.05	0.067	-13.00	64.33	-3.250	-0.473	No Trend
		Beta Activity	8	0.05	0.451	2.000	65.33	1.625	0.071	No Trend
		Calcium	8	0.05	0.451	2.000	65.33	0.217	0.071	No Trend
	N111207	Magnesium	8	0.05	0.268	6.000	65.33	0.167	0.214	No Trend
	10CM IN	Sodium	8	0.05	0.159	9.000	64.33	0.510	0.327	No Trend
		Sulfate	8	0.05	0.067	13.00	64.33	0.490	0.473	No Trend
		Technetium-99	8	0.05	0.309	5.000	64.33	11.67	0.182	No Trend
		Beta Activity	8	0.05	0.451	-2.000	65.33	-2.019	-0.071	No Trend
	MW388	Sulfate	8	0.05	0.268	-6.000	65.33	-0.375	-0.214	No Trend
		Technetium-99	8	0.05	0.451	2.000	65.33	0.913	0.071	No Trend

Table 4. C-746-S and T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Footnotes:

¹An alpha of 0.05 represents a 95% confidence interval.

 2 The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period. S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value from an earlier time period. S is an indicator of an incremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

⁴VAR(S) represents the varience of S in the sample set and takes into account statistical ties.

⁵The magnitude of trend is predicted by the Sen's Slope. Here, the slope is described as the median of all (x₁-x_k)(j-k), where x is a data point and j and k are values of time.

Kendall's correlation is described as the difference of concordant pairs and discordant pairs, also taking sample size and statistical ties into account. When the Kendall's correlation is postive, it indicates an increasing trend and when it is negative, it indicates a decreasing trend. ⁷The Mann-Kendall decision operates on two hypothesis, the H₀ and H_a. H₀ assumes there is no trend in the data, whereas H_a assumes either a positve or negative trend. Two different tests were ran to test for positive trends. This table reports the test with the lowest p-value.

NOTE: Statistics generated using XLSTAT Version 2014.2.07.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the first quarter 2015 groundwater data collected from the C-746-S&T Landfills MWs were performed in accordance with the *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).* The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1, D2, and D3).

For those parameters that exceed the respective Kentucky solid waste facility MCL, found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both the upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-side tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well.

STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had

exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes that the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

3. DATA VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory project management or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices, and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples—such as matrix spikes, matrix spike duplicates, and method blanks—are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data validation results for this data set indicated that all data were considered acceptable.

4. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills First Quarter Calendar Year 2015 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PAD-ENM-0094/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

Kenneth R. Davis

PG1194

May 26, 2015 Date y 26, 2015

5. REFERENCES

- EPA (U.S. Environmental Protection Agency) 1989. *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Final Guidance, Office of Resource Conservation and Recovery, U.S. Environmental Protection Agency, Washington, DC.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name	: U.S. DOE – Paducah C	Baseous Diffusion Plant	Activity:	C-746-S&T Landfills					
	(As officially shown on DWM Permit Face)								
Permit No:	Permit No: 073-00014 & 073-00015 073-00045 Finds/Unit No: Quarter & Year 1st Qtr. CY 2015								
Please check the following as applicable:									
Characterization X Quarterly Semiannual Annual Assessmen									
Please check d	applicable submittal(s):	X Groundwater	<u> </u>	Surface Water					
		<u> </u>	Methane Monitoring						

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 *KAR* 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Mark J. Duff, Paducah Project Manager LATA Environmental Services of Kentucky, LLC Date

Jennifer Woodard, Paducah Site Lead U.S. Department of Energy Date

APPENDIX B

FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date: Facility Name:	Groundwater: January 2015 Methane: January 2015 Surface Water: January and March 2015 U.S. DOE, Paducah Gaseous Diffusion Pla (As officially shown on DW		Permit Nos.	073-00014 & 073-00015 & 073-00045				
Cita Addassa	· · ·			42052				
Site Address:	5501 Hobbs Road Street	Kevil, Kentucky City/State		42053 Zip				
Phone No:	(270) 441-6800 Latitude:	N 37° 07' 37.70"	Longitude:	W 88° 47' 55.41"				
	OWNER	INFORMATION						
Facility Owner:	U.S. DOE, W. E. Murphie, Manager		Phone No:	(859) 219-4001				
Contact Person:	Mark J. Duff		-	(270) 441-5030				
Contact Person Ti	tle: Project Manager, LATA Environme	ental Services of Kentucky, LLC						
Mailing Address:	761 Veterans Avenue	Kevil, Kentucky		42053				
U	Street	City/State		Zip				
Company:		NG PERSONNEL A <i>NDFILL OR LABORATORY</i>) cky, LLC						
Contact Person:	Jeff Boulton		Phone No:	(270) 441-5444				
Mailing Address:	761 Veterans Avenue	Kevil, Kentucky		42053				
	Street	City/State		Zip				
	LABORA	FORY RECORD #1						
Laboratory:	GEL Laboratories, LLC	Lab ID No: I	XY90129					
Contact Person:	Joanne Harley		Phone No:	(843) 769-7387				
Mailing Address:	i	harleston, South Carolina		29407				
8	Street	City/State		Zip				
LABORATORY RECORD #2								
Laboratory:		Lab ID No:						
Contact Person:			Phone No:					
Mailing Address:								
	Street	City/State		Zip				
	LABORA	FORY RECORD #3						
Laboratory:		Lab ID No:						
Contact Person:			Phone No:					
Mailing Address:								
Street City/State Zip								

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

THIS PAGE INTENTIONALLY LEFT BLANK

Frankfort, KY 40601 (502)564-6716 Division of Waste Management Solid Waste Branch 14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant **RESIDENTIAL/INERT-QUARTERLY**

Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

For Official Use Only

SAMPLE ANALYSIS GROUNDWATER

))/i)					10)						
AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number			8000-5201		8000-5202	12	8000-5242	42	8000-5243	~
Facility's Loc	Local Well or Spring Number (e.g., M	MW-1, MW-2, e	etc.)	220		221		222		223	
Sample Sequence	ce #			1		1		1		1	
If sample is a B	a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment	M)ethod, or (E)quipment	NA		NA		NA		NA	
Sample Date an	and Time (Month/Day/Year hour: minutes)	(sə:		1/5/2015 09:52		1/7/2015 08:48	3:48	1/6/2015 08:56	18:56	1/5/2015 13:51	:51
Duplicate ("Y"	' Of "N") ²			Ζ		z		N		N	
Split ("Y" or	OF "N") ³			z		z		z		z	
Facility Sample	le ID Number (if applicable)			MW220SG2-15		MW221SG2-15	2-15	MW222SG2-15	32-15	MW223SG2-15	-15
Laboratory Sam	Sample ID Number (if applicable)			364301001		364506001	5	364386001	01	364301003	
Date of Analys	Date of Analysis (Month/Day/Year) For Volatile Organics Analysis	Organics An	alysis	1/8/2015		1/13/2015	5	1/12/2015	15	1/8/2015	
Gradient with respect	respect to Monitored Unit (UP, DOWN,	WN, SIDE, UNKNOWN)	(NMONDAI	٩U		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T Unit D OF ⁵ MEASURE	METHOD	DETECTED VALUE OR	F DF	DETECTED VALUE OR	ЪГЧ	DETECTED VALUE OR	ЪЦΨ	DETECTED VALUE OR	ЪЦĘ
					a, G	PQL°	იი	PQL°	Ω Ω	PQL°	იი
24959-67-9	Bromide	T mg/L	9056	0.252		0.512		0.45		0.441	
16887-00-6	Chloride(s)	T mg/L	9056	22.2		34.4		31.4		30.4	
16984-48-8	Fluoride	T mg/L	9056	0.168		0.172		0.224		0.219	
S0595	Nitrate & Nitrite	T mg/L	9056	1.38		1.3	*	1.19		1.17	
14808-79-8	Sulfate	T mg/L	9056	14		13.2		10.3		13.9	
NS1894	Barometric Pressure Reading	T Inches/Hg	g Field	30.73		30.61		30.33		30.67	
S0145	Specific Conductance	T µMH0/cm	Field	330		405		321		388	

C-3

¹AKGWA # is 0000-0000 for any type of blank. ²Respond "Y" if the sample was a duplicate of another sample in this report. ³Respond "Y" if the sample was split and analyzed by separate laboratories. ⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

5"T" = Total; "D" = Dissolved 6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Concentration from analysis J = Estimated Value B = Analyte found in A = Average value N = Presumptive ID D = Concentration fr

= Analyte found in blank

Estimated Value = See Comments STANDARD FLAGS:

of a secondary dilution

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

Only

For Official Use

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

ዞ 너 ଏ ቤ ወ ~ ~ ~ 8000-5243 DETECTED VALUE <0.0005 0.0072 0.0112 0.00255 0.00102 223 <0.005 0.0436 0.0555 <0.0002 321.93 0.0161 <0.003 <0.002 <0.001 13.22 0.274 2.17 170 6.02 22.8 8.69 OR PQL⁶ 604 ት ግ ፈ ር ወ ~ ~ ~ 8000-5242 222 <0.0005 0.00996 <0.0002 0.00356 0.00047 DETECTED VALUE OR PQL⁶ <0.003 0.00398 <0.005 <0.002 <0.001 0.0117 322.2 11.39 0.306 0.268 5.15 14.6 0.634 6.16 6.24 169 554 ~ ት ግ ፈ ር ወ ~ ~ ~ 8000-5202 0.00099 0.00063 221 <0.0005 0.00618 <0.0002 DETECTED VALUE 0.0146 0.0125 <0.003 <0.005 0.0858 <0.002 322.57 10.39 <0.05 0.212 <0.001 19.7 8.41 5.01 166 6.14 OR PQL⁶ 850 ሥ ግ ፈ ር ወ ~ ~ 8000-5201 220 DETECTED VALUE 0.00772 0.00218 0.00055 <0.0002 <0.0005 0.00177 OR PQL⁶ <0.003 <0.005 <0.001 0.0194 322.21 0.193 10.44 0.207 0.022 0.697 5.95 8.05 5.7 140 733 20 Field Field Field Field Field METHOD 160.1 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 7470 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.) MEASURE Ft. MSL Unit OF Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L ng/L mg/L ng/L mg/L mg/L mg/L mg/L mg/L mg/L υ 뎙 н н нА∽ н Static Water Level Elevation AKGWA NUMBER¹, Facility Well/Spring Number Total Dissolved Solids CONSTITUENT Dissolved Oxygen Temperature Manganese Beryllium Magnesium Chromium Aluminum Antimony Calcium Arsenic Cadmium Mercury Cobalt Barium Copper Boron Iron Lead Нď 臣 7439-96-5 $\mathbb{R}\mathbb{N}^4$ I 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-42-8 7440-43-9 7440-70-2 7440-47-3 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-97-6 7440-48-4 ī s0266s0296-NS215 S0907 S0906 CAS N238

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹	1, Facility Well/Spring Number				8000-5201	L	8000-5202	02	8000-5242	42	8000-5243	3
Facility's Lo	Local Well or Spring Number (e.g.,	ММ-1,	MW-2,	etc.)	220		221	$\left \right $	222		223	
CAS RN ⁴	CONSTITUENT	НАω	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ፑካፈርሪ	DETECTED VALUE OR PQL ⁶	ក្រុជ្យប	DETECTED VALUE OR PQL ⁶	ក្រុង្លេល	DETECTED VALUE OR PQL ⁶	ሥካፈርሪ
7439-98-7	Molybdenum	н	mg/L	6020	0.00078		0.0025		0.0003	٦	0.00373	
7440-02-0	Nickel	н	mg/L	6020	0.0373		0.059		0.0405		0.318	
7440-09-7	Potassium	н	mg∕L	6020	3.31		1.51		0.29	٦	1.69	
7440-16-6	Rhodium	н	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	н	mg∕L	6020	0.00152	-	<0.005		<0.005		<0.005	
7440-22-4	Silver	н	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	sodium	н	mg/L	6020	38.1		42.4		39.2		47	
7440-25-7	Tantalum	н	mg/L	6020	<0.005	*	<0.005	*	0.0013	۰*	<0.005	*
7440-28-0	Thallium	н	mg/L	6020	<0.002	·	<0.002		<0.002		<0.002	
7440-61-1	Uranium	н	mg/L	6020	<0.0002		<0.0002		0.000078	ſ	<0.0002	
7440-62-2	Vanadium	н	mg∕L	6010	<0.005		<0.005		<0.005		<0.005	
7440-66-6	Zinc	н	mg/L	6020	0.00389	ר	<0.01		<0.01		0.00572	۲
108-05-4	Vinyl acetate	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	н	mg/L	8260	0.00158	٦	0.00374	BJ	<0.005		<0.005	
107-02-8	Acrolein	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	н	mg/L	8260	<0.005	·	<0.005		<0.005		<0.005	
71-43-2	Benzene	н	mg/L	8260	<0.001	L	<0.001	·	<0.001		<0.001	
108-90-7	Chlorobenzene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	г	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8000-5201		8000-5202	5	8000-5242	:42	8000-5243	ę
Facility's Loc	Local Well or Spring Number (e.g., M	MW-1,	, MW-2, etc.)	(;	220	1	221		222		223	
		ŀ				ľ		ľ				ľ
CAS RN ⁴	CONSTITUENT	нА₀	Unit OF	METHOD	DETECTED VALUE	БЦ	DETECTED VALUE	머니	DETECTED VALUE	Бυ	DETECTED VALUE	ыц
			ANUXAN		PQL	ላርስ ወ	OK PQL ⁶	ፈርጉ እ	PQL	ላርን እ	PQL	ፈርጉሪ
75-27-4	Bromodichloromethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromoethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	н	mg/L	8260	<0.001		<0.001		0.00064	٦	0.00114	

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8000-5201		8000-5202		8000-5242	5	8000-5243	33
Facility's Local	Well or Spring Number (e.g.,	MW-1,	MW-2, etc.))	220		221		222		223	
CAS RN ⁴	CONSTITUENT	НАυ	Unit OF MEASURE	МЕТНОD	DETECTED VALUE OR PQL ⁶	ሥካፈርስ ወ	DETECTED VALUE OR PQL ⁶	ምካፋርሪ	DETECTED VALUE OR PQL ⁶	ក្រុងលេខ	DETECTED VALUE OR PQL ⁶	ሥካፈርስ ለ
100-41-4	Ethylbenzene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Fropane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000204		<0.0000202		<0.0000199		<0.0000199	
78-87-5	Propane , 1,2-Dichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	H	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	н	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	H	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	н	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	н	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	H	ug/L	8082		*		*		*		*

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u>

LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹ , Facility Well/Spring Number Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) CAS RN ⁴ CONSTITUENT T Unit ⁵ MEASURE	MW-2, Unit OF MEASURE	MW-2, Unit OF MEASURE	ບໍ່) METHOD	8000-5201 220 DETECTED VALUE OR PQL ⁶	ម ។ ៤ ល ល	8000-5202 221 DETECTED VALUE OR PQL ⁶	ក្រុកលេល	8000-5242 222 VALUE OR PQL ⁶	で 「 よ よ よ で の の	8000-5243 223 223 223 VALUE 0R PQL ⁶	ល ចុង ដែល
11097-69-1	PCB-1254	н	ug/I	8082		*		*		*		*
11096-82-5	PCB-1260	H	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	н	ng/L	8082		*		*		*		*
12587-46-1	Gross Alpha	H	pCi/L	9310	4.95	*	-0.217	*	-0.376	*	0.633	*
12587-47-2	Gross Beta	н	pCi/L	9310	21.8	*	6.33	*	31.6	*	26.1	*
10043-66-0	Iodine-131	н	pCi/L			*		*		*		*
13982-63-3	Radium-226	н	pCi/L	HASL 300	0.484	*	0.395	*	0.289	*	0.159	*
10098-97-2	strontium-90	H	pCi/L	905.0	1.52	*	1.12	*	0.541	*	-0.776	*
14133-76-7	Technetium-99	H	pCi/L	TC-02-RC	32.5	*	17.5	*	15.2	*	16.8	*
14269-63-7	Thorium-230	H	pCi∕L	Th-01-RC	5.94	*	3.25	*	0.777	*	1.4	*
10028-17-8	Tritium	H	pCi/L	906.0	88.4	*	91.7	*	182	*	10.7	*
s0130	Chemical Oxygen Demand	H	mg/L	410.4	<20		11.7	٦	<20		<20	
57-12-5	Cyanide	H	mg/L	9012	<0.2		<0.2		<0.2		0.00189	Ъ
20461-54-5	Iodide	н	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	H	mg/L	9060	1.19	۔	1.35	٦	1.29	٦	1.39	ſ
s0586	Total Organic Halides	H	mg/L	9020	0.0037	۔	0.00686	٦	0.00342	٦	0.0063	ſ

Frankfort, KY 40601 (502)564-6716 Division of Waste Management Solid Waste Branch 14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant **RESIDENTIAL/INERT-QUARTERLY**

Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS

					1 ~ 1					
AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8000-5244	8004-4820	320	8004-4818	8	8004-4808	
Facility's Local	Well or Spring Number (e.g.,	MW-1, MW-2, etc.)	(•;	224	369		370		372	
Sample Sequence	:e #			+	۱		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)ethod, or (E)d	(E)quipment	NA	AN		NA		NA	
Sample Date and	d Time (Month/Day/Year hour: minutes)	tes)		1/6/2015 13:11	1/13/2015 08:22	08:22	1/13/2015 09:13	9:13	1/21/2015 08:54	54
Duplicate ("Y"	' or "N") ²			Z	N		Z		Z	
Split ("Y" or	г.("N"			Z	N		Z		Z	
Facility Sample	.e ID Number (if applicable)			MW224SG2-15	MW369UG2-15	G2-15	MW370UG2-15	2-15	MW372UG2-15	15
Laboratory Sam	Sample ID Number (if applicable)			364386003	364933007	007	364933009	60	365612007	
Date of Analysis	is (Month/Day/Year) For <u>Volatile</u>	Organics	Analysis	1/12/2015	1/20/2015	15	1/20/2015	5	1/26/2015	
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN,	WN, SIDE, UNKNOWN)	IOWN)	SIDE	DOWN	z	DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	МЕТНОD	DETECTED F VALUE L OR A PQL ⁶ G	DETECTED VALUE OR PQL ⁶	ក្រុ៩បូល	DETECTED VALUE OR PQL ⁶	市山へのの	DETECTED VALUE OR PQL ⁶	ы ЧЦ Ф С О О
24959-67-9	Bromide	T mg/L	9056	0.226	0.402		0.562		0.606	
16887-00-6	Chloride(s)	T mg/L	9056	17.4	31.9		39.4		46.3	
16984-48-8	Fluoride	T mg/L	9056	0.253	0.181		0.141		0.152	
s0595	Nitrate & Nitrite	T mg/L	9056	0.524 *	0.657	٦	1.42		1.23	
14808-79-8	sulfate	T mg/L	9056	10.8	8.7		20		109	
NS1894	Barometric Pressure Reading	Tnches/Hg	Field	30.4	30.53		30.53		30.16	
S0145	Specific Conductance	T µMH0/cm	Field	404	374		441		701	
							STANDARD FLAGS:	'LAGS:		

C-9

¹AKGWA # is 0000-0000 for any type of blank. ²Respond "Y" if the sample was a duplicate of another sample in this report. ³Respond "Y" if the sample was split and analyzed by separate laboratories. ⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

5"T" = Total; "D" = Dissolved 6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Concentration from analysis J = Estimated Value B = Analyte found in A = Average value N = Presumptive ID D = Concentration fr

= Analyte found in blank

Estimated Value = See Comments

of a secondary dilution

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u> LAB ID: None

Only

For Official Use

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

ዞ ካ ፈ ቤ ወ ~ ~ ~ ~ 3004-4808 0.00314 DETECTED VALUE 372 <0.0005 0.00023 322.76 <0.003 <0.005 0.00037 <0.0002 <0.001 <0.002 0.906 0.0711 <0.05 1.44 374 6.34 14.5 0.05 53.5 <0.01 20.4 OR PQL⁶ 693 нчкро ~ മ ~ 8004-4818 370 <0.0005 DETECTED VALUE OR PQL⁶ 0.00056 <0.0002 <0.003 <0.005 0.0339 0.0113 322.26 <0.001 <0.001 <0.002 10.78 <0.05 0.222 0.066 <0.01 6.23 3.64 203 28.7 13.4 691 ሥ ግ ፈ ር ወ മ 8004-4820 369 <0.0005 0.00119 <0.0002 DETECTED VALUE <0.005 322.32 <0.003 0.0164 0.0124 <0.002 <0.001 10.06 0.273 0.387 0.824 1.15 16.5 <0.01 7.19 0.11 6.29 OR PQL⁶ 779 207 ሥ ግ ፈ ር ወ ~ ~ ~ ~ ~ 8000-5244 224 DETECTED VALUE <0.0002 0.00795 OR PQL⁶ <0.0005 <0.003 <0.005 0.0025 0.00097 0.0924 <0.002 318.97 0.0154 0.0127 <0.001 <0.001 13.39 19.5 2.95 6.06 7.92 211 0.21 534 Field METHOD Field 160.1 Field Field Field 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 7470 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.) MEASURE Ft. MSL Unit OF mg/L Units ∏/Gm mg/L mg/L mg/L ng/L mg/L mg/L mg/L mg/L mg/L mg/L ng/L mg/L mg/L mg/L mg/L mg/L υ 뎚 н н н ндω н н н н н ы н н н н н н н н н н н н н Static Water Level Elevation AKGWA NUMBER¹, Facility Well/Spring Number Total Dissolved Solids CONSTITUENT Dissolved Oxygen Temperature Manganese Beryllium Magnesium Chromium Antimony Aluminum Arsenic Calcium Cadmium Mercury Cobalt Barium Copper Boron Iron Lead Нd 臣 $\mathbb{R}\mathbb{N}^4$ I. 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-42-8 7440-43-9 7440-70-2 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-96-5 7439-97-6 ī. ı, s0266s0296-S0906 NS215 S0907 CAS N238

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹ ,	1, Facility Well/Spring Number				8000-5244		8004-4820	20	8004-4818	8	8004-4808	8(
Facility's Lo	Local Well or Spring Number (e.g.,	мw-1,	, MW-2, etc.))	224		369		370		372	
CAS RN ⁴	CONSTITUENT	ΗQυ	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ዞ ካ ፋ ር ወ	DETECTED VALUE OR PQL ⁶	ሥካፈርሪ	DETECTED VALUE OR PQL ⁶	ក្រុងប្រ	DETECTED VALUE OR PQL ⁶	ፑካፋርሪ
7439-98-7	Molybdenum	н	mg/L	6020	0.00029	۔ ۲	0.00018	۔	<0.0005		0.00032	B
7440-02-0	Nickel	н	mg/L	6020	0.00634		0.0116		0.00301		0.00067	٦
7440-09-7	Potassium	н	mg/L	6020	0.608		0.542		2.45		2.1	
7440-16-6	Rhodium	н	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	н	mg/L	6020	<0.005		<0.005		<0.005		0.00172	٦
7440-22-4	silver	н	mg/L	6020	0.00029	۔ ۲	<0.001		<0.001		<0.001	
7440-23-5	sodium	н	mg/L	6020	49.2		52.2		42.8		55.7	
7440-25-7	Tantalum	н	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	*
7440-28-0	Thallium	н	mg/L	6020	<0.002	L	<0.002		<0.002		<0.002	
7440-61-1	Uranium	н	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	н	mg/L	6010	<0.005		0.00134	٦	<0.005		<0.005	
7440-66-6	Zinc	н	mg/L	6020	<0.01		0.00408	۔ ٦	<0.01		0.0101	*
108-05-4	Vinyl acetate	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	н	mg/L	8260	<0.005	L	<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	н	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	н	mg/L	8260	<0.001	L	<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8000-5244		8004-4820	0.	8004-4818	318	8004-4808	8
Facility's Local Well	or Spring Number (e.g.,	MW-1,	, MW-2, etc.)	(.	224		369		370		372	
		L				┢		I				ľ
CAS RN ⁴	CONSTITUENT	нΑ	Unit OF	METHOD	A	ыц	DETECTED VALUE	ΒЦ	DETECTED VALUE	ΒЦ	DETECTED VALUE	ъц
		ז	MEASURE		or PQL ⁶	ፈርጉ እ	OR PQL ⁶	ፈርጋ ወ	OR PQL ⁶	ላ ርጉ እ	OR PQL ⁶	ፈርጉ ወ
75-27-4	Bromodichloromethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromoethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	н	mg/L	8260	<0.001		0.00146		0.00104		0.00808	

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8000-5244		8004-4820		8004-4818	~	8004-4808	
Facility's Loc	Local Well or Spring Number (e.g., M	МW−1,	. MW-2, etc.)	(;	224		369		370		372	
CAS RN ⁴	CONSTITUENT	НА∽	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ምካፈቤወ	DETECTED VALUE OR PQL ⁶	ም Ц ፋ ቤ ወ	DETECTED VALUE OR PQL ⁶	ក្រុងបែល	DETECTED VALUE OR PQL ⁶	ት ጊ ላ ር) ለ
100-41-4	Ethylbenzene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	г	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Fropane, 1,2-Dibromo-3-chloro	н	mg/L	8011	<0.0000198		<0.00002		<0.0000202		<0.0000202	
78-87-5	Propane , 1,2-Dichloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Ŧ	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Ŧ	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	H	ug/L	8082		*	<0.099		<0.0971		<0.0935	
12674-11-2	PCB-1016	н	ug/L	8082		*	<0.099		<0.0971		<0.0935	
11104-28-2	PCB-1221	H	ug/L	8082		*	<0.099		<0.0971		<0.0935	
11141-16-5	PCB-1232	н	ug/L	8082		*	<0.099		<0.0971		<0.0935	
53469-21-9	PCB-1242	н	ug/L	8082		*	<0.099		<0.0971		<0.0935	
12672-29-6	PCB-1248	н	ug/L	8082		*	<0.099		<0.0971		<0.0935	

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER	AKGWA NUMBER ¹ , Facility Well/Spring Number				8000-5244		8004-4820		8004-4818	8	8004-4808	
Facility's Local	Well or Spring Number (e.g.,	MW-1,	MW-2,	etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	НА∽	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ក្រុងបែល	DETECTED VALUE OR PQL ⁶	王 よ の ら の	DETECTED VALUE OR PQL ⁶	ዞ ጊ ፈ ር) ወ	DETECTED VALUE OR PQL ⁶	ዞ ካ ፈ ር ወ
11097-69-1	PCB-1254	н	ug/L	8082		*	<0.099		<0.0971		<0.0935	
11096-82-5	PCB-1260	н	ug/L	8082		*	<0.099		<0.0971		<0.0935	
11100-14-4	PCB-1268	н	ug/L	8082		*	660.0>		×0.0971		<0.0935	
12587-46-1	Gross Alpha	н	рСі/Г	9310	0.137	*	1.63	*	168.0	*	4.08	*
12587-47-2	Gross Beta	г	рСі/Г	9310	9.49	*	33.4	*	16	*	115	*
10043-66-0	Iodine-131	н	рСі/L			*		*		*		*
13982-63-3	Radium-226	н	рСі/L	HASL 300	-0.259	*	0.664	*	09.0	*	-0.021	*
10098-97-2	Strontium-90	н	рСі/L	905.0	-0.253	*	2.32	*	-0.025	*	1.91	*
14133-76-7	Technetium-99	н	рСі/L	TC-02-RC	9.13	*	45.2	*	14.8	*	181	*
14269-63-7	Thorium-230	н	рСі/L	Th-01-RC	1.6	*	0.309	*	0.324	*	-0.0582	*
10028-17-8	Tritium	н	рСі/L	906.0	64.5	*	-34.5	*	-93.2	*	-88.3	*
s0130	Chemical Oxygen Demand	н	mg/L	410.4	<20		<20		<20		8.05	٦
57-12-5	Cyanide	н	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	н	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	н	mg/L	9060	1.46	-	1.66	ſ	1.15	٦	1.57	۔ ٦
S0586	Total Organic Halides	н	mg/L	9020	<0.01		0.0213		0.00714	ſ	0.0135	

Frankfort, KY 40601 (502)564-6716 Division of Waste Management Solid Waste Branch 14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant **RESIDENTIAL/INERT-QUARTERLY**

Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

For Official Use Only

SAMPLE ANALYSIS (S) GROUNDWATER

			_			(6)					
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-4809	8004-	8004-4810	8004-4804	
Facility's Loc	Local Well or Spring Number (e.g., h	MW (L-WM	MW-2, etc.)		373		384	36	385	386	
Sample Sequence	3e #				1		1	1		1	
If sample is a B	a Blank, specify Type: (F)ield, (T)rip,	(M)ethod,	or (E)quipment	pment	NA		NA	NA		NA	
Sample Date an	and Time (Month/Day/Year hour: minutes)	tes)			1/21/2015 13:44		1/6/2015 08:51	1/6/201	1/6/2015 12:39	1/6/2015 09:33	33
Duplicate ("Y"	("Y" OY "N") ²				Ν		z	Z		Ν	
Split ("Y" or	е (п и п				z		z	z		Z	
Facility Sample	le ID Number (if applicable)				MW373UG2-15	_	MW384SG2-15		MW385SG2-15	MW386SG2-15	-15
Laboratory Sam	Sample ID Number (if applicable)				365612009		364386005	36438	364386007	364386009	
Date of Analysis	sis (Month/Day/Year) For Volatile	Organi	Organics Analysis	is	1/26/2015		1/12/2015	1/12/	1/12/2015	1/12/2015	
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN,		SIDE, UNKNOWN)	N)	DOWN		SIDE	SII	SIDE	SIDE	
				4011111					ţ		ſ
CAS KN	CONSTITUENT	- - -		понтям	VALITE	Ξ.		VALITE	¥ 1	VALITE	ч г [.]
			MEASURE					OR	4	OR	4
					PQL ⁶	G BQ	PQL ⁶ G	PQL ⁶	ი ი	PQL ⁶	50
									2		s
24959-67-9	Bromide	ц	mg/L	9056	0.602		0.604	0.248	8 ل	0.152	7
16887-00-6	Chloride(s)	н	mg/L	9056	42.8		48.2	23.7		15.1	
16984-48-8	Fluoride	H H	mg/L	9056	0.148		0.2	0.152	8	0.549	
s0595	Nitrate & Nitrite	H	mg/L	9056	0.672		1.27	0.535	5	<0.1	
14808-79-8	Sulfate	H	mg/L	9056	197		20.3	18.6	<u> </u>	42.9	
NS1894	Barometric Pressure Reading	T Incl	Inches/Hg	Field	30.15		30.37	30.41	-	30.37	
S0145	Specific Conductance	T	hMH0/cm	Field	933		537	462		622	
·								STANDAR	STANDARD FLAGS:		

C-15

¹AKGWA # is 0000-0000 for any type of blank. ²Respond "Y" if the sample was a duplicate of another sample in this report. ³Respond "Y" if the sample was split and analyzed by separate laboratories. ⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

5"T" = Total; "D" = Dissolved 6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

- Concentration from analysis J = Estimated Value B = Analyte found in A = Average value N = Presumptive ID D = Concentration fr
 - of a secondary dilution

= Analyte found in blank

Estimated Value * = See Comments

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u> LAB ID: <u>None</u> For Official Use Only

040		-		2	(•)1100/						
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	8004-4809	60	8004-4810		8004-4804	
Facility's Loc	Local Well or Spring Number (e.g., MW	MW-1, M	MW-2, BLANK-F,	, etc.)	373	384		385		386	
CAS RN ⁴	CONSTITUENT	НА∽	Unit OF MEASURE	МЕТНОD	DETECTED F VALUE L OR A PQL ⁶ G	DETECTED VALUE OR PQL ⁶	ក្រុុវបូល	DETECTED VALUE OR PQL ⁶	ዞ ኳ ፋ ር ወ	DETECTED VALUE OR PQL ⁶	ក្រុ៩បូល
= - 9060s	Static Water Level Elevation	н	Ft. MSL	Field	322.76	322.38		322.34		345.93	
N238	Dissolved Oxygen	н	mg/L	Field	1.34	3.6		1.79		0.4	
s0266	Total Dissolved Solids	н	mg/L	160.1	499	249		200		350	
s0296	нd	н	Units	Field	5.99	6.32		6.55		6.69	
NS215	ча	н	Λш	Field	336	350		375		227	
s0907	Temperature	н	ç	Field	15.44	12.61		13.56		14.61	
7429-90-5	Aluminum	н	mg/L	6020	<0.05	0.0343	7	0.17		0.0182	ſ
7440-36-0	Antimony	н	mg/L	6020	<0.003	<0.003		<0.003		<0.003	
7440-38-2	Arsenic	н	mg/L	6020	<0.005	<0.005		<0.005		<0.005	
7440-39-3	Barium	н	mg∕L	6020	0.028	0.146		0.243		0.205	
7440-41-7	Beryllium	н	mg/L	6020	<0.0005	<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	н	mg/L	6020	1.77	0.0166		0.0125	ſ	0.00648	٦
7440-43-9	Cadmium	н	mg/L	6020	<0.001	<0.001		<0.001		<0.001	
7440-70-2	Calcium	н	mg/L	6020	71.5	29.5		37.9		22.3	
7440-47-3	Chromium	н	mg/L	6020	<0.01	0.00745	٦ 	<0.01		<0.01	
7440-48-4	Cobalt	н	mg/L	6020	0.00069 J	0.0004	ſ	0.00026	ſ	0.00643	
7440-50-8	Copper	H	mg/L	6020	<0.001	0.00154		0.0011		0.00073	٦
7439-89-6	Iron	н	mg/L	6020	0.071 J	1.81		0.43		0.88	
7439-92-1	Lead	н	mg/L	6020	<0.002	<0.002		<0.002		<0.002	
7439-95-4	Magnesium	н	mg/L	6020	28.2	10.2		13.4		8.53	
7439-96-5	Manganese	н	mg/L	6020	0.123	0.0588		0.0109		1.02	
7439-97-6	Mercury	н	mg/L	7470	<0.0002	<0.0002		<0.0002		<0.0002	

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	. ¹ , Facility Well/Spring Number				8004-4792	~	8004-4809	60	8004-4810	10	8004-4804	4
Facility's Lo	Local Well or Spring Number (e.g.,	МW−1,	, MW-2, etc.))	373		384		385		386	
CAS RN ⁴	CONSTITUENT	μQυ	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ጉካፈርን	DETECTED VALUE OR PQL ⁶	ጉካፈርን	DETECTED VALUE OR PQL ⁶	ም ካ ፋ ር እ	DETECTED VALUE OR PQL ⁶	ፑካፋርሪ
7439-98-7	Molybdenum	н	mg/L	6020	<0.0005		<0.005		0.00049	-	0.00047	_ ٦
7440-02-0	Nickel	н	mg/L	6020	0.00494		0.00151	٦	0.00138	-	0.00217	
7440-09-7	Potassium	н	mg/L	6020	2.9		1.06		1.75		0.214	ر
7440-16-6	Rhodium	н	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	н	mg/L	6020	<0.005		0.00198	٦	<0.005		<0.005	
7440-22-4	Silver	н	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	н	mg/L	6020	61.5		53.5		30.6		104	
7440-25-7	Tantalum	н	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	н	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.00032		<0.0002	
7440-62-2	Vanadium	н	mg/L	6010	<0.005		<0.005		<0.005		<0.005	
7440-66-6	Zinc	н	mg/L	6020	<0.01	*	0.00574	٦	0.00385	Ъ	<0.01	
108-05-4	Vinyl acetate	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001	<u> </u>	<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003	·	<0.003		<0.003		<0.003	
100-42-5	Styrene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4792		8004-4809	6(8004-4810	10	8004-4804	4
Facility's Lo	Local Well or Spring Number (e.g., M	МW−1,	, MW-2, etc.)	(373		384		385		386	
CAS RN ⁴	CONSTITUENT	НА∽	Unit OF MEASURE	METHOD	DETECTED VALUE OR POL ⁶	ម្រុងប	DETECTED VALUE OR POL ⁶	토니석 (1)	DETECTED VALUE OR POL ⁶	ጉካፈሪ	DETECTED VALUE OR POL ⁶	토니석 (1)
						o os		N O		o os		Ω Ω
75-27-4	Bromodichloromethane	н	mg/L	8260	100.02	╡			<0.001		-001	
75-25-2	Tribromomethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001	L	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	н	mg/L	8260	<0.005	ļ	<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	н	mg/L	8260	0.00767		0.00048	٦	<0.001		<0.001	

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4792		8004-4809		8004-4810	0	8004-4804	4
Facility's Local	Well or Spring Number (e.g.,	MW-1,	, MW-2, etc.))	373		384		385		386	
CAS RN ⁴	CONSTITUENT	НАυ	Unit OF MEASURE	МЕТНОD	DETECTED VALUE OR PQL ⁶	ศารอง	DETECTED VALUE OR PQL ⁶	ម្រា៤បែល	DETECTED VALUE OR PQL ⁶	ሞካፋናንል	DETECTED VALUE OR PQL ⁶	ម្រាជបូល
100-41-4	Ethylbenzene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Ŧ	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Fropane, 1,2-Dibromo-3-chloro	н	mg/L	8011	<0.0000202		<0.0000205		<0.0000198		<0.0000202	
78-87-5	Propane , 1,2-Dichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	H	ug/L	8082	<0.467			*		*		*
12674-11-2	PCB-1016	H	ug/L	8082	<0.467			*		*		*
11104-28-2	PCB-1221	H	ug/L	8082	<0.467			*		*		*
11141-16-5	PCB-1232	H	ug/L	8082	<0.467			*		*		*
53469-21-9	PCB-1242	H	ug/L	8082	<0.467			*		*		*
12672-29-6	PCB-1248	H	ug/L	8082	<0.467			*		*		*

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u>

LAB ID: <u>None</u> For Official Use Only

DETECTED F DETECTED F DETECTED F DETECTED F DETECTED F DETECTED F VALUE L VALUE <thl< th=""> L <thl< th=""></thl<></thl<>	W X
DETECTED F DETECTED F DETECTED F DETECTED F VALUE L VALUE L VALUE L VALUE L VALUE L OR A OR A OR A OR A $OAL C OAC A OR A OR A OAL C OAC S OOR A OR A OAC S OOR S OOR S OOR A OAC S OOR S OOR S OOR S OAC S OOR S OOR S S S OOAC S OOR S S SOL S S S OOAC S SOL S S SOL S S S S S S S S$	Well or Spring Number (e.g.,
< 0.467 $<$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< $ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< <$ $< $ <	CONSTITUENT
<-0.467	PCB-1254
<-0.467	PCB-1260
8.21 * 3.68 * 2.99 * 14.1 * 138 * 100 * • 14.1 * 138 * 100 * • 14.1 * 138 * 100 * • 0.055 * 0.123 * • * • -0.105 * 1105 * •1.68 * • -0.105 * 191 * 134 * 166 * 2.62 * 4.08 * * 166 * 191 * 134 * * • -58 * 191 * 159 * * • -58 * 191 * 159 * * * • -58 * 191 * 159 * * * • -58 * 191 * 159 * * * • -50 * </td <td>PCB-1268</td>	PCB-1268
14.1 * 138 * 100 * 14.1 * 138 * 100 * 14.1 * 0.055 * 0.261 * * 0.055 * 0.123 * 0.261 * * 0.055 * 1.05 * 0.261 * * 1.05 * 134 * * * * 28.8 * 191 * 134 * * 1.66 * 2.62 * 4.08 * * 1.66 * 191 * 159 * * * * 191 * 159 * * * * 191 * 159 * * * * * 191 * 159 * * * * * * * 159 * * * * * * * * * *	Gross Alpha T
* *	Gross Beta
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Iodine-131 T
-0.105 * 1.05 * -1.68 * 28.8 * 191 * 134 * 28.8 * 191 * 134 * 1.66 * 2.62 * 4.08 * -58 * 191 * 159 * -58 * 191 * 159 * ~ -58 * 191 * 159 * ~ -58 * 191 * 159 * * ~ -58 * 191 * 159 * * * ~ -50 ~ 200 ~ 200 ~ 200 ~ -200 ~ -0.2 <	Radium-226 T
28.8 * 191 * 134 * 134 * 1.66 * 2.62 * 4.08 * $*$ -58 * 191 * 159 * $*$ -58 * 191 * 159 * $*$ <20 <20 <20 <20 <20 <20 <20 <20 <-0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <	strontium-90 T pCi/L
1.66 * 2.62 * 4.08 * -58 * 191 * 159 * <20	Technetium-99 T pCi/L
-58 * 191 * 159 * ~ 20 ~ 20 ~ 20 ~ 20 ~ 20 ~ 20 ~ 0.2 ~ -0.2 ~ -0.2 ~ -0.2 ~ -0.2 ~ -0.2 ~ -0.5 ~ -0.5 ~ -0.5 ~ -0.5 ~ -0.5 ~ -0.5 ~ 0.14 0.014 0.0064 -0.0064 -0.0064	Thorium-230 T DCi/L
<20	Tritium T
<0.2	Chemical Oxygen Demand T
<0.5	Cyanide
1.9 J 2.13 1.47 J 0.0111 0.014 0.014 1	Todide
	Total Organic Carbon
	Total Organic Halides T

Frankfort, KY 40601 (502)564-6716 Division of Waste Management Solid Waste Branch 14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant **RESIDENTIAL/INERT-QUARTERLY**

Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

For Official Use Only

SAMPLE ANALYSIS (S) GROUNDWATER

					10			:		
AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number			8004-4815	800	8004-4816	8004-4812	2	8004-4811	
Facility's Loc	Local Well or Spring Number (e.g.,)	MW-1, MW-2,	etc.)	387		388	68£		390	
Sample Sequence	3e #			٢		1	L		1	
If sample is a F	Blank, specify Type: (F)ield, (T)rip,	(M)ethod, or	(E)quipment	NA	Z	NA	ΥN		NA	
Sample Date ar	and Time (Month/Day/Year hour: minutes)	tes)		1/12/2015 12:48	1/12/20	1/12/2015 13:55	NA		1/12/2015 09:54	
Duplicate ("Y" or "N") ²	" Or "N") ²			z		z	z		z	
Split ("Y" or	"N") ³			z		z	z		z	
Facility Sample	le ID Number (if applicable)			MW387SG2-15	MW38	MW388SG2-15	AN		MW390SG2-15	
Laboratory San	sample ID Number (if applicable)			364787001	3647	364787003	AN		364787005	
Date of Analysis	sis (Month/Day/Year) For <u>Volatile</u>	• Organics Analysis	Analysis	1/15/2015	1/15	1/15/2015	AN		1/15/2015	
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN,		SIDE, UNKNOWN)	DOWN	DQ	DOWN	SIDE		DOWN	
						_				
CAS RN [*]	CONSTITUENT	т Unit	METHOD	DETECTED F	DETECTED		DETECTED	Εчь	DETECTED	<u> </u>
		ME	RE			3 A	OR	- A		
				PQL ⁶ G	PQL ⁶	ლ თ	PQL ⁶	იი	PQL ⁶	00
			+					*		0
24959-67-9	Bromide	T mg/L	9056	70C.U	0.394	4		:	C/2/0	
16887-00-6	Chloride(s)	T mg/L	9056	41	31.5	2		*	93.2	
16984-48-8	Fluoride	T mg/L	9056	0.681	0.183	3		*	0.281	
80595	Nitrate & Nitrite	T mg/L	9056	1.2	1.27	2		*	3.66	
14808-79-8	Sulfate	T mg/L	9056	34.4	24.4	4		*	26.7	
NS1894	Barometric Pressure Reading	T Inches/Hg	'Hg Field	30.3	30.3			*	30.19	
S0145	Specific Conductance	T µMH0/cm	cm Field	602	466			*	755	
,							STANDARD FLAGS:	FLAGS:		

C-21

AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report. ³Respond "Y" if the sample was split and analyzed by separate laboratories. ⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

5"T" = Total; "D" = Dissolved 6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Concentration from analysis J = Estimated Value B = Analyte found in A = Average value N = Presumptive ID D = Concentration fr

= Analyte found in blank

Estimated Value = See Comments

of a secondary dilution

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

Only

For Official Use

(Cont. ANALYSIS SAMPLE GROUNDWATER

ዞ ካ ፈ ቤ ወ В ഫ ~ ~ ~ ~ 3004-4811 DETECTED VALUE 0.00326 <0.0005 0.00638 0.00062 0.00096 390 <0.003 <0.005 <0.0002 <0.002 <0.001 0.465 0.011 322.7 5.18 6.33 13.67 0.297 34.5 0.541 15.4 OR PQL⁶ 396 817 ሥ ግ ፈ ር ወ * * * 8004-4812 389 DETECTED VALUE OR PQL⁶ ሥ ግ ፈ ር ወ В ~ ഫ 8004-4816 388 0.00073 <0.0005 0.00573 <0.0002 DETECTED VALUE <0.005 <0.003 0.0258 0.0003 <0.002 322.64 <0.001 13.78 0.231 0.751 0.18 <0.01 13.4 4.64 27.7 OR PQL⁶ 211 6.01 634 ሥ ግ ፈ ር ወ ~ ~ ~ ~ മ 8004-4815 DETECTED VALUE 387 OR PQL⁶ 0.00304 <0.0005 0.00547 0.00017 <0.0002 322.72 0.0443 <0.003 0.0385 <0.002 0.0179 <0.001 <0.001 0.144 0.165 12.67 18.5 6.14 5.67 290 820 40 Field Field METHOD Field 160.1 Field Field 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 7470 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.) Ft. MSL MEASURE Unit OF mg/L Units mg/L ∏/Gm mg/L mg/L mg/L ng/L mg/L mg/L mg/L шg/Г mg/L ng/L mg/L mg/L mg/L mg/L mg/L υ 뎚 н н н н ндω н н н н н ы н н н н н н н н н н н н Static Water Level Elevation AKGWA NUMBER¹, Facility Well/Spring Number Total Dissolved Solids CONSTITUENT Dissolved Oxygen Temperature Manganese Beryllium Magnesium Antimony Chromium Aluminum Arsenic Calcium Cadmium Mercury Cobalt Barium Copper Boron Iron Lead Нd 臣 7439-96-5 \mathbf{RN}^4 I. 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-42-8 7440-43-9 7440-70-2 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-97-6 ī. ī s0266s0296-S0906 NS215 S0907 CAS N238

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹ ,	', Facility Well/Spring Number				8004-4815	5	8004-4816	16	8004-4812		8004-4811	_
Facility's Local Well	or Spring Number (e.g.,	MW-1,	MW-2,	etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	НА∽	Unit OF MEASURE	МЕТНОD	DETECTED VALUE OR PQL ⁶	ዞ ካፈር ወ	DETECTED VALUE OR PQL ⁶	ዞ ኳ ፈ ር ወ	DETECTED VALUE OR PQL ⁶	ក្រុ៩បូល	DETECTED VALUE OR PQL ⁶	ម្រា៤ប្រ
7439-98-7	Molybdenum	н	mg/L	6020	<0.0005		0.00024	BJ		*	0.00041	BJ
7440-02-0	Nickel	н	mg/L	6020	0.0041		0.00477			*	0.0053	
7440-09-7	Potassium	н	mg/L	6020	1.97		2.07			*	0.434	
7440-16-6	Rhodium	н	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	н	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	silver	н	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	sodium	н	mg/L	6020	61.6		48.9			*	98.1	
7440-25-7	Tantalum	н	mg / L	6020	0.00201	*	<0.005	*		*	<0.005	*
7440-28-0	Thallium	н	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	н	mg/L	6020	<0.0002		<0.0002	L		*	0.00012	ſ
7440-62-2	Vanadium	н	mg/L	6020	<0.005		<0.005	ļ		*	0.002	ſ
7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01			*	0.0038	ſ
108-05-4	Vinyl acetate	н	mg / L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	H	mg/L	8260	0.00459	ВJ	0.00468	BJ		*	0.0045	BJ
107-02-8	Acrolein	н	mg/L	8260	<0.005		<0.005	L		*	<0.005	
107-13-1	Acrylonitrile	н	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	н	mg/L	8260	<0.001		<0.001	L		*	<0.001	
108-90-7	Chlorobenzene	н	mg/L	8260	<0.001		<0.001	L		*	<0.001	
1330-20-7	Xylenes	н	mg / L	8260	<0.003		<0.003	L		*	<0.003	
100-42-5	Styrene	н	mg/L	8260	<0.001		<0.001	L		*	<0.001	
108-88-3	Toluene	н	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	н	mg/L	8260	<0.001		<0.001			*	<0.001	

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4815		8004-4816	9	8004-4812		8004-4811	ľ
Facility's Local	g.,	MW-1,	, MW-2, etc.)	· .	387		388		389		390	
CAS RN ⁴	CONSTITUENT	НА∽	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ក្រុ៩២០	DETECTED VALUE OR PQL ⁶	ក្រុ៤ប្រ	DETECTED VALUE OR PQL ⁶	ម្រា៤បែល	DETECTED VALUE OR PQL ⁶	ម្រា៤ប្រ
75-27-4	Bromodichloromethane	н	mg/L	8260	<0.001		<0.001			*	<0.001	1
75-25-2	Tribromomethane	н	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	н	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	н	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	н	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	н	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	н	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	н	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	H	mg/L	8260	0.00039	٦	0.00042	ſ		*	<0.001	
74-95-3	Methylene bromide	H	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	H	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Ŧ	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	н	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	H	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	H	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	н	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	н	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	н	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	н	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	н	mg/L	8260	0.00074	۔ ٦	0.00066	٦		*	<0.001	

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u>

LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4815		8004-4816		8004-4812		8004-4811	
Facility's Local	Well or Spring Number (e.g.,	МW−1,	, MW-2, etc.)	3.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	НО∘	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ዞ <u>ካ</u> ፋ ቤ ወ	DETECTED VALUE OR PQL ⁶	王 よ ひ ら ひ	DETECTED VALUE OR PQL ⁶	ず し よ の の	DETECTED VALUE OR PQL ⁶	ក្រុងប្រហ
100-41-4	Ethylbenzene	н	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	н	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	н	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	H	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	н	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	н	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	H	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Fropane, 1,2-Dibromo-3-chloro	H	mg/L	8011	<0.0000201		<0.00002			*	<0.0000203	
78-87-5	Propane , 1,2-Dichloro-	H	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	н	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	H	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	н	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	H	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	H	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	H	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	H	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB, Total	H	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	H	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	H	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	H	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	H	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	H	ug/L	8082		*		*		*		*

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u>

LAB ID: <u>None</u> For Official Use Only

\square		王 よ ら ら ろ																			
311			*	*	*	*	*	*	*	*	*	*	*	~							
8004-4811	390	DETECTED VALUE OR PQL ⁶				-4.04	39		0.109	3.36	55.7	1.16	-36.1	15.4	<0.2	<0.5	2.63	0.0132			
		ずしれらら	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*			
8004-4812	389	DETECTED VALUE OR PQL ⁶																			
		ក្រុងប្រ	*	*	*	*	*	*	*	*	*	*	*				۔	٦			
8004-4816	388	DETECTED VALUE OR PQL ⁶				1.61	63.3		0.815	0.51	90.4	0.79	-25.8	<20	<0.2	<0.5	1.55	0.00946			
		ក្រុងបែល	*	*	*	*	*	*	*	*	*	*	*	-			۔ ٦				
8004-4815	387	DETECTED VALUE OR PQL ⁶				-0.0682	158		0.344	0.469	211	0.626	-48.7	7.88	<0.2	<0.5	1.75	0.0112			
	etc.)	METHOD	8082	8082	8082	9310	9310		HASL 300	905.0	TC-02-RC	Th-01-RC	906.0	410.4	9012	300.0	9060	9020			
	MW-2,	Unit OF MEASURE	ng∕L	ug∕L	ng/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	pCi/L	mg/L	mg/L	mg/L	mg/L	mg/L			
	MW-1,	ΗQυ	т	Т	н	н	H	н	н	н	н	н	н	H	н	н	н	н			
AKGWA NUMBER ¹ , Facility Well/Spring Number	al Well or Spring Number (e.g.,	CONSTITUENT	PCB-1254	PCB-1260	PCB-1268	Gross Alpha	Gross Beta	Iodine-131	Radium-226	Strontium-90	Technetium-99	Thorium-230	Tritium	Chemical Oxygen Demand	Cyanide	Iodide	Total Organic Carbon	Total Organic Halides			
AKGWA NUMBER ¹ ,	Facility's Local	CAS RN ⁴	11097-69-1	11096-82-5	11100-14-4	12587-46-1	12587-47-2	10043-66-0	13982-63-3	10098-97-2	14133-76-7	14269-63-7	10028-17-8	S0130	57-12-5	20461-54-5	S0268	S0586			

Frankfort, KY 40601 (502)564-6716 Division of Waste Management Solid Waste Branch 14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant **RESIDENTIAL/INERT-QUARTERLY**

Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

For Official Use Only

SAMPLE ANALYSIS (S) GROUNDWATER

) 										
AKGWA NUMBER ¹ ,	, Facility Well/Spring Number			8004-4805	8004-4806	06	8004-4807	70	8004-4802	2
Facility's Lo	Local Well or Spring Number (e.g., 1	MW-1, MW-2, €	etc.)	391	392		393		394	
Sample Sequence	ce #			L	1		1		٢	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(T)rip, (M)ethod, or ((E)quipment	٧N	NA		NA		NA	
Sample Date an	and Time (Month/Day/Year hour: minutes)	tes)		1/15/2015 12:36	1/14/2015 13:40	13:40	1/14/2015 14:20	14:20	1/8/2015 09:08	:08
Duplicate ("Y" or "N") ²	" Of "N") ²			Z	Z		N		N	
Split ("Y" or	е("N"			z	z		z		z	
Facility Samp	Facility Sample ID Number (if applicable)			MW391SG2-15	MW392SG2-15	32-15	MW393SG2-15	2-15	MW394SG2-15	2-15
Laboratory Sar	Sample ID Number (if applicable)			365222003	365066001	01	365066003	03	364610001	5
Date of Analysis	sis (Month/Day/Year) For Volatile	Organics	Analysis	1/20/2015	1/20/2015	15	1/20/2015	5	1/13/2015	10
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN,	WN, SIDE, UNKNOWN)	KNOWN)	DOWN	DOWN	7	DOWN	_	ЧD	
CAS RN ⁴	TURITTISNOD	Thit	МЕТНОВ	DETECTED	DETECTED	Þ	DETECTED	Ŀ	DRTRCTED	Ŀ
		D OF				, ц	VALUE	, ц	VALUE	ч Ц
		ME				A	OR	A	OR	A
				PQL ⁶ G		იი	PQL°	ц и	PQL°	დთ
24959-67-9	Bromide	T mg/L	9056	0.648	0.594		0.192	۔	0.624	
16887-00-6	Chloride(s)	T mg/L	9056	50.5	46.3		14.2		45.7	ß
16984-48-8	Fluoride	T mg/L	9056	0.137	0.193		0.137		0.123	
80595	Nitrate & Nitrite	T mg/L	9056	1.4	0.579		0.0332	7	1.39	
14808-79-8	Sulfate	T mg/L	9056	12.5	6.92		14.3		10.5	
NS1894	Barometric Pressure Reading	T Inches/Hg	g Field	30.23	30.33		30.33		30.68	
S0145	Specific Conductance	T µMH0/cm	Field	402	395		415		397	
-							STANDARD FLAGS	FLAGS:		

C-27

¹AKGWA # is 0000-0000 for any type of blank. ²Respond "Y" if the sample was a duplicate of another sample in this report. ³Respond "Y" if the sample was split and analyzed by separate laboratories. ⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

- 5"T" = Total; "D" = Dissolved 6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."
- Concentration from analysis J = Estimated Value B = Analyte found in A = Average value N = Presumptive ID D = Concentration fr

= Analyte found in blank

Estimated Value = See Comments

- of a secondary dilution

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u> LAB ID: <u>None</u> For Official Use Only

045		-		2 + 2	• > 1100 /	/					
AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4805	80	8004-4806	 8004-4807		8004-4802	
Facility's Loc	Local Well or Spring Number (e.g., MW-1,		MW-2, BLANK-F,	, etc.)	391		392	393		394	
CAS RN ⁴	CONSTITUENT	НА∽	Unit OF MEASURE	МЕТНОD	DETECTED F VALUE L OR A PQL ⁶ G	DETECTED VALUE OR PQL ⁶	ы С С С С С С С С С С С С С С С С С С С	 DETECTED VALUE OR PQL ⁶	ፑካፈርሪ	DETECTED VALUE OR PQL ⁶	ក្រុ៩បូល
s0906	Static Water Level Elevation	н	Ft. MSL	Field	322.81	322.72	.72	 339.16		318.67	
N238	Dissolved Oxygen	н	mg/L	Field	4.06	1.3	3	 0.75		5.07	
S0266	Total Dissolved Solids	т	mg/L	160.1	191	191	1	220		166	
s0296	нд	т	Units	Field	6.22	6.21	21	6.21		6.06	
NS215	ЧЭ	т	тV	Field	260	762	5	 456		453	
s0907	Temperature	н	ç	Field	11.78	14.22	22	14.61		12.28	
7429-90-5	Aluminum	Т	mg/L	6020	0.0261 J	0.0318	318 J	 0.0424	٦	0.133	
7440-36-0	Antimony	н	mg/L	6020	<0.003	<0.003	J03	 <0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005	<0.(<0.005	 0.00485	٦	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.259	0.21	21	 0.123		0.249	
7440-41-7	Beryllium	н	mg/L	6020	<0.0005	<0.0005	005	<0.0005		<0.0005	
7440-42-8	Boron	н	mg/L	6020	0.0279	0.0259	259	0.0228		0.0247	В
7440-43-9	Cadmium	н	mg/L	6020	<0.001	<0.001	01	 <0.001		<0.001	
7440-70-2	Calcium	H	mg/L	6020	27.2	26	26.5	 12.2		27.2	
7440-47-3	Chromium	т	mg/L	6020	<0.01	<0.01	01	 <0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001	0.00018	018 J	 <0.001		0.00015	ſ
7440-50-8	Copper	н	mg/L	6020	0.00055 J	0.00055	055 J*	 <0.001	*	0.00047	٦
7439-89-6	Iron	н	mg/L	6020	0.179	0.249	49	2.77		0.772	
7439-92-1	Lead	н	mg/L	6020	<0.002	<0.002	002	 <0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.4	9.65	35	 3.42		11.3	
7439-96-5	Manganese	т	mg/L	6020	0.00198 J	0.0709	602	 0.0444		0.0128	
7439-97-6	Mercury	н	mg/L	7470	<0.0002	<0.0002	002	 <0.0002		<0.0002	*

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹ ,	1, Facility Well/Spring Number				8004-4805		8004-4806	90	8004-4807	17	8004-4802	2
Facility's Lo	Local Well or Spring Number (e.g.,	MW-1,	, MW-2, etc.))	391		392		393		394	
CAS RN ⁴	CONSTITUENT	ΗQυ	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ក្រុងប្រ	DETECTED VALUE OR PQL ⁶	ዞ ካ ፈ ር ወ	DETECTED VALUE OR PQL ⁶	ሞካፋናሪሪ	DETECTED VALUE OR PQL ⁶	ሞካፋርሪ
7439-98-7	Molybdenum	н	mg/L	6020	<0.0005		0.00038	BJ	0.00021	BJ	0.00023	۲
7440-02-0	Nickel	н	mg/L	6020	0.00086	~	0.00288		0.00145	-	0.00487	
7440-09-7	Potassium	н	mg/L	6020	1.54		1.72		0.399		1.26	
7440-16-6	Rhodium	н	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	н	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	silver	н	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	sodium	н	mg/L	6020	30.8		32.3		80.4		33.8	
7440-25-7	Tantalum	н	mg/L	6020	<0.005		<0.005		<0.005		0.00158	ſ
7440-28-0	Thallium	н	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	н	mg/L	6020	<0.0002		<0.0002		0.00013	ſ	<0.0002	
7440-62-2	Vanadium	н	mg/L	6010	<0.005		<0.005		<0.005		<0.005	
7440-66-6	Zinc	н	mg/L	6020	0.00475	٦	0.00388	ſ	0.0037	ſ	0.00904	BJ
108-05-4	Vinyl acetate	н	mg/L	8260	<0.005	L	<0.005		<0.005		<0.005	
67-64-1	Acetone	н	mg/L	8260	<0.005		<0.005		<0.005		0.00375	BJ
107-02-8	Acrolein	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	н	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ .	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4805		8004-4806	90	8004-4807	107	8004-4802	12
Facility's Local	х. Б	MW-1,	, MW-2, etc.)		391		392		393		394	
		ŀ				╏						Ì
CAS RN ⁴	CONSTITUENT	нА	Unit OF	METHOD	DETECTED VALUE	ыц	DETECTED VALUE	μц	DETECTED VALUE	ыц	DETECTED VALUE	ыц
		n	MEASURE		or PQL ⁶	ፈርጉሪ	OR PQL ⁶	ፈርጉ እ	OR PQL ⁶	ፈርጉ እ	OR PQL ⁶	ፈርጉ ወ
75-27-4	Bromodichloromethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromoethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	н	mg/L	8260	0.00076	~	0.00063	Г	<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,2-Tetrachloro	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Viny1 chloride	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	н	mg/L	8260	0.0174		0.0182		<0.001		0.00603	

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4805		8004-4806		8004-4807	7(8004-4802	2
Facility's Loc	Local Well or Spring Number (e.g., M	MW-1,	MW-2, etc.)	(;	391		392		393	$\left \right $	394	
CAS RN ⁴	CONSTITUENT	НА∽	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ምካፈቤወ	DETECTED VALUE OR PQL ⁶	ዞ ካ ፋ ር ወ	DETECTED VALUE OR PQL ⁶	ក្រុងលេខ	DETECTED VALUE OR PQL ⁶	ក្រុជបូល
100-41-4	Ethylbenzene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Fropane, 1,2-Dibromo-3-chloro	н	mg/L	8011	<0.0000202		<0.0000203		<0.0000202		<0.0000203	
78-87-5	Propane , 1,2-Dichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	н	ng/L	8082		*		*		*		*
12674-11-2	PCB-1016	н	ng/L	8082		*		*		*		*
11104-28-2	PCB-1221	н	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	н	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	н	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	H	ug/L	8082		*		*		*		*

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u>

LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4805		8004-4806		8004-4807	7	8004-4802	2
Facility's Local	Well or Spring Number (e.g.,	MW-1,	MW-2,	etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	НΑυ	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ក្រុងបែល	DETECTED VALUE OR PQL ⁶	ዞ ጊ ፋ ር ሪ	DETECTED VALUE OR PQL ⁶	ዞ ካ ፈ ር ወ	DETECTED VALUE OR PQL ⁶	ዞ ኳ ፋ ር ወ
11097-69-1	PCB-1254	н	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	н	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	H	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	н	pCi/L	9310	5.85	*	2.62	*	-0.649	*	-0.00963	*
12587-47-2	Gross Beta	н	pCi/L	9310	9.92	*	0.353	*	2.3	*	5.07	*
10043-66-0	Iodine-131	н	₽Ci/L			*		*		*		*
13982-63-3	Radium-226	н	pCi/L	HASL 300	0.512	*	0.23	*	0.485	*	0.332	*
10098-97-2	strontium-90	н	pCi/L	905.0	-0.872	*	1.49	*	-0.368	*	0.106	*
14133-76-7	Technetium-99	н	₽Ci/L	TC-02-RC	-0.905	*	3.17	*	-2.91	*	17.2	*
14269-63-7	Thorium-230	н	pCi/L	Th-01-RC	3.72	*	0.168	*	-0.181	*	-1.65	*
10028-17-8	Tritium	т	₽Ci∕L	0.906	-162	*	-121	*	-62.4	*	-54.4	*
S0130	Chemical Oxygen Demand	н	mg/L	410.4	13.4	۔	13.8	Ъ	16.3	٦	11.7	٦
57-12-5	Cyanide	н	ту/Г	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	н	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	н	mg/L	9060	1.45	-	1.54	ר	3.41		1.47	٦
S0586	Total Organic Halides	н	mg/L	9020	0.0142		0.027		0.0191		0.0102	

RESIDENTIAL/INERT-QUARTERLY Frankfort, KY 40601 (502)564-6716 Division of Waste Management Solid Waste Branch 14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

For Official Use Only

SAMPLE ANALYSIS GROUNDWATER

5045						()						
AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4801		8004-4803	03	8004-4817	17	0000-0000	
Facility's Loo	Local Well or Spring Number (e.g., 1	МW−1,	MW-2, etc.)	(.	362		396		397		E. BLANK	
Sample Sequence	ce #				L		1		1		1	
If sample is a l	Blank, specify Type: (F)ield, (T)rip,	(M)ethod,	or	(E)quipment	٧N	L	NA		NA		ш	
Sample Date an	and Time (Month/Day/Year hour: minutes)	utes)			1/6/2015 10:13	33	1/8/2015 09:49	9:49	1/7/2015 09:41	9:41	1/12/2015 08:45	5
Duplicate ("Y" or "N") ²	" OY "N") ²				N		z		z		z	
Split ("Y" or	е("N"				Ν	ļ	z		z		z	
Facility Sample	le ID Number (if applicable)				MW395SG2-15	5	MW396SG2-15	12-15	MW397SG2-15	12-15	RI1SG2-15	
Laboratory Sar	sample ID Number (if applicable)				364386011		364610003	03	364506003	03	364787008	
Date of Analysis	sis (Month/Day/Year) For Volatile		<u>Organics</u> Analysis	ysis	1/12/2015		1/13/2015	15	1/13/2015	15	1/15/2015	
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN,		SIDE, UNKNOWN)	(NIMC	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	НАυ	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ы Ч К С К С К С К С К С К С К С К С К С К	DETECTED VALUE OR PQL ⁶	ሥካፈርሪ	DETECTED VALUE OR PQL ⁶	ሥተዳርሪ	DETECTED VALUE OR PQL ⁶	ម្រា៤ ២ល
24959-67-9	Bromide	H	mg/L	9056	0.536		0.762		0.514			*
16887-00-6	Chloride(s)	н	mg/L	9056	43.3		86.3	в	38			*
16984-48-8	Fluoride	H	mg/L	9056	0.106		0.468		0.124			*
80595	Nitrate & Nitrite	F	mg/L	9056	1.78		7		1.54	*		*
14808-79-8	Sulfate	H	mg/L	9056	10.1		22.3		11.7			*
NS1894	Barometric Pressure Reading	н	Inches/Hg	Field	30.37		30.68		30.65			*
S0145	Specific Conductance	н	humen of the m	Field	376		822		354			*
-									STANDARD FLAGS:	FLAGS:		

C-33

¹AKGWA # is 0000-0000 for any type of blank. ²Respond "Y" if the sample was a duplicate of another sample in this report. ³Respond "Y" if the sample was split and analyzed by separate laboratories. ⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

5"T" = Total; "D" = Dissolved 6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Concentration from analysis J = Estimated Value B = Analyte found in A = Average value N = Presumptive ID D = Concentration fr

= Analyte found in blank

Estimated Value = See Comments

of a secondary dilution

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> LAB ID: None

Only

For Official Use

GROUNDWATER SAMPLE ANALYSIS - (Cont.

ዞ ካ ፈ ቤ ወ * 0000-0000 E. BLANK DETECTED VALUE OR PQL⁶ <0.0005 <0.015 <0.005 <0.003 <0.005 <0.0002 <0.002 <0.001 <0.002 <0.001 <0.05 <0.001 <0.03 <0.2 <0.01 <u>6</u>.1 ሥ ግ ፈ ር ወ ~ ~ ~ _ ~ 8004-4817 <0.0005 0.00879 397 DETECTED VALUE OR PQL⁶ 0.00275 0.00093 <0.0002 <0.003 <0.005 0.0273 322.36 0.00057 0.00057 0.146 <0.001 10.28 0.609 18.6 5.535.92 7.64 159 675 1.8 ሥ ግ ፈ ር ወ В ~ 8004-4803 396 0.00325 0.00923 <0.0005 0.00124 <0.0002 DETECTED VALUE 0.0045 366.26 <0.003 <0.002 <0.001 12.11 0.114 0.446 0.598 <0.01 17.9 1.99 6.46 410 39.7 4.87 or PQL⁶ 193 ሥ ግ ፈ ር ወ ~ 8004-4801 395 DETECTED VALUE 0.00506 OR PQL⁶ <0.0005 <0.0002 0.0914 <0.003 <0.005 0.0204 <0.002 319.17 <0.001 <0.001 12.78 0.249 0.0001 25.8 <0.01 0.394 5.99 96.6 5.24 147 586 Field METHOD Field 160.1 Field Field Field 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 7470 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.) Ft. MSL MEASURE Unit OF mg/L Units mg/L ∏/Gm mg/L mg/L mg/L ng/L mg/L mg/L mg/L mg/L mg/L ng/L mg/L mg/L mg/L mg/L mg/L υ 뎚 н н н ндω н н н н н ы н н н н н н н н н н н н н Static Water Level Elevation AKGWA NUMBER¹, Facility Well/Spring Number Total Dissolved Solids CONSTITUENT Dissolved Oxygen Temperature Manganese Beryllium Magnesium Chromium Antimony Aluminum Arsenic Calcium Cadmium Mercury Cobalt Barium Copper Boron Iron Lead Нd 臣 7439-96-5 \mathbf{RN}^4 I. 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-42-8 7440-43-9 7440-70-2 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-97-6 ī. ī s0266s0296-S0906 NS215 S0907 CAS N238

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u> LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹ ,	۲ ¹ , Facility Well/Spring Number				8004-4801		8004-4803	03	8004-4817	17	0000-0000	0
Facility's Local Well	ocal Well or Spring Number (e.g.,	MW-1	MW-1, MW-2, etc.))	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	НАυ	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ក្រុ៩បូល	DETECTED VALUE OR PQL ⁶	ក្រុុវបូល	DETECTED VALUE OR PQL ⁶	ក្រុង្លល	DETECTED VALUE OR PQL ⁶	ዞ ካ ፈ ር ወ
7439-98-7	Molybdenum	н	mg/L	6020	0.0002	۔ ۲	0.00072		0.00017	٦	<0.0005	
7440-02-0	Nickel	н	mg/L	6020	0.00149	۔ ٦	0.00225		0.00194	-	<0.002	
7440-09-7	Potassium	н	mg/L	6020	1.46		0.808		1.57		<0.3	
7440-16-6	Rhodium	н	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	н	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	н	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	н	mg/L	6020	25.8		106		30.3		<0.25	
7440-25-7	Tantalum	н	mg/L	6020	<0.005	*	<0.005		<0.005	*	<0.005	*
7440-28-0	Thallium	н	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	н	mg/L	6020	<0.0002	-	0.00016	٦	<0.0002		<0.0002	
7440-62-2	Vanadium	н	mg/L	6010	<0.005		<0.005		0.00166	٦	<0.005	
7440-66-6	Zinc	н	mg/L	6020	<0.01		0.00492	BJ	0.0136		<0.01	
108-05-4	Vinyl acetate	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	н	mg/L	8260	<0.005		0.00407	BJ	0.00381	BJ	0.00525	В
107-02-8	Acrolein	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	н	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromoethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4801		8004-4803	33	8004-4817	17	0000-0000	0
Facility's Loc	. .б	MW-1,	MW-2, etc.)		395		396		397		E. BLANK	¥
		ŀ				ľ						ľ
CAS RN ⁴	CONSTITUENT	нА	Unit OF	METHOD	DETECTED VALUE	ΒЦ	DETECTED VALUE	μц	DETECTED VALUE	ΒЦ	DETECTED VALUE	ыц
		n	MEASURE		OR PQL ⁶	ፈርጉሪ	or PQL ⁶	ፈርጉሪ	OR PQL ⁶	ፈርጋ ነ	OR PQL ⁶	ፈርጋ ነ
75-27-4	Bromodichloromethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromoethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	н	mg/L	8260	<0.001		<0.001		<0.001		0.00083	7
74-87-3	Methyl chloride	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	г	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	г	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	н	mg/L	8260	0.00399		<0.001		<0.001		<0.001	

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4801		8004-4803	_	8004-4817	17	0000-0000	0
Facility's Loc	Local Well or Spring Number (e.g., M	MW-1,	MW-2, etc.)	395		396		397		E. BLANK	~
CAS RN ⁴	CONSTITUENT	ΗQ°	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ក្រក្ល	DETECTED VALUE OR PQL ⁶	ч Ч Г Ч	DETECTED VALUE OR PQL ⁶	王 よ の ら ろ	DETECTED VALUE OR PQL ⁶	ក្រុជបូល
100-41-4	Ethylbenzene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane , 1,2-Dibromo-3-chloro	н	mg/L	8011	<0.0000202		<0.00002		<0.0000204		<0.0000199	
78-87-5	Propane , 1,2-Dichloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	н	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	н	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	H	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	н	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	н	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	H	ug/L	8082		*		*		*		*

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u>

LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-4801		8004-4803		8004-4817	7	0000-0000	
Facility's Local	Well or Spring Number (e.g.,	ММ-1,	MW-2,	etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	НАυ	Unit OF MEASURE	МЕТНОD	DETECTED VALUE OR PQL ⁶	王 よ の ら ろ	DETECTED VALUE OR PQL ⁶	よ し た じ ろ	DETECTED VALUE OR PQL ⁶	ዞ ካ ፈ ር ወ	DETECTED VALUE OR PQL ⁶	ក្រុងប្រ
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	н	ug∕L	8082		*		*		*		*
11100-14-4	PCB-1268	н	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	н	рСі/Г	9310	3.35	*	7.83	*	3.82	*	-0.514	*
12587-47-2	Gross Beta	г	рСі/Г	9310	5.98	*	-0.133	*	16.3	*	0.686	*
10043-66-0	Iodine-131	н	PCi∕L			*		*		*		*
13982-63-3	Radium-226	н	рСі/Г	HASL 300	0.566	*	0.585	*	0.45	*	0.667	*
10098-97-2	Strontium-90	н	рСі/L	905.0	1.33	*	0.192	*	-0.438	*	0.615	*
14133-76-7	Technetium-99	н	рСі/Г	TC-02-RC	17	*	11.2	*	4.58	*	3.99	*
14269-63-7	Thorium-230	н	рСі/L	Th-01-RC	3.76	*	2.03	*	3.59	*	1.45	*
10028-17-8	Tritium	н	рСі/L	906.0	74.1	*	-81.6	*	166	*	-94.9	*
S0130	Chemical Oxygen Demand	н	mg∕L	410.4	<20		<20		<20			*
57-12-5	Cyanide	н	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	н	mg/L	300.0	<0.5		0.8		<0.5			*
S0268	Total Organic Carbon	н	mg/L	9060	1.21	ſ	7.12		1.25	ſ		*
S0586	Total Organic Halides	н	mg/L	9020	0.00736	٦	0.0436		0.00634	٦		*

Frankfort, KY 40601 (502)564-6716 Division of Waste Management Solid Waste Branch 14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant **RESIDENTIAL/INERT-QUARTERLY**

Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

For Official Use Only

SAMPLE ANALYSIS GROUNDWATER

うろう	TITTE VETEMONIONE					(S)						
AKGWA NUMBER ¹	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000		0000-0000	0	0000-0000	0	0000-0000	
Facility's Lo	Local Well or Spring Number (e.g.,	MW-l, 1	MW-2, etc.)	(F. BLANK		T. BLANK 1	1	T. BLANK 2	2	T. BLANK 3	3
Sample Sequence	.ce #				٢		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)ethod,	ъ	(E)quipment	ш		Т		Т		Т	
Sample Date a	and Time (Month/Day/Year hour: minutes)	ites)			1/12/2015 10:00	00	1/5/2015 08:15	:15	1/6/2015 07:15	7:15	1/6/2015 07:15	15
Duplicate ("Y" or "N") ²	" OF "N") ²				z		z		z		z	
Split ("Y" or	е("Ип ·				z		z		z		z	
Facility Sample	le ID Number (if applicable)				FB1SG2-15		TB1SG2-15	15	TB2SG2-15	15	TB3SG2-15	5
Laboratory Sa	Sample ID Number (if applicable)				364787007		364301005	5	364386013	3	364386014	4
Date of Analy	Analysis (Month/Day/Year) For Volatile Organics Analysis	e Orgai	<u>iics</u> Analy	sis	1/15/2015		1/8/2015		1/12/2015	5	1/12/2015	
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN,		SIDE, UNKNOWN)	(NIM)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	н О°	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	ыцқŋ ^г й	DETECTED VALUE OR PQL ⁶	ក្រុុលល	DETECTED VALUE OR PQL ⁶	ក្រុក្បែល	DETECTED VALUE OR PQL ⁶	പ്പ് പ് വ് വ
24959-67-9	Bromide	H	mg/L	9056	*	*		*		*		*
16887-00-6	Chloride(s)	н	mg/L	9056	*	*		*		*		*
16984-48-8	Fluoride	H	mg/L	9056	*	*		*		*		*
80595	Nitrate & Nitrite	F	mg/L	9056	*	*		*		*		*
14808-79-8	sulfate	н	mg/L	9056	*	*		*		*		*
NS1894	Barometric Pressure Reading	T	Inches/Hg	Field	*	*		*		*		*
S0145	Specific Conductance	т	µMH0∕cm	Field	*	*		*		*		*
-									STANDARD FLAGS:	FLAGS:		

¹AKGWA # is 0000-0000 for any type of blank. ²Respond "Y" if the sample was a duplicate of another sample in this report. ³Respond "Y" if the sample was split and analyzed by separate laboratories. ⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

5"T" = Total; "D" = Dissolved 6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Concentration from analysis J = Estimated Value B = Analyte found in A = Average value N = Presumptive ID D = Concentration fr

= Analyte found in blank

Estimated Value = See Comments

of a secondary dilution

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000		0000-0000	0	0000-0000		0000-0000	
Facility's Loc	Local Well or Spring Number (e.g., MW	MW-1, M	MW-2, BLANK-F,	, etc.)	F. BLANK		T. BLANK 1	.	T. BLANK 2		T. BLANK 3	
CAS RN ⁴	CONSTITUENT	НАυ	Unit OF MEASURE	МЕТНОD	DETECTED VALUE OR PQL ⁶	ម្រា៤ប្រហ	DETECTED VALUE OR PQL ⁶	ក្រុង្លេល	DETECTED VALUE OR PQL ⁶	ក្រុងប្រ	DETECTED VALUE OR PQL ⁶	ሥካፈርስ ወ
= - 9060s	Static Water Level Elevation	н	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	н	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	н	mg/L	160.1		*		*		*		*
s0296	на	н	Units	Field		*		*		*		*
NS215	ча	н	Λm	Field		*		*		*		*
20907	Temperature	н	°c	Field		*		*		*		*
7429-90-5	Aluminum	н	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	н	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	н	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	Т	mg/L	6020	<0.002			*		*		*
7440-41-7	Beryllium	н	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	н	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmi um	н	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	н	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	н	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	н	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	н	mg/L	6020	<0.001			*		*		*
7439-89-6	Iron	н	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	н	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	н	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	н	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	н	mg/L	7470	<0.0002			*		*		*

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000		0000-0000	8	0000-0000	00	0000-0000	0
Facility's Lo	Local Well or Spring Number (e.g.,	MW-1,	, MW-2, etc.))	F. BLANK		T. BLANK	<1	T. BLANK	< 2	T. BLANK 3	3
CAS RN ⁴	CONSTITUENT	НА∽	Unit OF MEASURE	МЕТНОD	DETECTED VALUE OR PQL ⁶	ក្រុង្លែល	DETECTED VALUE OR PQL ⁶	ក្រុងប្រ	DETECTED VALUE OR PQL ⁶	ក្រុង្លែល	DETECTED VALUE OR PQL ⁶	ក្រុងប្រ
7439-98-7	Molybdenum	н	mg/L	6020	<0.0005			*		*		*
7440-02-0	Nickel	н	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	н	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	н	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	н	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	н	mg/L	6020	<0.001			*		*		*
7440-23-5	sodium	н	mg/L	6020	<0.25	·		*		*		*
7440-25-7	Tantalum	н	mg/L	6020	<0.005	*		*		*		*
7440-28-0	Thallium	н	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	н	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	н	mg/L	6010	<0.005			*		*		*
7440-66-6	Zinc	н	mg/L	6020	<0.01			*		*		*
108-05-4	Vinyl acetate	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	н	mg/L	8260	0.00517	В	0.00178	ſ	<0.005		<0.005	
107-02-8	Acrolein	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	н	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

: FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u>

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				0000-0000		0000-0000		0000-0000	00	0000-0000	0
Facility's Local	Well or Spring Number (e.g.,	MW-1,	, MW-2, etc.)	·	F. BLANK		T. BLANK 1	-	T. BLANK 2	K 2	T. BLANK 3	3
CAS RN ⁴	CONSTITUENT	нА₀	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ក្រុ៩បូល	DETECTED VALUE OR PQL ⁶	ሥካፈቤወ	DETECTED VALUE OR PQL ⁶	ዞ ካ ፈ ቤ ወ	DETECTED VALUE OR PQL ⁶	ዞ ካ ፋ ር ወ
75-27-4	Bromodichloromethane	н	mg/L	8260	0.00071	-	<0.001		<0.001		<0.001	
75-25-2	Tribromoethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	H	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	н	mg/L	8260	0.00087	۔	<0.001		0.00125		0.00122	
74-87-3	Methyl chloride	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,2-Tetrachloro	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u>

LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000		0000-0000		0000-0000	0	0000-0000	
Facility's Local	Well or Spring Number (e.g.,	MW-1,	, MW-2, etc.		F. BLANK		T. BLANK 1	÷-	T. BLANK 2	2	T. BLANK 3	3
CAS RN ⁴	CONSTITUENT	НА∽	Unit OF MEASURE	МЕТНОD	DETECTED VALUE OR PQL ⁶	ក្រុងប្រល	DETECTED VALUE OR PQL ⁶	ក្រុងប្រហ	DETECTED VALUE OR PQL ⁶	ក្រុង្ហែល	DETECTED VALUE OR PQL ⁶	ዞ ካ ፈ ር) ለ
100-41-4	Ethylbenzene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	<pre>Propane, 1,2-Dibromo-3-chloro</pre>	н	mg/L	8011	<0.0000202		<0.0000204		<0.0000203		<0.0000203	
78-87-5	Propane , 1,2-Dichloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	н	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	н	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	н	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	н	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	н	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	н	ug/L	8082		*		*		*		*

: FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u>

LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000	_	0000-0000		0000-0000		0000-0000	
Facility's Lo	Local Well or Spring Number (e.g.,)	MW-1,	MW-2,	etc.)	F. BLANK		T. BLANK 1		T. BLANK 2	2	T. BLANK 3	
CAS RN ⁴	CONSTITUENT	НДυ	Unit OF MEASURE	МЕТНОD	DETECTED VALUE OR PQL ⁶	ក្រុងប្រ	DETECTED VALUE OR PQL ⁶	ក្រុង្លេល	DETECTED VALUE OR PQL ⁶	н Ч Ч К С С С	DETECTED VALUE OR PQL ⁶	ក្រុង្លេល
11097-69-1	PCB-1254	H	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	H	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	н	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	н	pCi/L	9310	1.02	*		*		*		*
12587-47-2	Gross Beta	т	рСі/Г	9310	-0.488	*		*		*		*
10043-66-0	Iodine-131	н	pCi/L			*		*		*		*
13982-63-3	Radium-226	н	pCi/L	HASL 300	0.34	*		*		*		*
10098-97-2	strontium-90	н	pCi/L	905.0	-0.614	*		*		*		*
14133-76-7	Technetium-99	н	pCi/L	TC-02-RC	-5.83	*		*		*		*
14269-63-7	Thorium-230	н	pCi/L	Th-01-RC	0.456	*		*		*		*
10028-17-8	Tritium	н	рСі/L	906.0	-184	*		*		*		*
S0130	Chemical Oxygen Demand	н	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	н	mg/L	9012		*		*		*		*
20461-54-5	Iodide	н	mg/L	300.0		*		*		*		*
S0268	Total Organic Carbon	н	mg/L	9060		*		*		*		*
S0586	Total Organic Halides	н	mg/L	9020		*		*		*		*

Frankfort, KY 40601 (502)564-6716 Division of Waste Management Solid Waste Branch 14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant **RESIDENTIAL/INERT-QUARTERLY**

Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

For Official Use Only

SAMPLE ANALYSIS (S) GROUNDWATER

					~ ~					
AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number			0000-0000	0000-0000	00	0000-0000	0	0000-0000	
Facility's Loo	Local Well or Spring Number (e.g.,]	MW-1, MW-2, et	etc.)	T. BLANK 4	T. BLANK 5	K 5	T. BLANK 6	6	T. BLANK 7	
Sample Sequence	ce #			L	1		1		1	
If sample is a I	Blank, specify Type: (F)ield, (T)rip,	(M)ethod, or (E	or (E)quipment	T	T		F		Т	
Sample Date ar	and Time (Month/Day/Year hour: minutes)	tes)		1/7/2015 07:30	1/8/2015 08:00	8:00	1/12/2015 08:40	3:40	1/15/2015 07:30	00
Duplicate ("Y" or "N") ²	" OY "N") ²			Ν	Z		Z		N	
Split ("Y" or	г("N"			Ν	Z		Z		N	
Facility Sample	le ID Number (if applicable)			TB4SG2-15	TB5SG2-15	-15	TB6SG2-15	5	TB7SG2-15	
Laboratory Sar	Sample ID Number (if applicable)			364506005	364610005	05	364787009	6	365222005	
Date of Analysis	(Month/Day/Year) For	Volatile Organics Analysis	ılysis	1/13/2015	1/13/2015	15	1/15/2015	10	1/20/2015	
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN,	OWN, SIDE, UNKNOWN)	(NWON	NA	NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED F VALUE L PQL ⁶ G S ⁷	DETECTED VALUE OR PQL ⁶	ま 上 な じ ら	DETECTED VALUE OR PQL ⁶	ም ካ ፈ ርስ ወ	DETECTED VALUE OR PQL ⁶	ጅ ጊ ዲ ር ሪ
24959-67-9	Bromide	T mg/L	9056	*		*		*		*
16887-00-6	Chloride(s)	T mg/L	9056	*		*		*		*
16984-48-8	Fluoride	T mg/L	9056	*		*		*		*
80595	Nitrate & Nitrite	T mg/L	9056	*		*		*		*
14808-79-8	Sulfate	T mg/L	9056	*		*		*		*
NS1894	Barometric Pressure Reading	T Inches/Hg	Field	*		*		*		*
S0145	Specific Conductance	T µMH0/cm	Field	*		*		*		*
							STANDARD FLAGS:	FLAGS:		

¹AKGWA # is 0000-0000 for any type of blank. ²Respond "Y" if the sample was a duplicate of another sample in this report. ³Respond "Y" if the sample was split and analyzed by separate laboratories. ⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

5"T" = Total; "D" = Dissolved 6"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Concentration from analysis J = Estimated Value B = Analyte found in A = Average value N = Presumptive ID D = Concentration fr

= Analyte found in blank

Estimated Value = See Comments

of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00014 & 073-00015 RESIDENTIAL/INERT-QUARTERLY

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use

Only

(Cont. ANALYSIS SAMPLE GROUNDWATER

ም ካ ፈ ቤ ወ * * * 0000-0000 T. BLANK 7 DETECTED VALUE OR PQL⁶ ሥ ግ ፈ ር ወ * * * * * * T. BLANK 6 0000-0000 DETECTED VALUE OR PQL⁶ ሥ ግ ፈ ር ወ * * * * * T. BLANK 5 0000-0000 DETECTED VALUE or PQL⁶ ሥ ግ ፈ ር ወ * * * * * T. BLANK 4 0000-0000 DETECTED VALUE OR PQL⁶ Field Field Field Field METHOD 160.1 Field 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 6020 7470 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.) Ft. MSL MEASURE Units Unit OF mg/L mg/L ∏/Gm mg/L mg∕L ∏/Gu mg/L mg/L ng/L mg/L mg/L шg/Г mg/L mg/L mg/L mg/L mg/L mg/L υ 뎙 н н н н н н нА∽ н н н н ы н н н н н н н н н н н Static Water Level Elevation AKGWA NUMBER¹, Facility Well/Spring Number Total Dissolved Solids CONSTITUENT Dissolved Oxygen Temperature Manganese Beryllium Magnesium Antimony Chromium Aluminum Arsenic Calcium Cadmium Mercury Barium Cobalt Copper Boron Iron Lead Ηđ 묩 7439-96-5 7439-97-6 \mathbf{RN}^4 I. I. 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-42-8 7440-43-9 7440-70-2 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-92-1 7439-95-4 ī. ī s0266s0296-S0906 NS215 S0907 CAS N238

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u> LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000	0	0000-0000	00	0000-0000	00	0000-0000	0
Facility's Lo	Local Well or Spring Number (e.g.,	МW-1,	MW-2,	etc.)	T. BLANK 4	4	T. BLANK 5	Χυ	T. BLANK	К 6	T. BLANK	1
CAS RN ⁴	CONSTITUENT	НА∽	Unit OF MEASURE	МЕТНОD	DETECTED VALUE OR PQL ⁶	ក្រុង្លែល	DETECTED VALUE OR PQL ⁶	ក្រុង្ហេល	DETECTED VALUE OR PQL ⁶	ម្រា៤ប្រ	DETECTED VALUE OR PQL ⁶	ក្រុងប្រហ
7439-98-7	Molybdenum	н	mg/L	6020		*		*		*		*
7440-02-0	Nickel	н	mg/L	6020		*		*		*		*
7440-09-7	Potassium	н	mg/L	6020		*		*		*		*
7440-16-6	Rhodium	н	mg/L	6020		*		*		*		*
7782-49-2	Selenium	н	mg/L	6020		*		*		*		*
7440-22-4	Silver	H	mg/L	6020		*		*		*		*
7440-23-5	sodium	H	mg/L	6020		*		*		*		*
7440-25-7	Tantalum	H	mg/L	6020		*		*		*		*
7440-28-0	Thallium	H	mg/L	6020		*		*		*		*
7440-61-1	Uranium	H	mg/L	6020		*		*		*		*
7440-62-2	Vanadium	H	mg/L	6010		*		*		*		*
7440-66-6	Zinc	н	mg/L	6020		*		*		*		*
108-05-4	Vinyl acetate	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	H	mg/L	8260	0.0038	ВJ	0.00435	BJ	0.00496	BJ	<0.005	
107-02-8	Acrolein	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	н	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000	╞	0000-0000	0	0000-0000	00	0000-0000	0
Facility's Lo	Local Well or Spring Number (e.g., M	MW-1,	, MW-2, etc.)		T. BLANK 4	$\left \right $	T. BLANK 5	٢5	T. BLANK 6	Х 6	T. BLANK 7	1
CAS RN ⁴	CONSTITUENT	НАυ	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ሥካፈርስ ወ	DETECTED VALUE OR PQL ⁶	ក្រុ៤បូល	DETECTED VALUE OR PQL ⁶	ሥካፈርሪ	DETECTED VALUE OR PQL ⁶	ዞካፈርስ ወ
75-27-4	Bromodichloromethane	H	mg/L	8260	0.00073	- -	0.00072	٦	<0.001		<0.001	
75-25-2	Tribromomethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	н	mg/L	8260	0.00105		0.00099	ſ	0.00088	ſ	0.0011	
74-87-3	Methyl chloride	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,2-Tetrachloro	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u>

LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000		0000-0000		0000-0000	00	0000-0000	0
Facility's Loc	Local Well or Spring Number (e.g., M	МW−1,	, MW-2, etc.))	T. BLANK 4	Ę.	T. BLANK 5	5	T. BLANK 6	< 6	T. BLANK	7
CAS RN ⁴	CONSTITUENT	НОυ	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	н Ц К С С С	DETECTED VALUE OR PQL ⁶	ក្រុស្ល	DETECTED VALUE OR PQL ⁶	ず 上 た じ ら ろ	DETECTED VALUE OR PQL ⁶	ក្រុ≮បូល
100-41-4	Ethylbenzene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	г	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	н	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Fropane, 1,2-Dibromo-3-chloro	н	mg/L	8011	<0.0000203		<0.0000206		<0.000203		<0.00002	
78-87-5	Propane , 1,2-Dichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	н	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	H	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	H	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	н	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	н	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	н	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	н	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	н	ug/L	8082		*		*		*		*

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: <u>None</u> For Official Use Only

Telefity: a constituent or spring number (e.g., MM-1, MM-2, etc.)T. BLANKACAS RM*MethodDETECTEDT. BLANKAcAs RM* $\frac{1}{2}$ <th>WA NUMBER¹, Fac</th> <th>AKGWA NUMBER¹, Facility Well/Spring Number</th> <th></th> <th></th> <th></th> <th>0000-0000</th> <th></th> <th>0000-0000</th> <th></th> <th>0000-0000</th> <th></th> <th>0000-0000</th> <th></th>	WA NUMBER ¹ , Fac	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000		0000-0000		0000-0000		0000-0000	
CONSTITUENTDUnitMETHODDVAUEPPCD-1254DVAUEVAUEVAUEPPCD-1254TUPL8082PPPCD-1260TUPL8082PPPCD-1260TUPL8082PPPCD-1260TUPL8082PPPCD-1260TPCD9310PPPCD-131TPCDPPPPCD-131TPCDPPPPCD-131TPCDPPPPCD-131TPCDPPPPCDTPC1/LPPPPCDTPC1/LPPPPCDTPC1/LPPPPCDTPC1/LPPPPCDTPPPPPCDPPPPPPCDPPPPPPCDPPP	Local	Well or Spring Number (e.g.,	MW-1.	MW-2,	c.)	T. BLANK 4		T. BLANK 5		T. BLANK 6	g	T. BLANK 7	
Note Note </td <td></td> <td>CONSTITUENT</td> <td>НДυ</td> <td>Unit OF MEASURE</td> <td>МЕТНОD</td> <td>DETECTED VALUE OR PQL⁶</td> <td>ក្រុង្លប</td> <td>DETECTED VALUE OR PQL⁶</td> <td>ក្រុងបែល</td> <td>DETECTED VALUE OR PQL⁶</td> <td>ក្រុង្លូល</td> <td>DETECTED VALUE OR PQL⁶</td> <td>ፑኳፋርሪ</td>		CONSTITUENT	НДυ	Unit OF MEASURE	МЕТНОD	DETECTED VALUE OR PQL ⁶	ក្រុង្លប	DETECTED VALUE OR PQL ⁶	ក្រុងបែល	DETECTED VALUE OR PQL ⁶	ក្រុង្លូល	DETECTED VALUE OR PQL ⁶	ፑኳፋርሪ
Note Constraint T ug/L 8082 mode PCB-1268 T ug/L 8082 mode mode Reservation T ug/L 9310 mode mode Recoss Beta T pci/L 9310 mode mode Redium-131 T pci/L 9310 mode mode mode Radium-226 T pci/L 9310 mode		vCB-1254	н	ug/L	8082		*		*		*		*
1 PCB-1268 T uq/L 8082 8082 2 Gross Alpha T pci/L 9310 808 3 Gross Beta T pci/L 9310 808 4 Gross Beta T pci/L 9310 808 7 Gross Beta T pci/L 9310 8 8 Gross Beta T pci/L 9310 8 8 Gross Beta T pci/L 9310 8 8 Gross Beta T pci/L 9310 8 9 Fadium-236 T pci/L 9310 8 9 Frontum-90 T pci/L 905.0 8 9 Tobrium-230 T pci/L $poi.0$ 8 9 Tobrium-230)CB-1260	H	ug/L	8082		*		*		*		*
Image: light		vCB-1268	н	ug/L	8082		*		*		*		*
Image: Consist Beta Image: Consist Beta Image: Consist Beta Second Total		tross Alpha	н	pCi/L	9310		*		*		*		*
Image: light mathematical lightmathmathmatical light mathematical light mathematical		ross Beta	н	pCi/L	9310		*		*		*		*
Radium-226 T pci/r HASL 300 HASL 300 Runder-206 T 905.0 905.0 905.0 Technetium-99 T pci/r 905.0 905.0 Technetium-99 T pci/r 905.0 905.0 Thorium-230 T pci/r 906.0 906.0 Tritium T pci/r 906.0 906.0 Tritium T pci/r 906.0 906.0 U Chemical Oxygen Demand T pci/r 906.0 906.0 V Undet T pci/r 906.0 906.0 906.0 V Todal Organic Carbon T pci/r 906.0 906.0 906.0 V Todal Organic Ratides T pci/r 906.0 906.0 906.0 V Todal Organic Ratides T pci/r 906.0 906.0 906.0 906.0 906.0 906.0 906.0 906.0 906.0 906.0 906.0 906.0 906.0 906.0		odine-131	н	pCi/L			*		*		*		*
A pci/L 905.0 P P Technetium-99 T $pci/L 905.0 P P Thorium-230 T pci/L Trouter P P Thorium-230 T pci/L Trouter P P Trutuum T pci/L 906.0 P P P Chemical Oxygen Demand T pci/L 906.0 P P P P Chemical Oxygen Demand T pci/L 906.0 P$		adium-226	н	pCi∕L	HASL 300		*		*		*		*
Technetiun-99 T $Tc-02-RC$ Tc-02-RC Tritium-230 T pci/L $Tc-01-RC$ T Tritium-230 T pci/L $To-01-RC$ T Tritium-230 T pci/L 906.0 T Chemical Oxygen Demand T mg/L 906.0 T Chemical Oxygen Demand T mg/L 906.0 T Cyanide T mg/L 9012 905.0 T Cyanide T mg/L 9012 902.0 T T Codide Total Organic Carbon T mg/L 9020.0 T T T Total Organic Parbicles T mg/L 9020.0 T T		trontium-90	H	pCi∕L	905.0		*		*		*		*
1 Thorium-230 T pCi/L Th-01-RC Th-01-RC 1 Tritium T pCi/L 906.0 pCi/L 906.0 1 Chemical Oxygen Demand T mg/L 906.0 pCi/L 906.0 1 Chemical Oxygen Demand T mg/L 906.0 pCi/L 906.0 pCi/L 1 Cyanide T mg/L 9012 pCi/L 9012 pCi/L		echnetium-99	H	рСі/L	TC-02-RC		*		*		*		*
Tritium T pCi/L 906.0 Chemical Oxygen Demand T mg/L 410.4 Cyanide T mg/L 901.2 Icodide T mg/L 900.0 Icodide T 900.0 900.0 Icodide Icodide 900.0 900.0 Icodide		horium-230	н	рСі/L	Th-01-RC		*		*		*		*
Chemical Oxygen Demand T mg/L 410.4 Cyanide T mg/L 9012 Icodide T mg/L 9012 Total Organic Carbon T mg/L 9060 Total Organic Carbon T mg/L 9060 Total Organic Halides T mg/L 9020 Total Organic Halides T mg/L 9020 Icodide T Mg/L 9020		'ritium	H	рСі/L	906.0		*		*		*		*
Image: Cyanide T mg/L 9012 Image: Cyanide Image: Cyanide T mg/L 300.0 Image: Cyanide Image: Cyanide Image: Cyanide T mg/L 9012 300.0 Image: Cyanide	1		H	mg/L	410.4		*		*		*		*
Iodide T mg/L 300.0 Total Organic Carbon T mg/L 9060 Total Organic Halides T mg/L 9020 Total Organic Halides T mg/L 9020 Total Organic Halides T mg/L 9020		'yanide	H	mg/L	9012		*		*		*		*
 Total Organic Carbon Total Organic Carbon Total Organic Halides Total		odide	н	mg/L	300.0		*		*		*		*
- Total Organic Halides T mg/L 9020	1	otal Organic Carbon'	H	mg/L	9060		*		*		*		*
	1		н	mg/L	9020		*		*		*		*

Division of Solid Waste	of Waste Management te Branch	RES Fac	ESIDENT acility	I SU :	IDENTIAL/INERT-QUARTERLY ility: US DOE - Paducah Gaseous Diffusion Plant	JAR	TERLY h Gasec	us I	Diffusi	on P	lant	
14 Reilly Road Frankfort, KY	14 Reilly Road Frankfort, KY 40601 (502)564-6716	Per 716	rmit	umber	Number:073-00014		& 073-00015		FINDS/UNIT LAB ID: No	T: KY8-8 None		1
GROU	GROUNDWATER SAMPLE	Ê		NAI	ANALYSIS (S)	(s)			For Official	al Use	Only	
AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000		8004-4805					\square
Facility's Local Well	or Spring Number (e.g.,	MW-1,	MW-2, etc	.	T. BLANK 8	~	391					
Sample Sequence	e #				1		2					
If sample is a B	a Blank, specify Type: (F)ield, (T)rip, (M)ethod,	(M)e	or	(E)quipment	Т		AN		/			
Sample Date and	and Time (Month/Day/Year hour: minutes)	ltes)			1/14/2015 12:25	:25	1/15/2015 12:36	::36				
Duplicate ("Y"	or "N") ²				z		7					
Split ("Y" or '	е(п и п				z		z				/	
Facility Sample	Facility Sample ID Number (if applicable)				TB8SG2-15	10	MW 391DSG2-15	2-15				
Laboratory Sam	sample ID Number (if applicable)				365066005		365222001	_				
Date of Analysis	is (Month/Day/Year) For Volatile Organics	й ө	ganics Analysis	rsis	1/20/2015		1/20/2015					
Gradient with	respect to Monitored Unit (UP, DOWN,	' NMC	SIDE, UNKNOWN)	(NIMO	NA		DOWN					
CAS RN ⁴	CONSTITUENT	НАυ	Unit OF MEASURE	метнор	DETECTED VALUE OR PQL ⁶	ыЧКОГО	DETECTED VALUE OR PQL ⁶	ក្រុ≮ប្ល	DETECTED VALUE OR PQL ⁶	N G A L H	DETECTED VALUE OR POL ⁶	មេរេ∢ ប្រ
24959-67-9	Bromide	ы	mg/L	9056		*	0.643					
16887-00-6	Chloride(s)	т	mg/L	9056	-	*	50.2					
16984-48-8	Fluoride	н	mg/L	9056		*	0.138		/			
S0595	Nitrate & Nitrite	H	mg/L	9056	-	*	1.38		/			
14808-79-8	Sulfate	н	mg/L	9056	-	*	12.3		/		- -	
NS1894	Barometric Pressure Reading	H	Inches/Hg	Field	-	*	30.23					/
s0145	Specific Conductance	н	htMH0/cm	Field		*	402		/			
¹ AKGWA # is 0000-000 ² Respond "Y" if the ³ Respond "Y" if the ⁴ Chemical Abstracts ⁵ "T" = Total; "D" = ⁶ "<" indicates a nor ⁷ Flags are as design	¹ AKGWA # is 0000-0000 for any type of blank. ² Respond "Y" if the sample was a duplicate of another sample i ³ Respond "Y" if the sample was split and analyzed by separate ⁴ Chemical Abstracts Service Registry Number or unique identifi ⁵ "T" = Total; "D" = Dissolved ⁶ "<" indicates a non-detect; do not use "ND" or "BDL". Value ⁷ Flags are as designated, <u>do not</u> use any other type. Use "*,"	[and yzec pr ur or '	another sample /zed by separate < unique identif pr "BDL". Value < type. Use "*,	 sample in this report. separate laboratories. identifier number assi Value shown is Pract Use "*," then describe 	: signed ctical e on "u	by ag Quant Mritte	by agency. Quantification Limit. Written Comments Page.	nit. age."	STANDARD * = See C J = Estim B = Analy A = Avera N = Presu D = Conce D = conce	DARD FLAGS: See Comments Estimated Value Analyte found i Average value Presumptive ID Concentration f	DARD FLAGS: See Comments Estimated Value Analyte found in blank Average value Presumptive ID Concentration from analysis of a secondary dilution	<u>م</u>

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u> LAB ID: <u>None</u> For Official Use Only

うより	GROUNDWALER AAMFLE	-	GIGIURNA		· LULL ·	• /						
AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000		8004-4805	.0				
Facility's Local Well	cal Well or Spring Number (e.g., MW-1, MW-2,	-1, M	W-2, BLANK-F,	, etc.)	T. BLANK 8	~	391					
CAS RN^4	CONSTITUENT	нΑ	Unit OF	METHOD	DETECTED VALUE	Έιμ	DETECTED VALUE	머니	DETECTED VALUE	ыц	VALUE VALUE	μц
		Ŋ	MEASURE		OR PQL ⁶	ላ ቤ ወ	OR PQL ⁶	ፈርጉ እ	OR PQL ⁶	ላ ርጉ እን	OR PQL ⁶	ፈርጋሪን
s0906	Static Water Level Elevation	н	Ft. MSL	Field		*	322.81					
N238	Dissolved Oxygen	Т	mg/L	Field		*	4.06					/
S0266	Total Dissolved Solids	Т	mg/L	160.1		*	209					/
s0296	Нď	Т	Units	Field		*	6.22		/			
NS215	Eh	т	шV	Field		*	760				/	
S0907	Temperature	Т	ο°	Field		*	11.78				/	
7429-90-5	Aluminum	н	mg/L	6020		*	0.0208	ſ			/	
7440-36-0	Antimony	н	mg/L	6020		*	<0.003				/	
7440-38-2	Arsenic	Т	mg/L	6020		*	<0.005			\setminus	/	
7440-39-3	Barium	Т	mg/L	6020		*	0.261			\setminus	/	
7440-41-7	Beryllium	Т	mg/L	6020		*	<0.0005			\setminus		
7440-42-8	Boron	т	mg/L	6020		*	0.025			/		
7440-43-9	Cadmium	н	mg/L	6020		*	<0.001			/		
7440-70-2	Calcium	н	mg/L	6020		*	26.9			/		
7440-47-3	Chromium	н	mg/L	6020		*	<0.01		/			
7440-48-4	Cobalt	Т	mg/L	6020		*	<0.001		/			
7440-50-8	Copper	Т	mg/L	6020		*	0.00053	٦	/			
7439-89-6	Iron	т	mg/L	6020		*	0.146		/			
7439-92-1	Lead	н	mg/L	6020		*	<0.002		/			
7439-95-4	Magnesium	н	mg/L	6020		*	11		/			
7439-96-5	Manganese	н	mg/L	6020		*	0.00145	٦				
7439-97-6	Mercury	н	mg/L	7470		*	<0.0002		/			/

FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000		8004-4805				
Facility's Local	Well or Spring Number (e.g.,	MW-1,	., MW-2, etc.)	:)	T. BLANK 8	ω	391				\square
CAS RN ⁴	CONSTITUENT	НАω	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ሞካፈርስ ወ	DETECTED F VALUE L OR A PQL ⁶ G	AETECTED VALUE OR POL ⁶	ዩካፋሪሪ	DETECTED VALUE OR PQL ⁶	F L K US
7439-98-7	Molybdenum	н	mg/L	6020		*	<0.0005				
7440-02-0	Nickel	н	mg/L	6020		*	0.00062 J				
7440-09-7	Potassium	н	mg/L	6020		*	1.49				
7440-16-6	Rhodium	Т	mg/L	6020		*	<0.005			/	
7782-49-2	Selenium	т	mg/L	6020		*	<0.005			/	
7440-22-4	Silver	Т	mg/L	6020		*	<0.001				
7440-23-5	Sodium	н	mg/L	6020		*	30.5				
7440-25-7	Tantalum	н	mg/L	6020		*	<0.005				
7440-28-0	Thallium	н	mg/L	6020		*	<0.002		$\langle $		
7440-61-1	Uranium	Т	mg/L	6020		*	0.000091 J		/	\setminus	
7440-62-2	Vanadium	Т	mg/L	6010		*	<0.005		/		
7440-66-6	Zinc	т	mg/L	6020		*	0.00434 J		/		
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		/		
67-64-1	Acetone	н	mg/L	8260	<0.005		<0.005			\setminus	
107-02-8	Acrolein	н	mg/L	8260	<0.005		<0.005				
107-13-1	Acrylonitrile	н	mg/L	8260	<0.005		<0.005				
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001	/		\backslash	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001	/			
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003				
100-42-5	Styrene	H	mg/L	8260	<0.001		<0.001	/			
108-88-3	Toluene	H	mg/L	8260	<0.001		<0.001	/			
74-97-5	Chlorobromethane	H	mg/L	8260	<0.001		<0.001				~

	Facility: US DOE - Paducah Gaseous Diffusion Plant Dermit Number: 073-00014 & 073-00015			ah Gaseous 1014 & 07	ous Diffusion 073-00015	n Pl	F IND	S/UNIT:	T: <u>KY8-890-008</u>	-008-	-982 / 1	
		•		5				official	une ial Use Only	۲		
GROUNDWATER	WATER SAMPLE ANALY	IAJ	SISY	I	(Cont.)							
AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000		8004-4805					
Facility's Local Well	cal Well or Spring Number (e.g., MW-1,	1M-1	MW-2,	etc.)	T. BLANK 8		391					
CAS RN ⁴	CONSTITUENT	НАυ	Unit OF MEASURE	METHOD	DETECTED VALUE OR POL ⁶	ក្រុកប	DETECTED VALUE OR POL ⁶	ጉካፈሪ	DETECTED VALUE OR MOL	ま よ ら ち ち ち	DETECTED VALUE OR POL ⁶	P L K D
					- 000/	o o	- 20 00	o oo		a c	-2-	о oz
75-27-4	Bromodichloromethane Trihromomethane	H H	mg/L mc/L	8260 8260	<0.001		<0.001		/			
74-83-9	Methyl bromide	н	mg/L	8260	<0.001		<0.001					
78-93-3	Methyl ethyl ketone	н	mg/L	8260	<0.005		<0.005					
110-57-6	trans-1,4-Dichloro-2-butene	н	mg/L	8260	<0.005		<0.005					
75-15-0	Carbon disulfide	H	mg/L	8260	<0.005		<0.005					
75-00-3	Chloroethane	н	mg/L	8260	<0.001		<0.001					
67-66-3	Chloroform	н	mg/L	8260	0.00108		<0.001			\setminus		
74-87-3	Methyl chloride	н	mg/L	8260	<0.001		<0.001				X	
156-59-2	cis-1,2-Dichloroethene	н	mg/L	8260	<0.001		0.00077	ſ		/		
74-95-3	Methylene bromide	н	mg/L	8260	<0.001		<0.001			/		
75-34-3	1,1-Dichloroethane	н	mg/L	8260	<0.001		<0.001			/		
107-06-2	1,2-Dichloroethane	н	mg/L	8260	<0.001		<0.001			/		
75-35-4	1,1-Dichloroethylene	н	mg/L	8260	<0.001		<0.001					
106-93-4	Ethane, 1,2-dibromo	H	mg/L	8260	<0.001		<0.001		/			
79-34-5	Ethane, 1,1,2,2-Tetrachloro	H	mg/L	8260	<0.001		<0.001		/			
71-55-6	Ethane, 1,1,1-Trichloro-	H	mg/L	8260	<0.001		<0.001					
79-00-5	Ethane, 1,1,2-Trichloro	н	mg/L	8260	<0.001		<0.001					
630-20-6	Ethane, 1,1,1,2-Tetrachloro	H	mg/L	8260	<0.001		<0.001					
75-01-4	Vinyl chloride	н	mg/L	8260	<0.001		<0.001		/			
127-18-4	Ethene, Tetrachloro-	н	mg/L	8260	<0.001		<0.001		/			
79-01-6	Ethene, Trichloro-	H	mg/L	8260	<0.001		0.0183					

RESIDENTIAL/INERT-QUARTERLY

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: <u>None</u> For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number				0000-0000		8004-4805					
Facility's Local	Well or Spring Number (e.g.,	MW-1,	. MW-2, etc.)	·	T. BLANK 8	<u>_</u>	391					\square
CAS RN ⁴	CONSTITUENT	НА⋼	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	ក្រុ៩បូល	DETECTED VALUE OR PQL ⁶	ዞ ኳ ፋ ር ወ	DETECTED VALUE POL	ዞ ካ ፈ ር ወ	DETECTED VALUE OR PQL ⁶	R G S
100-41-4	Ethylbenzene	н	mg/L	8260	<0.001		<0.001					
591-78-6	2-Hexanone	н	mg/L	8260	<0.005		<0.005					
74-88-4	Iodomethane	н	mg/L	8260	<0.005		<0.005					
124-48-1	Methane, Dibromochloro-	н	mg/L	8260	<0.001		<0.001					
56-23-5	Carbon Tetrachloride	н	mg/L	8260	<0.001		<0.001					
75-09-2	Dichloromethane	н	mg/L	8260	<0.005		<0.005					
108-10-1	Methyl isobutyl ketone	н	mg/L	8260	<0.005		<0.005					
96-12-8	Propane, 1,2-Dibromo-3-chloro	н	mg/L	8011	<0.0000201		<0.0000199					
78-87-5	Propane , 1,2-Dichloro-	н	mg/L	8260	<0.001		<0.001				X	
10061-02-6	trans-1,3-Dichloro-1-propene	н	mg/L	8260	<0.001		<0.001					
10061-01-5	cis-1,3-Dichloro-1-propene	н	mg/L	8260	<0.001		<0.001					
156-60-5	trans-1,2-Dichloroethene	н	mg/L	8260	<0.001		<0.001					
75-69-4	Trichlorofluoromethane	н	mg/L	8260	<0.001		<0.001					
96-18-4	1,2,3-Trichloropropane	н	mg/L	8260	<0.001		<0.001					
95-50-1	Benzene, 1,2-Dichloro-	H	mg/L	8260	<0.001		<0.001					
106-46-7	Benzene, 1,4-Dichloro-	н	mg/L	8260	<0.001		<0.001					
1336-36-3	PCB, Total	н	ug/L	8082		*		*	/		\backslash	
12674-11-2	PCB-1016	н	ug/L	8082		*		*				
11104-28-2	PCB-1221	H	ug/L	8082		*		*	/			
11141-16-5	PCB-1232	H	ug/L	8082		*		*	/			
53469-21-9	PCB-1242	ы	ug/L	8082		*		*				7
12672-29-6	PCB-1248	H	ug/L	8082		*		*				

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u> LAB ID: <u>None</u> For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.

ч **ч** с о о DETECTED VALUE оr Рог ሥ ግ ፈ ር ወ TECTED VALUE OR POL ሥ ግ ፈ ር ወ * * * * * * ~ 8004-4805 DETECTED VALUE OR PQL⁶ -0.0128 -0.684 0.0124 -0.537 -0.154 -17.9 391 0.441 <0.2 <0.5 1.63 1.44 <20 * * * * **ዞ 너 ଏ ቤ** ወ * * * * * * * * T. BLANK 8 0000-0000 DETECTED VALUE OR PQL⁶ HASL 300 TC-02-RC Th-01-RC METHOD 905.0 906.0 410.4 300.0 8082 9012 9060 9020 8082 8082 9310 9310 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) Unit OF MEASURE pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L ug/L ug/I mg/L ug/L mg/L .mg∕L mg/L mg/L ндω н н н н н н н н н н н н н н н н AKGWA NUMBER¹, Facility Well/Spring Number Chemical Oxygen Demand Total Organic Halides Total Organic Carbon CONSTITUENT Technetium-99 Strontium-90 Thorium-230 Gross Alpha Radium-226 Gross Beta Iodine-131 PCB-1268 PCB-1260 PCB-1254 Tritium Cyanide Iodide 11097-69-1 11096-82-5 12587-47-2 10043-66-0 13982-63-3 10098-97-2 10028-17-8 20461-54-5 14269-63-7 11100-14-4 12587-46-1 14133-76-7 \mathbf{RN}^4 s0130- -57-12-5 s0268s0586-CAS

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5201 MW22	20 MW220SG2-15	Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.52. Rad error is 6.47.
		Gross beta		TPU is 10.8. Rad error is 10.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.695. Rad error is 0.692.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.89. Rad error is 1.87.
		Technetium-99		TPU is 14.5. Rad error is 14.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.26. Rad error is 5.08.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 149. Rad error is 148.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5202 MW22	21 MW221SG2-15	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.29. Rad error is 3.29.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.8. Rad error is 6.72.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.472. Rad error is 0.468.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.75. Rad error is 1.74.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.2. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.35. Rad error is 3.27.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 153. Rad error is 152.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5242 MW22	22 MW222SG2-15	Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.65. Rad error is 3.65.
		Gross beta		TPU is 11. Rad error is 9.61.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.397. Rad error is 0.395.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.03. Rad error is 2.03.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.4. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.71. Rad error is 2.69.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 157. Rad error is 153.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5243 MW22	23 MW223SG2-15	Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.43. Rad error is 4.43.
		Gross beta		TPU is 10.3. Rad error is 9.36.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.46. Rad error is 0.459.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.34. Rad error is 2.34.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.25. Rad error is 3.22.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 146. Rad error is 146.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

0	Facility Sample ID	Constituent	Flag	Description
3000-5244 MW224 MV	V224SG2-15	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.06. Rad error is 5.06.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.43. Rad error is 8.28.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.413. Rad error is 0.413.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.22. Rad error is 2.22.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.15. Rad error is 3.11.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 146. Rad error is 146.
8004-4820 MW369 MV	V369UG2-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.99. Rad error is 5.98.
		Gross beta		TPU is 11.8. Rad error is 10.4.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.572. Rad error is 0.564.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.92. Rad error is 1.89.
		Technetium-99		TPU is 14.2. Rad error is 13.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.66. Rad error is 1.65.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 153. Rad error is 153.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

5	acility ample ID	Constituent	Flag	Description
3004-4818 MW370 MW3	370UG2-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.95. Rad error is 3.95.
		Gross beta		TPU is 8.4. Rad error is 7.96.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.511. Rad error is 0.5.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.56. Rad error is 1.56.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.7. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.289. Rad error is 0.282.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 158. Rad error is 158.
3004-4808 MW372 MW3	372UG2-15	Tantalum	Ν	Sample spike recovery not within control limits.
		Zinc	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.11. Rad error is 7.02.
		Gross beta		TPU is 23.9. Rad error is 14.9.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.349. Rad error is 0.348.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.86. Rad error is 1.83.
		Technetium-99		TPU is 25.1. Rad error is 15.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.224. Rad error is 0.223.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 152. Rad error is 152.
3004-4792 MW373 MW3	373UG2-15	Tantalum	Ν	Sample spike recovery not within control limits.
		Zinc	*	Duplicate analysis not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.66. Rad error is 8.52.
		Gross beta		TPU is 8.9. Rad error is 8.59.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.318. Rad error is 0.317.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.93. Rad error is 1.93.
		Technetium-99		TPU is 11.7. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.76. Rad error is 1.72.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 144. Rad error is 144.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4809 MW38	84 MW384SG2-15	Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.37. Rad error is 6.34.
		Gross beta		TPU is 27.2. Rad error is 15.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.536. Rad error is 0.535.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.84. Rad error is 1.83.
		Technetium-99		TPU is 26.7. Rad error is 16.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.9. Rad error is 3.84.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 160. Rad error is 156.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4810 MW38	85 MW385SG2-15	Tantalum	N	Sample spike recovery not within control limits.
	,	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.62. Rad error is 6.6.
		Gross beta		TPU is 21.3. Rad error is 13.9.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.451. Rad error is 0.449.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.9. Rad error is 2.9.
		Technetium-99		TPU is 21.2. Rad error is 15.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.01. Rad error is 3.9.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 159. Rad error is 156.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4804 MW3	86 MW386SG2-15	Tantalum	Ν	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.48. Rad error is 4.47.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.55. Rad error is 6.55.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.478. Rad error is 0.474.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.98. Rad error is 1.98.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.4. Rad error is 10.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.52. Rad error is 5.34.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 144. Rad error is 144.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4815 MW38	87 MW387SG2-15	Tantalum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.84. Rad error is 2.84.
		Gross beta		TPU is 26.4. Rad error is 6.67.
		lodine-131		Analysis of constituent not required and not performed.
	I	Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.434. Rad error is 0.431.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.49. Rad error is 1.49.
		Technetium-99		TPU is 28.5. Rad error is 16.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.5. Rad error is 1.49.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 142. Rad error is 142.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4816 MW38	88 MW388SG2-15	Tantalum	N	Sample spike recovery not within control limits.
	,	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.24. Rad error is 3.23.
		Gross beta		TPU is 11.4. Rad error is 4.79.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.727. Rad error is 0.717.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.01. Rad error is 2.01.
		Technetium-99		TPU is 17.8. Rad error is 14.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.84. Rad error is 1.83.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 147. Rad error is 147.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample was collected.
		Chloride		During sampling, the well was dry; therefore, no sample was collected.
		Fluoride		During sampling, the well was dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample was collected.
		Sulfate		During sampling, the well was dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample was collected.
		рН		During sampling, the well was dry; therefore, no sampl was collected.
		Eh		During sampling, the well was dry; therefore, no sampl was collected.
		Temperature		During sampling, the well was dry; therefore, no sampl was collected.
		Aluminum		During sampling, the well was dry; therefore, no sampl was collected.
		Antimony		During sampling, the well was dry; therefore, no sampl was collected.
		Arsenic		During sampling, the well was dry; therefore, no sampl was collected.
		Barium		During sampling, the well was dry; therefore, no sample was collected.
		Beryllium		During sampling, the well was dry; therefore, no sample was collected.
		Boron		During sampling, the well was dry; therefore, no samplwas collected.
		Cadmium		During sampling, the well was dry; therefore, no sample was collected.
		Calcium		During sampling, the well was dry; therefore, no samplwas collected.
		Chromium		During sampling, the well was dry; therefore, no sample was collected.
		Cobalt		During sampling, the well was dry; therefore, no sample was collected.
		Copper		During sampling, the well was dry; therefore, no sample was collected.
		Iron		During sampling, the well was dry; therefore, no sampli was collected.
		Lead		During sampling, the well was dry; therefore, no sampli was collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Magnesium		During sampling, the well was dry; therefore, no sample was collected.
		Manganese		During sampling, the well was dry; therefore, no sample was collected.
		Mercury		During sampling, the well was dry; therefore, no sampl was collected.
		Molybdenum		During sampling, the well was dry; therefore, no sampl was collected.
		Nickel		During sampling, the well was dry; therefore, no sampl was collected.
		Potassium		During sampling, the well was dry; therefore, no sampl was collected.
		Rhodium		During sampling, the well was dry; therefore, no sampl was collected.
		Selenium		During sampling, the well was dry; therefore, no sampl was collected.
		Silver		During sampling, the well was dry; therefore, no samplwas collected.
		Sodium		During sampling, the well was dry; therefore, no sampl was collected.
		Tantalum		During sampling, the well was dry; therefore, no sampl was collected.
		Thallium		During sampling, the well was dry; therefore, no sampl was collected.
		Uranium		During sampling, the well was dry; therefore, no sampl was collected.
		Vanadium		During sampling, the well was dry; therefore, no sampl was collected.
		Zinc		During sampling, the well was dry; therefore, no sampl was collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sampl was collected.
		Acetone		During sampling, the well was dry; therefore, no sampl was collected.
		Acrolein		During sampling, the well was dry; therefore, no sampl was collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sampl- was collected.
		Benzene		During sampling, the well was dry; therefore, no sampl was collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sampl was collected.
		Xylenes		During sampling, the well was dry; therefore, no sampl was collected.
		Styrene		During sampling, the well was dry; therefore, no sampli was collected.
		Toluene		During sampling, the well was dry; therefore, no sampl was collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sampli was collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sampl was collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		Tribromomethane		During sampling, the well was dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sampl was collected.
		Chloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		Chloroform		During sampling, the well was dry; therefore, no sampl was collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sampl was collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sampl was collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sampl was collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sampl was collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sampl was collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sampl was collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sampl was collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sampl was collected.
		lodomethane		During sampling, the well was dry; therefore, no sampl was collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sampli was collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sampl was collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		Dichloromethane		During sampling, the well was dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample was collected.
		Gross beta		During sampling, the well was dry; therefore, no sample was collected.
		lodine-131		During sampling, the well was dry; therefore, no sample was collected.
		Radium-226		During sampling, the well was dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

8004-4812 MW389 Thorium-230 During sampling, the well was dry was collected. Tritium During sampling, the well was dry was collected. Chemical Oxygen Demand During sampling, the well was dry was collected. Cyanide During sampling, the well was dry was collected. Iodide During sampling, the well was dry was collected. Total Organic Carbon During sampling, the well was dry was collected. Total Organic Halides During sampling, the well was dry was collected. 8004-4811 MW390 MW390SG2-15 Tantalum N PCB-1016 Analysis of constituent not require PCB-1221 Analysis of constituent not require PCB-1248 Analysis of constituent not require PCB-1254 Analysis of constituent not require PCB-1260 Analysis of constituent not require PCB-1268 Analysis of constituent not require	
was collected.Chemical Oxygen DemandDuring sampling, the well was dry was collected.CyanideDuring sampling, the well was dry was collected.IodideDuring sampling, the well was dry was collected.Total Organic CarbonDuring sampling, the well was dry was collected.Total Organic HalidesDuring sampling, the well was dry was collected.8004-4811 MW390 MW390SG2-15TantalumNSample spike recovery not within PCB, TotalAnalysis of constituent not require PCB-1016PCB-1212Analysis of constituent not require PCB-1232Analysis of constituent not require PCB-1248PCB-1248Analysis of constituent not require PCB-1254Analysis of constituent not require PCB-1260PCB-1260Analysis of constituent not require PCB-1260Analysis of constituent not require PCB-1240	; therefore, no sampl
was collected.CyanideDuring sampling, the well was dry was collected.IodideDuring sampling, the well was dry was collected.Total Organic CarbonDuring sampling, the well was dry was collected.Total Organic HalidesDuring sampling, the well was dry was collected.8004-4811 MW390 MW390SG2-15TantalumNSample spike recovery not within PCB, TotalNPCB-1016Analysis of constituent not require PCB-1221PCB-1221Analysis of constituent not require PCB-1232PCB-1242Analysis of constituent not require PCB-1248PCB-1254Analysis of constituent not require PCB-1260PCB-1260Analysis of constituent not require Analysis of constituent not require PCB-1260	; therefore, no sampl
was collected.IodideDuring sampling, the well was dry was collected.Total Organic CarbonDuring sampling, the well was dry was collected.Total Organic HalidesDuring sampling, the well was dry was collected.3004-4811 MW390 MW390SG2-15TantalumNSample spike recovery not within PCB, TotalNPCB-1016Analysis of constituent not require PCB-1221PCB-1221Analysis of constituent not require PCB-1232PCB-1242Analysis of constituent not require PCB-1248PCB-1254Analysis of constituent not require PCB-1260PCB-1260Analysis of constituent not require Analysis of constituent not require Analysis of constituent not require PCB-1260	; therefore, no sampl
was collected.Total Organic CarbonDuring sampling, the well was dry was collected.Total Organic HalidesDuring sampling, the well was dry was collected.3004-4811 MW390 MW390SG2-15TantalumNSample spike recovery not within PCB, TotalNPCB-1016Analysis of constituent not require PCB-1221PCB-1232Analysis of constituent not require PCB-1232PCB-1242Analysis of constituent not require PCB-1248PCB-1254Analysis of constituent not require PCB-1260PCB-1260Analysis of constituent not require	; therefore, no sampl
was collected.Total Organic HalidesDuring sampling, the well was dry was collected.3004-4811 MW390 MW390SG2-15TantalumNPCB, TotalAnalysis of constituent not require PCB-1016Analysis of constituent not require PCB-1221PCB-1232Analysis of constituent not require PCB-1232Analysis of constituent not require PCB-1242PCB-1248Analysis of constituent not require PCB-1254Analysis of constituent not require PCB-1260	; therefore, no sampl
was collected. was collected. was collected. was collected. was collected. was collected. N Sample spike recovery not within PCB, Total PCB-1016 PCB-1221 Analysis of constituent not require PCB-1232 PCB-1242 PCB-1248 Analysis of constituent not require PCB-1254 PCB-1260 Analysis of constituent not require PCB-1260 Analysis of constituent not require Analysis of constituent not require Analysis of constituent not require Analysis of constituent not require PCB-1260 Analysis of constituent not require	; therefore, no sampl
PCB, TotalAnalysis of constituent not requirePCB-1016Analysis of constituent not requirePCB-1221Analysis of constituent not requirePCB-1232Analysis of constituent not requirePCB-1242Analysis of constituent not requirePCB-1248Analysis of constituent not requirePCB-1254Analysis of constituent not requirePCB-1260Analysis of constituent not require	; therefore, no sampl
PCB-1016Analysis of constituent not requirePCB-1221Analysis of constituent not requirePCB-1232Analysis of constituent not requirePCB-1242Analysis of constituent not requirePCB-1248Analysis of constituent not requirePCB-1254Analysis of constituent not requirePCB-1260Analysis of constituent not require	control limits.
PCB-1221Analysis of constituent not requirePCB-1232Analysis of constituent not requirePCB-1242Analysis of constituent not requirePCB-1248Analysis of constituent not requirePCB-1254Analysis of constituent not requirePCB-1260Analysis of constituent not require	d and not performed
PCB-1232Analysis of constituent not requirePCB-1242Analysis of constituent not requirePCB-1248Analysis of constituent not requirePCB-1254Analysis of constituent not requirePCB-1260Analysis of constituent not require	d and not performed
PCB-1242Analysis of constituent not requirePCB-1248Analysis of constituent not requirePCB-1254Analysis of constituent not requirePCB-1260Analysis of constituent not require	d and not performed
PCB-1248Analysis of constituent not requirePCB-1254Analysis of constituent not requirePCB-1260Analysis of constituent not require	d and not performed
PCB-1254Analysis of constituent not requirePCB-1260Analysis of constituent not require	d and not performed
PCB-1260 Analysis of constituent not require	d and not performed
	d and not performed
PCB-1268 Analysis of constituent not require	d and not performed
	d and not performed
Gross alpha U Indicates analyte/nuclide was ana detected. TPU is 3.79. Rad error	
Gross beta TPU is 7.9. Rad error is 4.73.	
Iodine-131 Analysis of constituent not require	d and not performed
Radium-226 U Indicates analyte/nuclide was ana detected. TPU is 0.544. Rad erro	
Strontium-90 U Indicates analyte/nuclide was ana detected. TPU is 2.51. Rad error	
Technetium-99 TPU is 14.5. Rad error is 13.2.	
Thorium-230 U Indicates analyte/nuclide was ana detected. TPU is 2.12. Rad error	
Tritium U Indicates analyte/nuclide was ana detected. TPU is 145. Rad error i	

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4805 MW3	91 MW391SG2-15	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.52. Rad error is 2.33.
		Gross beta		TPU is 4.16. Rad error is 3.83.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.474. Rad error is 0.469.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.54. Rad error is 1.54.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.9. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.22. Rad error is 3.09.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 139. Rad error is 139.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4806 MW392 MW392SG2-15		Copper	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.54. Rad error is 2.5.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.66. Rad error is 3.66.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.374. Rad error is 0.373.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.76. Rad error is 1.74.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.9. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.299. Rad error is 0.296.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 140. Rad error is 140.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
		Copper	*	Duplicate analysis not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.57. Rad error is 2.57.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.19. Rad error is 4.17.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.451. Rad error is 0.445.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.35. Rad error is 1.35.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.264. Rad error is 0.264.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 145. Rad error is 145.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4802 MW3	94 MW394SG2-15	Mercury	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.77. Rad error is 2.77.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.76. Rad error is 3.66.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.382. Rad error is 0.379.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.39. Rad error is 1.39.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.8. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.86. Rad error is 1.85.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 144. Rad error is 144.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4801 MW3	95 MW395SG2-15	Tantalum	Ν	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.68. Rad error is 5.66.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.08. Rad error is 7.01.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.541. Rad error is 0.534.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.73. Rad error is 1.72.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.9. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.5. Rad error is 4.4.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 149. Rad error is 148.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
		Mercury	Ν	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.48. Rad error is 7.36.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.66. Rad error is 4.66.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.513. Rad error is 0.506.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.77. Rad error is 1.77.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.97. Rad error is 4.93.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 146. Rad error is 146.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4817 MW397 MW397SG2-15		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Tantalum	Ν	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.75. Rad error is 4.71.
		Gross beta		TPU is 7.99. Rad error is 7.53.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.497. Rad error is 0.493.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.16. Rad error is 1.16.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.1. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.07. Rad error is 3.98.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 160. Rad error is 156.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG2-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		pН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Tantalum	Ν	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.83. Rad error is 1.83.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.99. Rad error is 2.99.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.844. Rad error is 0.837.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.63. Rad error is 1.63.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.6. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.73. Rad error is 1.7.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 145. Rad error is 145.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG2-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Tantalum	Ν	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.71. Rad error is 1.7.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3. Rad error is 3.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.416. Rad error is 0.414.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.46. Rad error is 1.46.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.2. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.34. Rad error is 1.33.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 136. Rad error is 136.
		Chemical Oxygen Demand		Analysis of constituent not required and not performe
		Cyanide		Analysis of constituent not required and not performe
		lodide		Analysis of constituent not required and not performe
		Total Organic Carbon		Analysis of constituent not required and not performe
		Total Organic Halides		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG2-15	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Q000-0000 QC ·	TB1SG2-15	Vanadium Zinc PCB, Total PCB-1016	Analysis of constituent not required and not performed. Analysis of constituent not required and not performed.
		PCB, Total	, , ,
		,	
		PCB-1016	Analysis of constituent not required and not performed.
			Analysis of constituent not required and not performed.
		PCB-1221	Analysis of constituent not required and not performed.
		PCB-1232	Analysis of constituent not required and not performed.
		PCB-1242	Analysis of constituent not required and not performed.
		PCB-1248	Analysis of constituent not required and not performed.
		PCB-1254	Analysis of constituent not required and not performed.
		PCB-1260	Analysis of constituent not required and not performed.
		PCB-1268	Analysis of constituent not required and not performed.
		Gross alpha	Analysis of constituent not required and not performed.
		Gross beta	Analysis of constituent not required and not performed.
		lodine-131	Analysis of constituent not required and not performed.
		Radium-226	Analysis of constituent not required and not performed.
		Strontium-90	Analysis of constituent not required and not performed.
		Technetium-99	Analysis of constituent not required and not performed.
		Thorium-230	Analysis of constituent not required and not performed.
		Tritium	Analysis of constituent not required and not performed.
		Chemical Oxygen Demand	Analysis of constituent not required and not performed.
		Cyanide	Analysis of constituent not required and not performed.
		lodide	Analysis of constituent not required and not performed.
		Total Organic Carbon	Analysis of constituent not required and not performed.
		Total Organic Halides	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG2-15	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG2-15	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG2-15	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG2-15	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4SG2-15	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG2-15	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB5SG2-15	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

C-90

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5SG2-15	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB6SG2-15	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not perform
		Silver		Analysis of constituent not required and not perform
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB6SG2-15	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB7SG2-15	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB7SG2-15	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB8SG2-15	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not perform
		Cadmium		Analysis of constituent not required and not perform
		Calcium		Analysis of constituent not required and not perform
		Chromium		Analysis of constituent not required and not perform
		Cobalt		Analysis of constituent not required and not perform
		Copper		Analysis of constituent not required and not perform
		Iron		Analysis of constituent not required and not perform
		Lead		Analysis of constituent not required and not perform
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not perform
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB8SG2-15	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4805 MW39	91 MW391DSG2-15	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.48. Rad error is 2.48.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.62. Rad error is 4.61.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.463. Rad error is 0.458.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.53. Rad error is 1.53.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.1. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.185. Rad error is 0.185.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 148. Rad error is 148.

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

Residential/Inert – QUARTERLY, 1st Quarter 2015 Facility: U.S. DOE – Paducah Gaseous Diffusion Plant Permit Number: SW7300014, SW7300015, SW7300043 Finds/Unit:

Lab ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the first quarter 2015 groundwater data collected from the C-746-S&T Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, results from wells considered to represent background conditions were compared with at least three test wells or sidegradient wells (Exhibit D.1). The first quarter 2015 data used to conduct the statistical analyses were collected in January 2015. The statistical analyses for this report first utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses were run, using the last eight quarters, on analytes that had at least one downgradient well that exceeded the historical background. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

For chemicals of concern that have Kentucky maximum contaminant levels (MCLs) and the results that do not exceed their respective MCL, no exceedance is reported. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted for pH. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

For those parameters that are determined to exceed the historical background concentration, a second onesided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, was conducted. The second one-sided tolerance interval statistical test was conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper tolerance limit using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower tolerance limit to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below:¹

- 1. The tolerance limit (TL) was calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data were used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) were computed.
 - The data set was checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be lognormally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage was determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit was calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells was compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 lists the parameters from the available data set for which a statistically

¹ For pH, two-sided TL (upper and lower) were calculated with an adjusted K factor using the following equations: $upper TL = X + (K \times S)$ lower TL = X - (K × S)

derived historical background concentration was developed using the one-sided tolerance interval and the statistical test performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, first quarter 2015. The observations are representative of the current quarter data. Background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a well is sampled on two different dates, the most current available data are used. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

Station	Туре	Groundwater Unit	
MW220	BG	URGA	
MW221	SG	URGA	
MW222	SG	URGA	
MW223	SG	URGA	
MW224	SG	URGA	
MW369	TW	URGA	
MW370	TW	LRGA	
MW372	TW	URGA	
MW373	TW	LRGA	
MW384	SG	URGA	
MW385	SG	LRGA	
MW386	SG	UCRS	
MW387	TW	URGA	
MW388	TW	LRGA	
MW389*	TW	UCRS	
MW390	TW	UCRS	
MW391	TW	URGA	
MW392	TW	LRGA	
MW393	TW	UCRS	
MW394	BG	URGA	
MW395	BG	LRGA	
MW396	BG	UCRS	
MW397	BG	LRGA	

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

NOTE: The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

Parameters	
Aluminum	
Beta Activity	
Boron	
Bromide	
Calcium	
Chemical Oxygen Demand	
Chloride	
cis-1,2-Dichloroethene	
Cobalt	
Conductivity	
Copper	
Cyanide	
Dissolved Oxygen	
Dissolved Solids	
Iodide	
Iron	
Magnesium	
Manganese	
Molybdenum	
Nickel	
Oxidation-Reduction Potential	
pH	
Potassium	
Radium-226	
Sodium	
Sulfate	
Tantalum	
Technetium-99	
Total Organic Carbon	
Total Organic Halides	
Trichloroethene	
Uranium	
Vanadium	
Zinc	

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

•

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	0	4	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Boron	4	0	4	Yes
Bromide	4	0	4	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand	4	1	3	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	1	3	Yes
Conductivity	4	0	4	Yes
Copper	4	2	2	Yes
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No
Iodide	4	3	1	Yes
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	0	4	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	3	1	Yes
Nickel	4	0	4	Yes
Oxidation-Reduction Potential	4	0	4	Yes
рН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	4	0	No
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon	4	0	4	Yes
Total Organic Halides	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Uranium	4	2	2	Yes
Vanadium	4	3	1	Yes
Vinyl Acetate	4	4	0	No
Zinc Rold denotes parameters with at least on	4	2	2	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	2	9	Yes
Antimony	11	11	0	No
Beryllium	11	11	0	No
Beta Activity	11	3	8	Yes
Boron	11	0	11	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon Disulfide	11	11	0	No
Chemical Oxygen Demand	11	6	5	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	9	2	Yes
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	1	10	Yes
Conductivity	11	0	11	Yes
Copper	11	2	9	Yes
Cyanide	11	10	1	Yes

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Solids	11	0	11	Yes
Ethylbenzene	11	11	0	No
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	1	10	Yes
Magnesium	11	0	11	Yes
Manganese	11	0	11	Yes
Methylene chloride	11	11	0	No
Molybdenum	11	6	5	Yes
Nickel	11	0	11	Yes
Oxidation-Reduction Potential	11	0	11	Yes
PCB, Total	2	2	0	No
PCB-1016	2	2	0	No
PCB-1221	2	2	0	No
PCB-1232	2	2	0	No
PCB-1242	2	2	0	No
PCB-1248	2	2	0	No
PCB-1254	2	2	0	No
PCB-1260	2	2	0	No
PCB-1268	2	2	0	No
рН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	11	0	No
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	9	2	Yes
Technetium-99	11	6	5	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon	11	0	11	Yes
Total Organic Halides	11	1	10	Yes

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	3	8	Yes
Trichlorofluoromethane	11	11	0	No
Uranium	11	10	1	Yes
Vanadium	11	10	1	Yes
Vinyl Acetate	11	11	0	No
Zinc	11	5	6	Yes

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3- chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	2	5	Yes
Antimony	7	7	0	No
Beryllium	7	7	0	No
Beta Activity	7	2	5	Yes
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon Disulfide	7	7	0	No
Chemical Oxygen Demand	7	6	1	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	5	2	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	0	7	Yes
Conductivity	7	0	7	Yes
Copper	7	4	3	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	0	7	Yes
Magnesium	7	0	7	Yes
Manganese	7	0	7	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	4	3	Yes
Nickel	7	0	7	Yes
Oxidation-Reduction	_		_	
Potential	7	0	7	Yes
PCB, Total	2	2	0	No
PCB-1016	2	2	0	No
PCB-1221	2	2	0	No
PCB-1232	2	2	0	No
PCB-1242	2	2	0	No
PCB-1248	2	2	0	No
PCB-1254	2	2	0	No
PCB-1260	2	2	0	No
PCB-1268	2	2	0	No
pH	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	6		Yes
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	4	3	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon	7	0	7	Yes
Total Organic Halides	7	0	7	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	13	5	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Trichlorofluoromethane	7	7	0	No
Uranium	7	6	1	Yes
Vanadium	7	6	1	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	4	3	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval tests that were calculated using historical background and presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 28, 32, and 31 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, plus those constituents (beta activity and TCE) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background UTL for oxidation-reduction potential and technetium-99.

<u>URGA</u>

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

Conclusion

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential	MW220: Oxidation-reduction potential	MW370: Oxidation-reduction potential, sulfate
MW390: Oxidation-reduction potential, technetium-99	MW221: Oxidation-reduction potential	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate
MW393: Oxidation-reduction potential	MW222: Oxidation-reduction potential	MW385: Beta activity, oxidation- reduction potential, sulfate, technetium-99
MW396: Oxidation-reduction potential	MW223: Oxidation-reduction potential	MW388: Beta activity, oxidation- reduction potential, sulfate, technetium-99
	MW224: Oxidation-reduction potential	MW392: Oxidation-reduction potential
	MW369: Oxidation-reduction potential, technetium-99	MW395: Oxidation-reduction potential
	MW372: Beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, technetium-99	MW397: Oxidation-reduction potential
	MW384: Beta activity, sulfate, technetium-99	
	MW387: Beta activity, calcium, magnesium, oxidation-reduction potential, sodium, sulfate, technetium- 99	
	MW391: Oxidation-reduction potential	
	MW394: Oxidation-reduction potential	

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium CV: coefficient of variation	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background —UCRS (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentration in MW372 MW384, and MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Chemical Oxygen Demand	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Cyanide	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background —URGA

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW220, MW221, MW222, MW223, MW224, MW369, MW372, MW387, MW391, and MW394.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW387.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW372, MW384, and MW387.
Tantalum	Tolerance Interval	2.27	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW372, MW384 and MW387.
Total Organic Carbon	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background —URGA (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Total Organic Halides	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	0.44	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.08	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background —URGA (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.52	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.52	Current results exceed statistically derived historical background concentration in MW373.
Manganese CV: coefficient of variation	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background —LRGA

CV: coefficient of variation *If CV > 1.0, used log-transformed data. 1 Tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, MW395, and MW397.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	10.74	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.81	Current results exceed statistically derived historical background concentration in MW385 and MW388.
Total Organic Carbon	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background —LRGA (Continued)

CV: coefficient of variation

*If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For the UCRS, URGA, and LRGA, the concentrations from downgradient wells were compared to the one-sided tolerance limit calculated using the most recent eight quarters of data and are presented in Attachment D2 and the statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 2, 9, and 8 parameters, respectively, because these parameter concentrations exceeded the historical background TL. A summary of instances where downgradient well concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10, presented by well number.

UCRS

Because gradients in the UCRS are downward, there are no truly downgradient UCRS wells that exceed the current background TL derived using the most recent eight quarters of data. NOTE: Oxidation-reduction potential and technetium-99 concentrations in some UCRS wells exceeded the current TL this quarter.

<u>URGA</u>

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, magnesium, sodium, sulfate, and technetium-99.

<u>LRGA</u>

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99.

Conclusion

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

URGA	LRGA			
MW369: Technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate			
MW372: Beta activity, calcium, conductivity, magnesium, sulfate, technetium-99	MW388: Beta activity, sulfate, technetium-99			
MW387: Beta activity, calcium, magnesium, sodium, sulfate, technetium-99				

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using
Current Background Concentrations

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.39	Because gradients in UCRS wells are downward, there are no UCRS wells that are actually downgradient of the landfill. However, oxidation-reduction potential concentrations exceeded the TL calculated using current background data in MW390.
Technetium-99	Tolerance Interval	2.68	Because gradients in UCRS wells are downward, there are no UCRS wells that are actually downgradient of the landfill. However, technetium-99 concentrations exceeded the TL calculated using current background data in MW390.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

CV: coefficient of variation *If CV > 1.0, used log-transformed data.Replacement

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted		
Beta Activity	Tolerance Interval	0.60	Current results exceed statistically derived current background concentration in MW372, MW384, and MW387.		
Calcium	Tolerance Interval	0.13	Current results exceed statistically derived current background concentration in MW372 and MW387.		
Conductivity	Tolerance Interval	0.07	Current results exceed statistically derived current background concentration in MW372.		
Dissolved Solids	Tolerance Interval	0.38	No exceedance of statistically derived current background concentration.		
Magnesium	Tolerance Interval	0.14	Current results exceed statistically derived current background concentration in MW372 and MW387.		
Oxidation-Reduction Potential	Tolerance Interval	0.33	No exceedance of statistically derived current background concentration.		
Sodium	Tolerance Interval	0.15	Current results exceed statistically derived current background concentration in MW387.		
Sulfate	Tolerance Interval	0.29	Current results exceed statistically derived current background concentration in MW372 and MW387.		
Technetium-99	Tolerance Interval	0.60	Current results exceed statistically derived current background concentration in MW369, MW372, MW384, and MW387.		

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background —URGA

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted		
Beta Activity	Tolerance Interval	0.49	Current results exceed statistically derived current background concentration in MW385 and MW388.		
Calcium	Tolerance Interval	0.19	Current results exceed statistically derived current background concentration in MW373.		
Conductivity	Tolerance Interval	0.08	Current results exceed statistically derived current background concentration in MW373.		
Dissolved Solids	Tolerance Interval	0.14	Current results exceed statistically derived current background concentration in MW373.		
Magnesium	Tolerance Interval	0.19	Current results exceed statistically derived current background concentration in MW373.		
Oxidation-Reduction Potential	Tolerance Interval	0.32	No exceedance of statistically derived current background concentration.		
Sulfate	Tolerance Interval	0.30	Current results exceed statistically derived current background concentration in MW373 and MW388.		
Technetium-99	Tolerance Interval	0.64	Current results exceed statistically derived current background concentration in MW385 and MW388.		

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background —LRGA

CV: coefficient of variation * If CV > 1.0, used log-transformed data.

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

for pri checedas the rib of is less than the EE, that is statistically significant evidence of elevated of lowered concentration in that went						that wen.
Statistics-Background Data	X= 0.320	S = 0.182	CV(1)= 0.567	K factor**= 3.188	TL(1)= 0.900	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.259	S = 0.503	CV(2) =-0.400	K factor**= 3.188	TL(2)= 0.345	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW396	
Result	LN(Result)
0.393	-0.934
0.2	-1.609
0.2	-1.609
0.501	-0.691
0.2	-1.609
0.2	-1.609
0.2	-1.609
0.668	-0.403
	Result 0.393 0.2 0.2 0.501 0.2 0.2 0.2 0.2

Dry/Partially Dry Wells	

well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.0182	NO	-4.006	N/A		
MW390	Downgradien	t Yes	0.465	NO	-0.766	N/A		
MW393	Downgradien	t Yes	0.0424	NO	-3.161	N/A		
MW396	Upgradient	Yes	0.114	NO	-2.172	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.425	S = 0.636	CV(1) =1.497	K factor**= 3.188	TL(1)= 2.454	LL(1)= N/A
Statistics-Transformed Background	X =-1.322	S = 0.814	CV(2) =-0.616	K factor**= 3.188	TL(2) = 1.274	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	0.2	-1.609
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.2	-1.609

Dry/Partially Dry Wells	
Well No Gradient	

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00648	N/A	-5.039	NO
MW390	Downgradien	t Yes	0.011	N/A	-4.510	NO
MW393	Downgradien	t Yes	0.0228	N/A	-3.781	NO
MW396	Upgradient	Yes	0.00923	N/A	-4.685	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.388	S = 0.327	CV(1)= 0.236	K factor**= 3.188	TL(1)= 2.430	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.301	S = 0.252	CV(2) =0.838	K factor**= 3.188	TL(2)= 1.105	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

esult)

Dry/Partially Dry Wells	

Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.152	NO	-1.884	N/A
MW390	Downgradien	t Yes	0.875	NO	-0.134	N/A
MW393	Downgradien	t Yes	0.192	NO	-1.650	N/A
MW396	Upgradient	Yes	0.762	NO	-0.272	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 41.825	S = 8.445	CV(1)= 0.202	K factor**= 3.188	TL(1)= 68.748	LL(1)= N/A
Statistics-Transformed Background	X = 3.711	S = 0.241	CV(2) =0.065	K factor**= 3.188	TL(2) = 4.479	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	38.4	3.648
9/16/2002	42.9	3.759
10/16/2002	40.2	3.694
1/13/2003	46.7	3.844
4/8/2003	49.8	3.908
7/16/2003	43.3	3.768
10/14/2003	49.7	3.906
1/14/2004	23.6	3.161

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	22.3	NO	3.105	N/A
MW390	Downgradien	t Yes	34.5	NO	3.541	N/A
MW393	Downgradien	t Yes	12.2	NO	2.501	N/A
MW396	Upgradient	Yes	39.7	NO	3.681	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 35.375	S = 0.744	CV(1)= 0.021	K factor**= 3.188	TL(1)= 37.747	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.566	S = 0.021	CV(2)= 0.006	K factor**= 3.188	TL(2)= 3.632	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result		
Well Number:	MW396	

Date Collected	Result	LN(Result)
8/13/2002	36	3.584
9/16/2002	35	3.555
10/16/2002	37	3.611
1/13/2003	35	3.555
4/8/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/14/2004	35	3.555

Dry/Partially Dry Wells		
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	24.7	NO	3.207	N/A
MW390	Downgradien	t Yes	15.4	NO	2.734	N/A
MW393	Downgradien	t Yes	16.3	NO	2.791	N/A
MW396	Upgradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 101.725 S= 5.245
 CV(1) = 0.052 K factor**= 3.188
 TL(1) = 118.447 LL(1) = N/A

 Statistics-Transformed Background
 X = 4.621 S = 0.053 CV(2) = 0.011 K factor**= 3.188
 TL(2) = 4.789 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Partially Dry Wells		Wells
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	15.1	NO	2.715	N/A	
MW390	Downgradien	t Yes	93.2	NO	4.535	N/A	
MW393	Downgradien	t Yes	14.2	NO	2.653	N/A	
MW396	Upgradient	Yes	86.3	NO	4.458	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.008	S = 0.011	CV(1)= 1.340	K factor**= 3.188	TL(1)= 0.042	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.645	S = 1.339	CV(2) =-0.237	K factor**= 3.188	TL(2)= -1.377	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells	
Well No. Gradient	

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00643	N/A	-5.047	NO
MW390	Downgradien	t Yes	0.00062	N/A	-7.386	NO
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A
MW396	Upgradient	Yes	0.0045	N/A	-5.404	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 922.500 S = 107.616 CV(1) = 0.117 K factor**= 3.188
 TL(1) = 1265.579 LL(1) = N/A

Statistics-Transformed Background X=6.822 S= 0.111 CV(2)=0.016 Data

Historical Background Data from Upgradient Wells with Transformed Result							
XX 7 11 X 7	1						

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	784	6.664
9/30/2002	871	6.770
10/16/2002	868	6.766
1/13/2003	912	6.816
4/8/2003	942	6.848
7/16/2003	910	6.813
10/14/2003	935	6.841
1/14/2004	1158	7.054

Dry/Partially Dry Wells						
Well No.	Gradient					
MW389	Downgradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

TL(2)= 7.175

LL(2)=N/A

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	622	NO	6.433	N/A	
MW390	Downgradien	t Yes	755	NO	6.627	N/A	
MW393	Downgradien	t Yes	415	NO	6.028	N/A	
MW396	Upgradient	Yes	822	NO	6.712	N/A	

K factor=** 3.188

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.028	S = 0.014	CV(1)= 0.481	K factor**= 3.188	TL(1)= 0.072	LL(1)= N/A
Statistics-Transformed Background	X =-3.650	S = 0.414	CV(2) =-0.113	K factor**= 3.188	TL(2)= -2.331	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

1011000

Data

XX7 11 XT

MW396	
Result	LN(Result)
0.05	-2.996
0.05	-2.996
0.026	-3.650
0.02	-3.912
0.02	-3.912
0.02	-3.912
0.02	-3.912
0.02	-3.912
	Result 0.05 0.026 0.02 0.02 0.02 0.02 0.02 0.02

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00073	NO	-7.222	N/A
MW390	Downgradien	t No	0.00096	N/A	-6.949	N/A
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A
MW396	Upgradient	Yes	0.00124	NO	-6.693	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.395	S = 1.677	CV(1)= 1.202	K factor**= 3.188	TL(1)= 6.743	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.043	S = 0.814	CV(2) =-18.867	K factor**= 3.188	TL(2)= 2.553	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result			
Well Number:	MW396		

	111 11 0 7 0	
Date Collected	Result	LN(Result)
8/13/2002	5.45	1.696
9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Par	tially Dry	Wells
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.4	N/A	-0.916	NO
MW390	Downgradien	t Yes	5.18	N/A	1.645	NO
MW393	Downgradien	t Yes	0.75	N/A	-0.288	NO
MW396	Upgradient	Yes	1.99	N/A	0.688	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=550.375 S= 104.330 CV(1)=0.190 **K factor**=** 3.188 **Statistics-Background Data** TL(1)= 882.980 LL(1)=N/A **K factor**=** 3.188 **TL(2)**= 6.815 LL(2)=N/A

Statistics-Transformed Background X= 6.298 S = 0.162 CV(2) = 0.026Data

10	Historical Background Data from Upgradient Wells with Transformed Result
----	---

1 111200

XX7 11 XT

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells			
Well No.	Gradient		
MW389	Downgradient		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	350	NO	5.858	N/A
MW390	Downgradien	t Yes	396	NO	5.981	N/A
MW393	Downgradien	t Yes	220	NO	5.394	N/A
MW396	Upgradient	Yes	410	NO	6.016	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 2.150	S = 0.283	CV(1)= 0.132	K factor**= 3.188	TL(1)= 3.052	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.759	S = 0.123	CV(2)= 0.162	K factor**= 3.188	TL(2)= 1.150	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW396		
Result	LN(Result)	
2	0.693	
2	0.693	
2	0.693	
2	0.693	
2	0.693	
2.7	0.993	
2.5	0.916	
2	0.693	
	Result 2 2 2 2 2 2 2.7 2.5	

Dry/Partially Dry Wells	
W-11 M-	Cardiant

well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.5	N/A	-0.693	N/A
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A
MW396	Upgradient	Yes	0.8	NO	-0.223	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.796	S = 3.723	CV(1)= 0.478	K factor**= 3.188	TL(1)= 19.666	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.880	S = 0.723	CV(2) =0.384	K factor**= 3.188	TL(2)= 4.184	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.8	0.588
9/16/2002	9.53	2.254
10/16/2002	7.43	2.006
1/13/2003	9.93	2.296
4/8/2003	10.2	2.322
7/16/2003	9.16	2.215
10/14/2003	11.9	2.477
1/14/2004	2.42	0.884

Dry/Partially Dry Wells	

Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.88	NO	-0.128	N/A
MW390	Downgradien	t Yes	0.541	NO	-0.614	N/A
MW393	Downgradien	t Yes	2.77	NO	1.019	N/A
MW396	Upgradient	Yes	4.87	NO	1.583	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			CV(1)= 0.196	K factor**= 3.188		
Statistics-Transformed Background Data	X = 2.804 S =	= 0.240	CV(2)= 0.086	K factor**= 3.188	TL(2)= 3.569	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW396				

wen Number:	MW 390	
Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW3	89	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	8.53	NO	2.144	N/A
MW390	Downgradien	t Yes	15.4	NO	2.734	N/A
MW393	Downgradien	t Yes	3.42	NO	1.230	N/A
MW396	Upgradient	Yes	17.9	NO	2.885	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data		•	*	K factor**= 3.188		
Statistics-Transformed Background	X =-0.566	S = 1.192	CV(2) =-2.105	K factor**= 3.188	TL(2)= 3.235	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW396				

Data

wen rumber.	1110 370	
Date Collected	Result	LN(Result)
8/13/2002	0.57	-0.562
9/16/2002	0.647	-0.435
10/16/2002	0.88	-0.128
1/13/2003	1.132	0.124
4/8/2003	0.965	-0.036
7/16/2003	0.983	-0.017
10/14/2003	0.984	-0.016
1/14/2004	0.0314	-3.461

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	1.02	NO	0.020	N/A
MW390	Downgradien	t Yes	0.00326	NO	-5.726	N/A
MW393	Downgradien	t Yes	0.0444	NO	-3.115	N/A
MW396	Upgradient	Yes	0.598	NO	-0.514	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.007	S = 0.011	CV(1)= 1.507	K factor**= 3.188	TL(1)= 0.042	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.928	S = 1.420	CV(2) =-0.240	K factor**= 3.188	TL(2)= -1.400	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00128	-6.661
4/8/2003	0.00271	-5.911
7/16/2003	0.00117	-6.751
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells				
Well No.	Gradient			

MW38	9 I	Dow	ngra	dient	

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00047	N/A	-7.663	NO
MW390	Downgradien	t No	0.00041	N/A	-7.799	N/A
MW393	Downgradien	t No	0.00021	N/A	-8.468	N/A
MW396	Upgradient	No	0.00072	N/A	-7.236	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.016	S = 0.021	CV(1)= 1.272	K factor**= 3.188	TL(1)= 0.083	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.706	S = 1.057	CV(2) =-0.225	K factor**= 3.188	TL(2)= -1.338	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Par	tially Dry W	ells
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00217	N/A	-6.133	NO
MW390	Downgradien	t Yes	0.0053	N/A	-5.240	NO
MW393	Downgradien	t Yes	0.00145	N/A	-6.536	NO
MW396	Upgradient	Yes	0.00225	N/A	-6.097	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =13.000	S = 61.952	CV(1)= 4.766	K factor**= 3.188	TL(1)= 210.502	LL(1)= N/A
Statistics-Transformed Background	X= 4.364	S = 0.333	CV(2) =0.076	K factor**= 3.188	TL(2)= 4.736	LL(2)= N/A

Statistics-Transformed Background X = 4.364 S= 0.333 CV(2)=0.076 Data

	kground Data from fells with Transformed Result
Well Number	MW396

wen Rumber.	WI W 570	
Date Collected	Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389	Downgradient
MW389	Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	227	N/A	5.425	YES
MW390	Downgradien	t Yes	817	N/A	6.706	YES
MW393	Downgradien	t Yes	456	N/A	6.122	YES
MW396	Upgradient	Yes	193	N/A	5.263	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW386 MW390 MW393 MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.460	S = 0.350	CV(1)= 0.054	K factor**= 3.736	TL(1)= 7.766	LL(1)= 5.1541
Statistics-Transformed Background Data	X= 1.864	S = 0.054	CV(2)= 0.029	K factor**= 3.736	TL(2)= 2.067	LL(2)= 1.6621

Upgradient Wells with Transformed Result
--

1 111200

XX7 11 XT

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	6.17	1.820
9/16/2002	6.4	1.856
10/16/2002	5.9	1.775
1/13/2003	6.4	1.856
4/8/2003	6.65	1.895
7/16/2003	6.4	1.856
10/14/2003	6.71	1.904
1/14/2004	7.05	1.953

Dry/Partially Dry Wells	
-------------------------	--

Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW386	Sidegradient	Yes	6.69	NO	1.901	N/A
MW390	Downgradien	t Yes	6.33	NO	1.845	N/A
MW393	Downgradien	t Yes	6.21	NO	1.826	N/A
MW396	Upgradient	Yes	6.46	NO	1.866	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.411	S = 0.399	CV(1)= 0.282	K factor**= 3.188	TL(1)= 2.682	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.311	S = 0.271	CV(2)= 0.870	K factor**= 3.188	TL(2)= 1.175	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.978	-0.022
1/13/2003	1.08	0.077
4/8/2003	1.12	0.113
7/16/2003	1.38	0.322
10/14/2003	1.24	0.215
1/14/2004	1.49	0.399

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.214	NO	-1.542	N/A
MW390	Downgradien	t Yes	0.434	NO	-0.835	N/A
MW393	Downgradien	t Yes	0.399	NO	-0.919	N/A
MW396	Upgradient	Yes	0.808	NO	-0.213	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=106.825 S= 32.041 CV(1)=0.300 **K factor**=** 3.188 **Statistics-Background Data** TL(1)= 208.973 LL(1)=N/A **K factor**=** 3.188 **TL(2)**= 6.163 LL(2)=N/A

Statistics-Transformed Background X= 4.595 S = 0.492 CV(2) = 0.107Data

Historical Background Data from Upgradient Wells with Transformed Result			
Well Neuroberg MW206			

Well Number:	MW 396	
Date Collected	Result	LN(Result)
8/13/2002	115	4.745
9/16/2002	116	4.754
10/16/2002	117	4.762
1/13/2003	122	4.804
4/8/2003	106	4.663
7/16/2003	117	4.762
10/14/2003	132	4.883
1/14/2004	29.6	3.388

Dry/Partially Dry Wells			
Well No.	Gradient		

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	104	NO	4.644	N/A
MW390	Downgradien	t Yes	98.1	NO	4.586	N/A
MW393	Downgradien	t Yes	80.4	NO	4.387	N/A
MW396	Upgradient	Yes	106	NO	4.663	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 22.463	S = 8.876	CV(1)= 0.395	K factor**= 3.188	TL(1)= 50.759	LL(1)= N/A
Statistics-Transformed Background	X = 3.054	S = 0.351	CV(2) =0.115	K factor**= 3.188	TL(2) = 4.173	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW396			

Data

Date Collected	Result	LN(Result)
8/13/2002	41.9	3.735
9/16/2002	26.3	3.270
10/16/2002	20.6	3.025
1/13/2003	16.6	2.809
4/8/2003	23.9	3.174
7/16/2003	18.8	2.934
10/14/2003	12.9	2.557
1/14/2004	18.7	2.929

Dry/Partially Dry Wells			
Well No. Gradient			

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	42.9	NO	3.759	N/A
MW390	Downgradien	t Yes	26.7	NO	3.285	N/A
MW393	Downgradien	t Yes	14.3	NO	2.660	N/A
MW396	Upgradient	Yes	22.3	NO	3.105	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.624	S = 6.558	CV(1)= 0.860	K factor**= 3.188	TL(1)= 28.531	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.498	S = 1.321	CV(2) =0.882	K factor**= 3.188	TL(2)= 5.710	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW396			

wen Rumber.	WI W 370	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	2.11	N/A	0.747	N/A
MW390	Downgradien	t Yes	55.7	YES	4.020	N/A
MW393	Downgradien	t No	-2.91	N/A	#Error	N/A
MW396	Upgradient	No	11.2	N/A	2.416	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 9.988	S = 4.696	CV(1)= 0.470	K factor**= 3.188	TL(1)= 24.959	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.210	S = 0.454	CV(2) =0.205	K factor**= 3.188	TL(2)= 3.657	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW396	
Result	LN(Result)
19	2.944
14.6	2.681
10.4	2.342
4.4	1.482
7	1.946
7.3	1.988
9.1	2.208
8.1	2.092
	Result 19 14.6 10.4 4.4 7 7.3 9.1

Dry/Partially Dry Wells	

Well No.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	11.2	NO	2.416	N/A
MW390	Downgradient	Yes	2.63	NO	0.967	N/A
MW393	Downgradient	Yes	3.41	NO	1.227	N/A
MW396	Upgradient	Yes	7.12	NO	1.963	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 142.650 S= 53.533 CV(1)=0.375
 K factor**= 3.188 TL(1)= 313.314 LL(1)=N/A

 Statistics-Transformed Background
 X= 4.896 S= 0.390 CV(2)=0.080
 K factor**= 3.188 TL(2)= 6.138 LL(2)=N/A

Upgradient Wells with Transformed Result
--

Data

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW38	39	Dow	ngrad	lient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	226	NO	5.421	N/A
MW390	Downgradien	t Yes	13.2	NO	2.580	N/A
MW393	Downgradien	t Yes	19.1	NO	2.950	N/A
MW396	Upgradient	Yes	43.6	NO	3.775	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.001	S = 0.000	CV(1)= 0.314	K factor**= 3.188	TL(1)= 0.002	LL(1)= N/A
Statistics-Transformed Background Data	X= -6.821	S = 0.245	CV(2) =-0.036	K factor**= 3.188	TL(2)= -6.040	LL(2)= N/A

Upgradient Wells with Transformed Result	Historical Background Data from Upgradient Wells with Transformed Result
--	---

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.002	-6.215
9/16/2002	0.001	-6.908
10/16/2002	0.001	-6.908
1/13/2003	0.001	-6.908
4/8/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Par	tially Dry Wells
Wall No	Cradiant

wen no.	Gradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.0002	N/A	-8.517	N/A
MW390	Downgradien	t No	0.00012	N/A	-9.028	N/A
MW393	Downgradien	t Yes	0.00013	NO	-8.948	N/A
MW396	Upgradient	Yes	0.00016	NO	-8.740	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.021	S = 0.002	CV(1)= 0.109	K factor**= 3.188	TL(1)= 0.029	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.856	S = 0.103	CV(2) =-0.027	K factor**= 3.188	TL(2)= -3.527	LL(2)= N/A

Historical Bac Upgradient W	kground D ells with Ti	ata from ransformed Result
Well Number:	MW396	
Date Collected	Result	LN(Result)

Date Confected	Result	LIN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells					
Well No.	Gradient				

n en rioi	oradient
MW389	Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.005	N/A	-5.298	N/A	
MW390	Downgradien	t Yes	0.002	NO	-6.215	N/A	
MW393	Downgradien	t No	0.005	N/A	-5.298	N/A	
MW396	Upgradient	No	0.005	N/A	-5.298	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.044	S = 0.035	CV(1) =0.786	K factor**= 3.188	TL(1)= 0.156	LL(1)= N/A
Statistics-Transformed Background	X =-3.342	S = 0.682	CV(2) =-0.204	K factor**= 3.188	TL(2) = -1.168	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW396

Data

Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/8/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Par	tially Dry Wells	
Well No.	Gradient	

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW390	Downgradien	t Yes	0.0038	NO	-5.573	N/A	
MW393	Downgradien	t Yes	0.0037	NO	-5.599	N/A	
MW396	Upgradient	No	0.00492	N/A	-5.314	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.221	S= 0.061	CV(1)= 0.277	K factor**= 2.523	TL(1)= 0.376	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.534	S = 0.212	CV(2)= -0.138	K factor**= 2.523	TL(2)= -0.999	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MUM

X7-11 NT----1----

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.427	-0.851
1/13/2004	0.309	-1.174
4/13/2004	0.2	-1.609
7/21/2004	0.202	-1.599
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 0.2	-1.609
Date Collected 8/13/2002 9/16/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.2 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	-1.609 -1.609 -1.609 -1.609 -1.609 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	Yes	0.207	NO	-1.575	N/A
Downgradien	t No	0.05	N/A	-2.996	N/A
Downgradien	t Yes	0.306	NO	-1.184	N/A
Downgradien	t Yes	0.0161	NO	-4.129	N/A
Downgradien	t Yes	0.0154	NO	-4.173	N/A
Downgradien	t Yes	0.273	NO	-1.298	N/A
Downgradien	t No	0.05	N/A	-2.996	N/A
Sidegradient	Yes	0.0343	NO	-3.373	N/A
Downgradien	t Yes	0.0443	NO	-3.117	N/A
Downgradien	t Yes	0.0261	NO	-3.646	N/A
Upgradient	Yes	0.133	NO	-2.017	N/A
	Gradient Upgradient Downgradient Downgradient Downgradient Downgradient Downgradient Sidegradient Downgradient Upgradient	GradientDetected?UpgradientYesDowngradientNoDowngradientYesDowngradientYesDowngradientYesDowngradientNoSidegradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesUpgradientYes	GradientDetected?ResultUpgradientYes0.207DowngradientNo0.05DowngradientYes0.306DowngradientYes0.0161DowngradientYes0.0154DowngradientYes0.273DowngradientNo0.05SidegradientYes0.0343DowngradientYes0.0443DowngradientYes0.0261UpgradientYes0.133	GradientDetected?ResultResult >TL(1)?UpgradientYes0.207NODowngradientNo0.05N/ADowngradientYes0.306NODowngradientYes0.0161NODowngradientYes0.0154NODowngradientYes0.273NODowngradientYes0.273NODowngradientYes0.055N/ASidegradientYes0.0343NODowngradientYes0.0261NOUpgradientYes0.133NO	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 0.207 NO -1.575 Downgradient No 0.05 N/A -2.996 Downgradient Yes 0.306 NO -1.184 Downgradient Yes 0.0161 NO -4.129 Downgradient Yes 0.0154 NO -4.173 Downgradient Yes 0.273 NO -1.298 Downgradient No 0.05 N/A -2.996 Sidegradient Yes 0.0343 NO -3.373 Downgradient Yes 0.0443 NO -3.117 Downgradient Yes 0.0261 NO -3.646

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =14.273	S = 13.883	CV(1)= 0.973	K factor**= 2.523	TL(1)= 49.300	LL(1)= N/A
Statistics-Transformed Background	X= 2.213	S= 1.033	CV(2)= 0.467	K factor**= 2.523	TL(2)= 4.819	LL(2)= N/A

	kground Data from ells with Transformed Result
Well Number:	MW220

Date Collected	Result	LN(Result)
10/14/2002	15.2	2.721
1/15/2003	42.5	3.750
4/10/2003	45.4	3.816
7/14/2003	8.53	2.144
10/13/2003	11.7	2.460
1/13/2004	13.5	2.603
4/13/2004	33.5	3.512
7/21/2004	13.7	2.617
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.615
Date Collected	Result	
Date Collected 8/13/2002	Result 5.03	1.615
Date Collected 8/13/2002 9/16/2002	Result 5.03 5.57	1.615 1.717
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 5.03 5.57 12.8	1.615 1.717 2.549
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 5.03 5.57 12.8 4.3	1.615 1.717 2.549 1.459
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.03 5.57 12.8 4.3 9.52	1.615 1.717 2.549 1.459 2.253
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 5.03 5.57 12.8 4.3 9.52 3.92	1.615 1.717 2.549 1.459 2.253 1.366

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

C 1' /					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	Yes	21.8	N/A	3.082	N/A
Downgradient	t No	6.33	N/A	1.845	N/A
Downgradient	t Yes	31.6	N/A	3.453	N/A
Downgradient	t Yes	26.1	N/A	3.262	N/A
Downgradient	t No	9.49	N/A	2.250	N/A
Downgradient	t Yes	33.4	N/A	3.509	N/A
Downgradient	t Yes	115	YES	4.745	N/A
Sidegradient	Yes	138	YES	4.927	N/A
Downgradient	t Yes	158	YES	5.063	N/A
Downgradient	t Yes	9.92	N/A	2.295	N/A
Upgradient	No	5.07	N/A	1.623	N/A
	Upgradient Downgradient Downgradient Downgradient Downgradient Downgradient Sidegradient Downgradient Downgradient Upgradient	UpgradientYesDowngradientNoDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesUpgradientNo	UpgradientYes21.8DowngradientNo6.33DowngradientYes31.6DowngradientYes26.1DowngradientNo9.49DowngradientYes33.4DowngradientYes115SidegradientYes138DowngradientYes158DowngradientYes9.92UpgradientNo5.07	UpgradientYes21.8N/ADowngradientNo6.33N/ADowngradientYes31.6N/ADowngradientYes26.1N/ADowngradientNo9.49N/ADowngradientYes33.4N/ADowngradientYes115YESSidegradientYes138YESDowngradientYes158YESDowngradientYes9.92N/AUpgradientNo5.07N/A	Upgradient Yes 21.8 N/A 3.082 Downgradient No 6.33 N/A 1.845 Downgradient Yes 31.6 N/A 3.453 Downgradient Yes 26.1 N/A 3.262 Downgradient No 9.49 N/A 2.250 Downgradient Yes 33.4 N/A 3.509 Downgradient Yes 115 YES 4.745 Sidegradient Yes 138 YES 4.927 Downgradient Yes 158 YES 5.063 Downgradient Yes 9.92 N/A 2.295

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW372	
MW384	
MW387	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.425	S = 0.615	CV(1)= 1.447	K factor**= 2.523	TL(1)= 1.976	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.322	S= 0.786	CV(2)= -0.595	K factor**= 2.523	TL(2)= 0.663	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MUM

X7-11 NT----1----

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.2	-1.609
1/13/2004	0.2	-1.609
4/13/2004	0.2	-1.609
7/21/2004	0.2	-1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 2. 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 2 0.2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00772	N/A	-4.864	NO
MW221	Downgradien	t Yes	0.0146	N/A	-4.227	NO
MW222	Downgradien	t Yes	0.00996	N/A	-4.609	NO
MW223	Downgradien	t Yes	0.0072	N/A	-4.934	NO
MW224	Downgradien	t Yes	0.0127	N/A	-4.366	NO
MW369	Downgradien	t Yes	0.0164	N/A	-4.110	NO
MW372	Downgradien	t Yes	0.906	N/A	-0.099	NO
MW384	Sidegradient	Yes	0.0166	N/A	-4.098	NO
MW387	Downgradien	t Yes	0.0385	N/A	-3.257	NO
MW391	Downgradien	t Yes	0.0279	N/A	-3.579	NO
MW394	Upgradient	Yes	0.0247	N/A	-3.701	NO
	lts identified as N	Ion-Detects	luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis **Historical Background Comparison UNITS: mg/L Bromide URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =1.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X =0.000	S = 0.000	CV(2) =#Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.252	NO	-1.378	N/A
MW221	Downgradien	t Yes	0.512	NO	-0.669	N/A
MW222	Downgradien	t Yes	0.45	NO	-0.799	N/A
MW223	Downgradien	t Yes	0.441	NO	-0.819	N/A
MW224	Downgradien	t Yes	0.226	NO	-1.487	N/A
MW369	Downgradien	t Yes	0.402	NO	-0.911	N/A
MW372	Downgradien	t Yes	0.606	NO	-0.501	N/A
MW384	Sidegradient	Yes	0.604	NO	-0.504	N/A
MW387	Downgradien	t Yes	0.562	NO	-0.576	N/A
MW391	Downgradien	t Yes	0.648	NO	-0.434	N/A
MW394	Upgradient	Yes	0.624	NO	-0.472	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 27.638	S = 4.743	CV(1)= 0.172	K factor**= 2.523	TL(1)= 39.604	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.304	S = 0.183	CV(2) =0.055	K factor**= 2.523	TL(2)= 3.765	LL(2)=N/A

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	23.6	3.161
1/15/2003	25.9	3.254
4/10/2003	30.4	3.414
7/14/2003	33.9	3.523
10/13/2003	21.3	3.059
1/13/2004	20.3	3.011
4/13/2004	23.8	3.170
7/21/2004	19	2.944
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	29.5	3.384

Dute Concettu	Result	Li ((Result)
8/13/2002	29.5	3.384
9/16/2002	29.9	3.398
10/16/2002	31.2	3.440
1/13/2003	30.7	3.424
4/10/2003	34.4	3.538
7/16/2003	29.6	3.388
10/14/2003	30.3	3.411
1/13/2004	28.4	3.346

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	20	NO	2.996	N/A
MW221	Downgradien	t Yes	19.7	NO	2.981	N/A
MW222	Downgradien	t Yes	14.6	NO	2.681	N/A
MW223	Downgradien	t Yes	22.8	NO	3.127	N/A
MW224	Downgradien	t Yes	19.5	NO	2.970	N/A
MW369	Downgradien	t Yes	16.5	NO	2.803	N/A
MW372	Downgradien	t Yes	53.5	YES	3.980	N/A
MW384	Sidegradient	Yes	29.5	NO	3.384	N/A
MW387	Downgradien	t Yes	40	YES	3.689	N/A
MW391	Downgradien	t Yes	27.2	NO	3.303	N/A
MW394	Upgradient	Yes	27.2	NO	3.303	N/A
	Ita idantified on N	Ion Dataata	المعامد	onotomy on olympic on	data validation	and wans not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 35.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 35.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 3.555	S = 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 3.555	LL(2)=N/A

Historical Bac Upgradient W	kground Da ells with Tr	ita from ansformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)

Date Collected	Result	LN(Result)
10/14/2002	35	3.555
1/15/2003	35	3.555
4/10/2003	35	3.555
7/14/2003	35	3.555
10/13/2003	35	3.555
1/13/2004	35	3.555
4/13/2004	35	3.555
7/21/2004	35	3.555
Well Number:	MW394	
wen number.	IVI VV 394	
Date Collected		LN(Result)
		LN(Result) 3.555
Date Collected	Result	
Date Collected 8/13/2002	Result 35	3.555
Date Collected 8/13/2002 9/16/2002	Result 35 35	3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 35 35 35	3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 35 35 35 35 35	3.555 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 35 35 35 35 35 35	3.555 3.555 3.555 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 35 35 35 35 35 35 35	3.555 3.555 3.555 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	20	N/A	2.996	N/A
MW221	Downgradien	t Yes	11.7	NO	2.460	N/A
MW222	Downgradien	t No	20	N/A	2.996	N/A
MW223	Downgradien	t No	20	N/A	2.996	N/A
MW224	Downgradien	t No	20	N/A	2.996	N/A
MW369	Downgradien	t No	20	N/A	2.996	N/A
MW372	Downgradien	t Yes	8.05	NO	2.086	N/A
MW384	Sidegradient	No	20	N/A	2.996	N/A
MW387	Downgradien	t Yes	7.88	NO	2.064	N/A
MW391	Downgradien	t Yes	13.4	NO	2.595	N/A
MW394	Upgradient	Yes	11.7	NO	2.460	N/A
NI/A D		T D			1. 1.1.1	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 49.044	S = 11.278	CV(1)= 0.230	K factor**= 2.523	TL(1)= 77.499	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.866	S = 0.244	CV(2)= 0.063	K factor**= 2.523	TL(2)= 4.482	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW220

Date Collected	Result	LN(Result)
10/14/2002	44.6	3.798
1/15/2003	43.2	3.766
4/10/2003	31.5	3.450
7/14/2003	30.8	3.428
10/13/2003	40.9	3.711
1/13/2004	40.8	3.709
4/13/2004	37.5	3.624
7/21/2004	40.8	3.709
XX7 11 X7 1	101/204	
Well Number:	MW394	
Date Collected	MW 394 Result	LN(Result)
		LN(Result) 4.101
Date Collected	Result	
Date Collected 8/13/2002	Result 60.4	4.101
Date Collected 8/13/2002 9/16/2002	Result 60.4 60.3	4.101 4.099
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 60.4 60.3 58	4.101 4.099 4.060
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 60.4 60.3 58 60.7	4.101 4.099 4.060 4.106
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 60.4 60.3 58 60.7 62.9	4.101 4.099 4.060 4.106 4.142
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 60.4 60.3 58 60.7 62.9 58.1	4.101 4.099 4.060 4.106 4.142 4.062

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	22.2	NO	3.100	N/A
MW221	Downgradien	t Yes	34.4	NO	3.538	N/A
MW222	Downgradien	t Yes	31.4	NO	3.447	N/A
MW223	Downgradien	t Yes	30.4	NO	3.414	N/A
MW224	Downgradien	t Yes	17.4	NO	2.856	N/A
MW369	Downgradien	t Yes	31.9	NO	3.463	N/A
MW372	Downgradien	t Yes	46.3	NO	3.835	N/A
MW384	Sidegradient	Yes	48.2	NO	3.875	N/A
MW387	Downgradien	t Yes	41	NO	3.714	N/A
MW391	Downgradien	t Yes	50.5	NO	3.922	N/A
MW394	Upgradient	Yes	45.7	NO	3.822	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis **Historical Background Comparison** cis-1,2-Dichloroethene UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =5.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 5.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.609	S = 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 1.609	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Rest	ult

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	5	1.609
1/15/2003	5	1.609
4/10/2003	5	1.609
7/14/2003	5	1.609
10/13/2003	5	1.609
1/13/2004	5	1.609
4/13/2004	5	1.609
7/21/2004	5	1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	1	N/A	0.000	N/A
MW221	Downgradien	t No	1	N/A	0.000	N/A
MW222	Downgradien	t No	1	N/A	0.000	N/A
MW223	Downgradien	t No	1	N/A	0.000	N/A
MW224	Downgradien	t No	1	N/A	0.000	N/A
MW369	Downgradien	t No	1	N/A	0.000	N/A
MW372	Downgradien	t No	1	N/A	0.000	N/A
MW384	Sidegradient	No	1	N/A	0.000	N/A
MW387	Downgradien	t Yes	0.39	NO	-0.942	N/A
MW391	Downgradien	t Yes	0.77	NO	-0.261	N/A
MW394	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.016	S = 0.040	CV(1)= 2.440	K factor**= 2.523	TL(1)= 0.116	LL(1)= N/A
Statistics-Transformed Background Data	X =-5.582	S = 1.573	CV(2) =-0.282	K factor**= 2.523	TL(2)= -1.613	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0041	-5.497
1/15/2003	0.00496	-5.306
4/10/2003	0.00289	-5.846
7/14/2003	0.161	-1.826
10/13/2003	0.0226	-3.790
1/13/2004	0.00464	-5.373
4/13/2004	0.001	-6.908
7/21/2004	0.00264	-5.937
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00218	N/A	-6.128	NO
MW221	Downgradien	t Yes	0.00099	N/A	-6.918	NO
MW222	Downgradien	t Yes	0.00356	N/A	-5.638	NO
MW223	Downgradien	t Yes	0.00255	N/A	-5.972	NO
MW224	Downgradien	t Yes	0.00097	N/A	-6.938	NO
MW369	Downgradien	t Yes	0.0124	N/A	-4.390	NO
MW372	Downgradien	t Yes	0.00023	N/A	-8.377	NO
MW384	Sidegradient	Yes	0.0004	N/A	-7.824	NO
MW387	Downgradien	t Yes	0.00017	N/A	-8.680	NO
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A
MW394	Upgradient	Yes	0.00015	N/A	-8.805	NO
N/A - Resu	lts identified as N	Ion-Detects of	luring labo	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 382.132 S = 107.134	• CV(1)= 0.280	K factor**= 2.523	TL(1)= 652.432	LL(1)= N/A
Statistics-Transformed Background Data	X = 5.716 S = 1.164	CV(2) =0.204	K factor**= 2.523	TL(2)= 8.652	LL(2)= N/A

Historical Bac Upgradient W	8	a from nsformed Result
Well Number:	MW220	
Date Collected	Result	LN(Result)

101 00 220	
Result	LN(Result)
368	5.908
433.2	6.071
489	6.192
430	6.064
346	5.846
365	5.900
416	6.031
353	5.866
MW394	
MW394 Result	LN(Result)
	LN(Result) 6.006
Result	
Result 406	6.006
Result 406 418	6.006 6.035
Result 406 418 411	6.006 6.035 6.019
Result 406 418 411 422	6.006 6.035 6.019 6.045
Result 406 418 411 422 420	6.006 6.035 6.019 6.045 6.040
	368 433.2 489 430 346 365 416

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	330	NO	5.799	N/A		
MW221	Downgradien	t Yes	405	NO	6.004	N/A		
MW222	Downgradien	t Yes	321	NO	5.771	N/A		
MW223	Downgradien	t Yes	388	NO	5.961	N/A		
MW224	Downgradien	t Yes	404	NO	6.001	N/A		
MW369	Downgradien	t Yes	374	NO	5.924	N/A		
MW372	Downgradien	t Yes	701	YES	6.553	N/A		
MW384	Sidegradient	Yes	537	NO	6.286	N/A		
MW387	Downgradien	t Yes	602	NO	6.400	N/A		
MW391	Downgradien	t Yes	402	NO	5.996	N/A		
MW394	Upgradient	Yes	397	NO	5.984	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.024	S = 0.010	CV(1)= 0.429	K factor**= 2.523	TL(1)= 0.050	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.794	S = 0.312	CV(2) =-0.082	K factor**= 2.523	TL(2)= -3.007	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW220							
Date Collected	Result	LN(Result)						
10/14/2002	0.0211	-3.858						
1/15/2003	0.02	-3.912						
4/10/2003	0.02	-3.912						
7/14/2003	0.02	-3.912						
10/13/2003	0.02	-3.912						
1/13/2004	0.02	-3.912						
4/13/2004	0.02	-3.912						
7/21/2004	0.02	-3.912						
Well Number:	MW394							
Date Collected	Result	LN(Result)						
8/13/2002	0.05	-2.996						
9/16/2002	0.05	-2.996						
10/16/2002	0.02	-3.912						
1/13/2003	0.02	-3.912						
4/10/2003	0.02	-3.912						
7/16/2003	0.02	-3.912						
10/14/2003	0.02	-3.912						

0.02

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00177	NO	-6.337	N/A	
MW221	Downgradien	t Yes	0.00063	NO	-7.370	N/A	
MW222	Downgradien	t Yes	0.00047	NO	-7.663	N/A	
MW223	Downgradien	t Yes	0.00102	NO	-6.888	N/A	
MW224	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW369	Downgradien	t Yes	0.00119	NO	-6.734	N/A	
MW372	Downgradien	t Yes	0.00037	NO	-7.902	N/A	
MW384	Sidegradient	Yes	0.00154	NO	-6.476	N/A	
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW391	Downgradien	t Yes	0.00055	NO	-7.506	N/A	
MW394	Upgradient	Yes	0.00047	NO	-7.663	N/A	
N/A - Resul	lts identified as N	on-Detects of	luring labo	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Cyanide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.024	S = 0.010	CV(1)= 0.431	K factor**= 2.523	TL(1)= 0.050	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.797	S = 0.313	CV(2)= -0.082	K factor**= 2.523	TL(2)= -3.008	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW220							
Date Collected	Result	LN(Result)						
10/14/2002	0.02	-3.912						
1/15/2003	0.02	-3.912						
4/10/2003	0.02	-3.912						
7/14/2003	0.02	-3.912						
10/13/2003	0.02	-3.912						
1/13/2004	0.02	-3.912						
4/13/2004	0.05	-2.996						
7/21/2004	0.05	-2.996						
Well Number:	MW394							
Date Collected	Result	LN(Result)						
8/13/2002	0.02	-3.912						

wen Number:	IVI W 394	
Date Collected	Result	LN(Result)
8/13/2002	0.02	-3.912
9/16/2002	0.02	-3.912
10/16/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.2	N/A	-1.609	N/A	
MW221	Downgradien	t No	0.2	N/A	-1.609	N/A	
MW222	Downgradien	t No	0.2	N/A	-1.609	N/A	
MW223	Downgradien	t Yes	0.00189	NO	-6.271	N/A	
MW224	Downgradien	t No	0.2	N/A	-1.609	N/A	
MW369	Downgradien	t No	0.2	N/A	-1.609	N/A	
MW372	Downgradien	t No	0.2	N/A	-1.609	N/A	
MW384	Sidegradient	No	0.2	N/A	-1.609	N/A	
MW387	Downgradien	t No	0.2	N/A	-1.609	N/A	
MW391	Downgradien	t No	0.2	N/A	-1.609	N/A	
MW394	Upgradient	No	0.2	N/A	-1.609	N/A	
N/A Dami	10	I Detecte	1	notomi on clusic on	1-4		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 3.784	S = 1.887	CV(1)= 0.499	K factor**= 2.523	TL(1)= 8.545	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.182	S = 0.612	CV(2)= 0.518	K factor**= 2.523	TL(2)= 2.727	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW220							
Date Collected	Result	LN(Result)						
10/14/2002	6.79	1.915						
1/15/2003	7.25	1.981						
4/10/2003	3.6	1.281						
7/14/2003	0.94	-0.062						
10/13/2003	1.65	0.501						
1/13/2004	3.48	1.247						
4/13/2004	1.05	0.049						
7/21/2004	4.46	1.495						
Well Number:	MW394							
Date Collected	Result	LN(Result)						
8/13/2002	6.09	1.807						
9/16/2002	3.85	1.348						
10/16/2002	5.11	1.631						
1/13/2003	3.83	1.343						

4.15

1.83

3.33

3.14

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	5.7	NO	1.740	N/A	
MW221	Downgradien	t Yes	5.01	NO	1.611	N/A	
MW222	Downgradien	t Yes	5.15	NO	1.639	N/A	
MW223	Downgradien	t Yes	2.17	NO	0.775	N/A	
MW224	Downgradien	t Yes	2.95	NO	1.082	N/A	
MW369	Downgradien	t Yes	1.15	NO	0.140	N/A	
MW372	Downgradien	t Yes	1.44	NO	0.365	N/A	
MW384	Sidegradient	Yes	3.6	NO	1.281	N/A	
MW387	Downgradien	t Yes	5.67	NO	1.735	N/A	
MW391	Downgradien	t Yes	4.06	NO	1.401	N/A	
MW394	Upgradient	Yes	5.07	NO	1.623	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.423

0.604

1.203

1.144

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =232.68	8 S = 27.490	CV(1)= 0.118	K factor**= 2.523	TL(1)= 302.045	LL(1)= N/A
Statistics-Transformed Background Data	X= 5.443	S = 0.118	CV(2)= 0.022	K factor**= 2.523	TL(2)= 5.740	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MW220

Well Number

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 247 259 201 228 249 240	5.509 5.557 5.303 5.429 5.517 5.481

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	140	NO	4.942	N/A
MW221	Downgradien	t Yes	166	NO	5.112	N/A
MW222	Downgradien	t Yes	169	NO	5.130	N/A
MW223	Downgradien	t Yes	170	NO	5.136	N/A
MW224	Downgradien	t Yes	211	NO	5.352	N/A
MW369	Downgradien	t Yes	207	NO	5.333	N/A
MW372	Downgradien	t Yes	374	YES	5.924	N/A
MW384	Sidegradient	Yes	249	NO	5.517	N/A
MW387	Downgradien	t Yes	290	NO	5.670	N/A
MW391	Downgradien	t Yes	209	NO	5.342	N/A
MW394	Upgradient	Yes	166	NO	5.112	N/A
N/A Decu	Its identified as N	Ion Detects d	luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.897	S = 1.050	CV(1)= 1.170	K factor**= 2.523	TL(1)= 3.545	LL(1)= N/A
Statistics-Transformed Background Data	X =-0.565	S = 0.951	CV(2) =-1.683	K factor**= 2.523	TL(2)= 1.834	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.429	-0.846
7/14/2003	4.33	1.466
10/13/2003	1.81	0.593
1/13/2004	0.793	-0.232
4/13/2004	0.13	-2.040
7/21/2004	0.382	-0.962
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.293
Date Collected	Result	
Date Collected 8/13/2002	Result 1.34	0.293
Date Collected 8/13/2002 9/16/2002	Result 1.34 0.328	0.293 -1.115
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.34 0.328 1.38	0.293 -1.115 0.322
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.34 0.328 1.38 1.3	0.293 -1.115 0.322 0.262
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.34 0.328 1.38 1.3 0.494	0.293 -1.115 0.322 0.262 -0.705
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1.34 0.328 1.38 1.3 0.494 0.62	0.293 -1.115 0.322 0.262 -0.705 -0.478

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Upgradient	Yes	0.697	N/A	-0.361	NO
Downgradien	t Yes	0.0858	N/A	-2.456	NO
Downgradien	t Yes	0.634	N/A	-0.456	NO
Downgradien	t Yes	0.0436	N/A	-3.133	NO
Downgradien	t Yes	0.0924	N/A	-2.382	NO
Downgradien	t Yes	0.824	N/A	-0.194	NO
Downgradien	t Yes	0.0711	N/A	-2.644	NO
Sidegradient	Yes	1.81	N/A	0.593	NO
Downgradien	t No	0.165	N/A	-1.802	N/A
Downgradien	t Yes	0.179	N/A	-1.720	NO
Upgradient	Yes	0.772	N/A	-0.259	NO
	Gradient Upgradient Downgradien Downgradien Downgradien Downgradien Downgradien Sidegradient Downgradien Downgradien	GradientDetected?UpgradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesDowngradientYesSidegradientYesDowngradientNoDowngradientYes	GradientDetected?ResultUpgradientYes0.697DowngradientYes0.0858DowngradientYes0.634DowngradientYes0.0436DowngradientYes0.0924DowngradientYes0.824DowngradientYes0.0711SidegradientYes1.81DowngradientNo0.165DowngradientYes0.179	GradientDetected?ResultResult >TL(1)?UpgradientYes0.697N/ADowngradientYes0.0858N/ADowngradientYes0.634N/ADowngradientYes0.0436N/ADowngradientYes0.0924N/ADowngradientYes0.824N/ADowngradientYes0.824N/ADowngradientYes1.81N/ADowngradientYes1.65N/ADowngradientYes0.165N/A	Gradient Detected? Result Result >TL(1)? LN(Result) Upgradient Yes 0.697 N/A -0.361 Downgradient Yes 0.0858 N/A -2.456 Downgradient Yes 0.634 N/A -0.456 Downgradient Yes 0.0436 N/A -3.133 Downgradient Yes 0.0924 N/A -2.382 Downgradient Yes 0.824 N/A -0.194 Downgradient Yes 0.0711 N/A -2.644 Sidegradient Yes 1.81 N/A 0.593 Downgradient No 0.165 N/A -1.802 Downgradient Yes 0.179 N/A -1.720

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.796	S = 1.703	CV(1)= 0.158	K factor**= 2.523	TL(1)= 15.092	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.368	S = 0.158	CV(2)= 0.067	K factor**= 2.523	TL(2)= 2.766	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul						
Well Number: MW220						
Date Collected	Result	LN(Result)				
10/14/2002	9.16	2.215				
1/15/2003	10	2.303				

2.380

2.688

2.201

2.139

2.272

2.087

2.468

2.493

2.425

2.332

2.460

2.485

2.501

2.434

LN(Result)

10.8

14.7

9.03

8.49

9.7

8.06

MW394

Result

11.8

12.1

11.3

10.3

11.7

12.2

11.4

12

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	8.05	NO	2.086	N/A
MW221	Downgradien	t Yes	8.41	NO	2.129	N/A
MW222	Downgradien	t Yes	6.24	NO	1.831	N/A
MW223	Downgradien	t Yes	8.69	NO	2.162	N/A
MW224	Downgradien	t Yes	7.92	NO	2.069	N/A
MW369	Downgradien	t Yes	7.19	NO	1.973	N/A
MW372	Downgradien	t Yes	20.4	YES	3.016	N/A
MW384	Sidegradient	Yes	10.2	NO	2.322	N/A
MW387	Downgradien	t Yes	18.5	YES	2.918	N/A
MW391	Downgradien	t Yes	11.4	NO	2.434	N/A
MW394	Upgradient	Yes	11.3	NO	2.425	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.287	S = 0.619	CV(1)= 2.156	K factor**= 2.523	TL(1)= 1.848	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.455	S = 1.619	CV(2) =-0.659	K factor**= 2.523	TL(2)= 1.630	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	0.0306	-3.487			
1/15/2003	0.0291	-3.537			
4/10/2003	0.0137	-4.290			
7/14/2003	2.54	0.932			
10/13/2003	0.378	-0.973			
1/13/2004	0.159	-1.839			
4/13/2004	0.00707	-4.952			
7/21/2004	0.0841	-2.476			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	0.542	-0.612			
9/16/2002	0.155	-1.864			
10/16/2002	0.103	-2.273			
1/13/2003	0.128	-2.056			
4/10/2003	0.005	-5.298			
7/16/2003	0.272	-1.302			

0.0795

0.0658

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.0194	N/A	-3.942	NO
MW221	Downgradien	t Yes	0.00618	N/A	-5.086	NO
MW222	Downgradien	t Yes	0.0117	N/A	-4.448	NO
MW223	Downgradien	t Yes	0.0555	N/A	-2.891	NO
MW224	Downgradien	t Yes	0.00795	N/A	-4.835	NO
MW369	Downgradien	t Yes	0.11	N/A	-2.207	NO
MW372	Downgradien	t Yes	0.00314	N/A	-5.764	NO
MW384	Sidegradient	Yes	0.0588	N/A	-2.834	NO
MW387	Downgradien	t Yes	0.0179	N/A	-4.023	NO
MW391	Downgradien	t Yes	0.00198	N/A	-6.225	NO
MW394	Upgradient	Yes	0.0128	N/A	-4.358	NO
N/A - Resul	lts identified as N	Ion-Detects of	luring labo	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-2.532

-2.721

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.006	S = 0.008	CV(1)= 1.261	K factor**= 2.523	TL(1)= 0.026	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.747	S = 1.205	CV(2) =-0.210	K factor**= 2.523	TL(2)= -2.708	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	0.00558	-5.189			
1/15/2003	0.00983	-4.622			
4/10/2003	0.0109	-4.519			
7/14/2003	0.00245	-6.012			

0.00566

0.00572

0.00392

MW394

Result

0.025

0.025

0.001

0.001

0.001

0.001

0.001

0.001

0.001

-5.174

-5.164

-6.908

-5.542

-3.689

-3.689

-6.908

-6.908

-6.908

-6.908

-6.908

-6.908

LN(Result)

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00078	N/A	-7.156	NO
MW221	Downgradien	t Yes	0.0025	N/A	-5.991	NO
MW222	Downgradien	t No	0.0003	N/A	-8.112	N/A
MW223	Downgradien	t Yes	0.00373	N/A	-5.591	NO
MW224	Downgradien	t Yes	0.00029	N/A	-8.146	NO
MW369	Downgradien	t Yes	0.00018	N/A	-8.623	NO
MW372	Downgradien	t No	0.00032	N/A	-8.047	N/A
MW384	Sidegradient	No	0.0005	N/A	-7.601	N/A
MW387	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW391	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW394	Upgradient	No	0.00023	N/A	-8.377	N/A
	lts identified as N	Ion Detects (luring lab	protory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.127	S = 0.228	CV(1)= 1.790	K factor**= 2.523	TL(1)= 0.701	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.617	S = 1.837	CV(2) =-0.508	K factor**= 2.523	TL(2)= 1.019	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW220

wen number.	IVI VV 220	
Date Collected	Result	LN(Result)
10/14/2002	0.418	-0.872
1/15/2003	0.738	-0.304
4/10/2003	0.544	-0.609
7/14/2003	0.106	-2.244
10/13/2003	0.0529	-2.939
1/13/2004	0.0209	-3.868
4/13/2004	0.005	-5.298
7/21/2004	0.0192	-3.953
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.05 0.05 0.005 0.005	-2.996 -2.996 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -5.298 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.05 0.05 0.005 0.005 0.005 0.005	-2.996 -2.996 -5.298 -5.298 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.0373	N/A	-3.289	NO
MW221	Downgradien	t Yes	0.059	N/A	-2.830	NO
MW222	Downgradien	t Yes	0.0405	N/A	-3.206	NO
MW223	Downgradien	t Yes	0.318	N/A	-1.146	NO
MW224	Downgradien	t Yes	0.00634	N/A	-5.061	NO
MW369	Downgradien	t Yes	0.0116	N/A	-4.457	NO
MW372	Downgradien	t Yes	0.00067	N/A	-7.308	NO
MW384	Sidegradient	Yes	0.00151	N/A	-6.496	NO
MW387	Downgradien	t Yes	0.0041	N/A	-5.497	NO
MW391	Downgradien	t Yes	0.00086	N/A	-7.059	NO
MW394	Upgradient	Yes	0.00487	N/A	-5.325	NO
N/A - Resu	lts identified as N	Ion-Detects (luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 179.87	2 S = 86.318	CV(1)= 0.480	K factor**= 2.523	TL(1)= 397.652	LL(1)= N/A
Statistics-Transformed Background Data	X= 4.861	S = 1.252	CV(2) =0.258	K factor**= 2.523	TL(2)= 8.021	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu					
Well Number:	MW220				

	111 11 220	
Date Collected	Result	LN(Result)
10/14/2002	205	5.323
1/15/2003	1.95	0.668
4/10/2003	203	5.313
7/14/2003	30	3.401
10/13/2003	107	4.673
1/13/2004	295	5.687
4/13/2004	190	5.247
7/21/2004	319	5.765

Well Number:	MW394	
Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 90	4.500
Date Collected 8/13/2002 9/16/2002	Result 90 240	4.500 5.481
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 90 240 185	4.500 5.481 5.220
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 90 240 185 220	4.500 5.481 5.220 5.394
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 90 240 185 220 196	4.500 5.481 5.220 5.394 5.278
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 90 240 185 220 196 172	4.500 5.481 5.220 5.394 5.278 5.147

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	733	YES	6.597	N/A	
MW221	Downgradien	t Yes	850	YES	6.745	N/A	
MW222	Downgradien	t Yes	554	YES	6.317	N/A	
MW223	Downgradien	t Yes	604	YES	6.404	N/A	
MW224	Downgradien	t Yes	534	YES	6.280	N/A	
MW369	Downgradien	t Yes	779	YES	6.658	N/A	
MW372	Downgradien	t Yes	693	YES	6.541	N/A	
MW384	Sidegradient	Yes	350	NO	5.858	N/A	
MW387	Downgradien	t Yes	820	YES	6.709	N/A	
MW391	Downgradien	t Yes	760	YES	6.633	N/A	
MW394	Upgradient	Yes	453	YES	6.116	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW220 MW221 MW222 MW223 MW224 MW369 MW372 MW387 MW391 MW394

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.138	S = 0.282	CV(1)= 0.046	K factor**= 2.904	TL(1)= 6.957	LL(1)= 5.3179
Statistics-Transformed Background Data	X= 1.813	S = 0.047	CV(2) =0.026	K factor**= 2.904	TL(2)= 1.950	LL(2)= 1.6765

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	6.04	1.798			
1/15/2003	6.31	1.842			
4/10/2003	6.5	1.872			
7/14/2003	6.3	1.841			
10/13/2003	6.34	1.847			
1/13/2004	6.33	1.845			
4/13/2004	6.3	1.841			
7/21/2004	5.9	1.775			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	5.8	1.758			
9/30/2002	5.93	1.780			
10/16/2002	5.42	1.690			
1/13/2003	6	1.792			
4/10/2003	6.04	1.798			
7/16/2003	6.2	1.825			
10/14/2003	6.4	1.856			
1/13/2004	6.39	1.855			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>	
MW220	Upgradient	Yes	5.95	NO	1.783	N/A	
MW221	Downgradien	t Yes	6.14	NO	1.815	N/A	
MW222	Downgradien	t Yes	6.16	NO	1.818	N/A	
MW223	Downgradien	t Yes	6.02	NO	1.795	N/A	
MW224	Downgradien	t Yes	6.06	NO	1.802	N/A	
MW369	Downgradien	t Yes	6.29	NO	1.839	N/A	
MW372	Downgradien	t Yes	6.34	NO	1.847	N/A	
MW384	Sidegradient	Yes	6.32	NO	1.844	N/A	
MW387	Downgradien	t Yes	6.14	NO	1.815	N/A	
MW391	Downgradien	t Yes	6.22	NO	1.828	N/A	
MW394	Upgradient	Yes	6.06	NO	1.802	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.654	S = 9.310	CV(1)= 1.399	K factor**= 2.523	TL(1)= 30.144	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.130	S= 1.208	CV(2)= 1.069	K factor**= 2.523	TL(2)= 4.178	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	6.7	1.902				
1/15/2003	29.7	3.391				
4/10/2003	24.9	3.215				
7/14/2003	1.13	0.122				

3.43

6.71

19.3

3.97

MW394

Result

2

2

1.03

1.1

1.24

1.14

1.05

1.07

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	3.31	N/A	1.197	NO	
MW221	Downgradien	t Yes	1.51	N/A	0.412	NO	
MW222	Downgradien	t Yes	0.29	N/A	-1.238	NO	
MW223	Downgradien	t Yes	1.69	N/A	0.525	NO	
MW224	Downgradien	t Yes	0.608	N/A	-0.498	NO	
MW369	Downgradien	t Yes	0.542	N/A	-0.612	NO	
MW372	Downgradien	t Yes	2.1	N/A	0.742	NO	
MW384	Sidegradient	Yes	1.06	N/A	0.058	NO	
MW387	Downgradien	t Yes	1.97	N/A	0.678	NO	
MW391	Downgradien	t Yes	1.54	N/A	0.432	NO	
MW394	Upgradient	Yes	1.26	N/A	0.231	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.233

1.904

2.960

1.379

0.693

0.693

0.030

0.095

0.215

0.131

0.049

0.068

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 36.363	S= 8.666	CV(1)= 0.238	K factor**= 2.523	TL(1)= 58.227	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.570	S = 0.222	CV(2) =0.062	K factor**= 2.523	TL(2)= 4.129	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					

Data Callestad	Result	L N/(D14)
Date Collected	Result	LN(Result)
10/14/2002	35.4	3.567
1/15/2003	40.6	3.704
4/10/2003	51	3.932
7/14/2003	58.2	4.064
10/13/2003	38.1	3.640
1/13/2004	37	3.611
4/13/2004	43.2	3.766
7/21/2004	33.8	3.520
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.493
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 32.9	3.493
Date Collected 8/13/2002 9/16/2002	Result 32.9 29.9	3.493 3.398
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 32.9 29.9 29	3.493 3.398 3.367
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 32.9 29.9 29 27.1	3.493 3.398 3.367 3.300
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 32.9 29.9 29 27.1 24.8	3.493 3.398 3.367 3.300 3.211
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 32.9 29.9 27.1 24.8 35.6	3.493 3.398 3.367 3.300 3.211 3.572

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	38.1	NO	3.640	N/A	
MW221	Downgradien	t Yes	42.4	NO	3.747	N/A	
MW222	Downgradien	t Yes	39.2	NO	3.669	N/A	
MW223	Downgradien	t Yes	47	NO	3.850	N/A	
MW224	Downgradien	t Yes	49.2	NO	3.896	N/A	
MW369	Downgradien	t Yes	52.2	NO	3.955	N/A	
MW372	Downgradien	t Yes	55.7	NO	4.020	N/A	
MW384	Sidegradient	Yes	53.5	NO	3.980	N/A	
MW387	Downgradien	t Yes	61.6	YES	4.121	N/A	
MW391	Downgradien	t Yes	30.8	NO	3.428	N/A	
MW394	Upgradient	Yes	33.8	NO	3.520	N/A	
N/A - Resu	lts identified as N	Ion-Detects	luring lah	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 10.481	S = 2.648	CV(1)= 0.253	K factor**= 2.523	TL(1)= 17.161	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.322	S= 0.239	CV(2)= 0.103	K factor**= 2.523	TL(2)= 2.925	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW220			

Result	LN(Result)
10.4	2.342
9.8	2.282
15.4	2.734
14.9	2.701
13.5	2.603
10.3	2.332
14.3	2.660
10.5	2.351
MW394	
Result	LN(Result)
11.2	2.416
11.2 8.3	2.416 2.116
8.3	2.116
8.3 8	2.116 2.079
8.3 8 8.5	2.116 2.079 2.140
8.3 8 8.5 7.9	2.116 2.079 2.140 2.067
	10.4 9.8 15.4 14.9 13.5 10.3 14.3 10.5 MW394

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	14	NO	2.639	N/A
MW221	Downgradien	t Yes	13.2	NO	2.580	N/A
MW222	Downgradien	t Yes	10.3	NO	2.332	N/A
MW223	Downgradien	t Yes	13.9	NO	2.632	N/A
MW224	Downgradien	t Yes	10.8	NO	2.380	N/A
MW369	Downgradien	t Yes	8.7	NO	2.163	N/A
MW372	Downgradien	t Yes	109	YES	4.691	N/A
MW384	Sidegradient	Yes	20.3	YES	3.011	N/A
MW387	Downgradien	t Yes	34.4	YES	3.538	N/A
MW391	Downgradien	t Yes	12.5	NO	2.526	N/A
MW394	Upgradient	Yes	10.5	NO	2.351	N/A
N/A Doon	Its identified as N	Ion Dotoots d	luring lab	oratory analysis or	data validation	and wars not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW372	
MW384	
MW387	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Tantalum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.029	S = 0.067	CV(1)= 2.267	K factor**= 2.523	TL(1)= 0.197	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.837	S = 1.260	CV(2) =-0.260	K factor**= 2.523	TL(2)= -1.658	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				

Date Collected	Result	LN(Result)
10/14/2002	0.005	-5.298
1/15/2003	0.005	-5.298
4/10/2003	0.005	-5.298
7/14/2003	0.005	-5.298
10/13/2003	0.005	-5.298
1/13/2004	0.005	-5.298
4/13/2004	0.005	-5.298
7/21/2004	0.005	-5.298
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 0.2	-1.609
Date Collected 8/13/2002 9/16/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.2 0.2 0.005	-1.609 -1.609 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.2 0.2 0.005 0.005	-1.609 -1.609 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.2 0.02 0.005 0.005 0.005	-1.609 -1.609 -5.298 -5.298 -5.298
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.2 0.2 0.005 0.005 0.005 0.005	-1.609 -1.609 -5.298 -5.298 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.005	N/A	-5.298	N/A
MW221	Downgradien	t No	0.005	N/A	-5.298	N/A
MW222	Downgradien	t Yes	0.0013	N/A	-6.645	NO
MW223	Downgradien	t No	0.005	N/A	-5.298	N/A
MW224	Downgradien	t No	0.005	N/A	-5.298	N/A
MW369	Downgradien	t No	0.005	N/A	-5.298	N/A
MW372	Downgradien	t No	0.005	N/A	-5.298	N/A
MW384	Sidegradient	No	0.005	N/A	-5.298	N/A
MW387	Downgradien	t No	0.00201	N/A	-6.210	N/A
MW391	Downgradien	t No	0.005	N/A	-5.298	N/A
MW394	Upgradient	Yes	0.00158	8 N/A	-6.450	NO
N/A - Resu	lts identified as N	Jon-Detects (luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 9.354	S = 9.280	CV(1)= 0.992	K factor**= 2.523	TL(1)= 32.768	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.270	S = 0.849	CV(2)= 0.374	K factor**= 2.523	TL(2)= 3.262	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	19.7	2.981			
1/15/2003	26.1	3.262			
4/10/2003	3.56	1.270			
7/14/2003	0	#Func!			
10/13/2003	21	3.045			
1/13/2004	6.32	1.844			
4/13/2004	3	1.099			
7/21/2004	14.6	2.681			
Well Number:	MW394				
Date Collected	Result	LN(Result)			
8/13/2002	14	2.639			
9/16/2002	5.45	1.696			
10/16/2002	2.49	0.912			
1/13/2003	18.3	2.907			
4/10/2003	-1.45	#Func!			
7/16/2003	-1.71	#Func!			
10/14/2003	18.3	2.907			

1/13/2004

0

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	32.5	NO	3.481	N/A
MW221	Downgradien	t No	17.5	N/A	2.862	N/A
MW222	Downgradien	t No	15.2	N/A	2.721	N/A
MW223	Downgradien	t No	16.8	N/A	2.821	N/A
MW224	Downgradien	t No	9.13	N/A	2.212	N/A
MW369	Downgradien	t Yes	45.2	YES	3.811	N/A
MW372	Downgradien	t Yes	181	YES	5.198	N/A
MW384	Sidegradient	Yes	191	YES	5.252	N/A
MW387	Downgradien	t Yes	211	YES	5.352	N/A
MW391	Downgradien	t No	-0.684	N/A	#Error	N/A
MW394	Upgradient	No	17.2	N/A	2.845	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

#Func!

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances					
MW369					
MW372					
MW384					
MW387					

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.494	S = 0.737	CV(1)= 0.493	K factor**= 2.523	TL(1)= 3.353	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.315	S = 0.402	CV(2) =1.279	K factor**= 2.523	TL(2)= 1.330	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MUM

X7-11 NT----1----

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1.1	0.095
4/10/2003	1	0.000
7/14/2003	3.3	1.194
10/13/2003	1.8	0.588
1/13/2004	1	0.000
4/13/2004	2	0.693
7/21/2004	3.1	1.131
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.262
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 1.3	0.262
Date Collected 8/13/2002 9/16/2002	Result 1.3 1	0.262 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.3 1 1	0.262 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.3 1 1 1.6	0.262 0.000 0.000 0.470
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.3 1 1.6 1	0.262 0.000 0.000 0.470 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 1.3 1 1.6 1 1.4	0.262 0.000 0.000 0.470 0.000 0.336

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.19	NO	0.174	N/A
MW221	Downgradien	t Yes	1.35	NO	0.300	N/A
MW222	Downgradien	t Yes	1.29	NO	0.255	N/A
MW223	Downgradien	t Yes	1.39	NO	0.329	N/A
MW224	Downgradien	t Yes	1.46	NO	0.378	N/A
MW369	Downgradien	t Yes	1.66	NO	0.507	N/A
MW372	Downgradien	t Yes	1.57	NO	0.451	N/A
MW384	Sidegradient	Yes	2.13	NO	0.756	N/A
MW387	Downgradien	t Yes	1.75	NO	0.560	N/A
MW391	Downgradien	t Yes	1.45	NO	0.372	N/A
MW394	Upgradient	Yes	1.47	NO	0.385	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 63.475	S = 163.135	5 CV(1)=2.570	K factor**= 2.523	TL(1)= 475.063	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.103	S= 1.145	CV(2)= 0.369	K factor**= 2.523	TL(2)= 5.992	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	Well Number: MW220					
Date Collected	Result	LN(Result)				
10/14/2002	50	3.912				
1/15/2003	10	2.303				

2.303

2.303

2.303

2.303

2.303

2.303

3.912

6.510

3.912

3.586

2.303

3.754

3.091

2.549

LN(Result)

10

10

10

10

10

10

MW394

Result

50

672

50

36.1

10

22

42.7

12.8

4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	3.7	N/A	1.308	NO
MW221	Downgradien	t Yes	6.86	N/A	1.926	NO
MW222	Downgradien	t Yes	3.42	N/A	1.230	NO
MW223	Downgradien	t Yes	6.3	N/A	1.841	NO
MW224	Downgradien	t No	10	N/A	2.303	N/A
MW369	Downgradien	t Yes	21.3	N/A	3.059	NO
MW372	Downgradien	t Yes	13.5	N/A	2.603	NO
MW384	Sidegradient	Yes	11	N/A	2.398	NO
MW387	Downgradien	t Yes	11.2	N/A	2.416	NO
MW391	Downgradien	t Yes	14.2	N/A	2.653	NO
MW394	Upgradient	Yes	10.2	N/A	2.322	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis **Historical Background Comparison** Trichloroethene UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 8.813	S = 8.376	CV(1)= 0.951	K factor**= 2.523	TL(1)= 29.946	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.395	S= 1.449	CV(2)= 1.039	K factor**= 2.523	TL(2)= 5.052	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/21/2004	1	0.000
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.773
Date Collected	Result	
Date Collected 8/13/2002	Result 16	2.773
Date Collected 8/13/2002 9/30/2002	Result 16 20	2.773 2.996
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 16 20 17	2.773 2.996 2.833
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 16 20 17 15	2.773 2.996 2.833 2.708
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 16 20 17 15 10	2.773 2.996 2.833 2.708 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	1	N/A	0.000	N/A
MW221	Downgradien	t No	1	N/A	0.000	N/A
MW222	Downgradien	t Yes	0.64	N/A	-0.446	N/A
MW223	Downgradien	t Yes	1.14	N/A	0.131	N/A
MW224	Downgradien	t No	1	N/A	0.000	N/A
MW369	Downgradien	t Yes	1.46	N/A	0.378	N/A
MW372	Downgradien	t Yes	8.08	NO	2.089	N/A
MW384	Sidegradient	Yes	0.48	N/A	-0.734	N/A
MW387	Downgradien	t Yes	0.74	N/A	-0.301	N/A
MW391	Downgradien	t Yes	18.3	NO	2.907	N/A
MW394	Upgradient	Yes	6.03	NO	1.797	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.001	S = 0.000	CV(1)= 0.440	K factor**= 2.523	TL(1)= 0.002	LL(1)= N/A
Statistics-Transformed Background Data	X= -6.840	S = 0.273	CV(2)= -0.040	K factor**= 2.523	TL(2)= -6.151	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.001	-6.908
1/15/2003	0.001	-6.908
4/10/2003	0.001	-6.908
7/14/2003	0.001	-6.908
10/13/2003	0.001	-6.908
1/13/2004	0.00298	-5.816
4/13/2004	0.001	-6.908
7/21/2004	0.001	-6.908
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -6.908
Date Collected	Result	
Date Collected 8/13/2002	Result 0.001	-6.908
Date Collected 8/13/2002 9/16/2002	Result 0.001 0.001	-6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.001 0.001 0.001	-6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.001 0.001 0.001 0.001	-6.908 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.001 0.001 0.001 0.001 0.001	-6.908 -6.908 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 0.001 0.001 0.001 0.001 0.001 0.001	-6.908 -6.908 -6.908 -6.908 -6.908 -6.908

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	0.0002	N/A	-8.517	N/A
MW221	Downgradien	t No	0.0002	N/A	-8.517	N/A
MW222	Downgradien	t No	0.00007	8 N/A	-9.459	N/A
MW223	Downgradien	t No	0.0002	N/A	-8.517	N/A
MW224	Downgradien	t No	0.0002	N/A	-8.517	N/A
MW369	Downgradien	t No	0.0002	N/A	-8.517	N/A
MW372	Downgradien	t No	0.0002	N/A	-8.517	N/A
MW384	Sidegradient	No	0.0002	N/A	-8.517	N/A
MW387	Downgradien	t No	0.0002	N/A	-8.517	N/A
MW391	Downgradien	t Yes	0.00009	1 NO	-9.305	N/A
MW394	Upgradient	No	0.0002	N/A	-8.517	N/A
$N/\Delta = Result$	lts identified as N	Ion-Detects	luring labo	ratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.021	S = 0.002	CV(1)= 0.083	K factor**= 2.523	TL(1)= 0.025	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.884	S= 0.076	CV(2) =-0.020	K factor**= 2.523	TL(2)= -3.692	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW220					
Date Collected	Result	LN(Result)				
10/14/2002	0.02	-3.912				
1/15/2003	0.02	-3.912				
4/10/2003	0.02	-3.912				
7/14/2003	0.02	-3.912				
10/13/2003	0.02	-3.912				
1/13/2004	0.02	-3.912				
4/13/2004	0.02	-3.912				
7/21/2004	0.02	-3.912				
Well Number:	MW394					
Date Collected	Result	LN(Result)				
8/13/2002	0.025	-3.689				
9/16/2002	0.025	-3.689				
10/16/2002	0.02	-3.912				
1/13/2003	0.02	-3.912				
4/10/2003	0.02	-3.912				
7/16/2003	0.02	-3.912				
10/14/2003	0.02	-3.912				

0.02

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.005	N/A	-5.298	N/A	
MW221	Downgradien	t No	0.005	N/A	-5.298	N/A	
MW222	Downgradien	t No	0.005	N/A	-5.298	N/A	
MW223	Downgradien	t No	0.005	N/A	-5.298	N/A	
MW224	Downgradien	t No	0.005	N/A	-5.298	N/A	
MW369	Downgradien	t Yes	0.00134	NO	-6.615	N/A	
MW372	Downgradien	t No	0.005	N/A	-5.298	N/A	
MW384	Sidegradient	No	0.005	N/A	-5.298	N/A	
MW387	Downgradien	t No	0.005	N/A	-5.298	N/A	
MW391	Downgradien	t No	0.005	N/A	-5.298	N/A	
MW394	Upgradient	No	0.005	N/A	-5.298	N/A	
N/A - Resu	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.036	S = 0.026	CV(1)= 0.722	K factor**= 2.523	TL(1)= 0.101	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.485	S= 0.525	CV(2)= -0.151	K factor**= 2.523	TL(2)= -2.162	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW220				
Date Collected	Result	LN(Result)			
10/14/2002	0.025	-3.689			

-3.352

-3.352

-3.247

-3.650

-3.912

-3.912

-3.912

-2.303

-2.303

-3.689

-3.352

-3.352

-3.912

-3.912

-3.912

LN(Result)

0.035

0.035

0.0389

0.026

0.02

0.02

0.02

MW394

Result

0.1

0.1

0.025

0.035

0.035

0.02

0.02

0.02

1/15/2003 4/10/2003

7/14/2003

10/13/2003

1/13/2004

4/13/2004

7/21/2004

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00389	NO	-5.549	N/A
MW221	Downgradien	t No	0.01	N/A	-4.605	N/A
MW222	Downgradien	t No	0.01	N/A	-4.605	N/A
MW223	Downgradien	t Yes	0.00572	NO	-5.164	N/A
MW224	Downgradien	t No	0.01	N/A	-4.605	N/A
MW369	Downgradien	t Yes	0.00408	NO	-5.502	N/A
MW372	Downgradien	t Yes	0.0101	NO	-4.595	N/A
MW384	Sidegradient	Yes	0.00574	NO	-5.160	N/A
MW387	Downgradien	t No	0.01	N/A	-4.605	N/A
MW391	Downgradien	t Yes	0.00475	NO	-5.350	N/A
MW394	Upgradient	No	0.00904	N/A	-4.706	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.258	S = 0.221	CV(1)= 0.856	K factor**= 2.523	TL(1)= 0.815	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.266	S= 2.485	CV(2) =-1.097	K factor**= 2.523	TL(2)= 4.003	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
	n 1	T 3 T (D) 1 3			

Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	0.737	-0.305
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.194
Date Collected	Result	· · · ·
Date Collected 8/13/2002	Result 0.824	-0.194
Date Collected 8/13/2002 9/16/2002	Result 0.824 0.2	-0.194 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.824 0.2 0.0002	-0.194 -1.609 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.824 0.2 0.0002 0.363	-0.194 -1.609 -8.517 -1.013
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.824 0.2 0.0002 0.363 0.2	-0.194 -1.609 -8.517 -1.013 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t No	0.05	N/A	-2.996	N/A
MW373	Downgradien	t No	0.05	N/A	-2.996	N/A
MW385	Sidegradient	Yes	0.17	NO	-1.772	N/A
MW388	Downgradien	t Yes	0.18	NO	-1.715	N/A
MW392	Downgradien	t Yes	0.0318	NO	-3.448	N/A
MW395	Upgradient	Yes	0.0914	NO	-2.393	N/A
MW397	Upgradient	Yes	0.609	NO	-0.496	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =7.183	S = 2.612	CV(1)= 0.364	K factor**= 2.523	TL(1)= 13.773	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.870	S= 0.552	CV(2) =0.295	K factor**= 2.523	TL(2)= 3.261	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	ells with Transformed Result
Well Number:	MW395

Date Collected	Result	LN(Result)
8/13/2002	1.09	0.086
9/16/2002	5.79	1.756
10/16/2002	6.82	1.920
1/13/2003	5.01	1.611
4/10/2003	6.1	1.808
7/16/2003	8.51	2.141
10/14/2003	4.99	1.607
1/13/2004	6.58	1.884
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.259
Date Collected	Result	
Date Collected 8/13/2002	Result 9.57	2.259
Date Collected 8/13/2002 9/16/2002	Result 9.57 11	2.259 2.398
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 9.57 11 9.3	2.259 2.398 2.230
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 9.57 11 9.3 8.63	2.259 2.398 2.230 2.155
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 9.57 11 9.3 8.63 10	2.259 2.398 2.230 2.155 2.303
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 9.57 11 9.3 8.63 10 6.89	2.259 2.398 2.230 2.155 2.303 1.930

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	16	N/A	2.773	N/A
MW373	Downgradient	Yes	14.1	N/A	2.646	N/A
MW385	Sidegradient	Yes	100	YES	4.605	N/A
MW388	Downgradient	Yes	63.3	YES	4.148	N/A
MW392	Downgradient	t No	0.353	N/A	-1.041	N/A
MW395	Upgradient	No	5.98	N/A	1.788	N/A
MW397	Upgradient	Yes	16.3	N/A	2.791	N/A
N/A - Resu	lts identified as N	on-Detects of	luring lab	oratory analysis or	data validatior	and were not

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 \overline{CV} Coefficient-of-Variation, $\overline{CV} = S/X$ If \overline{CV} is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.650	S = 0.805	CV(1)= 1.238	K factor**= 2.523	TL(1)= 2.681	LL(1)= N/A
Statistics-Transformed Background Data	X= -1.034	S = 1.030	CV(2) =-0.996	K factor**= 2.523	TL(2)= 1.564	LL(2)=N/A

Historical Bac	kground Data from
Upgradient W	Yells with Transformed Result
Well Number:	MW395

ii en i tunio en	11111070	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2 2. 0.2 0.2	0.693 0.693 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 2 0.2 0.2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.0339	N/A	-3.384	NO
MW373	Downgradien	t Yes	1.77	N/A	0.571	NO
MW385	Sidegradient	Yes	0.0125	N/A	-4.382	NO
MW388	Downgradien	t Yes	0.0258	N/A	-3.657	NO
MW392	Downgradien	t Yes	0.0259	N/A	-3.654	NO
MW395	Upgradient	Yes	0.0204	N/A	-3.892	NO
MW397	Upgradient	Yes	0.00879	N/A	-4.734	NO
N/A - Resul	lts identified as N	on-Detects of	luring lab	oratory analysis or	data validatior	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 1.000	LL(1)= N/A
Statistics-Transformed Background Data	X = 0.000	S = 0.000	CV(2) =#Num!	K factor**= 2.523	TL(2)= 0.000	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MW305

Well Number

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1	0.000
9/16/2002	1	0.000
10/16/2002	1	0.000
1/13/2003	1	0.000
4/10/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.562	NO	-0.576	N/A
MW373	Downgradien	t Yes	0.602	NO	-0.507	N/A
MW385	Sidegradient	Yes	0.248	NO	-1.394	N/A
MW388	Downgradien	t Yes	0.394	NO	-0.931	N/A
MW392	Downgradien	t Yes	0.594	NO	-0.521	N/A
MW395	Upgradient	Yes	0.536	NO	-0.624	N/A
MW397	Upgradient	Yes	0.514	NO	-0.666	N/A
N/A - Resul	ts identified as N	on-Detects	luring lah	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =23.103	S = 11.538	CV(1)= 0.499	K factor**= 2.523	TL(1)= 52.213	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.357	S= 2.411	CV(2)= 1.023	K factor**= 2.523	TL(2)= 8.439	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			

Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.965
Date Collected	Result	
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	28.7	NO	3.357	N/A
MW373	Downgradien	t Yes	71.5	YES	4.270	N/A
MW385	Sidegradient	Yes	37.9	NO	3.635	N/A
MW388	Downgradien	t Yes	27.7	NO	3.321	N/A
MW392	Downgradien	t Yes	26.5	NO	3.277	N/A
MW395	Upgradient	Yes	25.8	NO	3.250	N/A
MW397	Upgradient	Yes	18.6	NO	2.923	N/A
N/A - Resu	lts identified as N	Ion-Detects of	luring lab	oratory analysis or	data validatior	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 35.313	S = 1.250	CV(1)= 0.035	K factor**= 2.523	TL(1)= 38.466	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.564	S = 0.033	CV(2) =0.009	K factor**= 2.523	TL(2)= 3.648	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				

Date Collected	Result	LN(Result)
8/13/2002	35	3.555
9/16/2002	35	3.555
10/16/2002	35	3.555
1/13/2003	35	3.555
4/10/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/13/2004	35	3.555
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 40	3.689
Date Collected 8/13/2002 9/16/2002	Result 40 35	3.689 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 40 35 35	3.689 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 40 35 35 35 35	3.689 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 40 35 35 35 35 35	3.689 3.555 3.555 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 40 35 35 35 35 35 35 35	3.689 3.555 3.555 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	20	N/A	2.996	N/A
MW373	Downgradient	No	20	N/A	2.996	N/A
MW385	Sidegradient	No	20	N/A	2.996	N/A
MW388	Downgradient	No	20	N/A	2.996	N/A
MW392	Downgradient	Yes	13.8	NO	2.625	N/A
MW395	Upgradient	No	20	N/A	2.996	N/A
MW397	Upgradient	No	20	N/A	2.996	N/A
N/A Doon	Its identified as N	on Dataata	luring lab	oratory analysis or	data validation	and wars not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 51.844	S = 11.652	CV(1)= 0.225	K factor**= 2.523	TL(1)= 81.242	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.924	S = 0.229	CV(2)= 0.058	K factor**= 2.523	TL(2)= 4.501	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW395			
Date Collected	Result	LN(Result)		
8/13/2002	62.2	4.130		
9/16/2002	64.7	4.170		
10/16/2002	62.2	4.130		
1/13/2003	63.5	4.151		
4/10/2003	64.1	4.160		
7/16/2003	64	4.159		
10/14/2003	63.2	4.146		
1/13/2004	60.6	4.104		

1/13/2004	00.0	4.104
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	38.9	3.661
9/16/2002	39.8	3.684
10/17/2002	39.3	3.671
1/13/2003	40.5	3.701
4/8/2003	42.1	3.740
7/16/2003	42	3.738
10/14/2003	40.8	3.709
1/13/2004	41.6	3.728

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	39.4	NO	3.674	N/A
MW373	Downgradien	t Yes	42.8	NO	3.757	N/A
MW385	Sidegradient	Yes	23.7	NO	3.165	N/A
MW388	Downgradien	t Yes	31.5	NO	3.450	N/A
MW392	Downgradien	t Yes	46.3	NO	3.835	N/A
MW395	Upgradient	Yes	43.3	NO	3.768	N/A
MW397	Upgradient	Yes	38	NO	3.638	N/A
NI/A D	14- 14 1 N	T D-44-	I		J_41; J_4;	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison cis-1,2-Dichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 5.000	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 5.000	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.609	S = 0.000	CV(2) =0.000	K factor**= 2.523	TL(2)= 1.609	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW395

Well Number

wen Number.	101 00 595	
Date Collected	Result	LN(Result)
8/13/2002	5	1.609
9/30/2002	5	1.609
10/16/2002	5	1.609
1/13/2003	5	1.609
4/10/2003	5	1.609
7/16/2003	5	1.609
10/14/2003	5	1.609
1/13/2004	5	1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.609 1.609 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t No	1	N/A	0.000	N/A
MW373	Downgradien	t No	1	N/A	0.000	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradien	t Yes	0.42	NO	-0.868	N/A
MW392	Downgradien	t Yes	0.63	NO	-0.462	N/A
MW395	Upgradient	No	1	N/A	0.000	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A
N/A - Resu	lts identified as N	on-Detects of	luring lah	oratory analysis or	data validatior	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.007	S = 0.011	CV(1)= 1.515	K factor**= 2.523	TL(1)= 0.034	LL(1)= N/A
Statistics-Transformed Background Data	X= -6.053	S= 1.416	CV(2)= -0.234	K factor**= 2.523	TL(2)= -2.480	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

1111206

X7-11 NT----1----

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	· · · · · ·
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	0.00056	N/A	-7.488	NO
MW373	Downgradient	t Yes	0.00069	N/A	-7.279	NO
MW385	Sidegradient	Yes	0.00026	N/A	-8.255	NO
MW388	Downgradient	t Yes	0.0003	N/A	-8.112	NO
MW392	Downgradient	t Yes	0.00018	N/A	-8.623	NO
MW395	Upgradient	Yes	0.0001	N/A	-9.210	NO
MW397	Upgradient	Yes	0.00057	N/A	-7.470	NO
N/A - Resul	lts identified as N	on-Detects d	luring labo	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 377.875 S = 52.10	1 CV(1)= 0.138	K factor**= 2.523	TL(1)= 509.326	LL(1)= N/A
Statistics-Transformed Background Data	X = 5.926 S = 0.136	CV(2) =0.023	K factor**= 2.523	TL(2)= 6.270	LL(2)= N/A

	kground Data from Yells with Transformed Result
Well Number:	MW395

i en i anioen	112110990	
Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.775
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 322 315 317 320 390 354	5.775 5.753 5.759 5.768 5.966 5.869

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	441	NO	6.089	N/A
MW373	Downgradien	t Yes	933	YES	6.838	N/A
MW385	Sidegradient	Yes	462	NO	6.136	N/A
MW388	Downgradien	t Yes	466	NO	6.144	N/A
MW392	Downgradien	t Yes	395	NO	5.979	N/A
MW395	Upgradient	Yes	376	NO	5.930	N/A
MW397	Upgradient	Yes	354	NO	5.869	N/A
N/A - Resul	lts identified as N	on-Detects of	luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 \overline{CV} Coefficient-of-Variation, $\overline{CV} = S/X$ If \overline{CV} is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.028	S = 0.013	CV(1)= 0.474	K factor**= 2.523	TL(1)= 0.061	LL(1)= N/A
Statistics-Transformed Background	X= -3.662	S= 0.406	CV(2)= -0.111	K factor**= 2.523	TL(2)= -2.638	LL(2)= N/A

Historical Bac Upgradient W	kground Da ells with Tr	ta from ansformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)

Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.0281	-3.572
1/13/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.02	-2.996 -2.996 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.02 0.02	-2.996 -2.996 -3.912 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.02 0.02 0.02	-2.996 -2.996 -3.912 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	0.001	N/A	-6.908	N/A
MW373	Downgradient	No	0.001	N/A	-6.908	N/A
MW385	Sidegradient	Yes	0.0011	NO	-6.812	N/A
MW388	Downgradient	No	0.00073	N/A	-7.222	N/A
MW392	Downgradient	Yes	0.00055	NO	-7.506	N/A
MW395	Upgradient	No	0.001	N/A	-6.908	N/A
MW397	Upgradient	Yes	0.00093	NO	-6.980	N/A
N/A - Resu	lts identified as N	on-Detects of	luring labo	oratory analysis or	data validatior	and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 4.678	S= 2.431	CV(1)= 0.520	K factor**= 2.523	TL(1)= 10.812	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.414	S = 0.550	CV(2) =0.389	K factor**= 2.523	TL(2)= 2.802	LL(2)= N/A

Historical Bac Upgradient W	kground Da ells with Tr	ta from ansformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	7.29	1.987
9/30/2002	4.03	1.394
10/16/2002	3.85	1.348
Date Collected 8/13/2002 9/30/2002	Result 7.29 4.03	1.987 1.394

2.36

1.14

1.76

4.05

4.26

MW397

Result

11.56

5.86

5.94

4.66

3.77

3.47

5.34

5.51

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	3.64	NO	1.292	N/A
MW373	Downgradient	Yes	1.34	NO	0.293	N/A
MW385	Sidegradient	Yes	1.79	NO	0.582	N/A
MW388	Downgradient	Yes	4.64	NO	1.535	N/A
MW392	Downgradient	Yes	1.3	NO	0.262	N/A
MW395	Upgradient	Yes	5.24	NO	1.656	N/A
MW397	Upgradient	Yes	5.53	NO	1.710	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.859

0.131

0.565

1.399

1.449

2.448

1.768

1.782

1.539

1.327

1.244

1.675

1.707

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =219.25	0 S = 34.107	CV(1)= 0.156	K factor**= 2.523	TL(1)= 305.301	LL(1)= N/A
Statistics-Transformed Background Data	X= 5.379	S= 0.152	CV(2)= 0.028	K factor**= 2.523	TL(2)= 5.762	LL(2)= N/A

	kground Data from ells with Transformed Result
Well Number:	MW395

	D 1	
Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.231
Date Collected	Result	
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 187 197 183 182 217 196	5.231 5.283 5.209 5.204 5.380 5.278

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	203	NO	5.313	N/A
MW373	Downgradien	t Yes	499	YES	6.213	N/A
MW385	Sidegradient	Yes	200	NO	5.298	N/A
MW388	Downgradien	t Yes	211	NO	5.352	N/A
MW392	Downgradien	t Yes	191	NO	5.252	N/A
MW395	Upgradient	Yes	147	NO	4.990	N/A
MW397	Upgradient	Yes	159	NO	5.069	N/A
N/A - Resul	lts identified as N	on-Detects of	luring lab	oratory analysis or	data validatior	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.400	S = 0.514	CV(1)= 1.286	K factor**= 2.523	TL(1)= 1.698	LL(1)= N/A
Statistics-Transformed Background Data	X= -2.197	S= 2.634	CV(2)= -1.199	K factor**= 2.523	TL(2)= 4.449	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					
8/13/2002	0.294	-1.224					
9/16/2002	0.2	-1.609					
10/16/2002	0.0002	-8.517					
1/13/2003	1.33	0.285					
4/10/2003	1.31	0.270					
7/16/2003	0.2	-1.609					
10/14/2003	0.1	-2.303					
1/13/2004	0.1	-2.303					

MW397

Result

1.58

0.232

0.0002

0.453

0.2

0.2

0.1

0.1

Well Number:

Date Collected

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.066	N/A	-2.718	NO
MW373	Downgradien	t Yes	0.071	N/A	-2.645	NO
MW385	Sidegradient	Yes	0.43	N/A	-0.844	NO
MW388	Downgradien	t Yes	0.751	N/A	-0.286	NO
MW392	Downgradien	t Yes	0.249	N/A	-1.390	NO
MW395	Upgradient	Yes	0.394	N/A	-0.931	NO
MW397	Upgradient	Yes	1.8	N/A	0.588	NO
N/A Docul	to identified as N	Ion Dataata	luring lab	oratory analysis or	data validation	and wara not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

LN(Result)

0.457

-1.461

-8.517

-0.792

-1.609

-1.609

-2.303

-2.303

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =9.102	S = 4.685	CV(1) =0.515	K factor**= 2.523	TL(1)= 20.922	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.423	S = 2.408	CV(2)= 1.692	K factor**= 2.523	TL(2)= 7.500	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					
Date Collected	Result	LN(Result)				
0/10/000	10.5	0.507				

8/13/2002 12.5 2.526 9/16/2002 13 2.565 10/16/2002 0.0127 -4.366 1/13/2003 11.2 2.416 4/10/2003 17.5 2.862 7/16/2003 12.9 2.557 10/14/2003 2.595 13.4 1/13/2004 12.4 2.518 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 7.83 2.058 9/16/2002 7.64 2.033 10/17/2002 0.00658 -5.0241/13/2003 6.69 1.901 4/8/2003 7.28 1.985 7/16/2003 2.057 7.82 10/14/2003 2.072 7.94 1/13/2004 7.51 2.016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	13.4	NO	2.595	N/A
MW373	Downgradien	t Yes	28.2	YES	3.339	N/A
MW385	Sidegradient	Yes	13.4	NO	2.595	N/A
MW388	Downgradien	t Yes	13.4	NO	2.595	N/A
MW392	Downgradien	t Yes	9.65	NO	2.267	N/A
MW395	Upgradient	Yes	9.96	NO	2.299	N/A
MW397	Upgradient	Yes	7.64	NO	2.033	N/A
MW397	Upgradient			NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 0.131	S = 0.195	CV(1)= 1.487	K factor**= 2.523	TL(1)= 0.624	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.104	S = 1.529	CV(2)= -0.493	K factor**= 2.523	TL(2)= 0.755	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					
8/13/2002	0.361	-1.019					
9/16/2002	0.028	-3.576					

-3.650

-2.641

-0.464

-1.214

-3.922

-4.374

-0.764

-2.564

-3.576

-4.110

-3.202

-4.092

-5.194 -5.298

LN(Result)

0.026

0.0713

0.629

0.297

0.0198

0.0126

MW397

Result

0.466

0.077

0.028

0.0164

0.0407

0.0167

0.00555

0.005

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	0.0113	N/A	-4.483	NO
MW373	Downgradient	Yes	0.123	N/A	-2.096	NO
MW385	Sidegradient	Yes	0.0109	N/A	-4.519	NO
MW388	Downgradient	Yes	0.00573	N/A	-5.162	NO
MW392	Downgradient	Yes	0.0709	N/A	-2.646	NO
MW395	Upgradient	Yes	0.00506	N/A	-5.286	NO
MW397	Upgradient	Yes	0.0273	N/A	-3.601	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.007	S = 0.011	CV(1)= 1.451	K factor**= 2.523	TL(1)= 0.034	LL(1)= N/A
Statistics-Transformed Background Data	X= -5.990	S = 1.443	CV(2)= -0.241	K factor**= 2.523	TL(2)= -2.349	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW305

Well Number

Well Number:	MW 395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00609	-5.101
4/10/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.025 0.025 0.001 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW373	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW385	Sidegradient	Yes	0.00049	N/A	-7.621	NO
MW388	Downgradien	t No	0.00024	N/A	-8.335	N/A
MW392	Downgradien	t No	0.00038	N/A	-7.875	N/A
MW395	Upgradient	Yes	0.0002	N/A	-8.517	NO
MW397	Upgradient	Yes	0.00017	N/A	-8.680	NO
N/A - Resul	lts identified as N	on-Detects of	luring labo	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis **Historical Background Comparison** Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.018	S = 0.020	CV(1)= 1.089	K factor**= 2.523	TL(1)= 0.068	LL(1)= N/A
Statistics-Transformed Background Data	X= -4.540	S = 1.020	CV(2)= -0.225	K factor**= 2.523	TL(2)= -1.965	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.005	-2.996 -2.996 -5.298
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.005 0.00502	-2.996 -2.996 -5.298 -5.294
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.005 0.00502 0.00502	-2.996 -2.996 -5.298 -5.294 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	0.00301	N/A	-5.806	NO
MW373	Downgradient	Yes	0.00494	N/A	-5.310	NO
MW385	Sidegradient	Yes	0.00138	N/A	-6.586	NO
MW388	Downgradient	Yes	0.00477	N/A	-5.345	NO
MW392	Downgradient	t Yes	0.00288	N/A	-5.850	NO
MW395	Upgradient	Yes	0.00149	N/A	-6.509	NO
MW397	Upgradient	Yes	0.00194	N/A	-6.245	NO
N/A - Result	ts identified as N	on-Detects d	luring labo	oratory analysis or	data validatior	and were not

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =157.25	0 S = 52.376	CV(1)= 0.333	K factor**= 2.523	TL(1)= 289.395	LL(1)= N/A
Statistics-Transformed Background Data	X = 5.003	S = 0.348	CV(2) =0.069	K factor**= 2.523	TL(2)= 5.880	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW395					

i en i anioen	11111070	
Date Collected	Result	LN(Result)
8/13/2002	80	4.382
9/16/2002	145	4.977
10/16/2002	125	4.828
1/13/2003	85	4.443
4/10/2003	159	5.069
7/16/2003	98	4.585
10/14/2003	138	4.927
1/13/2004	233	5.451
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.745
Date Collected	Result	· /
Date Collected 8/13/2002	Result 115	4.745
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 115 140 185 230 155 188	4.745 4.942 5.220 5.438 5.043 5.236

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	691	YES	6.538	N/A	
MW373	Downgradien	t Yes	336	YES	5.817	N/A	
MW385	Sidegradient	Yes	375	YES	5.927	N/A	
MW388	Downgradien	t Yes	634	YES	6.452	N/A	
MW392	Downgradien	t Yes	762	YES	6.636	N/A	
MW395	Upgradient	Yes	586	YES	6.373	N/A	
MW397	Upgradient	Yes	675	YES	6.515	N/A	
N/A - Resul	lts identified as N	on-Detects of	luring lab	oratory analysis or	data validatior	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

MW270	tical Analysis on Historical Data Wells with Exceedances
	MW370
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated MW373	
concentration with respect to historical background data. MW385	spect to historical background data. MW385
MW388	MW388
MW392	MW392
MW395	MW395
MW397	MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 6.048	S = 0.248	CV(1)= 0.041	K factor**= 2.904	TL(1)= 6.767	LL(1)=5.3289
Statistics-Transformed Background Data	X= 1.799	S= 0.042	CV(2)= 0.023	K factor**= 2.904	TL(2)= 1.920	LL(2)= 1.6782

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	5.8	1.758
9/16/2002	6	1.792
10/16/2002	5.47	1.699
1/13/2003	6	1.792
4/10/2003	6.18	1.821
7/16/2003	6	1.792
10/14/2003	6.31	1.842
1/13/2004	6.24	1.831
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	5.84	1.765
9/30/2002	6	1.792
10/17/2002	5.75	1.749

6

6.3

6.2

6.36

6.32

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>. ,</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	. ,	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW370	Downgradien	Yes	6.23	NO	1.829	N/A
MW373	Downgradien	Yes	5.99	NO	1.790	N/A
MW385	Sidegradient	Yes	6.55	NO	1.879	N/A
MW388	Downgradien	Yes	6.01	NO	1.793	N/A
MW392	Downgradien	t Yes	6.21	NO	1.826	N/A
MW395	Upgradient	Yes	5.99	NO	1.790	N/A
MW397	Upgradient	Yes	5.92	NO	1.778	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.792

1.841

1.825

1.850

1.844

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.590	S = 0.642	CV(1)= 0.404	K factor**= 2.523	TL(1)= 3.208	LL(1)= N/A
Statistics-Transformed Background Data	X= -0.306	S = 2.457	CV(2) =-8.028	K factor**= 2.523	TL(2)= 5.892	LL(2)= N/A

Historical Bac Upgradient W	0	ta from ansformed Result
Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.00129	-6.653
1/13/2003	1.51	0.412
4/10/2003	1.67	0.513

1.73

1.7

1.58

MW397

Result

2.03

1.69

1.73

1.92

1.87

2

2 0.00145

7/16/2003

10/14/2003

1/13/2004

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	2.45	NO	0.896	N/A
MW373	Downgradient	t Yes	2.9	NO	1.065	N/A
MW385	Sidegradient	Yes	1.75	NO	0.560	N/A
MW388	Downgradient	t Yes	2.07	NO	0.728	N/A
MW392	Downgradient	t Yes	1.72	NO	0.542	N/A
MW395	Upgradient	Yes	1.46	NO	0.378	N/A
MW397	Upgradient	Yes	1.57	NO	0.451	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.548

0.531

0.457

0.708

0.693

-6.536

0.525

0.548

0.693

0.652

0.626

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis **Historical Background Comparison** Radium-226 **UNITS: pCi/L** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.039	S = 0.419	CV(1)= 10.740	K factor**= 2.523	TL(1)= 1.096	LL(1)=N/A
Statistics-Transformed Background Data	X= -1.695	S = 1.043	CV(2) =-0.615	K factor**= 2.523	TL(2)= -0.414	LL(2)= N/A

Historical Background Data from
Upgradient Wells with Transformed Result

0.0266

-0.0777

-0.115

0.105

0.408

0.0564

MW397

Result

0.576

-0.841

-0.179

0.174

0.227

0.379

0.119

-0.0564

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/16/2002	0.661	-0.414
1/13/2003	-0.839	#Func!

10/14/2003

1/13/2004

4/12/2004

7/20/2004

10/12/2004

1/18/2005

Well Number:

Date Collected

10/17/2002

1/13/2003

10/14/2003

1/13/2004

4/12/2004

7/21/2004

10/12/2004

1/20/2005

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	0.66	N/A	-0.416	NO
MW373	Downgradient	No	0.055	N/A	-2.900	N/A
MW385	Sidegradient	No	0.261	N/A	-1.343	N/A
MW388	Downgradient	No	0.815	N/A	-0.205	N/A
MW392	Downgradient	No	0.23	N/A	-1.470	N/A
MW395	Upgradient	No	0.566	N/A	-0.569	N/A
MW397	Upgradient	No	0.45	N/A	-0.799	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.627

#Func! #Func!

-2.254

-0.896

-2.875

-0.552

#Func!

#Func!

#Func!

-1.749

-1.483

-0.970

-2.129

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 29.560	S = 13.894	CV(1)= 0.470	K factor**= 2.523	TL(1)= 64.616	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.615	S = 2.411	CV(2)= 0.922	K factor**= 2.523	TL(2)= 8.699	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Rest	ılt

MW305

Well Number

Well Number:	MW 395	
Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
-		LN(Result) 3.561
Date Collected	Result	
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 35.2 34.3 0.0336 31.3 46.1 38.4	3.561 3.535 -3.393 3.444 3.831 3.648

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	42.8	NO	3.757	N/A	
MW373	Downgradien	t Yes	61.5	NO	4.119	N/A	
MW385	Sidegradient	Yes	30.6	NO	3.421	N/A	
MW388	Downgradien	t Yes	48.9	NO	3.890	N/A	
MW392	Downgradien	t Yes	32.3	NO	3.475	N/A	
MW395	Upgradient	Yes	25.8	NO	3.250	N/A	
MW397	Upgradient	Yes	30.3	NO	3.411	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis **Historical Background Comparison UNITS: mg/L** Sulfate LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.756 S =	= 2.147	CV(1)= 0.200	K factor**= 2.523	TL(1)= 16.173	LL(1)= N/A
Statistics-Transformed Background Data	X =2.356 S =	= 0.203	CV(2)= 0.086	K factor**= 2.523	TL(2)= 2.869	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	10.3	2.332			
9/16/2002	9.1	2.208			
10/16/2002	8.8	2.175			
1/13/2003	9	2.197			
4/10/2003	8.3	2.116			
7/16/2003	8.2	2.104			
10/14/2003	8.3	2.116			
1/13/2004	8.2	2.104			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
8/13/2002	14	2.639			
9/16/2002	12.8	2.549			

12.3

12.7

12.8

13.1

12.1

12.1

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	20	YES	2.996	N/A	
MW373	Downgradien	t Yes	197	YES	5.283	N/A	
MW385	Sidegradient	Yes	18.6	YES	2.923	N/A	
MW388	Downgradien	t Yes	24.4	YES	3.195	N/A	
MW392	Downgradien	t Yes	6.92	NO	1.934	N/A	
MW395	Upgradient	Yes	10.1	NO	2.313	N/A	
MW397	Upgradient	Yes	11.7	NO	2.460	N/A	
N/A - Resul	ts identified as N	Ion-Detects d	luring lab	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.510

2.542

2.549

2.573

2.493

2.493

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances	
MW370	
MW373	
MW385	
MW388	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 11.359	S = 9.138	CV(1)= 0.805	K factor**= 2.523	TL(1)= 34.414	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.398	S = 0.859	CV(2)= 0.358	K factor**= 2.523	TL(2)= 3.246	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	20.8	3.035			
9/16/2002	16.2	2.785			
10/16/2002	8.28	2.114			
1/13/2003	13	2.565			
4/10/2003	-9.37	#Func!			
7/16/2003	0.826	-0.191			
10/14/2003	14.1	2.646			
1/13/2004	0	#Func!			
Well Number:	MW397				
Date Collected	Result	LN(Result)			
8/13/2002	6.06	1.802			
9/16/2002	17.3	2.851			
10/17/2002	25.7	3.246			
1/13/2003	20.9	3.040			
4/8/2003	20.1	3.001			
7/16/2003	9.2	2.219			
10/14/2003	10.1	2.313			
1/13/2004	8.54	2.145			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	No	14.8	N/A	2.695	N/A	
MW373	Downgradient	Yes	28.8	NO	3.360	N/A	
MW385	Sidegradient	Yes	134	YES	4.898	N/A	
MW388	Downgradient	Yes	90.4	YES	4.504	N/A	
MW392	Downgradient	No	3.17	N/A	1.154	N/A	
MW395	Upgradient	No	17	N/A	2.833	N/A	
MW397	Upgradient	No	4.58	N/A	1.522	N/A	
N/A - Resul	Its identified as N	on-Detects d	luring lab	oratory analysis or o	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 1.544	S = 0.856	CV(1)= 0.554	K factor**= 2.523	TL(1)= 3.702	LL(1)= N/A
Statistics-Transformed Background Data	X= 0.325	S = 0.452	CV(2)= 1.393	K factor**= 2.523	TL(2)= 1.465	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW395

Well Number:

wen number.	IVI VV 393	
Date Collected	Result	LN(Result)
8/13/2002	1.6	0.470
9/16/2002	1.1	0.095
10/16/2002	1	0.000
1/13/2003	2	0.693
4/10/2003	3.4	1.224
7/16/2003	2	0.693
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 8/13/2002	Result 1	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 3.6	0.000 0.000 0.000 1.281
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 3.6 1.9	0.000 0.000 0.000 1.281 0.642
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 1 1 3.6 1.9 1.1	0.000 0.000 0.000 1.281 0.642 0.095

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradien	t Yes	1.15	NO	0.140	N/A	
MW373	Downgradien	t Yes	1.9	NO	0.642	N/A	
MW385	Sidegradient	Yes	1.47	NO	0.385	N/A	
MW388	Downgradien	t Yes	1.55	NO	0.438	N/A	
MW392	Downgradien	t Yes	1.54	NO	0.432	N/A	
MW395	Upgradient	Yes	1.21	NO	0.191	N/A	
MW397	Upgradient	Yes	1.25	NO	0.223	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 31.513	S = 18.609	CV(1)= 0.591	K factor**= 2.523	TL(1)= 78.462	LL(1)= N/A
Statistics-Transformed Background Data	X= 3.240	S = 0.707	CV(2)= 0.218	K factor**= 2.523	TL(2)= 5.024	LL(2)= N/A

	Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW395				
Date Collected	Result	LN(Result)			
8/13/2002	50	3.912			
9/16/2002	50	3.912			
10/16/2002	50	3.912			
1/13/2003	18.3	2.907			
4/10/2003	51.2	3.936			
7/16/2003	42.6	3.752			
10/14/2003	12.3	2.510			

1/13/2004	10	2.303		
Well Number:	MW397			
Date Collected	Result	LN(Result)		
8/13/2002	50	3.912		
9/16/2002	50	3.912		
10/17/2002	50	3.912		
1/13/2003	12	2.485		
4/8/2003	19.9	2.991		
7/16/2003	17.9	2.885		
10/14/2003	10	2.303		
1/13/2004	10	2.303		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	7.14	NO	1.966	N/A
MW373	Downgradien	t Yes	14.1	NO	2.646	N/A
MW385	Sidegradient	Yes	5.1	NO	1.629	N/A
MW388	Downgradien	t Yes	9.46	NO	2.247	N/A
MW392	Downgradien	t Yes	27	NO	3.296	N/A
MW395	Upgradient	Yes	7.36	NO	1.996	N/A
MW397	Upgradient	Yes	6.34	NO	1.847	N/A
N/A Basylta identified on Non Detecto during laboratory analysis on data validation and view not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X= 7.313	S = 5.701	CV(1)= 0.780	K factor**= 2.523	TL(1)= 21.695	LL(1)= N/A
Statistics-Transformed Background Data	X= 1.467	S= 1.213	CV(2)= 0.827	K factor**= 2.523	TL(2)= 4.528	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW395				

wen Rumber.	101 00 575	
Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	14	2.639
10/16/2002	12	2.485
1/13/2003	14	2.639
4/10/2003	14	2.639
7/16/2003	13	2.565
10/14/2003	12	2.485
1/13/2004	11	2.398
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.609
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 1	1.609 1.609 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 1 1	1.609 1.609 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 1 1 1	1.609 1.609 0.000 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5 5 1 1 1 1 1	1.609 1.609 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	1.04	N/A	0.039	N/A
MW373	Downgradien	t Yes	7.67	NO	2.037	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradien	t Yes	0.66	N/A	-0.416	N/A
MW392	Downgradien	t Yes	18.2	NO	2.901	N/A
MW395	Upgradient	Yes	3.99	N/A	1.384	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A
N/A Decul	Its identified as N	Ion Dataata	luring lab	oratory analysis or	data validation	and wars not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Uranium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.001	S = 0.000	CV(1)= 0.000	K factor**= 2.523	TL(1)= 0.001	LL(1)= N/A
Statistics-Transformed Background Data	X= -6.908	S = 0.000	CV(2)= 0.000	K factor**= 2.523	TL(2)= -6.908	LL(2)= N/A

Historical Bac	kground Data from
Upgradient W	fells with Transformed Result
Well Number:	MW305

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.001	-6.908
9/16/2002	0.001	-6.908
10/16/2002	0.001	-6.908
1/13/2003	0.001	-6.908
4/10/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -6.908
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 0.001	-6.908
Date Collected 8/13/2002 9/16/2002	Result 0.001 0.001	-6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.001 0.001 0.001	-6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.001 0.001 0.001 0.001	-6.908 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.001 0.001 0.001 0.001 0.001	-6.908 -6.908 -6.908 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.001 0.001 0.001 0.001 0.001 0.001	-6.908 -6.908 -6.908 -6.908 -6.908 -6.908

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t No	0.0002	N/A	-8.517	N/A
MW373	Downgradien	t No	0.0002	N/A	-8.517	N/A
MW385	Sidegradient	Yes	0.00032	NO	-8.047	N/A
MW388	Downgradien	t No	0.0002	N/A	-8.517	N/A
MW392	Downgradien	t No	0.0002	N/A	-8.517	N/A
MW395	Upgradient	No	0.0002	N/A	-8.517	N/A
MW397	Upgradient	No	0.0002	N/A	-8.517	N/A
N/A Decul	te identified as N	Ion Detects	luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.021	S = 0.002	CV(1)= 0.105	K factor**= 2.523	TL(1)= 0.027	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.856	S = 0.100	CV(2)= -0.026	K factor**= 2.523	TL(2)= -3.604	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW395						
Date Collected	Result	LN(Result)					
8/13/2002	0.025	-3.689					
9/16/2002	0.025	-3.689					
10/16/2002	0.02	-3.912					
1/13/2003	0.02	-3.912					
7/16/2003	0.02	-3.912					
10/14/2003	0.02	-3.912					
1/13/2004	0.02	-3.912					
4/12/2004	0.02	-3.912					
Well Number:	MW397						
Date Collected	Result	LN(Result)					

0.025

0.025

0.02

0.02

0.02

0.02

0.02

0.02

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t No	0.005	N/A	-5.298	N/A
MW373	Downgradien	t No	0.005	N/A	-5.298	N/A
MW385	Sidegradient	No	0.005	N/A	-5.298	N/A
MW388	Downgradien	t No	0.005	N/A	-5.298	N/A
MW392	Downgradien	t No	0.005	N/A	-5.298	N/A
MW395	Upgradient	No	0.005	N/A	-5.298	N/A
MW397	Upgradient	Yes	0.00166	5 NO	-6.401	N/A
N/A - Resu	lts identified as N	on-Detects of	luring lab	oratory analysis or	data validatior	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.689

-3.689

-3.912

-3.912

-3.912

-3.912

-3.912

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =0.044	S = 0.034	CV(1)= 0.760	K factor**= 2.523	TL(1)= 0.129	LL(1)= N/A
Statistics-Transformed Background Data	X= -3.342	S= 0.659	CV(2)= -0.197	K factor**= 2.523	TL(2)= -1.679	LL(2)= N/A

Historical Background Data from Upgradient Wells with Transformed Resul								
Well Number:	MW395							

i en i anioen	11111070	
Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/10/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) -2.303
Date Collected	Result	. ,
Date Collected 8/13/2002	Result 0.1	-2.303
Date Collected 8/13/2002 9/16/2002	Result 0.1 0.1	-2.303 -2.303
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.1 0.1 0.025	-2.303 -2.303 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.1 0.1 0.025 0.035	-2.303 -2.303 -3.689 -3.352
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.1 0.025 0.035 0.035	-2.303 -2.303 -3.689 -3.352 -3.352
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 0.1 0.025 0.035 0.035 0.02	-2.303 -2.303 -3.689 -3.352 -3.352 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW370	Downgradient	t No	0.01	N/A	-4.605	N/A			
MW373	Downgradient	t No	0.01	N/A	-4.605	N/A			
MW385	Sidegradient	Yes	0.00385	NO	-5.560	N/A			
MW388	Downgradient	t No	0.01	N/A	-4.605	N/A			
MW392	Downgradient	t Yes	0.00388	NO	-5.552	N/A			
MW395	Upgradient	No	0.01	N/A	-4.605	N/A			
MW397	Upgradient	Yes	0.0136	NO	-4.298	N/A			
N/A - Resul	ts identified as N	on-Detects d	luring labo	oratory analysis or	data validation	and were not			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S/T First Quarter 2015 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 340.750 S = 133.025	5 CV(1)= 0.390	K factor**= 3.188	TL(1)= 764.834	LL(1)= N/A
Statistics-Transformed Background	X = 5.756 S = 0.430	CV(2) =0.075	K factor**= 3.188	TL(2)= 7.128	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Wells with Transformed Result									
Well Number:	MW396								
Date Collected	Result	LN(Result)							
1/15/2013	298	5.697							
4/16/2013	251	5.525							
7/10/2013	472	6.157							
10/3/2013	323	5.778							
1/22/2014	549	6.308							
4/9/2014	427	6.057							
7/17/2014	265	5.580							
10/27/2014	141	4.949							

Current Background Data from Upgradient

Data

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	227	NO	5.425	N/A			
MW390	Downgradient	Yes	817	YES	6.706	N/A			
MW393	Downgradient	Yes	456	NO	6.122	N/A			
MW396	Upgradient	Yes	193	NO	5.263	N/A			

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Back	ground Dat	ta	X =1.572	S = 4.206	CV(1)= 2.67	76 K	K factor**= 3.188 TL(1)= 14.980 LL(1)= N			
Statistics-Trans Data	sformed Ba	ckground	X= 0.668	S = 1.277	CV(2) =1.91	11 K	factor	**= 3.188	TL(2)= 2.182	LL(2)=N/A
Current Back Wells with Tr Well Number:	0	10	radient				n te	atural loga est well res	., 0	
Date Collected 1/15/2013	Result 3.9	LN(Resul 1.361	lt)						e natural log all backgro	g was not und values, the
4/16/2013	-1.17	#Func!					Т	L was con	sidered equa	l to the
7/10/2013	0.223	-1.501					n	naximum b	ackground	value.
10/3/2013	2.12	0.751		~						
1/22/2014	8.86	2.182		Current	Quarter Data					
4/9/2014	-5.67	#Func!			~	- 10				
7/17/2014	1.03	0.030		Well No.	Gradient 1	Detected?	Result	Result >TL(I)? LN(Result)	LN(Result) > TL(2)
10/27/2014	3.28	1.188		MW390	Downgradient	Yes	55.7	N/A	4.020	YES

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical AnalysisCurrent Background ComparisonBeta activityUNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.984 S = 6.586	CV(1)= 0.600	K factor**= 2.523	TL(1)= 27.601	LL(1)= N/A
Statistics-Transformed Background Data	X =2.215 S = 0.642	CV(2) =0.290	K factor**= 2.523	TL(2)= 3.836	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected Result LN(Result) 1/15/2013 15.7 2.754 4/17/2013 16.5 2.803 7/15/2013 13.4 2.595 10/1/2013 23.4 3.153 1/22/2014 21.2 3.054 4/7/2014 7.94 2.072 7/17/2014 20.3 3.011 10/21/2014 9.99 2.302 Well Number: MW394 Date Collected Result LN(Result) 1/15/2013 2.54 0.932 4/22/2013 9.39 2.240 7/10/2013 5.21 1.651 10/3/2013 7.39 2.000 1/22/2014 5.63 1.728 4/9/2014 6.27 1.836 7/17/2014 6.9 1.932 10/27/2014 3.99 1.384

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW372	Downgradient	Yes	115	YES	4.745	N/A			
MW384	Sidegradient	Yes	138	YES	4.927	N/A			
MW387	Downgradient	t Yes	158	YES	5.063	N/A			

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW372 MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Current Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =24.338 S = 3.197	CV(1)= 0.131	K factor**= 2.523	TL(1)= 32.405	LL(1)= N/A
Statistics-Transformed Background Data	X =3.183 S = 0.138	CV(2)= 0.043	K factor**= 2.523	TL(2)= 3.532	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW372	Downgradient	t Yes	53.5	YES	3.980	N/A		
MW387	Downgradient	t Yes	40	YES	3.689	N/A		

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

2.960

3.165

3.148 2.981

3.131

3.243

3.073

2.912

3.296

3.332

3.350

3.246

3.243

3.307

3.270

3.277

LN(Result)

MW220

Result

19.3

23.7

23.3

19.7

22.9

25.6

21.6

18.4

MW394

Result

27

28

28.5

25.7

25.6

27.3

26.3

26.5

Wells with Transformed Result

Well Number:

Date Collected

1/15/2013

4/17/2013

7/15/2013

10/1/2013

1/22/2014

4/7/2014

7/17/2014

10/21/2014

Well Number:

Date Collected

1/15/2013

4/22/2013

7/10/2013

10/3/2013

1/22/2014

4/9/2014

7/17/2014

10/27/2014

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Wells with Exceedances MW372 MW387

C-746-S/T First Quarter 2015 Statistical Analysis **Current Background Comparison** Conductivity **UNITS: umho/cm URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =383.625 S = 26.232	CV(1)= 0.068	K factor**= 2.523	TL(1)= 449.808	LL(1)= N/A
Statistics-Transformed Background Data	X = 5.947 S = 0.072	CV(2)= 0.012	K factor**= 2.523	TL(2)= 6.130	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

5.971							
5.866	Current	Quarter Data					
5.956 5.999	Current	Quarter Data					
5.999 6.009	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
5.756	MW372	Downgradien	t Yes	701	YES	6.553	N/A
LN(Result)							
5.986							
5.974							

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

5.814

5.966

6.004

5.956

5.945

6.001

5.969

5.984

MW220

Result

335

390 392

353

386

403

407

316

MW394

Result

398

393

405

386

382

404

391

397

Wells with Transformed Result

Well Number:

Date Collected

1/15/2013

4/17/2013

7/15/2013

10/1/2013

1/22/2014

4/7/2014

7/17/2014

10/21/2014

Well Number:

Date Collected

1/15/2013

4/22/2013

7/10/2013

10/3/2013

1/22/2014

4/9/2014

7/17/2014

10/27/2014

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis **Current Background Comparison Dissolved Solids URGA** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =232.81	3 S = 88.599	CV(1)= 0.381	K factor**= 2.523	TL(1)= 456.347	LL(1)= N/A
Statistics-Transformed Background	X = 5.409	S = 0.264	CV(2) =0.049	K factor**= 2.523	TL(2)= 6.075	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW220	
Date Collected	Result	LN(Result)
1/15/2013	196	5.278
4/17/2013	218	5.384
7/15/2013	233	5.451
10/1/2013	200	5.298
1/22/2014	219	5.389
4/7/2014	226	5.421
7/17/2014	556	6.321
10/21/2014	159	5.069
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.384
Date Collected	Result	
Date Collected 1/15/2013	Result 218	5.384
Date Collected 1/15/2013 4/22/2013	Result 218 223	5.384 5.407
Date Collected 1/15/2013 4/22/2013 7/10/2013	Result 218 223 246	5.384 5.407 5.505
Date Collected 1/15/2013 4/22/2013 7/10/2013 10/3/2013	Result 218 223 246 226	5.384 5.407 5.505 5.421
Date Collected 1/15/2013 4/22/2013 7/10/2013 10/3/2013 1/22/2014	Result 218 223 246 226 208	5.384 5.407 5.505 5.421 5.338

Current Background Data from Upgradient

Wells with Transformed Result

Data

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW372	Downgradient	Yes	374	NO	5.924	N/A	

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis **Current Background Comparison URGA** Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =9.873	S = 1.331	CV(1)= 0.135	K factor**= 2.523	TL(1)= 13.231	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.281	S = 0.143	CV(2) =0.063	K factor**= 2.523	TL(2)= 2.642	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW372	Downgradient	t Yes	20.4	YES	3.016	N/A	
MW387	Downgradient	t Yes	18.5	YES	2.918	N/A	

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

2.046

2.275

2.205

2.041

2.259

2.351

2.192

2.003

2.416

2.389

2.407

2.370

2.332

2.398

2.407

2.398

LN(Result)

MW220

Result

7.74

9.73

9.07

7.7

9.57

10.5

8.95

7.41

MW394

Result

11.2

10.9

11.1

10.7

10.3

11

11

11.1

Wells with Transformed Result

Well Number:

Date Collected

1/15/2013

4/17/2013

7/15/2013 10/1/2013

1/22/2014

4/7/2014

7/17/2014

10/21/2014

1/15/2013

4/22/2013

7/10/2013

10/3/2013

1/22/2014

4/9/2014

7/17/2014

10/27/2014

Well Number:

Date Collected

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Х Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Wells with Exceedances MW372

MW387

C-746-S/T First Quarter 2015 Statistical Analysis **Current Background Comparison UNITS: mV URGA Oxidation-Reduction Potential**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =557.000 S = 184.53	1 CV(1)= 0.331	K factor**= 2.523	TL(1)= 1022.571 LL	(1)=N/A
Statistics-Transformed Background Data	X =6.272 S = 0.326	CV(2) =0.052	K factor**= 2.523	TL(2)= 7.096 LL	(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

)13	558	6.324							
/2013	467	6.146							
/2013	777	6.655	G						
/2014	381	5.943	Current	t Quarter Data					
2014	400	5.991	Well No.	Gradient	Detected?	Docult	Result >TL(1)?	I N(Docult)	
014	395	5.979		Gradient			()	()	
2014	401	5.994	MW220	Upgradient	Yes	733	NO	6.597	
Number:	MW394		MW221	Downgradien	Yes	850	NO	6.745	
			MW222	Downgradien	t Yes	554	NO	6.317	
ollected	Result	LN(Result)	MW223	Downgradien	Yes	604	NO	6.404	
13	641	6.463	MW224	Downgradien	Yes	534	NO	6.280	
013	823	6.713	MW369	Downgradien	t Yes	779	NO	6.658	
013	756	6.628	MW372	Downgradien		693	NO	6.541	
013	803	6.688	MW387	Downgradien		820	NO	6.709	
)14	832	6.724		U					
4	516	6.246	MW391	Downgradien		760	NO	6.633	
2014	356	5.875	MW394	Upgradient	Yes	453	NO	6.116	

Conclusion of Statistical Analysis on Current Data

6.116

Current Background Data from Upgradient

LN(Result)

5.866

MW220

Result

353

453

Wells with Transformed Result

Well Number:

Date Collected

1/15/2013

7/17/2014 10/27/2014

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical AnalysisCurrent Background ComparisonSodiumUNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 34.325 S = 5.240	CV(1)= 0.153	K factor**= 2.523	TL(1)= 47.545	LL(1)= N/A
Statistics-Transformed Background Data	X =3.525 S = 0.150	CV(2)= 0.043	K factor**= 2.523	TL(2)= 3.905	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)	2 LN(Result)	LN(Result) >TL(2
MW387	Downgradient	Yes	61.6	YES	4.121	N/A

Date Collected Result

Well Number:

Wells with Transformed Result

1/15/2013	35	3.555
4/17/2013	41.4	3.723
7/15/2013	40.5	3.701
10/1/2013	34.6	3.544
1/22/2014	39.5	3.676
4/7/2014	43.9	3.782
7/17/2014	39.1	3.666
10/21/2014	36	3.584
Well Number:	MW394	
Date Collected	Result	LN(Result)
Date Collected 1/15/2013	Result 30.7	LN(Result) 3.424
		· /
1/15/2013	30.7	3.424
1/15/2013 4/22/2013	30.7 28.2	3.424 3.339
1/15/2013 4/22/2013 7/10/2013	30.7 28.2 29.3	3.424 3.339 3.378
1/15/2013 4/22/2013 7/10/2013 10/3/2013	30.7 28.2 29.3 28.8	3.424 3.339 3.378 3.360
1/15/2013 4/22/2013 7/10/2013 10/3/2013 1/22/2014	30.7 28.2 29.3 28.8 28.8	3.424 3.339 3.378 3.360 3.360

Current Background Data from Upgradient

LN(Result)

2 5 5 5

MW220

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW387

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =13.481 S = 3.850	CV(1)= 0.286	K factor**= 2.523	TL(1)= 23.195	LL(1)= N/A
Statistics-Transformed Background Data	X =2.564 S = 0.279	CV(2)= 0.109	K factor**= 2.523	TL(2)= 3.269	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW372	Downgradient	Yes	109	YES	4.691	N/A		
MW384	Sidegradient	Yes	20.3	NO	3.011	N/A		
MW387	Downgradient	Yes	34.4	YES	3.538	N/A		

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

2.708

2.944

2.833

2.639

2.890

2.939

2.965

2.603

2.303

2.282

2.272

2.303

2.303

2.303

2.332

2.407

LN(Result)

MW220

Result

15

19

17

14

18

18.9

19.4

13.5

MW394

Result

10

9.8

9.7

10

10

10

10.3

11.1

Wells with Transformed Result

Well Number:

Date Collected

1/15/2013

4/17/2013

7/15/2013

10/1/2013

1/22/2014

4/7/2014

7/17/2014

10/21/2014

Well Number:

Date Collected

1/15/2013

4/22/2013

7/10/2013

10/3/2013

1/22/2014

4/9/2014

7/17/2014

10/27/2014

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Wells with Exceedances MW372

MW387

C-746-S/T First Quarter 2015 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =15.904 S = 9.533	CV(1)= 0.599	K factor**= 2.523	TL(1)= 39.956	LL(1)= N/A
Statistics-Transformed Background Data	X =2.699 S = 0.565	CV(2)= 0.210	K factor**= 2.523	TL(2)= 3.555	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW220 Date Collected Result LN(Result) 1/15/2013 13.6 2.610 4/17/2013 6.61 1.889 3.059 7/15/2013 21.3 10/1/2013 20.7 3.030 1/22/2014 32.1 3.469 4/7/2014 24.8 3.211 7/17/2014 12.1 2.493 10/21/2014 35 3.555 Well Number: MW394 Date Collected Result LN(Result) 1/15/2013 -0.751#Func! 4/22/2013 13.9 2.632 7/10/2013 15 2.708 10/3/2013 9.68 2.270 1/22/2014 18.8 2.934 4/9/2014 4.32 1.463 7/17/2014 10.1 2.313 10/27/2014 17.2 2.845

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW369	Downgradient	Yes	45.2	YES	3.811	N/A			
MW372	Downgradient	Yes	181	YES	5.198	N/A			
MW384	Sidegradient	Yes	191	YES	5.252	N/A			
MW387	Downgradient	Yes	211	YES	5.352	N/A			

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances MW369 MW372 MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

Current Background Comparison C-746-S/T First Quarter 2015 Statistical Analysis **UNITS: pCi/L LRGA Beta activity**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =10.238 S = 4.993	CV(1)= 0.488	K factor**= 2.523	TL(1)= 22.835	LL(1)= N/A
Statistics-Transformed Background Data	X =2.186 S = 0.593	CV(2)= 0.271	K factor**= 2.523	TL(2)= 3.683	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW385	Sidegradient	Yes	100	YES	4.605	N/A	
MW388	Downgradient	t Yes	63.3	YES	4.148	N/A	

Conclusion of Statistical Analysis on Current Data

2.342

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Х Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Wells with Exceedances MW385 MW388

10/3/2013 10.3 2.332 1/22/2014 9.4 2.241 4/9/2014 2.09 0.737 7/17/2014 11.5 2.442 10/27/2014 2.950 19.1 Well Number: MW397 Date Collected Result LN(Result) 1/15/2013 14 2.639 4/18/2013 14.4 2.667 7/8/2013 16.2 2.785 10/2/2013 17.6 2.868 1/22/2014 10 2.303 4/8/2014 4.03 1.394 7/16/2014 5.18 1.645

10.4

Current Background Data from Upgradient

LN(Result)

1.924

1.859

1.847

MW395

Result

6.85

6.42

6.34

Wells with Transformed Result

Well Number:

Date Collected

1/15/2013

4/22/2013

7/11/2013

10/21/2014

Current Background Comparison C-746-S/T First Quarter 2015 Statistical Analysis **LRGA** Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =23.063 S = 4.4	05 CV(1)= 0.191	K factor**= 2.523	TL(1)= 34.175	LL(1)= N/A
Statistics-Transformed Background Data	X =3.121 S = 0.1	94 CV(2) =0.062	K factor**= 2.523	TL(2)= 3.609	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

3.336 3.285 3.296	Current	Current Quarter Data							
3.321 3.277	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
3.281	MW373	Downgradient	Yes	71.5	YES	4.270	N/A		
LN(Result)									
2.970									

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

3.288

3.357

2.896

2.901

2.923

2.970

2.965

2.879

2.986

MW395

Result

26.8

28.7

28.1

26.7

27

27.7

26.5

26.6

MW397

Result

19.5

18.1

18.2

18.6

19.5

19.4

17.8

19.8

Wells with Transformed Result

Well Number:

Date Collected

1/15/2013

4/22/2013

7/11/2013

10/3/2013

1/22/2014

4/9/2014

7/17/2014

10/27/2014

1/15/2013

4/18/2013

7/8/2013

10/2/2013

1/22/2014

4/8/2014

7/16/2014

10/21/2014

Well Number:

Date Collected

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Х Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical AnalysisCurrent Background ComparisonConductivityUNITS: umho/cmLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =364.625 S = 28.978	CV(1)= 0.079	K factor**= 2.523	TL(1)= 437.736	LL(1)= N/A
Statistics-Transformed Background Data	X =5.896 S = 0.080	CV(2)= 0.014	K factor**= 2.523	TL(2)= 6.098	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

1/15/2013	384	5.951
4/22/2013	394	5.976
7/11/2013	394	5.976
10/3/2013	376	5.930
1/22/2014	387	5.958
4/9/2014	402	5.996
7/17/2014	401	5.994
10/27/2014	387	5.958
Well Number:	MW397	
Date Collected	Result	LN(Result)
Date Collected 1/15/2013	Result 320	LN(Result) 5.768
1/15/2013	320	5.768
1/15/2013 4/18/2013	320 362	5.768 5.892
1/15/2013 4/18/2013 7/8/2013	320 362 335	5.768 5.892 5.814
1/15/2013 4/18/2013 7/8/2013 10/2/2013	320 362 335 353	5.768 5.892 5.814 5.866
1/15/2013 4/18/2013 7/8/2013 10/2/2013 1/22/2014	320 362 335 353 338	5.768 5.892 5.814 5.866 5.823

Current Background Data from Upgradient

LN(Result)

MW395

Result

Wells with Transformed Result

Well Number:

Date Collected

Current	Quarter Data	1				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	933	YES	6.838	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis **Current Background Comparison Dissolved Solids LRGA** UNITS: mg/L The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well. TL(1)= 260.196 LL(1)=N/A X=193.250 S= 26.534 CV(1)=0.137 K factor**= 2.523 **Statistics-Background Data Statistics-Transformed Background X**= 5.255 K factor**= 2.523 **S=** 0.136 CV(2)=0.026 TL(2)= 5.598 LL(2)=N/A Data Because CV(1) is less than or equal to **Current Background Data from Upgradient** 1, assume normal distribution and Wells with Transformed Result continue with statistical analysis utilizing TL(1). Well Number: MW395 Date Collected Result LN(Result) 1/15/2013 234 5.455 4/22/2013 226 5.421 229 7/11/2013 5.434 10/3/2013 225 5.416 **Current Quarter Data** 1/22/2014 213 5.361 4/9/2014 217 5.380 Well No. Gradient Detected? Result Result >TL(1)? LN(Result) LN(Result) >TL(2) 7/17/2014 166 5.112 MW373 Downgradient Yes 499 YES 6.213 N/A 5.198 10/27/2014 181 Well Number: MW397 Date Collected Result LN(Result) 1/15/2013 195 5.273 4/18/2013 166 5.112 7/8/2013 182 5.204 10/2/2013 169 5.130 1/22/2014 190 5.247 4/8/2014 171 5.142 7/16/2014 167 5.118 10/21/2014 161 5.081

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical AnalysisCurrent Background ComparisonMagnesiumUNITS: mg/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =9.413	S = 1.804	CV(1)= 0.192	K factor**= 2.523	TL(1)= 13.966	LL(1)= N/A
Statistics-Transformed Background Data	X= 2.225	S = 0.194	CV(2) =0.087	K factor**= 2.523	TL(2)= 2.714	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW373	Downgradient	Yes	28.2	YES	3.339	N/A	

Conclusion of Statistical Analysis on Current Data

Current Background Data from Upgradient

LN(Result)

2.407

2.407

2.389

2.342

2.380

2.501

2.398

2.425

2.078

2.001

1.960

1.991

2.089

2.123

2.014

2.088

LN(Result)

MW395

Result

11.1

11.1

10.9

10.4

10.8

12.2

11.3

MW397

Result

7.99

7.4

7.1

7.32

8.08

8.36

7.49

8.07

11

Wells with Transformed Result

Well Number:

Date Collected

1/15/2013

4/22/2013

7/11/2013 10/3/2013

1/22/2014

4/9/2014

7/17/2014

10/27/2014

Well Number:

Date Collected

1/15/2013

4/18/2013

7/8/2013

10/2/2013

1/22/2014

4/8/2014

7/16/2014

10/21/2014

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X = 504.31	3 S = 158.69	04 CV(1)=0.315	K factor**= 2.523	TL(1)= 904.697	LL(1)= N/A
Statistics-Transformed Background Data	X= 6.180	S = 0.298	CV(2)= 0.048	K factor**= 2.523	TL(2)= 6.931	LL(2)= N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW370	Downgradient	Yes	691	NO	6.538	N/A			
MW373	Downgradient	Yes	336	NO	5.817	N/A			
MW385	Sidegradient	Yes	375	NO	5.927	N/A			
MW388	Downgradient	Yes	634	NO	6.452	N/A			
MW392	Downgradient	Yes	762	NO	6.636	N/A			
MW395	Upgradient	Yes	586	NO	6.373	N/A			
MW397	Upgradient	Yes	675	NO	6.515	N/A			

Wells with Transformed Result Well Number: MW395 Data Collocated Besult LN(Besult) LN(Besult)

Current Background Data from Upgradient

Date Collected	Result	LN(Result)
1/15/2013	527	6.267
4/22/2013	635	6.454
7/11/2013	495	6.205
10/3/2013	542	6.295
1/22/2014	803	6.688
4/9/2014	537	6.286
7/17/2014	381	5.943
10/27/2014	307	5.727
Well Number:	MW207	
wen Number:	MW397	
Date Collected	Result	LN(Result)
		LN(Result) 6.713
Date Collected	Result	· · · · · ·
Date Collected 1/15/2013	Result 823	6.713
Date Collected 1/15/2013 4/18/2013	Result 823 383	6.713 5.948
Date Collected 1/15/2013 4/18/2013 7/8/2013	Result 823 383 443	6.713 5.948 6.094
Date Collected 1/15/2013 4/18/2013 7/8/2013 10/2/2013	Result 823 383 443 679	6.7135.9486.0946.521
Date Collected 1/15/2013 4/18/2013 7/8/2013 10/2/2013 1/22/2014	Result 823 383 443 679 389	6.713 5.948 6.094 6.521 5.964
Date Collected 1/15/2013 4/18/2013 7/8/2013 10/2/2013 1/22/2014 4/8/2014	Result 823 383 443 679 389 363	6.713 5.948 6.094 6.521 5.964 5.894

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2015 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =12.111 S = 3.613	CV(1)= 0.298	K factor**= 2.523	TL(1)= 21.227	LL(1)= N/A
Statistics-Transformed Background Data	X = 2.462 S = 0.243	CV(2) =0.099	K factor**= 2.523	TL(2)= 3.076	LL(2)= N/A

Current Background Data from Upgradient Wells with Transformed Result Well Number: MW395 Date Collected Result LN(Result) 1/15/2013 10 2.303 4/22/2013 9.8 2.282 2.272 7/11/2013 9.7 10/3/2013 20 2.996 1/22/2014 9.8 2.282 4/9/2014 9.77 2.279 7/17/2014 10.12.313 10/27/2014 10.6 2.361 Well Number: MW397 Date Collected Result LN(Result) 1/15/2013 12 2.485 4/18/2013 11 2.398 7/8/2013 11 2.398 10/2/2013 22 3.091 1/22/2014 12 2.485 4/8/2014 11.7 2.460 7/16/2014 11.7 2.460 10/21/2014 12.6 2.534

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	20	NO	2.996	N/A		
MW373	Downgradient	Yes	197	YES	5.283	N/A		
MW385	Sidegradient	Yes	18.6	NO	2.923	N/A		
MW388	Downgradient	Yes	24.4	YES	3.195	N/A		

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Wells with Exceedances MW373

MW388

C-746-S/T First Quarter 2015 Statistical Analysis **Current Background Comparison Technetium-99 LRGA UNITS: pCi/L**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	X =12.920 S = 8.240	CV(1)= 0.638	K factor**= 2.523	TL(1)= 33.710	LL(1)= N/A
Statistics-Transformed Background Data	X =2.519 S = 0.546	CV(2)= 0.217	K factor**= 2.523	TL(2)= 3.517	LL(2)= N/A

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW385	Sidegradient	Yes	134	YES	4.898	N/A			
MW388	Downgradient	t Yes	90.4	YES	4.504	N/A			

Conclusion of Statistical Analysis on Current Data

2.688

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Х Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Wells with Exceedances MW385 MW388

Well Number:	MW395	
Date Collected	Result	LN(Result)
1/15/2013	-4.1	#Func!
4/22/2013	3.11	1.135
7/11/2013	10.7	2.370
10/3/2013	10.6	2.361
1/22/2014	20	2.996
4/9/2014	11.2	2.416
7/17/2014	8.05	2.086
10/27/2014	14.4	2.667
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.940
Date Collected	Result	
Date Collected 1/15/2013	Result 6.96	1.940
Date Collected 1/15/2013 4/18/2013	Result 6.96 16.6	1.940 2.809
Date Collected 1/15/2013 4/18/2013 7/8/2013	Result 6.96 16.6 14.6	1.940 2.809 2.681
Date Collected 1/15/2013 4/18/2013 7/8/2013 10/2/2013	Result 6.96 16.6 14.6 19.1	1.940 2.809 2.681 2.950

14.7

10/21/2014

Current Background Data from Upgradient

Wells with Transformed Result

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D3

STATISTICIAN QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

April 9th, 2015

Mr. Craig Jones LATA Environmental Services of Kentucky, LLC 761 Veterans Avenue Kevil, Kentucky 42053

Dear Mr. Jones:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in mathematics, I have over two years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with LATA.

For this project, the statistical analyses conducted on the first quarter 2015 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). For pH, an additional lower tolerance interval was established. For pH only, the test well data was compared to both the upper and lower tolerance intervals to determine if statistically significant deviations in concentration with respect to upgradient well exist.

Sincerely.

Cory Tackett LATA Project Chemist

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E

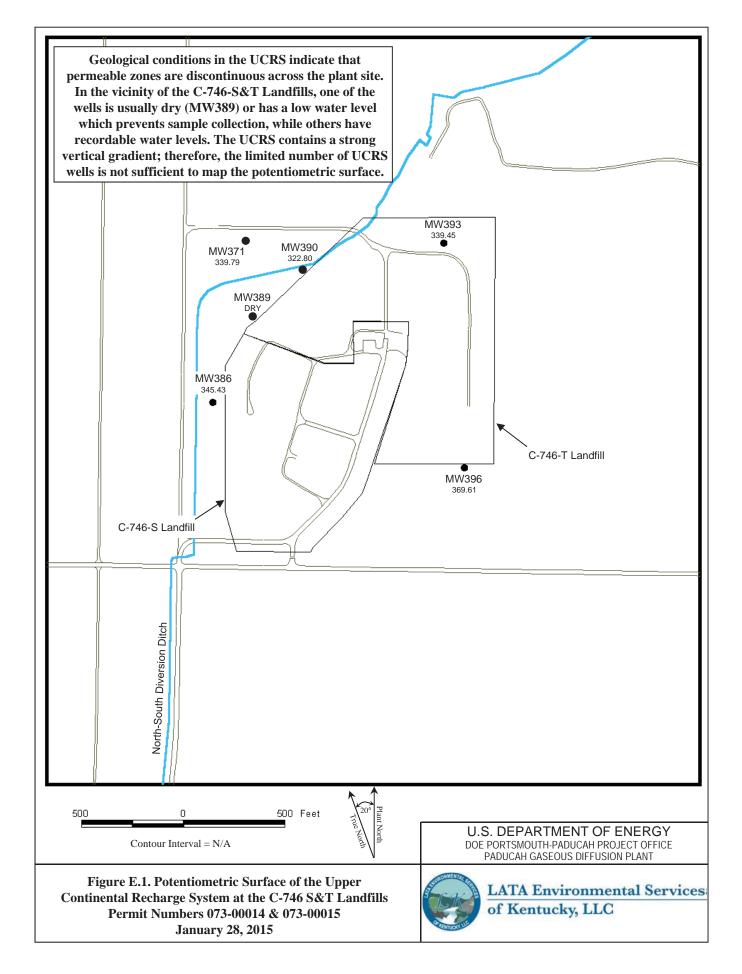
GROUNDWATER FLOW RATE AND DIRECTION

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT - QUARTERLY, 1st CY 2015 Facility: U.S. DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015 Finds/Unit: <u>KY8-890-008-982/1</u> LAB ID: <u>None</u>

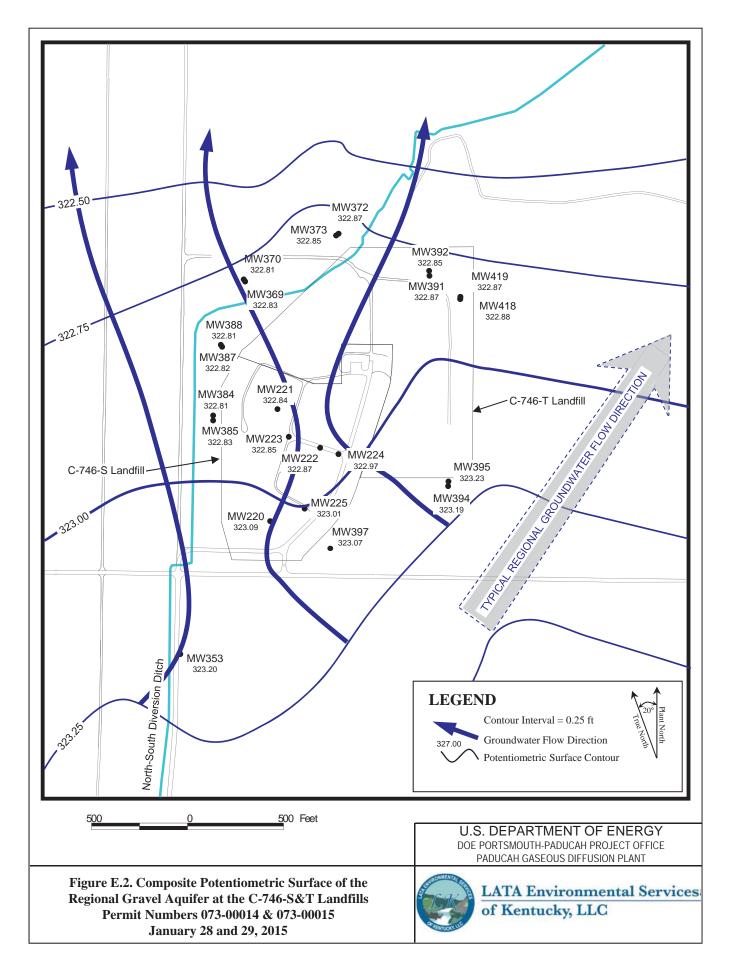
GROUNDWATER FLOW RATE AND DIRECTION

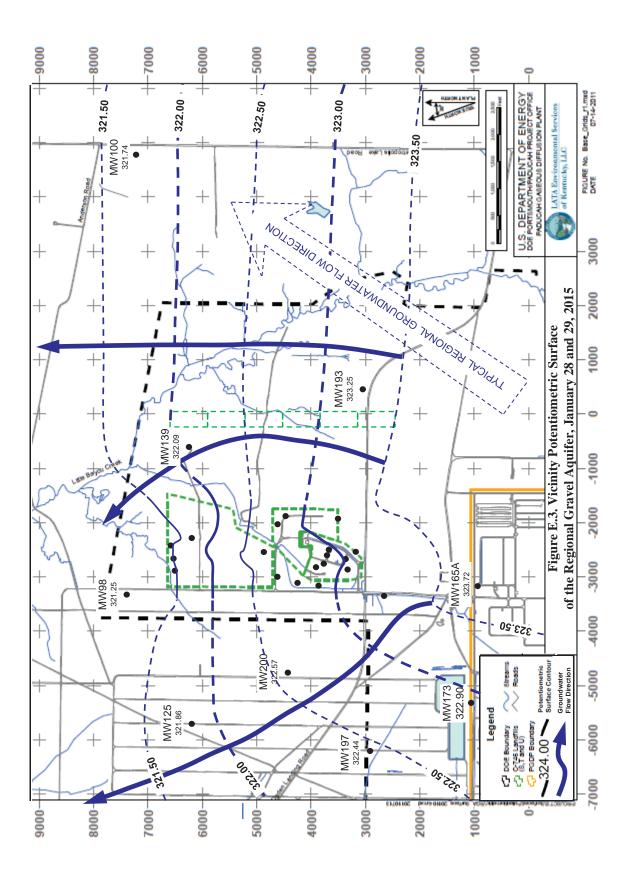
Whenever monitoring wells (MWs) are sampled, 401 *KAR* 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the first quarter 2015 and to determine the groundwater flow rate and direction.


Water levels during this reporting period were measured on January 28 and 29, 2015. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for a measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters.¹ Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill is 2.95×10^{-4} ft/ft. Additional water level measurements in January (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 3.78×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.


Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for January 2015, the groundwater flow direction in the immediate area of the landfill is oriented westward to the typical regional flow direction.


¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

Date							Raw Data		*Corrected Da	
100 100 1 2	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl
/28/2015	8:48	MW220	URGA	381.44	30.30	0.00	58.35	323.09	58.35	323.09
/28/2015	8:58	MW221	URGA	390.83	30.30	0.00	67.99	322.84	67.99	322.84
/28/2015	8:54	MW222	URGA	394.87	30.30	0.00	72.00	322.87	72.00	322.87
/28/2015	8:56	MW223	URGA	394.03	30.30	0.00	71.18	322.85	71.18	322.85
/28/2015	8:52	MW224	URGA	395.41	30.30	0.00	72.44	322.97	72.44	322.97
/28/2015	8:50	MW225	URGA	385.55	30.30	0.00	62.54	323.01	62.54	323.01
/28/2015	9:04	MW353	LRGA	374.86	30.30	0.00	51.66	323.20	51.66	323.20
/28/2015	8:08	MW369	URGA	364.48	30.30	0.00	41.65	322.83	41.65	322.83
/28/2015	8:09	MW370	LRGA	365.35	30.30	0.00	42.54	322.81	42.54	322.81
/28/2015	8:10	MW371	UCRS	364.88	30.30	0.00	25.09	339.79	25.09	339.79
/29/2015	9:05	MW372	URGA	359.66	30.04	0.29	36.50	323.16	36.79	322.87
/29/2015	9:07	MW373	LRGA	359.95	30.04	0.29	36.81	323.14	37.10	322.85
/28/2015	8:39	MW384	URGA	365.06	30.30	0.00	42.25	322.81	42.25	322.81
/28/2015	8:37	MW385	LRGA	365.54	30.30	0.00	42.71	322.83	42.71	322.83
/28/2015	8:38	MW386	UCRS	365.21	30.30	0.00	19.78	345.43	19.78	345.43
/28/2015	8:42	MW387	URGA	363.27	30.30	0.00	40.45	322.82	40.45	322.82
/28/2015	8:41	MW388	LRGA	363.25	30.30	0.00	40.44	322.81	40.44	322.81
/28/2015	8:44	MW389	UCRS	363.82	30.30	0.00	DRY		DRY	
/28/2015	8:46	MW390	UCRS	360.36	30.30	0.00	37.56	322.80	37.56	322.80
/29/2015	9:18	MW391	URGA	366.54	30.04	0.29	43.38	323.16	43.67	322.87
/29/2015	9:20	MW392	LRGA	365.67	30.04	0.29	42.53	323.14	42.82	322.85
/28/2015	8:19	MW393	UCRS	366.59	30.30	0.00	27.14	339.45	27.14	339.45
/28/2015	8:29	MW394	URGA	378.32	30.30	0.00	55.13	323.19	55.13	323.19
/28/2015	8:27	MW395	LRGA	379.01	30.30	0.00	55.78	323.23	55.78	323.23
/28/2015	8:28	MW396	UCRS	378.64	30.30	0.00	9.03	369.61	9.03	369.61
/28/2015	8:32	MW397	LRGA	386.90	30.30	0.00	63.83	323.07	63.83	323.07
/28/2015	8:24	MW418	URGA	366.78	30.30	0.00	43.90	322.88	43.90	322.88
/28/2015	8:25	MW419	LRGA	366.68	30.30	0.00	43.81	322.87	43.81	322.87

Table E.1. C-746-S&T Landfills First Quarter 2015 (January) Water Levels

	ft/ft
Beneath Landfill Mound	$2.95 imes 10^{-4}$
Vicinity	$3.78 imes 10^{-4}$

Table E.2. C-746-S&T Landfills Hydraulic Gradients

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific 1	Discharge (q)	Average	e Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Beneath Landfill	Mound				
725	0.256	0.21	$7.55 imes 10^{-5}$	0.86	3.02×10^{-4}
425	0.150	0.13	4.42×10^{-5}	0.50	$1.77 imes 10^{-4}$
<u>Vicinity</u>					
725	0.256	0.27	9.67×10^{-5}	1.10	3.87×10^{-4}
425	0.150	0.16	$5.66 imes 10^{-5}$	0.64	$2.27 imes 10^{-4}$

APPENDIX F

NOTIFICATIONS

THIS PAGE INTENTIONALLY LEFT BLANK

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the first quarter 2015 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	
Technetium-99	MW390
Upper Regional Gravel Aquifer	
Sodium Technetium-99	MW387 MW369, MW372, MW384, MW387
Lower Regional Gravel Aquifer	
Technetium-99	MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, it is being reported along with the parameters of this regulation.

2/23/2015

LATA Environmental Services of Kentucky PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S and -T LANDFILLS PERMIT NUMBERS 073-00014 and 073-00015 MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4808	MW372	Beta activity	900.0	115	pCi/L	50
		Trichloroethene	8260B	8.08	ug/L	5
8004-4792	MW373	Trichloroethene	8260B	7.67	ug/L	5
8004-4809	MW384	Beta activity	900.0	138	pCi/L	50
8004-4810	MW385	Beta activity	900.0	100	pCi/L	50
8004-4815	MW387	Beta activity	900.0	158	pCi/L	50
8004-4816	MW388	Beta activity	900.0	63.3	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	18.3	ug/L	5
		Trichloroethene	8260B	17.4	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	18.2	ug/L	5
8004-4802	MW394	Trichloroethene	8260B	6.03	ug/L	5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL AND UTL EXCEEDANCES

THIS PAGE INTENTIONALLY LEFT BLANK

Groundwater Flow System			UCRS	S		I				I	URGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well		389	390	393	396	221	222	223	224	384		372		391	220	394	385	370	373	388	392	395	397
ACETONE																							
Quarter 3, 2003							*					*											
Quarter 4, 2003											*								*				
Quarter 1, 2005									*														
ALPHA ACTIVITY																							
Quarter 4, 2002	-																						
Quarter 4, 2002 Quarter 4, 2008	-																						
Quarter 4, 2010	-																						
ALUMINUM	_																						
Quarter 1, 2003	-		*				*					*	*	*									
Quarter 2, 2003	-		*				*						*	*								-	
Quarter 3, 2003	-		*				*	*					*	*									
Quarter 4, 2003	-						*	*			*			*								-	
Quarter 1, 2003			*				*	*			*		-									\vdash	
Quarter 1, 2004 Quarter 2, 2004	_		-				*	-			-			*								\vdash	
Quarter 2, 2004 Quarter 3, 2004	_				<u> </u>	<u> </u>	*				<u> </u>		<u> </u>	*	<u> </u>								
Quarter 3, 2004 Quarter 4, 2004	_		*				-						<u> </u>	-								┝──┘	<u> </u>
	-		*																				
Quarter 1, 2005	_		*				ىلىر				<u> </u>		<u> </u>		<u> </u>							<u> </u>	
Quarter 2, 2005	_						*			4											4		<u> </u>
Quarter 3, 2005			*				*			*											*		
Quarter 4, 2005			*				*				*												
Quarter 1, 2006							*						*										
Quarter 2, 2006			*				*																
Quarter 3, 2006							*																
Quarter 4, 2006			*				*																
Quarter 1, 2007							*										*						
Quarter 2, 2007							*										*						
Quarter 3, 2007							*																
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008	-										*												
Quarter 4, 2008	-						*				-												
Quarter 1, 2009	-		*				*				*											┝──┘	
· ·	-		*				*				*											<u> </u>	
Quarter 1, 2010	-		*				Ť				*											<u> </u>	
Quarter 2, 2010	_		*											J.			*			*		<u> </u>	
Quarter 3, 2010	_		*				-14				*			*			*			*			<u> </u>
Quarter 1, 2011						<u> </u>	*				*		<u> </u>		<u> </u>							<u> </u>	
Quarter 2, 2011			*				ļ				*		<u> </u>							ļ			
Quarter 2, 2012			*																				
Quarter 3, 2012							*																
Quarter 1, 2013							*				*												
Quarter 3, 2013			*																				
Quarter 1, 2014							*																
Quarter 2, 2014		l	l	l		Ī	l	l	l	l	*	l	1	l		l				l			
Quarter 4, 2014			*																				
BARIUM																							
Quarter 3, 2003							-						1										
Quarter 4, 2003		l		l	1	1			l	l		l	1	l			1						i
	_																						-

Groundwater Flow System		Ĩ	UCRS	5						I	JRGA	ł]	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							<u> </u>
Quarter 3, 2006																							
Quarter 4, 2006																							<u> </u>
Quarter 1, 2007																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							<u> </u>
Quarter 1, 2012																							
Quarter 2, 2013																							<u> </u>
Quarter 3, 2013																							
Quarter 4, 2013																							<u> </u>
Quarter 1, 2013																							
Quarter 2, 2014			-									-											<u> </u>
Quarter 3, 2014																							
Quarter 4, 2014																							
Quarter 1, 2015																							
×										_			_										

Groundwater Flow System			UCRS	5						I	URGA	4]	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BROMIDE																							
Quarter 1, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 3, 2006			*																				
CALCIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											
Quarter 3, 2003			*																				
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				Γ
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*						-	*		-		
Quarter 1, 2010												*						-	*		-		
Quarter 2, 2010												*							*				
Quarter 3, 2010												*						-	*		-		
Quarter 4, 2010												*						-	*		-		
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				<u> </u>
Quarter 1, 2012		<u> </u>										*	<u> </u>	<u> </u>					*				-
Quarter 1, 2012 Quarter 2, 2012												*							*				<u> </u>
Quarter 3, 2012												*							*				<u> </u>
Quarter 4, 2012						—						*							*				<u> </u>
Quarter 1, 2012 Quarter 1, 2013		-										*	-	-					*				-
Quarter 1, 2013 Quarter 2, 2013		<u> </u>										*	<u> </u>	<u> </u>					*				-
Quarter 3, 2013												*							*				<u> </u>
Quarter 3, 2013 Quarter 4, 2013												*							* *				
Quarter 4 2013												T.	1	1					T.				1

Groundwater Flow System			UCRS	S						ſ	URGA	ł								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well		389	390	393	396	221	222	223		384		372		391	220	394	385		373	388	392	395	397
CALCIUM																							
Quarter 1, 2014																		*	*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*						*	*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*	*						*				
CARBON DISULFIDE																							
Quarter 4, 2010											*												
Quarter 1, 2011												*									*		
CHEMICAL OXYGEN DEMANI)																						
Quarter 1, 2003	, 			*																			
Quarter 2, 2003				*																			
Quarter 3, 2003				*			*			*													
Quarter 4, 2003				*																			
Quarter 1, 2004	*			*																			
Quarter 4, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*									*		*									*		
Quarter 4, 2005	*									*													
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006	-																*						
Quarter 1, 2007	*									*							-						
Quarter 2, 2007	*									-													
Quarter 3, 2007	*																						
Quarter 4, 2007	*																						
Quarter 1, 2007 Quarter 1, 2008	*																						
Quarter 1, 2008 Quarter 2, 2008	*																						
· ·	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																			*			
Quarter 2, 2009	*																			*			
Quarter 3, 2009	*																						
Quarter 4, 2009																							
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 3, 2011	*	L		L				L	L	L										L			<u> </u>
Quarter 4, 2011	*																						
Quarter 1, 2012	*																						
Quarter 1, 2013	*																						
Quarter 3, 2013	*																						
Quarter 3, 2014	*								*				*					*					
Quarter 4, 2014							*																l

Groundwater Flow System			UCRS	5						1	URGA	A]	LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHLORIDE	1																						
Quarter 1, 2003			*																				
Quarter 2, 2003			*																				
Quarter 3, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				1
Quarter 1, 2005			*																				
Quarter 2, 2005			*																				
Quarter 3, 2005			*																				
Quarter 4, 2005			*																				
Quarter 1, 2006	I																	*					
Quarter 2, 2006	İ 👘		*																				
Quarter 3, 2006	1		*																				
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*																				<u> </u>
Quarter 3, 2007			*																				<u> </u>
Quarter 4, 2007			*																				
Quarter 1, 2007			*																				
Quarter 2, 2008			*																				
Quarter 3, 2008			*																				
Quarter 4, 2008			*																				┝───
Quarter 1, 2009			*																				
Quarter 2, 2009	-		*																				
Quarter 3, 2009			*																				
			*																				<u> </u>
Quarter 4, 2009	ļ		*																				┣───
Quarter 1, 2010																							┝──
Quarter 2, 2010			* *																				┝──
Quarter 3, 2010			*																				└──
Quarter 4, 2010			*																				L
Quarter 2, 2011	ļ		*																				
Quarter 3, 2011			*	L	L					L													
Quarter 4, 2011	ļ		*																				
Quarter 3, 2012	 		*																				
Quarter 3, 2013			*																				
Quarter 4, 2013			*																				
Quarter 4, 2014			*																				
CHROMIUM																							
Quarter 4, 2002																							
Quarter 1, 2003																							I
Quarter 2, 2003																							
Quarter 3, 2009																							
COBALT																							
Quarter 3, 2003							*																

Groundwater Flow System		Ì	UCRS	5						١	URGA	A								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY																							
Quarter 4, 2002										*									*				1
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				1
Quarter 3, 2003			*					*		*									*				
Quarter 4, 2003			*							*									*				1
Quarter 1, 2004																			*				1
Quarter 2, 2004										*									*				
Quarter 3, 2004										*									*				1
Quarter 4, 2004			*							*									*				
Quarter 1, 2005										*		*							*				
Quarter 2, 2005												*							*				1
Quarter 3, 2005																			*				
Quarter 4, 2005										*		*							*				1
Quarter 1, 2006											I	*	1						*	1			
Quarter 2, 2006	1											*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006	1												1				*		*	1			
Quarter 1, 2007												*							*				1
Quarter 2, 2007																	*		*				1
Quarter 3, 2007																	*		*				
Quarter 4, 2007												*					*		*				1
Quarter 1, 2008												*							*				1
Quarter 2, 2008												*							*				
Quarter 3, 2008												*					*		*				1
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*					*		*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*							*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*				[
Quarter 1, 2012												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013	_											*	<u> </u>						*	<u> </u>			
Quarter 1, 2013	_											*	<u> </u>						*	<u> </u>			
Quarter 2, 2014	-											*							*				
Quarter 3, 2014	-											*							*				
Quarter 4, 2014 Quarter 4, 2014	-											*							*				
Quarter 1, 2014 Quarter 1, 2015	_											*							*				
Quarter 1, 2013						_						-	I						Ť	1			

Groundwater Flow System			UCRS	5						1	URGA	4								LRGA	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED OXYGEN																							
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				
Quarter 1, 2004			*									*							*				
Quarter 2, 2004										*		*							*				
Quarter 3, 2004										*		*							*				
Quarter 4, 2004										*		*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005	-																*	*	*	*	*		
Quarter 4, 2005	1																*	*	*	*	*		<u> </u>
· ·																	*	*	*	*	* *		├──
Quarter 1, 2006																							
Quarter 2, 2006	<u> </u>																*	*	*	*	* *		
Quarter 3, 2006																	*	*	*	*	*		
Quarter 4, 2006										*		*					*		*				
Quarter 1, 2007																			*				
Quarter 2, 2007										*		*							*				
Quarter 3, 2007										*		*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008										*		*							*				
Quarter 1, 2009	-									-		*							*				
Quarter 1, 2009												*	*						*				
												*	*						*				
Quarter 3, 2009	-											*	*						*				
Quarter 4, 2009	-											*	*						*				
Quarter 1, 2010	-									*		*	*						*				
Quarter 2, 2010													*										
Quarter 3, 2010										*		*							*				
Quarter 4, 2010	_									*		*							*				
Quarter 1, 2011	_									*		* *							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*		*						*				
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014	1											*	*						*				
Quarter 2, 2014	1											*							*				
Quarter 3, 2014	1						1		*		l	*	*	l					*	l			
Quarter 4, 2014	1						1				l	*	*	l					*	l			
Quarter 1, 2015	1											*							*				

Groundwater Flow System			UCRS	S						I	JRGA]	LRGA	1						
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003						*																	
Quarter 3, 2003													*										
Quarter 1, 2004				*																			
Quarter 3, 2010																					*		
Quarter 2, 2013										*													
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											1
Quarter 1, 2006							*																1
Quarter 2, 2006												*											1
Quarter 3, 2006	İ 🗌					İ 👘					*												1
Quarter 1, 2007	1										*	*											
Quarter 2, 2007	1										*												<u> </u>
Quarter 2, 2008	1											*											<u> </u>
Quarter 3, 2008	1											*											<u> </u>

Groundwater Flow System			UCRS	3						1	URGA	1								LRGA	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				<u> </u>
Quarter 4, 2007												*							*				<u> </u>
	_											*							*				<u> </u>
Quarter 1, 2008												*							*				<u> </u>
Quarter 2, 2008	_																		*				<u> </u>
Quarter 3, 2008												*											<u> </u>
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*	*						*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*	*						*				
Quarter 4, 2012												*	*						*				<u> </u>
Quarter 1, 2012												*	-						*				├──
Quarter 2, 2013	_											*					—		*				┣──
												*							*				┣──
Quarter 3, 2013												* *							* *				┣──
Quarter 4, 2013	_											*						<u>.</u>					┣—
Quarter 1, 2014	_	ļ									ļ	44						*	* *				┣
Quarter 2, 2014												*	*						*				┣
Quarter 3, 2014					L					L		*		L	L				*	L			<u> </u>
Quarter 4, 2014					L					L		*	*	L	L				*	L			<u> </u>
Quarter 1, 2015												*	*						*				

Groundwater Flow System			UCR	s						١	URGA	A]	LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
MANGANESE																							
Quarter 4, 2002																					*		
Quarter 3, 2003							*	*															
Quarter 4, 2003							*	*															
Quarter 1, 2004							*																
Quarter 2, 2004							*																
Quarter 4, 2004							*	*															
Quarter 1, 2005							*																
Quarter 3, 2005																					*		
Quarter 3, 2009	*																						
OXIDATION-REDUCTION POT	I FENT	TAL.																					
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004	1		*			*																	<u> </u>
Quarter 1, 2005	1		*															*					<u> </u>
Quarter 2, 2005	*		*															-					<u> </u>
Quarter 3, 2005	*		*																				
Quarter 4, 2005	-		*																				
Quarter 2, 2006	1		*																				
Quarter 3, 2006			*															*					
Quarter 4, 2006			*																				
Quarter 1, 2000			*																				
Quarter 2, 2007			*				*																
Quarter 3, 2007			*				*																
Quarter 4, 2007			*				Ť																
Quarter 1, 2007			*			*			*														
Quarter 2, 2008	*		*	*		*			Ť				*				*		*	*			
Quarter 3, 2008	Ť		*	*		*							*				*		*	*			
Quarter 4, 2008			*	*		*	*	*	*				*				*	*	Ť	*			
- · ·			*	Ť		Ť	*	*	*				*	*			Ť	• *		*			
Quarter 1, 2009			*	*		*	*	*	*				*	Ŧ			*	* *	*	*			
Quarter 3, 2009			*	*		*			*								*	* *	*	*			
Quarter 4, 2009	*		*			*			*									不		*			
Quarter 1, 2010	*		*	*					*				*				*	*		*			
Quarter 2, 2010	*			*		*			*				*						÷				
Quarter 3, 2010	*		*	*		*		J.			J.			J.			*	* *	* *	*			
Quarter 4, 2010	<u>ч</u>		*	÷		J.	÷	*	÷		*		4	*			*	* *	*	*	4		
Quarter 1, 2011	*		4	*		*	*	*	*	4	*		*	*			*	*	JL.	*	*		
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 3, 2011	*		*	*			*		*		*		*				*	*	*	*			
Quarter 4, 2011	*		*	*			*		-14		*						*	*	.14	*	.14		
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	* :		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2013	<u> </u>			*		*		*	*		*		*	*				*		*	* :		
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			L
Quarter 4, 2013	I		*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*		
Quarter 3, 2014	*		*	*		*											*	*	*	*			
Quarter 4, 2014	*		*	*							*		*				*	*	*	*	*		
Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
	-			•	•	-	•		•	•	•	•	•		•	•	-			•		•	-

Groundwater Flow System			UCRS	3						1	URGA	4							1	LRG	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
PCB, 1016																							
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004											*												
Quarter 3, 2005							*				*												
Quarter 1, 2006											*												
Quarter 2, 2006											*												
Quarter 4, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007												*											
Quarter 3, 2007											*												
Quarter 2, 2008											*	*											
Quarter 3, 2008											*												
Quarter 4, 2008											*												
Quarter 1, 2009											*												
Quarter 2, 2009											*												
Quarter 3, 2009											*												
Quarter 4, 2009											*												
Quarter 1, 2009											*												<u> </u>
Quarter 2, 2010											*												
											*							-					
Quarter 3, 2010											*												<u> </u>
Quarter 4, 2010											*												
PCB-1232											*						_						
Quarter 1, 2011											*												
PCB-1248												J.					_						
Quarter 2, 2008	_											*											
PCB-1260																	_	*					
Quarter 2, 2006																		不					
pH																	*						
Quarter 4, 2002	-																*						
Quarter 2, 2003	-																*						
Quarter 3, 2003	-						*										* *						
Quarter 4, 2003							*										* *						
Quarter 1, 2004							*										* *						<u> </u>
Quarter 2, 2004																	* *						
Quarter 3, 2004																	* *						<u> </u>
Quarter 4, 2004										*							* *				*		<u> </u>
Quarter 3, 2005										*							* *				*		<u> </u>
Quarter 4, 2005										*							* *						<u> </u>
Quarter 1, 2006																							<u> </u>
Quarter 2, 2006																	*						
Quarter 3, 2006																							<u> </u>
Quarter 3, 2007																	*						<u> </u>
Quarter 4, 2007																							<u> </u>
Quarter 4, 2008	_					I											* *						<u> </u>
Quarter 1, 2009	_																						┣—
Quarter 1, 2011	_					I					ىلو						*						┝──
Quarter 2, 2011	_				ļ	I					*												<u> </u>
Quarter 3, 2011	_					<u> </u>					*												⊢
Quarter 1, 2012	_					<u> </u>				-11-			ىر	*									⊢
Quarter 1, 2013	_					<u> </u>				*			*				*						⊢
Quarter 4, 2014							l														*		

Groundwater Flow System			UCRS	5						ι	JRGA	ł								LRG	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
POTASSIUM																							
Quarter 4, 2002																		*	*				
Quarter 3, 2004																			*				
Quarter 2, 2005																			*				
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				
Quarter 3, 2006																			*				
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				
Quarter 1, 2013																			*				
Quarter 2, 2013																			*				
Quarter 3, 2013																			*				
RADIUM-226																							
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004																			*				
Quarter 2, 2005									*														
Quarter 1, 2009											*												
Quarter 3, 2014									*			*											
Quarter 4, 2014			*								*							*					
RADIUM-228																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
SELENIUM																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003		l																					
Quarter 3, 2003																							
Quarter 4, 2003																			1				

Groundwater Flow System			UCRS	5						I	URGA	A								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SODIUM																							-
Quarter 4, 2002																			*		*		f
Quarter 1, 2003				*					*	*	*												
Quarter 2, 2003				*						*	*		*										<u> </u>
Quarter 3, 2003							*	*		*													<u> </u>
Quarter 4, 2003							*		*	*													<u> </u>
Quarter 1, 2004									*	*				*									
Quarter 2, 2004										*													
Quarter 3, 2004										*													
Quarter 4, 2004									*	*													
Quarter 1, 2005										*									*				<u> </u>
Quarter 2, 2005										*									*				
Quarter 3, 2005									*	*									*				
Quarter 4, 2005									*	*													
Quarter 1, 2006	-								*	*									-				<u> </u>
Quarter 2, 2006									*														<u> </u>
	_								*	*		*							*				<u> </u>
Quarter 3, 2006									*	*		*					*		Ŧ				
Quarter 4, 2006										*		J.					*						
Quarter 1, 2007									*			*											<u> </u>
Quarter 2, 2007									*	*													<u> </u>
Quarter 3, 2007									*														
Quarter 4, 2007									*									-	-				
Quarter 1, 2008									*														
Quarter 3, 2008												*											
Quarter 4, 2008									*	*													
Quarter 1, 2009									*			*							*				
Quarter 3, 2009												*											
Quarter 4, 2009									*			*											
Quarter 1, 2010												*											1
Quarter 2, 2010										*		*											
Quarter 3, 2010										*													
Quarter 4, 2010									*	*													
Quarter 1, 2011										*													
Quarter 2, 2011									*									-	-				
Quarter 4, 2011																			*				
Quarter 1, 2012											*												<u> </u>
Quarter 1, 2012 Quarter 3, 2012	_										-	*							*				—
Quarter 3, 2012 Quarter 4, 2012												*							Ŧ				—
	_									*		*						<u> </u>	*				┣—
Quarter 1, 2013										*									Ŧ				⊢
Quarter 2, 2013												*							-JL-				⊢
Quarter 3, 2013				L					L			*							*				\vdash
Quarter 4, 2013												*							*				
Quarter 1, 2014												*											
Quarter 2, 2014									*		*	*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014									*	*		*	*										
Quarter 1, 2015		ſ	ſ				ſ	ſ	ſ	ſ	ſ	ſ	*		[Γ

a											URGA	-								LRGA	•		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
STRONTIUM-90																							
Quarter 2, 2003																							
Quarter 1, 2004																							
SULFATE																							
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004										*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005										*		*	*					*	*				
Quarter 3, 2005										*		*	*				*	*	*				
Quarter 4, 2005										*		*	*					*	*	*			<u> </u>
Quarter 1, 2006		-	-				-	-		*		*	*				*	*	*	*			
Quarter 2, 2006									*	*		*	*				*	*	*	*			<u> </u>
Quarter 3, 2006									*	*		*	*				*		*	*			<u> </u>
Quarter 4, 2006									*	*		*	*				*		*				
Quarter 1, 2007									*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*				*		*	*			├──
Quarter 3, 2007									*	*		*	*				*		*	*			──
										*		*	*				*	*	*	*			<u> </u>
Quarter 4, 2007										*		*	*				*	*	*	*			—
Quarter 1, 2008								*		* *	*	* *		*			*		*	*			
Quarter 2, 2008								Ŧ			*		*	*				* *					_
Quarter 3, 2008										*		*	*				*	*	*	*			<u> </u>
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009									*	*		*	*				*	*	*	*			
Quarter 4, 2009	*									*		*	*				*	*	*				
Quarter 1, 2010	*								*	*		*	*				*		*				
Quarter 2, 2010									*	*		*	*				*	*	*	*			
Quarter 3, 2010										*		*	*				*	*	*	*			
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011	*									*		*	*				*	*	*				
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			
Quarter 4, 2011	*									*		*	*				*	*	*	*			
Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 2, 2012	*									*		*	*				*	*	*	*			
Quarter 3, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012	-					_				*		*	*				*	*	*	*			
Quarter 1, 2012										*		*	*				*	*	*	*			├──
Quarter 2, 2013										*		*	*	*			*	*	*	*			┣—
Quarter 3, 2013										*		• *	*	*			*	*	*	*			┣—
										* *		* *	*	Ŧ			*	* *	*	*			┣—
Quarter 4, 2013								*		*													┝──
Quarter 1, 2014								*	<u> </u>			* *	*	-14	<u> </u>		*	* *	*	*		<u> </u>	┡
Quarter 2, 2014		L	L				L	L		* *		* *	*	*			*	* *	*	*			┝──
Quarter 3, 2014										*		*	*	*			*	*	*	*			_
Quarter 4, 2014										*		* *	*				*	*	*	*			_
Quarter 1, 2015																	*	*	*	*			1

Groundwater Flow System Gradient Monitoring Well TECHNETIUM-99 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2005	\$ 386 *	D	UCRS D 390 ** * * * * * *	D 393	U 396	S 221	S 222	S 223	8 224	S 384	URGA D 369	D 372	D 387	D 391	U 220	U 394	S 385	D 370	D 373	LRGA D 388	D 392	U 395	U 397
Monitoring Well TECHNETIUM-99 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 3, 2005	386		390 * * * * *																373				397
TECHNETIUM-99 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 4, 2005 Quarter 1, 2005 Quarter 2, 2005	*		* * * * *																				<u> </u>
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 4, 2003 Quarter 1, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005	*		* * * * *															_					1
Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2005	*		* * * * *											1					*				
Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005	*		* * * * *										*				*		*				
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005			* * *							*			*				*						
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005			* * *										*				*			*			
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005			*							*		*	*				*		*	*			
Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005			*									*	*				*		*				
Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005												*	*				*		*	*			
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005			*									*					*		*				
Quarter 2, 2005 Quarter 3, 2005			-1-							*		*	*				*	*	*				
Quarter 3, 2005			*							*		*	*				*			*			
- ·		1	*							*			*				*	*	*	*			
Quarter 4, 2005			*							*			*				*	*	*	*			
			*							*		*	*				*		*	*			
Quarter 1, 2006										*		*	*						*	*			
Quarter 2, 2006			*							*			*				*	*	*	*			
Quarter 3, 2006			*							*			*				*	*	*	*			
Quarter 4, 2006	*									*		*	*						*	*			
Quarter 1, 2007			*							*			*				*		*	*			
Quarter 2, 2007			*							*		*	*				*	*		*			
Quarter 3, 2007			*							*	*	*	*				*	-	*	*			
Quarter 4, 2007			*							*	-	*	*				*		*	*			
Quarter 1, 2008			*							*		*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008			-1-							*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2008			*							*		*	*				*	Ť		Ť			
- ·			*							*		• *	*				*	*		*			
Quarter 2, 2009			*							*	*	• *	*				*	т —		*			
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*														* *						
Quarter 1, 2010										*		*	*					<u>ب</u> د		4			
Quarter 2, 2010			*							*	4	<u>ч</u>	*				*	*	<u> </u>	*			<u> </u>
Quarter 3, 2010			*							*	*	*	*				*		<u> </u>				<u> </u>
Quarter 4, 2010			*							*		*	*				*	-					<u> </u>
Quarter 1, 2011										*			*				*						
Quarter 2, 2011			*							*			*				*	1		*			<u> </u>
Quarter 3, 2011			*							*			*				*			*			
Quarter 4, 2011			*							*	*	*	*				*						
Quarter 1, 2012			*							*			*				*	-		*			
Quarter 2, 2012			*							*			*				*		*	*			
Quarter 3, 2012			*							*		*	*				*						
Quarter 4, 2012										*		*	*				*		*	*			
Quarter 1, 2013										*			*				*		*	*			
Quarter 2, 2013										*		*	*				*		*	*			
Quarter 3, 2013			*			_				*		*	*				*		*	*			
Quarter 4, 2013			*							*		*	*				*		*	*			
Quarter 1, 2014			*							*	*		*				*		*	*			
Quarter 2, 2014			*							*	*		*	*			*		*	*			
Quarter 3, 2014			*							*			*				*			*			
Quarter 4, 2014			*							*	*	*	*				*		*	*			<u> </u>
Quarter 1, 2015			*			-				*	*	*	*				*			*			
THORIUM-230																							
Quarter 1, 2012	*								*					*									
Quarter 4, 2014	*		*					-				-			-						-	-	
																							<u> </u>

Groundwater Flow System			UCRS	5						l	URGA	4								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
THORIUM-234																							
Quarter 2, 2003						*			*					*									1
Quarter 4, 2007									*														
TOLUENE																							
Quarter 2, 2014										*	*		*										
TOTAL ORGANIC CARBON																							
Quarter 4, 2002																					*		
Quarter 1, 2003				*						*	*							*	*		*		
Quarter 2, 2003										*	*		*								*		
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003							*		*	*													
Quarter 1, 2004										*													
Quarter 2, 2004										*	*												
Quarter 3, 2004	-									*	-												
Quarter 4, 2004										*													
Quarter 1, 2005	-									*													
Quarter 2, 2005	-	<u> </u>								*							I				*		┣──
	_									*		*									*		<u> </u>
Quarter 3, 2005												*											
Quarter 4, 2005	_									*							I				*		⊢
Quarter 1, 2006										*													
Quarter 2, 2006										*		*											
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 3, 2007	*					*	*	*	*	*			*	*			*						
Quarter 2, 2011											*												
Quarter 3, 2012	*																						
TOTAL ORGANIC HALIDES																							
Quarter 4, 2002																		*	*		*		
Quarter 1, 2003				*														*			*		
Quarter 3, 2003				*																	*		
Quarter 2, 2004																					*		-
Quarter 3, 2004	*																						
Quarter 1, 2005	*																						-
Quarter 2, 2005	*																						
Quarter 3, 2005	*																						
Quarter 4, 2005	*																						
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						-
Quarter 3, 2006	*																						-
Quarter 4, 2006																	*						+
Quarter 1, 2007	*																						
Quarter 2, 2007	*																						-
Quarter 3, 2007	*																						-
Quarter 4, 2007	*																				*		
Quarter 1, 2008	*																						-
Quarter 4, 2008	*																						-
Quarter 4, 2008	*																						
Quarter 4, 2008 Quarter 1, 2009	*	<u> </u>															I						┣──
-	*																				*		
Quarter 2, 2009	*																				*		
Quarter 3, 2009																	I						
Quarter 4, 2009	*																I						
Quarter 1, 2010	*		ļ				ļ				ļ		ļ		ļ		I						<u> </u>
Quarter 2, 2010 Quarter 3, 2010	*			L	L				L	L						L	I	L	L	L	L		<u> </u>
		•	1								1		1	1	1								1

Groundwater Flow System Gradient	S		UCRS				r				JRGA									LRG			
		D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TOTAL ORGANIC HALIDES	2.55				270					2.5.								210	2.0	200		275	
Quarter 4, 2010	*																						
Quarter 1, 2010	*																						
Quarter 3, 2013																					*		
TRICHLOROETHENE						_															4.		
Quarter 4, 2002						_																	
																							<u> </u>
Quarter 1, 2003																		-					┣──
Quarter 2, 2003																							<u> </u>
Quarter 3, 2003																							<u> </u>
Quarter 4, 2003																							<u> </u>
Quarter 1, 2004												_											
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005					ſ										ſ								T
Quarter 3, 2005																							
Quarter 4, 2005		1			l		1								1								<u> </u>
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 2, 2007																							<u> </u>
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2007																						_	┼──
Quarter 2, 2008																							──
Quarter 3, 2008																							──
																							┣──
Quarter 4, 2008												-											—
Quarter 1, 2009																							_
Quarter 2, 2009																							<u> </u>
Quarter 3, 2009											_												
Quarter 4, 2009																							
Quarter 1, 2010										-								-					
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																						I	1
Quarter 3, 2011		1			l		1								1								<u> </u>
Quarter 4, 2011																							1
Quarter 1, 2012																							1
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2012											<u> </u>	-											┼──
Quarter 1, 2013 Quarter 2, 2013												-					<u> </u>						—
																							┣—
Quarter 3, 2013																							—
Quarter 4, 2013																							—
Quarter 1, 2014			L	L					L		L												⊢
Quarter 2, 2014					ļ										ļ							ļ	<u> </u>
Quarter 3, 2014																							
Quarter 4, 2014																							
Quarter 1, 2015											_												

Groundwater Flow System			UCRS	5						I	JRGA	4]	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														
* Statistical test results indicate an	eleva	ted co	oncen	tratio	n (i.e.	, a sta	tistic	ally si	gnific	cant ir	creas	e)											
MCL Exceedance																							
UCRS Upper Continental Recharge	Syste	m																					
URGA Upper Regional Gravel Aqu	ifer																						
LRGA Lower Regional Gravel Aqu	ifer																						
S Sidegradient; D Downgradient; U	Upgr	adien	t																				

APPENDIX H

METHANE MONITORING DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	3/12/20	15					т	ime:	09	00:00						Mor	itor	:	Tai	mmy	Smit	h	
Weather Co Cloudy with			s at 4	7 deg	gree	s									/								
Monitoring I MSA Sirius																							
					M	oni	tori	ng Lo	ocat	ion										a.		Readir % LEI	
Ogden Landin Road Entrand		Che	ecked	at gro	ound	leve	1														0		,
North Landfil	I Gate	Che	ecked	at gro	ound	leve	1														0		
West Side of Landfill: North 37° (West 88° 4		Che	ecked	at arc	hund		1														0		
East Side of Landfill: North 37° (West 88° 4	07.628'	Che	ecked	at gro	ound	leve	t														0		
Cell 1 Gas Ve	ent (17)	1 0	2 0	3 4.2	4 0	5 0	6 0	7 0	8 0	9 0	1 0	11		12 0	13 0	14 0	15 0		6 2	17 0	3-4.2	., 16-1.	2
Cell 2 Gas Ve	ent (3)	1 0	2 0	3 0								_									0		
Cell 3 Gas Ve	ent (7)	1 0	2 0	3 0	4 0	5 0	6 0	7 0													0		
Landfill	Office	Che	ecked	at floo	or lev	el																	
Suspect or P	roblem Areas	No	areas	noted	ł																18 3	12-13	
Remarks: ALL VENTS	CHEC	KEI	O 1"∣	FRO	ΜT	HE	MC	DUTH	I OF	TH	IE∖	EN)	Т										
Performed b	by:		Ņ	Ĵú	/ ///// Sig	net	р, ure	Snu	t	l									3	//	2/0	LO/C ate	5

Review the Identified Source Document for This Form Prior to Attempting Completion Complete All Forms In Accordance With PAD-WC-0044 THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX I

SURFACE WATER ANALYSES AND WRITTEN COMMENTS

THIS PAGE INTENTIONALLY LEFT BLANK

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 Division of Waste Management RESIDENTIAL/INERT-QUARTERLY Frankfort, KY 40601 (502)564-6716 Solid Waste Branch 14 Reilly Road

For Official Use Only LAB ID: None

(ຮ) SURFACE WATER SAMPLE ANALYSIS

Monitoring Poi	Monitoring Point (KPDES Discharge Number, or "UPSTREAM",	PSTR		OF "DOWNSTREAM")	L135 UPSTREAM		L154 DOWNSTREAM	AM	L136 AT SITE		F. BLANK	
Sample Sequence	se #				1		1		1		1	
If sample is a	a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment	iri.	p, (M)ethod,	or (E)quipment	NA		NA		NA		Ъ	
Sample Date an	and Time (Month/Day/Year hour: minutes)	lnut	es)		1/12/2015 10:49	6	1/12/2015 10:38		3/4/2015 07:20	1/.	1/12/2015 10:50	50
Duplicate ("Y"	' or "N") ¹				N		N		Z		z	
Split ('Y' or "N") ²	"N") ²				N		N		Z		z	
Facility Sampl	Facility Sample ID Number (if applicable)				L135SS2-15		L154US2-15		L136SS2-15		FB1SS2-15	
Laboratory Sam	Laboratory Sample ID Number (if applicable)				364796001		364810003		368336001		364796003	
Date of Analys	of Analysis (Month/Day/Year)				2/6/2015		2/6/2015		3/26/2015		2/6/2015	
CAS RN ³	CONSTITUENT	но₄	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	百日丸はど	DETECTED VALUE OR PQL ⁵	ы Ч ц ц ц ц ц	DETECTED F VALUE L OR A PQL ⁵ G		DETECTED VALUE OR PQL ⁵	нц∢Ω _г о
A200-00-0	0 Flow	н	MGD	Field	0.05		0.07		0.52			*
16887-00-6	2 Chloride(s)	н	mg/L	300.0	11.7		22.8		0.567		<0.2	
14808-79-8	0 Sulfate	н	mg/L	300.0	19.9		27.2		7.29		0.136	ſ
7439-89-6	0 Iron	н	mg/L	200.8	0.598		0.331		1.03		<0.1	
7440-23-5	0 Sodium	н	mg/L	200.8	6.92		13.1		1.02		<0.25	
S0268	0 Organic Carbon ⁶	Т	mg/L	9060	12.2		19.7		6.27			*
s0097	0 BOD ⁶	н	mg/L	not applicable		*		*	*			*
s0130	0 Chemical Oxygen Demand	H	mg/L	410.4	37.9		85.4		10 J			*

^tRespond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by <u>separate</u> laboratories. ³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required 'Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

A = Average value N = Presumptive ID D = Concentration from analysis of

B = Analyte found in blank

J = Estimated Value * = See Comments STANDARD FLAGS:

a secondary dilution factor

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

	ы Ч Ц Ц С С С	*	*	*	*	*		*	*						
F. BLANK	DETECTED VALUE OR PQL ⁵						<0.0002	1.16	-1.01						
	ыцқого							*	*						
L136 AT SITE	DETECTED VALUE OR PQL ⁵	156	4.95	136	147	7.16	0.00155	0.53	7.64						
FREAM	μцαΰζ							*	*						
L154 DOWNSTREAM	DETECTED VALUE OR PQL ⁵	421	8.13	229	292	7.69	0.0206	9.62	17.6						
EAM	н ц к р ₂ 2							*	*						
L135 UPSTREAM	DETECTED VALUE OR PQL ⁵	321	6.4	211	207	7.74	0.0455	21.2	25.6						
"DOWNSTREAM")	METHOD	Field	160.2	160.1	SM-2540B	Field	200.8	0.006	0.006						
or "UPSTREAM" or	Unit OF MEASURE	hthmo/cm	mg/L	mg/L	mg/L	Units	mg/L	pCi∕L	₽Ci∕L						
or "l	ΗQ ⁴	Г	н	т	F	т	ч	н	H						
Monitoring Point (KPDES Discharge Number,	CONSTITUENT	. Specific Conductance	Total Suspended Solids	Total Dissolved Solids) Total Solids	Hď	Uranium	Gross Alpha (α)	Gross Beta (β)						
Point		1	0	0	0	0									
Monitoring	CAS RN ³	S0145	s0270	s0266	s0269	s0296	7440-61-1	12587-46-1	12587-47-2						

Frankfort, KY 40601 (502)564-6716 Division of Waste Management Solid Waste Branch 14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant **RESIDENTIAL/INERT-QUARTERLY**

Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

For Official Use Only

(ຮ) SAMPLE ANALYSIS SURFACE WATER

Monitoring Poi	Monitoring Point (KPDES Discharge Number, or "UPSTREAM", or "DOWNSTREAM")	STR	EAM", or "DO	WNSTREAM")	L135 UPSTREAM		L154 DOWNSTREAM	Σ			\square
Sample Sequence	ie #				2		2				/
If sample is a	a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment	jrif), (M)ethod,	or (E)quipment	NA		NA			 /	/
Sample Date an	and Time (Month/Day/Year hour: minutes)	nute	(se		1/12/2015 10:49		1/12/2015 10:38			/	
Duplicate ("Y"	' or "N") ¹				٨		٨			 /	
Split ('Y' or	чNп) ²				Z		N			 /	
Facility Sampl	Facility Sample ID Number (if applicable)				L135DSS2-15		L154DUS2-15			 /	
Laboratory Sam	Laboratory Sample ID Number (if applicable)				364796002		364810002			/	
Date of Analys	of Analysis (Month/Day/Year)				2/6/2015		2/6/2015			/	
CAS RN ³	CONSTITUENT	Н Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	ษา∢ถุง	DETECTED VALUE OR PQL ⁵ S	ה ין ע ג _מ מ	DETECTED E VALUE I OR 2 PQL ⁵	DETECTED VALUE OR PQL ⁵	нч∢Ω _г α
A200-00-0	0 Flow	H	MGD	Field	0.05		0.07				
16887-00-6	2 Chloride(s)	H	mg/L	300.0	11.8		22.8				
14808-79-8	0 Sulfate	н	mg/L	300.0	19.9		27.1			 $\langle \rangle$	
7439-89-6	0 Iron	н	mg/L	200.8	0.586		1.07				
7440-23-5	0 Sodium	H	mg/L	200.8	6.79		12.9				
S0268	0 Organic Carbon ⁶	н	mg/L	9060	11.2		18.7				
s0097	0 BOD ⁶	H	mg/L	not applicable		*	*				
S0130	0 Chemical Oxygen Demand	H	mg/L	410.4	57.9		55.4	\geq			

^tRespond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by <u>separate</u> laboratories. ³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

²Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required 5"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit 'Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

A = Average value N = Presumptive ID D = Concentration from analysis of a secondary dilution factor

B = Analyte found in blank

J = Estimated Value * = See Comments STANDARD FLAGS:

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u> LAB ID: <u>None</u> For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	Point	Monitoring Point (KPDES Discharge Number, or	dU"	"UPSTREAM" or	"DOWNSTREAM")	L135 UPSTREAM	'AM	L154 DOWNSTREAM	EAM				/
CAS RN ³		CONSTITUENT	Н Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	н ц ц ц ц ц ц ц ц	DETECTED VALUE OR PQL ⁵	ыч∢о,∞	BETECTED VALUE OR ROL ⁵	ялқ р ⁸ , G, р Г ғ	DETECTED VALUE OR PQL ⁵	R L A D'S
s0145	1	Specific Conductance	т	hmho/cm	Field	321		421					
S0270	0	Total Suspended Solids	т	mg/L	160.2	6.1		18					
S0266	0	Total Dissolved Solids	Т	mg/L	160.1	180		234	<u> </u>				
S0269	0	Total Solids	Т	mg/L	SM-2540B	210		296					
S0296	0	Нd	т	Units	Field	7.74		7.69					
7440-61-1		Uranium	Т	mg/L	200.8	0.0448		0.0207					
9 12587-46-1		Gross Alpha (α)	н	pCi∕L	900.0	18.8	*	6.73	*			/	
12587-47-2		Gross Beta (β)	н	pCi/L	0.006	35.9	*	15.6	*			\succ	
												/	
												/	
										/			
												<i>c</i>	

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 & 073-00015 Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: _____ None _____

For Official Use Only

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ng Facility Sample ID	Constituent	Flag	Description
L135	L135SS2-15	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 11.2. Rad error is 10.5.
		Beta activity		TPU is 10.4. Rad error is 9.54.
L154	L154US2-15	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 3.18. Rad error is 2.67.
		Beta activity		TPU is 4.02. Rad error is 2.79.
L136	L136SS2-15	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4. Rad error is 4.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.66. Rad error is 6.54.
QC	FB1SS2-15	Flow Rate		Analysis of constituent not required and not performed.
		Total Organic Carbon (TOC)		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)		Analysis of constituent not required and not performed.
		Conductivity		Analysis of constituent not required and not performed.
		Suspended Solids		Analysis of constituent not required and not performed.
		Dissolved Solids		Analysis of constituent not required and not performed.
		Total Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.18. Rad error is 4.18.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.38. Rad error is 6.38.
L135	L135DSS2-15	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 11.6. Rad error is 11.2.
		Beta activity		TPU is 12.5. Rad error is 11.1.
L154	L154DUS2-15	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 2.66. Rad error is 2.41.
		Beta activity		TPU is 3.94. Rad error is 2.96.

THIS PAGE INTENTIONALLY LEFT BLANK