PAD-ENM-0090/V4

C-746-S&T Landfills Fourth Quarter Calendar Year 2014 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

CLEARED FOR PUBLIC RELEASE

PAD-ENM-0090/V4

C-746-S&T Landfills Fourth Quarter Calendar Year 2014 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—February 2015

Prepared for the U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC managing the Environmental Remediation Activities at the Paducah Gaseous Diffusion Plant under contract DE-AC30-10CC40020

CLEARED FOR PUBLIC RELEASE

FIGURE	7
TABLES	1
ACRONYMSvi	i
1. INTRODUCTION. 1 1.1 BACKGROUND. 1 1.2 MONITORING PERIOD ACTIVITIES. 1 1.2.1 Groundwater Monitoring. 1 1.2.2 Methane Monitoring. 1 1.2.3 Surface Water Monitoring. 2 1.3 KEY RESULTS. 4 1.3.1 Summary of C-746-S&T Results and Discussion 6	L L 2 L
2. DATA EVALUATION/STATISTICAL SYNOPSIS)
3. DATA VALIDATION	L
4. PROFESSIONAL GEOLOGIST AUTHORIZATION	;
5. REFERENCE	j
APPENDIX A: GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	L
APPENDIX B: FACILITY INFORMATION SHEET	L
APPENDIX C: GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS C-1	L
APPENDIX D: STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	L
APPENDIX E: GROUNDWATER FLOW RATE AND DIRECTION	L
APPENDIX F: NOTIFICATIONS	L
APPENDIX G: CHART OF MCL AND UTL EXCEEDANCES	L
APPENDIX H: METHANE MONITORING DATA	

FIGURE

1. C-746-S&T Landfill Groundwater Monitoring Well Network	3
---	---

TABLES

1.	Summary of MCL Exceedances	5
	Exceedances of Statistically Derived Historical Background Concentrations	
3.	Exceedances of Current Background UTL in Downgradient Wells of Constituents that also	
	Exceed the Historical Background UTL	5
4.	C-746-S and T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	7
5.	Monitoring Wells included in Statistical Analysis*	. 10

ACRONYMS

CFR COD CY	Code of Federal Regulations chemical oxygen demand calendar year
KAR	Kentucky Administrative Regulations
KDWM	Kentucky Division of Waste Management
KRS	Kentucky Revised Statutes
LATA Kentucky	LATA Environmental Services of Kentucky, LLC
LEL	lower explosive limit
LRGA	Lower Regional Gravel Aquifer
MCL	maximum contaminant level
MW	monitoring well
PGDP	Paducah Gaseous Diffusion Plant
RGA	Regional Gravel Aquifer
UCRS	Upper Continental Recharge System
URGA	Upper Regional Gravel Aquifer
UTL	upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills Fourth Quarter Calendar Year 2014 (October–December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045 for the C-746-S Residential Landfill and for the C-746-T Inert Landfill. This report was written using the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) groundwater reporting forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determination are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) and for all permit-required parameters listed in 40 *CFR* § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred, since the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-S&T Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 *KAR* 48:090 § 4.

1.1 BACKGROUND

The C-746-S&T Landfills are closed solid waste landfills located north of the Paducah Gaseous Diffusion Plant (PGDP) and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a cover of compacted soil. The C-746-S Landfill was a sanitary landfill for PGDP. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from PGDP. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: (1) the Upper Continental Recharge System (UCRS), (2) the Upper Regional Gravel Aquifer (URGA), and (3) the Lower Regional Gravel Aquifer (LRGA).

A map of the monitoring well (MW) locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is in a north-northeasterly direction in the vicinity of the C-746-S&T Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for the UCRS wells are reported in the quarterly report.

Groundwater sampling was conducted within the fourth quarter 2014 during October using LATA Environmental Services of Kentucky, LLC, (LATA Kentucky) procedure PAD-ENM-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water measurements were collected on October 28 and 29, 2014, in MWs of the C-746-S&T Landfills (see Table E.1), in MWs of the C-746-U Landfill, and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 38 vicinity wells define the potentiometric surface for the RGA.¹ Regional flow in the RGA in October was northeastward, toward the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in October was 4.06×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 5.29×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.69 to 1.53 ft/day (see Table E.3).

1.2.2 Methane Monitoring

The fourth quarter CY 2014 methane inspection was not completed during December 2014 because of inclement weather.

Landfill operations staff monitored for the occurrence of methane on January 16, 2015, in 1 on-site building location, 4 locations along the landfill boundary, and 27 gas-passive vents located in Cells 1, 2, and 3 of the C-746-S Landfill. See Appendix H for a map of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the

¹ Although depth-to-water is measured in the UCRS wells, the UCRS has a strong vertical hydraulic gradient that varies locally. The UCRS wells are screened over different elevations; therefore, the UCRS well measurements are not sufficient for mapping the potentiometric surface.

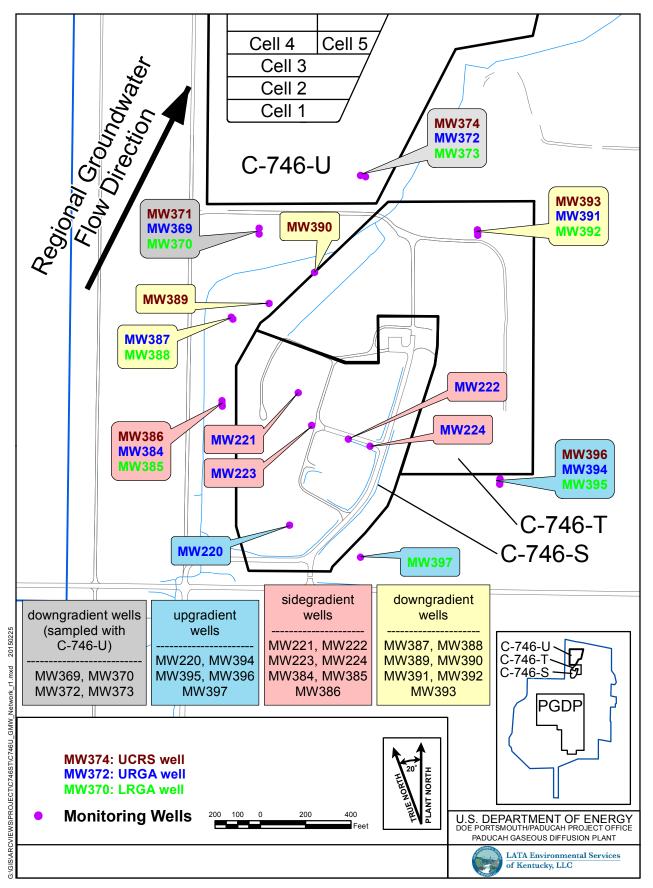


Figure 1. C-746-S&T Landfill Groundwater Monitoring Well Network

regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the approved C-746-S&T Landfill Methane Monitoring Report form provided in Appendix H.

1.2.3 Surface Water Monitoring

There was no surface water sampling conducted during the fourth quarter 2014 due to insufficient rainfall during normal landfill operating hours.

1.3 KEY RESULTS

Parameters that had concentrations that exceeded the respective MCL are listed in Table 1. Those constituents (present in downgradient wells) that exceeded their respective MCL were further evaluated against their historical UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL for the fourth quarter 2014, as well as parameters that exceeded their MCL (beta activity) that also exceeded their historical background MCL. Those constituents (present in downgradient wells) that exceed their historical UTL were evaluated against their current-background UTL derived using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM in accordance with 401 *KAR* 48:300 § 7 prior to the submittal of this report.

There were no new MCL exceedances for this quarter. The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. Because the trichloroethene concentration did not exceed the historical UTL, the MCL exceedances for trichloroethene in MW372, MW373, MW391, MW392, and MW394 are not attributable to a C-746-S&T Landfill source and are considered a Type I exceedance per the approved Groundwater Monitoring Plan (LATA Kentucky 2014).

The MCL exceedances for beta activity in MW387 and MW388 also were shown to exceed both the historical background UTL and the current background UTL; therefore, they preliminarily were considered to be Type 2 exceedances (source unknown).

This report serves as the notification of parameters that had statistically significant increased concentrations relative to background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 8; and 401 *KAR* 48:300 § 7.

In accordance with Permit Condition GSTR0003, Variance 2, of the Solid Waste Permit (Permit), the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the Permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

Of the constituents that had exceedances of the statistically derived historical background UTL, these parameters underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient to identify if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
NONE	MW372: Beta activity,	MW373:Trichloroethene
	trichloroethene	
	MW384: Beta activity	MW385: Beta activity
	MW387: Beta activity	MW388: Beta activity
	MW391: Trichloroethene	MW392: Trichloroethene
	MW394: Trichloroethene	

Table 2. Exceedances of Statistically Derived Historical Background Concentrations (Parameters with MCLs are included only if listed in Table 1.)

UCRS	URGA	LRGA
MW386: Oxidation-reduction	MW222: COD	MW370: Oxidation-reduction
potential, thorium-230		potential, radium-226, sulfate
MW390: Aluminum, chloride,	MW224: Sodium	MW373: Calcium, conductivity,
oxidation-reduction potential,		dissolved solids, magnesium,
radium-226, technetium-99,		oxidation-reduction potential,
thorium-230		sulfate, technetium-99
MW393: Oxidation-reduction	MW369: Oxidation-reduction	MW385: Beta activity, ^a oxidation-
potential	potential, radium-226,	reduction potential, sulfate,
	technetium-99	technetium-99
	MW372: Beta activity, ^a calcium,	MW388: Beta activity, ^a oxidation-
	conductivity, dissolved solids,	reduction potential, sulfate,
	magnesium, sodium, sulfate,	technetium-99
	technetium-99	
	MW384: Beta activity, ^a sodium,	MW392: Oxidation-reduction
	sulfate, technetium-99	potential, pH
	MW387: Beta activity, ^a dissolved	
	solids, magnesium, oxidation-	
	reduction potential, sulfate,	
	technetium-99	

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393

Upgradient wells: MW220, MW394, MW395, MW396, ^bMW397

^a Beta activity has an MCL; the exceedances of the MCL were subjected to a comparison against the statistically derived historical background. ^b In the same direction (relative to the landfill) as RGA wells considered to be upgradient

Table 3. Exceedances of Current Background UTL in Downgradient Wells of ConstituentsThat Also Exceed the Historical Background UTL

(Parameters with MCLs are included only if listed in Table 1.)

UCRS	URGA	LRGA
	MW369: Technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate, technetium-99
	MW372: Beta activity, calcium, conductivity, dissolved solids, magnesium, sodium, sulfate, technetium-99	MW388: Beta activity, sulfate, technetium-99
	MW387: Beta activity, sulfate, technetium-99	MW392: pH

constituents present in downgradient wells with historical UTL exceedances. Constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance. Those constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and could have the C-746-S or C-746-T Landfills as a source. These preliminarily are considered to be Type 2 exceedances per the approved monitoring plan.

1.3.1 Summary of C-746-S&T Results and Discussion

Groundwater monitoring identified parameters (TCE, beta activity) that exceeded their respective MCL (see Table 1); however, the TCE exceedances did not exceed their respective historical UTL and are considered Type 1 exceedances (not attributable to the landfill). The beta activity MCL exceedances also exceeded their historical UTL.

Groundwater monitoring identified parameters that exceeded their respective historical UTL (see Table 2) but did not exceed the current UTL; thus, these also are considered to be Type I exceedances (not attributable to the landfill). The gradients in UCRS wells are downward. Thus, none of the UCRS wells are properly considered to be downgradient of the landfill. However, the statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS wells with parameters that exceeded both the historical and current background. These exceedances are not attributable to C-746-S&T landfills and are considered Type 1 exceedances. These exceedances are identified in Appendix D2.

Groundwater monitoring identified parameters that exceeded both their historical UTL (see Table 2) and their current UTL (see Table 3). The source(s) of these exceedances are not determined; thus, they preliminarily are considered to be Type 2 exceedances.

A preliminary review of the Type 2 exceedances indicates that these do not likely have a landfill source for the following reasons.

- Only 6 of 11 downgradient wells have these exceedances; if there were a landfill source, it would be expected that more of the downgradient wells would have these exceedances, and it would be expected that there would be more exceedances in the (shallow) URGA relative to the (deeper) LRGA.
- The exceedances are largely localized to two areas.
- The exceedances of some constituents (beta activity/technetium-99) are explained by the presence of an upgradient source of technetium-99.
- There are several non-landfill potential source(s) of the calcium, conductivity, dissolved solids, magnesium, sodium, and sulfate exceedances.
- All of these exceedances previously have been seen in these same wells (see Appendix G).

To further evaluate these preliminary Type 2 exceedances, these parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. None of the parameters exhibits an increasing trend. In fact, most of the identified concentration trend slopes are negative. Downgradient concentrations do not exhibit a statistically significant increasing trend; thus, the UTL exceedances may be considered Type 1 exceedances (not attributable to the landfill). Further evaluation of the potential sources of these exceedances may be considered for the next quarter's monitoring program.

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-value ²	S ³	Var(S) ⁴	Sen's Slope ⁵	Kendall Correlation ⁶	Decision ⁷
	MW369	Technetium-99	8	0.05	0.274	-6.000	0.000	-0.510	-0.214	No Trend
		Beta Activity	8	0.05	0.452	-2.000	0.000	-5.205	-0.071	No Trend
		Calcium	8	0.05	0.054	-14.00	0.000	-1.233	-0.500	No Trend
		Conductivity	8	0.05	0.199	-8.000	0.000	-6.300	-0.286	No Trend
	MW372	Dissolved Solids	8	0.05	0.089	-12.00	0.000	-12.175	-0.429	No Trend
	IVI VV 572	Magnesium	8	0.05	0.159	-9.000	64.33	-0.621	-0.327	No Trend
		Sodium	8	0.05	0.452	-2.000	0.000	-0.163	-0.071	No Trend
		Sulfate	8	0.05	0.449	-2.000	60.67	0.000	-0.077	No Trend
		Technetium-99	8	0.05	0.309	-5.000	64.33	-3.350	-0.182	No Trend
	MW373	Calcium	8	0.05	0.500	-1.000	64.33	-0.025	-0.036	No Trend
C-746-S and T		Conductivity	8	0.05	0.054	-14.00	0.000	-3.850	-0.500	No Trend
Landfills Downgradient		Dissolved Solids	8	0.05	0.089	-12.00	0.000	-6.000	-0.429	No Trend
Wells	101 00 575	Magnesium	8	0.05	0.023	-17.00	64.33	-0.508	-0.618	Negative Trend
		Sulfate	8	0.05	0.067	-13.00	64.33	-3.417	-0.473	No Trend
		Technetium-99	8	0.05	0.012	-19.00	64.33	-4.993	-0.691	Negative Trend
	MW387	Beta Activity	8	0.05	0.274	6.000	0.000	4.643	0.214	No Trend
		Magnesium	8	0.05	0.360	-4.000	0.000	-0.140	-0.143	No Trend
		Sulfate	8	0.05	0.500	1.000	64.33	0.067	0.036	No Trend
		Technetium-99	8	0.05	0.227	7.000	64.33	11.50	0.255	No Trend
		Beta Activity	8	0.05	0.548	0.000	0.000	-0.825	0.000	No Trend
	MW388	Sulfate	8	0.05	0.199	-8.000	0.000	-0.750	-0.286	No Trend
		Technetium-99	8	0.05	0.138	10.00	0.000	6.235	0.357	No Trend
	MW392	pH	8	0.05	0.402	3.000	64.33	0.005	0.109	No Trend

Table 4. C-746-S and T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

¹An alpha of 0.05 represents a 95% confidence interval. ²The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

Table 4. C-746-S and T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters (Continued)

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

⁴ VAR(s) represents the variance of S in the sample set and takes into account statistical ties.

⁵ The magnitude of trend is predicted by the Sen's Slope. Here, the slope is described as the median of all (x j-x k)/(j-k), where x is a data point and j and k are values of time.

⁶ Kendall's correlation is described as the difference of concordant pairs and discordant pairs, also taking sample size and statistical ties into account. When the Kendall's correlation is positive, it indicates an increasing trend and when it is negative, it indicates a decreasing trend

⁷ The Mann-Kendall decision operates on two hypotheses, the H_0 and H_a . H_0 assumes there is no trend in the data, whereas Ha assumes either a positive or negative trend. Two different tests were run to test for positive or negative trends. This table reports the test with the lowest p-value.

Note: Statistics generated using XLSTAT Version 2014.2.07.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the fourth quarter 2014 groundwater data collected from the C-746-S&T Landfills MWs were performed in accordance with the *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1, D2, and D3).

For those parameters that exceed the respective Kentucky solid waste facility MCL, found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both the upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-side tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 5.

UCRS ¹	URGA	LRGA
MW386	MW220 (upgradient)	MW370
MW389 (dry)***	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396**	MW224	MW392
	MW369	MW395 (upgradient)
	MW372	MW397 (upgradient)
	MW384	
	MW387	
	MW391	
	MW394 (upgradient)	

 Table 5. Monitoring Wells included in Statistical Analysis*

*A map showing the monitoring well locations is shown in Figure 1.

**In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

***MW389 had insufficient water to permit a water level measurement or to provide water samples for laboratory analysis. ¹MW371 and MW374 are listed on Table 2 of the Groundwater Monitoring Plan as wells associated with the C-746-S&T Landfills; however, they are not listed in Condition GSTR0003 of the permit as wells permitted for the C-746-S&T monitoring well network. The inclusion of these wells on Table 2 of the Groundwater Monitoring Plan is an error and will be corrected in the next revision of the plan. Data for these wells is included appropriately in the C-746-U Landfill quarterly monitoring report.

STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances.

Upper Continental Recharge System

In this quarter, 30 parameters required statistical analysis in the UCRS. The statistical analysis was conducted separately for each parameter in each well. During the fourth quarter, aluminum, chloride, oxidation-reduction potential, radium-226, technetium-99, and thorium-230 exceeded their respective historical UTL and are listed in Table 2.

Upper Regional Gravel Aquifer

In this quarter, 33 parameters required statistical analysis in the URGA. The statistical analysis was conducted separately for each parameter in each well. During the fourth quarter, beta activity, calcium, COD, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2.

Lower Regional Gravel Aquifer

In this quarter, 31 parameters required statistical analysis in the LRGA. The statistical analysis was conducted separately for each parameter in each well. During the fourth quarter, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, pH, radium-226, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2.

3. DATA VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory project management or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices, and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples—such as matrix spikes, matrix spike duplicates, and method blanks—are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.


Data validation results for this data set indicated that all data were considered acceptable.

4. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills Fourth Quarter Calendar Year 2014 (October-December) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PAD-ENM-0090/V4)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

)avis

February 26, 2015

5. REFERENCE

LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION **DIVISION OF WASTE MANAGEMENT** SOLID WASTE BRANCH **14 REILLY ROAD** FRANKFORT, KY 40601

Facility Name:	y Name: U.S. DOE – Paducah Gaseous Diffusion Plant			C-746-S&T Landfills				
	(As officially shown or	DWM Permit Face)	_					
Permit No:	073-00014 & 073-00015 073-00045	Finds/Unit No:	Quarter & Year	4th Qtr. CY 2014				
Please check t	Please check the following as applicable:							
Charac	cterization <u>X</u> Quarte	erly Semiannual	Annual	Assessment				
Please check a	applicable submittal(s):	X Groundwater	S	urface Water				
		Leachate	X N	Iethane Monitoring				

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is NOT considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Mark J. Duff, Paducah Project Manager LATA Environmental Services of Kentucky, LLC

Jennifer Woodard, Paducah Site Lead U.S. Department of Energy

<u>2-27-15</u> Date

APPENDIX B

FACILITY INFORMATION SHEET

Sampling Date:	Groundwater: October 2014 Methane: January 2015	County: McCracken	Permit Nos.	073-00014 & 073-00015 & 073-00045					
Facility Name:									
(As officially shown on DWM Permit Face)									
Site Address:	5501 Hobbs Road Street	Kevil, Kentucky		42053					
		City/State	· · ·	Zip					
Phone No:	(270) 441-6800 Latitude:	N 37° 07' 37.70"	Longitude:	W 88° 47' 55.41"					
	OWNI	ER INFORMATION							
Facility Owner:	U.S. DOE, W. E. Murphie, Manager		Phone No:	(859) 219-4001					
Contact Person:	Mark J. Duff		Phone No:	(270) 441-5030					
Contact Person Ti	tle: Project Manager, LATA Environ	mental Services of Kentucky, LLC							
Mailing Address:	761 Veterans Avenue	Kevil, Kentucky		42053					
-	Street	City/State		Zip					
Company:		LING PERSONNEL (LANDFILL OR LABORATORY) htucky, LLC							
Contact Person:	Jeff Boulton	¥ '	Phone No:	(270) 441-5444					
Mailing Address:	761 Veterans Avenue	Kevil, Kentucky		42053					
	Street	City/State		Zip					
	LABOR	ATORY RECORD #1							
Laboratory:	GEL Laboratories, LLC	Lab ID No:	KY90129						
Contact Person:	Joanne Harley		Phone No:	(843) 769-7387					
Mailing Address:	2040 Savage Road	Charleston, South Carolina		29407					
	Street	City/State		Zip					
	LABOR	ATORY RECORD #2							
Laboratory:		Lab ID No:							
Contact Person:			Phone No:						
Mailing Address:									
	Street	City/State		Zip					
LABORATORY RECORD #3									
Laboratory:		Lab ID No:							
Contact Person:			Phone No:						
Mailing Address:	Street	City/State		Zip					
	Succ	City/State		ыĥ					

FACILITY INFORMATION SHEET

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520 ²	1	8000-52	202	8000-52	242	8000-524	13
Facility's Lo	cal Well or Spring Number (e.g., M	W-1	, MW-2, etc	.)	220		221		222		223	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		10/21/2014 0	8:20	10/21/2014	09:23	10/21/2014	13:36	10/21/2014	12:42
Duplicate ("Y	" or "N") ²				N		N		N		Ν	
Split ("Y" or	"N") ³				N		Ν		N		Ν	
Facility Samp	le ID Number (if applicable)		MW220SG1	-15	MW221S0	G1-15	MW222S0	G1-15	MW223SG	1-15		
Laboratory Sa	mple ID Number (if applicable)		35964200	1	359642	002	3596420	003	3596420	04		
Date of Analy	ate of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						10/27/20	014	10/27/20	014	10/27/201	14
Gradient with	respect to Monitored Unit (UP, DC	OWN,	SIDE, UNKN	OWN)	UP		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.269		0.494		0.446		0.465	
16887-00-6	Chloride(s)	т	mg/L	9056	24.3		37.6		33.8		34.2	
16984-48-8	Fluoride	т	mg/L	9056	0.146		0.171		0.243		0.223	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.3		1.24		1.53		1.15	
14808-79-8	Sulfate	т	mg/L	9056	13.5		13.9		10.8		13.5	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.05		30.07		30.09		30.09	
s0145	Specific Conductance	т	µMH0/cm	Field	316		380		327		383	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	2	8000-5243	
Facility's Lo	cal Well or Spring Number (e.g., Mw	-1, 1	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.15		323.91		324.02		323.94	
N238	Dissolved Oxygen	т	mg/L	Field	6.39		4.88		4.3		1.9	
S0266	Total Dissolved Solids	т	mg/L	160.1	159		180		177		213	
S0296	рн	т	Units	Field	6.03		6.09		6.24		6.09	
NS215	Eh	т	mV	Field	401		329		321		383	
s0907	Temperature	т	°C	Field	14.61		15.72		18.94		17.94	
7429-90-5	Aluminum	т	mg/L	6020	0.0283	J	<0.05		0.121		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003	*	<0.003	*	<0.003	*	<0.003	*
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00176	J	0.00175	J
7440-39-3	Barium	т	mg/L	6020	0.172		0.202		0.249		0.256	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005	*	<0.0005	*	<0.0005	*	<0.0005	*
7440-42-8	Boron	т	mg/L	6020	0.00715	J	0.0147	J	0.00765	J	0.00659	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	18.4		20.4		14.6		21.4	
7440-47-3	Chromium	т	mg/L	6020	0.0035	J	0.0182		<0.01		0.0102	
7440-48-4	Cobalt	т	mg/L	6020	0.00027	J	0.00137		0.00128		0.00067	J
7440-50-8	Copper	т	mg/L	6020	0.00119	J	0.00135	J	0.00052	J	0.0004	J
7439-89-6	Iron	т	mg/L	6020	0.079	J	0.0896	J	0.153		<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002	*	<0.002	*	<0.002	*	<0.002	*
7439-95-4	Magnesium	т	mg/L	6020	7.41		9.02		6.5		8.85	
7439-96-5	Manganese	т	mg/L	6020	0.00127	J	0.00346	J	0.0168		0.00426	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-52	01	8000-52	:02	8000-52	42	8000-52	.43
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	0.00065	*	0.00369	*	0.0002	*J	0.00397	*
7440-02-0	Nickel	т	mg/L	6020	0.0413		0.108		0.0444	1	0.22	
7440-09-7	Potassium	т	mg/L	6020	3.26		1.2		0.412		1.68	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	0.00176	J	<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001	*	<0.001	*	<0.001	*	<0.001	*
7440-23-5	Sodium	т	mg/L	6020	36		46.5		46.6		48.6	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002	*	<0.002	*	<0.002	*	<0.002	*
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6010	<0.005		<0.005		<0.005		<0.005	
7440-66-6	Zinc	т	mg/L	6020	0.00742	BJ	0.00637	BJ	0.00621	BJ	0.0105	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8000-520 ⁻	1	8000-520)2	8000-52	242	8000-52	243	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	12	8000-524	43
Facility's Loo	cal Well or Spring Number (e.g., M	w-1	L, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000202		<0.0000202		<0.0000202		<0.0000202	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.1		<0.098		<0.0952		<0.0962	
12674-11-2	PCB-1016	т	ug/L	8082	<0.1		<0.098		<0.0952		<0.0962	
11104-28-2	PCB-1221	т	ug/L	8082	<0.1		<0.098		<0.0952		<0.0962	
11141-16-5	PCB-1232	т	ug/L	8082	<0.1		<0.098		<0.0952		<0.0962	
53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.098		<0.0952		<0.0962	
12672-29-6	PCB-1248	т	ug/L	8082	<0.1		<0.098		<0.0952		<0.0962	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-8

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	13
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.1		<0.098		<0.0952		<0.0962	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.1		<0.098		<0.0952		<0.0962	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.1		<0.098		<0.0952		<0.0962	
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.658	*	-2.98	*	-4.96	*	-2.83	*
12587-47-2	Gross Beta	т	pCi/L	9310	9.99	*	8.62	*	4.16	*	5.27	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.858	*	0.425	*	0.255	*	0.263	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.616	*	0.649	*	-1.94	*	-0.138	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	35	*	4.53	*	2.22	*	10.6	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	1.29	*	1.32	*	2.35	*	2.23	*
10028-17-8	Tritium	т	pCi/L	906.0	15.1	*	-62.5	*	145	*	13.6	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	10.2	J	<20		57.6		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	0.948	J	1	J	0.864	J	1.09	J
s0586	Total Organic Halides	т	mg/L	9020	<0.01		<0.01		<0.01		<0.01	

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	318	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g., M	ſ₩-1	, MW-2, etc	.)	224		369		370		372	
Sample Sequence	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour:minu	tes)		10/22/2014 1	0:00	10/20/2014	08:42	10/20/2014	13:47	10/16/2014	13:05
Duplicate ("Y	or "N") ²				N		N		N		Ν	
Split ("Y" or	"N") ³				N		N		N		Ν	
Facility Samp	le ID Number (if applicable)		MW224SG1	-15	MW369U	G1-15	MW370U0	G1-15	MW372UG	1-15		
Laboratory Sar	aboratory Sample ID Number (if applicable)						359506	001	359506	002	35928700	03
Date of Analys	ate of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						10/23/2	014	10/23/20	014	10/23/201	14
Gradient with	respect to Monitored Unit (UP, DO) WN	SIDE, UNKN	IOWN)	SIDE		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.411		0.402		0.55		0.629	
16887-00-6	Chloride(s)	т	mg/L	9056	29.2		31.8		40		47.3	
16984-48-8	Fluoride	т	mg/L	9056	0.253		0.19		0.158		0.176	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.614	J	0.474		1.22		0.798	
14808-79-8	Sulfate	т	mg/L	9056	15.5		7.65		19.1		118	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.3		30.03		29.98		29.93	
S0145	Specific Conductance	т	µMH0/cm	Field	439		371		437		766	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

					(00110							
AKGWA NUMBER1	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	cal Well or Spring Number (e.g., Mw	1-1, 1	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
50906	Static Water Level Elevation	т	Ft. MSL	Field	323.78		323.43		323.51		323.61	
N238	Dissolved Oxygen	т	mg/L	Field	2.13		2.1		3.74		0.98	
S0266	Total Dissolved Solids	т	mg/L	160.1	224		193		190		476	
50296	рН	т	Units	Field	6.25		6.09		6.03		6.16	
NS215	Eh	т	mV	Field	364		405		363		88	
S0907	Temperature	т	°C	Field	15.39		14.5		19.5		17.39	
7429-90-5	Aluminum	т	mg/L	6020	0.0243	J	0.184		<0.05		0.0506	
7440-36-0	Antimony	т	mg/L	6020	<0.003	*	<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00171	J	<0.005		0.00186	J
7440-39-3	Barium	т	mg/L	6020	0.224		0.368		0.2		0.0678	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005	*	0.00022	J	<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0129	J	0.0139	J	0.0323		1.08	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	22.8		16.8		28		59.3	
7440-47-3	Chromium	т	mg/L	6020	0.00219	J	<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.0006	J	0.00805		0.00074	J	0.00031	J
7440-50-8	Copper	т	mg/L	6020	<0.001		0.00143		0.00075	J	0.00041	J
7439-89-6	Iron	т	mg/L	6020	0.0605	J	0.339		0.0369	J	0.476	
7439-92-1	Lead	т	mg/L	6020	<0.002	*	<0.002		0.00065	J	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	9.58		7.03		12.2		22.4	
7439-96-5	Manganese	т	mg/L	6020	0.0051		0.038		0.0099		0.0208	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-52	44	8004-48	320	8004-48	18	8004-48	308
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	0.00036	*J	0.0002	J	0.00022	J	0.00041	J
7440-02-0	Nickel	т	mg/L	6020	0.00618		0.00827	J	0.00081	BJ	0.00166	J
7440-09-7	Potassium	т	mg/L	6020	0.924		0.534		2.38		2.37	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		0.00169	J	<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001	*	<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	60		53.4		42.9		59.7	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002	*	<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6010	<0.005		0.00109	J	<0.005		<0.005	
7440-66-6	Zinc	т	mg/L	6020	0.00546	BJ	0.00607	J	0.00417	J	0.00799	BJ
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8000-5244	4	8004-482	20	8004-48	318	8004-48	808
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00127		0.00111		0.00779	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-482	0	8004-481	18	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g., M	MW-1	L, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.00002		<0.00002		<0.0000202		<0.0000204	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0962		0.0385	J	<0.0962		0.103	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0962		<0.0943		<0.0962		<0.0962	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0962		<0.0943		<0.0962		<0.0962	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0962		<0.0943		<0.0962		<0.0962	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0962		0.0385	J	<0.0962		0.103	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0962		<0.0943		<0.0962		<0.0962	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-14

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-5244		8004-4820)	8004-481	8	8004-480)8
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0962		<0.0943		<0.0962		<0.0962	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0962		<0.0943		<0.0962		<0.0962	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0962		<0.0943		<0.0962		<0.0962	
12587-46-1	Gross Alpha	т	pCi/L	9310	1.37	*	-1.45	*	-3.22	*	6.26	*
12587-47-2	Gross Beta	т	pCi/L	9310	-4.79	*	32.1	*	14.5	*	74	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.555	*	0.748	*	0.818	*	0.461	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-2.48	*	-0.216	*	-1.54	*	-1.49	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	11.9	*	43.3	*	22.5	*	107	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.466	*	4.4	*	3.82	*	4.97	*
10028-17-8	Tritium	Т	pCi/L	906.0	-69.2	*	-66.2	*	26.1	*	-2.17	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		31.2		12.9	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.35	J	1.59	J	0.853	J	2.74	
s0586	Total Organic Halides	т	mg/L	9020	0.00516	J	0.0137		0.0038	J	0.00642	J
		+										

Division of Waste Management **RESIDENTIAL/INERT-OUARTERLY** Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502)564-6716 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER¹, Facility Well/Spring Number 8004-4792 8004-4809 8004-4810 8004-4804 373 385 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 384 386 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA NA NA NA 10/16/2014 12:26 10/27/2014 13:43 10/27/2014 12:42 10/23/2014 12:55 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν N Ν Split ("Y" or "N")³ Ν Ν Ν Ν MW373UG1-15 MW384SG1-15 MW385SG1-15 MW386SG1-15 Facility Sample ID Number (if applicable) 359287004 359802001 359980001 359980003 Laboratory Sample ID Number (if applicable) 10/23/2014 10/29/2014 10/29/2014 10/29/2014 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis DOWN SIDE SIDE SIDE Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) CAS RN⁴ CONSTITUENT т Unit METHOD DETECTED F DETECTED DETECTED DETECTED F F F D OF VALUE L VALUE L VALUE L VALUE т. 5 MEASURE OR А OR А OR А OR А POL⁶ POL⁶ POL⁶ POL⁶ G G G G S^7 s s s 0.609 0.637 0.284 0.174 J 24959-67-9 Bromide т mg/L 9056 43.5 55.2 27.1 17 16887-00-6 Chloride(s) т 9056 mg/L 0.18 0.237 0.14 0.528 16984-48-8 Fluoride т 9056 mq/L 0.908 1.43 0.605 <0.1 s0595- -Nitrate & Nitrite т 9056 mq/L 181 192 18.8 43.1 14808-79-8 т Sulfate mq/L 9056 29.93 30.22 29.88 29.9 NS1894 Barometric Pressure Reading T Inches/Hg Field 901 522 456 639 s0145- т Specific Conductance Field µMH0/cm

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

00					(00110							
AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Lo	ocal Well or Spring Number (e.g., M	1-1, 1	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	323.58		323.39		323.57		344.24	
N238	Dissolved Oxygen	т	mg/L	Field	1.37		4.17		0.81		1.07	
S0266	Total Dissolved Solids	т	mg/L	160.1	536		251		260		366	
50296	рн	т	Units	Field	6.22		6.23		6.34		6.63	
NS215	Eh	т	mV	Field	404		278		312		125	
S0907	Temperature	т	°C	Field	16.83		16.11		21.28		21.67	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		<0.05		0.0315	J
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00222	J	<0.005		0.00203	J
7440-39-3	Barium	т	mg/L	6020	0.0264		0.143		0.228		0.209	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	1.65		0.0143	J	0.0136	BJ	0.00643	BJ
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	72.4		29.8		29.4		22.5	
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.00407	J	<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00098	J	0.00016	J	<0.001		0.00874	
7440-50-8	Copper	т	mg/L	6020	<0.001		0.00052	J	0.00058	BJ	<0.001	
7439-89-6	Iron	т	mg/L	6020	0.2		0.263		<0.1		1.15	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	27.4		12.1		11.3		9.63	
7439-96-5	Manganese	т	mg/L	6020	0.0598		0.0339		0.0015	J	1.16	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	92	8004-48	809	8004-48	10	8004-48	304
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005		0.00031	J	0.00046	J
7440-02-0	Nickel	т	mg/L	6020	0.00255		<0.002		0.00088	J	0.00196	J
7440-09-7	Potassium	т	mg/L	6020	2.92		1.14		1.75		0.289	J
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		0.00249	J	<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	61		58.7		40.6		107	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.00011	J	<0.0002	
7440-62-2	Vanadium	т	mg/L	6010	<0.005		<0.005		<0.005		<0.005	
7440-66-6	Zinc	т	mg/L	6020	0.00704	BJ	0.00389	J	0.00995	J	0.00801	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-480)9	8004-4	310	8004-4	304
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00767		0.00034	J	<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809)	8004-481	0	8004-480)4
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000203		<0.0000204		<0.0000201		<0.0000201	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0943		<0.098		<0.0952		<0.0952	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0943		<0.098		<0.0952		<0.0952	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0943		<0.098		<0.0952		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0943		<0.098		<0.0952		<0.0952	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0943		<0.098		<0.0952		<0.0952	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0943		<0.098		<0.0952		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4792		8004-4809)	8004-481	0	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g.,	, MW-1	L, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0943		<0.098		<0.0952		<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0943		<0.098		<0.0952		<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0943		<0.098		<0.0952		<0.0952	
12587-46-1	Gross Alpha	т	pCi/L	9310	-1.21	*	-1.23	*	-1.58	*	2.26	*
12587-47-2	Gross Beta	т	pCi/L	9310	24.9	*	110	*	78.2	*	0.582	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.42	*	0.253	*	0.513	*	0.352	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-2	*	0.88	*	-1.89	*	0.831	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	38	*	144	*	106	*	-0.956	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	3.9	*	-0.828	*	0.97	*	2.81	*
10028-17-8	Tritium	т	pCi/L	906.0	18.7	*	34.6	*	131	*	64.8	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	12.9	J	<20		<20		31.4	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.89	J	1.24	J	1.35	J	10.6	
s0586	Total Organic Halides	т	mg/L	9020	0.028		0.0103		0.00608	J	0.205	
												
												

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER1,	, Facility Well/Spring Number				8004-481	5	8004-48	316	8004-481	2	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g., M	ſ₩-1	, MW-2, etc	••)	387		388		389		390	
Sample Sequen	ce #				1		1		1		1	
If sample is a :	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour:minu	tes)		10/23/2014 0	8:22	10/23/2014	4 09:22	NA		10/22/2014 0	8:59
Duplicate ("Y	or "N") ²				N		Ν		Ν		Ν	
Split ("Y" or	"N") ³				N		Ν		Ν		Ν	
Facility Samp	le ID Number (if applicable)				MW387SG1	-15	MW388S	G1-15	NA		MW390SG1	-15
Laboratory Sa	mple ID Number (if applicable)		35980200	5	359802	007	NA		35966301	9		
Date of Analy:	sis (Month/Day/Year) For <u>Volatile</u>	ysis	10/29/201	4	10/29/2	014	NA		10/28/201	4		
Gradient with	respect to Monitored Unit (UP, DC), NWC	SIDE, UNKN	IOWN)	DOWN		DOW	N	SIDE		DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.517		0.405			*	1.03	
16887-00-6	Chloride(s)	т	mg/L	9056	40.4		31.2			*	121	
16984-48-8	Fluoride	т	mg/L	9056	0.586		0.196			*	0.265	
\$0595	Nitrate & Nitrite	т	mg/L	9056	1.26		1.27			*	3.77	
14808-79-8	Sulfate	т	mg/L	9056	31.9		21.5			*	28.4	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.21		30.21			*	30.29	
S0145	Specific Conductance	т	µMH0/cm	Field	555		433			*	761	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

			(00110									
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Loc	cal Well or Spring Number (e.g., Mw	1-1, 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
50906	Static Water Level Elevation	т	Ft. MSL	Field	323.42		323.34			*	323.42	
N238	Dissolved Oxygen	т	mg/L	Field	4.47		4.89			*	5.65	
S0266	Total Dissolved Solids	т	mg/L	160.1	331		221			*	390	
50296	рн	т	Units	Field	6.27		6.11			*	6.85	
NS215	Eh	т	mV	Field	449		363			*	446	
50907	Temperature	т	°C	Field	13.44		14.72			*	13.33	
7429-90-5	Aluminum	т	mg/L	6020	0.0299	J	0.015	J		*	1.03	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	*
7440-38-2	Arsenic	т	mg/L	6020	0.00399	J	0.0018	J		*	0.00228	J
7440-39-3	Barium	т	mg/L	6020	0.131		0.212			*	0.293	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	*
7440-42-8	Boron	т	mg/L	6020	0.0334		0.021			*	<0.015	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	37.3		26.8			*	36.8	
7440-47-3	Chromium	т	mg/L	6020	0.00393	J	<0.01			*	0.00756	J
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001			*	0.00101	
7440-50-8	Copper	т	mg/L	6020	0.00055	J	0.0005	J		*	0.00129	J
7439-89-6	Iron	т	mg/L	6020	0.0805	J	0.0331	J		*	1.08	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*	0.00054	*J
7439-95-4	Magnesium	т	mg/L	6020	15.4		11.5			*	15.4	
7439-96-5	Manganese	т	mg/L	6020	0.0024	J	<0.005			*	0.00684	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-48	15	8004-48	316	8004-4812	2	8004-48	11
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005			*	0.00083	*
7440-02-0	Nickel	т	mg/L	6020	<0.002		0.00055	BJ		*	0.00204	
7440-09-7	Potassium	т	mg/L	6020	1.83		2.06			*	0.503	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001			*	<0.001	*
7440-23-5	Sodium	т	mg/L	6020	55.5		48.7			*	97.7	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005			*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002			*	<0.002	*
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002			*	0.00013	BJ
7440-62-2	Vanadium	т	mg/L	6010	<0.005		<0.005			*	0.00315	J
7440-66-6	Zinc	т	mg/L	6020	0.00562	J	0.00427	J		*	0.00991	BJ
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number		8004-481	5	8004-481	16	8004-481	2	8004-481	1		
Facility's Lo	cal Well or Spring Number (e.g., 1	ww-1	L, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	0.00038	J	0.00051	J		*	<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00061	J	0.00075	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815	5	8004-4816	6	8004-481	2	8004-481	I
Facility's Loc	al Well or Spring Number (e.g., M	w -1	L, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000201		<0.0000201			*	<0.0000202	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.099		<0.098			*	<0.0962	
12674-11-2	PCB-1016	т	ug/L	8082	<0.099		<0.098			*	<0.0962	
11104-28-2	PCB-1221	т	ug/L	8082	<0.099		<0.098			*	<0.0962	
11141-16-5	PCB-1232	т	ug/L	8082	<0.099		<0.098			*	<0.0962	
53469-21-9	PCB-1242	т	ug/L	8082	<0.099		<0.098			*	<0.0962	
12672-29-6	PCB-1248	т	ug/L	8082	<0.099		<0.098			*	<0.0962	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4815		8004-4816	6	8004-481	2	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g.,	, MW-1	L, MW-2, et)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.099		<0.098			*	<0.0962	
11096-82-5	PCB-1260	т	ug/L	8082	<0.099		<0.098			*	<0.0962	
11100-14-4	PCB-1268	т	ug/L	8082	<0.099		<0.098			*	<0.0962	
12587-46-1	Gross Alpha	т	pCi/L	9310	-2.37	*	0.589	*		*	0.198	*
12587-47-2	Gross Beta	т	pCi/L	9310	147	*	55.4	*		*	36	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.429	*	0.364	*		*	1.13	*
10098-97-2	Strontium-90	т	pCi/L	905.0	2.56	*	2.93	*		*	2.23	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	245	*	79	*		*	58	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	2.09	*	1.94	*		*	1.54	*
10028-17-8	Tritium	т	pCi/L	906.0	48	*	50.7	*		*	52.7	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	8.54	J	<20			*	7.55	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.27	J	1.3	J		*	2.33	
S0586	Total Organic Halides	Т	mg/L	9020	0.00922	J	0.00756	J		*	0.0208	

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant 14 Reilly Road Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER¹, Facility Well/Spring Number 8004-4805 8004-4806 8004-4807 8004-4802 394 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 391 392 393 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA NA NA NA 10/21/2014 12:39 10/21/2014 08:35 10/27/2014 08:15 10/21/2014 07:59 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν N Ν Split ("Y" or "N")³ Ν Ν Ν Ν MW391SG1-15 MW392SG1-15 MW393SG1-15 MW394SG1-15 Facility Sample ID Number (if applicable) 359642005 359642006 359642008 359980005 Laboratory Sample ID Number (if applicable) 10/27/2014 10/27/2014 10/27/2014 10/29/2014 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis DOWN DOWN DOWN UP Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) CAS RN⁴ CONSTITUENT т Unit METHOD DETECTED F DETECTED DETECTED DETECTED F F F D OF VALUE L VALUE L VALUE L VALUE ь 5 MEASURE OR А OR А OR А OR А POL⁶ POL⁶ POL⁶ POL⁶ G G G G S^7 s s s 0.644 0.614 0.247 0.679 24959-67-9 Bromide т mg/L 9056 52.6 51.2 17.6 52.8 16887-00-6 Chloride(s) т 9056 mg/L 0.138 0.194 0.126 0.123 16984-48-8 Fluoride т 9056 mq/L J 1.21 0.361 <0.1 1.31 s0595- -Nitrate & Nitrite т 9056 mq/L 15 6.82 10.9 11.1 14808-79-8 т Sulfate mq/L 9056 30.09 30.07 30.07 29.92 NS1894 Barometric Pressure Reading T Inches/Hg Field 340 405 332 397 s0145- т Specific Conductance Field µMH0/cm

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

			(00110	/								
AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	6	8004-480	7	8004-4802	2
Facility's Lo	cal Well or Spring Number (e.g., M	1-1 , 1	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	319.59		322.82		329.69		323.91	
N238	Dissolved Oxygen	т	mg/L	Field	3.76		1.03		1.17		4.09	
S0266	Total Dissolved Solids	т	mg/L	160.1	206		197		191		187	
s0296	рн	т	Units	Field	6.02		7		6.04		6.34	
NS215	Eh	т	mV	Field	340		430		208		453	
s0907	Temperature	т	°C	Field	18.83		14.28		15.06		17.11	
7429-90-5	Aluminum	т	mg/L	6020	0.0303	J	<0.05		0.0241	J	0.0202	J
7440-36-0	Antimony	т	mg/L	6020	<0.003	*	<0.003	*	<0.003	*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.00476	J	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.239		0.193		0.12		0.251	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005	*	<0.0005	*	<0.0005	*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0265		0.0251		0.016		0.0211	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	26.9		27.4		11.3		26.5	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00018	J	0.00012	J	<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00047	J	<0.001		<0.001		0.00037	BJ
7439-89-6	Iron	т	mg/L	6020	0.209		0.105		2.2		0.0738	J
7439-92-1	Lead	т	mg/L	6020	<0.002	*	<0.002	*	0.00069	*J	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11		9.7		3.35		11	
7439-96-5	Manganese	т	mg/L	6020	0.00203	J	0.124		0.0434		0.007	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480	05	8004-48	806	8004-48	07	8004-48	02
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005	*	0.00025	*J	<0.0005	*	<0.0005	
7440-02-0	Nickel	т	mg/L	6020	0.00087	J	0.00075	J	<0.002		0.0024	
7440-09-7	Potassium	т	mg/L	6020	1.5		1.74		0.374		1.17	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001	*	<0.001	*	<0.001	*	<0.001	
7440-23-5	Sodium	т	mg/L	6020	34.3		38.1		72.5		33.9	
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002	*	<0.002	*	<0.002	*	<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.00013	BJ	<0.0002	
7440-62-2	Vanadium	т	mg/L	6010	<0.005		<0.005		<0.005		<0.005	
7440-66-6	Zinc	т	mg/L	6020	0.00753	BJ	0.00669	BJ	0.00719	BJ	0.0064	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	06	8004-48	807	8004-48	802
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	0.00069	J	0.0007	J	<0.001		0.00032	J
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0145		0.0182		<0.001		0.00764	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4805	5	8004-4806	6	8004-480	07	8004-480)2
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000199		<0.0000198		<0.00002		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0952		<0.098		<0.0962		<0.099	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0952		<0.098		<0.0962		<0.099	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.098		<0.0962		<0.099	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.098		<0.0962		<0.099	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0952		<0.098		<0.0962		<0.099	
12672-29-6	PCB-1248	т	ug/L	8082	<0.0952		<0.098		<0.0962		<0.099	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4805		8004-4806	6	8004-480)7	8004-480)2
Facility's Lo	cal Well or Spring Number (e.g.	., MW-1	, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.098		<0.0962		<0.099	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0952		<0.098		<0.0962		<0.099	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0952		<0.098		<0.0962		<0.099	
12587-46-1	Gross Alpha	т	pCi/L	9310	-5.16	*	-2.69	*	0.427	*	-1.84	*
12587-47-2	Gross Beta	Т	pCi/L	9310	-3.02	*	1.48	*	0.813	*	3.99	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.495	*	0.484	*	0.292	*	0.706	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.129	*	-3.1	*	-0.75	*	-1.37	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	10.7	*	4.39	*	5.3	*	17.2	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	2.67	*	1.83	*	0.383	*	-0.143	*
10028-17-8	Tritium	Т	pCi/L	906.0	85.8	*	-55.1	*	18.8	*	79.4	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		10.2	J	12.8	J	<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.26	J	1.8	J	3.01		1.11	J
s0586	Total Organic Halides	т	mg/L	9020	0.0113		0.0296		0.0148		0.0107	
												-

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-48	303	8004-48	817	0000-000	0
Facility's Lo	cal Well or Spring Number (e.g., M	W-1	, MW-2, etc	.)	395		396		397		E. BLAN	к
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		Е	
Sample Date a	nd Time (Month/Day/Year hour:minu		10/27/2014 09:39		10/27/2014 08:59		10/21/2014	13:56	10/22/2014 (07:35		
Duplicate ("Y	" or "N") ²				Ν		Ν		Ν		Ν	
Split ("Y" or	"N") ³			N		N		Ν		Ν		
Facility Samp	le ID Number (if applicable)				MW395SG1	-15	MW396S	G1-15	MW397S0	G1-15	RI1SG1-1	15
Laboratory Sa	mple ID Number (if applicable)				35998000	7	359980	009	359642	007	35975600)2
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	10/29/201	4	10/29/2	014	10/27/20	014	10/28/201	4
Gradient with	respect to Monitored Unit (UP, DC	own,	SIDE, UNKN	OWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.59		1.33		0.532			*
16887-00-6	Chloride(s)	т	mg/L	9056	49.7		88.5		42.1			*
16984-48-8	Fluoride	т	mg/L	9056	0.104		0.471		0.118			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.76		<1		1.54			*
14808-79-8	Sulfate	т	mg/L	9056	10.6		25.3		12.6			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.91		29.92		30.07			*
S0145	Specific Conductance	т	µMH0/cm	Field	387		808		337			*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use *`*,"* then describe on *`Written Comments Page."* STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

00			(00110	/								
AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480)1	8004-480	3	8004-4817	7	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., M	v-1 , 1	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.24		367.18		319.82			*
N238	Dissolved Oxygen	т	mg/L	Field	4.25		0.75		5.71			*
S0266	Total Dissolved Solids	т	mg/L	160.1	181		419		161			*
S0296	рн	т	Units	Field	6.06		6.49		5.92			*
NS215	Eh	т	mV	Field	307		141		380			*
s0907	Temperature	т	°C	Field	17.94		19.22		18.33			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.0162	J	<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003	*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00362	J	<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.259		0.451		0.131		<0.002	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		0.00524	*	0.00035	J
7440-42-8	Boron	т	mg/L	6020	0.0206	J	0.00676	BJ	0.0067	J	<0.015	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	26.6		37.9		19.8		<0.2	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00372		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00048	BJ	0.00043	BJ	0.00056	J	<0.001	
7439-89-6	Iron	т	mg/L	6020	<0.1		4.13		<0.1		<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002	*	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.3		16.9		8.07		<0.03	
7439-96-5	Manganese	т	mg/L	6020	<0.005		0.549		0.00118	J	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		0.000069	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-00)00
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.00081		<0.0005	*	<0.0005	
7440-02-0	Nickel	т	mg/L	6020	0.00063	J	0.00106	J	0.00073	J	<0.002	
7440-09-7	Potassium	т	mg/L	6020	1.59		0.804		1.85		<0.3	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001	*	<0.001	
7440-23-5	Sodium	т	mg/L	6020	30.4		109		35.6		<0.25	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005	*	<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002	*	<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		0.00012	J	<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6010	<0.005		<0.005		<0.005		<0.005	
7440-66-6	Zinc	т	mg/L	6020	0.00995	J	0.00841	J	0.00745	BJ	0.00547	BJ
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480)3	8004-48	317	0000-00	000
Facility's Loo	cal Well or Spring Number (e.g.,)	MW-1	L, MW-2, et)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00412		<0.001		0.00033	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4801	1	8004-4803	3	8004-48	17	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	395		396		397		E. BLAN	١K
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.0000201		<0.00002		<0.00002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.098		<0.099		<0.0971		<0.0943	
12674-11-2	PCB-1016	т	ug/L	8082	<0.098		<0.099		<0.0971		<0.0943	
11104-28-2	PCB-1221	т	ug/L	8082	<0.098		<0.099		<0.0971		<0.0943	
11141-16-5	PCB-1232	т	ug/L	8082	<0.098		<0.099		<0.0971		<0.0943	
53469-21-9	PCB-1242	т	ug/L	8082	<0.098		<0.099		<0.0971		<0.0943	
12672-29-6	PCB-1248	т	ug/L	8082	<0.098		<0.099		<0.0971		<0.0943	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-38

AKGWA NUMBER1,	Facility Well/Spring Number				8004-4801		8004-4803	3	8004-481	7	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	395		396		397		E. BLAN	IK
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.098		<0.099		<0.0971		<0.0943	<u> </u>
11096-82-5	PCB-1260	т	ug/L	8082	<0.098		<0.099		<0.0971		<0.0943	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.098		<0.099		<0.0971		<0.0943	
12587-46-1	Gross Alpha	т	pCi/L	9310	-2.15	*	-3.36	*	-2.55	*	-4.31	*
12587-47-2	Gross Beta	т	pCi/L	9310	19.1	*	-5.77	*	10.4	*	0.842	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	HASL 300	0.537	*	0.633	*	0.492	*	0.109	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.0905	*	1.85	*	-0.572	*	-1.41	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	14.4	*	3.28	*	14.7	*	9.96	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.607	*	-1.08	*	1.31	*	3.57	*
10028-17-8	Tritium	Т	pCi/L	906.0	152	*	98.7	*	76.9	*	100	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		13	J	<20			*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		0.789		<0.5			*
s0268	Total Organic Carbon	Т	mg/L	9060	1.08	J	6.73		1.05	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.00574	J	0.04		0.00646	J		*

Division of Waste Management	RESIDENTIAL/INERT-QUARTERLY
Solid Waste Branch	Facility: US DOE – Paducah Gaseous Diffusion Plant
14 Reilly Road	Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1
Frankfort, KY 40601 (502)564-6	716 LAB ID: None
	For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				000-000	00	0000-00	00	0000-000	00	0000-000	0
Facility's Loc	al Well or Spring Number (e.g., M	W-1	, MW-2, etc	.)	F. BLAN	к	T. BLAN	K 1	T. BLAN	٢2	T. BLANK	3
Sample Sequenc	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip, ((M)e	thod, or (E)q	quipment	F		Т		Т		Т	
Sample Date an	d Time (Month/Day/Year hour: minut	tes)		10/22/2014 (09:05	10/21/2014	07:03	10/21/2014	07:10	10/22/2014 0	07:30
Duplicate ("Y"	or "N") ²				Ν		N		N		N	
Split ("Y" or	"N") ³				Ν		N		N		N	
Facility Sampl	e ID Number (if applicable)		FB1SG1-	15	TB1SG1	-15	TB2SG1-	15	TB3SG1-	15		
Laboratory Sam	ple ID Number (if applicable)		35975600)1	3526060	05	3596420	12	35964201	5		
Date of Analys	is (Month/Day/Year) For <u>Volatile</u>	ysis	10/28/2014		10/28/2014		10/28/2014		10/28/201	4		
Gradient with	respect to Monitored Unit (UP, DO	SIDE, UNKN	OWN)	NA		NA		NA		NA		
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
\$0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	µMH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

					(00110							
AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	00	0000-0000	C	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., M	1-1 , 1	MW-2, BLANK-	F, etc.)	F. BLAN	K	T. BLANK	(1	T. BLANK	2	T. BLANK (3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рН	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	т	mg/L	6020	<0.002			*		*		*
7440-41-7	Beryllium	т	mg/L	6020	0.00046	J		*		*		*
7440-42-8	Boron	т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	т	mg/L	6020	<0.001			*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				0000-000	00	0000-00	000	0000-00	00	0000-00	000
Facility's I	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	F. BLAN	١K	T. BLAN	IK 1	T. BLAN	K 2	T. BLAN	IK 3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	т	mg/L	6010	<0.005			*		*		*
7440-66-6	Zinc	т	mg/L	6020	0.00454	BJ		*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000	0	0000-000	00	0000-00	000	0000-00	000
Facility's Loo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	F. BLANK	<	T. BLANI	٢1	T. BLAN	IK 2	T. BLAN	IK 3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	0000-000	00	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., M	IW -1	L, MW-2, et	.c.)	F. BLANK	(T. BLANK	1	T. BLANI	< 2	T. BLANI	≺3
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000204		<0.0000198		<0.0000201		<0.0000204	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0935			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0935			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0935			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0935			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0935			*		*		*
12672-29-6	PCB-1248	т	ug/L	8082	<0.0935			*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				0000-000	0	0000-0000		0000-0000)	0000-000	0
Facility's Lo	cal Well or Spring Number (e.g.	, MW-1	L, MW-2, et	.c.)	F. BLANK	(T. BLANK 1		T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082	<0.0935			*		*		*
11096-82-5	PCB-1260	т	ug/L	8082	<0.0935			*		*		*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0935			*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-5.46	*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310	16.6	*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	HASL 300	0.322	*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	-1.34	*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	6.83	*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	4.83	*		*		*		*
10028-17-8	Tritium	т	pCi/L	906.0	18.8	*		*		*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*		*		*		*
S0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
\$0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management	RESIDENTIAL/INERT-QUARTERLY
Solid Waste Branch	Facility: US DOE - Paducah Gaseous Diffusion Plant
14 Reilly Road	Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1
Frankfort, KY 40601 (502)564-6	16 LAB ID: None
	For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				000-000	00	0000-00	00	8004-481	15	\backslash	
Facility's Loc	al Well or Spring Number (e.g., M	W-1	, MW-2, etc	.)	T. BLANK	4	T. BLAN	K 5	387		\backslash	
Sample Sequenc	e #				1		1		2			
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	Т		Т		NA			
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		10/23/2014 (06:50	10/27/2014	07:25	10/23/2014	08:22		
Duplicate ("Y"	or "N") ²				Ν		Ν		Y			
Split ("Y" or	"N") ³				Ν		Ν		N			
Facility Sampl	e ID Number (if applicable)						TB5SG1	-15	MW387DSG	G1-15		
Laboratory Sam	ple ID Number (if applicable)						359980011		359802003			/
Date of Analys	is (Month/Day/Year) For <u>Volatile</u>	n/Day/Year) For <u>Volatile Organics</u> Analysis				14	10/29/2014		10/29/2014		$ \rangle /$	
Gradient with	respect to Monitored Unit (UP, DC	ear) For Volatile Organics Analysis			NA		NA		DOWN	l	I X	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQI ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*	0.514			
16887-00-6	Chloride(s)	т	mg/L	9056		*		*	40.5			
16984-48-8	Fluoride	т	mg/L	9056		*		*	0.591			
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*	1.24			
14808-79-8	Sulfate	т	mg/L	9056		*		*	32			
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*	30.21			
S0145	Specific Conductance	т	µMH0/cm	Field		*		*	555		/	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. ⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	0	8004-481	5		
Facility's Lo	ocal Well or Spring Number (e.g., MV	1-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	4	T. BLANK	5	387			
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*	323.42			\square
N238	Dissolved Oxygen	т	mg/L	Field		*		*	4.47			1
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*	306			1
s0296	рн	т	Units	Field		*		*	6.27			/
NS215	Eh	т	mV	Field		*		*	449			
s0907	Temperature	т	°C	Field		*		*	13.44			
7429-90-5	Aluminum	т	mg/L	6020		*		*	0.0205	J		
7440-36-0	Antimony	т	mg/L	6020		*		*	<0.003			
7440-38-2	Arsenic	т	mg/L	6020		*		*	0.00363	J	X	
7440-39-3	Barium	т	mg/L	6020		*		*	0.13			
7440-41-7	Beryllium	т	mg/L	6020		*		*	<0.0005			
7440-42-8	Boron	т	mg/L	6020		*		*	0.0329			
7440-43-9	Cadmium	т	mg/L	6020		*		*	<0.001			
7440-70-2	Calcium	т	mg/L	6020		*		*	37.6			Ι
7440-47-3	Chromium	т	mg/L	6020		*		*	0.00385	J		$\left[\right]$
7440-48-4	Cobalt	т	mg/L	6020		*		*	<0.001			$\left[\right]$
7440-50-8	Copper	т	mg/L	6020		*		*	0.00073	J		
7439-89-6	Iron	т	mg/L	6020		*		*	0.0614	J		
7439-92-1	Lead	т	mg/L	6020		*		*	<0.002			
7439-95-4	Magnesium	т	mg/L	6020		*		*	15.6			
7439-96-5	Manganese	т	mg/L	6020		*		*	0.00151	J		
7439-97-6	Mercury	т	mg/L	7470		*		*	<0.0002			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				0000-000	00	0000-00	000	8004-48	15		
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	T. BLANI	≺4	T. BLAN	IK 5	387		\mathbf{N}	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020		*		*	<0.0005			1
7440-02-0	Nickel	т	mg/L	6020		*		*	<0.002			1
7440-09-7	Potassium	т	mg/L	6020		*		*	1.81			1
7440-16-6	Rhodium	т	mg/L	6020		*		*	<0.005			
7782-49-2	Selenium	т	mg/L	6020		*		*	<0.005			
7440-22-4	Silver	т	mg/L	6020		*		*	<0.001		$ \rangle / $	
7440-23-5	Sodium	т	mg/L	6020		*		*	54.2		$ \rangle \langle \rangle$	
7440-25-7	Tantalum	т	mg/L	6020		*		*	<0.005		V	
7440-28-0	Thallium	т	mg/L	6020		*		*	<0.002		Ι Å	
7440-61-1	Uranium	т	mg/L	6020		*		*	<0.0002			
7440-62-2	Vanadium	т	mg/L	6010		*		*	<0.005			
7440-66-6	Zinc	т	mg/L	6020		*		*	0.00608	J		
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005			Λ
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			Λ
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-000	00	8004-4	815	\backslash	
Facility's Loc	al Well or Spring Number (e.g., M	MW-1	L, MW-2, et	c.)	T. BLANK	4	T. BLAN	<5	387	,		
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			1
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			17
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001			/
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		I V	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		Ι Å	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		0.00051	J		
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001			
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		$ / \rangle$	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			١
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			$\left \right\rangle$
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			$\left[\right]$
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		0.00084	J	/	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-49

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number						0000-0000)	8004-48	15	Ν	
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						4	T. BLANK	5	387			
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			17
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			/
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			/
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		$ \rangle /$	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		$ \setminus $	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000202		<0.0000202		<0.0000205			
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		X	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			\backslash
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
1336-36-3	PCB,Total	т	ug/L	8082		*		*	<0.098			
12674-11-2	PCB-1016	т	ug/L	8082		*		*	<0.098			
11104-28-2	PCB-1221	т	ug/L	8082		*		*	<0.098			
11141-16-5	PCB-1232	т	ug/L	8082		*		*	<0.098			
53469-21-9	PCB-1242	т	ug/L	8082		*		*	<0.098			
12672-29-6	PCB-1248	т	ug/L	8082		*		*	<0.098			

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number						0000-0000		8004-481	5	\backslash	
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						4	T. BLANK 5	5	387			
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L Z G S
11097-69-1	PCB-1254	Т	ug/L	8082		*		*	<0.098			\Box
11096-82-5	PCB-1260	т	ug/L	8082		*		*	<0.098			17
11100-14-4	PCB-1268	т	ug/L	8082		*		*	<0.098			/
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*	-5.19	*		
12587-47-2	Gross Beta	т	pCi/L	9310		*		*	141	*		
10043-66-0	Iodine-131	т	pCi/L			*		*		*		
13982-63-3	Radium-226	т	pCi/L	HASL 300		*		*	0.255	*		
10098-97-2	Strontium-90	т	pCi/L	905.0		*		*	0.291	*	Y Y	
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*	214	*		
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*		*	3.17	*		
10028-17-8	Tritium	т	pCi/L	906.0		*		*	35.5	*		
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*	26.5			
57-12-5	Cyanide	т	mg/L	9012		*		*	<0.2			
20461-54-5	Iodide	т	mg/L	300.0		*		*	<0.5			Ν
s0268	Total Organic Carbon	т	mg/L	9060		*		*	1.28	J		\square
s0586	Total Organic Halides	т	mg/L	9020		*		*	0.00886	J		\square
											/	
											/	

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5201 MW220 MW220SG1-15		Beryllium	*	Duplicate analysis not within control limits.
		Molybdenum	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.11. Rad error is 3.11.
		Gross beta		TPU is 6.57. Rad error is 6.36.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226		TPU is 0.623. Rad error is 0.587.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.48. Rad error is 2.48.
		Technetium-99		TPU is 12.4. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.48. Rad error is 2.46.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 154. Rad error is 154.
8000-5202 MW221	1 MW221SG1-15	Beryllium	*	Duplicate analysis not within control limits.
		Molybdenum	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.71. Rad error is 5.71.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.31. Rad error is 8.18.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.541. Rad error is 0.534.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.65. Rad error is 2.64.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.7. Rad error is 10.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.08. Rad error is 2.06.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 153. Rad error is 153.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

0	acility Sample ID	Constituent	Flag	Description
3000-5242 MW222 MW	/222SG1-15	Antimony	Ν	Sample spike recovery not within control limits.
		Beryllium	*	Duplicate analysis not within control limits.
		Lead	N	Sample spike recovery not within control limits.
		Molybdenum	Ν	Sample spike recovery not within control limits.
		Silver	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Thallium	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.88. Rad error is 4.88.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.93. Rad error is 6.89.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.418. Rad error is 0.414.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.15. Rad error is 2.15.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.87. Rad error is 1.82.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 164. Rad error is 162.
8000-5243 MW223 MW	/223SG1-15	Beryllium	*	Duplicate analysis not within control limits.
		Molybdenum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.27. Rad error is 4.27.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.65. Rad error is 6.59.
		lodine-131		Analysis of constituent not required and not perform
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.464. Rad error is 0.46.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.84. Rad error is 2.84.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.3. Rad error is 10.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.13. Rad error is 2.09.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 153. Rad error is 153.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

		Constituent	Flag	Description
000-5244 MW224	MW224SG1-15	Antimony	N	Sample spike recovery not within control limits.
		Beryllium	*	Duplicate analysis not within control limits.
		Lead	Ν	Sample spike recovery not within control limits.
		Molybdenum	Ν	Sample spike recovery not within control limits.
		Silver	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Thallium	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.6. Rad error is 3.59.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.95. Rad error is 6.95.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226		TPU is 0.509. Rad error is 0.497.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.64. Rad error is 1.64.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.8. Rad error is 10.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.54. Rad error is 1.53.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 149. Rad error is 149.
004-4820 MW369	MW369UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.58. Rad error is 4.57.
		Gross beta		TPU is 10.1. Rad error is 8.7.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226		TPU is 0.543. Rad error is 0.515.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.91. Rad error is 1.91.
		Technetium-99		TPU is 15.6. Rad error is 14.8.
		Thorium-230		TPU is 2.54. Rad error is 2.45.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 146. Rad error is 146.
004-4818 MW370	MW370UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.86. Rad error is 5.86.
		Gross beta		TPU is 8.53. Rad error is 8.13.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226		TPU is 0.64. Rad error is 0.619.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.92. Rad error is 1.92.
		Technetium-99		TPU is 13.8. Rad error is 13.6.
		Thorium-230		TPU is 2.24. Rad error is 2.15.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 151. Rad error is 151.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4808 MW372 M	W372UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.87. Rad error is 7.72.
		Gross beta		TPU is 16.9. Rad error is 11.9.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.404. Rad error is 0.391.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.17. Rad error is 2.17.
		Technetium-99		TPU is 19.8. Rad error is 15.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.32. Rad error is 7.2.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 151. Rad error is 151.
004-4792 MW373 MW373UG1-15	W373UG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.59. Rad error is 4.59.
		Gross beta		TPU is 8.8. Rad error is 7.8.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.427. Rad error is 0.419.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.51. Rad error is 2.51.
		Technetium-99		TPU is 14.6. Rad error is 13.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.86. Rad error is 7.77.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 147. Rad error is 147.
8004-4809 MW384 M	W384SG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.54. Rad error is 6.54.
		Gross beta		TPU is 23.2. Rad error is 14.7.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.357. Rad error is 0.352.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.58. Rad error is 2.58.
		Technetium-99		TPU is 21.6. Rad error is 14.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.23. Rad error is 2.22.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 157. Rad error is 157.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

	Facility Sample ID	Constituent	Flag	Description
8004-4810 MW385 MV	V385SG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.58. Rad error is 5.58.
		Gross beta		TPU is 18.4. Rad error is 13.2.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.569. Rad error is 0.558.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.18. Rad error is 2.18.
		Technetium-99		TPU is 19.7. Rad error is 15.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.54. Rad error is 1.52.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 152. Rad error is 150.
8004-4804 MW386 MV	V386SG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6. Rad error is 5.98.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.86. Rad error is 5.85.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.413. Rad error is 0.407.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.43. Rad error is 2.42.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.7. Rad error is 12.7.
		Thorium-230		TPU is 2.46. Rad error is 2.37.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 146. Rad error is 146.
8004-4815 MW387 MV	V387SG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.79. Rad error is 4.79.
		Gross beta		TPU is 27.6. Rad error is 13.7.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.413. Rad error is 0.401.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.7. Rad error is 2.67.
		Technetium-99		TPU is 32. Rad error is 16.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.63. Rad error is 3.58.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 157. Rad error is 157.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4816 MW38	38 MW388SG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.37. Rad error is 5.37.
		Gross beta		TPU is 15.5. Rad error is 12.6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.4. Rad error is 0.392.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.57. Rad error is 4.54.
		Technetium-99		TPU is 15.6. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.08. Rad error is 3.04.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 157. Rad error is 157.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no samp was collected.
		Chloride		During sampling, the well was dry; therefore, no samp was collected.
		Fluoride		During sampling, the well was dry; therefore, no samp was collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no samp was collected.
		Sulfate		During sampling, the well was dry; therefore, no samp was collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no samp was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no samp was collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no samp was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no samp was collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no samp was collected.
		рН		During sampling, the well was dry; therefore, no samp was collected.
		Eh		During sampling, the well was dry; therefore, no samp was collected.
		Temperature		During sampling, the well was dry; therefore, no samp was collected.
		Aluminum		During sampling, the well was dry; therefore, no samp was collected.
		Antimony		During sampling, the well was dry; therefore, no samp was collected.
		Arsenic		During sampling, the well was dry; therefore, no samp was collected.
		Barium		During sampling, the well was dry; therefore, no samp was collected.
		Beryllium		During sampling, the well was dry; therefore, no samp was collected.
		Boron		During sampling, the well was dry; therefore, no samp was collected.
		Cadmium		During sampling, the well was dry; therefore, no samp was collected.
		Calcium		During sampling, the well was dry; therefore, no samp was collected.
		Chromium		During sampling, the well was dry; therefore, no samp was collected.
		Cobalt		During sampling, the well was dry; therefore, no samp was collected.
		Copper		During sampling, the well was dry; therefore, no samp was collected.
		Iron		During sampling, the well was dry; therefore, no samp was collected.
		Lead		During sampling, the well was dry; therefore, no samp was collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Magnesium		During sampling, the well was dry; therefore, no sample was collected.
		Manganese		During sampling, the well was dry; therefore, no sample was collected.
		Mercury		During sampling, the well was dry; therefore, no sampl was collected.
		Molybdenum		During sampling, the well was dry; therefore, no sampl was collected.
		Nickel		During sampling, the well was dry; therefore, no sampl was collected.
		Potassium		During sampling, the well was dry; therefore, no sampl was collected.
		Rhodium		During sampling, the well was dry; therefore, no sampl was collected.
		Selenium		During sampling, the well was dry; therefore, no samplwas collected.
		Silver		During sampling, the well was dry; therefore, no sample was collected.
		Sodium		During sampling, the well was dry; therefore, no sampl was collected.
		Tantalum		During sampling, the well was dry; therefore, no sampl was collected.
		Thallium		During sampling, the well was dry; therefore, no sampl was collected.
		Uranium		During sampling, the well was dry; therefore, no sampl was collected.
		Vanadium		During sampling, the well was dry; therefore, no sampl was collected.
		Zinc		During sampling, the well was dry; therefore, no sampl was collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sampl was collected.
		Acetone		During sampling, the well was dry; therefore, no sampl was collected.
		Acrolein		During sampling, the well was dry; therefore, no sampl was collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sampl was collected.
		Benzene		During sampling, the well was dry; therefore, no sampl was collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sampl was collected.
		Xylenes		During sampling, the well was dry; therefore, no sampl was collected.
		Styrene		During sampling, the well was dry; therefore, no sampl was collected.
		Toluene		During sampling, the well was dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sampli was collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sampl was collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		Tribromomethane		During sampling, the well was dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sampl was collected.
		Chloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		Chloroform		During sampling, the well was dry; therefore, no sampl was collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sampl was collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sampl was collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sampl was collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sampl was collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sampl was collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sampl was collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sampl was collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sampl was collected.
		lodomethane		During sampling, the well was dry; therefore, no sampl was collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sampl was collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sampl was collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		Dichloromethane		During sampling, the well was dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample was collected.
		Gross beta		During sampling, the well was dry; therefore, no sample was collected.
		lodine-131		During sampling, the well was dry; therefore, no sample was collected.
		Radium-226		During sampling, the well was dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389)	Thorium-230		During sampling, the well was dry; therefore, no sample was collected.
		Tritium		During sampling, the well was dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample was collected.
		Cyanide		During sampling, the well was dry; therefore, no sample was collected.
		lodide		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample was collected.
3004-4811 MW390) MW390SG1-15	Beryllium	*	Duplicate analysis not within control limits.
		Lead	Ν	Sample spike recovery not within control limits.
		Molybdenum	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.9. Rad error is 6.9.
		Gross beta		TPU is 11.6. Rad error is 9.9.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.814. Rad error is 0.773.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.81. Rad error is 2.79.
		Technetium-99		TPU is 14.6. Rad error is 13.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.08. Rad error is 2.05.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 157. Rad error is 156.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

detected. TPU is 4.58. R Gross beta U Indicates analyte/nuclide detected. TPU is 5.3. Ra lodine-131 Analysis of constituent no Radium-226 TPU is 0.406. Rad error Strontium-90 U Indicates analyte/nuclide detected. TPU is 2.39. R Technetium-99 U Indicates analyte/nuclide detected. TPU is 1.2. R Thorium-230 W Indicates analyte/nuclide detected. TPU is 1.57. Rd 8004-4806 MW392 MW392SG1-15 Antimony N Sample spike recovery no Beryllium * Duplicate analysis not wit Lead N Sample spike recovery no Silver N Sample spike recovery no Silver N Sample spike recovery no Tantalum N Sample spike recovery no Gross alpha U Indicates analyte/nuclide detected. TPU is 4.57. R Gross beta U Indicates analyte/nuclide detected. TPU is 8.36. R	
Defyndate analysis not win Lead N Sample spike recovery n Molybdenum N Sample spike recovery n Tantalum N Sample spike recovery n Gross alpha U Indicates analyte/nuclide detected. TPU is 4.58. R Gross beta U Iodine-131 Analysis of constituent no Radium-226 TPU is 0.406. Rad error Strontium-90 U Indicates analyte/nuclide detected. TPU is 2.39. R Technetium-99 U Thorium-230 U Indicates analyte/nuclide detected. TPU is 12. R Thorium-230 U Indicates analyte/nuclide detected. TPU is 2.48. R totate analyse Tritium U Indicates analyte/nuclide detected. TPU is 157. Ra detected TPU is 0.406. Sample spike recovery not Beryllium U Indicates analyte/nuclide detected TPU is 157. Ra Silver N <td>ot within control limits.</td>	ot within control limits.
Molybdenum N Sample spike recovery m Silver N Sample spike recovery m Tantalum N Sample spike recovery m Thallium N Sample spike recovery m Gross alpha U Indicates analyte/nuclide Gross beta U Indicates analyte/nuclide Iodine-131 Analysis of constituent nc Radium-226 TPU is 0.406. Rad error Strontium-90 U Indicates analyte/nuclide detected. TPU is 5.3. Ra Iodine-131 Radium-226 TPU is 0.406. Rad error Strontium-90 U Indicates analyte/nuclide detected. TPU is 1.2. R Thorium-230 U Indicates analyte/nuclide detected. TPU is 1.5. R 004-4806 MW392 MW392SG1-15 Antimony N Beryllium U Indicates analyte/nuclide Lead N Sample spike recovery m Molybdenum N Sample spike recovery m Silver N Sample spike recovery m Molybdenum N Sample spike recovery m Silver N Sample spike recovery m<	hin control limits.
Silver N Sample spike recovery no Tantalum N Sample spike recovery no Thallium N Sample spike recovery no Gross alpha U Indicates analyte/nuclide detected. TPU is 4.58. R Gross beta U Iodine-131 Analysis of constituent no Radium-226 TPU is 0.406. Rad error Strontium-90 U Indicates analyte/nuclide detected. TPU is 2.39. Ra Technetium-99 U Indicates analyte/nuclide detected. TPU is 1.2.9. R Thorium-230 U Indicates analyte/nuclide detected. TPU is 1.57. R Antimony N 004-4806 MW392 MW392SG1-15 Antimony N Beryllium * Duplicate analysis not wit Lead N Sample spike recovery no Molybdenum N Sample spike recovery no Silver N Sample spike recovery no Gross alpha U Indicates analyte/nuclide detected. TPU is 1.41. Sample spike recovery no Gross alpha N Sample spike recovery no Gross alpha	ot within control limits.
TantalumNSample spike recovery mThalliumNSample spike recovery mGross alphaUIndicates analyte/nuclide detected. TPU is 4.58. RGross betaUIndicates analyte/nuclide detected. TPU is 5.3. RaIodine-131Analysis of constituent no Radium-226TPU is 0.406. Rad error Strontium-90Strontium-90UIndicates analyte/nuclide detected. TPU is 2.39. RTechnetium-99UIndicates analyte/nuclide detected. TPU is 1.2. RThorium-230UIndicates analyte/nuclide detected. TPU is 2.48. RTritumUIndicates analyte/nuclide detected. TPU is 157. Radietected. TPU is 157. Radietected004-4806 MW392 MW392SG1-15AntimonyNSample spike recovery m Beryllium*Duplicate analysis not wit LeadNSample spike recovery m GilverNSample spike recovery m TantalumNSample spike recovery m Gross alphaUIndicates analyte/nuclide detected. TPU is 4.57. Radieter MolybdenumNSample spike recovery m Sample spike recovery m SilverNSample spike recovery m TantalumNSample spike recovery m Gross alphaUIndicates analyte/nuclide detected. TPU is 4.57. Radieter MolybdenumNSample spike recovery m SilverMolybdenumNSample spike recovery m TantalumNSample spike recovery m SilverMolybdenumNSample spike recovery m TantalumN	ot within control limits.
Thallium N Sample spike recovery m Gross alpha U Indicates analyte/nuclide detected. TPU is 4.58. R Gross beta U Indicates analyte/nuclide detected. TPU is 5.3. Ra lodine-131 Iodine-131 Analysis of constituent no 	ot within control limits.
Gross alphaUIndicates analyte/nuclide detected. TPU is 4.58. RGross betaUIndicates analyte/nuclide detected. TPU is 5.3. Ra lodine-131Radium-226TPU is 0.406. Rad error Strontium-90TPU is 0.406. Rad error UStrontium-90UIndicates analyte/nuclide detected. TPU is 2.39. RTechnetium-99UIndicates analyte/nuclide detected. TPU is 11.2. RThorium-230UIndicates analyte/nuclide detected. TPU is 157. Ra004-4806 MW392 MW392SG1-15AntimonyNSample spike recovery no Beryllium*LeadNSample spike recovery no SilverMolybdenumNSample spike recovery no SilverTantalumNSample spike recovery no Covery no SilverTantalumNSample spike recovery no SilverGross alphaUIndicates analyte/nuclide detected. TPU is 5.7. Ra Covery no SilverGross alphaUIndicates analyte/nuclide detected. TPU is 5.7. Ra Duplicate analysis not wit LeadLeadNSample spike recovery no SilverMolybdenumNSample spike recovery no SilverTantalumNSample spike recovery no Cross alphaGross alphaUIndicates analyte/nuclide detected. TPU is 4.57. Ra Cross betaGross betaUIndicates analyte/nuclide detected. TPU is 8.36. Ra	ot within control limits.
Gross beta U Indicates analyte/nuclide detected. TPU is 5.3. Ra Iodine-131 Analysis of constituent not Radium-226 TPU is 0.406. Rad error Strontium-90 U Indicates analyte/nuclide detected. TPU is 2.39. Ra Technetium-99 U Indicates analyte/nuclide detected. TPU is 2.39. Ra Technetium-99 U Indicates analyte/nuclide detected. TPU is 2.48. R Thorium-230 U Indicates analyte/nuclide detected. TPU is 2.48. R Tritium U Indicates analyte/nuclide detected. TPU is 157. Ra 004-4806 MW392 MW392SG1-15 Antimony N Sample spike recovery na Beryllium * Duplicate analysis not with Lead N Sample spike recovery na Silver N Sample spike recovery na Silver N Sample spike recovery na Thatlium N Sample spike recovery na Gross alpha U Indicates analyte/nuclide detected. TPU is 4.57. Ra Gross beta U Indicates analyte/nuclide detected. TPU is 8.36. Ra Sample spike recovery na	ot within control limits.
detected. TPU is 5.3. Ra lodine-131 Analysis of constituent no Radium-226 TPU is 0.406. Rad error Strontium-90 U Indicates analyte/nuclide detected. TPU is 2.39. R Technetium-99 U Indicates analyte/nuclide detected. TPU is 11.2. R Thorium-230 U Indicates analyte/nuclide detected. TPU is 2.48. R Tritium U Indicates analyte/nuclide detected. TPU is 57. Ra 004-4806 MW392 MW392SG1-15 Antimony N Sample spike recovery no Beryllium * Duplicate analysis not wit Lead N Sample spike recovery no Molybdenum N Sample spike recovery no Silver N Sample spike recovery no Tantalum N Sample spike recovery no Tantalum N Sample spike recovery no Gross alpha U Indicates analyte/nuclide detected. TPU is 4.57. R Gross beta U Indicates analyte/nuclide detected. TPU is 4.57. R	was analyzed for, but not ad error is 4.58.
Radium-226 TPU is 0.406. Rad error Strontium-90 U Indicates analyte/nuclide detected. TPU is 2.39. R Technetium-99 U Indicates analyte/nuclide detected. TPU is 11.2. R Thorium-230 U Indicates analyte/nuclide detected. TPU is 2.48. R Tritium U Indicates analyte/nuclide detected. TPU is 57. Ra 004-4806 MW392 MW392SG1-15 Antimony N Sample spike recovery not be spike r	•
Strontium-90UIndicates analyte/nuclide detected. TPU is 2.39. RTechnetium-99UIndicates analyte/nuclide detected. TPU is 11.2. RThorium-230UIndicates analyte/nuclide detected. TPU is 2.48. RTritiumUIndicates analyte/nuclide detected. TPU is 157. Ra004-4806 MW392 MW392SG1-15AntimonyNSample spike recovery no Beryllium*LeadNSample spike recovery no SilverNSample spike recovery no SilverSample spike recovery no SilverTantalumNSample spike recovery no SilverThalliumNSample spike recovery no SilverThalliumNSample spike recovery no SilverThatalumNSample spike recovery no SilverThatliumNSample spike recovery no SilverThalliumNSample spike recovery no SilverThatliumNSample spike recovery no SilverSample spike recovery no SilverSample spike recovery no SilverThatliumNSample spike recovery no SilverThatliumNSample spike recovery no SilverThatliumNSample spike recovery no SilverThatliumNSample spike recovery no SilverSample	t required and not perform
detected. TPÚ is 2.39. R Technetium-99 U Indicates analyte/nuclide detected. TPU is 11.2. R Thorium-230 U Indicates analyte/nuclide detected. TPU is 2.48. R Tritium U Indicates analyte/nuclide detected. TPU is 157. Ra 004-4806 MW392 MW392SG1-15 Antimony N Sample spike recovery no Beryllium * Duplicate analysis not wit Lead N Sample spike recovery no Molybdenum N Sample spike recovery no Silver N Sample spike recovery no Tantalum N Sample spike recovery no Tantalum N Sample spike recovery no Gross alpha U Indicates analyte/nuclide detected. TPU is 4.57. R Gross beta U Indicates analyte/nuclide detected. TPU is 4.57. R	is 0.391.
detected. TPU is 11.2. R Thorium-230 U Indicates analyte/nuclide detected. TPU is 2.48. R Tritium U Indicates analyte/nuclide detected. TPU is 157. Ra 004-4806 MW392 MW392SG1-15 Antimony N Sample spike recovery no Beryllium * Duplicate analysis not wit Lead N Sample spike recovery no Molybdenum N Sample spike recovery no Silver N Sample spike recovery no Tantalum N Sample spike recovery no Tantalum N Sample spike recovery no Gross alpha U Indicates analyte/nuclide detected. TPU is 1.57. Ra Gross beta U Indicates analyte/nuclide detected. TPU is 8.36. Ra	was analyzed for, but not ad error is 2.39.
detected. TPU is 2.48. R Tritium U Indicates analyte/nuclide detected. TPU is 157. Ra 004-4806 MW392 MW392SG1-15 Antimony N Sample spike recovery no Beryllium * Duplicate analysis not wit Lead N Sample spike recovery no Molybdenum N Sample spike recovery no Silver N Sample spike recovery no Tantalum N Sample spike recovery no Thallium N Sample spike recovery no Gross alpha U Indicates analyte/nuclide detected. TPU is 4.57. R Gross beta U Indicates analyte/nuclide detected. TPU is 8.36. R	was analyzed for, but not ad error is 11.1.
detected. TPU is 157. Ra 004-4806 MW392 MW392SG1-15 Antimony N Sample spike recovery no Beryllium * Duplicate analysis not with Lead N Sample spike recovery no Molybdenum N Sample spike recovery no Silver N Sample spike recovery no Tantalum N Sample spike recovery no Thallium N Sample spike recovery no Gross alpha U Indicates analyte/nuclide detected. TPU is 4.57. R Gross beta U Indicates analyte/nuclide detected. TPU is 8.36. R	was analyzed for, but not ad error is 2.44.
Beryllium * Duplicate analysis not with Lead N Sample spike recovery not Molybdenum N Sample spike recovery not Silver N Sample spike recovery not Tantalum N Sample spike recovery not Thallium N Sample spike recovery not Gross alpha U Indicates analyte/nuclide detected. TPU is 4.57. R Gross beta U Indicates analyte/nuclide detected. TPU is 8.36. R	was analyzed for, but not ad error is 156.
LeadNSample spike recovery noMolybdenumNSample spike recovery noSilverNSample spike recovery noTantalumNSample spike recovery noThalliumNSample spike recovery noGross alphaUIndicates analyte/nuclide detected. TPU is 4.57. RGross betaUIndicates analyte/nuclide detected. TPU is 8.36. R	ot within control limits.
Molybdenum N Sample spike recovery no Silver N Sample spike recovery no Tantalum N Sample spike recovery no Thallium N Sample spike recovery no Gross alpha U Indicates analyte/nuclide detected. TPU is 4.57. R Gross beta U Indicates analyte/nuclide detected. TPU is 8.36. R	hin control limits.
SilverNSample spike recovery noTantalumNSample spike recovery noThalliumNSample spike recovery noGross alphaUIndicates analyte/nuclide detected. TPU is 4.57. RGross betaUIndicates analyte/nuclide detected. TPU is 8.36. R	ot within control limits.
TantalumNSample spike recovery mThalliumNSample spike recovery mGross alphaUIndicates analyte/nuclide detected. TPU is 4.57. RGross betaUIndicates analyte/nuclide detected. TPU is 8.36. R	ot within control limits.
Thallium N Sample spike recovery no Gross alpha U Indicates analyte/nuclide detected. TPU is 4.57. R Gross beta U Indicates analyte/nuclide detected. TPU is 8.36. R	ot within control limits.
Gross alpha U Indicates analyte/nuclide detected. TPU is 4.57. R Gross beta U Indicates analyte/nuclide detected. TPU is 8.36. R	ot within control limits.
Gross beta U Indicates analyte/nuclide detected. TPU is 8.36. R	ot within control limits.
detected. TPU is 8.36. R	was analyzed for, but not ad error is 4.57.
lodine-131 Analysis of constituent no	was analyzed for, but not ad error is 8.36.
	t required and not perform
Radium-226 TPU is 0.422. Rad error	is 0.41.
Strontium-90 U Indicates analyte/nuclide detected. TPU is 3.02. R	
detected. TPU is 10.4. R	
detected. TPU is 1.95. R	was analyzed for, but not ad error is 1.92.
Tritium U Indicates analyte/nuclide detected. TPU is 150. Ra	was analyzed for, but not ad error is 150.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4807 MW393 N	/W393SG1-15	Antimony	N	Sample spike recovery not within control limits.
		Beryllium	*	Duplicate analysis not within control limits.
		Lead	Ν	Sample spike recovery not within control limits.
		Molybdenum	Ν	Sample spike recovery not within control limits.
		Silver	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Thallium	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.47. Rad error is 4.47.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.85. Rad error is 5.85.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.392. Rad error is 0.388.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.11. Rad error is 2.11.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.6. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.88. Rad error is 1.87.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 155. Rad error is 155.
8004-4802 MW394 N	/W394SG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.26. Rad error is 3.26.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.6. Rad error is 7.57.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.644. Rad error is 0.625.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.54. Rad error is 2.54.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13.9. Rad error is 13.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.42. Rad error is 1.41.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 147. Rad error is 146.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4801 MW39	5 MW395SG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.17. Rad error is 5.17.
		Gross beta		TPU is 10.1. Rad error is 9.56.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.55. Rad error is 0.537.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.38. Rad error is 2.38.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13.5. Rad error is 13.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.5. Rad error is 1.48.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 152. Rad error is 150.
8004-4803 MW39	6 MW396SG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.56. Rad error is 5.56.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.14. Rad error is 7.14.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.584. Rad error is 0.566.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.96. Rad error is 2.94.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 13. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.905. Rad error is 0.902.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 148. Rad error is 147.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4817 MW39	97 MW397SG1-15	Antimony	Ν	Sample spike recovery not within control limits.
		Beryllium	*	Duplicate analysis not within control limits.
		Lead	N	Sample spike recovery not within control limits.
		Molybdenum	N	Sample spike recovery not within control limits.
		Silver	Ν	Sample spike recovery not within control limits.
		Tantalum	Ν	Sample spike recovery not within control limits.
		Thallium	Ν	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.7. Rad error is 4.7.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.87. Rad error is 8.69.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.484. Rad error is 0.469.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.75. Rad error is 2.75.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.08. Rad error is 3.06.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 160. Rad error is 159.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1SG1-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.23. Rad error is 4.22.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.03. Rad error is 7.02.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.343. Rad error is 0.342.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.11. Rad error is 2.11.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.8. Rad error is 10.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.15. Rad error is 4.07.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 160. Rad error is 159.
		Chemical Oxygen Demand		Analysis of constituent not required and not performe
		Cyanide		Analysis of constituent not required and not performe
		lodide		Analysis of constituent not required and not performe
		Total Organic Carbon		Analysis of constituent not required and not performe
		Total Organic Halides		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1SG1-15	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.25. Rad error is 3.25.
		Gross beta		TPU is 9.72. Rad error is 9.34.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.384. Rad error is 0.376.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.36. Rad error is 2.36.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.2. Rad error is 10.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.88. Rad error is 4.76.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 155. Rad error is 155.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performe
		Total Organic Carbon		Analysis of constituent not required and not performe
		Total Organic Halides		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG1-15	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not perform
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015 Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG1-15	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG1-15	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015 Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG1-15	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG1-15	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015 Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG1-15	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG1-15	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015 Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG1-15	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

RESIDENTIAL/INERT – QUARTERLY

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description		
000-0000 QC	TB5SG1-15	Bromide		Analysis of constituent not required and not performe		
		Chloride		Analysis of constituent not required and not performe		
		Fluoride		Analysis of constituent not required and not performe		
		Nitrate & Nitrite		Analysis of constituent not required and not performe		
		Sulfate		Analysis of constituent not required and not performe		
		Barometric Pressure Reading		Analysis of constituent not required and not performe		
		Specific Conductance		Analysis of constituent not required and not performe		
		Static Water Level Elevation		Analysis of constituent not required and not performe		
		Dissolved Oxygen		Analysis of constituent not required and not performe		
		Total Dissolved Solids		Analysis of constituent not required and not performe		
		рН		Analysis of constituent not required and not performe		
		Eh		Analysis of constituent not required and not performe		
		Temperature		Analysis of constituent not required and not performe		
		Aluminum		Analysis of constituent not required and not performe		
		Antimony		Analysis of constituent not required and not performe		
		Arsenic		Analysis of constituent not required and not perfo		
		Barium Beryllium Boron Cadmium Calcium		Analysis of constituent not required and not performe		
				Analysis of constituent not required and not performe		
				Analysis of constituent not required and not performe		
				Analysis of constituent not required and not performe		
				Analysis of constituent not required and not performe		
		Chromium		Analysis of constituent not required and not performe		
		Cobalt		Analysis of constituent not required and not performe		
		Copper		Analysis of constituent not required and not performe		
		Iron		Analysis of constituent not required and not performe		
		Lead		Analysis of constituent not required and not performe		
		Magnesium		Analysis of constituent not required and not performe		
		Manganese		Analysis of constituent not required and not performe		
		Mercury		Analysis of constituent not required and not performe		
		Molybdenum		Analysis of constituent not required and not performe		
		Nickel		Analysis of constituent not required and not performe		
		Potassium		Analysis of constituent not required and not performe		
		Rhodium		Analysis of constituent not required and not performe		
		Selenium		Analysis of constituent not required and not performe		
		Silver		Analysis of constituent not required and not performe		
		Sodium		Analysis of constituent not required and not performe		
		Tantalum		Analysis of constituent not required and not performe		
		Thallium		Analysis of constituent not required and not performe		
		Uranium		Analysis of constituent not required and not performe		

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5SG1-15	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
8004-4815 MW387	7 MW387DSG1-15	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.99. Rad error is 3.98.
		Gross beta		TPU is 26.7. Rad error is 13.5.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.361. Rad error is 0.358.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.53. Rad error is 2.53.
		Technetium-99		TPU is 28.7. Rad error is 16.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.65. Rad error is 3.58.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 156. Rad error is 156.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

Residential/Inert – QUARTERLY, 4th Quarter 2014 Facility: U.S. DOE – Paducah Gaseous Diffusion Plant Permit Number: SW7300014, SW7300015, SW7300043

Finds/Unit:

Lab ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the fourth quarter 2014 groundwater data collected from the C-746-S&T Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, results from wells considered to represent background conditions were compared with at least three test wells or sidegradient wells (Exhibit 1). The fourth quarter 2014 data used to conduct the statistical analyses were collected in October 2014. The statistical analyses for this report first utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses were run, using the last eight quarters, on analytes that had at least one downgradient well that exceeded the historical background. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

For chemicals of concern that have Kentucky maximum contaminant levels (MCLs) and the results that do not exceed their respective MCL, no exceedance is reported. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted for pH. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389*	TW	UCRS
MW390	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396	BG	UCRS
MW397	BG	LRGA

Exhibit 1. Station Identification for Monitoring Wells Analyzed

NOTE: The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

For those parameters that are determined to exceed the historical background concentration, a second onesided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, was conducted. The second one-sided tolerance interval statistical test was conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper tolerance limit using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower tolerance limit to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below:¹

- 1. The tolerance limit (TL) was calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data were used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) were computed.
 - The data set was checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage was determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit was calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells was compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit 1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit 2 lists the parameters from the available data set for which a statistically derived historical background concentration was developed using the one-sided tolerance interval and the statistical test performed using the one-sided tolerance interval.

¹ For pH, two-sided TL (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

Parameters
Aluminum
Beryllium
Beta activity
Boron
Bromide
Calcium
Chemical Oxygen Demand (COD)
Chloride
cis-1,2-Dichloroethene
Cobalt
Conductivity
Copper
Dissolved Oxygen
Dissolved Solids
Iodide
Iron
Magnesium
Manganese
Molybdenum
Nickel
Oxidation-Reduction Potential
PCB, Total
PCB-1242
pH
Potassium
Radium-226
Sodium
Sulfate
Technetium-99
Thorium-230
Total Organic Carbon (TOC)
Total Organic Halides (TOX)
Trichloroethene
Uranium
Vanadium
Zinc

Exhibit 2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibits 3, 4, and 5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), and missing observations (wells were dry this quarter and groundwater samples could not be collected) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits 3, 4, and 5 were collected during the current quarter, fourth quarter 2014. The observations are representative of the current quarter data. Background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a well is sampled on two different dates, the most current available data are used.

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	0	4	0	No
1,1,2,2-Tetrachloroethane	4	0	4	0	No
1,1,2-Trichloroethane	4	0	4	0	No
1,1-Dichloroethane	4	0	4	0	No
1,2,3-Trichloropropane	4	0	4	0	No
1,2-Dibromo-3-chloropropane	4	0	4	0	No
1,2-Dibromoethane	4	0	4	0	No
1,2-Dichlorobenzene	4	0	4	0	No
1,2-Dichloropropane	4	0	4	0	No
2-Butanone	4	0	4	0	No
2-Hexanone	4	0	4	0	No
4-Methyl-2-pentanone	4	0	4	0	No
Acetone	4	0	4	0	No
Acrolein	4	0	4	0	No
Acrylonitrile	4	0	4	0	No
Aluminum	4	0	0	4	YES
Antimony	4	0	4	0	No
Beryllium	4	0	4	0	No
Boron	4	0	3	1	YES
Bromide	4	0	0	4	YES
Bromochloromethane	4	0	4	0	No
Bromodichloromethane	4	0	4	0	No
Bromoform	4	0	4	0	No
Bromomethane	4	0	4	0	No
Calcium	4	0	0	4	YES
Carbon disulfide	4	0	4	0	No
Chemical Oxygen Demand (COD)	4	0	0	4	YES
Chloride	4	0	0	4	YES
Chlorobenzene	4	0	4	0	No
Chloroethane	4	0	4	0	No
Chloroform	4	0	4	0	No
Chloromethane	4	0	4	0	No
<i>cis</i> -1,2-Dichloroethene	4	0	4	0	No
<i>cis</i> -1,3-Dichloropropene	4	0	4	0	No
Cobalt	4	0	0	4	YES
Conductivity	4	0	0	4	YES
Copper	4	0	2	2	YES
Cyanide	4	0	4	0	No
Dibromochloromethane	4	0	4	0	No

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dibromomethane	4	0	4	0	No
Dimethylbenzene, Total	4	0	4	0	No
Dissolved Oxygen	4	0	0	4	YES
Dissolved Solids	4	0	0	4	YES
Ethylbenzene	4	0	4	0	No
Iodide	4	0	3	1	YES
Iodomethane	4	0	4	0	No
Iron	4	0	0	4	YES
Magnesium	4	0	0	4	YES
Manganese	4	0	0	4	YES
Methylene chloride	4	0	4	0	No
Molybdenum	4	0	1	3	YES
Nickel	4	0	1	3	YES
Oxidation-Reduction Potential	4	0	0	4	YES
PCB, Total	4	0	4	0	No
PCB-1016	4	0	4	0	No
PCB-1221	4	0	4	0	No
PCB-1232	4	0	4	0	No
PCB-1242	4	0	4	0	No
PCB-1248	4	0	4	0	No
PCB-1254	4	0	4	0	No
PCB-1260	4	0	4	0	No
PCB-1268	4	0	4	0	No
рН	4	0	0	4	YES
Potassium	4	0	0	4	YES
Radium-226	4	0	2	2	YES
Rhodium	4	0	4	0	No
Sodium	4	0	0	4	YES
Styrene	4	0	4	0	No
Sulfate	4	0	0	4	YES
Tantalum	4	0	4	0	No
Technetium-99	4	0	3	1	YES
Tetrachloroethene	4	0	4	0	No
Thallium	4	0	4	0	No
Thorium-230	4	0	3	1	YES
Toluene	4	0	4	0	No
Total Organic Carbon (TOC)	4	0	0	4	YES
Total Organic Halides (TOX)	4	0	0	4	YES
trans-1,2-Dichloroethene	4	0	4	0	No
trans-1,3-Dichloropropene	4	0	4	0	No

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
trans-1,4-Dichloro-2-butene	4	0	4	0	No
Trichlorofluoromethane	4	0	4	0	No
Uranium	4	0	3	1	YES
Vanadium	4	0	3	1	YES
Vinyl acetate	4	0	4	0	No
Zinc	4	0	2	2	YES

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	0	11	0	No
1,1,2,2-Tetrachloroethane	11	0	11	0	No
1,1,2-Trichloroethane	11	0	11	0	No
1,1-Dichloroethane	11	0	11	0	No
1,2,3-Trichloropropane	11	0	11	0	No
1,2-Dibromo-3-chloropropane	11	0	11	0	No
1,2-Dibromoethane	11	0	11	0	No
1,2-Dichlorobenzene	11	0	11	0	No
1,2-Dichloropropane	11	0	11	0	No
2-Butanone	11	0	11	0	No
2-Hexanone	11	0	11	0	No
4-Methyl-2-pentanone	11	0	11	0	No
Acetone	11	0	11	0	No
Acrolein	11	0	11	0	No
Acrylonitrile	11	0	11	0	No
Aluminum	11	0	3	8	YES
Antimony	11	0	11	0	No
Beryllium	11	0	10	1	YES
Boron	11	0	1	10	YES
Bromide	11	0	0	11	YES
Bromochloromethane	11	0	11	0	No
Bromodichloromethane	11	0	11	0	No
Bromoform	11	0	11	0	No
Bromomethane	11	0	11	0	No
Calcium	11	0	0	11	YES
Carbon disulfide	11	0	11	0	No
Chemical Oxygen Demand (COD)	11	0	7	4	YES
Chloride	11	0	0	11	YES
Chlorobenzene	11	0	11	0	No
Chloroethane	11	0	11	0	No
Chloroform	11	0	11	0	No
Chloromethane	11	0	11	0	No
cis-1,2-Dichloroethene	11	0	8	3	YES
cis-1,3-Dichloropropene	11	0	11	0	No
Cobalt	11	0	3	8	YES
Conductivity	11	0	0	11	YES
Copper	11	0	1	10	YES
Cyanide	11	0	11	0	No
Dibromochloromethane	11	0	11	0	No
Dibromomethane	11	0	11	0	No

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dimethylbenzene, Total	11	0	11	0	No
Dissolved Oxygen	11	0	0	11	YES
Dissolved Solids	11	0	0	11	YES
Ethylbenzene	11	0	11	0	No
Iodide	11	0	11	0	No
Iodomethane	11	0	11	0	No
Iron	11	0	1	10	YES
Magnesium	11	0	0	11	YES
Manganese	11	0	0	11	YES
Methylene chloride	11	0	11	0	No
Molybdenum	11	0	4	7	YES
Nickel	11	0	2	9	YES
Oxidation-Reduction Potential	11	0	0	11	YES
PCB, Total	11	0	9	2	YES
PCB-1016	11	0	11	0	No
PCB-1221	11	0	11	0	No
PCB-1232	11	0	11	0	No
PCB-1242	11	0	9	2	YES
PCB-1248	11	0	11	0	No
PCB-1254	11	0	11	0	No
PCB-1260	11	0	11	0	No
PCB-1268	11	0	11	0	No
рН	11	0	0	11	YES
Potassium	11	0	0	11	YES
Radium-226	11	0	6	5	YES
Rhodium	11	0	11	0	No
Sodium	11	0	0	11	YES
Styrene	11	0	11	0	No
Sulfate	11	0	0	11	YES
Tantalum	11	0	11	0	No
Technetium-99	11	0	6	5	YES
Tetrachloroethene	11	0	11	0	No
Thallium	11	0	11	0	No
Thorium-230	11	0	11	0	No
Toluene	11	0	11	0	No
Total Organic Carbon (TOC)	11	0	0	11	YES
Total Organic Halides (TOX)	11	0	4	7	YES
trans-1,2-Dichloroethene	11	0	11	0	No
trans-1,3-Dichloropropene	11	0	11	0	No
trans-1,4-Dichloro-2-butene	11	0	11	0	No

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Trichlorofluoromethane	11	0	11	0	No
Uranium	11	0	11	0	No
Vanadium	11	0	10	1	YES
Vinyl acetate	11	0	11	0	No
Zinc	11	0	7	4	YES

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	0	7	0	No
1,1,2,2-Tetrachloroethane	7	0	7	0	No
1,1,2-Trichloroethane	7	0	7	0	No
1,1-Dichloroethane	7	0	7	0	No
1,2,3-Trichloropropane	7	0	7	0	No
1,2-Dibromo-3-chloropropane	7	0	7	0	No
1,2-Dibromoethane	7	0	7	0	No
1,2-Dichlorobenzene	7	0	7	0	No
1,2-Dichloropropane	7	0	7	0	No
2-Butanone	7	0	7	0	No
2-Hexanone	7	0	7	0	No
4-Methyl-2-pentanone	7	0	7	0	No
Acetone	7	0	7	0	No
Acrolein	7	0	7	0	No
Acrylonitrile	7	0	7	0	No
Aluminum	7	0	6	1	YES
Antimony	7	0	7	0	No
Beryllium	7	0	6	1	No
Boron	7	0	2	5	YES
Bromide	7	0	0	7	YES
Bromochloromethane	7	0	7	0	No
Bromodichloromethane	7	0	7	0	No
Bromoform	7	0	7	0	No
Bromomethane	7	0	7	0	No
Calcium	7	0	0	7	YES
Carbon disulfide	7	0	7	0	No
Chemical Oxygen Demand (COD)	7	0	4	3	YES
Chloride	7	0	0	7	YES
Chlorobenzene	7	0	7	0	No
Chloroethane	7	0	7	0	No
Chloroform	7	0	7	0	No
Chloromethane	7	0	7	0	No
cis-1,2-Dichloroethene	7	0	5	2	YES
cis-1,3-Dichloropropene	7	0	7	0	No
Cobalt	7	0	4	3	YES
Conductivity	7	0	0	7	YES
Copper	7	0	2	5	YES
Cyanide	7	0	7	0	No
Dibromochloromethane	7	0	7	0	No
Dibromomethane	7	0	7	0	No
Dimethylbenzene, Total	7	0	7	0	No

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dissolved Oxygen	7	0	0	7	YES
Dissolved Solids	7	0	0	7	YES
Ethylbenzene	7	0	7	0	No
Iodide	7	0	7	0	No
Iodomethane	7	0	7	0	No
Iron	7	0	3	4	YES
Magnesium	7	0	0	7	YES
Manganese	7	0	2	5	YES
Methylene chloride	7	0	7	0	No
Molybdenum	7	0	4	3	YES
Nickel	7	0	2	5	YES
Oxidation-Reduction Potential	7	0	0	7	YES
PCB, Total	7	0	7	0	No
PCB-1016	7	0	7	0	No
PCB-1221	7	0	7	0	No
PCB-1232	7	0	7	0	No
PCB-1242	7	0	7	0	No
PCB-1248	7	0	7	0	No
PCB-1254	7	0	7	0	No
PCB-1260	7	0	7	0	No
PCB-1268	7	0	7	0	No
рН	7	0	0	7	YES
Potassium	7	0	0	7	YES
Radium-226	7	0	4	3	YES
Rhodium	7	0	7	0	No
Sodium	7	0	0	7	YES
Styrene	7	0	7	0	No
Sulfate	7	0	0	7	YES
Tantalum	7	0	7	0	No
Technetium-99	7	0	3	4	YES
Tetrachloroethene	7	0	7	0	No
Thallium	7	0	7	0	No
Thorium-230	7	0	7	0	No
Toluene	7	0	7	0	No
Total Organic Carbon (TOC)	7	0	0	7	YES
Total Organic Halides (TOX)	7	0	0	7	YES
trans-1,2-Dichloroethene	7	0	7	0	No
trans-1,3-Dichloropropene	7	0	7	0	No
trans-1,4-Dichloro-2-butene	7	0	7	0	No
Trichlorofluoromethane	7	0	7	0	No
Uranium	7	0	6	1	YES
Vanadium	7	0	7	0	No

Exhibit 5. Summary of Missing.	, Censored, and Uncensored Data—LRGA (Continued)
	, eensored, und encensored Duta – Ertori (eontinued)

Parameters	Observations	Missing Observation	Censored Observation		Statistical Analysis?
Vinyl acetate	7	0	7	0	No
Zinc	7	0	3	4	YES

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval test were calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 30, 33, and 31 parameters, respectively, including those listed in bold print in Exhibits 3, 4, and 5, plus those constituents (beta activity and TCE) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit 6.

<u>UCRS</u>

This quarter's results identified exceedances of historical background UTL for aluminum, chloride, oxidation-reduction potential, radium-226, technetium-99, and thorium-230.

<u>URGA</u>

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, COD, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, pH, radium-226, sulfate, and technetium-99.

Conclusion

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit 7, Exhibit 8, and Exhibit 9, respectively.

UCRS	URGA	LRGA
MW386: Oxidation-Reduction Potential, Thorium-230	MW222: COD	MW370: Oxidation-Reduction Potential, Radium-226, Sulfate
MW390: Aluminum, Chloride, Oxidation-Reduction Potential, Radium-226, Technetium-99, Thorium-230	MW224: Sodium	MW373: Calcium, Conductivity, Dissolved Solids, Magnesium, Oxidation-Reduction Potential, Sulfate, Technetium-99
MW393: Oxidation-Reduction Potential	MW369: Oxidation-Reduction Potential, Radium-226, Technetium-99	MW385: Beta activity, Oxidation- Reduction Potential, Sulfate, Technetium-99
	MW372: Beta activity, Calcium, Conductivity, Dissolved Solids, Magnesium, Sodium, Sulfate, Technetium-99	MW388: Beta activity, Oxidation- Reduction Potential, Sulfate, Technetium-99
	MW384: Beta activity, Sodium, Sulfate, Technetium-99	MW392: Oxidation-Reduction Potential, pH
	MW387: Beta activity, Dissolved Solids, Magnesium, Oxidation- Reduction Potential, Sulfate, Technetium-99	

Exhibit 6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	Current results exceed statistically derived historical background concentration in MW390.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
COD	Tolerance Interval	0.02	Current results exceed statistically derived historical background concentration in MW386.
Chloride	Tolerance Interval	0.05	Current results exceed statistically derived historical background concentration in MW390.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.

Exhibit 7. Test Summaries for Qualified Parameters—UCRS

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, and MW393.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	1.78	Current results exceed statistically derived historical background concentration in MW390.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Thorium-230	Tolerance Interval	2.01	Current results exceed statistically derived historical background concentration in MW386 and MW390.
Total Organic Carbon	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides	Tolerance Interval	0.37	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

Exhibit 7. Test Summaries for Qualified Parameters—UCRS (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beryllium	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.
Beta activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentration in MW372 MW384, and MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentration in MW372.
COD	Tolerance Interval	0.00	Current results exceed statistically derived historical background concentration in MW222.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.

Exhibit 8. Test Summaries for Qualified Parameters—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW369 and MW387.
PCB, total	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
РСВ, 1242	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	12.29	Current results exceed statistically derived historical background concentration in MW369.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW224, MW372, and MW384.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW372, MW384, and MW387.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW372, MW384 and MW387.
Total Organic Carbon	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.

Exhibit 8. Test Summaries for Qualified Parameters—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Total Organic Halides	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.08	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

Exhibit 8. Test Summaries for Qualified Parameters—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Beryllium	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.
Beta activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW385 and MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
COD	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.52	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.52	Current results exceed statistically derived historical background concentration in MW373.

Exhibit 9. Test Summaries for Qualified Parameters—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, and MW392.
pH	Tolerance Interval	0.04	Current results exceed statistically derived historical background concentration in MW392.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	10.74	Current results exceed statistically derived historical background concentration in MW370.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.81	Current results exceed statistically derived historical background concentration in MW373, MW385, and MW388.
Total Organic Carbon	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.

Exhibit 9. Test Summaries for Qualified Parameters—LRGA (Continued)

CV: coefficient of variation

*If CV > 1.0, used log-transformed data. ¹ Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For the UCRS, URGA, and LRGA, the concentrations from downgradient wells were compared to the one-sided tolerance limit calculated using the most recent eight quarters of data and are presented in Attachment D2 and the statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 6, 11, and 10 parameters, respectively, because these parameter concentrations exceeded the historical background TL. A summary of instances where downgradient well concentrations exceeded the TL calculated using current background data is shown in Exhibit 10, presented by well number.

<u>UCRS</u>

Because gradients in the UCRS are downward, there are no truly downgradient UCRS wells that exceed the current background TL derived using the most recent eight quarters of data. NOTE: Aluminum, chloride, technetium-99, and thorium-230 concentrations in some UCRS wells exceeded the current TL this quarter.

<u>URGA</u>

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, COD, dissolved solids, magnesium, sodium, sulfate, and technetium-99.

<u>LRGA</u>

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, pH, sulfate, and technetium-99.

Conclusion

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit 11, Exhibit 12, and Exhibit 13, respectively.

URGA	LRGA
MW369: Sodium, Technetium-99	MW373: Calcium, Conductivity, Dissolved Solids, Magnesium, Sulfate, Technetium-99
MW372: Beta activity, Calcium, Conductivity, Dissolved Solids, Magnesium, Sodium, Sulfate, Technetium-99	MW388: Beta activity, Sulfate, Technetium-99
MW387: Beta activity, Calcium, Conductivity, Magnesium, Sodium, Sulfate, Technetium-99	MW392: pH

Exhibit 10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using
Current Background Concentrations

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted		
Aluminum	Tolerance Interval	0.36	Because gradients in UCRS wells are downward, there are no UCRS wells that are actually downgradient of the landfill. However, aluminum concentrations exceeded the TL calculated using current background data in MW390.		
Chloride	Tolerance Interval	0.05	Because gradients in UCRS wells are downward, there are no UCRS wells that are actually downgradient of the landfill. However, chloride concentrations exceeded the TL calculated using current background data in MW390.		
Oxidation-Reduction Potential	Tolerance Interval	0.29	No exceedance of statistically derived current background concentration.		
Radium-226 Tolerance Interval		1.35	No exceedance of statistically derived current background concentration.		
Technetium-99	Tolerance Interval	48.28	Because gradients in UCRS wells are downward, there are no UCRS wells that are actually downgradient of the landfill. However, technetium-99 concentrations exceeded the TL calculated using current background data in MW390.		
Thorium-230	Tolerance Interval	1.81	Because gradients in UCRS wells are downward, there are no UCRS wells that are actually downgradient of the landfill. However, thorium-230 concentrations exceeded the TL calculated using current background data in MW386 and MW390.		

Exhibit 11. Test Summaries for Qualified Parameters—UCRS

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted			
Beta activity	Tolerance Interval	0.57	Current results exceed statistically derived current background concentration in MW372 MW384, and MW387.			
Calcium Tolerance Interval		0.13	Current results exceed statistically derived current background concentration in MW369 MW372 and MW387.			
COD	Tolerance Interval	0.26	Current results exceed statistically derived current background concentration in MW222			
Conductivity	Tolerance Interval	0.07	Current results exceed statistically derived current background concentration in MW372 MW384, and MW387.			
Dissolved Solids	Tolerance Interval	0.37	Current results exceed statistically derived current background concentration in MW372			
Magnesium	Tolerance Interval	0.13	Current results exceed statistically derived current background concentration in MW372 and MW387.			
Oxidation-Reduction Tolerance Interval Potential		0.34	No exceedance of statistically derived current background concentration.			
Radium-226 Tolerance Inte		2.13	No exceedance of statistically derived current background concentration.			
Sodium Tolerance Interval		0.16	Current results exceed statistically derived current background concentration in MW223 MW224, MW369, MW372, MW384, and MW387.			
Sulfate	Tolerance Interval	0.29	Current results exceed statistically derived current background concentration in MW372 and MW387.			
Technetium-99 Tolerance Interval		0.85	Current results exceed statistically derived current background concentration in MW369 MW372, MW384, and MW387.			

Exhibit 12. Test Summaries for Qualified Parameters—URGA

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted			
Beta activity	Tolerance Interval	0.48	Current results exceed statistically derived current background concentration in MW385 and MW388.			
Calcium	Tolerance Interval	0.20	Current results exceed statistically derived current background concentration in MW373.			
Conductivity Tolerance Interval		0.08	Current results exceed statistically derived current background concentration in MW373 and MW385.			
Dissolved Solids Tolerance Int		0.13	Current results exceed statistically derived current background concentration in MW373.			
Magnesium	agnesium Tolerance Interval		Current results exceed statistically derived current background concentration in MW373.			
Oxidation-Reduction Tolerance Interval Potential		0.29	No exceedance of statistically derived current background concentration.			
рН	Tolerance Interval	0.02	Current results exceed statistically derived current background concentration in MW392.			
Radium-226	Tolerance Interval	1.83	No exceedance of statistically derived current background concentration.			
Sulfate	Tolerance Interval	0.30	Current results exceed statistically derived current background concentration in MW373 and MW388.			
Technetium-99 Tolerance Interval		0.87	Current results exceed statistically derived current background concentration in MW373, MW385, and MW388.			

Exhibit 13. Test Summaries for Qualified Parameters—LRGA

CV: coefficient of variation * If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Da Upgradient We		~~	tistics on kground Data					
Well Number:	MW396	X=	0.320					
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	Result 0.393 0.200 0.200 0.501 0.200 0.200 0.200 0.200 0.668	CV ² K fa TL ² Becau	0.182 = 0.567 actor** = 3.188 = 0.900 use CV is less than ne normal distribut statistical analysis.	-	1			
Fourth Quarte October 2014	r 2014 Data	Collected in	Fourth Qua Dry/Partiall	rter 2014 y Dry Wells				
Well No. Resu	lt Gradient	Result > T	L? Well No. G	radient				
MW386 0.032 MW390 1.030 MW393 0.024) Downgrad	dient YES	8	owngradient				
Conclusion of S	Statistical A	Analysis on H	Historical Data					
0			e Upper Tolerar al background d		ch is evi	dence of	elevated	

MW390

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Boron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells		Statistics on Background Data			Transformed Background Data from Upgradient Wells			
Well Number:	MW396	X = 0.650		Well Number:	MW396			
Date Collected	Result	S = 0.833		Date Collected	LN(Result)			
8/13/2002	2.000	CV= 1.282 K factor** = 3.188		8/13/2002	0.693			
9/16/2002	2.000	TL = 3.306		9/16/2002	0.693			
10/16/2002	0.200			10/16/2002	-1.609			
1/13/2003	0.200	Because CV greater than 1		1/13/2003	-1.609			
4/8/2003	0.200	logarithm of background and test well results were calculated.	nd test well results	4/8/2003	-1.609			
7/16/2003	0.200			7/16/2003	-1.609			
10/14/2003			10/14/2003	-1.609				
1/14/2004	0.200	Transformed Background Data		1/14/2004	-1.609			
		X= -1.034						
		S= 1.066						
		CV= -1.031						
		K factor** = 3.188						
		TL= 2.364						

				uarter 2014 ially Dry Wells	Transformed Fourth Quarter 2014 Data Collected in October 2014			
Well No.	Result	Gradient Resu	lt > TL?	Well No.	Gradient	Well Number	LN(Result)	Result > TL?
MW386	0.006	Sidegradient	N/A	MW389	Downgradient	MW386	-5.047	NO
MW390 MW393	0.015 0.016	Downgradient Downgradient	N/A N/A			MW390 MW393	-4.200 -4.135	NO NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Bromide UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Dat Upgradient Well		Statistic Backgr	cs on ound Data	
Well Number: N	AW396	X= 1.38	38	
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	Result 1.500 1.600 1.600 1.000 1.000 1.000 1.700 1.700	$X = 1.388$ $S = 0.327$ $CV = 0.236$ $K \text{ factor}^{**} = 3.188$ $TL = 2.430$ Because CV is less than assume normal distribut with statistical analysis.		ution and continue
Fourth Quarter October 2014	2014 Data Collecte	ed in		arter 2014 Illy Dry Wells
Well No. Result	Gradient Resu	lt > TL?	Well No.	Gradient
MW386 0.174 MW390 1.030 MW393 0.247	Sidegradient Downgradient Downgradient	NO NO NO	MW389	Downgradient
Conclusion of S				

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statisti Backgr	ics on round Data
Well Number:	MW396	X= 41.	825
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	Result 38.400 42.900 40.200 46.700 49.800 43.300 49.700 23.600	TL= 6 Because assume n	.202 pr** = 3.188
Fourth Quart October 2014	er 2014 Data Co	llected in	Fourth Quarter 2014 Dry/Partially Dry Wells
Well No. Res	ult Gradient	Result > TL?	Well No. Gradient
MW390 36.8	500 Sidegradient 800 Downgradien 800 Downgradien	nt NO	MW389 Downgradient
~ 1 • 6	Statistical Ana	levela en III:a4	tariaal Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Chemical Oxygen Demand (COD) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W			tics on ground Data	
Well Number:	MW396	X= 35		
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	Result 36.000 35.000 37.000 35.000 35.000 35.000 35.000 35.000	TL= . Because assume		ue
Fourth Quart October 2014	er 2014 Data (Collected in	Fourth Quarter 2014 Dry/Partially Dry Wells]
Well No. Res	ult Gradient	Result > TL?	Well No. Gradient	
MW390 7.5	400 Sidegradie 50 Downgrad 800 Downgrad	lient NO	MW389 Downgradient	-
Conclusion of	Statistical A	nalysis on His	storical Data	

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W			Statisti Backgr	cs on ound Data						
Well Number:	MW396		X= 101	.725						
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	Result 91.600 98.300 101.400 108.300 100.500 102.500 106.800 104.400	а	TL= 11 Because (assume ne	052 r** = 3.188 18.447 CV is less that	n or equal to 1, tion and continu	le				
Fourth Quart October 2014	er 2014 Data	Collected	l in	Fourth Qua Dry/Partial	rter 2014 ly Dry Wells					
Well No. Res	ult Gradient	Result	t > TL?	Well No. G	radient	_				
MW390 121	000 Sidegrad .00 Downgra	dient	NO YES NO	MW389 D	owngradient	-				
Conclusion of	Statistical	Analysis	on Hist	orical Data						
The following concentration						ich is e	eviden	ce of elo	evated	
MW390										

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statistics on Background Data		Transformed I Data from Upg	0
Well Number:	MW396	X= 0.008		Well Number:	MW396
Date Collected	Result	S = 0.011		Date Collected	LN(Result)
8/13/2002	0.025	CV= 1.340 K factor** = 3.188		8/13/2002	-3.689
9/16/2002	0.025	TL = 0.042		9/16/2002	-3.689
10/16/2002	0.001			10/16/2002	-6.908
1/13/2003	0.003	Because CV greater that		1/13/2003	-5.732
4/8/2003	0.004	logarithm of background were calculated.	d and test well results	4/8/2003	-5.435
7/16/2003	0.003		1	7/16/2003	-5.893
10/14/2003	0.001	Statistics on		10/14/2003	-6.908
1/14/2004	0.001	Transformed Background Data		1/14/2004	-6.908
		X= -5.645			
		S= 1.339			
		CV= -0.237			
		K factor** = 3.188			
		TL= -1.377			

Fourth Q October	-)14 Data Collected			uarter 2014 ially Dry Wells	Transformed Data Collecte	-	
Well No.	Result	Gradient Resu	lt > TL?	Well No.	Gradient	Well Number	LN(Result)	Result > TL?
MW386	0.009	Sidegradient	N/A	MW389	Downgradient	MW386	-4.740	NO
MW390	0.001	Downgradient	N/A		U	MW390	-6.898	NO
MW393	0.000	Downgradient	N/A			MW393	-9.028	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statisti Backgi	ics on round Data		
Well Number:	MW396	X= 922	2.500		
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 784.000 871.000 868.000				
1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	912.000 942.000 910.000 935.000 1158.00	assume n	CV is less than normal distribut istical analysis.	ion and continue	
Fourth Quart October 2014	er 2014 Data (Collected in	Fourth Qua Dry/Partiall	rter 2014 y Dry Wells	
Well No. Res	ult Gradient	Result > TL?	Well No. G	radient	
MW390 761	0.00 Sidegradie 0.00 Downgrad 0.00 Downgrad	ient NO	MW389 D	owngradient	
Conclusion of	Statistical A	nalysis on Hist	torical Data		

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Copper UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Dupgradient V			stics on ground Data
Well Number:	MW396	X= 0	0.028
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	Result 0.050 0.026 0.020 0.020 0.020 0.020 0.020 0.020	K fac TL= Becaus assume	0.014 0.481 ctor** = 3.188 0.072 se CV is less than or equal to 1, e normal distribution and continue atistical analysis.
Fourth Quar October 201		a Collected in	Fourth Quarter 2014 Dry/Partially Dry Wells
Well No. Re	sult Gradient	Result > TL ⁴	? Well No. Gradient
MW386 0.0	001 Sidegrad	lient NO	MW389 Downgradient
	001 Downgra		
	001 Downgra		
Conclusion o	f Statistical	Analysis on Hi	istorical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Dissolved Oxygen UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statistics on Background Data	Transformed Background Data from Upgradient Wel
Well Number:	MW396	X= 1.395	Well Number: MW396
Date Collected	Result	S = 1.677	Date Collected LN(Result)
8/13/2002	5.450	CV= 1.202 K factor** = 3.188	8/13/2002 1.696
9/16/2002	0.400	TL = 6.743	9/16/2002 -0.916
10/16/2002	0.540		10/16/2002 -0.616
1/13/2003	0.720	Because CV greater than 1, the natura	1/13/2003 -0.3/9
4/8/2003	0.690	logarithm of background and test wel were calculated.	4/8/2003 -0.371
7/16/2003	1.100	were calculated.	7/16/2003 0.095
10/14/2003	0.710	Statistics on	10/14/2003 -0.342
1/14/2004	1.550	Transformed Background Data	1/14/2004 0.438
		X= -0.043	
		S= 0.814	
		CV= -18.867	
		K factor** = 3.188	
		TL= 2.553	

Fourth Q October 2	-)14 Data Collected			uarter 2014 ially Dry Wells	Transformed Data Collecte	-	
Well No.	Result	Gradient Resu	lt > TL?	Well No.	Gradient	Well Number	LN(Result)	Result > TL?
MW386	1.070	Sidegradient	N/A	MW389	Downgradient	MW386	0.068	NO
MW390	5.650	Downgradient	N/A		0	MW390	1.732	NO
MW393	1.170	Downgradient	N/A			MW393	0.157	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statistic Backgro	cs on ound Data	
Well Number:	MW396	X= 550		
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 502.000 506.000	S= 104 CV= 0. K facto TL= 88	190 r** = 3.188	
1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	543.000 521.000 504.000 532.000 490.000 805.000	assume no with statis		
Fourth Quart October 2014	ter 2014 Data (Collected in	-	uarter 2014 ally Dry Wells
Well No. Res	sult Gradient	Result > TL?	Well No.	Gradient
MW390 390	5.00 Sidegradie5.00 Downgrad5.00 Downgrad	ient NO	MW389	Downgradient
Conclusion of	Statistical A	nalysis on Hist	orical Dat	a

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Iodide UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Da Upgradient Wel		Statistics on Background Da	ata
Well Number:	MW396	X= 2.150	
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	Result 2.000 2.000 2.000 2.000 2.000 2.700 2.500 2.000		ss than or equal to 1, stribution and continue
Fourth Quarter October 2014	r 2014 Data Co	i oui t	h Quarter 2014 Yartially Dry Wells
Well No. Resu	lt Gradient	Result > TL? Well N	No. Gradient
MW386 0.500 MW390 0.500 MW393 0.500) Downgradier	nt NO	89 Downgradient
Conclusion of S	Statistical Ana	alysis on Historical	Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Iron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statisti Backgr	cs on ound Data	
Well Number:	MW396	X= 7.7	96	
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	Result 1.800 9.530 7.430 9.930 10.200 9.160 11.900 2.420	TL= 19 Because of assume n	.478 pr** = 3.188 9.666 CV is less that	n or equal to 1, tion and continue
Fourth Quart October 2014	er 2014 Data C	Collected in	Fourth Qua Dry/Partial	nrter 2014 ly Dry Wells
Well No. Res	ult Gradient	Result > TL?	Well No. G	Gradient
MW386 1.13 MW390 1.03 MW393 2.20	80 Downgrad	ent NO	MW389 E	Downgradient
· · · · · · · · · · · · · · · · · · ·	Statistical A	nalysis on Hist	orical Data	

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background I Upgradient W		Statisti Backgr	ics on cound Data	
Well Number:	MW396	X= 16.	876	_
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	Result 15.500 17.300 17.800 19.200 17.800 17.800 20.200 9.410	TL= 2 Because assume n	.196 or** = 3.188 7.438 CV is less tha	n or equal to 1, ution and continu s.
Fourth Quart October 2014	ter 2014 Data (Collected in	-	arter 2014 Illy Dry Wells
Well No. Res	sult Gradient	Result > TL?	Well No.	Gradient
MW386 9.6 MW390 15. MW393 3.3	400 Downgrad	ient NO	MW389	Downgradient
Conclusion of	f Statistical A	nalysis on Hist	torical Data	a

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statisti Backgi	ics on round Data		
Well Number:	MW396	X= 0.7	74		
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	Result 0.570 0.647 0.880 1.132 0.965 0.983 0.984 0.031	S= 0.353 CV= 0.456 K factor** = 3.188 TL= 1.900 Because CV is less than assume normal distributi with statistical analysis.		ss than or equal to 1, stribution and continue	
Fourth Quart October 2014		Collected in	Fourth Qua Dry/Partial	urter 2014 ly Dry Wells	
Well No. Res	ult Gradient	Result > TL?	Well No. G	Gradient	
MW386 1.10 MW390 0.00 MW393 0.04	07 Downgra	dient NO	MW389 E	Downgradient	
Conclusion of	Statistical A	Analysis on Hist	torical Data		

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells		Statistics on		Transformed Background Data from Upgradient Wel			
Well Number:	MW396	X= 0.007		Well Number:	MW396		
Date Collected	Result	S = 0.011		Date Collected	LN(Result)		
8/13/2002	0.025	CV= 1.507 K factor** = 3.188		8/13/2002	-3.689		
9/16/2002	0.025		TL= 0.042				
10/16/2002	0.001						
1/13/2003	0.001	Because CV greater tha		1/13/2003	-6.661		
4/8/2003	0.003	logarithm of backgroun were calculated.	a and test wen results	4/8/2003	-5.911		
7/16/2003	0.001		1	7/16/2003	-6.751		
10/14/2003	0.001	Statistics on		10/14/2003	-6.908		
1/14/2004	0.001	Transformed Background Data		1/14/2004	-6.908		
		X= -5.928					
		S= 1.420					
		CV= -0.240					
		K factor** = 3.188					
		TL= -1.400					

		Fourth Quarter 2014 Dry/Partially Dry Wells		Transformed Fourth Quarter 2014 Data Collected in October 2014				
Well No.	Result	Gradient Resu	lt > TL?	Well No.	Gradient	Well Number	LN(Result)	Result > TL?
MW386 MW390 MW393	0.000 0.001 0.001	Sidegradient Downgradient Downgradient	N/A N/A N/A	MW389	Downgradient	MW386 MW390 MW393	-7.684 -7.094 -7.601	NO NO NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Nickel UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells		Statistics on Background Data	Transformed Background Data from Upgradient Well
Well Number:	MW396	X= 0.016	Well Number: MW396
Date Collected	Result	S = 0.021	Date Collected LN(Result)
8/13/2002	0.050	CV= 1.272 K factor** = 3.188	8/13/2002 -2.996
9/16/2002	0.050	TL = 0.083	9/16/2002 -2.996
10/16/2002	0.005		10/16/2002 -5.298
1/13/2003	0.005	Because CV greater than 1, the natural	1/13/2003 -5.298
4/8/2003	0.006	logarithm of background and test well r were calculated.	4/8/2003 -5.166
7/16/2003	0.005	were careurated.	7/16/2003 -5.298
10/14/2003	0.005	Statistics on	10/14/2003 -5.298
1/14/2004	0.005	Transformed Background Data	1/14/2004 -5.298
		X= -4.706	
		S= 1.057	
		CV= -0.225	
		K factor** = 3.188	
		TL= -1.338	

			uarter 2014 ially Dry Wells	Transformed Fourth Quarter 201 Data Collected in October 2014				
Well No.	Result	Gradient Resu	lt > TL?	Well No.	Gradient	Well Number	LN(Result)	Result > TL?
MW386	0.002	Sidegradient	N/A	MW389	Downgradient	MW386	-6.235	NO
MW390	0.002	Downgradient	N/A		0	MW390	-6.195	NO
MW393	0.002	Downgradient	N/A			MW393	-6.215	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Oxidation-Reduction Potential UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells					
Well Number:	MW396				
Date Collected	Result				
8/13/2002	60.000				
4/8/2003	71.000				
7/16/2003	-56.000				
10/14/2003	-54.000				
1/14/2004	-22.000				
4/12/2004	-6.000				
7/20/2004	-3.000				
10/12/2004	114.000				

Statistics on Background Data
X= 13.000 S= 61.952 CV= 4.766 K factor** = 3.188 TL= 210.502

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data
X = error
S = error
CV = error
K factor** = 3.188
TL# = 4.736

Transformed Background Data from Upgradient Wells						
Well Number:	MW396					
Date Collected	LN(Result)					
8/13/2002	4.094					
4/8/2003	4.263					
7/16/2003	#Func!					
10/14/2003	#Func!					
1/14/2004	#Func!					
4/12/2004	#Func!					
7/20/2004	#Func!					
10/12/2004	4.736					

Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

				uarter 2014 ially Dry Wells	Transformed Fourth Quarter 2014 Data Collected in October 2014			
Well No.	Result	Gradient	Result > TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW386	125.000	Sidegradient	N/A	MW389	Downgradient	MW386	4.828	YES
MW390	446.000	Downgradie	nt N/A		C	MW390	6.100	YES
MW393	208.000	Downgradie	nt N/A			MW393	5.338	YES

Conclusion of Statistical Analysis on Transformed Historical Data
The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with
respect to historical background data.
MW386
MW390
MW393

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS pH UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W				Statistics on Background Data
Well Number:	MW396			X= 6.460
Date Collected	Result			S= 0.350
8/13/2002	6.170			CV= 0.054
9/16/2002	6.400			K factor** = 3.736
10/16/2002	5.900			TL= 7.766
1/13/2003	6.400			LL= 5.154
4/8/2003	6.650			Because CV is less than or e
7/16/2003	6.400			assume normal distribution a
10/14/2003	6.710			with statistical analysis.
1/14/2004	7.050			
Fourth Quarte	er 2014 Data Collec	ted in O	ctober 2014	Fourth Quarter 2014 Dry/Partially Dry Wells
Well No. Res	ult Gradient Resu	ılt >TL?	Result <ll?< td=""><td>Well No. Gradient</td></ll?<>	Well No. Gradient
MW386 6.63	0 Sidegradient	NO	NO	MW389 Downgradient
MW390 6.85	0 Downgradient	NO	NO	C
MW393 6.04	0 Downgradient	NO	NO	

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Potassium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W			stics on ground Data
Well Number:	MW396	X= 1.	.411
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	Result 2.000 2.000 0.978 1.080 1.120 1.380 1.240 1.490	TL= 2 Because assume	0.282 etor** = 3.188
Fourth Quart October 2014		Collected in	Fourth Quarter 2014 Dry/Partially Dry Wells
Well No. Res	ult Gradient	Result > TL?	? Well No. Gradient
MW386 0.28 MW390 0.50 MW393 0.37)3 Downgra	dient NO	MW389 Downgradient
Conclusion of	Statistical A	Analysis on His	storical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Radium-226 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells				
Well Number:	MW396			
Date Collected	Result			
10/16/2002	0.690			
1/13/2003	-0.007			
10/14/2003	-0.051			
1/14/2004	0.494			
4/12/2004	-0.082			
7/20/2004	0.088			
10/12/2004	0.041			
1/18/2005	0.084			

Statistics on Background Data
X= 0.157 S= 0.280 CV= 1.782 K factor** = 3.188 TL= 1.050

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data
X = error
S = error
CV = error
K factor** = 3.188
TL# = -0.371

Transformed Background Data from Upgradient Wells						
Well Number:	MW396					
Date Collected	LN(Result)					
10/16/2002	-0.371					
1/13/2003	#Func!					
10/14/2003	#Func!					
1/14/2004	-0.705					
4/12/2004	#Func!					
7/20/2004	-2.432					
10/12/2004	-3.199					
1/18/2005	-2.472					

Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

Fourth Q October 2	-	014 Data Collecte			uarter 2014 ially Dry Wells	Transformed Data Collect	l Fourth Qua ed in October	
Well No.	Result	Gradient Res	sult > TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW386 MW390	0.352 1.130	Sidegradient Downgradient	N/A N/A	MW389	Downgradient	MW386 MW390	-1.044 0.122	NO YES
MW393	0.292	Downgradient	N/A			MW393	-1.231	NO

Conclusion of Statistical Analysis on Transformed Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW390

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Sodium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statist Backgr	ics on round Data	
Well Number:	MW396	X= 10		
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 115.000 116.000 117.000 122.000	TL= 2 Because	.300 or** = 3.188 08.973 CV is less that	n or equal to 1, tion and continu
4/8/2003 7/16/2003 10/14/2003 1/14/2004 Fourth Quart October 2014	106.000 117.000 132.000 29.600 er 2014 Data C		istical analysis Fourth Qua Dry/Partial	
Well No. Res	ult Gradient	Result > TL?	Well No.	radient
MW390 97.7	.00 Sidegradie 700 Downgrad 500 Downgrad	ent NO	MW389 E	Oowngradient
Conclusion of	Statistical A	nalysis on His	torical Data	

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient We		Statist Backg	ics on round Data	
Well Number:	MW396	X= 22		
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	Result 41.900 26.300 20.600 16.600 23.900 18.800 12.900 18.700	TL= 5 Because assume r	0.395 or** = 3.188 00.759 CV is less than	or equal to 1, ion and continue
Fourth Quarte October 2014	er 2014 Data (Collected in	Fourth Quar Dry/Partiall	
Well No. Res	ult Gradient	Result > TL?	Well No. Gr	
MW390 28.4	100 Sidegradie 100 Downgrad 100 Downgrad	ient NO	MW389 Do	owngradient
	Statistical A			

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Technetium-99 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background I Upgradient W		Statist Backg	tics on round Data			
Well Number:	MW396	X= 7.	624			
Date Collected	Result	S=6.4				
8/13/2002	16.700	CV= ().860 or** = 3.188			
9/16/2002	6.390	TL = 2				
10/16/2002	4.550		20.551			
1/13/2003	16.500		CV is less than	1 /		
4/8/2003	3.040		normal dıstrıbut tistical analysis.	tion and continue	;	
7/16/2003	0.354	with sta	listical analysis.			
10/14/2003	11.900					
1/14/2004	1.560					
Fourth Quar October 2014		Collected in	Fourth Qua Dry/Partiall	rter 2014 ly Dry Wells		
Well No. Res	sult Gradient	Result > TL?	Well No. G	radient		
	956 Sidegrad 000 Downgra		MW389 D	owngradient		
MW393 5.3	00 Downgra	dient NO				
Conclusion of	f Statistical	Analysis on His	torical Data			
		exceeded the U			ch is evidence of	elevated
MW390						

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Thorium-230 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells						
Well Number: MW396						
Date Collected	Result					
10/12/2004	0.543					
1/18/2005	0.002					
4/19/2005	0.285					
7/11/2005	-0.011					
10/17/2005	0.057					
1/19/2006	-0.001					
4/11/2006	-0.049					
7/17/2006	-0.005					

Statistics on Background Data
X= 0.103 S= 0.206 CV= 2.010 K factor** = 3.188 TL= 0.760

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data
X = error
S = error
CV = error
K factor** = 3.188
TL# = -0.611

Transformed Background Data from Upgradient Wells							
Well Number:	MW396						
Date Collected	LN(Result)						
10/12/2004	-0.611						
1/18/2005	-6.235						
4/19/2005	-1.255						
7/11/2005	#Func!						
10/17/2005	-2.872						
1/19/2006	#Func!						
4/11/2006	#Func!						
7/17/2006	#Func!						

Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

				uarter 2014 ially Dry Wells	Transformed Fourth Quarter 201 Data Collected in October 2014			
Well No.	Result	Gradient R	esult > TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW386 MW390 MW393	2.810 1.540 0.383	Sidegradient Downgradient Downgradient	N/A N/A N/A	MW389	Downgradient	MW386 MW390 MW393	1.033 0.432 -0.960	YES YES NO

Conclusion of Statistical Analysis on Transformed Historical Data The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW386

MW390

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Total Organic Carbon (TOC) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W			Statisti Backgr	cs on ound Data		
Well Number:	MW396		X= 9.9			
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003	Result 19.000 14.600 10.400 4.400 7.000 7.300 9.100		TL= 24 Because (assume n	470 r** = 3.188 4.959 CV is less than	or equal to 1, tion and continue	
1/14/2004 Fourth Quart October 2014	8.100 er 2014 Data	Collecte	d in	Fourth Qua	rter 2014 ly Dry Wells	
Well No. Res	ult Gradient	Resu	lt > TL?		radient	
MW386 10.6 MW390 2.33 MW393 3.01	0	dient	NO NO NO	MW389 D	owngradient	
Conclusion of	0			orical Data		

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Total Organic Halides (TOX) UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background I Upgradient W		Statisti Backgr	ics on round Data	
Well Number:	MW396	X= 142		1
Date Collected 8/13/2002 9/16/2002	Result 193.000 190.000	S= 53. CV= 0. K facto TL= 3	.375 pr** = 3.188	
10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	221.000 106.000 77.800 122.000 86.400 145.000	assume n		n or equal to 1, ition and continu
Fourth Quar October 2014	ter 2014 Data (Collected in	Fourth Qua Dry/Partia	arter 2014 lly Dry Wells
Well No. Res	sult Gradient	Result > TL?	Well No. (Gradient
MW390 20.	5.00 Sidegradie 800 Downgrad 800 Downgrad	ient NO	MW389 I	Downgradient
Conclusion of	f Statistical A	nalysis on Hist	torical Data	ı

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Uranium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statisti Backgi	ics on round Data	
Well Number:	MW396	X= 0.0	01	
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	Result 0.002 0.001 0.001 0.001 0.001 0.001 0.001	TL= 0 Because assume n	.314 or** = 3.188 .002 CV is less that	n or equal to 1, tion and continue
Fourth Quart October 2014		Collected in	Fourth Qua Dry/Partial	nrter 2014 ly Dry Wells
Well No. Res	ult Gradient	Result > TL?	Well No.	Gradient
MW386 0.00 MW390 0.00 MW393 0.00	00 Downgrad	lient NO	MW389 E	Downgradient
Conclusion of	Statistical A	nalysis on Hist	torical Data	

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Vanadium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statist Backg	ics on round Data	
Well Number:	MW396	X= 0.0	021	
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	Result 0.025 0.025 0.020 0.020 0.020 0.020 0.020 0.020 0.020	TL= 0 Because assume r	0.109 or** = 3.188 0.029 CV is less than	tion and continue
Fourth Quart October 2014	er 2014 Data	Collected in	Fourth Qua Dry/Partial	rter 2014 ly Dry Wells
Well No. Res	ult Gradient	Result > TL?	Well No. G	radient
MW386 0.00 MW390 0.00 MW393 0.00)3 Downgrad	lient NO	MW389 D	owngradient
Conclusion of	Statistical A	Analysis on His	torical Data	

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Zinc UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statist Backg	ics on round Data		
Well Number:	MW396	X= 0.0			
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	Result 0.100 0.025 0.035 0.035 0.020 0.020 0.020	CV= 0 K factor TL= 0 Because assume r	$S = 0.035$ $CV = 0.786$ $K \text{ factor}^* = 3.188$ $TL = 0.156$ Because CV is less than assume normal distribut with statistical analysis.		
Fourth Quart October 2014		Collected in	Fourth Qua Dry/Partiall	rter 2014 ly Dry Wells	
Well No. Res	ult Gradient	Result > TL?	Well No. G	radient	
MW386 0.00 MW390 0.01 MW393 0.00	10 Downgrad	lient NO	MW389 D	owngradient	
Conclusion of	Statistical A	Analysis on His	torical Data		

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W			Statist Backg	ics on round Data	
Well Number:	MW220		X= 0.2		
Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004 7/21/2004	Result 0.200 0.200 0.200 0.200 0.200 0.427 0.309 0.200 0.202		TL= 0 Because assume r	0.277 or** = 2.523 0.376 CV is less than	tion and continue
Well Number:	MW394				
Date Collected 8/13/2002	Result 0.200				
9/16/2002	0.200				
10/16/2002	0.200				
1/13/2003	0.200				
4/10/2003	0.200				
7/16/2003 10/14/2003	0.200 0.200				
1/13/2003	0.200				
1/13/2004	0.200			1	
Fourth Quart October 2014		1 Collecte	ed in		
Well No. Res	ult Gradient	Resu	lt > TL?		
MW221 0.03	50 Sidegrad	lient	NO		
MW222 0.12	21 Sidegrad	lient	NO		
MW223 0.03	50 Sidegrad	lient	NO		
MW224 0.02	24 Sidegrad	lient	NO		
MW369 0.13	84 Downgra	adient	NO		
MW372 0.03	U		NO		
MW384 0.03	50 Sidegrad	lient	NO		
MW387 0.03	U		NO		
MW391 0.03	30 Downgra	adient	NO		

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Aluminum'*Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA **Beryllium UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statistics on Background Data
Well Number:	MW220	X= 0.002
Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004 7/21/2004	Result 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	S= 0.001 CV= 0.911 K factor** = 2.523 TL= 0.005 Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.
Well Number:	MW394	
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004 Fourth Quart October 2014	Result 0.005 0.005 0.001 0.001 0.001 0.001 0.001 0.001 er 2014 Data Collect	ted in
Well No. Res	ult Gradient Res	ult > TL?
MW221 0.00 MW222 0.00 MW223 0.00 MW224 0.00 MW369 0.00 MW372 0.00 MW384 0.00 MW387 0.00 MW391 0.00	 Sidegradient Sidegradient Sidegradient Sidegradient Downgradient Downgradient Sidegradient Sidegradient Sidegradient Downgradient 	NO NO NO NO NO NO NO

- Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S
- Upper Tolerance Limit, TL = X + (K * S)TL
- Mean, X = (sum of background results)/(count of background results) Х
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Beryllium UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Beta activity UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient We		Statistics on Background Data	
Well Number:	MW220	X= 14.273	
Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003	Result 15.200 42.500 45.400 8.530 11.700	S= 13.883 CV= 0.973 K factor** = 2.523 TL= 49.300 Because CV is less than assume normal distribu with statistical analysis.	ion and continue
1/13/2004 4/13/2004 7/21/2004 Well Number:	13.500 33.500 13.700 MW394		
MW384 110 MW387 147	ult Gradient 000 Downgra .00 Sidegrad .00 Downgra	Result > TL? dient YES dient YES	
		Analysis on Historical Data	and Limit which is avidence of elevated
0	· · ·	exceeded the Upper Toleral	nce Limit, which is evidence of elevated lata.
MW372			
MW384			
MW387			

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Boron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background I Upgradient W		Statist Backg	ics on round Data			Transformed I Data from Upg	0
Well Number:	MW220	X= 0.4				Well Number:	MW220
Date Collected	Result	S= 0.0 CV= 1				Date Collected	LN(Result)
10/14/2002	0.200		or** = 2.523			10/14/2002	-1.609
1/15/2003	0.200	TL= 1				1/15/2003	-1.609
4/10/2003	0.200]		4/10/2003	-1.609
7/14/2003	0.200			n 1, the natural	14.5	7/14/2003	-1.609
10/13/2003	0.200	were cal		d and test well res	ults	10/13/2003	-1.609
1/13/2004	0.200	were car	culated.	1		1/13/2004	-1.609
4/13/2004	0.200	Statist	ics on			4/13/2004	-1.609
7/21/2004	0.200		formed			7/21/2004	-1.609
Well Number:	MW394	Backg	round Data			Well Number:	MW394
Date Collected	Result	X= -1.	.322			Date Collected	LN(Result)
8/13/2002	2.000	S= 0.7	786			8/13/2002	0.693
9/16/2002	2.000	CV= -	0.595			9/16/2002	0.693
10/16/2002	0.200	K fact	or** = 2.523			10/16/2002	-1.609
1/13/2003	0.200	TL=	0 663			1/13/2003	-1.609
4/10/2003	0.200	11-	0.000			4/10/2003	-1.609
7/16/2003	0.200					7/16/2003	-1.609
10/14/2003	0.200					10/14/2003	-1.609
1/13/2004	0.200					1/13/2004	-1.609
Fourth Quart October 2014	ter 2014 Data	Collected in]		Data C	ormed Fourth Q ollected in Octo	ber 2014
Well No. Res	sult Gradier	nt Result > TL	?		Well Nu	mber LN(Resu	lt) Result > TL?
MW221 0.0	15 Sidegra	ndient N/A			MW221	-4.220	NO
MW222 0.0	08 Sidegra	ndient N/A			MW222		NO
MW223 0.0	07 Sidegra	ndient N/A			MW223		NO
MW224 0.0	13 Sidegra	ndient N/A			MW224		NO
MW369 0.0	14 Downg	radient N/A			MW369	-4.276	NO
MW372 1.0	80 Downg	radient N/A			MW372	0.077	NO
MW384 0.0	14 Sidegra	ndient N/A			MW384		NO
MW387 0.0					MW387		NO
MW391 0.0	27 Downg	radient N/A			MW391	-3.631	NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Boron'*Eqpvlpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA **Bromide UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Backgrou Upgradie				Statist Backgr	ics on round Data	
Well Num	ber: M	IW220	-	X= 1.0		
Date Colle 10/14/20 1/15/200	002 03	Result 1.000 1.000		S= 0.0 CV= 0 K facto TL= 1	.000 or** = 2.523	
4/10/200		1.000		Because CV is less than or equal to 1,		
7/14/200		1.000		assume normal distribution and continue		
10/13/20		1.000 1.000		with statistical analysis.		
1/13/200 4/13/200						
7/21/200		1.000 1.000				
Well Num		1.000 IW394				
Date Colle		Result				
8/13/200		1.000				
9/16/200		1.000				
10/16/20		1.000				
1/13/200	03	1.000				
4/10/200	03	1.000				
7/16/200	03	1.000				
10/14/20	003	1.000				
1/13/200	04	1.000				
Fourth Q October		2014 Data				
Well No.	Result	Gradient	Resu	lt > TL?		
MW221	0.494	Sidegrad	lient	NO		
MW222	0.446	Sidegrad		NO		
MW223	0.465	Sidegrad		NO		
MW224	0.411	Sidegrad		NO		
MW369	0.402	Downgra		NO		
MW372	0.629	Downgra		NO		
MW384	0.637	Sidegrad		NO		
MW387	0.517	Downgra		NO		
MW391	0.644	Downgra	adient	NO		

- Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- Upper Tolerance Limit, TL = X + (K * S)TL
- Mean, X = (sum of background results)/(count of background results) Х
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Bromide'*Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Calcium **UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

-	1401100 01	un enee	caunce		istically	uon vou m
	Backgroun Upgradier		from		Statist Backg	ics on round Data
	Well Numb	er: M	W220		X= 27	.638
	Date Collec 10/14/20 1/15/200 4/10/200	02 2 3 2	Result 23.600 25.900 60.400		S= 4.7 CV= 0 K facto TL= 3	0.172 or** = 2.523
	7/14/200 10/13/20 1/13/200 4/13/200 7/21/200 Well Numb	3 3 03 2 4 2 4 2 4 1	33.900 21.300 20.300 23.800 .9.000 W394	8	assume r	CV is less the normal distribution of the second se
	Date Collec 8/13/200 9/16/200 10/16/20 1/13/200 4/10/200 7/16/200 10/14/20 1/13/200	2 2 2 2 02 3 3 3 3 3 3 2 03 3 4 2	Result 29.500 29.900 31.200 30.700 34.400 29.600 50.300 28.400	1 Collected	lin	1
	October 2					
	Well No.	Result	Gradient	Resul	t > TL?	
	MW221 MW222 MW223 MW224 MW369 MW372 MW384 MW387	20.400 14.600 21.400 22.800 16.800 59.300 29.800 37.600	Sidegrad Sidegrad Downgra Downgra Sidegrad Downgra	lient lient lient adient adient lient adient	NO NO NO NO YES NO NO	
	MW391	26.900	Downgra	acient	NO	

	K factor** = 2.523 TL= 39.604	
	Because CV is less than	-
2	issume normal distribut	ion and continu

n and continue istical analysis.

- Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- Upper Tolerance Limit, TL = X + (K * S)TL
- Mean, X = (sum of background results)/(count of background results) Х
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis Calcium'*Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA **Chemical Oxygen Demand (COD) UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Da Upgradient Wel			Statist Backg	ics on round Data	
Well Number:	MW220		X= 35		
Date Collected 10/14/2002	Result 35.000		S= 0.0 CV= 0 K facto		
1/15/2003 4/10/2003	35.000 35.000		TL= 3	5.000 CV is less than	or equal to 1
7/14/2003 10/13/2003 1/13/2004	35.000 35.000 35.000		assume r		tion and continue
4/13/2004 7/21/2004 Well Number:	35.000 35.000 MW394				
Date Collected	Result				
8/13/2002 9/16/2002 10/16/2002	35.000 35.000 35.000				
1/13/2003 4/10/2003	35.000 35.000				
7/16/2003 10/14/2003 1/13/2004	35.000 35.000 35.000				
Fourth Quarter October 2014	r 2014 Data	Collecte	d in		
Well No. Resul	lt Gradient	Resul	t > TL?		
	00 Sidegrad 00 Sidegrad		NO YES		
MW223 20.00	00 Sidegrad	ient	NO		
	00 Sidegrad 00 Downgra		NO NO		
	00 Downgra 00 Sidegrad		NO NO		
	00 Downgra 00 Downgra		NO NO		

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- Upper Tolerance Limit, TL = X + (K * S)TL
- Mean, X = (sum of background results)/(count of background results) Х
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URG Chemical Oxygen Demand (COD)'*Eqpt/pwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW222

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Da Upgradient We			tatisti ackgr	cs on ound Data	
Well Number:	MW220		= 49.		
Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004	Result 44.600 43.200 31.500 30.800 40.900 40.800 37.500	C K T Bec ass	L= 7' cause ume n	230 pr** = 2.523 7.499 CV is less that	an or equal to 1, ution and continue is.
7/21/2004 Well Number:	40.800 MW394				
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004 Fourth Quarte October 2014	Result 60.400 60.300 58.000 60.700 62.900 58.100 58.200 56.000 r 2014 Data C	Collected ir	1		
Well No. Resu	lt Gradient	Result >	TL?		
MW222 33.8 MW223 34.2 MW224 29.2 MW369 31.8 MW372 47.3 MW384 55.2 MW387 40.5	 Sidegradie Sidegradie Sidegradie Sidegradie Sidegradie Downgradi Downgradie Sidegradie Downgradie 	nt N nt N ient N ient N ient N ient N	10 10 10 10 10 10 10 10 10		

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Chloride'*Eqpvlpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA cis-1,2-Dichloroethene UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Backgrou Upgradie		from		Statist Backg	ics on round Data	
Well Num	ber: M	W220		X= 5.0	000	
Date Coller 10/14/20	002	Result 5.000		S= 0.0 CV= 0 K facto		
1/15/200 4/10/200		5.000 5.000		TL= 5		
7/14/200)3 :	5.000			CV is less than	· ·
10/13/20	003	5.000			istical analysis.	ion and continue
1/13/200)4 :	5.000		with stat	istical analysis.	
4/13/200)4 :	5.000				
7/21/200)4 :	5.000				
Well Numb	ber: M	W394				
Date Colle	cted]	Result				
8/13/200)2 :	5.000				
9/30/200)2 :	5.000				
10/16/20	002 :	5.000				
1/13/200)3 :	5.000				
4/10/200)3 :	5.000				
7/16/200)3 :	5.000				
10/14/20	003	5.000				
1/13/200)4 :	5.000				
Fourth Q October		2014 Data C	Collected	d in		
Well No.	Result	Gradient	Resul	t > TL?		
MW221	1.000	Sidegradie	nt	NO		
MW222	1.000	Sidegradie	nt	NO		
MW223	1.000	Sidegradie	nt	NO		
MW224	1.000	Sidegradie	nt	NO		
MW369	1.000	Downgradi	ient	NO		
MW372	1.000	Downgradi	ient	NO		
MW384	1.000	Sidegradie	nt	NO		
MW387	0.510	Downgradi		NO		
MW391	0.690	Downgrad	ient	NO		

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wel	ls
located upgradient from the landfill.	

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA cis-1,2-Dichloroethene'*Eqpvkpwgf + UNITS: ug/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells		Statistics on Background Data			Transformed Background Data from Upgradient Wells		
Well Number:	MW220	X= 0.016		W	ell Number:	MW220	
Date Collected	Result	S= 0.040 CV= 2.440		Da	ate Collected	LN(Result)	
10/14/2002	0.004	C v = 2.440 K factor** = 2.523		1	0/14/2002	-5.497	
1/15/2003	0.005	TL= 0.116		1	/15/2003	-5.306	
4/10/2003	0.003			4	/10/2003	-5.846	
7/14/2003	0.161	Because CV greater th		. 7	/14/2003	-1.826	
10/13/2003	0.023	logarithm of backgrou were calculated.	nd and test well resu	ilts 1	0/13/2003	-3.790	
1/13/2004	0.005		_	1	/13/2004	-5.373	
4/13/2004	0.001	Statistics on		4	/13/2004	-6.908	
7/21/2004	0.003	Transformed		7	/21/2004	-5.937	
Well Number:	MW394	Background Data	_	W	ell Number:	MW394	
Date Collected	Result	X= -5.582		Da	ate Collected	LN(Result)	
8/13/2002	0.025	S= 1.573		8	/13/2002	-3.689	
9/16/2002	0.025	CV= -0.282		9	/16/2002	-3.689	
10/16/2002	0.001	K factor** = 2.523		1	0/16/2002	-6.908	
1/13/2003	0.001	TL= -1.613		1	/13/2003	-6.908	
4/10/2003	0.001	1L1.015		4	/10/2003	-6.908	
7/16/2003	0.001			7	/16/2003	-6.908	
10/14/2003	0.001			1	0/14/2003	-6.908	
1/13/2004	0.001			1	/13/2004	-6.908	
Fourth Quart October 2014	ter 2014 Data Co	llected in		Data Coll	ned Fourth Q ected in Octo	ber 2014	
Well No. Res	sult Gradient	Result > TL?		Well Num	per LN(Resu	lt) Result > TL?	
MW221 0.0	01 Sidegradie	nt N/A]	MW221	-6.593	NO	
MW222 0.0	01 Sidegradie	nt N/A]	MW222	-6.661	NO	
MW223 0.0	01 Sidegradie	nt N/A]	MW223	-7.308	NO	
MW224 0.0	01 Sidegradie	nt N/A]	MW224	-7.419	NO	
MW369 0.0	-]	MW369	-4.822	NO	
MW372 0.0	00 Downgradi	ient N/A]	MW372	-8.079	NO	
MW384 0.0]	MW384	-8.740	NO	
MW387 0.0]	MW387	-6.908	NO	
MW391 0.0]	MW391	-6.908	NO	

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Cobalt'*Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells	Statistics on Background Data
Well Number: MW220	X= 382.132
Date Collected Result 10/14/2002 368.000 1/15/2003 433.200 4/10/2003 489.000 7/14/2003 430.000 10/13/2003 346.000 1/13/2004 365.000	K factor** = 2.523 TL= 652.432 Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.
4/13/2004 416.000	
7/21/2004 353.000 Well Number: MW394	
Date Collected Result 8/13/2002 406.000 9/16/2002 418.000 10/16/2002 411.000 1/13/2003 422.000 4/10/2003 420.000 7/16/2003 438.000 10/14/2003 3.910 1/13/2004 395.000	
Well No. Result Gradie	nt Result > TL?
MW221 380.00 Sidegr MW222 327.00 Sidegr MW223 383.00 Sidegr MW224 439.00 Sidegr MW369 371.00 Down MW372 766.00 Down MW384 522.00 Sidegr MW387 555.00 Down	adient NO adient NO adient NO gradient NO gradient YES adient NO gradient NO
MW391 340.00 Down	gradient NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Conductivity'*Eqpvkpwgf + UNITS: umho/cm

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Copper **UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Upgradient V		Statisti Backgi	ics on round Data	
Well Number:	MW220	X= 0.0		
Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004	0.021 0.020 0.020 0.020 0.020 0.020 0.020 0.020	TL= 0 Because assume n	.429 or** = 2.523 .050 CV is less than	tion and continue
7/21/2004 Well Number:	0.020 MW394			
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004 Fourth Quan October 201	Result 0.050 0.050 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	a Collected in		
Well No. Re	esult Gradient	t Result > TL ?		
MW222 0. MW223 0. MW224 0. MW369 0. MW372 0. MW384 0. MW387 0.0	001Sidegrad001Sidegrad000Sidegrad001Sidegrad001Downgrad000Downgrad001Sidegrad001Sidegrad001Sidegrad001Downgrad001Downgrad001Downgrad001Downgrad0001Downgrad0001Downgrad	lientNOlientNOadientNOadientNOlientNOadientNO		
MW222 0. MW223 0. MW224 0. MW369 0. MW372 0. MW384 0. MW387 0.0	001Sidegrad000Sidegrad001Sidegrad001Downgrad000Downgrad000Sidegrad001Sidegrad	lientNOlientNOadientNOadientNOlientNOadientNO		

- Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- Upper Tolerance Limit, TL = X + (K * S)TL
- Mean, X = (sum of background results)/(count of background results) Х
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URG. Copper'*Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Dissolved Oxygen UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Backgroun Upgradien		from		Statist Backg	ics on round Data	
Well Numbe	er: M	W220		X= 3.7		
Date Collect 10/14/200 1/15/2003)2 (Result 5.790 7.250		S= 1.8 CV= 0 K facto TL= 8	.499 or** = 2.523	
4/10/2003		3.600			CV is less than	or equal to 1
7/14/2003).940 1.650		assume r	normal distribut	ion and continue
1/13/2004		3.480		with stat	istical analysis.	
4/13/2004		1.050				
7/21/2004		1.460				
Well Numbe	er: M	W394				
Date Collect	ted I	Result				
8/13/2002	2 6	5.090				
9/16/2002	2 3	3.850				
10/16/200)2 5	5.110				
1/13/2003	3 3	3.830				
4/10/2003	3 4	4.150				
7/16/2003	3 1	1.830				
10/14/200)3 3	3.330				
1/13/2004	4 3	3.140				
Fourth Qu October 2		2014 Data	Collecte	d in		
Well No.	Result	Gradient	Resu	t > TL?		
MW221	4.880	Sidegradi	ent	NO		
MW222	4.300	Sidegradi		NO		
MW223	1.900	Sidegradi		NO		
MW224	2.130	Sidegradi		NO		
MW369	2.100	Downgrae		NO		
MW372	0.980	Downgrad		NO		
MW384	4.170	Sidegradi		NO		
MW387	4.470	Downgrad		NO		
MW391	3.760	Downgrae	dient	NO		

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Dissolved Oxygen'*Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Da Upgradient We			Statist Backg	ics on round Data	
Well Number:	MW220		X= 23		
Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003	Result 208.000 257.000 288.000 262.000		TL= 3 Because	.118 or** = 2.523 02.045 CV is less than	or equal to 1, ion and continue
10/13/2003 1/13/2004 4/13/2004 7/21/2004	197.000 198.000 245.000 204.000			istical analysis.	
Well Number: Date Collected	MW394 Result				
8/13/2002 9/16/2002 10/16/2002	247.000 259.000 201.000				
1/13/2003 4/10/2003 7/16/2003 10/14/2003	228.000 249.000 240.000 230.000				
1/13/2004 Fourth Quarte October 2014	210.000 r 2014 Data	Collected	l in		
Well No. Resu	lt Gradient	Resul	t > TL?		
MW222 177. MW223 213. MW224 224. MW369 193. MW372 476. MW384 251.	00 Sidegrad 00 Sidegrad 00 Sidegrad 00 Sidegrad 00 Downgra 00 Downgra 00 Sidegrad 00 Downgra	ient ient ient adient adient ient	NO NO NO NO YES NO		
	00 Downgra		NO		

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Dissolved Solids'*Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

MW387

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Iron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background I Upgradient V		Statisti Backgr	cs on ound Data		[Transformed I Data from Upg	Background gradient Wells
Well Number:	MW220	X= 0.8				Well Number:	MW220
Date Collected	Result	S= 1.0 CV= 1]	Date Collected	LN(Result)
10/14/2002	0.200		$r^{**} = 2.523$			10/14/2002	-1.609
1/15/2003	0.200	TL=3				1/15/2003	-1.609
4/10/2003	0.429					4/10/2003	-0.846
7/14/2003	4.330			n 1, the natural	1.	7/14/2003	1.466
10/13/2003	1.810			d and test well res	ults	10/13/2003	0.593
1/13/2004	0.793	were care	were calculated.			1/13/2004	-0.232
4/13/2004	0.130	Statisti				4/13/2004	-2.040
7/21/2004	0.382	Transf				7/21/2004	-0.962
Well Number:	MW394	Backgr	ound Data		,	Well Number:	MW394
Date Collected	Result	X= -0.4	565]	Date Collected	LN(Result)
8/13/2002	1.340	S= 0.9	51			8/13/2002	0.293
9/16/2002	0.328	CV= -1	.683			9/16/2002	-1.115
10/16/2002	1.380	K facto	or** = 2.523			10/16/2002	0.322
1/13/2003	1.300	TL= 1	.834			1/13/2003	0.262
4/10/2003	0.494			J		4/10/2003	-0.705
7/16/2003	0.620					7/16/2003	-0.478
10/14/2003	0.370					10/14/2003	-0.994
1/13/2004	0.251					1/13/2004	-1.382
Fourth Quan October 201	rter 2014 Data 4	Collected in]			rmed Fourth Q llected in Octo	-
Well No. Re	sult Gradien	t Result > TL ⁴	?		Well Nur	nber LN(Resu	lt) Result > TL?
MW221 0.0)90 Sidegrad	lient N/A	-		MW221	-2.412	NO
MW222 0.1	153 Sidegrad	lient N/A			MW222	-1.877	NO
MW223 0.1	100 Sidegrad	lient N/A			MW223	-2.303	NO
MW224 0.0	061 Sidegrad	lient N/A			MW224	-2.805	NO
MW369 0.3	339 Downgr	adient N/A			MW369	-1.082	NO
MW372 0.4	176 Downgr	adient N/A			MW372	-0.742	NO
MW384 0.2	263 Sidegrad	lient N/A			MW384	-1.336	NO
MW387 0.0	081 Downgr	adient N/A			MW387	-2.519	NO
MW391 0.2	209 Downgr	adient N/A			MW391	-1.565	NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Iron'*Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Backgroun Upgradier		from		Statist Backg	ics on round Data	
Well Numb	er: M	W220		X= 10		
Date Collec 10/14/20 1/15/200 4/10/200 7/14/200 10/13/20 1/13/200	02 9 3 1 3 1 3 1 03 9	Result 9.160 10.000 10.800 14.700 9.030 3.490		TL= 1 Because assume r	.158 or** = 2.523 5.092 CV is less than	tion and continue
4/13/200	4 9	9.700				
7/21/200		8.060				
Well Numb	er: M	W394				
Date Collec	ted I	Result				
8/13/200		1.800				
9/16/200		12.100				
10/16/20	02 1	11.300				
1/13/200	3 1	10.300				
4/10/200	3 1	11.700				
7/16/200	3 1	12.000				
10/14/20	03	12.200				
1/13/200	4 1	1.400				
Fourth Q October 2		2014 Data	Collecte	d in		
Well No.	Result	Gradient	Resu	lt > TL?		
MW221	9.020	Sidegrad	ient	NO		
MW222	6.500	Sidegrad		NO		
MW223	8.850	Sidegrad	ient	NO		
MW224	9.580	Sidegrad	ient	NO		
MW369	7.030	Downgra	dient	NO		
MW372		Downgra		YES		
MW384		Sidegrad		NO		
MW387		Downgra		YES		
MW391	11.000	Downgra	dient	NO		

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URG. Magnesium'*Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

MW387

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background I Upgradient W		Statist Backg	ics on round Data		[Transformed I Data from Upg	
Well Number:	MW220	X= 0.2				Well Number:	MW220
Date Collected	Result	S= 0.6 CV= 2]	Date Collected	LN(Result)
10/14/2002	0.031		$r^{**} = 2.523$			10/14/2002	-3.487
1/15/2003	0.029	TL=1				1/15/2003	-3.537
4/10/2003	0.014	l]		4/10/2003	-4.290
7/14/2003	2.540			n 1, the natural	14	7/14/2003	0.932
10/13/2003	0.378	were cal		d and test well res	uns	10/13/2003	-0.973
1/13/2004	0.159	were ear	culated.	•		1/13/2004	-1.839
4/13/2004	0.007	Statist	ics on			4/13/2004	-4.952
7/21/2004	0.084		ormed			7/21/2004	-2.476
Well Number:	MW394	Backg	round Data		,	Well Number:	MW394
Date Collected	Result	X= -2.	455]	Date Collected	LN(Result)
8/13/2002	0.542	S= 1.6	519			8/13/2002	-0.612
9/16/2002	0.155	CV= -	0.659			9/16/2002	-1.864
10/16/2002	0.103	K facto	or** = 2.523			10/16/2002	-2.273
1/13/2003	0.128	TL=	1.630			1/13/2003	-2.056
4/10/2003	0.005		1.000	J		4/10/2003	-5.298
7/16/2003	0.272					7/16/2003	-1.302
10/14/2003	0.080					10/14/2003	-2.532
1/13/2004	0.066					1/13/2004	-2.721
Fourth Quar October 2014	ter 2014 Data	Collected in			Data Co	rmed Fourth Q ollected in Octo	ber 2014
Well No. Res	sult Gradier	t Result $>$ TL	?		Well Nur	nber LN(Resu	lt) Result > TL?
MW221 0.0	03 Sidegra	dient N/A	-		MW221	-5.666	NO
MW222 0.0	17 Sidegra	dient N/A			MW222	-4.086	NO
MW223 0.0	04 Sidegra	dient N/A			MW223	-5.458	NO
MW224 0.0	05 Sidegra	dient N/A			MW224	-5.279	NO
MW369 0.0	-				MW369	-3.270	NO
MW372 0.0	-				MW372	-3.873	NO
MW384 0.0	34 Sidegra	dient N/A			MW384	-3.384	NO
MW387 0.0					MW387	-6.032	NO
MW391 0.0	e				MW391	-6.200	NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Manganese''Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statistics on Background D	ata		Transformed I Data from Upg	Background gradient Wells
Well Number:	MW220	X= 0.006		v	Vell Number:	MW220
Date Collected	Result	S= 0.008 CV= 1.261		Γ	Date Collected	LN(Result)
10/14/2002	0.006	C v = 1.201 K factor** = 2.	523		10/14/2002	-5.189
1/15/2003	0.010	TL = 0.026	.520		1/15/2003	-4.622
4/10/2003	0.011				4/10/2003	-4.519
7/14/2003	0.002		ter than 1, the natural		7/14/2003	-6.012
10/13/2003	0.006	were calculated.	ground and test well re	suits	10/13/2003	-5.174
1/13/2004	0.006	were carculated.			1/13/2004	-5.164
4/13/2004	0.001	Statistics on			4/13/2004	-6.908
7/21/2004	0.004	Transformed			7/21/2004	-5.542
Well Number:	MW394	Background D	ata	v	Vell Number:	MW394
Date Collected	Result	X= -5.747		Ι	Date Collected	LN(Result)
8/13/2002	0.025	S= 1.205			8/13/2002	-3.689
9/16/2002	0.025	CV= -0.210			9/16/2002	-3.689
10/16/2002	0.001	K factor** = 2	.523		10/16/2002	-6.908
1/13/2003	0.001	TL= -2.708			1/13/2003	-6.908
4/10/2003	0.001	11- 2.700			4/10/2003	-6.908
7/16/2003	0.001				7/16/2003	-6.908
10/14/2003	0.001				10/14/2003	-6.908
1/13/2004	0.001				1/13/2004	-6.908
Fourth Quart October 2014	ter 2014 Data C	Collected in		Data Co	rmed Fourth Q llected in Octo	ber 2014
Well No. Res	sult Gradient	Result > TL?		Well Nun	iber LN(Resu	lt) Result > TL?
MW221 0.0	04 Sidegrad	ient N/A		MW221	-5.602	NO
MW222 0.0	00 Sidegrad	ient N/A		MW222	-8.517	NO
MW223 0.0	04 Sidegradi	ient N/A		MW223	-5.529	NO
MW224 0.0	00 Sidegradi	ient N/A		MW224	-7.929	NO
MW369 0.0	-			MW369	-8.517	NO
MW372 0.0	-			MW372	-7.799	NO
MW384 0.0	01 Sidegradi	ient N/A		MW384	-7.601	NO
MW387 0.0				MW387	-7.601	NO
MW391 0.0				MW391	-7.601	NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Molybdenum'*Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Nickel UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background I Upgradient W		Statistics on Background Data]		ansformed B ta from Upg	ackground radient Wells
Well Number:	MW220	X= 0.127		Wel	l Number:	MW220
Date Collected	Result	S= 0.228 CV= 1.790		Dat	e Collected	LN(Result)
10/14/2002	0.418	Cv = 1.790 K factor** = 2.523		10/	14/2002	-0.872
1/15/2003	0.738	TL= 0.701		1/1	5/2003	-0.304
4/10/2003	0.544			4/1	0/2003	-0.609
7/14/2003	0.106	Because CV greater th		7/1	4/2003	-2.244
10/13/2003	0.053	logarithm of backgroun were calculated.	nd and test well resu	10/	13/2003	-2.939
1/13/2004	0.021		-	1/1	3/2004	-3.868
4/13/2004	0.005	Statistics on		4/1	3/2004	-5.298
7/21/2004	0.019	Transformed		7/2	1/2004	-3.953
Well Number:	MW394	Background Data	4	Wel	l Number:	MW394
Date Collected	Result	X= -3.617		Dat	e Collected	LN(Result)
8/13/2002	0.050	S= 1.837		8/1	3/2002	-2.996
9/16/2002	0.050	CV= -0.508		9/1	6/2002	-2.996
10/16/2002	0.005	K factor** = 2.523		10/	16/2002	-5.298
1/13/2003	0.005	TL= 1.019		1/1	3/2003	-5.298
4/10/2003	0.005			4/1	0/2003	-5.298
7/16/2003	0.005			7/1	6/2003	-5.298
10/14/2003	0.005			10/	14/2003	-5.298
1/13/2004	0.005			1/1	3/2004	-5.298
Fourth Quar October 2014	ter 2014 Data Col	llected in			ed Fourth Qu eted in Octob	
Well No. Res	sult Gradient	Result > TL?		Well Numbe	r LN(Result	t) Result $>$ TL?
MW221 0.1	08 Sidegradien	nt N/A	1	MW221	-2.226	NO
MW222 0.0	44 Sidegradien	nt N/A]	MW222	-3.115	NO
MW223 0.2	20 Sidegradien	nt N/A]	MW223	-1.514	NO
MW224 0.0	06 Sidegradien	nt N/A		MW224	-5.086	NO
MW369 0.0	08 Downgradie	ent N/A		MW369	-4.795	NO
MW372 0.0	02 Downgradie	ent N/A		MW372	-6.401	NO
MW384 0.0	02 Sidegradien	nt N/A		MW384	-6.215	NO
MW387 0.0	02 Downgradie	ent N/A		MW387	-6.215	NO
MW391 0.0	01 Downgradie	ent N/A]	MW391	-7.047	NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Nickel'*Eqpvlpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Oxidation-Reduction Potential UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

ata from Ells				
MW220				
Result 205.000 1.950 203.000 30.000 107.000 295.000 190.000 319.000		CV= 0 K facto TL= 3 Because assume r	.480 pr** = 2.523 97.652 CV is less than formal distribut	ion and continue
MW394				
Result 90.000 240.000 185.000 220.000 196.000 172.000 175.000 249.000 er 2014 Data	Collected	d in		
ılt Gradient	Resul	t > TL?		
00 Sidegradi 00 Sidegradi 00 Sidegradi 00 Downgra 00 Downgra 00 Sidegradi 00 Downgra	ent ent dient dient ent dient	NO NO NO YES NO NO YES		
	Alls MW220 Result 205.000 1.950 203.000 30.000 107.000 295.000 190.000 319.000 MW394 Result 90.000 240.000 185.000 220.000 196.000 172.000 175.000 249.000 ent Gradient 00 Sidegradi 00 Sidegradi 00 Sidegradi 00 200	MW220 Result 205.000 1.950 203.000 30.000 107.000 295.000 190.000 319.000 MW394 Result 90.000 240.000 185.000 220.000 196.000 172.000 175.000 249.000	Backgr MW220 Backgr Result 205.000 1.950 S= 86. 203.000 Because 30.000 Because 107.000 assume r vith stat 90.000 319.000 MW394 Result 90.000 240.000 185.000 220.000 196.000 172.000 175.000 249.000 249.000 Pre 2014 Data Collected in MO NO Sidegradient NO 00 Downgradient YES 00 Downgradient NO 00 Downgradie	BitsDistribution $MW220$ Result $MW220$ $X = 179.872$ $S = 86.318$ $CV = 0.480$ 205.000 K factor** = 2.523 1.950 $TL = 397.652$ 203.000 Because CV is less than assume normal distribut with statistical analysis. 295.000 $P0.000$ 319.000 $MW394$ Result 90.000 $P0.000$ 240.000 185.000 220.000 196.000 172.000 175.000 249.000 249.000 Per 2014 Data Collected inaltGradientResultNO 00 SidegradientNO 00 SidegradientNO 00 SidegradientNO 00 SidegradientNO 00 DowngradientYES 00 DowngradientNO 00 SidegradientNO 00 DowngradientYES

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Oxidation-Reduction Potential'*Eqpvkpwgf + UNITS: mV

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW369

MW387

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA PCB, total **UNITS:** ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

distribution and continue

Background I Upgradient W		Statistics on Background Data
Well Number:	MW220	X= 0.212
Date Collected 7/14/2003	Result 0.780	S= 0.152 CV= 0.715 K factor** = 2.523
10/13/2003 7/21/2004 7/14/2005	0.170 0.180 0.180	TL= 0.594 Because CV is less than or equal to assume normal distribution and cont
7/17/2006 7/18/2007 10/24/2007 1/24/2008	0.180 0.170 0.170 0.170	with statistical analysis.
Well Number: Date Collected	MW394 Result	
8/13/2002 9/16/2002	0.170 0.170	
7/16/2003 10/14/2003	0.170 0.170	
7/20/2004 7/11/2005	0.180 0.180	
7/17/2006 7/17/2007	0.180 0.170	
Fourth Quar October 2014		Collected in
Well No. Res	sult Gradient	Result > TL?
MW221 0.0	0	
MW222 0.0 MW223 0.0	0	
MW224 0.0 MW369 0.0	e	
MW372 0.1 MW384 0.0	03 Downgra	adient NO
MW387 0.0 MW391 0.0	99 Downgra	ndient NO

- Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- Upper Tolerance Limit, TL = X + (K * S)TL
- Mean, X = (sum of background results)/(count of background results) Х
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA PCB, total'*Eqpvkpwgf + UNITS: ug/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA PCB-1242 UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statistics on Background Data]		ansformed H ta from Upg	Background gradient Wells
Well Number:	MW220	X= 0.146		We	ll Number:	MW220
Date Collected	Result	S = 0.170		Dat	e Collected	LN(Result)
7/14/2003	0.780	CV= 1.164 K factor** = 2.523		7/1	4/2003	-0.248
10/13/2003	0.090	TL = 0.573		10/	/13/2003	-2.408
7/21/2004	0.100	I		7/2	1/2004	-2.303
7/14/2005	0.100	Because CV greater that		7/1	4/2005	-2.303
7/17/2006	0.100	logarithm of backgrour were calculated.	id and test well rest	11ts 7/1	7/2006	-2.303
7/18/2007	0.100	were calculated.	-	7/1	8/2007	-2.303
10/24/2007	0.100	Statistics on		10/	/24/2007	-2.303
1/24/2008	0.100	Transformed		1/2	4/2008	-2.303
Well Number:	MW394	Background Data	_	We	ll Number:	MW394
Date Collected	Result	X= -2.149		Dat	e Collected	LN(Result)
8/13/2002	0.110	S= 0.517		8/1	3/2002	-2.207
9/16/2002	0.130	CV= -0.241		9/1	6/2002	-2.040
7/16/2003	0.130	K factor** = 2.523		7/1	6/2003	-2.040
10/14/2003	0.090	TL= -0.844		10/	/14/2003	-2.408
7/20/2004	0.100	IL	J	7/2	0/2004	-2.303
7/11/2005	0.100			7/1	1/2005	-2.303
7/17/2006	0.100			7/1	7/2006	-2.303
7/17/2007	0.100			7/1	7/2007	-2.303
Fourth Quart October 2014	er 2014 Data Collec	ted in			ed Fourth Q cted in Octo	uarter 2014 ber 2014
Well No. Res	ult Gradient R	Result > TL?		Well Numbe	r LN(Resu	It) Result > TL?
MW221 0.09	98 Sidegradient	N/A		MW221	-2.323	NO
MW222 0.09	-	N/A		MW222	-2.352	NO
MW223 0.09	-	N/A		MW223	-2.341	NO
MW224 0.09	96 Sidegradient	N/A		MW224	-2.341	NO
MW369 0.03	39 Downgradient	N/A		MW369	-3.257	NO
MW372 0.10	03 Downgradient	N/A		MW372	-2.273	NO
	-	N/A		MW384	-2.323	NO
MW384 0.09	sidegradiem	1 1/ 1 1				
MW384 0.09 MW387 0.09	e			MW387	-2.313	NO NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA PCB-1242'*Eqpvkpwgf + UNITS: ug/L

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA pH UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells				
Well Number:	MW220			
Date Collected	Result			
10/14/2002	6.040			
1/15/2003	6.310			
4/10/2003	6.500			
7/14/2003	6.300			
10/13/2003	6.340			
1/13/2004	6.330			
4/13/2004	6.300			
7/21/2004	5.900			
Well Number:	MW394			
Date Collected	Result			
8/13/2002	5.800			
9/30/2002	5.930			
10/16/2002	5.420			
1/13/2003	6.000			
4/10/2003	6.040			
7/16/2003	6.200			
10/14/2003	6.400			
1/13/2004	6.390			

Statistics on Background Data
X= 6.138
S= 0.282
CV= 0.046
K factor** = 2.904
TL= 6.957
LL= 5.318

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014							
Well No.	Result	Gradient Res	sult >TL?	Result <ll?< th=""></ll?<>			
MW221	6.090	Sidegradient	NO	NO			
MW222	6.240	Sidegradient	NO	NO			
MW223	6.090	Sidegradient	NO	NO			
MW224	6.250	Sidegradient	NO	NO			
MW369	6.090	Downgradient	NO	NO			
MW372	6.160	Downgradient	NO	NO			
MW384	6.230	Sidegradient	NO	NO			
MW387	6.270	Downgradient	NO	NO			
MW391	6.020	Downgradient	NO	NO			

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Potassium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statist Backg	ics on round Data			Transformed I Data from Upg	
Well Number:	MW220	X= 6.6				Well Number:	MW220
Date Collected	Result	S= 9.3 CV= 1				Date Collected	LN(Result)
10/14/2002	6.700		$r^{**} = 2.523$			10/14/2002	1.902
1/15/2003	29.700	TL=3				1/15/2003	3.391
4/10/2003	24.900	<u> </u>]		4/10/2003	3.215
7/14/2003	1.130			n 1, the natural d and test well res	1.1to	7/14/2003	0.122
10/13/2003	3.430	were cal		a and test wenties	uns	10/13/2003	1.233
1/13/2004	6.710	Were eur	curatou.	1		1/13/2004	1.904
4/13/2004	19.300	Statist				4/13/2004	2.960
7/21/2004	3.970		ormed			7/21/2004	1.379
Well Number:	MW394	Backg	round Data	-		Well Number:	MW394
Date Collected	Result	X= 1.1	30		-	Date Collected	LN(Result)
8/13/2002	2.000	S= 1.2	08			8/13/2002	0.693
9/16/2002	2.000	CV= 1	.069			9/16/2002	0.693
10/16/2002	1.030	K facto	or** = 2.523			10/16/2002	0.030
1/13/2003	1.100	TL= 4				1/13/2003	0.095
4/10/2003	1.240	11/-				4/10/2003	0.215
7/16/2003	1.140					7/16/2003	0.131
10/14/2003	1.050					10/14/2003	0.049
1/13/2004	1.070					1/13/2004	0.068
Fourth Quart October 2014		Collected in]		Data Co	rmed Fourth Q ollected in Octo	ber 2014
Well No. Res	sult Gradier	nt Result $>$ TL	?		Well Nu	nber LN(Resu	lt) Result > TL?
MW221 1.2	00 Sidegra	ndient N/A	_		MW221	0.182	NO
MW222 0.4	12 Sidegra	idient N/A			MW222	-0.887	NO
MW223 1.6	80 Sidegra	idient N/A			MW223	0.519	NO
MW224 0.92	24 Sidegra	ndient N/A			MW224	-0.079	NO
MW369 0.53	34 Downg	radient N/A			MW369	-0.627	NO
MW372 2.3	70 Downg	radient N/A			MW372	0.863	NO
MW384 1.14	40 Sidegra	ndient N/A			MW384	0.131	NO
MW387 1.8					MW387	0.604	NO
MW391 1.5	00 Downg	radient N/A			MW391	0.405	NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Potassium'*Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Radium-226 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells		rom Statistics on Background Data		Transformed Background Data from Upgradient Wells		
Well Number:	MW220	X= 0.031		Well Number:	MW220	
Date Collected	Result	S = 0.383		Date Collected	LN(Result)	
10/14/2002	-0.804	CV= 12.290 K factor** = 2.523		10/14/2002	#Func!	
1/15/2003	0.000	TL = 0.998		1/15/2003	#Func!	
10/13/2003	0.389			10/13/2003	-0.944	
1/13/2004	-0.120	Because CV greater tha		1/13/2004	#Func!	
4/13/2004	0.159	were calculated.	logarithm of background and test well results			
7/21/2004	0.382	were curculated.	1	7/21/2004	-0.962	
10/11/2004	0.211	Statistics on		10/11/2004	-1.556	
1/20/2005	0.229	Transformed		1/20/2005	-1.474	
Well Number:	MW394	Background Data		Well Number:	MW394	
Date Collected	Result	$\mathbf{X} = \mathbf{error}$		Date Collected	LN(Result)	
10/16/2002	0.584	S = error		10/16/2002	-0.538	
1/13/2003	-0.839	CV = error		1/13/2003	#Func!	
10/14/2003	0.033	K factor** = 2.523		10/14/2003	-3.427	
1/13/2004	-0.004	TL# = -0.538		1/13/2004	#Func!	
4/12/2004	-0.079	120	12			
7/20/2004	0.290		# Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.			
10/12/2004	0.037					
1/18/2005	0.032	equal to the maximum t	ackground value.	1/18/2005	-3.445	

Fourth Quarter 2014 Data Collected in October 2014						
Well No.	Result	Gradient	Result > TL?			
MW221	0.425	Sidegradient	N/A			
MW222	0.255	Sidegradient	N/A			
MW223	0.263	Sidegradient	N/A			
MW224	0.555	Sidegradient	N/A			
MW369	0.748	Downgradien	t N/A			
MW372	0.461	Downgradien	t N/A			
MW384	0.253	Sidegradient	N/A			
MW387	0.429	Downgradien	t N/A			
MW391	0.495	Downgradien	t N/A			

Transformed Fourth Quarter 2014 Data Collected in October 2014						
Well Number	LN(Result)	Result >TL?				
MW221	-0.856	NO				
MW222	-1.366	NO				
MW223	-1.336	NO				
MW224	-0.589	NO				
MW369	-0.290	YES				
MW372	-0.774	NO				
MW384	-1.374	NO				
MW387	-0.846	NO				
MW391	-0.703	NO				

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Radium-226'*Eqpvkpwgf + UNITS: pCi/L

Conclusion of Statistical Analysis on Transformed Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW369

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA mg/L Sodium **UNITS:**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient We			tatisti Backgr	cs on ound Data	
Well Number:	MW220		K= 36.		
Date Collected 10/14/2002 1/15/2003	Result 35.400 40.600	C k	5= 8.66 CV= 0. K facto CL= 58	238 or** = 2.523	
4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004 7/21/2004	51.000 58.200 38.100 37.000 43.200 33.800	Be	cause (sume n	CV is less than	or equal to 1, tion and continue
Well Number:	MW394				
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004 Fourth Quart October 2014	Result 32.900 29.900 29.000 27.100 24.800 35.600 33.900 31.300 er 2014 Data C	ollected in	n		
Well No. Res	ult Gradient	Result >	· TL?		
MW222 46.6 MW223 48.6 MW224 60.0 MW369 53.4 MW372 59.7 MW384 58.7 MW387 55.5	 Sidegradier Sidegradier Sidegradier Sidegradier Sidegradier Downgradie Downgradie Sidegradier Sidegradier Downgradie Sidegradier Sidegradier Sidegradier Downgradie Sidegradier Downgradie Downgradie 	AtNAtYentNentYttYentN	40 40 40 ES 40 40		

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA well	ls
located upgradient from the landfill.	

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- Upper Tolerance Limit, TL = X + (K * S)TL
- Mean, X = (sum of background results)/(count of background results) Х
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Sodium'*Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW224

MW372

MW384

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data f Upgradient Wells	from	Statistic Backgro	s on ound Data	
Well Number: MV	W220	X= 10.4		
10/14/2002 10	esult 0.400 .800		253 *** = 2.523	
4/10/2003 1: 7/14/2003 14 10/13/2003 12 1/13/2004 10 4/13/2004 14	5.400 4.900 3.500 0.300 4.300	assume no	CV is less than	or equal to 1, ion and continue
	0.500 V394			
8/13/2002 1 9/16/2002 8 10/16/2002 8 1/13/2003 8 4/10/2003 7 7/16/2003 8 10/14/2003 8	esult 1.200 300 .000 .500 .900 .400 .200 .100 D14 Data Collect	ed in		
Well No. Result	Gradient Res	ult > TL?		
MW22210.800MW22313.500MW22415.500MW3697.650MW372118.00MW38419.200MW38732.000	Sidegradient Sidegradient Sidegradient Downgradient Downgradient Sidegradient Downgradient Downgradient	NO NO NO NO YES YES YES NO		

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Sulfate'*Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

MW384

MW387

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Technetium-99 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

nta from lls				
MW220				
Result 19.700 26.100 3.560 0.000 21.000 6.320 3.000 14.600		CV= 0 K facto TL= 3 Because assume r	.992 pr** = 2.523 2.768 CV is less than normal distribut	tion and continue
MW394				
Result 14.000 5.450 2.490 18.300 -1.450 -1.710 18.300 0.000 r 2014 Data	Collecte	ed in		
lt Gradient	Resu	lt > TL?		
0 Sidegrad 00 Sidegrad 00 Sidegrad 00 Downgra 00 Downgra 00 Sidegrad 00 Downgra	ient ient idient idient ient idient	NO NO NO YES YES YES YES		
	IIs MW220 Result 19.700 26.100 3.560 0.000 21.000 6.320 3.000 14.600 MW394 Result 14.000 5.450 2.490 18.300 -1.450 -1.710 18.300 0.000 rr 2014 Data Ilt Gradient 0 Sidegrad 00 01 02 03 04	IIs MW220 Result 19.700 26.100 3.560 0.000 21.000 6.320 3.000 14.600 MW394 Result 14.000 5.450 2.490 18.300 -1.450 -1.710 18.300 0.000 rr 2014 Data Collected Ilt Gradient Result 0 Sidegradient	IIsBackgr Backgr $MW220$ $X = 9.3$ $S = 9.2$ $CV = 0$ $K factorTL = 319.70026.10026.100X = 9.3S = 9.2CV = 0K factorTL = 30.000Becauseassume rwith stat3.5600.00021.000Becauseassume rwith stat3.00014.600MW394Result14.0005.4502.49018.300-1.450-1.71018.3000.000r 2014 Data Collected inIltGradientResultNO0000 SidegradientNO0000 SidegradientNO0000 SidegradientNO0000 DowngradientYES0000 DowngradientYES0000 DowngradientYES1450$	IIsBackground DataMW220Result19.700 $X = 9.354$ 26.100 $X = 9.280$ 3.560 $CV = 0.992$ K factor** = 2.523TL= 32.768Because CV is less than assume normal distribut with statistical analysis.6.320Because CV is less than assume normal distribut with statistical analysis. $A000$ Hereit Result14.600MW394Result14.0005.4502.49018.300-1.450-1.71018.3000.000rr2014 Data Collected inItGradientResultNO0SidegradientNOSidegradientNOSidegradientNOSidegradientNODowngradientYESD

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Technetium-99'*Eqpvlpwgf + UNITS: pCi/L

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW369

MW372

MW384

MW387

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA **Total Organic Carbon (TOC) UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Backgrou Upgradie				Statist Backg	ics on round Data
Well Num	ber: M	W220		X= 1.4	
Date Colle	cted]	Result		S= 0.7 CV= 0	-
10/14/20	002	1.000			$r^{**} = 2.523$
1/15/200	03	1.100		TL=3	
4/10/200	03	1.000			
7/14/200	03 .	3.300			CV is less th
10/13/20	003	1.800			ormal distri
1/13/200	04	1.000		with Stat	isticul ultury:
4/13/200	04 2	2.000			
7/21/200	04 .	3.100			
Well Num	ber: M	W394			
Date Colle	cted]	Result			
8/13/200	02	1.300			
9/16/200	02	1.000			
10/16/20	002	1.000			
1/13/200	03	1.600			
4/10/200	03	1.000			
7/16/200	03	1.400			
10/14/20	003	1.300			
1/13/200	04	1.000			
Fourth (October	-	2014 Data C	ollecte	d in	
Well No.	Result	Gradient	Resu	t > TL?	
MW221	1.000	Sidegradier	nt	NO	
MW222	0.864	Sidegradier	nt	NO	
MW223	1.090	Sidegradier	nt	NO	
MW224	1.350	Sidegradier	nt	NO	
MW369	1.590	Downgradi	ent	NO	
MW372	2.740	Downgradi	ent	NO	
MW384	1.240	Sidegradier	nt	NO	
MW387	1.280	Downgradi	ent	NO	
MW391	1.260	Downgradi	ent	NO	

CV= 0.493 K factor** = 2.523 TL= 3.353					
Because CV is less than or equal to					

1. ormal distribution and continue istical analysis.

- Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- Upper Tolerance Limit, TL = X + (K * S)TL
- Mean, X = (sum of background results)/(count of background results) Х
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URG. Total Organic Carbon (TOC)'*Eqpvlpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Total Organic Halides (TOX) UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

TT 10 (TT 11		Statisti Backgı	cs on ound Data			Transformed I Data from Upg	Background gradient Wells
Well Number:	MW220	X= 63.				Well Number:	MW220
Date Collected	Result	S= 163 CV= 2				Date Collected	LN(Result)
10/14/2002	50.000		$r^{**} = 2.523$			10/14/2002	3.912
1/15/2003	10.000	TL= 4				1/15/2003	2.303
4/10/2003	10.000	<u> </u>]		4/10/2003	2.303
7/14/2003	10.000			n 1, the natural	-14-	7/14/2003	2.303
10/13/2003	10.000	were calo		d and test well res	ults	10/13/2003	2.303
1/13/2004	10.000	were ear	uluted.	1		1/13/2004	2.303
4/13/2004	10.000	Statisti				4/13/2004	2.303
7/21/2004	10.000	Transf				7/21/2004	2.303
Well Number:	MW394	Backgr	ound Data			Well Number:	MW394
Date Collected	Result	X= 3.1	03			Date Collected	LN(Result)
8/13/2002	50.000	S= 1.1	45			8/13/2002	3.912
9/16/2002	672.000	CV= 0	.369			9/16/2002	6.510
10/16/2002	50.000	K facto	or** = 2.523			10/16/2002	3.912
1/13/2003	36.100	TL= 5				1/13/2003	3.586
4/10/2003	10.000	IL- ·	.,,,,			4/10/2003	2.303
7/16/2003	42.700					7/16/2003	3.754
10/14/2003	22.000					10/14/2003	3.091
1/13/2004	12.800					1/13/2004	2.549
Fourth Quart October 2014	ter 2014 Data	Collected in]		Data C	ormed Fourth Q ollected in Octo	ber 2014
Well No. Res	sult Gradient	t Result $>$ TL	?		Well Nu	mber LN(Resu	lt) Result > TL?
MW221 10.	000 Sidegrad	lient N/A	_		MW221	2.303	NO
MW222 10.	000 Sidegrad	lient N/A			MW222	2.303	NO
MW223 10.	000 Sidegrad	lient N/A			MW223	2.303	NO
MW224 5.1	60 Sidegrad	lient N/A			MW224		NO
MW369 13.	-				MW369		NO
MW372 6.42	-				MW372	1.859	NO
MW384 10.	300 Sidegrad	lient N/A			MW384	2.332	NO
MW387 9.22	20 Downgr	adient N/A			MW387	2.221	NO
MW391 11.	-				MW391	2.425	NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Total Organic Halides (TOX)'*Eqpvkpwgf + UNITS: ug/L

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Trichloroethene UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statistics on Background Data
Well Number:	MW220	X= 8.813
Date Collected	Result	S = 8.376
10/14/2002	1.000	CV= 0.951 K factor** = 2.523
1/15/2003	1.000	TL = 29.946
4/10/2003	1.000	
7/14/2003	1.000	Because CV is less than or equal to 1,
10/13/2003	1.000	assume normal distribution and continue with statistical analysis.
1/13/2004	1.000	with statistical analysis.
4/13/2004	1.000	
7/21/2004	1.000	
Well Number:	MW394	
Date Collected	Result	
8/13/2002	16.000	
9/30/2002	20.000	
10/16/2002	17.000	
1/13/2003	15.000	
4/10/2003	10.000	
7/16/2003	19.000	
10/14/2003	20.000	
1/13/2004	16.000	
Fourth Quart October 2014	er 2014 Data	Collected in
Well No. Res	ult Gradient	Result > TL?
MW372 7.79	0 Downgra	idient NO
MW391 14.5	500 Downgra	idient NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Vanadium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background I Upgradient W			stics on ground Data	
Well Number:	MW220	X= 0		
Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004	Result 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020	K fac TL= Becaus assume	0.083 ctor** = 2.523 0.025 se CV is less than	tion and continue
7/21/2004 Well Number:	0.020 MW394			
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004 Fourth Quar October 2014	Result 0.025 0.025 0.020 0.020 0.020 0.020 0.020 0.020 0.020 ter 2014 Data	a Collected in]	
Well No. Rea	sult Gradient	t Result $>$ TL	?	
MW221 0.0 MW222 0.0 MW223 0.0 MW224 0.0 MW369 0.0 MW372 0.0 MW384 0.0 MW387 0.0 MW387 0.0	05 Sidegrad 05 Sidegrad 05 Sidegrad 01 Downgra 05 Downgra 05 Sidegrad 05 Downgra	lientNOlientNOadientNOadientNOlientNOadientNO		
MW369 0.0 MW372 0.0 MW384 0.0	01 Downgra 05 Downgra 05 Sidegrad 05 Downgra	adient NO adient NO lient NO adient NO		

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Vanadium'*Eqpvlpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Zinc UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Backgrou Upgradier				Statist Backgr	ics on round Data	
Well Numb	er: N	1W220	-	X= 0.0		
Date Collec 10/14/20		Result 0.025		S= 0.0 CV= 0 K facto		
1/15/200 4/10/200		0.035 0.035		TL= 0	.101	
7/14/200		0.039			CV is less than	
10/13/20	03	0.026				ion and continu
1/13/200	4	0.020		with stat	istical analysis.	
4/13/200	4	0.020				
7/21/200	4	0.020				
Well Numb	er: N	1W394				
Date Collec	cted	Result				
8/13/200	2	0.100				
9/16/200	2	0.100				
10/16/20	02	0.025				
1/13/200	3	0.035				
4/10/200	-	0.035				
7/16/200	3	0.020				
10/14/20		0.020				
1/13/200	4	0.020				
Fourth Q October 2		2014 Data	a Collecte	ed in		
Well No.	Result	Gradient	Resu	lt > TL?		
MW221	0.006	Sidegrad	lient	NO		
MW222	0.006	Sidegrad		NO		
MW223	0.011	Sidegrad	lient	NO		
MW224	0.005	Sidegrad		NO		
MW369	0.006	Downgra		NO		
MW372	0.008	Downgra		NO		
	0 00 1	Sidegrad	lient	NO		
MW384	0.004	Sluegrau	nont	110		
MW384 MW387	0.004 0.006	Downgra		NO		

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Zinc'*Eqpvlpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statistic Backgro	cs on ound Data]
Well Number:	MW395	X= 0.25		
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.200 0.200 0.000 0.737	TL= 0. Because (856 r** = 2.523 815 CV is less than	n or equal to 1,
4/10/2003 7/16/2003 10/14/2003 1/13/2004 Well Number:	0.200 0.200 0.200 0.200 0.200 MW397		ormal distribut stical analysis.	ation and continue
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/13/2004 Fourth Quart		a Collected in		
October 2014		$\mathbf{D} = -14 \times \mathrm{TL} 0$		
	sult Gradient			
MW370 0.03 MW373 0.03	50 Downgra	adient NO		
MW385 0.03 MW388 0.03 MW392 0.03	15 Downgra	adient NO		
Conclusion of	f Statistical	Analysis on Hist	orical Data	1
				Limit, which is evidence that concentrations in und concentrations to a statistically significant

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Beryllium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statisti Backgr	ics on round Data	
Well Number:	MW395	X= 0.0		
Date Collected 8/13/2002 9/16/2002	Result 0.005 0.005).894 or** = 2.523	
10/16/2002 1/13/2003 4/10/2003	0.001 0.001 0.001	assume n	CV is less than	tion and continue
7/16/2003 10/14/2003 1/13/2004 Well Number:	0.001 0.001 0.001 MW397	WIIII Stati	Istical analysis.	
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/13/2004 Fourth Quart October 2014	Result 0.005 0.005 0.001 0.001 0.001 0.001 0.001 0.001 ter 2014 Data	1 Collected in]	
<u></u>	sult Gradient	Result > TL?	ł	
MW370 0.00 MW373 0.00 MW385 0.00 MW388 0.00 MW392 0.00	01 Downgra 01 Sidegrad 01 Downgra	adient NO lient NO adient NO		
		Analysis on Hist		
				Limit, which is evidence that concentrations in und concentrations to a statistically significant

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Beta activity UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statistics on Background Data	7
Well Number:	MW395	X= 7.183	
Date Collected 8/13/2002	Result 1.090	S= 2.612 CV= 0.364	
9/16/2002	5.790	K factor** = 2.523	3
10/16/2002	6.820	TL= 13.773	
1/13/2003	5.010	Because CV is less th	
4/10/2003	6.100	assume normal distri	
7/16/2003	8.510	with statistical analys	SIS.
10/14/2003	4.990		
1/13/2004	6.580		
Well Number:	MW397		
Date Collected	Result		
8/13/2002	9.570		
9/16/2002	11.000		
10/17/2002	9.300		
1/13/2003	8.630		
4/8/2003	10.000		
7/16/2003	6.890		
10/14/2003	10.100		
1/13/2004	4.550		
Fourth Quart October 2014		Collected in	
Well No. Res	sult Gradient	Result > TL?	
MW385 78.2	200 Sidegradi	ent YES	
	400 Downgra		
Conclusion of	f Statistical A	Analysis on Historical Dat	a
		exceeded the Upper Toler t to historical background	ance Limit, which is evidence of elevated d data.
MW385	-		

MW388

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Boron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statistics or Background	_				sformed B from Upg		
Well Number:	MW395	X= 0.650				Well N	Number:	MW3	395
Date Collected	Result	S= 0.805 CV= 1.238				Date (Collected	LN(R	Result)
8/13/2002	2.000	C v= 1.238 K factor**				8/13/2	2002	0.693	;
9/16/2002	2.000	TL = 2.681	- 2.323			9/16/2	2002	0.693	3
10/16/2002	0.200					10/16	5/2002	-1.60	9
1/13/2003	0.200			1, the natural	1.	1/13/	2003	-1.60	9
4/10/2003	0.200	logarithm of t		and test well res	ults	4/10/2	2003	-1.60	9
7/16/2003	0.200	were calculate				7/16/2003		-1.60	9
10/14/2003	0.200	Statistics or	n			10/14	/2003	-1.60	9
1/13/2004	0.200	Transforme				1/13/	2004	-1.60	9
Well Number:	MW397	Background	d Data			Well N	Number:	MW3	397
Date Collected	Result	X= -1.034				Date C	Collected	LN(R	Result)
8/13/2002	2.000	S= 1.030				8/13/2	2002	0.693	3
9/16/2002	2.000	CV= -0.996	5			9/16/2	2002	0.693	3
10/17/2002	0.200	K factor**	= 2.523			10/17	/2002	-1.60	9
1/13/2003	0.200	TL = 1.564				1/13/2	2003	-1.60	9
4/8/2003	0.200	TL- 1.304	•			4/8/2	003	-1.60	9
7/16/2003	0.200					7/16/	2003	-1.60	9
10/14/2003	0.200					10/14	/2003	-1.60	9
1/13/2004	0.200					1/13/2	2004	-1.60	9
Fourth Quart October 2014		Collected in					Fourth Q d in Octol		
Well No. Res	ult Gradier	nt Result $>$ TL?			Well Nu	mber	LN(Resul	t) R	esult > TL?
MW370 0.0.	32 Downg	radient N/A			MW370		-3.433		NO
MW373 1.6	-				MW373		0.501		NO
MW385 0.0					MW385		-4.298		NO
MW388 0.02					MW388		-3.863		NO
MW392 0.02					MW392		-3.685		NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Bromide UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statisti Backgi	tics on ground Data	
Well Number:	MW395	X= 1.0		
Date Collected	Result	S=0.0		
8/13/2002	1.000	CV= 0 K facto	0.000 tor** = 2.523	1
9/16/2002	1.000	TL= 1		1
10/16/2002	1.000			1
1/13/2003	1.000		CV is less than	
4/10/2003	1.000		normal distributi tistical analysis.	tion and continue
7/16/2003	1.000	WIth Star	Istical analysis.	
10/14/2003	1.000			
1/13/2004	1.000			
Well Number:	MW397			
Date Collected	Result			
8/13/2002	1.000			
9/16/2002	1.000			
10/17/2002	1.000			
1/13/2003	1.000			
4/8/2003	1.000			
7/16/2003	1.000			
10/14/2003	1.000			
1/13/2004	1.000			
Fourth Quart October 2014		Collected in		
Well No. Res	sult Gradient	t Result > TL ?	_	
MW370 0.55	•			
MW373 0.60	U			
MW385 0.28	U			
MW388 0.40	U			
MW392 0.6	14 Downgra	adient NO		
Conclusion of	i Statistical	Analysis on Hist	torical Data	
				Limit, which is evidence that concentrations in nd concentrations to a statistically significant

these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Well Number: MW395 X= 23.103						
Date CollectedResult $S= 11.538$ $8/13/2002$ 32.200 $CV= 0.499$ $9/16/2002$ 33.000 $TL= 52.213$						
10/10/2002 0.030 Image: CV is less than or equal to 1, assume normal distribution and continue with statistical analysis. 1/13/2003 32.400 with statistical analysis. 10/14/2003 33.900 1/13/2004 1/13/2004 31.200 Well Number: MW397						
Date Collected Result 8/13/2002 19.400 9/16/2002 19.000 10/17/2002 0.018 1/13/2003 17.800 4/8/2003 20.300 7/16/2003 19.400 10/14/2003 19.900 1/13/2004 18.800						
Well No. Result Gradient Result > TL?						
MW37028.000DowngradientNOMW37372.400DowngradientYESMW38529.400SidegradientNOMW38826.800DowngradientNOMW39227.400DowngradientNO						
Conclusion of Statistical Analysis on Historical Data						
The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.						
MW373						

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Chemical Oxygen Demand (COD) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statistics on Background	Data		
Well Number:	MW395	X= 35.313			
Date Collected	Result	S= 1.250 CV= 0.035			
8/13/2002	35.000	K factor** =	523		
9/16/2002	35.000	TL = 38.466			
10/16/2002	35.000	L			
1/13/2003	35.000		ess than or equal		
4/10/2003	35.000	with statistical a	listribution and co	ontinue	
7/16/2003	35.000	with statistical a	lalysis.		
10/14/2003	35.000				
1/13/2004	35.000				
Well Number:	MW397				
Date Collected	Result				
8/13/2002	40.000				
9/16/2002	35.000				
10/17/2002	35.000				
1/13/2003	35.000				
4/8/2003	35.000				
7/16/2003	35.000				
10/14/2003	35.000				
1/13/2004	35.000				
Fourth Quart October 2014 Well No. Res		Collected in Result > TL?			
	200 Downgra				
	200 Downgra 900 Downgra				
	000 Sidegradi				
	000 Downgra				
	200 Downgra				
		Analysis on Historical	Data		
None of the te	est wells exce	•	ance Limit, wl		hat concentrations in atistically significant

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)

level.

- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Chloride **UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statisti Backgr	cs on ound Data	
Well Number:	MW395	X= 51.	-	
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 62.200 64.700 62.200	TL= 81	225 pr** = 2.523 1.242	
1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004 Well Number:	63.500 64.100 64.000 63.200 60.600 MW397	assume n		an or equal to 1, ution and continue s.
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/13/2004	Result 38.900 39.800 39.300 40.500 42.100 42.000 40.800 41.600			
Fourth Quart October 2014		Collected in		
Well No. Res	ult Gradient	Result > TL?		
MW373 43.5 MW385 27.1 MW388 31.2	000 Downgra 500 Downgra 100 Sidegrad 200 Downgra 200 Downgra	adient NO lient NO adient NO		
		Analysis on Hist		
				Limit, which is evidence that concentrations in und concentrations to a statistically significant

these wells are not different from historical background concentrations to a statistically significant level.

- Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- Upper Tolerance Limit, TL = X + (K * S)TL
- Mean, X = (sum of background results)/(count of background results) Х
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA cis-1,2-Dichloroethene UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background I Upgradient W		Statist Backg	ics on round Data]
Well Number:	MW395	X= 5.0		
Date Collected	Result	S=0.0		
8/13/2002	5.000	CV=0	.000 or** = 2.523	
9/30/2002	5.000	TL= 5		
10/16/2002	5.000	L		
1/13/2003	5.000		CV is less than	
4/10/2003	5.000		ormal distribut istical analysis.	ition and continue
7/16/2003	5.000	with stat	istical analysis.	i.
10/14/2003	5.000			
1/13/2004	5.000			
Well Number:	MW397			
Date Collected	Result			
8/13/2002	5.000			
9/30/2002	5.000			
10/17/2002	5.000			
1/13/2003	5.000			
4/8/2003	5.000			
7/16/2003	5.000			
10/14/2003	5.000			
1/13/2004	5.000			
Fourth Quar October 2014	ter 2014 Data I	Collected in		
Well No. Res	sult Gradient	Result > TL?		
MW370 1.0	00 Downgra	idient NO		
MW373 1.0	00 Downgra	ndient NO		
MW385 1.0	e			
MW388 0.5	10 Downgra	ndient NO		
MW392 0.7	00 Downgra	idient NO		
Conclusion o	f Statistical	Analysis on His	torical Data	
				Limit, which is evidence that concentrations in

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells	Statistics on Background Data					ackground radient Wells
Well Number: MW395	X= 0.007			Well N	Number:	MW395
Date Collected Result	S= 0.011 CV= 1.515			Date (Collected	LN(Result)
8/13/2002 0.025	Cv = 1.515 K factor** = 2.523			8/13/2	2002	-3.689
9/16/2002 0.025	TL = 0.034			9/16/2	2002	-3.689
10/16/2002 0.001]		10/16	6/2002	-6.908
1/13/2003 0.001	Because CV greater tha		1.	1/13/	2003	-6.516
4/10/2003 0.002	logarithm of backgroun were calculated.	d and test well resu	ilts	4/10/2	2003	-6.496
7/16/2003 0.001	were calculated.			7/16/2003		-6.908
10/14/2003 0.001	Statistics on			10/14	/2003	-6.908
1/13/2004 0.001	Transformed			1/13/	2004	-6.908
Well Number: MW397	Background Data	-		Well N	Number:	MW397
Date Collected Result	X= -6.053			Date (Collected	LN(Result)
8/13/2002 0.025	S= 1.416			8/13/2	2002	-3.689
9/16/2002 0.025	CV= -0.234			9/16/2	2002	-3.689
10/17/2002 0.001	K factor** = 2.523			10/17	/2002	-6.908
1/13/2003 0.001	TL = -2.480			1/13/2	2003	-6.908
4/8/2003 0.001	1L2.400]		4/8/2	003	-6.908
7/16/2003 0.001				7/16/2	2003	-6.908
10/14/2003 0.001				10/14	/2003	-6.908
1/13/2004 0.001				1/13/2	2004	-6.908
Fourth Quarter 2014 Da October 2014	a Collected in				Fourth Q d in Octol	uarter 2014 oer 2014
Well No. Result Gradi	nt Result > TL?		Well Nu	mber	LN(Resul	t) Result $>$ TL?
MW370 0.001 Down	gradient N/A	-	MW370		-7.209	NO
	gradient N/A		MW373		-6.928	NO
	adient N/A		MW385		-6.908	NO
-	gradient N/A		MW388		-6.908	NO
MW392 0.000 Down	gradient N/A		MW392		-8.623	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells	Statistics on Background Data
Well Number: MW395	X= 377.875
Date Collected Result 8/13/2002 405.000 9/16/2002 401.000 10/16/2002 392.000	S= 52.101 CV= 0.138 K factor** = 2.523 TL= 509.326
1/13/2003404.0004/10/2003488.0007/16/2003450.00010/14/2003410.0001/13/2004413.000Well Number:MW397	Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.
Date Collected Result 8/13/2002 322.000 9/16/2002 315.000 10/17/2002 317.000 1/13/2003 320.000 4/8/2003 390.000 7/16/2003 354.000 10/14/2003 331.000 1/13/2004 334.000 Fourth Quarter 2014 Data October 2014 X	Collected in
Well No. Result Gradient	Result > TL?
MW370 437.00 Downgra MW373 901.00 Downgra MW385 456.00 Sidegradi MW388 433.00 Downgra MW392 405.00 Downgra	dient YES ient NO dient NO dient NO
	Analysis on Historical Data
	exceeded the Upper Tolerance Limit, which is evidence of elevated et to historical background data.
MW373	

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Copper UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W			Statistics on Background Data	
Well Number:	MW395		X= 0.028	
Date Collected 8/13/2002 9/16/2002	Result 0.050 0.050]	S= 0.013 CV= 0.474 K factor** = 2.523 TL= 0.061	
10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004 Well Number:	0.028 0.020 0.020 0.020 0.020 0.020 MW397	as	ecause CV is less than sume normal distribut ith statistical analysis.	tion and continue
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/13/2004 Fourth Quart	Result 0.050 0.050 0.020 0.020 0.020 0.020 0.020 0.020 0.020		in	
October 2014		Conected	111	
Well No. Res	sult Gradient	Result	> TL?	
MW370 0.0	-		NO	
MW373 0.00 MW385 0.00 MW388 0.00	01 Sidegrad	ient	NO NO NO	
MW388 0.00 MW392 0.00			NO	
Conclusion of	f Statistical	Analysis o	n Historical Data	
				Limit, which is evidence that concentrations in

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Dissolved Oxygen UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Upgradient V		Statist Backg	ics on round Data	
Well Number:	MW395	X= 4.0		
Date Collected	l Result	S=2.4	-	
8/13/2002	7.290	CV= 0	0.520 or** = 2.523	
9/30/2002	4.030	TL= 1		
10/16/2002	3.850	<u> </u>		J
1/13/2003	2.360		CV is less than	
4/10/2003	1.140		normal distribut tistical analysis.	tion and continue
7/16/2003	1.760	with stat	listical analysis.	
10/14/2003	4.050			
1/13/2004	4.260			
Well Number:	MW397			
Date Collected	l Result			
8/13/2002	11.560			
9/16/2002	5.860			
10/17/2002	5.940			
1/13/2003	4.660			
4/8/2003	3.770			
7/16/2003	3.470			
10/14/2003	5.340			
1/13/2004	5.510			
Fourth Quar October 201	rter 2014 Data 4	a Collected in]	
Well No. Re	esult Gradient	Result $>$ TL?	-	
MW370 3.	740 Downgra	adient NO		
MW373 1.	370 Downgra	adient NO		
MW385 0.	810 Sidegrad	lient NO		
MW388 4.	890 Downgra			
MW392 1.	030 Downgra	adient NO		
		Analysis on His		
				Limit, which is evidence that concentrations in

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient We		Statistics on Background Data	
Well Number:	MW395	X= 219.250	
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 249.000 272.000 255.000	S= 34.107 CV= 0.156 K factor** = 2.523 TL= 305.301	
1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004 Well Number:	211.000 289.000 236.000 224.000 235.000 MW397	Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.	
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/13/2004	Result 187.000 197.000 183.000 182.000 217.000 196.000 198.000 177.000 er 2014 Data Co	lected in	
Well No. Res	ult Gradient	Result > TL?	
	.00 Downgradier .00 Downgradier		
MW385 260	.00 Sidegradient .00 Downgradien	NO	
	.00 Downgradien		
Conclusion of	Statistical Ana	lysis on Historical Data	
		eeded the Upper Tolerance Limit, which is evidence of elevated historical background data.	
MW373			

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Iron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statistics on Background Data			Transformed Data from Up	Background gradient Wells
Well Number:	MW395	X= 0.400		L	Well Number:	MW395
Date Collected	Result	S = 0.514		-	Date Collected	LN(Result)
8/13/2002	0.294	CV= 1.286 K factor** = 2.523			8/13/2002	-1.224
9/16/2002	0.200	TL= 1.698			9/16/2002	-1.609
10/16/2002	0.000		J		10/16/2002	-8.517
1/13/2003	1.330	Because CV greater tha		1.	1/13/2003	0.285
4/10/2003	1.310	logarithm of backgroun were calculated.	d and test well resu	ilts	4/10/2003	0.270
7/16/2003	0.200	were calculated.	•		7/16/2003	-1.609
10/14/2003	0.100	Statistics on			10/14/2003	-2.303
1/13/2004	0.100	Transformed				-2.303
Well Number:	MW397	Background Data			Well Number:	MW397
Date Collected	Result	X= -2.197		-	Date Collected	LN(Result)
8/13/2002	1.580	S= 2.634			8/13/2002	0.457
9/16/2002	0.232	CV= -1.199			9/16/2002	-1.461
10/17/2002	0.000	K factor** = 2.523			10/17/2002	-8.517
1/13/2003	0.453	TL = 4.449			1/13/2003	-0.792
4/8/2003	0.200	1L- 4.44 <i>7</i>	l		4/8/2003	-1.609
7/16/2003	0.200				7/16/2003	-1.609
10/14/2003	0.100				10/14/2003	-2.303
1/13/2004	0.100				1/13/2004	-2.303
Fourth Quart October 2014	er 2014 Data (Collected in			ormed Fourth (ollected in Octo	
Well No. Res	ult Gradient	Result > TL?	-	Well Nu	mber LN(Resu	(lt) Result $> TL_2$
MW370 0.03	37 Downgra	dient N/A	-	MW370	-3.300	NO
MW373 0.20	-			MW373	-1.609	NO
MW385 0.10	e			MW385	-2.303	NO
MW388 0.03	-			MW388	-3.408	NO
MW392 0.10	e			MW392	-2.254	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient We		Statistics Backgro	s on und Data	
Well Number:	MW395	X= 9.102		
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 12.500 13.000 0.013 11.200	TL= 20. Because C	15 ** = 2.523 922 V is less than	or equal to 1, on and continue
4/10/2003 7/16/2003 10/14/2003 1/13/2004 Well Number:	17.500 12.900 13.400 12.400 MW397		ical analysis.	
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/13/2004 Fourth Quarter October 2014	Result 7.830 7.640 0.007 6.690 7.280 7.820 7.820 7.940 7.510 er 2014 Data	Collected in		
Well No. Res	ult Gradient	Result > TL?		
MW373 27.4 MW385 11.3 MW388 11.5 MW392 9.70		dient YES ient NO dient NO	rical Data	
		•		ce Limit, which is evidence of elevated
		exceeded the Opject to historical ba		
MW373				

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statistics on Background	-					ackground radient Wells	
Well Number:	MW395	X= 0.131				Well N	umber:	MW395	
Date Collected	Result	S= 0.195 CV= 1.487				Date Co	ollected	LN(Result)	
8/13/2002	0.361	C V = 1.487 K factor** :	= 2 523			8/13/2	002	-1.019	
9/16/2002	0.028	TL = 0.624	2.525			9/16/2	002	-3.576	
10/16/2002	0.026					10/16/	2002	-3.650	
1/13/2003	0.071		Because CV greater than 1, the natural logarithm of background and test well results			1/13/2	003	-2.641	
4/10/2003	0.629	were calculate		and test well res	ults	4/10/2	-0.464		
7/16/2003	0.297	were carculate	.u.			7/16/2	003	-1.214	
10/14/2003	0.020	Statistics on	ı			10/14/	2003	-3.922	
1/13/2004	0.013		Transformed			1/13/2	004	-4.374	
Well Number:	MW397	Background	d Data			Well N	umber:	MW397	
Date Collected	Result	X= -3.104				Date Co	ollected	LN(Result)	
8/13/2002	0.466	S= 1.529				8/13/2	002	-0.764	
9/16/2002	0.077	CV= -0.493				9/16/2	002	-2.564	
10/17/2002	0.028	K factor** -	K factor** = 2.523 TL = 0.755			10/17/	2002	-3.576	
1/13/2003	0.016					1/13/2003		-4.110	
4/8/2003	0.041	TL- 0.755				4/8/20	03	-3.202	
7/16/2003	0.017					7/16/2	003	-4.092	
10/14/2003	0.006					10/14/	2003	-5.194	
1/13/2004	0.005					1/13/2	004	-5.298	
Fourth Quart October 2014		Collected in					Fourth Q l in Octob	uarter 2014 oer 2014	
Well No. Res	sult Gradie	nt Result $>$ TL?			Well Nu	mber	LN(Resul	t) Result $>$ TL	
MW370 0.0	10 Downg	gradient N/A			MW370		-4.615	NO	
MW373 0.0		gradient N/A			MW373		-2.817	NO	
MW385 0.0		·			MW385		-6.502	NO	
MW388 0.0		radient N/A			MW388		-5.298	NO	
MW392 0.12	-	gradient N/A			MW392		-2.087	NO	

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W			Statistics on Background Data				sformed B from Upg		
Well Number:	MW395		X= 0.007			Well	Number:	MW3	395
Date Collected	Result		S= 0.011 CV= 1.451			Date (Collected	LN(R	lesult)
8/13/2002	0.025		Cv = 1.451 K factor** = 2.523			8/13/	2002	-3.68	9
9/16/2002	0.025		TL = 0.034			9/16/	2002	-3.68	9
10/16/2002	0.001	L				10/16	5/2002	-6.90	8
1/13/2003	0.006		ecause CV greater than		14.5	1/13/	2003	-5.10	1
4/10/2003	0.001		garithm of background ere calculated.	a and test well res	uits	4/10/	2003	-6.908	
7/16/2003	0.001	···	ere calculated.			7/16/	2003	-6.90	8
10/14/2003	0.001		Statistics on			10/14	4/2003	-6.90	8
1/13/2004	0.001		Transformed			1/13/	2004	-6.90	8
Well Number:	MW397		Background Data			Well 1	Number:	MW3	397
Date Collected	Result		X= -5.990			Date 0	Collected	LN(R	lesult)
8/13/2002	0.025	1	S= 1.443			8/13/	2002	-3.68	9
9/16/2002	0.025		CV= -0.241			9/16/	2002	-3.68	9
10/17/2002	0.001		K factor** = 2.523			10/17	7/2002	-6.90	8
1/13/2003	0.001		TL = -2.349			1/13/	2003	-6.90	8
4/8/2003	0.001	Ļ	1L2.54)			4/8/2003 -6.908		8	
7/16/2003	0.001					7/16/	2003	-6.90	8
10/14/2003	0.001					10/14	4/2003	-6.90	8
1/13/2004	0.001					1/13/	2004	-6.90	8
Fourth Quart October 2014	er 2014 Data	Collected	in		Data C	ollecte	Fourth Q d in Octol	ber 20	
Well No. Res	ult Gradie	nt Resu	lt > TL?		Well Nu	mber	LN(Resul	t) R	esult > TL?
MW370 0.00	0 Downg	radient	N/A		MW370		-8.422		NO
MW373 0.00		radient	N/A		MW373		-7.601		NO
MW385 0.00			N/A		MW385		-8.079		NO
MW388 0.00	-	radient	N/A		MW388		-7.601		NO
MW392 0.00		radient	N/A		MW392		-8.294		NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Nickel UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W			Statistics on Background Data				sformed B from Upg	0	
Well Number:	MW395		X= 0.018			Well	Number:	MW	395
Date Collected	Result		S= 0.020 CV= 1.089			Date (Collected	LN(F	Result)
8/13/2002	0.050		Cv = 1.089 K factor** = 2.523			8/13/	2002	-2.99	96
9/16/2002	0.050		TL = 0.068			9/16/	2002	-2.99	96
10/16/2002	0.007	l				10/16	5/2002	-4.95	59
1/13/2003	0.029		Because CV greater that		14.5	1/13/	2003	-3.54	0
4/10/2003	0.009		ogarithm of background vere calculated.	a and test well res	uits	4/10/	2003	-4.699	
7/16/2003	0.006	v T	vere calculated.			7/16/	2003	-5.07	2
10/14/2003	0.005		Statistics on			10/14	4/2003	-5.29	8
1/13/2004	0.005		Transformed			1/13/2004		-5.298	
Well Number:	MW397		Background Data			Well 1	Number:	MW	397
Date Collected	Result		X= -4.540			Date (Collected	LN(F	Result)
8/13/2002	0.050		S= 1.020			8/13/	2002	-2.99	6
9/16/2002	0.050		CV= -0.225			9/16/	2002	-2.99	6
10/17/2002	0.005		K factor** = 2.523			10/17	7/2002	-5.29	8
1/13/2003	0.005		TL = -1.965			1/13/	2003	-5.29	94
4/8/2003	0.005	l	TL1.903			4/8/2003 -5.298		8	
7/16/2003	0.005					7/16/	2003	-5.29	8
10/14/2003	0.005					10/14	4/2003	-5.29	8
1/13/2004	0.005					1/13/	2004	-5.29	8
Fourth Quarter 2014 Data Collecte October 2014			l in		Data C	ollecte	Fourth Q ed in Octol	ber 20)14
Well No. Res	sult Gradie	nt Resu	ult > TL?		Well Nu	mber	LN(Resul	t) R	lesult > TL?
MW370 0.0	01 Downg	gradient	N/A		MW370)	-7.118		NO
MW373 0.0		gradient	N/A		MW373		-5.972		NO
MW385 0.0	-		N/A		MW385		-7.036		NO
MW388 0.0	-	gradient	N/A		MW388		-7.506		NO
MW392 0.0	01 Downg	gradient	N/A		MW392		-7.195		NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Oxidation-Reduction Potential UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Da Upgradient We		Statist Backg	ics on round Data	
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW395 Result 80.000 145.000 125.000		.376	
1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004 Well Number:	85.000 159.000 98.000 138.000 233.000 MW397	assume	CV is less than normal distribut tistical analysis.	or equal to 1, ion and continue
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/13/2004 Fourth Quarter October 2014	Result 115.000 140.000 185.000 230.000 155.000 188.000 187.000 253.000 er 2014 Data C	Collected in]	
	ılt Gradient	Result > TL?]	
MW373 404. MW385 312. MW388 363.	00 Downgradi 00 Downgradi 00 Sidegradier 00 Downgradi 00 Downgradi	ent YES nt YES ent YES		
Conclusion of				
The following concentration				ce Limit, which is evidence of elevated ata.
MW370				
MW373				
MW385				
MW388				

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical	Analysis	LRGA
Oxidation-Reduction Potential'*Eqpvkpwgf +	UNITS:	mV

MW392

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA pH UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is is evidence of an exceedance of the statistically-derived historical background concentration that well.

Well Number: MW395
Well Number: MW395
Date Collected Result
8/13/2002 5.800
9/16/2002 6.000
10/16/2002 5.470
1/13/2003 6.000
4/10/2003 6.180
7/16/2003 6.000
10/14/2003 6.310
1/13/2004 6.240
Well Number: MW397
Date Collected Result
8/13/2002 5.840
9/30/2002 6.000
10/17/2002 5.750
1/13/2003 6.000
4/8/2003 6.300
7/16/2003 6.200
10/14/2003 6.360
1/13/2004 6.320

Statistics on Background Data
X= 6.048
S= 0.248
CV= 0.041
K factor** = 2.904
TL= 6.767
LL= 5.329

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Fourth Quarter 2014 Data Collected in October 2014					
Well No.	Result	Gradient Resu	ult >TL?	Result <ll?< th=""></ll?<>	
MW370	6.030	Downgradient	NO	NO	
MW373	6.220	Downgradient	NO	NO	
MW385	6.340	Sidegradient	NO	NO	
MW388	6.110	Downgradient	NO	NO	
MW392	7.000	Downgradient	YES	NO	

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data. MW392

X Mean, X = (sum of background results)/(count of background results)

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Potassium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statist Backg	ics on round Data	
Well Number:	MW395	X= 1.5		
Date Collected	Result	S= 0.6 CV= 0		
8/13/2002	2.000		.404 or** = 2.523	
9/16/2002	2.000	TL= 3		
10/16/2002	0.001	L		J
1/13/2003	1.510		CV is less than	•
4/10/2003	1.670		istical analysis.	tion and continue
7/16/2003	1.730	with stat	istical allalysis.	
10/14/2003	1.700			
1/13/2004	1.580			
Well Number:	MW397			
Date Collected	Result			
8/13/2002	2.030			
9/16/2002	2.000			
10/17/2002	0.001			
1/13/2003	1.690			
4/8/2003	1.730			
7/16/2003	2.000			
10/14/2003	1.920			
1/13/2004	1.870			
Fourth Quart October 2014		Collected in		
Well No. Res	sult Gradient	Result > TL?		
MW370 2.38	80 Downgra	adient NO		
MW373 2.92	20 Downgra	adient NO		
MW385 1.75	50 Sidegrad	ient NO		
MW388 2.00	60 Downgra	adient NO		
MW392 1.74	40 Downgra	adient NO		
Conclusion of	f Statistical .	Analysis on His	torical Data	
				Limit, which is evidence that concentrations in nd concentrations to a statistically significant

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Radium-226 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells		Statistics on Background Data		Transformed Background Data from Upgradient Wel		
Well Number:	MW395	X= 0.039		Well Number:	MW395	
Date Collected	Result	S= 0.419 CV= 10.740		Date Collected	LN(Result)	
10/16/2002	0.661	Cv = 10.740 K factor** = 2.523		10/16/2002	-0.414	
1/13/2003	-0.839	TL= 1.096		1/13/2003	#Func!	
10/14/2003	0.027			10/14/2003	-3.627	
1/13/2004	-0.078	Because CV greater than		1/13/2004	#Func!	
4/12/2004	-0.115	logarithm of background were calculated.	and test well results	4/12/2004	#Func!	
7/20/2004	0.105	were carculated.	were calculated.		-2.254	
10/12/2004	0.408	Statistics on		10/12/2004	-0.896	
1/18/2005	0.056	Transformed		1/18/2005	-2.875	
Well Number:	MW397	Background Data		Well Number:	MW397	
Date Collected	Result	X = error		Date Collected	LN(Result)	
10/17/2002	0.576	S = error		10/17/2002	-0.552	
1/13/2003	-0.841	CV = error		1/13/2003	#Func!	
10/14/2003	-0.179	K factor** = 2.523		10/14/2003	#Func!	
1/13/2004	-0.056	TL#= -0.414		1/13/2004	#Func!	
4/12/2004	0.174	12		4/12/2004	-1.749	
7/21/2004	0.227		# Because the natural log was not possible for			
10/12/2004	0.379	all background values, the equal to the maximum be		10/12/2004	-0.970	
1/20/2005	0.119	equal to the maximum of	ackground value.	1/20/2005	-2.129	

Fourth Quarter 2014 Data Collected in October 2014			Fourth Quarter 2014 Data Collected in October 2014		-		-		-		Transformed Data Collect	•	
Well No.	Result	Gradient Resu	ult > TL?	Well Number	LN(Result)	Result >TL?							
MW370	0.818	Downgradient	N/A	MW370	-0.201	YES							
AW373	0.420	Downgradient	N/A	MW373	-0.868	NO							
AW385	0.513	Sidegradient	N/A	MW385	-0.667	NO							
AW388	0.364	Downgradient	N/A	MW388	-1.011	NO							
MW392	0.484	Downgradient	N/A	MW392	-0.726	NO							

Conclusion of Statistical Analysis on Transformed Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW370

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Sodium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W			stics on ground Data	
Well Number:	MW395		9.560	
Date Collected 8/13/2002 9/16/2002	Result 27.000 27.200	CV= K fac	3.894 0.470 ctor** = 2.523 64.616	
10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004 Well Number:	0.025 22.600 53.900 30.000 29.100 26.400 MW397	assume	se CV is less than e normal distribut atistical analysis.	tion and continue
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/13/2004	Result 35.200 34.300 0.034 31.300 46.100 38.400 37.100 34.300			
Fourth Quart October 2014		Collected in		
Well No. Res	sult Gradient	Result > TL	?	
	900 Downgra			
	000 Downgra			
	600 Sidegrad			
	700 Downgra			
	100 Downgra		estaviaal Data	
None of the te	est wells exc		er Tolerance I	Limit, which is evidence that concentrations in nd concentrations to a statistically significant

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells	Statistics on Background Data
Well Number: MW395	X= 10.756
Date Collected Result 8/13/2002 10.300 9/16/2002 9.100 10/16/2002 8.800 1/13/2003 9.000 4/10/2003 8.300 7/16/2003 8.200 10/14/2003 8.300	$S= 2.147$ $CV= 0.200$ $K \text{ factor}^{**} = 2.523$ $TL= 16.173$ Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.
1/13/2004 8.200 Well Number: MW397	
Date Collected Result 8/13/2002 14.000 9/16/2002 12.800 10/17/2002 12.300 1/13/2003 12.700 4/8/2003 12.800 7/16/2003 13.100 10/14/2003 12.100 1/13/2004 12.100 Fourth Quarter 2014 Data October 2014	
Well No. Result Gradient	Result > TL?
MW370 19.100 Downgra MW373 181.00 Downgra MW385 18.800 Sidegrad MW388 21.500 Downgra MW392 6.820 Downgra	dientYESentYESdientYES
-	Analysis on Historical Data
	exceeded the Upper Tolerance Limit, which is evidence of elevated t to historical background data.
MW370	
MW373	
MW385	
MW388	

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Technetium-99 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells	Statistics on Background Data	
Well Number: MW395	X= 11.359	
Date Collected Result 8/13/2002 20.800 9/16/2002 16.200 10/16/2002 8.280	S= 9.138 CV= 0.805 K factor** = 2.523 TL= 34.414	
10/16/2002 8.280 1/13/2003 13.000 4/10/2003 -9.370 7/16/2003 0.826 10/14/2003 14.100 1/13/2004 0.000	Because CV is less than a assume normal distribution with statistical analysis.	
Well Number: MW397		
Date Collected Result 8/13/2002 6.060 9/16/2002 17.300 10/17/2002 25.700 1/13/2003 20.900 4/8/2003 20.100 7/16/2003 9.200 10/14/2003 10.100 1/13/2004 8.540	ta Collected in	
Well No. Result Gradi	nt Result > TL?	
MW370 22.500 Down MW373 38.000 Down MW385 106.00 Sideg MW388 79.000 Down MW392 4.390 Down	radient YES adient YES radient YES	
Conclusion of Statistic	l Analysis on Historical Data	
	s) exceeded the Upper Tolerand ect to historical background da	e Limit, which is evidence of elevated ata.
MW373		
MW385		
MW388		

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Total Organic Carbon (TOC) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statist Backgr	ics on round Data	
Well Number:	MW395	X= 1.5		
Date Collected	Result	S= 0.8 CV= 0		
8/13/2002	1.600		.554 0r** = 2.523	
9/16/2002	1.100	TL= 3		
10/16/2002	1.000			J
1/13/2003	2.000		CV is less than	
4/10/2003	3.400		iormal distribut istical analysis.	tion and continue
7/16/2003	2.000	with stat	istical allalysis.	
10/14/2003	1.000			
1/13/2004	1.000			
Well Number:	MW397			
Date Collected	Result			
8/13/2002	1.000			
9/16/2002	1.000			
10/17/2002	1.000			
1/13/2003	3.600			
4/8/2003	1.900			
7/16/2003	1.100			
10/14/2003	1.000			
1/13/2004	1.000			
Fourth Quart October 2014		Collected in		
Well No. Res	sult Gradient	Result > TL?		
MW370 0.83	53 Downgra	dient NO		
MW373 1.89	U			
MW385 1.33	50 Sidegradi	ient NO		
MW388 1.3	00 Downgra	dient NO		
MW392 1.8	00 Downgra	dient NO		
Conclusion of	Statistical A	Analysis on His	torical Data	
				Limit, which is evidence that concentrations in

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Total Organic Halides (TOX) UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient We		Statistics on Background Data
Well Number:	MW395	X= 31.513
Date Collected	Result	S= 18.609 CV= 0.591
8/13/2002	50.000	K = 2.523
9/16/2002	50.000	TL= 78.462
10/16/2002	50.000	
1/13/2003	18.300	Because CV is less than or equal to 1,
4/10/2003	51.200	assume normal distribution and continue with statistical analysis.
7/16/2003	42.600	with statistical analysis.
10/14/2003	12.300	
1/13/2004	10.000	
Well Number:	MW397	
Date Collected	Result	
8/13/2002	50.000	
9/16/2002	50.000	
10/17/2002	50.000	
1/13/2003	12.000	
4/8/2003	19.900	
7/16/2003	17.900	
10/14/2003	10.000	
1/13/2004	10.000	
Fourth Quart October 2014	er 2014 Data Colle	ted in
Well No. Res	ult Gradient Re	sult > TL?
MW370 3.80	00 Downgradient	NO
MW373 28.0	000 Downgradient	NO
MW385 6.08	0	NO
MW388 7.56	U	NO
MW392 29.6	500 Downgradient	NO
Conclusion of	Statistical Analy	sis on Historical Data

level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Trichloroethene UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statistics on Background Data
Well Number:	MW395	X= 7.313
Date Collected	Result	S= 5.701
8/13/2002	11.000	CV= 0.780 K factor** = 2.523
9/30/2002	14.000	TL = 21.695
10/16/2002	12.000	
1/13/2003	14.000	Because CV is less than or equal to 1,
4/10/2003	14.000	assume normal distribution and continu with statistical analysis.
7/16/2003	13.000	with statistical analysis.
10/14/2003	12.000	
1/13/2004	11.000	
Well Number:	MW397	
Date Collected	Result	
8/13/2002	5.000	
9/30/2002	5.000	
10/17/2002	1.000	
1/13/2003	1.000	
4/8/2003	1.000	
7/16/2003	1.000	
10/14/2003	1.000	
1/13/2004	1.000	
Fourth Quart October 2014	er 2014 Data	Collected in
Well No. Res	ult Gradient	Result > TL?
MW373 7.67	70 Downgra	idient NO
MW392 18.2	200 Downgra	idient NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Uranium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background I Upgradient W		Statistics Backgrou			
Well Number:	MW395	X= 0.001			
Date Collected 8/13/2002 9/16/2002	Result 0.001 0.001	S= 0.000 CV= 0.00 K factor* TL= 0.00	0 ** = 2.523		
10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004 Well Number:	0.001 0.001 0.001 0.001 0.001 0.001 MW397	Because CV	/ is less than mal distribut		
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/13/2004 Fourth Quar October 2014		Collected in			
	sult Gradient	Result > TL?			
MW370 0.0 MW373 0.0 MW385 0.0 MW388 0.0	00 Downgra 00 Downgra 00 Sidegrad 00 Downgra	dient NO dient NO ient NO dient NO			
MW392 0.0	0		ical Data		
MW392 0.0 Conclusion of None of the to	00 Downgra f Statistical A est wells exc		olerance L		

these wells are not different from histo level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Zinc UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statist Backg	tics on ground Data	
Well Number:	MW395	X= 0.0		
Date Collected 8/13/2002 9/16/2002	Result 0.100 0.100		0.760 tor** = 2.523	
10/16/2002 1/13/2003 4/10/2003	0.025 0.035 0.035	assume	e CV is less than	tion and continue
7/16/2003 10/14/2003 1/13/2004 Well Number:	0.020 0.020 0.020 MW397	with our	usticut unurysis.	
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/13/2004 Fourth Quart October 2014		a Collected in]	
Well No. Res	sult Gradient	Result > TL?	1	
MW370 0.00 MW373 0.00 MW385 0.00 MW385 0.00 MW388 0.00 MW392 0.00	07 Downgra 10 Sidegrad 04 Downgra 07 Downgra	adient NO lient NO adient NO adient NO	-	
		Analysis on His reeded the Unne		Limit, which is evidence that concentrations in
				nd concentrations to a statistically significant

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Well Number:MW396Date CollectedResult $10/17/2012$ 0.200 $1/15/2013$ 0.200 $4/16/2013$ 0.200 $7/10/2013$ 0.200 $10/3/2013$ 0.200 $1/22/2014$ 0.200 $4/9/2014$ 0.098 $7/17/2014$ 0.050	
Date CollectedResult $10/17/2012$ 0.200 $1/15/2013$ 0.200 $4/16/2013$ 0.200 $7/10/2013$ 0.200 $10/3/2013$ 0.200 $1/22/2014$ 0.200 $4/9/2014$ 0.098	
10/17/2012 0.200 1/15/2013 0.200 4/16/2013 0.200 7/10/2013 0.200 10/3/2013 0.200 1/22/2014 0.200 4/9/2014 0.098	
1/15/2013 0.200 $4/16/2013$ 0.200 $7/10/2013$ 0.200 $1/3/2013$ 0.200 $1/22/2014$ 0.200 $4/9/2014$ 0.098	
4/16/2013 0.200 7/10/2013 0.200 10/3/2013 0.200 1/22/2014 0.200 4/9/2014 0.098	
10/3/2013 0.200 assume normal distribution ar with statistical analysis. 1/22/2014 0.200 with statistical analysis.	
10/3/2013 0.200 with statistical analysis. 1/22/2014 0.200 4/9/2014 0.098	
1/22/2014 0.200 4/9/2014 0.098	id continue
7/17/2014 0.050	
11112011 0.030	
Fourth Quarter 2014 Data Collected in October 2014Fourth Quarter 2 Dry/Partially Dr	
Well No. Result Gradient Result > TL Well No. Gradien	it
MW386 0.032 Sidegradient NO MW389 Downg	radient
MW390 1.030 Downgradient YES	
MW393 0.024 Downgradient NO	
Conclusion of Statistical Analysis on Current Data	
The following test well(s) exceeded the Upper Tolerance Li concentration with respect to current background data.	

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background Da Upgradient We			tatistics Backgrou	s on und Data			
Well Number:	MW396		K= 81.81	-			
Date Collected	Result		= 4.276 CV= 0.05				
10/17/2012	87.000	-		52 ** = 3.188			
1/15/2013	87.000		L = 95.4				
4/16/2013	80.000	1	L- 75.				
7/10/2013	76.000				or equal to 1,		
10/3/2013	80.000				tion and continu	e	
1/22/2014	86.000	Wit	in statist	ical analysis			
4/9/2014	80.500						
7/17/2014	78.000						
Fourth Quarte October 2014	er 2014 Data	Collected in	n	Fourth Qu Dry/Partia	arter 2014 lly Dry Wells		
Well No. Resu	ult Gradier	nt Resu	lt > TL	Well No. G	radient	I	
MW386 17.0	00 Sidegra	dient	NO	MW389 D	owngradient		
MW390 121.	000 Downg	radient	YES	M1(150) D	omgraatent		
MW393 17.6	00 Downg	radient	NO				
Conclusion of	Statistical A	nalysis on	n Curre	ent Data			
The following concentration	· · ·				· · · · · · · · · · · · · · · · · · ·	ch is evidence of elevated	
MW390							

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Oxidation-Reduction Potential UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background I Upgradient W		Statisti Backgi	ics on round Data	
Well Number:	MW396	X= 380	0.125	
Date Collected 10/17/2012 1/15/2013 4/16/2013 7/10/2013 10/3/2013	Result 456.000 298.000 251.000 472.000 323.000	TL= 7 Because assume r	.290 pr** = 3.188 31.113 CV is less than	ion and continue
1/22/2014 4/9/2014 7/17/2014 Fourth Quart October 2014			Fourth Qua	
Well No. Res	sult Gradie	ent Result > T		
MW390 446	6.000 Down	radient NO gradient NO gradient NO	MW 389 DC	owngradient
Conclusion of	f Statistical	Analysis on Cu	rent Data	

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Radium-226 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data	Transformed Data from Up	0
Well Number:	MW396	X= 0.542	Well Number:	MW396
Date Collected	Result	S = 0.731	Date Collected	LN(Result
10/17/2012	0.264	CV= 1.349	10/17/2012	-1.332
1/15/2013	0.144	K factor** = 3.188 TL= 2.874	1/15/2013	-1.938
4/16/2013	0.003		4/16/2013	-5.903
7/10/2013	0.280	Because CV greater than 1, the natural	7/10/2013	-1.273
10/3/2013	0.404	logarithm of background and test well resu were calculated.	lts 10/3/2013	-0.906
1/22/2014	0.255	were calculated.	1/22/2014	-1.366
4/9/2014	2.280	Statistics on	4/9/2014	0.824
7/17/2014	0.709	Transformed Background Data	7/17/2014	-0.344
		X= -1.530		
		S= 1.955		
		CV= -1.278		
		K factor** = 3.188		
		TL= 4.704		

	Fourth Quarter 2014 Data Collected in October 2014				Quarter 2014 tially Dry Wells	Transformed Fourth Quarter 2014 Data Collected in October 2014		
Well No.	Result	Gradient Resu	lt > TL?	Well No.	Gradient	Well Number	LN(Result)	Result > TL?
MW386	0.352	Sidegradient	N/A	MW389	Downgradient	MW386 MW390	-1.044 0.122	NO NO
MW390 MW393	1.130 0.292	Downgradient Downgradient	N/A N/A			MW393	-1.231	NO

Conclusion of Statistical Analysis on Transformed Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Technetium-99 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background Data from Upgradient Wells					
Well Number:	MW396				
Date Collected	Result				
10/17/2012	-8.400				
1/15/2013	3.900				
4/16/2013	-1.170				
7/10/2013	0.223				
10/3/2013	2.120				
1/22/2014	8.860				
4/9/2014	-5.670				
7/17/2014	1.030				

Statistics on Background Data
X= 0.112 S= 5.389 CV= 48.278 K factor** = 3.188 TL= 17.292

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data
X = error
S = error
CV = error
K factor** = 3.188
TL# = 2.182

Transformed Background Data from Upgradient Wells						
Well Number:	MW396					
Date Collected	LN(Result)					
10/17/2012	#Func!					
1/15/2013	1.361					
4/16/2013	#Func!					
7/10/2013	-1.501					
10/3/2013	0.751					
1/22/2014	2.182					
4/9/2014	#Func!					
7/17/2014	0.030					

Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

Fourth Quarter 2014 Data Collected in October 2014			Fourth Quarter 2014 Dry/Partially Dry Wells		Transformed Fourth Quarter 2014 Data Collected in October 2014			
Well No.	Result	Gradient Rest	ult > TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW386	-0.956	Sidegradient	N/A	MW389	Downgradient	- MW386 MW390	#Error 4.060	NO YES
MW390 MW393	58.000 5.300	Downgradient Downgradient	N/A N/A			MW393	1.668	NO

Conclusion of Statistical Analysis on Current Data The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data. MW390

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis UCRS Thorium-230 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background Data from Upgradient Wells					
Well Number:	MW396				
Date Collected	Result				
10/17/2012	0.031				
1/15/2013	-0.026				
4/16/2013	-0.035				
7/10/2013	0.026				
10/3/2013	0.021				
1/22/2014	0.030				
4/9/2014	0.768				
7/17/2014	0.541				

Statistics on Background Data
X= 0.169 S= 0.307 CV= 1.810
K factor** = 3.188 TL= 1.147

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data
X = error
S = error
CV = error
K factor** = 3.188
TL# = -0.264

Transformed Background Data from Upgradient Wells Well Number: MW396 Date Collected LN(Result) 10/17/2012 -3.4741/15/2013 #Func! 4/16/2013 #Func! 7/10/2013 -3.665 10/3/2013 -3.854 1/22/2014 -3.510 4/9/2014 -0.264 7/17/2014 -0.614

Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

Fourth Quarter 2014 Data Collected in October 2014			Fourth Quarter 2014 Dry/Partially Dry Wells		Transformed Fourth Quarter 2014 Data Collected in October 2014			
Well No.	Result	Gradient Resu	lt > TL?	Well No.	Gradient	Well Number	LN(Result)	Result >TL?
MW386	2.810	Sidegradient	N/A	MW389	Downgradient	MW386 MW390	1.033 0.432	YES YES
MW390 MW393	1.540 0.383	Downgradient Downgradient	N/A N/A			MW393	-0.960	NO

Conclusion of Statistical Analysis on Current Data
The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated
concentration with respect to current background data.
MW386
MW390

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Beta activity UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data	
Well Number:	MW220	X= 11.573	
Date Collected 10/24/2012 1/15/2013	Result 17.400 15.700	S= 6.640 CV= 0.574 K factor** = 2.523 TL= 28.325	
4/17/2013 7/15/2013 10/1/2013 1/22/2014 4/7/2014 7/17/2014 Well Number:	16.500 13.400 23.400 21.200 7.940 20.300 MW394	Because CV is less that assume normal distribu with statistical analysis	tion and continue
Date Collected 10/17/2012 1/15/2013 4/22/2013 7/10/2013 10/3/2013 1/22/2014 4/9/2014 7/17/2014	Result 5.990 2.540 9.390 5.210 7.390 5.630 6.270 6.900		
Fourth Quart October 2014		Collected in	
Well No. Res	ult Gradie	ent Result $>$ TL	
	.000 Sidegr	gradient YES adient YES gradient YES	
		Analysis on Current Data	
The following	test well(s)	•	ce Limit, which is evidence of elevated ta.
MW372			
MW384			
MW387			

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis **URGA UNITS:** Calcium mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data
Well Number:	MW220	X= 24.319
Date Collected 10/24/2012 1/15/2013	Result 18.600 19.300	S= 3.153 CV= 0.130 K factor** = 2.523 TL= 32.273
4/17/2013 7/15/2013 10/1/2013 1/22/2014 4/7/2014 7/17/2014	23.700 23.300 19.700 22.900 25.600 21.600	Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.
Well Number:	MW394	
Date Collected 10/17/2012 1/15/2013 4/22/2013 7/10/2013 10/3/2013 1/22/2014 4/9/2014 7/17/2014 Fourth Quart October 2014		
Well No. Res	ult Gradie	ent Result $>$ TL
MW221 20.4 MW222 14.6 MW223 21.4 MW224 22.8 MW369 16.8 MW372 59.3 MW384 29.8 MW387 37.6 MW391 26.9	500 Sidegr 400 Sidegr 800 Sidegr 800 Down 800 Down 800 Sidegr 500 Down 500 Down	adientNOadientNOadientNOadientNOgradientNOgradientYESadientNOgradientYESgradientNOgradientNO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- Upper Tolerance Limit, TL = X + (K * S)TL
- Mean, X = (sum of background results)/(count of background results) Х
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Calcium'*Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW372

MW387

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis **URGA Chemical Oxygen Demand (COD) UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Backgrou Upgradie		rom		Statistics Backgro	s on und Data
Well Numb	er: MW	220		X= 27.5	
Date Collec 10/24/20 1/15/201	12 25	sult .000 .000		S= 7.253 CV= 0.2 K factor TL= 45.	63 ** = 2.523
4/17/201 7/15/201 10/1/201 1/22/201	3 36 3 36 4 36	.000 .000 .000 .000	ä	Because C assume no	V is less the rmal distril tical analys
4/7/2014 7/17/201 Well Numb	4 20	.000 .000 /394			
Date Collect 10/17/20 1/15/201 4/22/201 7/10/201 1/22/201 4/9/2014 7/17/201	12 25 3 25 3 25 3 36 3 36 4 36 16	sult .000 .000 .000 .000 .000 .000 .100 .800	<u> </u>		
October 2		14 Data	Conected	u III	
Well No.	Result	Gradie	nt Re	esult > TL	
MW221 MW222 MW223 MW224 MW369	20.000 57.600 20.000 20.000 20.000	-	adient adient adient gradient	NO YES NO NO NO	
MW372 MW384 MW387 MW391	12.900 20.000 26.500 20.000	Sidegra Downg	gradient adient gradient gradient	NO NO NO NO	

CV= 0.265 K factor** = 2.523 TL= 45.856	
Because CV is less than	1 2

normal distribution and continue tistical analysis.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- Upper Tolerance Limit, TL = X + (K * S)TL
- Mean, X = (sum of background results)/(count of background results) Х
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Chemical Oxygen Demand (COD)'*Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW222

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background I Upgradient W			Statistics on Background Data	
Well Number:	MW220		X= 383.250	
Date Collected 10/24/2012 1/15/2013 4/17/2013 7/15/2013 10/1/2013 1/22/2014 4/7/2014	Result 317.000 335.000 390.000 392.000 353.000 386.000 403.000	Be as:	S = 25.880 CV = 0.068 K factor** = 2.523 $\Gamma L = 448.546$ ecause CV is less than sume normal distribution ith statistical analysis.	tion and continue
7/17/2014	407.000			
Well Number:	MW394			
Date Collected	Result			
10/17/2012	390.000			
1/15/2013	398.000			
4/22/2013	393.000			
7/10/2013	405.000			
10/3/2013	386.000			
1/22/2014	382.000			
4/9/2014	404.000			
7/17/2014	391.000			
Fourth Quar October 2014		Collected i	in	
Well No. Res	sult Gradi	ent Resu	ult > TL	
MW221 380	0.000 Sideg	radient	NO	
MW222 327	7.000 Sideg	radient	NO	
MW223 383	3.000 Sideg	radient	NO	
MW224 439	0.000 Sideg	radient	NO	
MW369 371	.000 Down	gradient	NO	
MW372 766		gradient	YES	
MW384 522		radient	YES	
		gradient	YES	
MW391 340	0.000 Down	gradient	NO	

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Conductivity'*Eqpvkpwgf + UNITS: umho/cm

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW372

MW384

MW387

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data
Well Number:	MW220	X= 236.188
Date Collected 10/24/2012 1/15/2013 4/17/2013 7/15/2013	Result 196.000 196.000 218.000 233.000	$S = 86.488$ $CV = 0.366$ $K \text{ factor}^{**} = 2.523$ $TL = 454.397$ Because CV is less than or equal to 1, assume normal distribution and continue
10/1/2013 1/22/2014 4/7/2014 7/17/2014	200.000 219.000 226.000 556.000	with statistical analysis.
Well Number:	MW394	
Date Collected 10/17/2012 1/15/2013 4/22/2013 7/10/2013 10/3/2013 1/22/2014 4/9/2014 7/17/2014 Fourth Quart October 2014		
Well No. Res	ult Gradie	nt Result $> TL$
MW222 177 MW223 213 MW224 224 MW369 193 MW372 476 MW384 251 MW387 331	.000 Down .000 Sidegr .000 Down	adient NO adient NO gradient NO gradient NO gradient YES

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Dissolved Solids'*Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW372

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis Magnesium'' UNITS:

URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Backgrou Upgradie	ınd Data fı ent Wells	rom	Statistics on Background Data
Well Num	ber: MW	220	X= 9.878
Date Colle 10/24/20 1/15/203	012 7.5 13 7.7	sult 580 740	S= 1.305 CV= 0.132 K factor** = 2.523 TL= 13.170
4/17/20 7/15/20 10/1/20 1/22/20 4/7/2014 7/17/20 Well Num	13 9.0 13 7.7 14 9.5 4 10 14 8.9	730 770 700 570 .500 950	Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.
Date Colle 10/17/20 4/22/20 7/10/20 10/3/20 1/22/20 4/9/2014 7/17/20	cted Re 012 10 13 11 13 10 13 11 13 10 14 10 14 11 14 11 14 11	sult 900 200 900 100 .700 .300 .000 .100 14 Data Collec	ted in
Well No.	Result	Gradient	Result > TL
MW221 MW222 MW223 MW224 MW369 MW372 MW384 MW387	9.020 6.500 8.850 9.580 7.030 22.400 12.100 15.600	Sidegradient Sidegradient Sidegradient Sidegradient Downgradien Sidegradient Downgradien	NO NO NO NO t NO t YES NO
MW391	11.000	Downgradien	t NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Magnesium'*Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW372

MW387

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA **Oxidation-Reduction Potential UNITS:** mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background D Upgradient W			Statisti Backgr	cs on ound Data	
Well Number:	MW220		X= 553		
Date Collected 10/24/2012 1/15/2013 4/17/2013 7/15/2013 10/1/2013 1/22/2014 4/7/2014 7/17/2014	Result 418.000 353.000 558.000 467.000 777.000 381.000 400.000 395.000	8	TL= 1 Because	339 pr** = 2.523 026.277 CV is less than	ion and continue
Well Number:	MW394				
Date Collected 10/17/2012 1/15/2013 4/22/2013 7/10/2013 10/3/2013 1/22/2014 4/9/2014 7/17/2014 Fourth Quart October 2014		1 Collected	l in		
Well No. Res	ult Gradi	ent Re	$\operatorname{sult} > \operatorname{TI}$	Ľ	
MW222 321 MW223 383 MW224 364 MW369 405 MW372 88.0 MW384 278 MW387 449	.000 Sidegr .000 Sidegr .000 Sidegr .000 Down .000 Down .000 Sidegr .000 Down .000 Sidegr .000 Down .000 Sidegr .000 Down	radient radient radient gradient gradient gradient gradient gradient	NO NO NO NO NO NO		

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- Upper Tolerance Limit, TL = X + (K * S)TL
- Mean, X = (sum of background results)/(count of background results) Х
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Oxidation-Reduction Potential'*Eqpvkpwgf + UNITS: mV

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Radium-226 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background Data from Upgradient WellsStatistics on Background Data		Statistics on Background Data	Transformed Background Data from Upgradient Wells
Well Number:	MW220	X= 0.497	Well Number: MW220
Date Collected	Result	S= 1.057 CV= 2.126	Date Collected LN(Result)
10/24/2012	-0.095	C v = 2.120 K factor** = 2.523	10/24/2012 #Func!
1/15/2013	0.342	TL = 3.165	1/15/2013 -1.073
4/17/2013	0.054		4/17/2013 -2.913
7/15/2013	0.252	Because CV greater than 1, the n	
10/1/2013	0.199	logarithm of background and test were calculated.	10/1/2013 - 1.614
1/22/2014	0.357	were calculated.	1/22/2014 -1.030
4/7/2014	1.300	Statistics on	4/7/2014 0.262
7/17/2014	0.583	Transformed	7/17/2014 -0.540
Well Number:	MW394	Background Data	Well Number: MW394
Date Collected	Result	$\mathbf{X} = \mathbf{error}$	Date Collected LN(Result)
10/17/2012	0.153	S = error	10/17/2012 -1.877
1/15/2013	0.296	CV = error	1/15/2013 -1.217
4/22/2013	0.125	K factor** = 2.523	4/22/2013 -2.079
7/10/2013	0.032	TL# = 1.449	7/10/2013 -3.430
10/3/2013	-0.051	1L# - 1.449	10/3/2013 #Func!
1/22/2014	-0.083	# Because the natural log was no	
4/9/2014	4.260	all background values, the TL wa	
7/17/2014	0.232	equal to the maximum backgrour	7/17/2014 -1.461

October 2014			
Well No.	Result	Gradient R	esult > TL?
MW221	0.425	Sidegradient	N/A
MW222	0.255	Sidegradient	N/A
MW223	0.263	Sidegradient	N/A
MW224	0.555	Sidegradient	N/A
MW369	0.748	Downgradient	N/A
MW372	0.461	Downgradient	N/A
MW384	0.253	Sidegradient	N/A
MW387	0.429	Downgradient	N/A
MW391	0.495	Downgradient	N/A

Transformed Fourth Quarter 2014 Data Collected in October 2014				
Well Number	LN(Result)	Result >TL?		
MW221	-0.856	NO		
MW222	-1.366	NO		
MW223	-1.336	NO		
MW224	-0.589	NO		
MW369	-0.290	NO		
MW372	-0.774	NO		
MW384	-1.374	NO		
MW387	-0.846	NO		
MW391	-0.703	NO		

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Radium-226'*Eqpvkpwgf + UNITS: pCi/L

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Sodium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background I Upgradient W		~	tatistics on ackground Data	
Well Number:	MW220		= 33.906	
Date Collected 10/24/2012 1/15/2013	Result 33.500 35.000	С К	= 5.342 V= 0.158 factor** = 2.523 L= 47.385	
4/17/2013 7/15/2013 10/1/2013 1/22/2014 4/7/2014 7/17/2014	41.400 40.500 34.600 39.500 43.900 39.100	Becass	cause CV is less than ume normal distribut h statistical analysis.	tion and continue
Well Number:	MW394			
Date Collected 10/17/2012 1/15/2013 4/22/2013 7/10/2013 10/3/2013 1/22/2014 4/9/2014 7/17/2014 Fourth Quart October 2014		a Collected in	1	
Well No. Res	sult Gradie	ent Resu	lt > TL	
MW222 46. MW223 48. MW224 60. MW369 53. MW372 59. MW384 58.	600Sidegr600Sidegr000Sidegr000Down700Down700Sidegr	radient radient radient gradient gradient radient gradient gradient	NO NO YES YES YES YES YES	
MW391 34.	300 Down	gradient	NO	

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells	s
located upgradient from the landfill.	

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Sodium'*Eqpvkpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW223

MW224

MW369

MW372

MW384

MW387

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Backgrou Upgradie		om	Statistics on Background Data
Well Numb	ber: MW	220	X= 13.381
Date Collect 10/24/20 1/15/201	12 13 3 15	sult .000 .000	S= 3.906 CV= 0.292 K factor** = 2.523 TL= 23.236
4/17/201 7/15/201 10/1/201 1/22/201 4/7/2014 7/17/201	3 17 3 14 4 18 - 18 4 19	.000 .000 .000 .000 .900 .400	Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.
Well Numb	cted Re	sult	
10/17/20 1/15/201 4/22/201	3 10	.000 .000 800	
7/10/201 10/3/201	3 10	700 .000	
1/22/201 4/9/2014 7/17/201	10	.000 .000 .300	
Fourth Q October 2		14 Data Collect	ed in
Well No.	Result	Gradient 1	Result > TL
MW221 MW222 MW223 MW224 MW369 MW372 MW384 MW387	13.900 10.800 13.500 15.500 7.650 118.000 19.200 32.000	Sidegradient Sidegradient Sidegradient Downgradient Downgradient Sidegradient Downgradient	NO NO NO VES NO YES
MW391	15.000	Downgradient	NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Sulfate'*Eqpvlpwgf + UNITS: mg/L

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW372

MW387

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis **URGA** pCi/L **Technetium-99 UNITS:**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Backgrou Upgradier		om		Statist Backg	ics on round Data
Well Numb	er: MW	220		X= 12	-
Date Collect 10/24/20 1/15/201	12 4.0	sult)30 .600		S= 10 CV= 0 K fact TL= 3	0.854 or** = 2.523
4/17/201 7/15/201 10/1/201 1/22/201	3 21. 3 20.	510 .300 .700 .100		assume	CV is less that normal distributistical analysis
4/7/2014 7/17/201 Well Numb	24. 4 12.	.800 .100			
Date Collec 10/17/20 1/15/201 4/22/201 7/10/201 10/3/201 1/22/2014 7/17/201 Fourth Q October 2	12 -10 3 -0. 3 13. 3 15. 3 9.6 4 18. 4.3 4 10. Duarter 20	800 20 .100	Collecte	ed in	
Well No.	Result	Gradie	nt R	esult > T	Ľ
MW221 MW222 MW223 MW224 MW369 MW369 MW372 MW384 MW387	4.530 2.220 10.600 11.900 43.300 107.000 144.000 245.000	Downg Sidegr Downg	adient adient adient gradient gradient adient gradient	NC NC NC YE YE YE YE)) S S S
MW391	10.700	Downg	gradient	NC)

assume normal distribution and continue
with statistical analysis.
, , , , , , , , , , , , , , , , , , ,

CV is less than or equal to 1,

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- Upper Tolerance Limit, TL = X + (K * S)TL
- Mean, X = (sum of background results)/(count of background results) Х
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis URGA Technetium-99'*Eqpvkpwgf + UNITS: pCi/L

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW369

MW372

MW384

MW387

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Beta activity UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data	
Well Number:	MW395	X= 9.358	
Date Collected 10/17/2012 1/15/2013 4/22/2013	Result 8.210 6.850 6.420	S= 4.444 CV= 0.475 K factor** = 2.523 TL= 20.570	
4/22/2013 7/11/2013 10/3/2013 1/22/2014 4/9/2014 7/17/2014 Well Number:	6.420 6.340 10.300 9.400 2.090 11.500 MW397	Because CV is less than or equal to 1, assume normal distribution and continu- with statistical analysis.	e
Date Collected 10/16/2012 1/15/2013 4/18/2013 7/8/2013 10/2/2013 1/22/2014 4/8/2014 7/16/2014	Result 7.210 14.000 14.400 16.200 17.600 10.000 4.030 5.180		
Fourth Quar October 2014	ter 2014 Data Co	ollected in	
Well No. Res	sult Gradient	Result > TL	
	200Sidegradie400Downgrad		
The following	test well(s) exc	alysis on Current Data ceeded the Upper Tolerance Limit, whi o current background data.	ch is ev

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated
concentration with respect to current background data.
MW385
MW388

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data	
Well Number:	MW395	X= 23.031	
Date Collected 10/17/2012	Result 27.100	S= 4.489 CV= 0.195 K factor** = 2.523	
1/15/2013 4/22/2013 7/11/2013 10/3/2013 1/22/2014	26.800 28.700 28.100 26.700 27.000	TL= 34.358 Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.	
4/9/2014 7/17/2014 Well Number:	27.700 26.500 MW397		
Date Collected 10/16/2012 1/15/2013 4/18/2013 7/8/2013 10/2/2013 1/22/2014 4/8/2014 7/16/2014 Fourth Quart October 2014	Result 18.800 19.500 18.100 18.200 18.600 19.500 19.400 17.800 er 2014 Data	Collected in	
Well No. Res	ult Gradie	nt Result > TL	
MW370 28.0 MW373 72.4 MW385 29.4	400 Downg	gradient NO gradient YES adient NO	
MW388 26.8 MW392 27.4		gradient NO gradient NO	
		Analysis on Current Data	
The following	test well(s)	exceeded the Upper Tolerance Limit, which is evidence t to current background data.	of elevated

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background D Upgradient W]	Statistics on Background Data	
Well Number:	MW395		X= 366.125	
Date Collected 10/17/2012	Result 402.000		S= 29.484 CV= 0.081 K factor** = 2.523	
1/15/2013 4/22/2013	384.000 394.000		TL= 440.514	
7/11/2013	394.000		Because CV is less than	
10/3/2013	376.000		assume normal distribu	
1/22/2014	387.000	1	with statistical analysis	
4/9/2014	402.000			
7/17/2014	401.000			
Well Number:	MW397			
Date Collected	Result			
10/16/2012	346.000			
1/15/2013	320.000			
4/18/2013	362.000			
7/8/2013	335.000			
10/2/2013	353.000			
1/22/2014	338.000			
4/8/2014	328.000			
7/16/2014	336.000			
Fourth Quart October 2014		a Collecter	d in	
Well No. Res	ult Gradie	ent Re	esult > TL	
MW370 437	.000 Down	gradient	NO	
MW373 901	.000 Down	gradient	YES	
MW385 456	•	radient	YES	
MW388 433		Igradient	NO	
		gradient	NO	
			on Current Data	
			l the Upper Toleran ent background da	ce Limit, which is evidence of elevated ta.
MW373				
MW385				

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background Da Upgradient We			atistics on ckground Data	
Well Number:	MW395		= 196.250	
Date Collected 10/17/2012 1/15/2013 4/22/2013 7/11/2013 10/3/2013 1/22/2014 4/9/2014	Result 214.000 234.000 226.000 229.000 225.000 213.000 217.000	CV K t TL Beca assur	25.762 $V = 0.131$ factor** = 2.523 L = 261.247 ause CV is less than me normal distributi statistical analysis.	ion and continue
7/17/2014 Well Number:	166.000 MW397			
Date Collected 10/16/2012 1/15/2013 4/18/2013 7/8/2013 10/2/2013 1/22/2014 4/8/2014 7/16/2014 Fourth Quarte October 2014	Result 176.000 195.000 166.000 182.000 169.000 190.000 171.000 167.000 er 2014 Data	Collected in		
Well No. Resu	ult Gradie	ent Result	t > TL	
MW370 190. MW373 536.	-	gradient gradient	NO YES	
MW385 260.	-	-	NO	
MW388 221.	-	gradient	NO	
MW392 197.	-	gradient	NO	
Conclusion of S	Statistical A	Analysis on C	Current Data	
			e Upper Tolerand background dat	ce Limit, which is evidence of elevated a.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background I Upgradient W			Statistics on Background Data				
Well Number:	MW395		X= 9.383				
Date Collected 10/17/2012 1/15/2013 4/22/2013 7/11/2013 10/3/2013 1/22/2014	Result 11.200 11.100 11.100 10.900 10.400 10.800 12.200	$S = 1.820$ $CV = 0.194$ $K \text{ factor}^{**} = 2.523$ $TL = 13.973$ Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.					
4/9/2014 7/17/2014	12.200						
Well Number:	MW397						
Date Collected 10/16/2012 1/15/2013 4/18/2013 7/8/2013 10/2/2013 1/22/2014 4/8/2014 7/16/2014 Fourth Quart October 2014		Collected	in				
Well No. Res	sult Gradie	ent Res	$\operatorname{sult} > \operatorname{TL}$				
MW370 12.		gradient	NO				
MW373 27.4		gradient	YES				
	÷	adient	NO				
		gradient	NO				
MW392 9.7	00 Downg	gradient	NO				
The following	test well(s)	exceeded	n Current Data the Upper Toleran ent background dat	ce Limit, which is evidence of elevated a.			

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Oxidation-Reduction Potential UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

oata from Tells	Statistics on Background Data
MW395	X= 521.375
Result 374.000	S= 151.077 CV= 0.290 K factor** = 2.523
635.000 495.000 542.000 803.000 537.000	TL= 902.543 Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.
MW397	
586.000 823.000 383.000 443.000 679.000 389.000 363.000 382.000 ter 2014 Data	n Collected in
ult Gradie	ent Result $>$ TL
.000 Downg .000 Sidegr .000 Downg	gradientNOgradientNOradientNOgradientNOgradientNO
	Kells MW395 Result 374.000 527.000 635.000 495.000 542.000 803.000 537.000 381.000 MW397 Result 586.000 823.000 383.000 443.000 679.000 389.000 363.000 382.000 rer 2014 Data ult Gradie .000 Down, .000 Sidegr

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA pH UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is is evidence of an exceedance of elevated concentration in that well.

Background D Upgradient W	
Well Number:	MW395
Date Collected	Result
10/17/2012	6.070
1/15/2013	6.060
4/22/2013	6.210
7/11/2013	6.020
10/3/2013	6.020
1/22/2014	6.150
4/9/2014	6.070
7/17/2014	6.070
Well Number:	MW397
Date Collected	Result
10/16/2012	6.060
1/15/2013	6.000
4/18/2013	5.970
7/8/2013	6.100
10/2/2013	6.010
1/22/2014	6.340
4/8/2014	6.080
7/16/2014	6.070

Third Qu	Third Quarter 2014 Data Collected in July 2014						
Well No.	Result	Gradient I	Result >TL?	Result <ll?< td=""></ll?<>			
MW370	6.030	Downgradie	ent NO	NO			
MW373	6.220	Downgradie	ent NO	NO			
MW385	6.340	Sidegradie	nt NO	NO			
MW388	6.110	Downgradie	ent NO	NO			
MW392	7.000	Downgradie	ent YES	NO			
Conclusion of Statistical Analysis on Current Data							
	The following test well(s) exceeded the Upper Tole concentration with respect to current background						
concentra	ition w	ith respect t	to current b	background			

MW392

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

X Mean, X = (sum of background results)/(count of background results)

** The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Radium-226 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data			Transformed Background Data from Upgradient Wells		
Well Number:	MW395	X= 0.482		Well Number:	:: MW395		
Date Collected	Result	S= 0.881 CV= 1.828		Date Collected	LN(Result)		
10/17/2012	0.303	Cv = 1.828 K factor** = 2.523		10/17/2012	-1.194		
1/15/2013	0.308	TL= 2.703		1/15/2013	-1.178		
4/22/2013	0.222			4/22/2013	-1.505		
7/11/2013	0.246	Because CV greater tha		7/11/2013	-1.402		
10/3/2013	-0.081	logarithm of backgroun were calculated.	d and test well results	10/3/2013	#Func!		
1/22/2014	0.116	were calculated.		1/22/2014	-2.154		
4/9/2014	2.130	Statistics on		4/9/2014	0.756		
7/17/2014	0.833	Transformed		7/17/2014	-0.183		
Well Number:	MW397	Background Data		Well Number:	MW397		
Date Collected	Result	X = error		Date Collected	LN(Result)		
10/16/2012	0.008	S = error		10/16/2012	-4.868		
1/15/2013	0.297	CV = error		1/15/2013	-1.214		
4/18/2013	0.065	K factor** = 2.523		4/18/2013	-2.727		
7/8/2013	0.135	TL# = 1.135		7/8/2013	-2.002		
10/2/2013	-0.087	$1L_{\#} = 1.135$		10/2/2013	#Func!		
1/22/2014	0.070		# Because the natural log was not possible for				
4/8/2014	3.110	all background values, t		4/8/2014	1.135		
7/16/2014	0.033	equal to the maximum b	background value.	7/16/2014	-3.427		

Fourth Quarter 2014 Data Collected in October 2014							
Well No.	Result	Gradient	Result > TL?				
MW370	0.818	Downgradier	nt N/A				
MW373	0.420	Downgradier	nt N/A				
MW385	0.513	Sidegradient	N/A				
MW388	0.364	Downgradier	nt N/A				
MW392	0.484	Downgradier	nt N/A				

Transformed Fourth Quarter 2014 Data Collected in October 2014							
Well Number	LN(Result)	Result >TL?					
MW370	-0.201	NO					
MW373	-0.868	NO					
MW385	-0.667	NO					
MW388	-1.011	NO					
MW392	-0.726	NO					

Conclusion of Statistical Analysis on Current Data None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data	
Well Number:	MW395	X= 12.023	
Date Collected 10/17/2012 1/15/2013	Result 9.800 10.000	S= 3.638 CV= 0.303 K factor** = 2.523 TL= 21.203	
4/22/2013	9.800 9.700	Because CV is less than or equal to 1,	
7/11/2013 10/3/2013	9.700 20.000	assume normal distribution and continu	2
1/22/2013	20.000 9.800	with statistical analysis.	
4/9/2014	9.770		
7/17/2014	10.100		
Well Number:	MW397		
Date Collected	Result		
10/16/2012	12.000		
1/15/2013	12.000		
4/18/2013	11.000		
7/8/2013	11.000		
10/2/2013	22.000		
1/22/2014	12.000		
4/8/2014	11.700		
7/16/2014	11.700		
Fourth Quart October 2014 Well No. Res			
MW370 19.1	100 Down	gradient NO	
MW373 181		gradient YES	
MW385 18.8	300 Sidegi	radient NO	
MW388 21.5	500 Down	gradient YES	
MW392 6.82	20 Down	ngradient NO	
		Analysis on Current Data	
		exceeded the Upper Tolerance Limit, whi ct to current background data.	ch is evidence of elevated
MW373			
MW388			

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Fourth Quarter 2014 Statistical Analysis LRGA Technetium-99 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of elevated concentration in that well.

Background Data fr Upgradient Wells	m Statistics on Background Data	
Well Number: MW	95 X= 10.972	
Weil Number: MW Date Collected Res 10/17/2012 -4.3 1/15/2013 -4. 4/22/2013 3.1 7/11/2013 10. 10/3/2013 10. 1/22/2014 20. 4/9/2014 11. 7/17/2014 8.0 Well Number: MW	S=9.561 $CV=0.871$ K factor** = 2.523 TL=00Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.0000	
Date Collected Res 10/16/2012 2.8 1/15/2013 6.9 4/18/2013 16. 7/8/2013 14. 10/2/2013 19. 1/22/2014 33. 4/8/2014 16. 7/16/2014 10. Fourth Quarter 201 October 2014	0 0 00 00 00 00 00 00	
Well No. Result	Gradient Result > TL	
MW370 22.500 MW373 38.000 MW385 106.000 MW388 79.000 MW392 4.390 Conclusion of Statis The following test v	Downgradient NO Downgradient YES Sidegradient YES Downgradient YES Downgradient NO ical Analysis on Current Data ell(s) exceeded the Upper Tolerance Limit, which is evidence of elevated espect to current background data.	
MW385		
MW388		

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT D3

STATISTICIAN QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

January 15th, 2015

Mr. Craig Jones LATA Environmental Services of Kentucky, LLC 761 Veterans Avenue Kevil, Kentucky 42053

Dear Mr. Jones:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in mathematics, I have over two years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with LATA.

For this project, the statistical analyses conducted on the fourth quarter 2014 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). For pH, an additional lower tolerance interval was established. For pH only, the test well data was compared to both the upper and lower tolerance intervals to determine if statistically significant deviations in concentration with respect to upgradient well exist.

Sincerely.

Cory Tackett LATA Project Chemist

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E

GROUNDWATER FLOW RATE AND DIRECTION

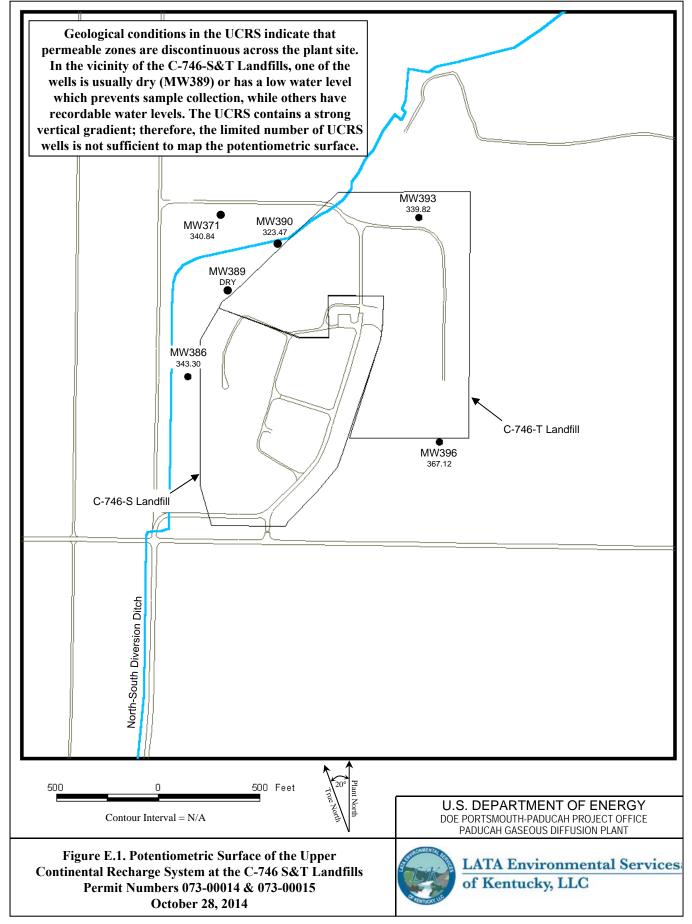
THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT - QUARTERLY, 4th CY 2014 Facility: U.S. DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982/1</u> LAB ID: <u>None</u>

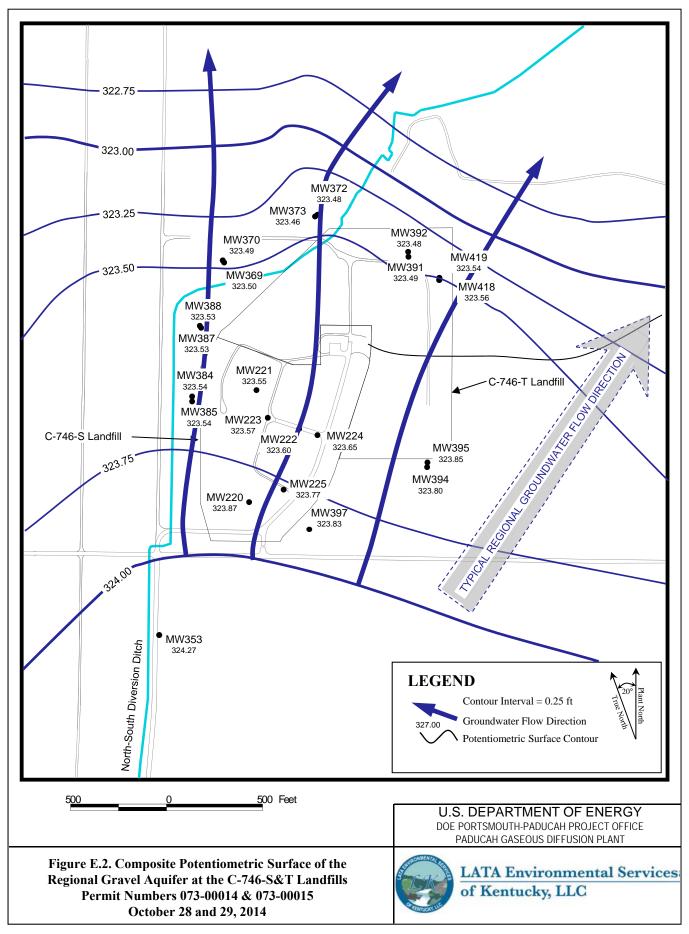
GROUNDWATER FLOW RATE AND DIRECTION

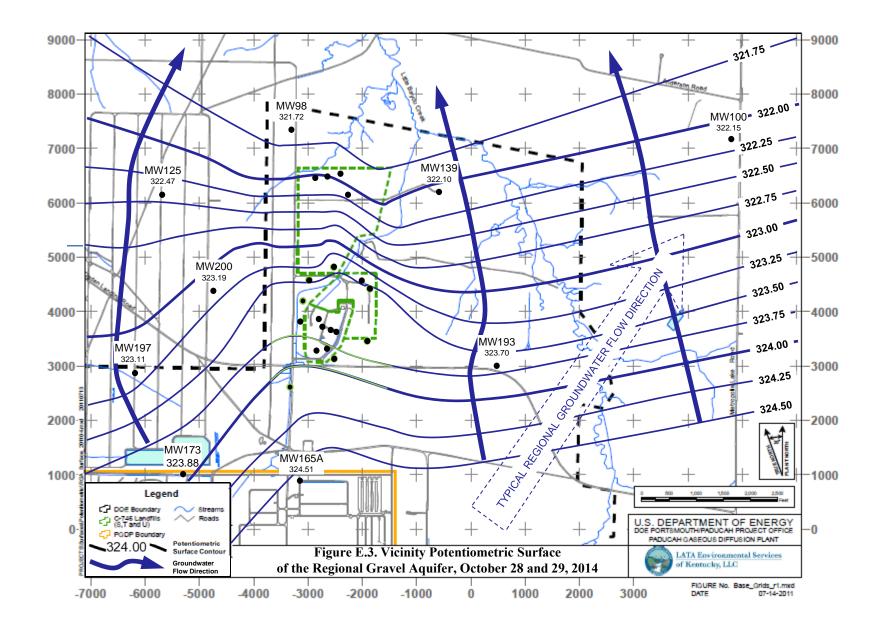
Whenever monitoring wells (MWs) are sampled, 401 *KAR* 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the fourth quarter 2014 and to determine the groundwater flow rate and direction.


Water levels during this reporting period were measured on October 28 and 29, 2014. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for a measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters.¹ Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill is 5.29×10^{-4} ft/ft. Additional water level measurements in October (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 4.06×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.


Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for October 2014, the groundwater flow direction in the immediate area of the landfill conforms to the typical regional flow direction.


¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

							Rav	w Data	*Corrected Data	
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl
10/28/2014	13:45	MW220	URGA	381.44	30.05	-0.02	57.59	323.85	57.57	323.87
10/28/2014	13:24	MW221	URGA	390.83	30.05	-0.02	67.30	323.53	67.28	323.55
10/28/2014	13:29	MW222	URGA	394.87	30.05	-0.02	71.29	323.58	71.27	323.60
10/28/2014	13:26	MW223	URGA	394.03	30.05	-0.02	70.48	323.55	70.46	323.57
10/28/2014	13:31	MW224	URGA	395.41	30.05	-0.02	71.78	323.63	71.76	323.65
10/28/2014	13:47	MW225	URGA	385.55	30.05	-0.02	61.80	323.75	61.78	323.77
10/28/2014	14:34	MW353	LRGA	374.86	30.05	-0.02	50.61	324.25	50.59	324.27
10/28/2014	10:00	MW369	URGA	364.48	30.02	0.01	40.97	323.51	40.98	323.50
10/28/2014	10:03	MW370	LRGA	365.35	30.02	0.01	41.85	323.50	41.86	323.49
10/28/2014	10:02	MW371	UCRS	364.88	30.02	0.01	24.03	340.85	24.04	340.84
10/28/2014	10:06	MW372	URGA	359.66	30.02	0.01	36.17	323.49	36.18	323.48
10/28/2014	10:08	MW373	LRGA	359.95	30.02	0.01	36.48	323.47	36.49	323.46
10/28/2014	13:40	MW384	URGA	365.06	30.05	-0.02	41.54	323.52	41.52	323.54
10/28/2014	13:42	MW385	LRGA	365.54	30.05	-0.02	42.02	323.52	42.00	323.54
10/28/2014	13:41	MW386	UCRS	365.21	30.05	-0.02	21.93	343.28	21.91	343.30
10/28/2014	13:37	MW387	URGA	363.27	30.05	-0.02	39.76	323.51	39.74	323.53
10/28/2014	13:38	MW388	LRGA	363.25	30.05	-0.02	39.74	323.51	39.72	323.53
10/28/2014	13:36	MW389	UCRS	363.82			DRY		DRY	
10/28/2014	13:35	MW390	UCRS	360.36	30.05	-0.02	36.91	323.45	36.89	323.47
10/28/2014	13:56	MW391	URGA	366.54	30.05	-0.02	43.07	323.47	43.05	323.49
10/28/2014	13:59	MW392	LRGA	365.67	30.05	-0.02	42.21	323.46	42.19	323.48
10/28/2014	13:58	MW393	UCRS	366.59	30.05	-0.02	26.79	339.80	26.77	339.82
10/29/2014	10:06	MW394	URGA	378.32	30.17	-0.16	54.68	323.64	54.52	323.80
10/29/2014	10:08	MW395	LRGA	379.01	30.17	-0.16	55.32	323.69	55.16	323.85
10/28/2014	13:54	MW396	UCRS	378.64	30.05	-0.02	11.54	367.10	11.52	367.12
10/28/2014	13:50	MW397	LRGA	386.90	30.05	-0.02	63.09	323.81	63.07	323.83
10/28/2014	14:17	MW418	URGA	366.78	30.05	-0.02	43.24	323.54	43.22	323.56
10/28/2014	14:18	MW419	LRGA	366.68	30.05	-0.02	43.16	323.52	43.14	323.54
Initial Barom Elev = elevat		ssure	30.03							
amsl = above BP = barome	e mean se									
DTW = dept	-		ow datum							
URGA = Up										
LRGA = Lov										
	Ũ		arge System							

Table E.1. C-746-S&T Landfills Fourth Quarter 2014 (October) Water Levels

	ft/ft
Beneath Landfill Mound	$5.29 imes 10^{-4}$
Vicinity	$4.06 imes 10^{-4}$

Table E.2. C-746-S&T Landfills Hydraulic Gradients

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Conductivity (K)		Specific Discharge (q)		Average Linear Velocity (v)	
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Beneath Landfill Mound					
725	0.256	0.38	1.35×10^{-4}	1.53	5.42×10^{-4}
425	0.150	0.22	$7.93 imes 10^{-5}$	0.90	3.17×10^{-4}
Vicinity					
725	0.256	0.29	$1.04 imes 10^{-4}$	1.18	4.16×10^{-4}
425	0.150	0.17	$6.09 imes 10^{-5}$	0.69	2.44×10^{-4}

APPENDIX F

NOTIFICATIONS

THIS PAGE INTENTIONALLY LEFT BLANK

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the fourth quarter 2014 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

Parameter	Monitoring Well				
Upper Continental Recharge System					
Technetium-99	MW390				
Upper Regional Gravel Aquifer					
Sodium Technetium-99	MW224, MW372, MW384 MW369, MW372, MW384, MW387				
Lower Regional Gravel Aquifer					
Technetium-99	MW373, MW385, MW388				

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, these radionuclides are being reported along with the parameters of this regulation.

12/15/2014

LATA Environmental Services of Kentucky PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S and -T LANDFILLS PERMIT NUMBERS 073-00014 and 073-00015 MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4808	MW372	Beta activity	900.0	74	pCi/L	50
		Trichloroethene	8260B	7.79	ug/L	5
8004-4792	MW373	Trichloroethene	8260B	7.67	ug/L	5
8004-4809	MW384	Beta activity	900.0	110	pCi/L	50
8004-4810	MW385	Beta activity	900.0	78.2	pCi/L	50
8004-4815	MW387	Beta activity	900.0	147	pCi/L	50
		Beta activity	900.0	141	pCi/L	50
8004-4816	MW388	Beta activity	900.0	55.4	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	14.5	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	18.2	ug/L	5
8004-4802	MW394	Trichloroethene	8260B	7.64	ug/L	5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL AND UTL EXCEEDANCES

THIS PAGE INTENTIONALLY LEFT BLANK

Groundwater Flow System			UCR.	S		1				1	URGA	4					1]	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396		222	223		384	369	372		391	220	394	385	370	373	388	392	395	397
1,2,3-TRICHLOROPROPANE	500	507	370	373	370	221	222	225	224	504	307	512	307	571	220	574	505	570	575	500	572	375	371
Quarter 2, 2009	-		*																				
ACETONE	_		*																				
Quarter 3, 2003	-					-	*					*											-
Quarter 4, 2003	-						Ť				*	*							*				<u> </u>
Quarter 1, 2005									*		Ť								*				<u> </u>
									^														
ALPHA ACTIVITY	-					-																	
Quarter 4, 2002 Quarter 4, 2008				-	-	ļ							-										<u> </u>
	-																						<u> </u>
Quarter 4, 2010	_																						
ALUMINUM	-		*			-	*					*	*	*									
Quarter 1, 2003	-		*									ㅠ											<u> </u>
Quarter 2, 2003							*	÷					*	*									<u> </u>
Quarter 3, 2003			*			ļ	*	*			ملو		*	*									┣──
Quarter 4, 2003			مله			ļ	*	*			*			*									┣──
Quarter 1, 2004	1		*				*	*			*												┣—
Quarter 2, 2004	1						*							*									\vdash
Quarter 3, 2004	<u> </u>					ļ	*							*									<u> </u>
Quarter 4, 2004	1		*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*				*																
Quarter 3, 2005			*				*			*											*		
Quarter 4, 2005			*				*				*												
Quarter 1, 2006			l l				*						*										
Quarter 2, 2006			*				*																
Quarter 3, 2006							*																
Quarter 4, 2006			*				*																
Quarter 1, 2007	-						*										*						
Quarter 2, 2007							*										*						
Quarter 3, 2007							*																
Quarter 4, 2007	-						*																
Quarter 1, 2007	-						*							*									<u> </u>
Quarter 2, 2008							*				*			т Т									<u> </u>
							*				*												
Quarter 4, 2008	-		*				*				*												
Quarter 1, 2009	_																						
Quarter 1, 2010			*				*				*												
Quarter 2, 2010			*								*												
Quarter 3, 2010			*								*			*			*			*			
Quarter 1, 2011							*				*												
Quarter 2, 2011			*								*												
Quarter 2, 2012			*																				
Quarter 3, 2012							*																
Quarter 1, 2013							*				*												
Quarter 3, 2013			*																				
Quarter 1, 2014	Ĩ						*																
Quarter 2, 2014	1										*						I						
Quarter 4, 2014	1		*																				
BARIUM																							
Quarter 3, 2003																							
Quarter 4, 2003	1																						
	4																						

Groundwater Flow System			UCRS	5						I	URGA	ł]	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 4, 2002		1			1		1																
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Ouarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005	_																						
Quarter 3, 2005	_																						
Quarter 4, 2005	_																						
Quarter 1, 2005	_																						
Quarter 1, 2006 Quarter 2, 2006																							
Quarter 3, 2006													-										
Quarter 4, 2006													-				_						
Quarter 1, 2000 Quarter 1, 2007													-										
•	_																						
Quarter 2, 2007	_																						
Quarter 3, 2007												-							_				
Quarter 4, 2007												_											
Quarter 1, 2008											_												
Quarter 2, 2008												_											
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013						1	i —																<u> </u>
Quarter 3, 2013							1																
Quarter 4, 2013		1			1		1																
Quarter 1, 2013																							
Quarter 2, 2014																							
Quarter 3, 2014																							├
Quarter 4, 2014													-										
Quarter 4, 2014		L	<u> </u>		I	L	L						_		<u> </u>		L	L			L		L

BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003	S 386	D 389	UCRS 390 * *	D 393	U 396	S 221	S 222	S 223	S 224	S 384	URGA D 369	D 372	D 387	D 391	U 220	U 394	S 385	D 370	D 373	LRGA D 388	D 392	U 395	U
Monitoring Well BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003	386	389	* *	393	396	221	222	223		384	369	372	387	391	220	394	385	370	373	200	302	395	20-
BROMIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2003 Quarter 3, 2004 Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003			*					_										570	515	200	512		397
Quarter 1, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003			*																				
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003			*																				
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003																							
Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003			al.																				
Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003			*																				
Quarter 4, 2004 Quarter 1, 2005 Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003			*																				<u> </u>
Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003			*																				
Quarter 3, 2006 CALCIUM Quarter 1, 2003 Quarter 2, 2003			*																				<u> </u>
CALCIUM Quarter 1, 2003 Quarter 2, 2003			*																				
Quarter 1, 2003 Quarter 2, 2003																							
Quarter 2, 2003	_		*																				
			*									*											
Quarter 3, 2003			*																				
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 1, 2007 Quarter 2, 2007												*							*				<u> </u>
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2007												*							*				
												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				<u> </u>
Quarter 1, 2009																							<u> </u>
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009																			*				<u> </u>
Quarter 1, 2010												*							*				<u> </u>
Quarter 2, 2010												*							*				└──
Quarter 3, 2010												*							*				└──
Quarter 4, 2010												*							*				└──
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011										-		*							*				
Quarter 4, 2011										-		*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				1

Groundwater Flow System	1		UCRS	5		1				I	URG	4]	LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CALCIUM																							
Quarter 1, 2014		1	1				1	1			1		1					*	*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*						*	*				
Quarter 4, 2014												*							*				
CARBON DISULFIDE																							
Quarter 4, 2010											*												
Quarter 1, 2011												*									*		
CHEMICAL OXYGEN DEMA	ND																						
Quarter 1, 2003	Ī			*																			
Quarter 2, 2003				*																			
Quarter 3, 2003				*			*			*													
Quarter 4, 2003				*																			
Quarter 1, 2004	*			*																			
Quarter 4, 2004	*							<u> </u>															
Quarter 1, 2005	*																						<u> </u>
Quarter 2, 2005	*		-			-	-						-										<u> </u>
Quarter 3, 2005	*									*		*									*		
Quarter 4, 2005	*									*		-									-		
Quarter 1, 2005	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
																	*	-					
Quarter 4, 2006	*									*							*						
Quarter 1, 2007										ㅠ													
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																						
Quarter 1, 2008	*																						
Quarter 2, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																			*			
Quarter 3, 2009	*																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*					1																	
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 3, 2011	*							l															
Quarter 4, 2011	*					1																	
Quarter 1, 2012	*					1																	
Quarter 1, 2013	*																						
Quarter 3, 2013	*																						<u> </u>
Quarter 3, 2014	*								*				*					*					<u> </u>
Quarter 4, 2014	-	<u> </u>					*				<u> </u>												<u> </u>
2011		<u> </u>				I								L									<u> </u>

Groundwater Flow System			UCRS	3						1	URG	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHLORIDE																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*																				
Quarter 3, 2003			*														-						<u> </u>
Quarter 4, 2003			*														-						<u> </u>
Quarter 1, 2004			*																				1
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				1
Quarter 4, 2004			*														-						<u> </u>
Quarter 1, 2005			*																				
Quarter 2, 2005			*																				
Quarter 3, 2005	_		*																				
Quarter 4, 2005	_		*																				
Quarter 1, 2005	_	<u> </u>																*					
Quarter 1, 2006 Quarter 2, 2006			*															Ŧ					
	_		*																				
Quarter 3, 2006	_		*																				
Quarter 4, 2006	_																						
Quarter 1, 2007			*																				<u> </u>
Quarter 2, 2007			*																				<u> </u>
Quarter 3, 2007			*																				<u> </u>
Quarter 4, 2007			*																				
Quarter 1, 2008			*																				
Quarter 2, 2008			*																				
Quarter 3, 2008			*																				
Quarter 4, 2008			*																				
Quarter 1, 2009			*																				
Quarter 2, 2009			*																				
Quarter 3, 2009			*																				
Quarter 4, 2009			*																				
Quarter 1, 2010			*																				
Quarter 2, 2010			*																				
Quarter 3, 2010			*																				
Quarter 4, 2010			*														-						<u> </u>
Quarter 2, 2011			*																				<u> </u>
Quarter 3, 2011		-	*																				<u> </u>
Quarter 4, 2011			*																				
Quarter 3, 2012	-		*																				<u> </u>
Quarter 3, 2012	+	-	*				-							-									+
Quarter 4, 2013		<u> </u>	*																				
Quarter 4, 2013 Quarter 4, 2014	+	<u> </u>	*																				
CHROMIUM																							
Quarter 4, 2002																	_						
Quarter 1, 2003	+																						<u> </u>
Quarter 2, 2003																							+
Quarter 3, 2009							-																+
COBALT						Ē																	
Quarter 3, 2003							*																
Quarter 5, 2005		L																					

Groundwater Flow System			UCRS	5						τ	JRGA	4]	LRGA	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY					1			1	1				1	1	<u> </u>							1	
Quarter 4, 2002							1			*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*					*		*									*				
Quarter 4, 2003			*							*	-							-	*				
Quarter 1, 2004											-							-	*				
Quarter 2, 2004										*	-							-	*				
Quarter 3, 2004										*	-							-	*				
Quarter 4, 2004			*							*									*				
Quarter 1, 2005										*	-	*						-	*				
Quarter 2, 2005											-	*						-	*				
Quarter 3, 2005																			*				
Quarter 4, 2005										*		*							*				+
Quarter 1, 2005	-											*							*				<u> </u>
Quarter 2, 2006	-											*							*				<u> </u>
Quarter 3, 2006											1	*						1	*				-
Quarter 4, 2006	-																*		*				
Quarter 1, 2007	-											*					-1-		*				
Quarter 2, 2007	-										-	*					*	-	*				
Quarter 3, 2007	-										-						*	-	*				
Quarter 4, 2007	-											*					*		*				
Quarter 1, 2007 Quarter 1, 2008	-											*					Ŧ		*				
Quarter 2, 2008	_											*							*				
Quarter 3, 2008	-											*					*		*				
Quarter 4, 2008	-											*					Ŧ		*				
Quarter 1, 2009	-											*							*				
Quarter 1, 2009 Quarter 2, 2009	-											*							*				
Quarter 3, 2009	-											*							*				
Quarter 4, 2009	-											*					*		*				
Quarter 1, 2009 Quarter 1, 2010	_											*					Ť		*				
Quarter 1, 2010 Quarter 2, 2010	_											*							* *				
	_											* *							* *				
Quarter 3, 2010 Quarter 4, 2010	_										-	* *						-	* *				
	_									*	-	*						-	• *				
Quarter 1, 2011	_									*	-	* *						-	* *				
Quarter 2, 2011	_										-	* *						-	* *				
Quarter 3, 2011	_											* *							* *				
Quarter 4, 2011	_										*	* *							* *				<u> </u>
Quarter 1, 2012	_										ホ	*							*				-
Quarter 2, 2012	_											*							* *				<u> </u>
Quarter 3, 2012	_											*											┣—
Quarter 4, 2012	_											* *							* *				<u> </u>
Quarter 1, 2013	_											* *							*				<u> </u>
Quarter 2, 2013	_																						┣_
Quarter 3, 2013	_											* *							* *				⊢
Quarter 4, 2013	_											* *							*				\vdash
Quarter 1, 2014	_											*							*				<u> </u>
Quarter 2, 2014	_											*							*				
Quarter 3, 2014	_											*							*				
Quarter 4, 2014												*							*				

Groundwater Flow System			UCRS	5							URGA	4]	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED OXYGEN																							
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				
Quarter 1, 2004			*									*							*				
Quarter 2, 2004										*		*							*				
Quarter 3, 2004										*		*							*				
Quarter 4, 2004										*		*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2005 Quarter 1, 2006																	*	*	*	*	• *		├
																	*	*	*	*	*		┣—
Quarter 2, 2006																							┣—
Quarter 3, 2006	_								ļ	مار		ملو		ļ			*	*	*	*	*		┣—
Quarter 4, 2006										*		*					*		*				
Quarter 1, 2007						_						_							*				
Quarter 2, 2007										*		*							*				
Quarter 3, 2007										*		*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008										*		*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*	*						*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	*						*				
Quarter 1, 2010												*	*						*				
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010										*		*							*				
Quarter 4, 2010										*		*							*				
Quarter 1, 2010										*		*							*				<u> </u>
Quarter 2, 2011		-			-	-	-	-	-		-	*	*	-			-		*				
Quarter 3, 2011									<u> </u>			*		<u> </u>			1		*				<u> </u>
Quarter 4, 2011						-						*	-						*				<u> </u>
Quarter 1, 2012											*	*	*						*				<u> </u>
Quarter 2, 2012		-			-	-	-	-	-		-	*		-			-		*				
Quarter 3, 2012						-				*		*	*						*				<u> </u>
Quarter 4, 2012						-						*	*						*				<u> </u>
Quarter 1, 2012 Quarter 1, 2013										*		*							*				<u> </u>
Quarter 2, 2013						-						*							*				
Quarter 3, 2013						-						*	-						*				<u> </u>
Quarter 4, 2013		1										*							*				<u> </u>
Quarter 1, 2013												*	*						*				
Quarter 2, 2014												*							*				
Quarter 3, 2014									*			*	*						*				
Quarter 4, 2014												*	*						*				<u> </u>
Quarter 7, 2017		I			L	L	L	L	1		L		L **	1			L						

Chart of MCL and Historical UTL Exceedances for the C-746-S and T	Landfills
---	-----------

Groundwater Flow System			UCRS	5						I	URGA	ł]	LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
IODIDE					ĺ						Ì											Ì	
Quarter 4, 2002																					*		
Quarter 2, 2003						*																	
Quarter 3, 2003													*										
Quarter 1, 2004				*																			
Quarter 3, 2010																					*		
Quarter 2, 2013										*													
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												1
Quarter 1, 2007											*	*											1
Quarter 2, 2007											*												1
Quarter 2, 2008			<u> </u>									*	<u> </u>										
Quarter 3, 2008								1				*											<u> </u>

S 386	D 389	D 390 * * * * *	D 393	U 396	S 221	S 222	S 223	S 224	S 384	D 369	D 372	D 387	D 391	U 220	U 394	S 385	D 370	D 373	D 388	D 392	U 395	U
386	389	* * *	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	207
		* * *																				397
		* * *																				
		*																				
		*									*							*				
				1		*					*											
		*									*							*				
		T									*		*					*				
		*									*							*				
		*									*							*				
		*									*							*				
											*							*				
																						<u> </u>
																						┣
																						⊢
											*							*				
											*							*				
											*							*				
											*							*				
											*							*				
											*							*				
											*							*				
											*							*				
											*	*						*				
											*							*				
																		*				
												*										
												-1-										
												J.										
												*										
											*							*				
											*	*						*				
											*							*				
					I						*					Ī		*				
					l						*					l		*				
					1						*					l		*				
																	*	*				\vdash
											*	*						*				-
																						<u> </u>
												*										

Groundwater Flow System			UCRS	S						1	URGA	4							1	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393		221	222	223	224	384	369	372		391	220	394	385	370	373	388	392	395	397
MANGANESE	500	507	370	375	570	221	222	225	224	504	507	572	507	371	220	574	505	570	515	500	572	375	371
Quarter 4, 2002																					*		
Quarter 3, 2003							*	*													-1-		
Quarter 4, 2003							*	*															
Quarter 1, 2003							*	*															├──
Quarter 2, 2004							*																├──
Quarter 4, 2004							*	*															├──
							*	*															<u> </u>
Quarter 1, 2005							*														Ł		<u> </u>
Quarter 3, 2005	4																				*		<u> </u>
Quarter 3, 2009	*																						
OXIDATION-REDUCTION POT	ENT	IAL																					
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				
Quarter 2, 2006			*																				
Quarter 3, 2006			*															*					
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*				*																
Quarter 3, 2007			*				*																
Quarter 4, 2007			*																				
Quarter 1, 2008			*			*			*														
Quarter 2, 2008	*		*	*		*							*				*		*	*			
Quarter 3, 2008			*	*		*							*				*		*	*			
Quarter 4, 2008			*	*		*	*	*	*				*				*	*		*			
Quarter 1, 2009			*				*	*	*				*	*				*		*			
Quarter 3, 2009			*	*		*											*	*	*	*			
Quarter 4, 2009			*			*			*									*		*			
Quarter 1, 2010	*		*																	*			
Quarter 2, 2010	*		*	*					*				*				*	*		*			
Quarter 3, 2010	*		*	*		*							-				*	*	*	*			
Quarter 4, 2010			*		-	-		*			*			*			*	*	*	*			├──
Quarter 1, 2010	*			*	-	*	*	*	*		*		*	*			*	*		*	*		┝──
Quarter 2, 2011	*		*	*	-		*	*	*	*	*		*	*			*	*	*	*	*		┝──
Quarter 3, 2011	*		*	*			*		*		*		*				*	*	*	*			├──
Quarter 4, 2011	*		*	*	-		*				*						*	*		*			┝──
Quarter 1, 2011 Quarter 1, 2012	* *		*	*		*	*	*	*	*	*		*	*			*	*	*	*	*		┝──
Quarter 1, 2012 Quarter 2, 2012	*		*	*		*	*	*	*	*	*		*	*			*	*	*	*	*		├──
	* *		*			*	*	*	*	*	*		*	*			*	*	* *	*	* *		┣──
Quarter 3, 2012	*		^	*			^			*	*		*	*					*	*	*		┣──
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	* *		┣──
Quarter 1, 2013	*			*	<u> </u>	*	<u>.</u>	*	*		*		*	*			*	*	*	*	* *		┣──
Quarter 2, 2013			يلار			<u>.</u>	*	يلار		ير	*										ボ		┝──
Quarter 3, 2013	*		*	* *		*	*	*	*	* *	J.	L.	*	L.			*	*	* *	*	.		┣
Quarter 4, 2013	44		*	*		*	*	*	*	*	*	* *	*	*			*	*	* *	*	* *		┣──
Quarter 1, 2014	* *		*	*		*	*		*		*	*	*	*			*	*	* *	*	* *		<u> </u>
Quarter 2, 2014	* *		*	*		*	*		*		*		*				*	*	*	*	*		┣—
Quarter 3, 2014	*		*	*		*											*	*	*	*			<u> </u>
Quarter 4, 2014			*	*	1		1	1			*		*	1			*	*	*	*	*		1

Groundwater Flow System			UCRS	S						ا	URG	4]	LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390	393		221	222	223	224	384		372		391	220	394	385		373		392		
PCB, 1016																							
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004											*												
Quarter 3, 2005							*				*												
Quarter 1, 2006											*												
Quarter 2, 2006											*												
Quarter 4, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007												*											
Quarter 3, 2007											*												
Quarter 2, 2008											*	*											
Quarter 3, 2008	_										*	-											
Quarter 4, 2008	_										*												<u> </u>
											*												
Quarter 1, 2009											*												┣──
Quarter 2, 2009																							<u> </u>
Quarter 3, 2009	_										*												_
Quarter 4, 2009											*												
Quarter 1, 2010											*												
Quarter 2, 2010											*												
Quarter 3, 2010											*												
Quarter 4, 2010											*												
PCB-1232																							
Quarter 1, 2011											*												
PCB-1248																							
Quarter 2, 2008												*											
PCB-1260																							
Quarter 2, 2006		1	1	1	1		1			1	1		1	1	1	1		*	1				
рН																							
Quarter 4, 2002		1	1	1	1		1			1	1		1	1	1	1	*		1				
Quarter 2, 2003																	*						
Quarter 3, 2003																	*						
Quarter 4, 2003							*										*						
Quarter 1, 2004							*										*						
Quarter 2, 2004																	*						
Quarter 3, 2004																	*						
Quarter 4, 2004																	*						
Quarter 3, 2005										*							*				*		
Quarter 4, 2005										*							*						
Quarter 1, 2006																	*						
Quarter 2, 2006																	*						
Quarter 3, 2006																	*						<u> </u>
Quarter 3, 2007																	*						<u> </u>
Quarter 4, 2007																	*						<u> </u>
Quarter 4, 2008																	*						1
Quarter 1, 2009																	*						<u> </u>
Quarter 1, 2011																	*						<u> </u>
Quarter 2, 2011											*												<u> </u>
Quarter 3, 2011									-		*												<u> </u>
Quarter 1, 2012														*		-							<u> </u>
Quarter 1, 2012	1	-	-	-	-		-		-	*	-		*	-	-	-	*		-				<u> </u>
Quarter 4, 2014	+								1												*		<u> </u>
	_	L	L	L	L	L	L	L	<u> </u>	L	L	L	L	L	L	L	L		L	L	<u> </u>		<u> </u>

Groundwater Flow System			UCRS	5						I	URGA	4								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	391
POTASSIUM																							
Quarter 4, 2002																1		*	*	1	1		1
Quarter 3, 2004																l l			*	l l	l l		
Quarter 2, 2005																			*				
Quarter 3, 2005																l l			*	l l	l l		
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				
Quarter 3, 2006																			*				
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				
Quarter 1, 2013																			*				
Quarter 2, 2013																			*				
Quarter 3, 2013																			*				
RADIUM-226																							
Quarter 4, 2002			*										*	*		1				1	*		1
Quarter 2, 2004																			*				
Quarter 2, 2005									*														
Quarter 1, 2009											*												
Quarter 3, 2014									*			*				l l				l l	l l		
Quarter 4, 2014			*								*							*					
RADIUM-228																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
SELENIUM																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																l				l	l		
Quarter 4, 2003																							

Groundwater Flow System			UCRS	5						ι	URGA	4]	LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SODIUM																							
Quarter 4, 2002																			*		*		
Quarter 1, 2003				*					*	*	*												
Quarter 2, 2003				*						*	*		*										
Quarter 3, 2003							*	*		*													
Quarter 4, 2003							*		*	*													
Quarter 1, 2004									*	*				*									
Quarter 2, 2004										*													
Quarter 3, 2004										*													
Quarter 4, 2004									*	*													
Quarter 1, 2005										*									*				
Quarter 2, 2005										*									*				
Quarter 3, 2005									*	*									*				
Quarter 4, 2005									*	*													
Quarter 1, 2006									*	*													
Quarter 2, 2006									*								-						
Quarter 3, 2006									*	*		*							*				
Quarter 4, 2006									*	*							*						
Quarter 1, 2007									*			*											
Quarter 2, 2007									*	*							-						
Quarter 3, 2007									*								-						
Quarter 4, 2007									*														
Quarter 1, 2007 Quarter 1, 2008									*														
Quarter 3, 2008												*											
Quarter 4, 2008									*	*													
Quarter 1, 2009									*			*							*				
Quarter 3, 2009									-			*							4				
Quarter 4, 2009									*			*											
Quarter 1, 2010									Ť			• *											
										*		ŕ *											
Quarter 2, 2010										*		Ŧ											
Quarter 3, 2010									*	*													
Quarter 4, 2010									不														
Quarter 1, 2011									4	*													
Quarter 2, 2011									*														
Quarter 4, 2011																			*				
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*											
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*											
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*											
Quarter 2, 2014									*		*	*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014									*	*		*											

Groundwater Flow System			UCRS	3						1	URGA	4]	LRGA	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
STRONTIUM-90																							
Quarter 2, 2003																							
Quarter 1, 2004																		-					
SULFATE																							
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004									-	*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005										*		*	*				*	*	*				
										*		*	*				*	*	*				
Quarter 3, 2005																	*			Ł			
Quarter 4, 2005										*		*	*				414	*	*	*			
Quarter 1, 2006										*		*	*				*	*	*	*			
Quarter 2, 2006									*	*		*	*				*	*	*	*			
Quarter 3, 2006									*	*		*	*				*	-	*	*			
Quarter 4, 2006									*	*		*	*				*		*				
Quarter 1, 2007									*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*				*		*	*			
Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009									*	*		*	*				*	*	*	*			
Quarter 4, 2009	*									*		*	*				*	*	*				
Quarter 1, 2010	*								*	*		*	*				*		*				
Quarter 1, 2010 Quarter 2, 2010	*								*	*		*	*				*	*	*	*			
Quarter 2, 2010 Quarter 3, 2010									Ť	*		*	*				*	* *	* *	• *			
	*									*		*	*				*		-	Ŧ			
Quarter 4, 2010																		*	*				
Quarter 1, 2011	*									*		*	*	-14			*	*	*				<u> </u>
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			<u> </u>
Quarter 4, 2011	*									*		*	*				*	*	*	*			
Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 2, 2012	*									*		*	*				*	*	*	*			
Quarter 3, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012										*		*	*				*	*	*	*			
Quarter 1, 2013										*		*	*				*	*	*	*			
Quarter 2, 2013										*		*	*	*			*	*	*	*			
Quarter 3, 2013										*		*	*	*			*	*	*	*			<u> </u>
Quarter 4, 2013										*		*	*				*	*	*	*			
Quarter 1, 2014		<u> </u>						*		*	<u> </u>	*	*				*	*	*	*			<u> </u>
Quarter 2, 2014										*		*	*	*			*	*	*	*			
Quarter 3, 2014		-								*	-	*	*	*			*	*	*	*			
Quarter 4, 2014										*		*	*				*	*	*	*			
		<u> </u>	L		I	<u> </u>	l	L	I	L	<u> </u>		<u> </u>	L		L					L	L	L

Groundwater Flow System			UCRS	5						l	URG	A								LRGA	ł		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 4, 2002	-																		*				
Quarter 1, 2002	-												*				*		*				
Quarter 2, 2003	*		*							*			*				*						
Quarter 3, 2003	-		*										*	-			*			*			
Quarter 4, 2003	-		*						-	*		*	*				*		*	*			
Quarter 1, 2003	-		*							-		*	*				*		*	-			
Quarter 2, 2004	-		*									*	*				*		*	*			
Quarter 3, 2004			*									*					*		*				
Quarter 4, 2004	-		*							*		*	*				*	*	*				
Quarter 1, 2005	-		*						-	*		*	*				*			*			
Quarter 2, 2005	-		*							*		-	*				*	*	*	*			
Quarter 3, 2005	-		*							*			*				*	*	*	*			<u> </u>
Quarter 4, 2005	-		*							*		*	*				*	-	*	*			<u> </u>
	-		Ŧ							*		*	*				*		*	*			—
Quarter 1, 2006	_		*							*		*	*				*	*	*	*			<u> </u>
Quarter 2, 2006										*								*	*				⊢
Quarter 3, 2006			*									4	*				*	*		*			
Quarter 4, 2006	*									*		*	*						*	*			\vdash
Quarter 1, 2007	4	<u> </u>	*							*			*	<u> </u>			*		*	*			\vdash
Quarter 2, 2007			*							*		*	*				*	*		*			
Quarter 3, 2007			*							*	*	*	*				*		*	*			
Quarter 4, 2007			*							*		*	*				*		*	*			
Quarter 1, 2008			*							*		*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2009			*							*		*	*				*						
Quarter 2, 2009			*							*		*	*				*	*		*			
Quarter 3, 2009		l l	*							*	*	*	*				*			*			
Quarter 4, 2009			*							*		*	*				*						
Quarter 1, 2010			*							*		*	*				*						
Quarter 2, 2010			*							*			*				*	*		*			
Quarter 3, 2010			*							*	*	*	*				*						
Quarter 4, 2010			*							*		*	*				*						
Quarter 1, 2011	-									*			*				*						
Quarter 2, 2011	-		*							*	<u> </u>		*				*			*			⊢
Quarter 3, 2011	+		*							*			*				*			*			\vdash
Quarter 4, 2011			*							*	*	*	*				*			-			\vdash
Quarter 1, 2011 Quarter 1, 2012			*							*			*				*			*			⊢
Quarter 1, 2012 Quarter 2, 2012	-		*							* *	-		*				*		*	*			├──
			*							* *		*	*				*		*	*			┣—
Quarter 3, 2012	_		*							* *		*	*				*		*	*			<u> </u>
Quarter 4, 2012	_											*	*										┣—
Quarter 1, 2013										* *		÷					*		* *	*			⊢
Quarter 2, 2013	_									*		*	*				*		*	*			⊢
Quarter 3, 2013	_		*							* *		*	* *				*		* *	*			_
Quarter 4, 2013			*							*		*	*				*		*	*			\vdash
Quarter 1, 2014	1		*							*	*		*				*		*	*			\vdash
Quarter 2, 2014			*							*	*		*	*			*		*	*			
Quarter 3, 2014			*							*			*				*			*			
Quarter 4, 2014			*							*	*	*	*				*		*	*			
THORIUM-230																							
Quarter 1, 2012	*								*					*									
Quarter 4, 2014	*		*															_					

Groundwater Flow System	1		UCRS	S						١	URGA	4]	LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386		390	393		221	222	223	224	384		372	387	391	220	394	385	370	373	388	392	395	_
THORIUM-234																							
Quarter 2, 2003						*			*					*									
Quarter 4, 2007									*								-						
TOLUENE																							
Quarter 2, 2014										*	*		*										
TOTAL ORGANIC CARBON																							
Quarter 4, 2002																					*		
Quarter 1, 2002				*						*	*							*	*		*		
Quarter 2, 2003										*	*		*					-			*		
Quarter 3, 2003							*	*	*	*	*	*	-				-	-			-		
Quarter 4, 2003							*		*	*													
Quarter 1, 2003										*													
Quarter 2, 2004	-									*	*						-	-					—
Quarter 3, 2004	-									*	Ŧ												
Quarter 4, 2004	-									*							-	-					—
	-									*													—
Quarter 1, 2005	-									*											*		┣—
Quarter 2, 2005												-14											
Quarter 3, 2005	1									*		*									*		\square
Quarter 4, 2005										*											*		
Quarter 1, 2006										*													
Quarter 2, 2006										*		*											
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 3, 2007	*					*	*	*	*	*			*	*			*						
Quarter 2, 2011											*												
Quarter 3, 2012	*																						1
TOTAL ORGANIC HALIDES																							
Quarter 4, 2002																		*	*		*		
Quarter 1, 2003				*													-	*			*		
Quarter 3, 2003				*													-	-			*		
Quarter 2, 2004																					*		
Quarter 3, 2004	*																						
Quarter 1, 2005	*																	-					
Quarter 2, 2005	*																	-					
Quarter 3, 2005	*																						
Quarter 4, 2005	*																						
Quarter 1, 2005	*																						
Quarter 2, 2006	*																-	-					—
Quarter 3, 2006	*																-	-					—
																	*						<u> </u>
Quarter 4, 2006 Quarter 1, 2007	*																*	-					
· ·	*																-	-					
Quarter 2, 2007																							
Quarter 3, 2007	*																-	-			4		
Quarter 4, 2007	*																				*		
Quarter 1, 2008	*																						
Quarter 4, 2008	*			ļ																			\square
Quarter 4, 2008	*		l	L	<u> </u>										l								
Quarter 1, 2009	*				<u> </u>																		
Quarter 2, 2009	*																				*		
Quarter 3, 2009	*																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*		l		1	Ī									l								
Quarter 2, 2010																							t
Quarter 3, 2010	*																						

Groundwater Flow System	UCRS									I	JRGA	4								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392		
TOTAL ORGANIC HALIDES	500	507	570	373	570	221	222	225	224	504	507	512	507	571	220	574	505	570	515	500	572	575	371
Quarter 4, 2010	*																						
Quarter 1, 2010	*																						┢──┤
Quarter 3, 2013	.1.																				*		┟──┘
TRICHLOROETHENE																					.1.		
Quarter 4, 2002														-									-
Quarter 1, 2002														-									──
Quarter 2, 2003																							<u> </u>
Quarter 3, 2003														-									+'
Quarter 4, 2003																							<u> </u>
						-																	<u> </u> '
Quarter 1, 2004																			_				
Quarter 2, 2004																							<u> </u>
Quarter 3, 2004																							<u> </u>
Quarter 4, 2004							ļ																↓ '
Quarter 1, 2005																							<u> </u>
Quarter 2, 2005																							<u> </u>
Quarter 3, 2005																							<u> </u>
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010						-																	
Quarter 3, 2010						-																	
Quarter 4, 2010																							<u> </u>
Quarter 1, 2011																							
Quarter 2, 2011																							+
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							┢──┤
Quarter 2, 2012																-						-	┼──┘
Quarter 3, 2012																							—
-																							+'
Quarter 4, 2012																							╂───
Quarter 1, 2013						<u> </u>																<u> </u>	<u> </u>
Quarter 2, 2013						—																<u> </u>	↓ '
Quarter 3, 2013																-							<u> </u>
Quarter 4, 2013																							↓ '
Quarter 1, 2014																							└──
Quarter 2, 2014																			_				└─ ′
Quarter 3, 2014																							
Quarter 4, 2014																							

Groundwater Flow System			UCR.	S						1	URGA	4]	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														
						-																	
* Statistical test results indicate an	eleva	ted co	oncen	tratior	n (i.e.,	a sta	tistica	ılly sig	gnific	ant in	crease	e)											
MCL Exceedance																							
UCRS Upper Continental Recharge	Syste	m																					
URGA Upper Regional Gravel Aqu	ifer																						
LRGA Lower Regional Gravel Aqu	ifer																						
S Sidegradient; D Downgradient; U	Upgr	adien	t																				

APPENDIX H

METHANE MONITORING DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S & T LANDFILL METHANE MONITORING REPORT

														Tai	mmy	/ Smit	h		
Weather Conditi Sunny at 58 deg		ith ca	alm v	wind	ls ou	It of	the N	w											
Monitoring Equi	oment		3																
				N	Ioni	torin	g Lo	cati	on										eading % LEL)
Ogden Landing Road Entrance	Ch	ecked	d at g	round	d leve	el													0
North Landfill Gate	e Ch	ecked	d at g	round	d leve	el													0
West Side of Landfill: North 37° 07.65 West 88° 48.02		ecked	d at g	round	d leve	əl													0
East Side of Landfill: North 37° 07.62 West 88° 47.79		ecked	d at g	round	d leve	el .													0
Cell 1 Gas Vent (1	1	2 0	3 0	4 0	5 0	6 0	7 0	8 0	9 0	10 0	11 0	12 0	13 .6	14 0	15 0	16 3	17 0	136	
Cell 2 Gas Vent (3	i) 1 .6	2 0	3 0						~	121								16	
Cell 3 Gas Vent (7	') <mark>1</mark> 0	2 0	3 0	4 0	5 0	6 0	7 0												0
Landfill Offi		ecked	d at fl	oor le	evel														0
Suspect or Proble Area		area	s note	əd															1-16-15
Remarks: ALL VENTS CH	ECKE	D 1"	FRO	DM -	THE	MO	UTH	1 OF	тн	EVE	ENT	OP	ENI	١G					
Performed by:			,	1	1	MIL.	h	G		th.							1	161	15
			0	Si	gnat	ture		9ª		~~							//	16/1 D	ate

WD-F-0040 (8/19/13) PAD-WD-0017 Review the Identified Source Document for This Form Prior to Attempting Completion Complete All Forms In Accordance With PAD-WC-0044 THIS PAGE INTENTIONALLY LEFT BLANK