C-746-S&T Landfills Third Quarter Calendar Year 2014 (July-September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

LATA Kentucky Classification Support

Date

C-746-S&T Landfills
Third Quarter Calendar Year 2014
(July–September)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—November 2014

Prepared for the U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC
managing the
Environmental Remediation Activities at the
Paducah Gaseous Diffusion Plant
under contract DE-AC30-10CC40020

CONTENTS

FI	GURES		v
TA	ABLES		v
ΑC	CRONYMS		vii
1.	1.1 BACK 1.2 MONI 1.2.1 1.2.2 1.2.3	TION	1 1 3
2.	DATA EVA	LUATION/STATISTICAL SYNOPSIS	11
3.	DATA VAL	IDATION	13
4.	PROFESSIO	NAL GEOLOGIST AUTHORIZATION	15
5.	REFERENC	E	17
Αŀ	PPENDIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
Αŀ	PPENDIX B:	FACILITY INFORMATION SHEET	B-1
Αŀ	PPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
Αŀ	PPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
Αŀ	PPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
Αŀ	PPENDIX F:	NOTIFICATIONS	F-1
Αŀ	PPENDIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
Αŀ	PPENDIX H:	METHANE MONITORING DATA	H-1
ΔΙ	DENDIX I	SURFACE WATER SAMPLE ANALYSIS AND WRITTEN COMMENTS	T_1

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	2
2.	C-746-S&T Landfills Surface Water Monitoring Locations	5
	TABLES	
	Summary of MCL Exceedances	
	Exceedances of Statistically Derived Historical Background Concentrations Exceedances of Current Background UTL in Downgradient Wells of Constituents that also	6
	Exceed the Historical Background UTL	7
4.	C-746-S and T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters	9
5.	Monitoring Wells included Historically in Statistical Analysis	

ACRONYMS

CFR Code of Federal Regulations
COD Chemical oxygen demand

KAR Kentucky Administrative Regulations
KDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes

LATA Kentucky LATA Environmental Services of Kentucky, LLC

LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

PGDP Paducah Gaseous Diffusion Plant

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills Third Quarter Calendar Year 2014 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number: SW07300014, SW07300015, SW07300045 for the C-746-S Residential Landfill and for the C-746-T Inert Landfill. This report was written using the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014).

The groundwater, surface water, leachate, and methane monitoring sample data reporting form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) groundwater reporting forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determination are provided in Appendix E. Appendix F contains the notifications for parameters whose concentrations exceed the maximum contaminant level (MCL) and for all parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL)], as established at a 95% confidence). Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred, since the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-S&T Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 4. Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved surface water monitoring plan. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three surface water locations sampled for reporting only, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water results are provided in Appendix I.

1.1 BACKGROUND

The C-746-S&T Landfills are closed solid waste landfills located north of the Paducah Gaseous Diffusion Plant (PGDP) and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a cover of compacted soil. The C-746-S Landfill was a sanitary landfill for PGDP. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from PGDP. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: (1) the Upper Continental Recharge System (UCRS), (2) the Upper Regional Gravel Aquifer (URGA), and (3) the Lower Regional Gravel Aquifer (LRGA).

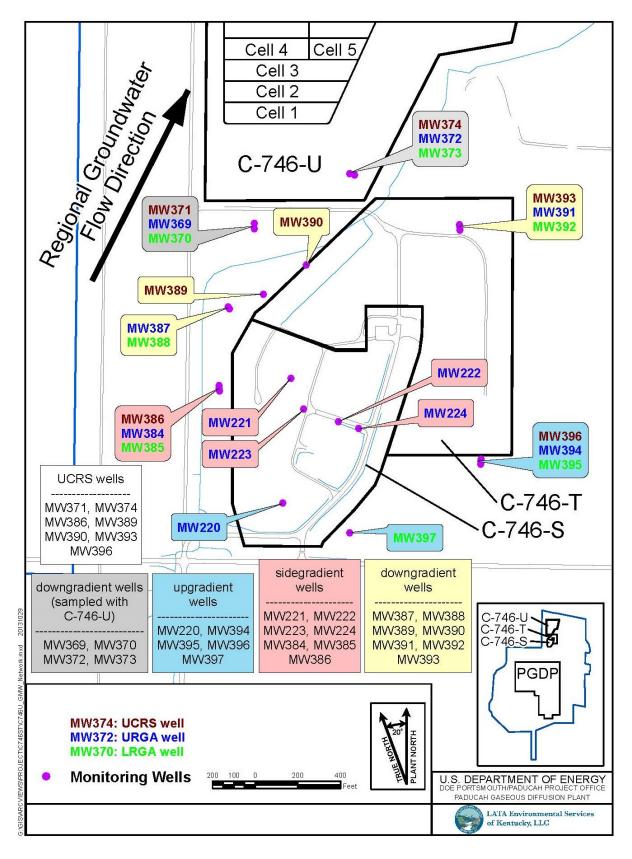


Figure 1. C-746-S&T Landfills Groundwater Monitoring Well Network

A map of the monitoring well (MW) locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is in a north-northeasterly direction in the vicinity of the C-746-S&T Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for the UCRS water quality. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the third quarter 2014 during July using LATA Environmental Services of Kentucky, LLC, (LATA Kentucky) procedure PAD-ENM-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable.

The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water measurements were collected on July 30 and 31, 2014, in MWs of the C-746-S&T Landfills (see Table E.1), in MWs of the C-746-U Landfill, and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 38 vicinity wells define the potentiometric surface for the RGA. Regional flow in the RGA in July was northeastward, toward the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in July was 3.51×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 2.43×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.41 to 1.02 ft/day (see Table E.3).

1.2.2 Methane Monitoring

_

Landfill operations staff monitored for the occurrence of methane on September 25, 2014, in 1 on-site building location, 4 locations along the landfill boundary, and 27 gas-passive vents located in Cells 1, 2, and 3 of the C-746-S Landfill. See Appendix H for a map of the monitoring locations. Monitoring identified 7.8% of the lower explosive limit (LEL) of methane at Cell 2 Gas Vent 1, 6.6% of the LEL of methane at Cell 2 Gas Vent 3, which are compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. Methane monitoring identified 0% of the LEL of methane at all other locations. The results are documented on the approved C-746-S&T Landfill Methane Monitoring Report form provided in Appendix H.

¹ Although depth-to-water is measured in the UCRS wells, the UCRS has a strong vertical hydraulic gradient that varies locally. The UCRS wells are screened over different elevations; therefore, the UCRS well measurements are not sufficient for mapping the potentiometric surface.

1.2.3 Surface Water Monitoring

Surface water was sampled in accordance with 401 KAR 48:300 § 2 and the approved surface water monitoring plan. Sampling was performed in three locations within the C-746-S&T Landfills. The landfills have an upstream location, L135; a downstream location, L154; and a location capturing runoff from the landfill surface, L136. L136 was not sampled due to insufficient flow. A map of the surface water monitoring locations is presented in Figure 2. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled for report only format, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Parameters that had concentrations that exceeded the respective MCL are listed in Table 1 Those constituents (present in downgradient wells) that exceeded their respective MCL were further evaluated against their historical UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL for the third quarter 2014, as well as parameters that exceeded their MCL (beta activity) that also exceeded their historical background MCL. Those constituents (present in downgradient wells) that exceed their historical UTL were evaluated against their current-background UTL derived using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

The notification of parameters that exceeded the MCL has been submitted electronically to the KDWM in accordance with 401 *KAR* 48:300, Section 7, prior to the submittal of this report.

There were no new MCL exceedances for this quarter. The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. The MCL exceedances for trichloroethene in MW372 MW373, MW391, and MW392 are not attributable to a C-746-S&T Landfill source and are considered a Type I exceedance per the approved groundwater monitoring plan (LATA Kentucky 2014).

The MCL exceedances for beta activity in MW384, MW387, MW388, and MW392 also were shown to exceed both the historical background UTL and the current background UTL; therefore, they preliminarily were considered to be Type 2 exceedances (source unknown).

This report serves as the notification of parameters that had statistically significant increased concentrations relative to background concentrations, as required by Permit Number: SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 8, and 401 *KAR* 48:300 § 7.

In accordance with Permit Condition GSTR0003, Variance 2, of the Solid Waste Permit (Permit), the groundwater assessment and corrective action requirements of 401 KAR 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the Permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 KAR 34:060 § 12.

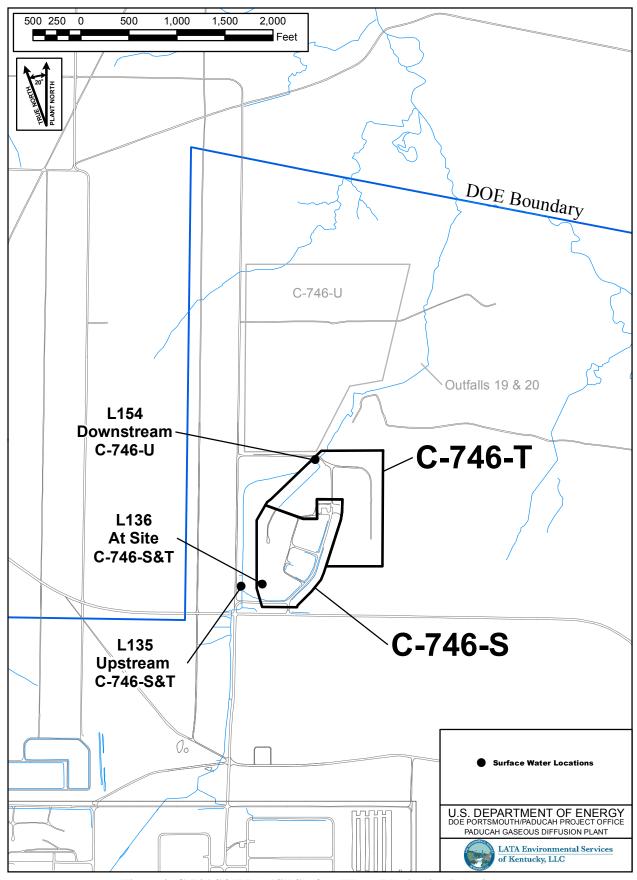


Figure 2. C-746-S&T Landfill Surface Water Monitoring Locations

Table 1. Summary of MCL Exceedances

<u>UCRS</u>	<u>URGA</u>	<u>LRGA</u>
NONE	MW372: Trichloroethene	MW373:Trichloroethene
	MW384: Beta Activity	MW385: Beta Activity
	MW387: Beta Activity	MW388: Beta Activity
	MW391: Trichloroethene	MW392: Trichloroethene

Table 2. Exceedances of Statistically Derived Historical Background Concentrations (parameters with MCLs are included only if listed in Table 1)

<u>UCRS</u>	<u>URGA</u>	<u>LRGA</u>
MW386: Chemical oxygen demand	MW221: Oxidation-reduction	MW370: COD, oxidation-reduction
(COD), oxidation-reduction	potential	potential, sulfate
potential		
MW390: Oxidation-reduction	MW224: COD, dissolved solids,	MW373: Calcium, conductivity,
potential, technetium-99	radium-226	dissolved solids, magnesium,
		oxidation-reduction potential,
		sodium, sulfate
MW393: Oxidation-reduction	MW372: Calcium, conductivity,	MW385: Beta activity ^a , oxidation-
potential	dissolved solids, magnesium,	reduction potential, sulfate,
	radium-226, sodium, sulfate	technetium-99
	MW384: Beta activity ^a , sulfate,	MW388: Beta activity ^a , oxidation-
	technetium-99	reduction potential, sulfate,
		technetium-99
	MW387: Beta activity ^a , COD,	
	dissolved solids, sulfate,	
	technetium-99	
	MW391: Sulfate	

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393

Upgradient wells: MW220, MW394, MW395, MW396, MW397

Of the constituents that had exceedances of the statistically derived historical background UTL, these parameters underwent additional statistical evaluation. The current quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient to identify if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. Constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance. Those constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and could have the C-746-S or C-746-T Landfills as a source. These preliminarily are considered to be Type 2 exceedances per the approved monitoring plan.

^a Beta activity has an MCL; the exceedances of the MCL were subjected to a comparison against the statistically derived historical background.

^b In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

Table 3. Exceedances of Current Background UTL in Downgradient Wells of Constituents that also Exceed the Historical Background UTL (parameters with MCLs are included only if listed in Table 1)

URCS	URGA	LRGA		
	MW372: Calcium, conductivity, dissolved solids, magnesium, sodium, sulfate	MW370: COD		
	MW387: Beta activity, COD, dissolved solids, sulfate, technetium-99	MW373: Calcium, conductivity, dissolved solids, magnesium, sodium, sulfate		
		MW388: Beta activity, sulfate, technetium-99		

Summary of C-746-S&T Results and Discussion

Groundwater monitoring identified parameters (TCE, beta activity) that exceeded their respective MCL (see Table 1); however, the TCE exceedances did not exceed their respective historical UTL and are considered Type 1 exceedances (not attributable to the landfill). The beta activity MCL exceedances also exceeded their historical UTL.

Groundwater monitoring identified parameters that exceeded their respective historical UTL (see Table 2) but did not exceed the current UTL; thus, these also are considered to be Type I exceedances (not attributable to the landfill). The gradients in UCRS wells are downward. Thus, none of the UCRS wells are properly considered to be downgradient of the landfill. However, the statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS wells with parameters that exceeded both the historical and current background. These exceedances are not attributable to C-746-S&T landfills and are considered Type 1 exceedances. These exceedances are identified in Appendix D2.

Groundwater monitoring identified parameters that exceeded both their historical UTL (see Table 2) and their current UTL (see Table 3). The source(s) of these exceedances are not determined; thus, they preliminarily are considered to be Type 2 exceedances.

A preliminary review of the Type 2 exceedances indicates that these do not likely have a significant landfill source for these reasons:

- Only 5 of 11 downgradient wells have these exceedances; if there were a significant landfill source, it would be expected that more of the downgradient wells would have these exceedances, and it would be expected that there would be more exceedances in the (shallow) URGA relative to the (deeper) LRGA.
- The exceedances are largely localized to two areas.
- The exceedances of some constituents (beta activity/technetium-99 in MW387 and MW388) are explained due to the presence of an upgradient source of technetium-99.
- There are several non-landfill potential source(s) of the calcium, COD, conductivity, dissolved solids, magnesium, sodium, and sulfate exceedances.
- All of these exceedances previously have been seen in these same wells (see Appendix G).

In addition, these parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. None of the parameters exhibits an increasing trend. In fact, most of the identified concentration trend slopes are negative. Downgradient concentrations do not exhibit a statistically significant increasing trend; thus, the UTL exceedances may be considered Type 1 exceedances (not attributable to the landfill). Nevertheless, further evaluation of the potential sources of these exceedances may be considered for the next quarter's monitoring program.

9

Table 4. C-746-S and T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-value ²	S^3	Var(S)4	Sen's Slope ⁵	Kendall Correlation ⁶	Decision ⁷
) WY 2708	Chemical Oxygen		0.05	0.440	2 000	50.00	0.000		N. T. 1
	MW370 ^a	Demand	8	0.05	0.448	2.000	58.00	0.000	0.081	No Trend
		Calcium	8	0.05	0.274	-6.000	0.000	-0.775	-0.214	No Trend
		Conductivity	8	0.05	0.274	-6.000	0.000	-6.717	-0.214	No Trend
	MW372 ^b	Dissolved Solids	8	0.05	0.138	-10.00	0.000	-8.125	-0.357	No Trend
	WI W 372	Magnesium	8	0.05	0.402	-3.000	64.33	-0.460	-0.109	No Trend
		Sodium	8	0.05	0.360	4.000	0.000	0.430	0.143	No Trend
		Sulfate	8	0.05	0.306	-5.000	62.33	-2.250	-0.189	No Trend
	MW373 ^a	Calcium	8	0.05	0.138	-10.00	0.000	-0.960	-0.357	No Trend
		Conductivity	8	0.05	0.012	-22.00	0.000	-6.750	-0.611	Negative Trend
S&T Landfills		Dissolved Solids	8	0.05	0.089	-12.00	0.000	-6.000	-0.429	No Trend
Downgradient		Magnesium	8	0.05	0.006	-21.00	64.33	-0.724	-0.764	Negative Trend
Wells		Sodium	8	0.05	0.452	-2.00	0.000	-0.253	-0.071	No Trend
		Sulfate	8	0.05	0.030	-16.00	63.33	-3.583	-0.593	Negative Trend
	MW387 ^b	Chemical Oxygen Demand	8	0.05	0.448	2.000	58.00	0.000	0.081	No Trend
		Dissolved Solids	8	0.05	0.159	-9.000	64.33	-3.333	-0.327	No Trend
		Beta Activity	8	0.05	0.199	8.000	0.000	6.600	0.286	No Trend
		Sulfate	8	0.05	0.159	-9.000	64.33	-0.742	-0.327	No Trend
		Technetium-99	8	0.05	0.199	8.000	0.00	16.5	0.286	No Trend
		Beta Activity	8	0.05	0.452	-2.000	0.000	-2.167	-0.071	No Trend
	MW388 ^a	Sulfate	8	0.05	0.309	-5.000	64.33	-0.583	-0.182	No Trend
¹ An alpha of 0.05 rapes		Technetium-99	8	0.05	0.138	10.00	0.000	7.918	0.357	No Trend

¹ An alpha of 0.05 represents a 95% confidence interval.

² The p-value represents the risk of acceptance the Ha hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

⁴VAR(S) represents the variance of S in the sample set and takes into account statistical ties.

Table 4. C-746-S and T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters (Continued)

Note: Statistics generated using STAT Version 2014.2.07.

^a LRGA

 $^{\rm b}$ URGA

⁵ The magnitude of trend is predicted by the Sen's Slope. Here, the slope is described as the median of all (x j-xk)/(j-k), where x is a data point and j and k are values of time.

⁶ Kendall's correlation is described as the difference of concordant pairs and discordant pairs, also taking sample size and statistical ties into account. When the Kendall's correlation is positive, it indicates an increasing trend and when it is negative, it indicates a decreasing trend

⁷ The Mann-Kendall decision operates on two hypotheses, the H0 and Ha. H0 assumes there is no trend in the data, whereas Ha assumes either a positive or negative trend. Two different tests were run to test for positive or negative trends. This table reports the test with the lowest p-value.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the third quarter 2014 groundwater data collected from the C-746-S&T Landfills MWs were performed in accordance with the *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (LATA Kentucky 2014)* The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1, D2, and D3).

For those parameters that exceed the respective Kentucky solid waste facility MCL, found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both the upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-side tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 5.

Table 5. Monitoring Wells included Historically in Statistical Analysis*

UCRS ¹	URGA	LRGA
MW386	MW220 (upgradient)	MW370
MW389 (dry)***	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396 **	MW224	MW392
	MW369	MW395 (upgradient)
	MW372	MW397 (upgradient)
	MW384	, 10
	MW387	
	MW391	
	MW394 (upgradient)	

^{*}A map showing the monitoring well locations is shown in Figure 1.

STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances.

Upper Continental Recharge System

In this quarter, 25 parameters without MCLs required statistical analysis in the UCRS. The statistical analysis was conducted separately for each parameter in each well. During the third quarter, COD, oxidation-reduction potential, and technetium-99 exceeded their respective historical UTL and are listed in Table 2.

Upper Regional Gravel Aquifer

In this quarter, 31 parameters without MCLs required statistical analysis in the URGA. The statistical analysis was conducted separately for each parameter in each well. During the third quarter, beta activity, calcium, COD, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2.

Lower Regional Gravel Aquifer

In this quarter, 26 parameters without MCLs required statistical analysis in the LRGA. The statistical analysis was conducted separately for each parameter in each well. During the third quarter, beta activity, calcium, COD, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2.

^{**}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^{***}MW389 had insufficient water to permit a water level measurement or to provide water samples for laboratory analysis.

MW371 and MW374 are listed on Table 2 of the Groundwater Monitoring Plan as wells associated with the C-746-S&T Landfills; however, they are not listed in Condition GSTR0003 of the permit as wells permitted for the C-746-S&T monitoring well network. The inclusion of these wells on Table 2 of the Groundwater Monitoring Plan is an error and will be corrected in the next revision opf the plan. Data for these wells is included appropriately in the C-746-U Landfill quarterly monitoring report.

3. DATA VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved groundwater monitoring plan, data verification is performed for 100 percent of the data. Data are flagged as necessary.

Data validation was performed on 100 percent of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory project management or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples such as matrix spikes, matrix spike duplicates, and method blanks are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Due to laboratory error, acrolein and acrylonitrile were initially analyzed from preserved sample vials and the initial data was rejected. The following locations were resampled on September 22, 2014, and reanalyzed with the proper preservation and holding time: MW369, MW370, MW384, MW385, MW386, and MW390 and associated field blank, rinseate blank, and trip blank.

4. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills

Third Quarter Calendar Year 2014 (July-September)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (PAD-ENM-0090/V3)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

Kenneth R Davis

PG1194

November 25, 2014

5. REFERENCE

LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:			Diffusion Plant	Activity:	C-746-S&T Landfills
	(As officially	shown on DWM I	Permit Face)		
Permit No: 073	3-00014 & 073-00	0015 Find	ds/Unit No:	Quarter & Yea	3rd Qtr. CY 2014
Please check the f	ollowing as appli	cable:			
Characteriz	zation X	Quarterly _	Semiannual	Annua	d Assessment
Please check appli	icable submittal(s	s): <u>X</u>	Groundwater	X	Surface Water
			_ Leachate	X	Methane Monitoring
45:160) or by statute jurisdiction of the Dirhours of making the the lab report is NO pages. I certify under penal accordance with a sy Based on my inquiry best of my knowledge	(Kentucky Revise vision of Waste M. e determination us T considered notified ty of law that the stem designed to a of the person or pee and belief, true, as	d Statues Chapter anagement. You sing statistical a lication. Instruct a document and assure that quality recurate, and compared to the compared to the state of	must report any indica malyses, direct compar- ions for completing the a all attachments were profied personnel properly g sponsible for gathering in	ndwater and surface ation of contamina- ison, or other sim form are attached. I repared under my gather and evaluate information, the information the information of	ulations-401 KAR 48:300 and water monitoring under the stion within forty-eight (48 ilar techniques. Submittin Do not submit the instruction direction or supervision in the information submitted formation submitted is, to the senalties for submitting false
Mark J. Duff, Pad LATA Environme	•	•	LC		Date
Jennifer Woodard U.S. Department	•	Lead			Date

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Groundwater: July 2014 Surface Water: July 2014 073-00014 & Sampling Date: Methane: September 2014 County: McCracken Permit Nos. 073-00015 U.S. DOE, Paducah Gaseous Diffusion Plant Facility Name: (As officially shown on DWM Permit Face) Site Address: 5501 Hobbs Road Kevil, Kentucky Street City/State Phone No: (270) 441-6800 W 88° 47' 55<u>.41"</u> Latitude: N 37° 07' 37.70" Longitude: OWNER INFORMATION Facility Owner: U.S. DOE, W. E. Murphie, Manager Phone No: (859) 219-4001 Contact Person: Mark J. Duff Phone No: (270) 441-5030 Contact Person Title: Project Manager, LATA Environmental Services of Kentucky, LLC Mailing Address: 761 Veterans Avenue Kevil, Kentucky 42053 Street City/State Zip SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY) Company: LATA Environmental Services of Kentucky, LLC Contact Person: Jeff Boulton Phone No: (270) 441-5444 Mailing Address: 761 Veterans Avenue Kevil, Kentucky 42053 City/State Street Zip LABORATORY RECORD #1 Laboratory: GEL Laboratories, LLC Lab ID No: KY90129 Contact Person: Joanne Harley Phone No: (843) 769-7387 Mailing Address: 2040 Savage Road Charleston, South Carolina 29407 Street City/State Zip LABORATORY RECORD #2 Lab ID No: Laboratory: Contact Person: Phone No: Mailing Address: City/State Street Zip LABORATORY RECORD #3 Lab ID No: Laboratory: Contact Person: Phone No: Mailing Address: Street City/State

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8000-520	1	8000-52	202	8000-52	242	8000-524	43	
Facility's Loc	cal Well or Spring Number (e.g., N	1W-1	L, MW-2, etc	:.)	220		221		222		223	
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M)∈	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/17/2014 07	7:54	7/15/2014	08:02	7/16/2014	09:00	7/15/2014 0)9:17
Duplicate ("Y'	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW220SG4	-14	MW221S0	G4-14	MW222S0	G4-14	MW223SG	4-14
Laboratory San	mple ID Number (if applicable)		35293900	3	352705	001	3528210	002	3527050	02		
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organics Analys					ļ	7/21/20	14	7/22/20	14	7/21/201	4
Gradient with	respect to Monitored Unit (UP, DC	NWC	, SIDE, UNKN	IOWN)	UP		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.256		0.49		0.53		0.498	
16887-00-6	Chloride(s)	Т	mg/L	9056	23.1		37.5		32.8		36.9	
16984-48-8	Fluoride	т	mg/L	9056	0.165		0.262		0.274		0.287	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.29		1.3		1.06		0.924	
14808-79-8	Sulfate	т	mg/L	9056	19.4		14.2		11.1		16.7	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.03		29.99		30.06		30	
s0145	Specific Conductance	Т	μ MHO /cm	Field	407		391	_	370		409	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved 6 "<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	2	8000-5243	
Facility's Lo	ocal Well or Spring Number (e.g., M	V-1,	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.32		327.42		327.3		327.39	
N238	Dissolved Oxygen	т	mg/L	Field	5.16		4.42		2.49		1.49	
S0266	Total Dissolved Solids	Т	mg/L	160.1	556		199		201		240	
s0296	На	Т	Units	Field	6.26		6.18		6.18		6.21	
NS215	Eh	Т	mV	Field	395		414		357		354	
s0907	Temperature	T	°C	Field	17.22		17.39		17.39		17.89	
7429-90-5	Aluminum	T	mg/L	6020	<0.05		<0.05		0.0285	J	<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.199		0.204		0.293		0.254	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	<0.015		0.0118	J	0.00903	J	0.00736	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	21.6	J	19.9	٦	18.8	J	20.8	J
7440-47-3	Chromium	Т	mg/L	6020	0.01	J	0.0239	J	0.00764	BJ	0.0174	J
7440-48-4	Cobalt	Т	mg/L	6020	0.00021	J	0.00111		0.00058	J	0.00113	
7440-50-8	Copper	Т	mg/L	6020	0.00124		0.00567		0.00095	J	0.00081	J
7439-89-6	Iron	Т	mg/L	6020	0.0531	J	0.185		0.164		0.049	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	8.95		8.62		8.17		8.75	
7439-96-5	Manganese	Т	mg/L	6020	0.00105	J	0.00436	J	0.0127		0.0831	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8000-52	01	8000-52	202	8000-52	42	8000-52	:43
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	0.00212	J	0.00566	J	0.00022	BJ	0.00494	J
7440-02-0	Nickel	Т	mg/L	6020	0.0591		0.118		0.162		0.683	
7440-09-7	Potassium	Т	mg/L	6020	8.14		1.19		0.451		2.23	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	0.0016	J	<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	39.1		42.4		44.6		43.5	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6010	<0.005		<0.005		<0.005		<0.005	
7440-66-6	Zinc	Т	mg/L	6020	0.0047	J	0.0101		0.00389	J	0.00419	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520 ⁻	1	8000-520	02	8000-52	242	8000-52	243
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	l, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00068	J	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520 ⁻	1	8000-5202	2	8000-524	42	8000-52	43
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		0.00243	7	0.00215	J	0.00268	J
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000198		<0.0000201		<0.0000203		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	43
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	4.28	*	-3.18	*	-1.76	*	-0.101	*
12587-47-2	Gross Beta	т	pCi/L	9310	20.3	*	4.95	*	13.9	*	5.2	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AlphaSpec	0.583	*	0.24	*	0.307	*	0.0171	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.22	*	-0.92	*	2.06	*	1.57	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	12.1	*	2.71	*	3.29	*	2.57	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.622	*	2.84	*	0.818	*	1.94	*
10028-17-8	Tritium	Т	pCi/L	906.0	92.9	*	-9.49	*	-2.42	*	11.9	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		23		29.2		25.1	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.973	J	1.1	J	1.25	J	0.993	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00402	J	0.00406	J	<0.01		0.00626	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number			8000-524	4	8004-48	320	8004-48	318	8004-480	08	
Facility's Loc	cal Well or Spring Number (e.g., N	1W-1	, MW-2, etc	:.)	224		369		370		372	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/16/2014 09	9:48	7/8/2014	08:02	7/8/2014 (09:41	7/7/2014 0	9:55
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW224SG4	-14	MW369U	G4-14	MW370U0	G4-14	MW372UG	4-14
Laboratory San	mple ID Number (if applicable)		35282100	3	352220	001	3522200	002	3521300	01		
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ysis.	7/22/2014	1	7/12/20	14	7/12/20	14	7/11/201	4		
Gradient with	respect to Monitored Unit (UP, DC	, NWC	, SIDE, UNKN	IOWN)	SIDE		DOW	N	DOW	N	DOWN	l
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.442		0.364		0.529		0.61	
16887-00-6	Chloride(s)	Т	mg/L	9056	36.4		28.7		39.5		44.5	
16984-48-8	Fluoride	Т	mg/L	9056	0.262		0.157		0.138		0.15	
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.945		0.279		1.31		0.034	J
14808-79-8	Sulfate	Т	mg/L	9056	17		8.17		19		170	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.07		29.85		29.89		29.94	
s0145	Specific Conductance	т	μ MH 0/cm	Field	452		364		430		839	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		8000-524	4	8004-482	0	8004-4818	3	8004-4808			
Facility's Lo	ocal Well or Spring Number (e.g., MV	7-1, I	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.32		327.33		327.24		327.25	
N238	Dissolved Oxygen	Т	mg/L	Field	3.64		3.07		3.3		1.26	
S0266	Total Dissolved Solids	Т	mg/L	160.1	383		150		119		314	
s0296	рн	Т	Units	Field	6.19		6.26		6.12		6.16	
NS215	Eh	Т	mV	Field	343		409		363		126	
s0907	Temperature	Т	°C	Field	18		18.56		21.11		22.33	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.14		<0.05		0.0155	J
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		0.0022	J
7440-39-3	Barium	Т	mg/L	6020	0.226		0.313		0.184		0.0606	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0199		0.00703	J	0.0288		1.04	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	22.7	J	15.5		26.1		59.1	
7440-47-3	Chromium	Т	mg/L	6020	0.00504	BJ	<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00038	J	0.00723		0.00052	J	0.0003	J
7440-50-8	Copper	Т	mg/L	6020	0.00079	J	0.0014		0.00074	J	0.00059	J
7439-89-6	Iron	Т	mg/L	6020	0.0663	J	0.483		0.0662	J	0.52	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	9.57		5.66		11		21.6	
7439-96-5	Manganese	Т	mg/L	6020	0.00776		0.0331		0.00219	J	0.0166	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8000-524	44	8004-48	320	8004-48	18	8004-48	08
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	0.00065	J	0.00028	J	<0.0005		0.00047	J
7440-02-0	Nickel	Т	mg/L	6020	0.00656		0.0113		0.00108	J	0.00156	J
7440-09-7	Potassium	Т	mg/L	6020	0.891		0.511		2.28		2.26	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	51.3		48.8		36.9		60.7	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6010	0.00147	J	<0.005		<0.005		<0.005	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		0.00373	J	<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005			*		*	<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005			*		*	<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-482	20	8004-48	318	8004-48	308
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	:c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		0.00048	J	0.00135		0.00982	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	4	8004-4820)	8004-48	18	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00202	7	<0.005		<0.005		0.0011	J
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198		<0.0000199		<0.0000203		<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	0.118		<0.102		0.087	J
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.104		<0.102		<0.1	
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.104		<0.102		<0.1	
11141-16-5	PCB-1232	Т	ug/L	8082		*	<0.104		<0.102		<0.1	
53469-21-9	PCB-1242	Т	ug/L	8082		*	0.118		<0.102		0.087	J
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.104		<0.102		<0.1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244		8004-4820		8004-481	8	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.104		<0.102		<0.1	
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.104		<0.102		<0.1	
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.104		<0.102		<0.1	
12587-46-1	Gross Alpha	т	pCi/L	9310	-1.63	*	-2.16	*	-1.34	*	0.415	*
12587-47-2	Gross Beta	т	pCi/L	9310	6.94	*	5.76	*	19.2	*	30.3	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AlphaSpec	0.285	*	0.502	*	0.635	*	0.597	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-3.72	*	3.65	*	0.571	*	0.869	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	7	*	15.8	*	30.8	*	26.6	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.846	*	0.0554	*	0.0902	*	0.431	*
10028-17-8	Tritium	Т	pCi/L	906.0	2.05	*	-105	*	-76.4	*	-19	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	25.1		18.2	J	51.6		7.11	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.19	J	1.26	J	0.852	J	1.38	J
s0586	Total Organic Halides	Т	mg/L	9020	0.0074	J	0.0206		0.00752	J	0.0111	

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4792	2	8004-48	309	8004-48	310	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g., N	ſW−1	, MW-2, etc	:.)	373		384		385		386	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/7/2014 12	:50	7/14/2014	09:22	7/14/2014	13:22	7/14/2014 1	2:40
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG4	-14	MW384S	G4-14	MW385S0	G4-14	MW386SG	4-14
Laboratory San	poratory Sample ID Number (if applicable)					2	352606	001	3526060	003	35260600	04
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysi					ļ.	7/17/20	14	7/17/20	14	7/17/201	4
Gradient with	respect to Monitored Unit (UP, DC	, NWC	, SIDE, UNKN	IOWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.608		0.453		0.265		0.153	J
16887-00-6	Chloride(s)	Т	mg/L	9056	44.2		42.9		28.1		18.7	
16984-48-8	Fluoride	т	mg/L	9056	0.151		0.185		0.118		0.565	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.96		1.27		0.852		0.0524	J
14808-79-8	Sulfate	т	mg/L	9056	203		20.6		19		45.1	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.91		29.95		29.91		29.94	
s0145	Specific Conductance	т	μ MH 0/cm	Field	904		481		425		625	

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved 6 "<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Lo	ocal Well or Spring Number (e.g., MV	I-1, I	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.26		327.07		327.04		344.31	
N238	Dissolved Oxygen	Т	mg/L	Field	2.4		3.48		2.48		2.12	
S0266	Total Dissolved Solids	Т	mg/L	160.1	540		236		236		376	
s0296	рн	Т	Units	Field	6.08		6.22		6.23		6.79	
NS215	Eh	Т	mV	Field	374		246		339		352	
s0907	Temperature	Т	°C	Field	25.06		21.83		21.61		21.22	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.0252		0.139		0.201		0.151	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	1.67		0.0119	J	0.0122	J	0.00437	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	78.4		25.2	J	27.6	J	23.4	J
7440-47-3	Chromium	Т	mg/L	6020	<0.01		0.00453	BJ	0.00209	BJ	0.00443	BJ
7440-48-4	Cobalt	Т	mg/L	6020	0.00015	J	0.0001	J	<0.001		0.00042	J
7440-50-8	Copper	Т	mg/L	6020	0.00076	J	0.00092	J	0.0008	J	0.00132	
7439-89-6	Iron	Т	mg/L	6020	0.146		0.328		0.0537	J	0.185	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	27.5		9.85		9.6		9.56	
7439-96-5	Manganese	Т	mg/L	6020	0.00317	J	0.0153		<0.005		0.0572	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-47	92	8004-48	809	8004-48	10	8004-48	304
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005		0.00019	BJ	0.00043	BJ	0.00074	J
7440-02-0	Nickel	Т	mg/L	6020	0.00124	J	0.00109	J	0.00138	J	0.00175	J
7440-09-7	Potassium	Т	mg/L	6020	2.71		1.1		1.67		0.283	J
7440-16-6	Rhodium	T	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	T	mg/L	6020	<0.005		0.00249	J	<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	66		51		40.1		101	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6010	<0.005		<0.005		<0.005		<0.005	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		0.00361	J	0.00519	J	0.00384	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005			*		*		*
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005			*		*		*
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-480	09	8004-48	310	8004-48	304
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	0.00032	J	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00964		0.0006	J	0.00047	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-4809)	8004-48	10	8004-48	04
Facility's Loc	cal Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00117	J	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.00002		<0.0000199		<0.0000201		<0.00002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.098			*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.098			*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082	<0.098			*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082	<0.098			*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082	<0.098			*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.098			*		*		*

C-19

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4792	!	8004-4809)	8004-481	0	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.098			*		*		*
11096-82-5	PCB-1260	т	ug/L	8082	<0.098			*		*		*
11100-14-4	PCB-1268	т	ug/L	8082	<0.098			*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-1.58	*	2.85	*	-0.477	*	-4.73	*
12587-47-2	Gross Beta	т	pCi/L	9310	16.7	*	124	*	90	*	-1.59	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AlphaSpec	0.425	*	0.231	*	0.551	*	0.414	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.254	*	-1.57	*	-1.56	*	2.16	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	20.1	*	165	*	132	*	1.21	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.688	*	0.693	*	0.586	*	1.29	*
10028-17-8	Tritium	Т	pCi/L	906.0	-87	*	-0.0725	*	40.7	*	66.2	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	11.6	J	27.1		14.6	J	43.8	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.2	J	1.26	J	1.3	J	6.54	
s0586	Total Organic Halides	т	mg/L	9020	0.0118		0.0087	J	0.0048	J	0.175	
		+										-
		+										

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

Frankfort, KY 40601 (502)564-6716

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815	5	8004-48	316	8004-48	12	8004-481	1
Facility's Loc	al Well or Spring Number (e.g., M	w−1	, MW-2, etc	.)	387		388		389		390	
Sample Sequenc	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		7/15/2014 12	2:48	7/15/2014	13:31	NA		7/14/2014 08	8:38
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW387SG4	-14	MW388S	G4-14	NA		MW390SG4	l-14
Laboratory Sam	aboratory Sample ID Number (if applicable)						352705	004	NA		35260600	12
Date of Analys	tte of Analysis (Month/Day/Year) For Volatile Organics Analysis					ļ	7/21/20)14	NA		7/17/2014	4
Gradient with	respect to Monitored Unit (UP, DO	WN,	SIDE, UNKN	OWN)	DOWN		DOW	N	SIDE		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.522		0.394			*	0.777	
16887-00-6	Chloride(s)	Т	mg/L	9056	42		34.7			*	85.4	
16984-48-8							0.363			*	0.246	
s0595	S0595 Nitrate & Nitrite T mg/L 9			9056	1.14		1.17			*	3.41	
14808-79-8	Sulfate	Т	mg/L	9056	30.4		25			*	38.8	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30		30.01			*	29.95	
s0145	Specific Conductance	т	μ MH0/cm	Field	534		452			*	741	

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	327.06		327.01			*	327.12	
N238	Dissolved Oxygen	Т	mg/L	Field	3.69		4.01			*	5.53	
s0266	Total Dissolved Solids	Т	mg/L	160.1	311		286			*	421	
s0296	рн	Т	Units	Field	6.21		6.13			*	6.44	
NS215	Eh	Т	mV	Field	334		344			*	380	
s0907	Temperature	Т	°C	Field	21.28		18.33			*	20.11	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05			*	0.167	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.132		0.171			*	0.252	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0272		0.0206			*	0.0086	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	Т	mg/L	6020	32.8	J	26.1	J		*	33.6	J
7440-47-3	Chromium	Т	mg/L	6020	0.00463	BJ	0.00262	BJ		*	0.00284	BJ
7440-48-4	Cobalt	Т	mg/L	6020	0.00013	J	0.0001	J		*	0.00046	J
7440-50-8	Copper	Т	mg/L	6020	0.00092	J	0.00097	J		*	0.00158	
7439-89-6	Iron	Т	mg/L	6020	0.0882	J	0.0613	J		*	0.228	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	13.7		11.4			*	13.8	
7439-96-5	Manganese	Т	mg/L	6020	0.00261	J	<0.005			*	0.0017	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-48	15	8004-48	16	8004-4812	2	8004-48	11
Facility's I	ocal Well or Spring Number (e.g.	, MW-	-1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005			*	0.0007	J
7440-02-0	Nickel	Т	mg/L	6020	0.00131	J	0.0012	J		*	0.00238	
7440-09-7	Potassium	Т	mg/L	6010	1.67		1.73			*	0.349	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	Т	mg/L	6010	48.3		46.3			*	98.8	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002			*	0.00049	J
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002			*	0.00013	J
7440-62-2	Vanadium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-66-6	Zinc	Т	mg/L	6020	0.00512	J	0.00512	J		*	0.00518	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005			*		*
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005			*		*
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-481	5	8004-48	16	8004-481	2	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	0.00042	J	0.00035	J		*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00082	J	0.00065	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815	5	8004-4816	i	8004-481	2	8004-481	1
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	0.00263	J	0.00265	J		*	<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000198		<0.0000198			*	<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815		8004-4816	6	8004-4812	2	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	2.93	*	3.45	*		*	-1.41	*
12587-47-2	Gross Beta	т	pCi/L	9310	153	*	98.4	*		*	33.7	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AlphaSpec	0.221	*	0.569	*		*	0.355	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-3.05	*	0.546	*		*	0.346	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	200	*	143	*		*	74.6	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	1.44	*	2.17	*		*	0.861	*
10028-17-8	Tritium	Т	pCi/L	906.0	10	*	0.6	*		*	35.8	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	190		23			*	27.1	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.43	J	1.29	J		*	2.57	
s0586	Total Organic Halides	т	mg/L	9020	0.00692	J	0.00728	J		*	0.0171	

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-480	5	8004-48	306	8004-48	307	8004-480)2	
Facility's Loc	cal Well or Spring Number (e.g., N	MW−1	, MW-2, etc	:.)	391		392		393		394	
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	thod, or (E)	quipment	NA		NA		NA		NA		
Sample Date an	nd Time (Month/Day/Year hour: minu)		7/21/2014 09:40		7/21/2014 08:10		7/21/2014	08:55	7/17/2014 0)8:41	
Duplicate ("Y'	or "N") ²			N		N	N			N		
Split ("Y" or	Split ("Y" or "N") ³						N		N		N	
Facility Sampl	le ID Number (if applicable)				MW391SG4	-14	MW392S0	G4-14	MW393S0	G4-14	MW394SG	4-14
Laboratory San	mple ID Number (if applicable)				35316400	3	353164	001	3531640	002	35293900	
Date of Analys	sis (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	7/25/2014	ļ	7/25/20	7/25/2014		14	7/23/201	
Gradient with	respect to Monitored Unit (UP, DC	, NWC	, SIDE, UNKN	IOWN)	DOWN		DOWN		DOWN		UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.609		0.592		0.195	J	0.614	
16887-00-6	Chloride(s)	Т	mg/L	9056	46.9		49		15.8		50	
16984-48-8	Fluoride	Т	mg/L	9056	0.132		0.19		0.144		0.106	
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.07		0.0439	J	0.134		1.72	
14808-79-8	Sulfate	Т	mg/L	9056	17.4		6.43		17.1		10.3	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.12		30.09		30.11		30.11	
s0145	Specific Conductance	т	μ MH 0/cm	Field	401		426		441		391	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

 $^{^{6}}$ "<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,		8004-480	5	8004-480	6	8004-4807	,	8004-4802				
Facility's Loc	acility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.						392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	326.59		326.6		340.47		326.97	
N238	Dissolved Oxygen	T	mg/L	Field	3.47		0.7		0.99		4.7	
S0266	Total Dissolved Solids	T	mg/L	160.1	179		194		234		196	
s0296	рн	T	Units	Field	6.16		6.29		6.31		6.11	
NS215	Eh	T	mV	Field	348		215		298		356	
s0907	Temperature	T	°C	Field	18.28		17.22		18.94		18.5	
7429-90-5	Aluminum	T	mg/L	6020	<0.05		<0.05		0.016	J	<0.05	
7440-36-0	Antimony	T	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	T	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	T	mg/L	6020	0.24		0.2		0.124		0.251	
7440-41-7	Beryllium	T	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	T	mg/L	6020	0.0327		0.0273		0.0167		0.0215	
7440-43-9	Cadmium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	26.1		27.3		11.6		26.3	J
7440-47-3	Chromium	T	mg/L	6020	<0.01		<0.01		<0.01		0.00201	BJ
7440-48-4	Cobalt	T	mg/L	6020	<0.001		0.00032	J	0.0002	J	<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00066	J	0.00044	J	0.00125		0.0007	J
7439-89-6	Iron	T	mg/L	6020	0.0983	J	0.749		1.89		0.0893	J
7439-92-1	Lead	T	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	T	mg/L	6020	11.2		10.1		3.67		11.1	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.242		0.0203		0.00222	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	t ¹ , Facility Well/Spring Number				8004-48	05	8004-48	306	8004-48	07	8004-48	02
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005		0.00027	J	0.00028	J	<0.0005	
7440-02-0	Nickel	Т	mg/L	6020	0.00092	J	0.00107	J	0.00132	J	0.00226	
7440-09-7	Potassium	Т	mg/L	6020	1.52		1.64		0.426		1.23	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	34.2		40.1		77.1		29.6	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.00023		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6010	<0.005		<0.005		<0.005		<0.005	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		0.00434	J	0.00383	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-480	5	8004-48	06	8004-48	307	8004-48	302		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	l, MW-2, et	:c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	0.00066	J	0.00084	J	<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0136		0.0145		<0.001		0.00407	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	3	8004-480	07	8004-48	02
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	0.00104	J	0.00134	J	0.001	J	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.00002		<0.0000199		<0.00002		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	AKGWA NUMBER ¹ , Facility Well/Spring Number Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						8004-4806	6	8004-480	7	8004-480)2
Facility's Lo							392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	4.48	*	2.51	*	0.663	*	-0.995	*
12587-47-2	Gross Beta	т	pCi/L	9310	8.91	*	5.29	*	4.01	*	6.9	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AlphaSpec	0.297	*	0.434	*	0.565	*	0.232	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.541	*	2	*	0.668	*	-0.453	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	9.98	*	2.26	*	6.53	*	10.1	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.672	*	0.618	*	0.244	*	1.41	*
10028-17-8	Tritium	Т	pCi/L	906.0	78.5	*	-23.7	*	152	*	25.2	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		<20		18.8	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.828	J	1.88	J	2.89		0.863	J
s0586	Total Organic Halides	Т	mg/L	9020	0.011		0.0409		0.0199		0.00922	J

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			·	8004-480	1	8004-48	303	8004-48	317	0000-000)0
Facility's Loca	al Well or Spring Number (e.g., N	w-1	, MW-2, etc	:.)	395		396		397		E. BLAN	K
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		E	
Sample Date and	Sample Date and Time (Month/Day/Year hour: minutes)						7/17/2014	09:19	7/16/2014	08:03	7/17/2014 0	6:40
Duplicate ("Y"	Duplicate ("Y" or "N") ²						N		N		N	
Split ("Y" or		N		N		N		N				
Facility Sample	Facility Sample ID Number (if applicable)						MW396SG4-14		MW397S0	G4-14	RI1SG4-	14
Laboratory Sam	ple ID Number (if applicable)				35293900	14	352939002		352821	001	352611018	
Date of Analys	is (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	7/23/2014		7/23/2014		7/22/2014		7/23/201	4
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	UP		UP		UP		NA		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.603		1.19		0.559			*
16887-00-6	Chloride(s)	т	mg/L	9056	51.8		78		37.6			*
16984-48-8	Fluoride	Т	mg/L	9056	0.0975	J	0.563		0.148			*
s0595	95 Nitrate & Nitrite T mg/L 9056		9056	1.76		<0.1		1.16			*	
14808-79-8	-8 Sulfate T mg/L 9056		9056	10.1		25		11.7			*	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.1		30.11		30.05			*
s0145	Specific Conductance T µMH0/cm Fie				401		771		336			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-480	1	8004-480	3	8004-4817	7	0000-0000			
Facility's Lo	ocal Well or Spring Number (e.g., MW	/-1, i	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.36		369.41		326.99			*
N238	Dissolved Oxygen	Т	mg/L	Field	4.21		1.39		5.18			*
S0266	Total Dissolved Solids	Т	mg/L	160.1	166		410		167			*
s0296	рн	т	Units	Field	6.07		6.58		6.07			*
NS215	Eh	т	mV	Field	381		265		382			*
s0907	Temperature	Т	°C	Field	17.78		19.61		17.28			*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		0.0173	J	<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.253		0.395		0.144		<0.002	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0209		0.00614	J	0.0079	J	<0.015	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	26.5	J	33.8	J	17.8	J	0.0627	BJ
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.00142		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00075	J	0.00101		0.00094	J	0.00068	J
7439-89-6	Iron	т	mg/L	6020	0.0548	J	0.277		0.0709	J	<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	11		14.7		7.49		<0.03	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.194		0.00178	J	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-48	01	8004-48	803	8004-48	17	0000-00	000
Facility's L	ocal Well or Spring Number (e.g	., MW-	1, MW-2, e	tc.)	395		396		397		E. BLAI	ΝK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.00063	J	<0.0005		<0.0005	
7440-02-0	Nickel	Т	mg/L	6020	0.00114	J	0.00244		0.00102	J	<0.002	
7440-09-7	Potassium	Т	mg/L	6020	1.51		0.779		1.64		1.27	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	28.7		104		33.1		0.149	J
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		0.00017	J	<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6010	<0.005		<0.005		<0.005		<0.005	
7440-66-6	Zinc	Т	mg/L	6020	0.0037	J	0.0125		0.00467	J	0.0045	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		0.00294	J
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-480°	1	8004-480	03	8004-48	317	0000-00	000		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00418		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-48	17	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	395		396		397		E. BLAN	١K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		0.00277	J	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000195		<0.0000199		<0.0000199		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4801		8004-4803	}	8004-481	7	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	, MW-2, e	tc.)	395		396		397		E. BLAN	K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.68	*	-0.915	*	3.29	*	-1.62	*
12587-47-2	Gross Beta	Т	pCi/L	9310	11.5	*	-5.25	*	5.18	*	4.32	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AlphaSpec	0.833	*	0.709	*	0.0325	*	0.152	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	1	*	-1.92	*	1.43	*	-0.444	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	8.05	*	1.03	*	10.6	*	-5.1	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.323	*	0.541	*	-0.124	*	1.29	*
10028-17-8	Tritium	Т	pCi/L	906.0	40.2	*	-45.6	*	23.4	*	95.5	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		37.6		25.1			*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		0.274	J	<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.92	J	5.86		0.751	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.00696	J	0.0835		0.00478	J		*

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

Solid Waste Branch

14 Reilly Road

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000)0
Facility's Loc	al Well or Spring Number (e.g., M	ſW−1	, MW-2, etc	:.)	F. BLAN	K	T. BLAN	K 1	T. BLANK	(2	T. BLANK	(3
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	F		Т		Т		Т	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		7/14/2014 0	8:38	7/14/2014	07:35	7/15/2014 0	6:53	7/16/2014 0	7:00
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	cility Sample ID Number (if applicable)						TB1SG4	·14	TB2SG4-	14	TB3SG4-	14
Laboratory Sam	aboratory Sample ID Number (if applicable)						3526060	05	3527050	05	35282100)5
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					4	7/17/20	14	7/21/201	4	7/22/201	4
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	ent with respect to Monitored Unit (UP,		Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*		*
s0595	95 Nitrate & Nitrite T mg/L 9		9056		*		*		*		*	
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	μ MH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., MW	/-1, i	MW-2, BLANK-	F, etc.)	F. BLANI	K	T. BLANK	. 1	T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
S0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	Т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	Т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	Т	mg/L	6020	<0.002			*		*		*
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	Т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6020	0.0659	BJ		*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	Т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	Т	mg/L	6020	<0.001			*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	Т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	Т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				0000-000	00	0000-00	000	0000-00	00	0000-00	000
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	F. BLAN	ΙΚ	T. BLAN	K 1	T. BLAN	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	2.68			*		*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	Т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	Т	mg/L	6020	0.293			*		*		*
7440-25-7	Tantalum	Т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	т	mg/L	6010	<0.005			*		*		*
7440-66-6	Zinc	т	mg/L	6020	<0.01			*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	0.00321	J	<0.005		0.00207	J	0.00203	J
107-02-8	Acrolein	т	mg/L	8260	<0.005			*	<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005			*	<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	00	0000-00	000	0000-00	000
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	F. BLAN	<	T. BLAN	(1	T. BLAN	IK 2	T. BLAN	1K 3
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000)	0000-000	0	0000-000	00	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g., N	∕w-1	L, MW-2, et	.c.)	F. BLANK	(T. BLANK	1	T. BLAN	< 2	T. BLAN	К3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		0.0026	J	0.00221	J
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000197		<0.00002		<0.0000199		<0.0000195	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-0000		0000-000	0	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, e	tc.)	F. BLAN	(T. BLANK 1		T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-2.87	*		*		*		*
12587-47-2	Gross Beta	T	pCi/L	9310	-1.98	*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AlphaSpec	-0.111	*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	-1.08	*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-1.67	*		*		*		*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	-0.0295	*		*		*		*
10028-17-8	Tritium	T	pCi/L	906.0	81.8	*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5			*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	T	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Frankfort, KY 40601 (502)564-6716

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	8000-524	14	\	/
Facility's Loca	al Well or Spring Number (e.g., N	/W−1	., MW-2, etc	.)	T. BLANK	. 4	T. BLAN	K 5	224			
Sample Sequence	e #				1		1		2			
If sample is a Bl	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	Т		Т		NA			
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		7/17/2014 0	6:50	7/21/2014 (06:55	7/16/2014 0	9:48		$ \top $
Duplicate ("Y"	or "N") ²				N		N		N			T
Split ("Y" or "	"N") ³				N		N		N			I
Facility Sample	e ID Number (if applicable)		TB4SG4-	14	TB5SG4	-14	MW224DSG	94-14		<i></i>		
Laboratory Samp	ple ID Number (if applicable)		35293900)5	3531640	04	3526110 ⁻	12	\ /			
Date of Analysi	te of Analysis (Month/Day/Year) For Volatile Organics Analysis						7/25/20	14	7/22/201	4	\/	
Gradient with r	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	NA		NA		SIDE		X	
CAS RN ⁴	CONSTITUENT	Monitored Unit (UP, DOWN, SIDE, UNKNOWN) T Unit METHO D OF 5 MEASURE				F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQI6	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*	0.491			1
16887-00-6	Chloride(s)	т	mg/L	9056		*		*	34.8			\prod
16984-48-8	Fluoride	Т	mg/L	9056		*		*	0.269			
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*	0.965			
14808-79-8	Sulfate	Т	mg/L	9056		*		*	16.6			
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*	30.07			
s0145	Specific Conductance	т	μ MH0/cm	Field		*		*	452		/	

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

 $^{^{6}}$ "<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	0	8000-5244	ļ		
	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-F	F, etc.)	T. BLANK	4	T. BLANK	5	224		\	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*	327.32		\	
N238	Dissolved Oxygen	Т	mg/L	Field		*		*	3.64			1/
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*	234			1/
s0296	На	Т	Units	Field		*		*	6.19			1
NS215	Eh	Т	mV	Field		*		*	343			
s0907	Temperature	Т	°C	Field		*		*	18		\ /	
7429-90-5	Aluminum	Т	mg/L	6020		*		*	<0.05		\ /	
7440-36-0	Antimony	Т	mg/L	6020		*		*	<0.003		\/	
7440-38-2	Arsenic	Т	mg/L	6020		*		*	<0.005		X	
7440-39-3	Barium	Т	mg/L	6020		*		*	0.23		/\	
7440-41-7	Beryllium	Т	mg/L	6020		*		*	<0.0005		/ \	
7440-42-8	Boron	Т	mg/L	6020		*		*	0.0197		/ \	
7440-43-9	Cadmium	Т	mg/L	6020		*		*	<0.001			
7440-70-2	Calcium	Т	mg/L	6020		*		*	23.2	J		\
7440-47-3	Chromium	Т	mg/L	6020		*		*	0.00451	BJ		\
7440-48-4	Cobalt	Т	mg/L	6020		*		*	0.00038	J		
7440-50-8	Copper	Т	mg/L	6020		*		*	0.00066	J		
7439-89-6	Iron	Т	mg/L	6020		*		*	0.0561	J		
7439-92-1	Lead	Т	mg/L	6020		*		*	<0.002			
7439-95-4	Magnesium	Т	mg/L	6020		*		*	9.84			
7439-96-5	Manganese	Т	mg/L	6020		*		*	0.00697			\\
7439-97-6	Mercury	Т	mg/L	7470		*		*	<0.0002			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				0000-000	00	0000-00	000	8000-52	44	1
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANI	K 4	T. BLAN	IK 5	224		\
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED F VALUE L OR A PQL ⁶ F
7439-98-7	Molybdenum	т	mg/L	6020		*		*	0.0007	J	
7440-02-0	Nickel	т	mg/L	6020		*		*	0.00606		
7440-09-7	Potassium	т	mg/L	6020		*		*	0.888		\
7440-16-6	Rhodium	т	mg/L	6020		*		*	<0.005		\ /
7782-49-2	Selenium	Т	mg/L	6020		*		*	<0.005		\ /
7440-22-4	Silver	Т	mg/L	6020		*		*	<0.001		\ /
7440-23-5	Sodium	т	mg/L	6020		*		*	51.7		\
7440-25-7	Tantalum	т	mg/L	6020		*		*	<0.005		\
7440-28-0	Thallium	Т	mg/L	6020		*		*	<0.002		X
7440-61-1	Uranium	Т	mg/L	6020		*		*	<0.0002		
7440-62-2	Vanadium	т	mg/L	6010		*		*	<0.005		/\
7440-66-6	Zinc	т	mg/L	6020		*		*	<0.01		/ \
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		/ \
67-64-1	Acetone	т	mg/L	8260	<0.005		0.101		<0.005		
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		
108-88-3	Toluene	т	mg/L	8260	<0.001		0.0004	J	<0.001		
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				0000-0000	0	0000-000	00	8000-52	244		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	l, MW-2, et	:c.)	T. BLANK	4	T. BLAN	〈 5	224			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			T
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			7
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			T
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		0.0679		<0.005			
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		\ /	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		\bigcup	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		λ	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		/\	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001			1
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			\perp
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		V	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000	0	0000-0000)	8000-524	44		
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	T. BLANK	4	T. BLANK	5	224			\Box
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005			\prod
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		\ /	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		0.00109	J	0.00192	J	$\setminus I$	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000204		<0.0000206		<0.0000201		\bigvee	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		X	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		/\	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		/ /	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		/ \	<u> </u>
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			<u> </u>
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			\prod
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			\Box
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*	/	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-0000		8000-524	4		
Facility's Loc	al Well or Spring Number (e.g., N	MW−1	L, MW-2, et	.c.)	T. BLANK	4	T. BLANK 5		224			
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L Z S
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		1/
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		/
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*	0.599	*		
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*	12	*		
10043-66-0	Iodine-131	т	pCi/L			*		*		*	\ /	
13982-63-3	Radium-226	т	pCi/L	AlphaSpec		*		*	0.617	*	\ /	
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*	6.96	*	Į V	
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*	5.32	*	\setminus	
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*		*	0.151	*		
10028-17-8	Tritium	Т	pCi/L	906.0		*		*	34.6	*		
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*	37.6			lacksquare
57-12-5	Cyanide	Т	mg/L	9012		*		*	<0.2			\
20461-54-5	Iodide	т	mg/L	300.0		*		*	<0.5			Λ
S0268	Total Organic Carbon	т	mg/L	9060		*		*	1.14	J		
s0586	Total Organic Halides	Т	mg/L	9020		*		*	0.00428	J		
												$oxed{igsq}$
											/	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS(s)

KGWA NUMBER ¹ , F	Facility Well/Spring Number				\setminus			/	8004-482	0	8004-481	8	\	
Facility's Loca	al Well or Spring Number (e.g., N	⁄w−1	, MW-2, etc	.)					369		370			
Sample Sequence	e #				$ \ $	1			2		2		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	\	NA			NA		NA		NA NA	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)				T		9/22/2014 13	3:59	9/22/2014 1	4:55		
Duplicate ("Y"	or "N") ²					N	I		N		N		N	
Split ("Y" or	"N") ³					N			N		N		N	
Facility Sample	e ID Number (if applicable)					\ /			MW369UG4-	-14R	MW370UG4	-14R		
Laboratory Sam	ple ID Number (if applicable)					\ /			35725200)1	35725200	06	\ /	
Date of Analys:	is (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis		\/			9/24/201	14	9/24/201	14	\	
Gradient with	respect to Monitored Unit (UP, DC	, NWC	, SIDE, UNKN	OWN)		γ			DOWN		DOWN		Į V	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	D	ETECTED VALUE OR POL ⁶	F L A G		DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQT6	F L A G
24959-67-9	Bromide	т	mg/L	9056		-	*			*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		1	*			*		*		*
16984-48-8	Fluoride	Т	mg/L	9214		1	*			*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056			*			*		*		\ *
14808-79-8	Sulfate	Т	mg/L	9056			*			*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field			*		30.24		30.24			1
s0145	Specific Conductance	т	μ MH0/cm	Field			*	\setminus	370		429		/	*

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency. 5 "T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number								8004-482	0	8004-481	.8		
Facility's Lo	cal Well or Spring Number (e.g., MV	7-1 , 1	MW-2, BLANK-	F, etc.)					369		370			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD		ETEC' VALU OR PQI	JE	F A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
s0906	Static Water Level Elevation	т	Ft. MSL	Field				/*	324.09		324.06			11
N238	Dissolved Oxygen	т	mg/L	Field				*	2.29		3.67			
s0266	Total Dissolved Solids	т	mg/L	160.1				*		*		*		/*
s0296	рн	Т	Units	Field			\neg	*	6.18		6.08			*
NS215	Eh	Т	mV	Field		1	\neg	*	331		353			*
s0907	Temperature	т	°C	Field				*	20.83		19.78			*
7429-90-5	Aluminum	т	mg/L	6020			abla f	*		*		*	\ /	*
7440-36-0	Antimony	Т	mg/L	6020			V	*		*		*	\ \ \	*
7440-38-2	Arsenic	Т	mg/L	6020			Λ	*		*		*	l Χ	*
7440-39-3	Barium	Т	mg/L	6020			$/ \setminus$	*		*		*	/\	*
7440-41-7	Beryllium	Т	mg/L	6020				*		*		*		*
7440-42-8	Boron	т	mg/L	6020				*		*		*	/ \	*
7440-43-9	Cadmium	т	mg/L	6020				*		*		*		*
7440-70-2	Calcium	т	mg/L	6020			\	*		*		*		*
7440-47-3	Chromium	т	mg/L	6020				*		*		*		*
7440-48-4	Cobalt	т	mg/L	6020				*		*		*		*
7440-50-8	Copper	т	mg/L	6020				*		*		*		*
7439-89-6	Iron	т	mg/L	6020				*		*		*		* \
7439-92-1	Lead	т	mg/L	6020	\prod			*		*		*		*
7439-95-4	Magnesium	т	mg/L	6020	\prod			*		*		*		* \
7439-96-5	Manganese	Т	mg/L	6020				*		*		*		*
7439-97-6	Mercury	т	mg/L	7470	\int_{-}^{-}			*		*		*	/	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number						8004-4820)	8004-4818	3		
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)			369		370			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020		*		*		*		*
7440-02-0	Nickel	т	mg/L	6020		*		*		*		*
7440-09-7	Potassium	Т	mg/L	6020		*		*		*		*
7440-16-6	Rhodium	Т	mg/L	6020		*		*		*		*
7782-49-2	Selenium	т	mg/L	6020		*		*		*		*
7440-22-4	Silver	Т	mg/L	6020		*		*		*		*
7440-23-5	Sodium	Т	mg/L	6020		*		*		*		*
7440-25-7	Tantalum	Т	mg/L	6020		*		*		*		*
7440-28-0	Thallium	т	mg/L	6020		*		*		*		*
7440-61-1	Uranium	Т	mg/L	6020		*		*		*		*
7440-62-2	Vanadium	т	mg/L	6020		*		*		*		*
7440-66-6	Zinc	т	mg/L	6020		*		*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260		*		*		*		*
67-64-1	Acetone	т	mg/L	8260		*		*		*		*
107-02-8	Acrolein	т	mg/L	8260		*	<0.005		<0.005			*
107-13-1	Acrylonitrile	т	mg/L	8260		*	<0.005		<0.005			*
71-43-2	Benzene	т	mg/L	8260		*		*		*		*
108-90-7	Chlorobenzene	т	mg/L	8260		*		*		*		*
1330-20-7	Xylenes	т	mg/L	8260		*		*		*		*
100-42-5	Styrene	т	mg/L	8260		*		*		*		*
108-88-3	Toluene	т	mg/L	8260		*		*		*		*
74-97-5	Chlorobromomethane	Т	mg/L	8260		*		*		*		*

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				$\overline{\ }$			/	8004-48	09	8004-48	10	8004-4804	4
Facility's Loc	cal Well or Spring Number (e.g., M	∕w-1	L, MW-2, etc	.)				T	384		385		386	
Sample Sequenc	ce #				$ \ $	1			2		2		2	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment		NA	\neg		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)				T		9/22/2014	12:19	9/22/2014 1	3:27	9/22/2014 12	2:54
Duplicate ("Y'	or "N") ²					N	T		N		N		N	
Split ("Y" or	"N") ³					N			N		N		N	
Facility Sampl	le ID Number (if applicable)					\ /			MW384SG	4-14R	MW385SG4	-14R	MW386SG4-	14R
Laboratory San	mple ID Number (if applicable)					\ /			3572560	01	3572560	02	35725600	3
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e 01	rganics Anal	ysis		1/			9/24/20	14	9/24/201	4	9/24/2014	1
Gradient with	respect to Monitored Unit (UP, DC	NWC	, SIDE, UNKN	OWN)		X			SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	D	ETECTED VALUE OR PQL ⁶	F L A G		DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		\top	*			*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		1	1			*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		1	*			*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056			*			*		*		*
14808-79-8	Sulfate	Т	mg/L	9056	1		* \	$\overline{}$		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field			*	1	30.25		30.25		30.25	
s0145	Specific Conductance	Т	μ MHO/cm	Field	V		*	1	521		467		632	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

														
AKGWA NUMBER ¹ ,	, Facility Well/Spring Number								8004-480	9	8004-481	.0	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g., M	V-1, 1	MW-2, BLANK-	F, etc.)	\				384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD		ETECT VALUE OR PQL	3	F G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field				*	324.16		324.11		343.85	
N238	Dissolved Oxygen	Т	mg/L	Field				*	4.22		0.91		0.72	
s0266	Total Dissolved Solids	Т	mg/L	160.1				*		*		*		*
s0296	рн	т	Units	Field			\neg	*	6.21		6.37		6.65	
NS215	Eh	Т	mV	Field			$\neg \Gamma$	*	331		306		122	
s0907	Temperature	Т	°C	Field			T	*	18.94		20.22		19.39	
7429-90-5	Aluminum	Т	mg/L	6020			T	*		*		*		*
7440-36-0	Antimony	Т	mg/L	6020			\int	*		*		*		*
7440-38-2	Arsenic	Т	mg/L	6020			X	*		*		*		*
7440-39-3	Barium	Т	mg/L	6020				*		*		*		*
7440-41-7	Beryllium	Т	mg/L	6020				*		*		*		*
7440-42-8	Boron	Т	mg/L	6020				*		*		*		*
7440-43-9	Cadmium	Т	mg/L	6020				*		*		*		*
7440-70-2	Calcium	Т	mg/L	6020			\	*		*		*		*
7440-47-3	Chromium	Т	mg/L	6020				*		*		*		*
7440-48-4	Cobalt	Т	mg/L	6020				*		*		*		*
7440-50-8	Copper	Т	mg/L	6020				*		*		*		*
7439-89-6	Iron	Т	mg/L	6020				1		*		*		*
7439-92-1	Lead	Т	mg/L	6020	\prod			*		*		*		*
7439-95-4	Magnesium	Т	mg/L	6020				*		*		*		*
7439-96-5	Manganese	Т	mg/L	6020				*		*		*		*
7439-97-6	Mercury	Т	mg/L	7470	1			*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				1				8004-480	9	8004-4810)	8004-480)4
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	1				384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	}	VALUE OR PQL ⁶	D	F L A	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020		1		*		*		*		*
7440-02-0	Nickel	т	mg/L	6020				*		*		*		*
7440-09-7	Potassium	Т	mg/L	6020		1		*		*		*		*
7440-16-6	Rhodium	т	mg/L	6020				*		*		*		*
7782-49-2	Selenium	Т	mg/L	6020				*		*		*		*
7440-22-4	Silver	Т	mg/L	6020			I	*		*		*		*
7440-23-5	Sodium	Т	mg/L	6020			II	*		*		*		*
7440-25-7	Tantalum	Т	mg/L	6020		/	П	*		*		*		*
7440-28-0	Thallium	т	mg/L	6020				*		*		*		*
7440-61-1	Uranium	Т	mg/L	6020			\setminus	*		*		*		*
7440-62-2	Vanadium	т	mg/L	6020				*		*		*		*
7440-66-6	Zinc	т	mg/L	6020			\setminus	*		*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260				*		*		*		*
67-64-1	Acetone	т	mg/L	8260				*		*		*		*
107-02-8	Acrolein	Т	mg/L	8260				*	<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260				*	<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260				*		*		*		*
108-90-7	Chlorobenzene	т	mg/L	8260				*		*		*		*
1330-20-7	Xylenes	т	mg/L	8260				*		*		*		*
100-42-5	Styrene	Т	mg/L	8260				*		*		*		*
108-88-3	Toluene	т	mg/L	8260	I			*		*		*		*
74-97-5	Chlorobromomethane	т	mg/L	8260	Ī			*		*		*		*

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number									/	8004-481	1
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	, MW-2, etc	.)							390	
Sample Sequence	e #				1		1		1		2	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		ŊÁ		NA	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)			\					9/22/2014 11	1:50
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)								/		MW390SG4-	14R
Laboratory Sam	ple ID Number (if applicable)										35725600	4
Date of Analys	is (Month/Day/Year) For Volatile	e 01	ganics Anal	ysis							9/24/2014	ļ
Gradient with	respect to Monitored Unit (UP, DC	NWC	SIDE, UNKN	OWN)			\setminus				DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056		* /		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*/		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056	/	/*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*	30.26	
s0145	Specific Conductance	Т	μ MH0/cm	Field		*		*			772	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

1					(00110		Г					
AKGWA NUMBER ¹ ,	Facility Well/Spring Number										8004-481	1
Facility's Loc	al Well or Spring Number (e.g., MW	I-1, I	MW-2, BLANK-	F, etc.)							390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*	324.2	
N238	Dissolved Oxygen	Т	mg/L	Field		/		*		*	5.81	
s0266	Total Dissolved Solids	Т	mg/L	160.1		* \		*		*		*
s0296	рн	Т	Units	Field		*		*		*	6.4	
NS215	Eh	Т	mV	Field		*		* /		*	433	
s0907	Temperature	Т	°C	Field		*		*/		*	18.78	
7429-90-5	Aluminum	Т	mg/L	6020		*		/*		*		*
7440-36-0	Antimony	т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	Т	mg/L	6020		*	X	*		*		*
7440-39-3	Barium	Т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	т	mg/L	6020		*		<u>\</u> *		*		*
7440-42-8	Boron	Т	mg/L	6020		*		*\		*		*
7440-43-9	Cadmium	Т	mg/L	6020		*		* \		*		*
7440-70-2	Calcium	T	mg/L	6020		*		*		*		*
7440-47-3	Chromium	Т	mg/L	6020		*/		*		*		*
7440-48-4	Cobalt	Т	mg/L	6020		_		*		*		*
7440-50-8	Copper	Т	mg/L	6020	/	*		*		*		*
7439-89-6	Iron	Т	mg/L	6020		*		*		*		*
7439-92-1	Lead	т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	Т	mg/L	6020		*		*		*		*
7439-96-5	Manganese	Т	mg/L	6020		*		*		1		*
7439-97-6	Mercury	Т	mg/L	7470	/	*		*		* \		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				\setminus						8004-481	11
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)							390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	\	*		*		*		*
7440-02-0	Nickel	т	mg/L	6020		*		*		*		*
7440-09-7	Potassium	Т	mg/L	6020		*		*		*		*
7440-16-6	Rhodium	Т	mg/L	6020		*		*		*		*
7782-49-2	Selenium	Т	mg/L	6020		*		*	/	*		*
7440-22-4	Silver	Т	mg/L	6020		*		*/		*		*
7440-23-5	Sodium	Т	mg/L	6020		*		/*		*		*
7440-25-7	Tantalum	Т	mg/L	6020		*		*		*		*
7440-28-0	Thallium	Т	mg/L	6020		*	X	*		*		*
7440-61-1	Uranium	Т	mg/L	6020		*	/ \	*		*		*
7440-62-2	Vanadium	Т	mg/L	6020		*		/*		*		*
7440-66-6	Zinc	Т	mg/L	6020		*		*/		*		*
108-05-4	Vinyl acetate	Т	mg/L	8260		*		*	\setminus	*		*
67-64-1	Acetone	Т	mg/L	8260		*	/	*		*		*
107-02-8	Acrolein	Т	mg/L	8260		*/		*		*	<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260		<i></i>		*		*	<0.005	
71-43-2	Benzene	Т	mg/L	8260		*		*		*		*
108-90-7	Chlorobenzene	Т	mg/L	8260		*		*		*		*
1330-20-7	Xylenes	Т	mg/L	8260		*		*		*		*
100-42-5	Styrene	Т	mg/L	8260		*		*		<u>\</u> *		*
108-88-3	Toluene	Т	mg/L	8260	/	*		*		1		*
74-97-5	Chlorobromomethane	Т	mg/L	8260		*		*		* \		*

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

Frankfort, KY 40601 (502)564-6716

14 Reilly Road

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				\			/	T. BLANK	(11	\	
Facility's Loca	al Well or Spring Number (e.g., N	ſW−1	, MW-2, etc	.)								
Sample Sequence	e #				1		1		2		1	
If sample is a Bl	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	\ NA		NA		Т		NA NA	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)				/		9/22/2014	10:30		
Duplicate ("Y"	or "N") ²				2		Ņ		N		N	
Split ("Y" or '	"N") ³				N		/ N		N		N	
Facility Sample	e ID Number (if applicable)								TB11SG4	l-14		
Laboratory Samp	ple ID Number (if applicable)								3572560	05	\ /	
Date of Analysi	is (Month/Day/Year) For <u>Volatile</u>	Or	ganics Anal	ysis					9/24/201	14	\ /	
Gradient with 1	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	OWN)			K		NA		<u> </u>	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR FQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQII ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	/	*		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056	<u> </u>	*		/*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		1		*		*
S0145	Specific Conductance	Т	μ MH0/cm	Field		*		* \		*	/	*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ , Facility Well/Spring Number					\setminus			/	0000-0000)	\	- /
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)									T. BLANK 1	1		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR POL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F I G S
7439-98-7	Molybdenum	Т	mg/L	6020		*		*		*		11
7440-02-0	Nickel	Т	mg/L	6020		*		*		*		*
7440-09-7	Potassium	Т	mg/L	6020		*		*		*		/ *
7440-16-6	Rhodium	Т	mg/L	6020	,	*		*		*		*
7782-49-2	Selenium	Т	mg/L	6020		*		*		*	\ /	*
7440-22-4	Silver	Т	mg/L	6020				*		*	\ /	*
7440-23-5	Sodium	Т	mg/L	6020		*		*		*	\ /	*
7440-25-7	Tantalum	Т	mg/L	6020		* \	\/	*		*		*
7440-28-0	Thallium	Т	mg/L	6020		*	X	*		*	Į	*
7440-61-1	Uranium	Т	mg/L	6020		* /		*		*		*
7440-62-2	Vanadium	Т	mg/L	6020		*/		*		*		*
7440-66-6	Zinc	Т	mg/L	6020		1		*		*	/ /	*
108-05-4	Vinyl acetate	Т	mg/L	8260		/*		*		*		*
67-64-1	Acetone	Т	mg/L	8260	/	*		*		*		*
107-02-8	Acrolein	Т	mg/L	8260	/	*		*	<0.005			*
107-13-1	Acrylonitrile	Т	mg/L	8260		*		*	<0.005			*
71-43-2	Benzene	Т	mg/L	8260		*		*		*		*
108-90-7	Chlorobenzene	Т	mg/L	8260		*		*		*		*
1330-20-7	Xylenes	Т	mg/L	8260		*		*		*		*
100-42-5	Styrene	Т	mg/L	8260	/	*		\ <u>*</u>		*		*
108-88-3	Toluene	Т	mg/L	8260	/	*		*		*		*
74-97-5	Chlorobromomethane	Т	mg/L	8260	/	*		* \		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5201 MW220 MW220SG4-14		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.45. Rad error is 6.39.
		Gross beta		TPU is 8.61. Rad error is 7.95.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.589. Rad error is 0.578.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.51. Rad error is 3.49.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.8. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.24. Rad error is 1.23.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 139. Rad error is 138.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5202 MW22	21 MW221SG4-14	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.07. Rad error is 4.07.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.99. Rad error is 8.96.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.399. Rad error is 0.396.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.75. Rad error is 1.75.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.7. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.63. Rad error is 2.56.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 126. Rad error is 126.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5242 MW222 MW222SG4-14		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.56. Rad error is 4.56.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.79. Rad error is 9.53.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.463. Rad error is 0.459.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.6. Rad error is 3.59.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.6. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.05. Rad error is 2.03.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 120. Rad error is 120.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3000-5243 MW223 MW223SG4-14		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.16. Rad error is 4.16.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.67. Rad error is 5.6.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.304. Rad error is 0.304.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.5. Rad error is 2.49.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.66. Rad error is 2.62.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 127. Rad error is 126.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

<u> </u>	Facility Sample ID	Constituent	Flag	Description
8000-5244 MW224 MW	V224SG4-14	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
				Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.54. Rad error is 3.54.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.2. Rad error is 6.1.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.525. Rad error is 0.522.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.89. Rad error is 2.89.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.5. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.58. Rad error is 1.58.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 127. Rad error is 127.
8004-4820 MW369 MW	V369UG4-14	Acrolein		Collected during a second sampling event.
		Acrylonitrile		Collected during a second sampling event.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.24. Rad error is 4.24.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.76. Rad error is 5.68.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.294. Rad error is 0.271.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.7. Rad error is 4.67.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.2. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.81. Rad error is 1.81.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 123. Rad error is 123.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4818 MW37	0 MW370UG4-14	Acrolein		Collected during a second sampling event.
		Acrylonitrile		Collected during a second sampling event.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.67. Rad error is 3.67.
		Gross beta		TPU is 7.51. Rad error is 6.82.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226		TPU is 0.368. Rad error is 0.336.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.2. Rad error is 2.2.
		Technetium-99		TPU is 13.5. Rad error is 13.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.54. Rad error is 1.54.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 126. Rad error is 126.
8004-4808 MW37	'2 MW372UG4-14	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.69. Rad error is 4.69.
		Gross beta		TPU is 12.4. Rad error is 11.4.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226		TPU is 0.342. Rad error is 0.314.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.3. Rad error is 2.3.
		Technetium-99		TPU is 12.6. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.7. Rad error is 1.69.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 128. Rad error is 128.
8004-4792 MW37	'3 MW373UG4-14	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.59. Rad error is 4.59.
		Gross beta		TPU is 9.54. Rad error is 9.14.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226		TPU is 0.292. Rad error is 0.275.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.05. Rad error is 2.05.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.9. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.59. Rad error is 1.57.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 125. Rad error is 125.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4809 MW384 MW384SG4-14		Acrolein		Collected during a second sampling event.
		Acrylonitrile		Collected during a second sampling event.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.93. Rad error is 5.77.
		Gross beta		TPU is 24.3. Rad error is 13.4.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.394. Rad error is 0.392.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.74. Rad error is 2.74.
		Technetium-99		TPU is 26.4. Rad error is 19.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.47. Rad error is 2.46.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 124. Rad error is 124.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4810 MW38	85 MW385SG4-14	Acrolein		Collected during a second sampling event.
		Acrylonitrile		Collected during a second sampling event.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.55. Rad error is 2.55.
		Gross beta		TPU is 18.6. Rad error is 11.5.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.654. Rad error is 0.645.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.4. Rad error is 3.4.
		Technetium-99		TPU is 21.2. Rad error is 15.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.24. Rad error is 3.23.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 126. Rad error is 126.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4804 MW386 MW386SG4-14		Acrolein		Collected during a second sampling event.
		Acrylonitrile		Collected during a second sampling event.
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.71. Rad error is 3.7.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.19. Rad error is 4.19.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.475. Rad error is 0.469.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.3. Rad error is 2.27.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.9. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.52. Rad error is 2.5.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 134. Rad error is 133.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

•	Facility Sample ID	Constituent	Flag	Description
8004-4815 MW387 MV	V387SG4-14	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.61. Rad error is 5.55.
		Gross beta		TPU is 30.5. Rad error is 16.6.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.409. Rad error is 0.407.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.89. Rad error is 3.89.
		Technetium-99		TPU is 28. Rad error is 17.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.22. Rad error is 2.18.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 124. Rad error is 124.
8004-4816 MW388 MV	V388SG4-14	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.24. Rad error is 6.17.
		Gross beta		TPU is 21.1. Rad error is 13.7.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.674. Rad error is 0.666.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.4. Rad error is 2.4.
		Technetium-99		TPU is 22.6. Rad error is 16.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.64. Rad error is 2.59.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 125. Rad error is 125.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

GROUNDWATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sampl was collected.
		Chloride		During sampling, the well was dry; therefore, no sampl was collected.
		Fluoride		During sampling, the well was dry; therefore, no sampl was collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sampl was collected.
		Sulfate		During sampling, the well was dry; therefore, no samp was collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no samp was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no samp was collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sampl was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no samp was collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sampl was collected.
		рН		During sampling, the well was dry; therefore, no samp was collected.
		Eh		During sampling, the well was dry; therefore, no samp was collected.
		Temperature		During sampling, the well was dry; therefore, no samp was collected.
		Aluminum		During sampling, the well was dry; therefore, no samp was collected.
		Antimony		During sampling, the well was dry; therefore, no samp was collected.
		Arsenic		During sampling, the well was dry; therefore, no samp was collected.
		Barium		During sampling, the well was dry; therefore, no samp was collected.
		Beryllium		During sampling, the well was dry; therefore, no samp was collected.
		Boron		During sampling, the well was dry; therefore, no samp was collected.
		Cadmium		During sampling, the well was dry; therefore, no samp was collected.
		Calcium		During sampling, the well was dry; therefore, no samp was collected.
		Chromium		During sampling, the well was dry; therefore, no samp was collected.
		Cobalt		During sampling, the well was dry; therefore, no samp was collected.
		Copper		During sampling, the well was dry; therefore, no samp was collected.
		Iron		During sampling, the well was dry; therefore, no samp was collected.
		Lead		During sampling, the well was dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Magnesium		During sampling, the well was dry; therefore, no sampl was collected.
		Manganese		During sampling, the well was dry; therefore, no sampl was collected.
		Mercury		During sampling, the well was dry; therefore, no sampl was collected.
		Molybdenum		During sampling, the well was dry; therefore, no sampl was collected.
		Nickel		During sampling, the well was dry; therefore, no samp was collected.
		Potassium		During sampling, the well was dry; therefore, no samp was collected.
		Rhodium		During sampling, the well was dry; therefore, no sampl was collected.
		Selenium		During sampling, the well was dry; therefore, no sampl was collected.
		Silver		During sampling, the well was dry; therefore, no sampl was collected.
		Sodium		During sampling, the well was dry; therefore, no sampl was collected.
		Tantalum		During sampling, the well was dry; therefore, no samp was collected.
		Thallium		During sampling, the well was dry; therefore, no samp was collected.
		Uranium		During sampling, the well was dry; therefore, no samp was collected.
		Vanadium		During sampling, the well was dry; therefore, no samp was collected.
		Zinc		During sampling, the well was dry; therefore, no samp was collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no samp was collected.
		Acetone		During sampling, the well was dry; therefore, no samp was collected.
		Acrolein		During sampling, the well was dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no samp was collected.
		Benzene		During sampling, the well was dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no samp was collected.
		Xylenes		During sampling, the well was dry; therefore, no samp was collected.
		Styrene		During sampling, the well was dry; therefore, no samp was collected.
		Toluene		During sampling, the well was dry; therefore, no sampling was collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Tribromomethane		During sampling, the well was dry; therefore, no sampl was collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sampl was collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sampl was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sampl was collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sampl was collected.
		Chloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		Chloroform		During sampling, the well was dry; therefore, no sampl was collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sampl was collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sampl was collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sampl was collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sampl was collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sampl was collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sampl was collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sampl was collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sampl was collected.
		lodomethane		During sampling, the well was dry; therefore, no sampl was collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sampl was collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Dichloromethane		During sampling, the well was dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no samp was collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sampl was collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well was dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well was dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well was dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well was dry; therefore, no samp was collected.
		PCB-1242		During sampling, the well was dry; therefore, no samp was collected.
		PCB-1248		During sampling, the well was dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well was dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well was dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well was dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well was dry; therefore, no samp was collected.
		Gross beta		During sampling, the well was dry; therefore, no samp was collected.
		lodine-131		During sampling, the well was dry; therefore, no samp was collected.
		Radium-226		During sampling, the well was dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well was dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well was dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389)	Thorium-230		During sampling, the well was dry; therefore, no samp was collected.
		Tritium		During sampling, the well was dry; therefore, no samp was collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no samp was collected.
		Cyanide		During sampling, the well was dry; therefore, no samp was collected.
		Iodide		During sampling, the well was dry; therefore, no samp was collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no samp was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no samp was collected.
004-4811 MW390	MW390SG4-14	Acrolein		Collected during a second sampling event.
		Acrylonitrile		Collected during a second sampling event.
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.76. Rad error is 4.76.
		Gross beta		TPU is 9.74. Rad error is 8.04.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.522. Rad error is 0.518.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.63. Rad error is 3.63.
		Technetium-99		TPU is 16.5. Rad error is 14.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.89. Rad error is 1.86.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 131. Rad error is 131.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4805 MW39	1 MW391SG4-14	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.54. Rad error is 6.49.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.57. Rad error is 8.44.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.624. Rad error is 0.62.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.49. Rad error is 3.49.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.29. Rad error is 9.22.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.05. Rad error is 2.05.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 122. Rad error is 121.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4806 MW39	92 MW392SG4-14	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.6. Rad error is 4.58.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.08. Rad error is 6.01.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.552. Rad error is 0.545.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.83. Rad error is 3.81.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.26. Rad error is 9.25.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.69. Rad error is 3.67.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 102. Rad error is 102.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4807 MW39	93 MW393SG4-14	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.61. Rad error is 5.61.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.75. Rad error is 6.72.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.555. Rad error is 0.546.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.74. Rad error is 3.74.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.49. Rad error is 9.46.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.54. Rad error is 2.53.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 137. Rad error is 134.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4802 MW39	94 MW394SG4-14	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.44. Rad error is 4.44.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.82. Rad error is 5.71.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.406. Rad error is 0.404.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.36. Rad error is 3.36.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.9. Rad error is 12.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.95. Rad error is 3.93.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 131. Rad error is 131.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4801 MW39	5 MW395SG4-14	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.75. Rad error is 3.75.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.08. Rad error is 7.85.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.683. Rad error is 0.667.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.67. Rad error is 3.67.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.3. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.27. Rad error is 3.26.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 136. Rad error is 136.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4803 MW396 MW396SG4-14		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.48. Rad error is 4.48.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.58. Rad error is 4.58.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.728. Rad error is 0.717.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.39. Rad error is 3.39.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.03. Rad error is 2.02.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 118. Rad error is 118.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4817 MW397 MW397SG4-14		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.56. Rad error is 5.53.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.54. Rad error is 5.47.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.33. Rad error is 0.329.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.77. Rad error is 1.76.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.5. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2. Rad error is 1.99.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 129. Rad error is 128.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG4-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.86. Rad error is 3.86.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.65. Rad error is 6.62.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.376. Rad error is 0.375.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.73. Rad error is 1.73.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.52. Rad error is 2.5.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 141. Rad error is 140.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG4-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.51. Rad error is 2.51.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.21. Rad error is 8.21.
		Iodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.408. Rad error is 0.407.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.76. Rad error is 3.76.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.2. Rad error is 2.2.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 137. Rad error is 137.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG4-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG4-14	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		Acrolein		Collected during a second sampling even
		Acrylonitrile		Collected during a second sampling even
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		Iodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG4-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG4-14	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG4-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG4-14	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG4-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG4-14	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		Iodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5SG4-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5SG4-14	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5244 MW22	4 MW224DSG4-14	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.21. Rad error is 4.2.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.14. Rad error is 8.93.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 0.531. Rad error is 0.517.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.71. Rad error is 4.56.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.6. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.62. Rad error is 1.61.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 130. Rad error is 130.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC		Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

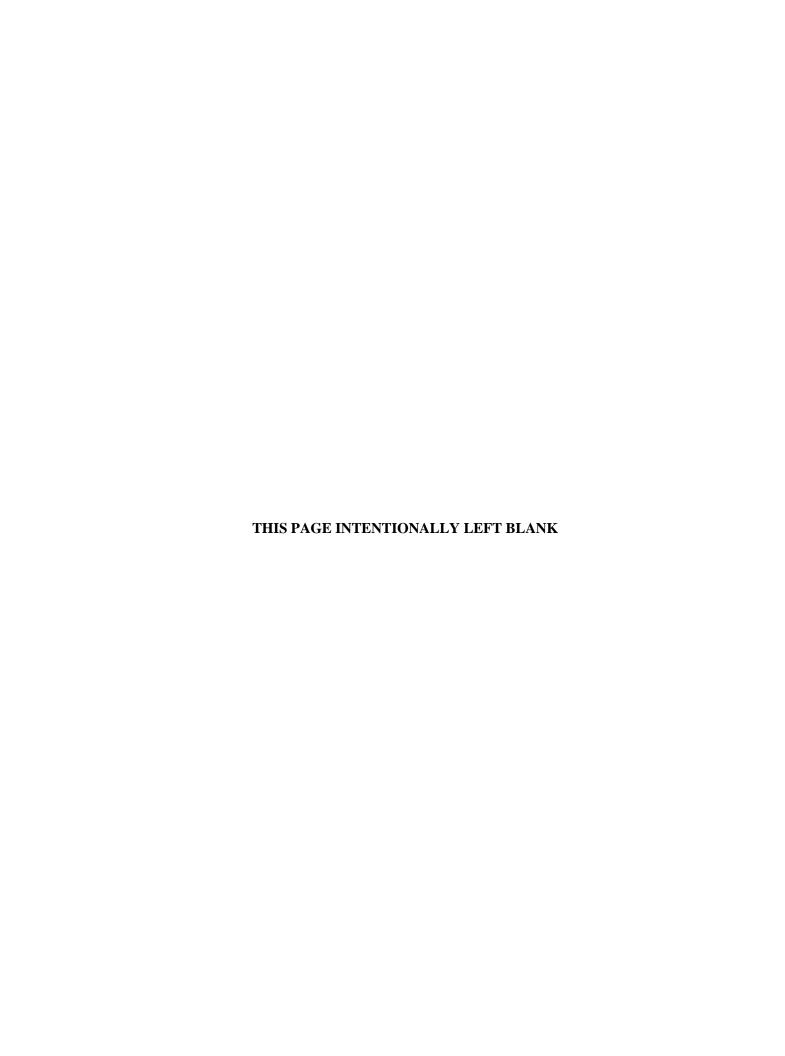
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC		Vanadium		Analysis of constituent not required and not perform
		Zinc		Analysis of constituent not required and not perform
		Vinyl acetate		Analysis of constituent not required and not perform
		Acetone		Analysis of constituent not required and not perform
		Acrolein		Analysis of constituent not required and not perform
		Acrylonitrile		Analysis of constituent not required and not perform
		Benzene		Analysis of constituent not required and not perform
		Chlorobenzene		Analysis of constituent not required and not perform
		Xylenes		Analysis of constituent not required and not perform
		Styrene		Analysis of constituent not required and not perform
		Toluene		Analysis of constituent not required and not perform
		Chlorobromomethane		Analysis of constituent not required and not perform
		Bromodichloromethane		Analysis of constituent not required and not perform
		Tribromomethane		Analysis of constituent not required and not perform
		Methyl bromide		Analysis of constituent not required and not perform
		Methyl Ethyl Ketone		Analysis of constituent not required and not perform
		trans-1,4-Dichloro-2-butene		Analysis of constituent not required and not perform
		Carbon disulfide		Analysis of constituent not required and not perform
		Chloroethane		Analysis of constituent not required and not perforn
		Chloroform		Analysis of constituent not required and not perforn
		Methyl chloride		Analysis of constituent not required and not perform
		cis-1,2-Dichloroethene		Analysis of constituent not required and not perform
		Methylene bromide		Analysis of constituent not required and not perform
		1,1-Dichloroethane		Analysis of constituent not required and not perform
		1,2-Dichloroethane		Analysis of constituent not required and not perform
		1,1-Dichloroethylene		Analysis of constituent not required and not perform
		1,2-Dibromoethane		Analysis of constituent not required and not perform
		1,1,2,2-Tetrachloroethane		Analysis of constituent not required and not perform
		1,1,1-Trichloroethane		Analysis of constituent not required and not perform
		1,1,2-Trichloroethane		Analysis of constituent not required and not perform
		1,1,1,2-Tetrachloroethane		Analysis of constituent not required and not perform
		Vinyl chloride		Analysis of constituent not required and not perform
		Tetrachloroethene		Analysis of constituent not required and not perform
		Trichloroethene		Analysis of constituent not required and not perforn
		Ethylbenzene		Analysis of constituent not required and not perform
		2-Hexanone		Analysis of constituent not required and not perform
		Iodomethane		Analysis of constituent not required and not perforn
		Dibromochloromethane		Analysis of constituent not required and not perform
		Carbon tetrachloride		Analysis of constituent not required and not perform

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>


LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC		Dichloromethane		Analysis of constituent not required and not performed
		Methyl Isobutyl Ketone		Analysis of constituent not required and not performed
		1,2-Dibromo-3-chloropropane		Analysis of constituent not required and not performed
		1,2-Dichloropropane		Analysis of constituent not required and not performed
		trans-1,3-Dichloropropene		Analysis of constituent not required and not performed
		cis-1,3-Dichloropropene		Analysis of constituent not required and not performed
		trans-1,2-Dichloroethene		Analysis of constituent not required and not performed
		Trichlorofluoromethane		Analysis of constituent not required and not performed
		1,2,3-Trichloropropane		Analysis of constituent not required and not performed
		1,2-Dichlorobenzene		Analysis of constituent not required and not performed
		1,4-Dichlorobenzene		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Residential/Inert – QUARTERLY, 3rd Quarter 2014 Facility: U.S. DOE – Paducah Gaseous Diffusion Plant Permit Number: SW7300014, SW7300015, SW7300043

Finds/Unit: _______
Lab ID: None
For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the third quarter 2014 groundwater data collected from the C-746-S&T Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data included results from two wells considered to represent background conditions were compared with at least three test wells or sidegradient wells (Exhibit 1). The third quarter 2014 data used to conduct the statistical analyses were collected in July 2014. The statistical analyses for this report first utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses were run, using the last eight quarters, on analytes that had at least one well that exceeded the historical background. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

For chemicals of concern that have Kentucky maximum contaminant levels (MCLs) and the results that do not exceed their respective MCL, no exceedance is reported. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit 1. Station Identification for Monitoring Wells Analyzed

Station	Туре	Groundwater Unit		
MW220	BG	URGA		
MW221	SG	URGA		
MW222	SG	URGA		
MW223	SG	URGA		
MW224	SG	URGA		
MW369	TW	URGA		
MW370	TW	LRGA		
MW372	TW	URGA		
MW373	TW	LRGA		
MW384	SG	URGA		
MW385	SG	LRGA		
MW386	SG	UCRS		
MW387	TW	URGA		
MW388	TW	LRGA		
MW389*	TW	UCRS		
MW390	TW	UCRS		
MW391	TW	URGA		
MW392	TW	LRGA		
MW393	TW	UCRS		
MW394	BG	URGA		
MW395	BG	LRGA		
MW396	BG	UCRS		
MW397	BG	LRGA		

NOTE: UCRS wells considered to be "background" wells are those located in the same general direction as the RGA wells considered to be upgradient. The actual gradients in the UCRS wells are downward.

BG: upgradient or background wellsTW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter, and a groundwater sample could not be collected.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, was conducted. The second one-sided tolerance interval statistical test was conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper tolerance limit using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower tolerance limit to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below:¹

- 1. The tolerance limit (TL) was calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data were used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) were computed.
 - The data set was checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be potentially normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage was determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit was calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells was compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit 1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit 2 lists the parameters from the available data set for which a statistically derived historical background concentration was developed using the one-sided tolerance interval and the statistical test performed using the one-sided tolerance interval.

lower $TL = X - (K \times S)$

D-5

_

¹ For pH, two-sided TL (upper and lower) were calculated with an adjusted K factor using the following equations:

upper $TL = X + (K \times S)$

Exhibit 2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters

Aluminum Beta activity Boron **Bromide** Calcium Chemical Oxygen Demand (COD) Chloride cis-1,2-Dichloroethene Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iodide Iron Magnesium Manganese Molybdenum

Nickel
Oxidation-Reduction Potential

PCB, Total

PCB-1242

pН

Radium-226

Sodium

Sulfate Technetium-99

Total Organic Carbon (TOC)

Total Organic Halides (TOX)

Trichloroethene

Uranium

Vanadium

Zinc

Exhibits 3, 4, and 5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), and missing observations by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits 3, 4, and 5 were collected during the current quarter, third quarter 2014. The observations that are listed are not background data. Background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a well is sampled on two different dates, the most current available data are used.

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	0	4	0	No
1,1,2,2-Tetrachloroethane	4	0	4	0	No
1,1,2-Trichloroethane	4	0	4	0	No
1,1-Dichloroethane	4	0	4	0	No
1,2,3-Trichloropropane	4	0	4	0	No
1,2-Dibromo-3-chloropropane	4	0	4	0	No
1,2-Dibromoethane	4	0	4	0	No
1,2-Dichlorobenzene	4	0	4	0	No
1,2-Dichloropropane	4	0	4	0	No
2-Butanone	4	0	4	0	No
2-Hexanone	4	0	4	0	No
4-Methyl-2-pentanone	4	0	4	0	No
Acetone	4	0	4	0	No
Acrolein	4	0	4	0	No
Acrylonitrile	4	0	4	0	No
Aluminum	4	0	3	1	YES
Antimony	4	0	4	0	No
Beryllium	4	0	4	0	No
Boron	4	0	0	4	YES
Bromide	4	0	0	4	YES
Bromochloromethane	4	0	4	0	No
Bromodichloromethane	4	0	4	0	No
Bromoform	4	0	4	0	No
Bromomethane	4	0	4	0	No
Calcium	4	0	0	4	YES
Carbon disulfide	4	0	4	0	No
COD	4	0	1	3	YES
Chloride	4	0	0	4	YES
Chlorobenzene	4	0	4	0	No
Chloroethane	4	0	4	0	No
Chloroform	4	0	4	0	No
Chloromethane	4	0	4	0	No
cis-1,2-Dichloroethene	4	0	4	0	No
cis-1,3-Dichloropropene	4	0	4	0	No
Cobalt	4	0	1	3	YES
Conductivity	4	0	0	4	YES
Copper	4	0	4	0	No
Cyanide	4	0	4	0	No
Dibromochloromethane	4	0	4	0	No

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dibromomethane	4	0	4	0	No
Dimethylbenzene, Total	4	0	4	0	No
Dissolved Oxygen	4	0	0	4	YES
Dissolved Solids	4	0	0	4	YES
Ethylbenzene	4	0	4	0	No
Iodide	4	0	3	1	YES
Iodomethane	4	0	4	0	No
Iron	4	0	0	4	YES
Magnesium	4	0	0	4	YES
Manganese	4	0	0	4	YES
Methylene chloride	4	0	4	0	No
Molybdenum	4	0	3	1	YES
Nickel	4	0	0	4	YES
Oxidation-Reduction Potential	4	0	0	4	YES
PCB, Total	4	4	0	0	No
PCB-1016	4	4	0	0	No
PCB-1221	4	4	0	0	No
PCB-1232	4	4	0	0	No
PCB-1242	4	4	0	0	No
PCB-1248	4	4	0	0	No
PCB-1254	4	4	0	0	No
PCB-1260	4	4	0	0	No
PCB-1268	4	4	0	0	No
рН	4	0	0	4	YES
Potassium	4	0	4	0	No
Radium-226	4	0	3	1	YES
Rhodium	4	0	4	0	No
Sodium	4	0	0	4	YES
Styrene	4	0	4	0	No
Sulfate	4	0	0	4	YES
Tantalum	4	0	4	0	No
Technetium-99	4	0	3	1	YES
Tetrachloroethene	4	0	4	0	No
Thallium	4	0	4	0	No
Thorium-230	4	0	4	0	No
Toluene	4	0	4	0	No
Total Organic Carbon (TOC)	4	0	0	4	YES
Total Organic Halides (TOX)	4	0	0	4	YES
trans-1,2-Dichloroethene	4	0	4	0	No
trans-1,3-Dichloropropene	4	0	4	0	No

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
trans-1,4-Dichloro-2-butene	4	0	4	0	No
Trichlorofluoromethane	4	0	4	0	No
Uranium	4	0	1	3	YES
Vanadium	4	0	4	0	No
Vinyl acetate	4	0	4	0	No
Zinc	4	0	4	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistica Analysis?
1,1,1,2-Tetrachloroethane	11	0	11	0	No
1,1,2,2-Tetrachloroethane	11	0	11	0	No
1,1,2-Trichloroethane	11	0	11	0	No
1,1-Dichloroethane	11	0	11	0	No
1,2,3-Trichloropropane	11	0	11	0	No
1,2-Dibromo-3-chloropropane	11	0	11	0	No
1,2-Dibromoethane	11	0	11	0	No
1,2-Dichlorobenzene	11	0	11	0	No
1,2-Dichloropropane	11	0	11	0	No
2-Butanone	11	0	11	0	No
2-Hexanone	11	0	11	0	No
4-Methyl-2-pentanone	11	0	11	0	No
Acetone	11	0	11	0	No
Acrolein	11	0	11	0	No
Acrylonitrile	11	0	11	0	No
Aluminum	11	0	8	3	YES
Antimony	11	0	11	0	No
Beryllium	11	0	11	0	No
Boron	11	0	1	10	YES
Bromide	11	0	0	11	YES
Bromochloromethane	11	0	11	0	No
Bromodichloromethane	11	0	11	0	No
Bromoform	11	0	11	0	No
Bromomethane	11	0	11	0	No
Calcium	11	0	0	11	YES
Carbon disulfide	11	0	11	0	No
COD	11	0	2	9	YES
Chloride	11	0	0	11	YES
Chlorobenzene	11	0	11	0	No
Chloroethane	11	0	11	0	No
Chloroform	11	0	11	0	No
Chloromethane	11	0	11	0	No
cis-1,2-Dichloroethene	11	0	9	2	YES
cis-1,3-Dichloropropene	11	0	11	0	No
Cobalt	11	0	2	9	YES
Conductivity	11	0	0	11	YES
Copper	11	0	10	1	YES
Cyanide	11	0	11	0	No
Dibromochloromethane	11	0	11	0	No
Dibromomethane	11	0	11	0	No

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dimethylbenzene, Total	11	0	11	0	No
Dissolved Oxygen	11	0	0	11	YES
Dissolved Solids	11	0	0	11	YES
Ethylbenzene	11	0	11	0	No
Iodide	11	0	11	0	No
Iodomethane	11	0	11	0	No
Iron	11	0	0	11	YES
Magnesium	11	0	0	11	YES
Manganese	11	0	1	10	YES
Methylene chloride	11	0	11	0	No
Molybdenum	11	0	7	4	YES
Nickel	11	0	0	11	YES
Oxidation-Reduction Potential	11	0	0	11	YES
PCB, Total	11	9	0	2	YES
PCB-1016	11	9	2	0	No
PCB-1221	11	9	2	0	No
PCB-1232	11	9	2	0	No
PCB-1242	11	9	0	2	YES
PCB-1248	11	9	2	0	No
PCB-1254	11	9	2	0	No
PCB-1260	11	9	2	0	No
PCB-1268	11	9	2	0	No
pН	11	0	0	11	YES
Potassium	11	0	11	0	No
Radium-226	11	0	8	3	YES
Rhodium	11	0	11	0	No
Sodium	11	0	0	11	YES
Styrene	11	0	11	0	No
Sulfate	11	0	0	11	YES
Tantalum	11	0	11	0	No
Technetium-99	11	0	8	3	YES
Tetrachloroethene	11	0	11	0	No
Thallium	11	0	11	0	No
Thorium-230	11	0	11	0	No
Toluene	11	0	11	0	No
Total Organic Carbon (TOC)	11	0	0	11	YES
Total Organic Halides (TOX)	11	0	1	10	YES
trans-1,2-Dichloroethene	11	0	11	0	No
trans-1,3-Dichloropropene	11	0	11	0	No
trans-1,4-Dichloro-2-butene	11	0	11	0	No

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Trichlorofluoromethane	11	0	11	0	No
Uranium	11	0	11	0	No
Vanadium	11	0	10	1	YES
Vinyl acetate	11	0	11	0	No
Zinc	11	0	10	1	YES

Bold denotes parameters with at least one uncensored observation.

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	0	7	0	No
1,1,2,2-Tetrachloroethane	7	0	7	0	No
1,1,2-Trichloroethane	7	0	7	0	No
1,1-Dichloroethane	7	0	7	0	No
1,2,3-Trichloropropane	7	0	7	0	No
1,2-Dibromo-3-chloropropane	7	0	7	0	No
1,2-Dibromoethane	7	0	7	0	No
1,2-Dichlorobenzene	7	0	7	0	No
1,2-Dichloropropane	7	0	7	0	No
2-Butanone	7	0	7	0	No
2-Hexanone	7	0	7	0	No
4-Methyl-2-pentanone	7	0	7	0	No
Acetone	7	0	7	0	No
Acrolein	7	0	7	0	No
Acrylonitrile	7	0	7	0	No
Aluminum	7	0	6	1	YES
Antimony	7	0	7	0	No
Beryllium	7	0	7	0	No
Boron	7	0	0	7	YES
Bromide	7	0	0	7	YES
Bromochloromethane	7	0	7	0	No
Bromodichloromethane	7	0	7	0	No
Bromoform	7	0	7	0	No
Bromomethane	7	0	7	0	No
Calcium	7	0	0	7	YES
Carbon disulfide	7	0	7	0	No
COD	7	0	2	5	YES
Chloride	7	0	0	7	YES
Chlorobenzene	7	0	7	0	No
Chloroethane	7	0	7	0	No
Chloroform	7	0	7	0	No
Chloromethane	7	0	7	0	No
cis-1,2-Dichloroethene	7	0	4	3	YES
cis-1,3-Dichloropropene	7	0	7	0	No
Cobalt	7	0	4	3	YES
Conductivity	7	0	0	7	YES
Copper	7	0	7	0	No
Cyanide	7	0	7	0	No
Dibromochloromethane	7	0	7	0	No
Dibromomethane	7	0	7	0	No
Dimethylbenzene, Total	7	0	7	0	No

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistica Analysis?
Dissolved Oxygen	7	0	0	7	YES
Dissolved Solids	7	0	0	7	YES
Ethylbenzene	7	0	7	0	No
Iodide	7	0	7	0	No
Iodomethane	7	0	7	0	No
Iron	7	0	0	7	YES
Magnesium	7	0	0	7	YES
Manganese	7	0	3	4	YES
Methylene chloride	7	0	7	0	No
Molybdenum	7	0	6	1	YES
Nickel	7	0	0	7	YES
Oxidation-Reduction Potential	7	0	0	7	YES
PCB, Total	7	5	2	0	No
PCB-1016	7	5	2	0	No
PCB-1221	7	5	2	0	No
PCB-1232	7	5	2	0	No
PCB-1242	7	5	2	0	No
PCB-1248	7	5	2	0	No
PCB-1254	7	5	2	0	No
PCB-1260	7	5	2	0	No
PCB-1268	7	5	2	0	No
рН	7	0	0	7	YES
Potassium	7	0	7	0	No
Radium-226	7	0	4	3	YES
Rhodium	7	0	7	0	No
Sodium	7	0	0	7	YES
Styrene	7	0	7	0	No
Sulfate	7	0	0	7	YES
Tantalum	7	0	7	0	No
Technetium-99	7	0	4	3	YES
Tetrachloroethene	7	0	7	0	No
Thallium	7	0	7	0	No
Thorium-230	7	0	7	0	No
Toluene	7	0	7	0	No
Total Organic Carbon (TOC)	7	0	0	7	YES
Total Organic Halides (TOX)	7	0	0	7	YES
trans-1,2-Dichloroethene	7	0	7	0	No
trans-1,3-Dichloropropene	7	0	7	0	No
trans-1,4-Dichloro-2-butene	7	0	7	0	No
Trichlorofluoromethane	7	0	7	0	No
Uranium	7	0	7	0	No
Vanadium	7	0	7	0	No

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation		Statistical Analysis?
Vinyl acetate	7	0	7	0	No
Zinc	7	0	7	0	No

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval test were compared to historical background, and are presented in Attachment D1 and the statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 25, 29, and 24 parameters, respectively, including those listed in bold print in Exhibits 3, 4, and 5, plus those constituents (beta activity and TCE) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit 6.

UCRS

This quarter's results identified exceedances of historical background upper tolerance limit (UTL) for COD, oxidation-reduction potential, and technetium-99.

URGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, COD, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, COD, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

Conclusion

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit 7, Exhibit 8, and Exhibit 9, respectively.

Exhibit 6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW386: COD, Oxidation- Reduction Potential	MW221: Oxidation-Reduction Potential	MW370: Beta activity, COD, Oxidation-Reduction Potential, Sulfate
MW390: Oxidation-Reduction Potential, Technetium-99	MW224: COD, Dissolved Solids, Radium-226	MW373: Beta activity, Calcium, Conductivity, Dissolved Solids, Magnesium, Oxidation-Reduction Potential, Sodium, Sulfate
MW393: Oxidation-Reduction Potential	MW372: Calcium, Conductivity, Dissolved Solids, Magnesium, Radium-226, Sodium, Sulfate MW384: Beta activity, Sulfate, Technetium-99	MW385: Beta activity, Oxidation-Reduction Potential, Sulfate, Technetium-99 MW388: Beta activity, Oxidation-Reduction Potential, Sulfate, Technetium-99

Exhibit 6. Summary of Exceedances of Statistically Derived Historical Background Concentrations (Continued)

UCRS	URGA	LRGA	
	MW387: Beta activity, Co Solids, Sulfate, Technetiu		
	MW391: Sulfate		

Exhibit 7. Tests Summary for Qualified Parameters—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
COD	Tolerance Interval	0.02	Current results exceed statistically derived historical background concentration in MW386
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.

Exhibit 7. Tests Summary for Qualified Parameters—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, and MW393.
pH	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	1.78	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides	Tolerance Interval	0.37	No exceedance of statistically derived historical background concentration.
Uranium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit 8. Tests Summary for Qualified Parameters—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beta activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentration in MW384 and MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentration in MW372.
COD	Tolerance Interval	0.00	Current results exceed statistically derived historical background concentration in MW224 and MW387.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW224, MW372, and MW387.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.

 ${\bf Exhibit~8.~Tests~Summary~for~Qualified~Parameters} \\ - URGA(Continued)$

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW221.
pH	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	12.29	Current results exceed statistically derived historical background concentration in MW224 and MW372.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW372.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW372, MW384, MW387, and MW391.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW384 and MW387.
Total Organic Carbon	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.08	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

¹ Tolerance interval was calculated based on an MCL exceedance.

Exhibit 9. Tests Summary for Qualified Parameters—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
Beta activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
COD	Tolerance Interval	0.04	Current results exceed statistically derived historical background concentration in MW370.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.52	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.52	Current results exceed statistically derived historical background concentration in MW373.
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.

¹ Tolerance interval was calculated based on an MCL exceedance.

Exhibit 9. Tests Summary for Qualified Parameters—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	10.74	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.47	Current results exceed statistically derived historical background concentration in MW373.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.81	Current results exceed statistically derived historical background concentration in MW385 and MW388.
Total Organic Carbon	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For the UCRS, URGA, and LRGA, the concentrations from downgradient wells were compared to the one-sided tolerance limit calculated using the most recent eight quarters of data and are presented in Attachment D2 and the statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 11, and 10 parameters, respectively, because these parameter concentrations exceeded the historical background TL. A summary of instances where downgradient well concentrations exceeded the TL calculated using current background data is shown in Exhibit 10, presented by well number.

UCRS

Because gradients in the UCRS are downward, there are no downgradient UCRS wells that exceed current background TL derived using the most recent eight quarters of data. NOTE: Technetium-99 concentrations in some UCRS wells exceeded the current TL this quarter.

URGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, COD, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, COD, conductivity, dissolved solids, magnesium, sodium, sulfate, and technetium-99.

Conclusion

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit 11, Exhibit 12, and Exhibit 13, respectively.

Exhibit 10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA	
MW369:Sodium	MW370: COD, Sodium	
MW372:Beta activity, Calcium, Conductivity, Dissolved Solids, Magnesium, Sodium, Sulfate	MW373:Calcium, Conductivity, Dissolved Solids, Magnesium, Sodium, Sulfate	
MW387: Beta activity, COD, Conductivity, Dissolved Solids, Magnesium, Sodium, Sulfate, Technetium-99	MW388:Beta activity, Conductivity, Dissolved Solids, Sodium, Sulfate, Technetium-99	
	MW392:Sodium	

Exhibit 11. Tests Summary for Qualified Parameters—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
COD	Tolerance Interval	0.17	No exceedance of statistically derived current background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.25	No exceedance of statistically derived current background concentration.
Technetium-99	Tolerance Interval	6.07	Because gradients in UCRS wells are downward, there are no UCRS wells that are actually downgradient of the landfill. However, technetium-99 concentrations exceeded the TL calculated using current background data in MW390.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Exhibit 12. Tests Summary for Qualified Parameters—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta activity	Tolerance Interval	0.57	Current results exceed statistically derived current background concentration in MW372, MW384, and MW387.
Calcium	Tolerance Interval	0.15	Current results exceed statistically derived current background concentration in MW372.
COD	Tolerance Interval	0.23	Current results exceed statistically derived current background concentration in MW387.
Conductivity	Tolerance Interval	0.08	Current results exceed statistically derived current background concentration in MW372, MW384, and MW387.
Dissolved Solids	Tolerance Interval	0.08	Current results exceed statistically derived current background concentration in MW224, MW372, and MW387.
Magnesium	Tolerance Interval	0.15	Current results exceed statistically derived current background concentration in MW372 and MW387.
Oxidation-Reduction Potential	Tolerance Interval	0.33	No exceedance of statistically derived current background concentration.
Radium-226	Tolerance Interval	2.20	No exceedance of statistically derived current background concentration.
Sodium	Tolerance Interval	0.16	Current results exceed statistically derived current background concentration in MW224, MW369, MW372, MW384, and MW387.
Sulfate	Tolerance Interval	0.28	Current results exceed statistically derived current background concentration in MW372 and MW387.
Technetium-99	Tolerance Interval	1.00	Current results exceed statistically derived current background concentration in MW384 and MW387.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Exhibit 13. Tests Summary for Qualified Parameters—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta activity	Tolerance Interval	0.47	Current results exceed statistically derived current background concentration in MW385 and MW388.
Calcium	Tolerance Interval	0.19	Current results exceed statistically derived current background concentration in MW373.
COD	Tolerance Interval	0.28	Current results exceed statistically derived current background concentration in MW370.
Conductivity	Tolerance Interval	0.08	Current results exceed statistically derived current background concentration in MW373, MW385, and MW388.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived current background concentration in MW373 and MW388.
Magnesium	Tolerance Interval	0.19	Current results exceed statistically derived current background concentration in MW373.
Oxidation-Reduction Potential	Tolerance Interval	0.26	No exceedance of statistically derived current background concentration.
Sodium	Tolerance Interval	0.10	Current results exceed statistically derived current background concentration in MW370, MW373, MW385, MW388, and MW392.
Sulfate	Tolerance Interval	0.31	Current results exceed statistically derived current background concentration in MW373 and MW388.
Technetium-99	Tolerance Interval	0.95	Current results exceed statistically derived current background concentration in MW385 and MW388.

CV: coefficient of variation
* If CV > 1.0, used log-transformed data.

ATTACHMENT D1

ONE-SIDED UPPER TOLERANCE INTERVAL TEST COMPARED TO HISTORICAL BACKGROUND DATA

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis UCRS Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from
Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.393
9/16/2002	0.200
10/16/2002	0.200
1/13/2003	0.501
4/8/2003	0.200
7/16/2003	0.200
10/14/2003	0.200
1/14/2004	0.668

Statistics on Background Data

X= 0.320 S= 0.182 CV= 0.567 K factor** = 3.188 TL= 0.900

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386	0.050	Sidegradient	NO
MW390	0.167	Downgradie	nt NO
MW393	0.016	Downgradie	nt NO

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis UCRS Boron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	2.000
9/16/2002	2.000
10/16/2002	0.200
1/13/2003	0.200
4/8/2003	0.200
7/16/2003	0.200
10/14/2003	0.200
1/14/2004	0.200

Statistics on Background Data

X= 0.650 S= 0.833 CV= 1.282 K factor** = 3.188 TL= 3.306

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data

S= 1.066 CV= -1.031

X = -1.034

K factor** = 3.188

TL = 2.364

Transformed Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	LN(Result)
8/13/2002	0.693
9/16/2002	0.693
10/16/2002	-1.609
1/13/2003	-1.609
4/8/2003	-1.609
7/16/2003	-1.609
10/14/2003	-1.609
1/14/2004	-1.609

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386 MW390	0.004	Sidegradient	N/A
MW390 MW393	0.009 0.017	Downgradier Downgradier	

Third Quarter 2014 Dry/Partially Dry Wells

?	Well No.	Gradient
	MW389	Downgradient

Transformed Third Quarter 2014 Data Collected in July 2014

Well Number	LN(Result)	Result $>$ TL?
MW386	-5.433	NO
MW390	-4.756	NO
MW393	-4.092	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Bromide UNITS: UCRS mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from
Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	1.500
9/16/2002	1.600
10/16/2002	1.600
1/13/2003	1.000
4/8/2003	1.000
7/16/2003	1.000
10/14/2003	1.700
1/14/2004	1.700

Statistics on Background Data

X= 1.388 S= 0.327 CV= 0.236 K factor** = 3.188 TL= 2.430

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386	0.153	Sidegradient	NO
MW390	0.777	Downgradie	nt NO
MW393	0.195	Downgradie	nt NO

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis UCRS Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	38.400
9/16/2002	42.900
10/16/2002	40.200
1/13/2003	46.700
4/8/2003	49.800
7/16/2003	43.300
10/14/2003	49.700
1/14/2004	23.600

Statistics on Background Data

X= 41.825 S= 8.445 CV= 0.202 K factor** = 3.188 TL= 68.748

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386	23.400	Sidegradient	NO
MW390	33.600	Downgradie	nt NO
MW393	11.600	Downgradie	nt NO

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis UCRS Chemical Oxygen Demand (COD) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from
Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	36.000
9/16/2002	35.000
10/16/2002	37.000
1/13/2003	35.000
4/8/2003	35.000
7/16/2003	35.000
10/14/2003	35.000
1/14/2004	35.000

Statistics on Background Data

X= 35.375 S= 0.744 CV= 0.021 K factor** = 3.188 TL= 37.747

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386	43.800	Sidegradient	YES
MW390	27.100	Downgradien	t NO
MW393	20.000	Downgradien	t NO

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW386

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis UCRS Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	91.600
9/16/2002	98.300
10/16/2002	101.400
1/13/2003	108.300
4/8/2003	100.500
7/16/2003	102.500
10/14/2003	106.800
1/14/2004	104.400

Statistics on Background Data

X= 101.725 S= 5.245 CV= 0.052 K factor** = 3.188 TL= 118.447

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386	18.700	Sidegradient	NO
MW390	85.400	Downgradie	nt NO
MW393	15.800	Downgradie	nt NO

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Cobalt UNITS: uCRS mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.025
9/16/2002	0.025
10/16/2002	0.001
1/13/2003	0.003
4/8/2003	0.004
7/16/2003	0.003
10/14/2003	0.001
1/14/2004	0.001

Statistics on Background Data

X= 0.008 S= 0.011 CV= 1.340 K factor** = 3.188 TL= 0.042

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data X= -5.645 S= 1.339 CV= -0.237 K factor** = 3.188

TL= -1.377

Transformed Background Data from Upgradient Wells

MW396
LN(Result)
-3.689
-3.689
-6.908
-5.732
-5.435
-5.893
-6.908
-6.908

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386	0.000	Sidegradient	N/A
MW390	0.000	Downgradier	nt N/A
MW393	0.000	Downgradier	nt N/A

Third Quarter 2014 Dry/Partially Dry Wells

?	Well No.	Gradient
	MW389	Downgradient

Transformed Third Quarter 2014 Data Collected in July 2014

Well Number	LN(Result)	Result > TL?
MW386	-7.775	NO
MW390	-7.684	NO
MW393	-8.517	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis UCRS Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from	
Upgradient Wells	

Well Number:	MW396
Date Collected	Result
8/13/2002	784.000
9/30/2002	871.000
10/16/2002	868.000
1/13/2003	912.000
4/8/2003	942.000
7/16/2003	910.000
10/14/2003	935.000
1/14/2004	1158.00

Statistics on Background Data

X= 922.500 S= 107.616 CV= 0.117 K factor** = 3.188 TL= 1265.579

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386	632.00	Sidegradient	NO
MW390	772.00	Downgradie	nt NO
MW393	441.00	Downgradie	nt NO

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Dissolved Oxygen UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	5.450
9/16/2002	0.400
10/16/2002	0.540
1/13/2003	0.720
4/8/2003	0.690
7/16/2003	1.100
10/14/2003	0.710
1/14/2004	1.550

Statistics on Background Data

X= 1.395 S= 1.677 CV= 1.202 K factor** = 3.188 TL= 6.743

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data X= -0.043 S= 0.814 CV= -18.867 K factor** = 3.188 TL= 2.553

Transformed Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	LN(Result)
8/13/2002	1.696
9/16/2002	-0.916
10/16/2002	-0.616
1/13/2003	-0.329
4/8/2003	-0.371
7/16/2003	0.095
10/14/2003	-0.342
1/14/2004	0.438

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL
MW386	0.720	Sidegradient	N/A
MW390	5.810	Downgradien	t N/A
MW393	0.990	Downgradien	t N/A

Third Quarter 2014 Dry/Partially Dry Wells

?	Well No.	Gradient
	MW389	Downgradient

Transformed Third Quarter 2014 Data Collected in July 2014

Well Number	LN(Result)	Result $>$ TL?
MW386	-0.329	NO
MW390	1.760	NO
MW393	-0.010	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis UCRS Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	502.000
9/16/2002	506.000
10/16/2002	543.000
1/13/2003	521.000
4/8/2003	504.000
7/16/2003	532.000
10/14/2003	490.000
1/14/2004	805.000

Statistics on Background Data

X= 550.375 S= 104.330 CV= 0.190 K factor** = 3.188 TL= 882.980

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386	376.00	Sidegradient	NO
MW390	421.00	Downgradie	nt NO
MW393	234.00	Downgradie	nt NO

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis UCRS Iodide UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	2.000
9/16/2002	2.000
10/16/2002	2.000
1/13/2003	2.000
4/8/2003	2.000
7/16/2003	2.700
10/14/2003	2.500
1/14/2004	2.000

Statistics on Background Data

X= 2.150 S= 0.283 CV= 0.132 K factor** = 3.188 TL= 3.052

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Result	Gradient	Result > TL?
0.500	Sidegradient	NO
0.500	Downgradie	nt NO
0.500	Downgradie	nt NO
	0.500 0.500	Result Gradient 0.500 Sidegradient 0.500 Downgradient 0.500 Downgradient

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis UCRS Iron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	1.800
9/16/2002	9.530
10/16/2002	7.430
1/13/2003	9.930
4/8/2003	10.200
7/16/2003	9.160
10/14/2003	11.900
1/14/2004	2.420

Statistics on Background Data

X= 7.796 S= 3.723 CV= 0.478 K factor** = 3.188 TL= 19.666

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386	0.185	Sidegradient	NO
MW390	0.228	Downgradie	nt NO
MW393	1.890	Downgradie	nt NO

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from
Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	15.500
9/16/2002	17.300
10/16/2002	17.800
1/13/2003	19.200
4/8/2003	17.800
7/16/2003	17.800
10/14/2003	20.200
1/14/2004	9.410

Statistics on Background Data

X= 16.876 S= 3.313 CV= 0.196 K factor** = 3.188 TL= 27.438

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386	9.560	Sidegradient	NO
MW390	13.800	Downgradie	nt NO
MW393	3.670	Downgradie	nt NO

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis UCRS Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.570
9/16/2002	0.647
10/16/2002	0.880
1/13/2003	1.132
4/8/2003	0.965
7/16/2003	0.983
10/14/2003	0.984
1/14/2004	0.031

Statistics on Background Data

X= 0.774 S= 0.353 CV= 0.456 K factor** = 3.188 TL= 1.900

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386	0.057	Sidegradient	NO
MW390	0.002	Downgradie	nt NO
MW393	0.020	Downgradie	nt NO

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.025
9/16/2002	0.025
10/16/2002	0.001
1/13/2003	0.001
4/8/2003	0.003
7/16/2003	0.001
10/14/2003	0.001
1/14/2004	0.001

Statistics on Background Data

X= 0.007 S= 0.011 CV= 1.507 K factor** = 3.188 TL= 0.042

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data X= -5.928 S= 1.420 CV= -0.240 K factor** = 3.188 TL= -1.400

Transformed Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	LN(Result)
8/13/2002	-3.689
9/16/2002	-3.689
10/16/2002	-6.908
1/13/2003	-6.661
4/8/2003	-5.911
7/16/2003	-6.751
10/14/2003	-6.908
1/14/2004	-6.908

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL
MW386	0.001	Sidegradient	N/A
MW390	0.001	Downgradien	t N/A
MW393	0.000	Downgradien	t N/A

Third Quarter 2014 Dry/Partially Dry Wells

?	Well No.	Gradient
	MW389	Downgradient

Transformed Third Quarter 2014 Data Collected in July 2014

Well Number	LN(Result)	Result > TL?
MW386	-7.209	NO
MW390	-7.264	NO
MW393	-8.181	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Nickel UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.050
9/16/2002	0.050
10/16/2002	0.005
1/13/2003	0.005
4/8/2003	0.006
7/16/2003	0.005
10/14/2003	0.005
1/14/2004	0.005

Statistics on Background Data

X= 0.016 S= 0.021 CV= 1.272 K factor** = 3.188 TL= 0.083

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data X= -4.706 S= 1.057 CV= -0.225 K factor** = 3.188 TL= -1.338

Transformed Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	LN(Result)
8/13/2002	-2.996
9/16/2002	-2.996
10/16/2002	-5.298
1/13/2003	-5.298
4/8/2003	-5.166
7/16/2003	-5.298
10/14/2003	-5.298
1/14/2004	-5.298

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386 MW390	0.002 0.002	Sidegradient Downgradien	N/A nt N/A
MW393	0.001	Downgradien	

Third Quarter 2014 Dry/Partially Dry Wells

?	Well No.	Gradient
	MW389	Downgradient

Transformed Third Quarter 2014 Data Collected in July 2014

Well Number	LN(Result)	Result $>$ TL?
MW386	-6.348	NO
MW390	-6.041	NO
MW393	-6.630	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Oxidation-Reduction Potential UNITS: WV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	60.000
4/8/2003	71.000
7/16/2003	-56.000
10/14/2003	-54.000
1/14/2004	-22.000
4/12/2004	-6.000
7/20/2004	-3.000
10/12/2004	114.000

Statistics on Background Data

X= 13.000 S= 61.952 CV= 4.766 K factor** = 3.188 TL= 210.502

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data
X = error
S = error
CV = error
K factor** = 3.188
TL# = 4.736

Transformed Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	LN(Result)
8/13/2002	4.094
4/8/2003	4.263
7/16/2003	#Func!
10/14/2003	#Func!
1/14/2004	#Func!
4/12/2004	#Func!
7/20/2004	#Func!
10/12/2004	4.736

Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL
MW386	122.000	Sidegradient	N/A
MW390	433.000	Downgradier	nt N/A
MW393	298.000	Downgradier	nt N/A

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Transformed Third Quarter 2014 Data Collected in July 2014

Well Number	LN(Result)	Result >TL?
MW386	4.804	YES
MW390	6.071	YES
MW393	5 697	VES

Conclusion of Statistical Analysis on Transformed Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW386 MW390

MW393

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis UCRS pH UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from
Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	6.170
9/16/2002	6.400
10/16/2002	5.900
1/13/2003	6.400
4/8/2003	6.650
7/16/2003	6.400
10/14/2003	6.710
1/14/2004	7.050

Statistics on
Background Data

X= 6.460 S= 0.350 CV= 0.054 K factor** = 3.736 TL= 7.766 LL= 5.154

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient 1	Result >TL?	Result <ll?< th=""></ll?<>
MW386	6.650	Sidegradie	nt NO	NO
MW390	6.400	Downgradio	ent NO	NO
MW393	6.310	Downgradie	ent NO	NO

Third Quarter 2014 Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis UCRS Radium-226 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
10/16/2002	0.690
1/13/2003	-0.007
10/14/2003	-0.051
1/14/2004	0.494
4/12/2004	-0.082
7/20/2004	0.088
10/12/2004	0.041
1/18/2005	0.084

Statistics on Background Data

X= 0.157 S= 0.280 CV= 1.782 K factor** = 3.188 TL= 1.050

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data
X = error
S = error
CV = error
K factor** = 3.188
TI #0.371

Transformed Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	LN(Result)
10/16/2002	-0.371
1/13/2003	#Func!
10/14/2003	#Func!
1/14/2004	-0.705
4/12/2004	#Func!
7/20/2004	-2.432
10/12/2004	-3.199
1/18/2005	-2.472

Third Quarter 2014 Data Collected in July 2014

W	ell No.	Result	Gradient	Result > TL
M	IW386	0.414	Sidegradient	N/A
M	IW390	0.355	Downgradie	nt N/A
M	IW393	0.565	Downgradie	nt N/A

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Transformed Third Quarter 2014 Data Collected in July 2014

Well Number	LN(Result)	Result >TL?
MW386	-0.882	NO
MW390	-1.036	NO
MW393	-0.571	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

[#] Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Sodium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	115.000
9/16/2002	116.000
10/16/2002	117.000
1/13/2003	122.000
4/8/2003	106.000
7/16/2003	117.000
10/14/2003	132.000
1/14/2004	29.600

Statistics on Background Data

X= 106.825 S= 32.041 CV= 0.300 K factor** = 3.188 TL= 208.973

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386	101.00	Sidegradient	NO
MW390	98.800	Downgradie	nt NO
MW393	77.100	Downgradie	nt NO

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from
Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	41.900
9/16/2002	26.300
10/16/2002	20.600
1/13/2003	16.600
4/8/2003	23.900
7/16/2003	18.800
10/14/2003	12.900
1/14/2004	18.700

Statistics on Background Data

X= 22.463 S= 8.876 CV= 0.395 K factor** = 3.188 TL= 50.759

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386	45.100	Sidegradient	NO
MW390	38.800	Downgradie	nt NO
MW393	17.100	Downgradie	nt NO

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Technetium-99 UNITS: UCRS pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	16.700
9/16/2002	6.390
10/16/2002	4.550
1/13/2003	16.500
4/8/2003	3.040
7/16/2003	0.354
10/14/2003	11.900
1/14/2004	1.560

Statistics on Background Data

X= 7.624 S= 6.558 CV= 0.860 K factor** = 3.188 TL= 28.531

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386	1.210	Sidegradient	NO
MW390	74.600	Downgradien	t YES
MW393	6.530	Downgradien	t NO

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW390

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Total Organic Carbon (TOC) UNITS: uc/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from
Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	19.000
9/16/2002	14.600
10/16/2002	10.400
1/13/2003	4.400
4/8/2003	7.000
7/16/2003	7.300
10/14/2003	9.100
1/14/2004	8.100

Statistics on
Background Data

X= 9.988 S= 4.696 CV= 0.470 K factor** = 3.188 TL= 24.959

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386	6.540	Sidegradient	NO
MW390	2.570	Downgradie	nt NO
MW393	2.890	Downgradie	nt NO

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Total Organic Halides (TOX) UNITS: UCRS ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	193.000
9/16/2002	190.000
10/16/2002	221.000
1/13/2003	106.000
4/8/2003	77.800
7/16/2003	122.000
10/14/2003	86.400
1/14/2004	145.000

Statistics on Background Data

X= 142.650 S= 53.533 CV= 0.375 K factor** = 3.188 TL= 313.314

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386	175.00	Sidegradient	NO
MW390	17.100	Downgradie	nt NO
MW393	19.900	Downgradie	nt NO

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URS Uranium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.002
9/16/2002	0.001
10/16/2002	0.001
1/13/2003	0.001
4/8/2003	0.001
7/16/2003	0.001
10/14/2003	0.001
1/14/2004	0.001

Statistics on Background Data

X= 0.001 S= 0.000 CV= 0.314 K factor** = 3.188 TL= 0.002

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW386	0.000	Sidegradient	NO
MW390	0.000	Downgradie	nt NO
MW393	0.000	Downgradie	nt NO

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Aluminum UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	0.200
1/15/2003	0.200
4/10/2003	0.200
7/14/2003	0.200
10/13/2003	0.427
1/13/2004	0.309
4/13/2004	0.200
7/21/2004	0.202
Well Number:	MW394
Date Collected	Result

Statistics on Background Data
X= 0.221
S = 0.061
CV = 0.277
K factor** = 2.523

TL = 0.376

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

8/13/2002 0.200 9/16/2002 0.200 10/16/2002 0.200 1/13/2003 0.200 4/10/2003 0.200 7/16/2003 0.200 10/14/2003 0.200 1/13/2004 0.200

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW221	0.050	Sidegradient	NO
MW222	0.029	Sidegradient	NO
MW223	0.050	Sidegradient	NO
MW224	0.050	Sidegradient	NO
MW369	0.140	Downgradier	nt NO
MW372	0.016	Downgradier	nt NO
MW384	0.050	Sidegradient	NO
MW387	0.050	Downgradier	nt NO
MW391	0.050	Downgradier	nt NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Aluminum UNITS: uRGA mg/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Beta activity UNITS: URGA pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from	
Upgradient Wells	

Well Number:	MW220
Date Collected	Result
10/14/2002	15.200
1/15/2003	42.500
4/10/2003	45.400
7/14/2003	8.530
10/13/2003	11.700
1/13/2004	13.500
4/13/2004	33.500
7/21/2004	13.700
Well Number:	MW394
Date Collected	Result
8/13/2002	5.030
9/16/2002	5.570

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on		
Background Data		
X= 14.273		
S= 13.883		
CV= 0.973		
K factor** = 2.523		

TL = 49.300

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

12.800

4.300

9.520

3.920

1.060

2.140

Well No.	Result	Gradient	Result > TL?
MW221	4.950	Sidegradient	NO
MW222	13.900	Sidegradient	NO
MW223	5.200	Sidegradient	NO
MW224	12.000	Sidegradient	NO
MW369	5.760	Downgradie	nt NO
MW372	30.300	Downgradie	nt NO
MW384	124.00	Sidegradient	YES
MW387	153.00	Downgradie	nt YES
MW391	8.910	Downgradie	nt NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Beta activity UNITS: URGA pCi/L

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW384

MW387

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Boron UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

ackground D pgradient W		Statistics on Background Data		Transformed Background Data from Upgradient We	
ell Number:	MW220	X= 0.425		Well Number:	MW220
ate Collected	Result	S= 0.615		Date Collected	LN(Result)
10/14/2002	0.200	CV= 1.447 K factor** = 2.523		10/14/2002	-1.609
1/15/2003	0.200	TL= 1.976		1/15/2003	-1.609
4/10/2003	0.200			4/10/2003	-1.609
7/14/2003	0.200	Because CV greater than		7/14/2003	-1.609
10/13/2003	0.200	logarithm of background were calculated.	and test well results	10/13/2003	-1.609
1/13/2004	0.200	were carculated.		1/13/2004	-1.609
4/13/2004	0.200	Statistics on		4/13/2004	-1.609
7/21/2004	0.200	Transformed		7/21/2004	-1.609
ell Number:	MW394	Background Data		Well Number:	MW394
ate Collected	Result	X= -1.322		Date Collected	LN(Result)
8/13/2002	2.000	S= 0.786		8/13/2002	0.693
9/16/2002	2.000	CV= -0.595		9/16/2002	0.693
10/16/2002	0.200	K factor** = 2.523		10/16/2002	-1.609
1/13/2003	0.200	TL= 0.663		1/13/2003	-1.609
4/10/2003	0.200	1L- 0.003		4/10/2003	-1.609
7/16/2003	0.200			7/16/2003	-1.609
10/14/2003	0.200			10/14/2003	-1.609
1/13/2004	0.200			1/13/2004	-1.609

Third Quarter 2014 Data Collected in July
2014

TL?
J/A
1/. 1/. 1/. 1/.

Transformed Third Quarter 2014 Data
Collected in July 2014

Well Number	LN(Result)	Result > TL?
MW221	-4.440	NO
MW222	-4.707	NO
MW223	-4.912	NO
MW224	-3.917	NO
MW369	-4.958	NO
MW372	0.039	NO
MW384	-4.431	NO
MW387	-3.605	NO
MW391	-3.420	NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Boron UNITS: mg/L

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Bromide UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	1.000
1/15/2003	1.000
4/10/2003	1.000
7/14/2003	1.000
10/13/2003	1.000
1/13/2004	1.000
4/13/2004	1.000
7/21/2004	1.000
Well Number:	MW394
Date Collected	Result
8/13/2002	1.000
9/16/2002	1.000

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on		
Background Data		
X= 1.000		
~ ~ ~ ~ ~		

S= 0.000 CV= 0.000 K factor** = 2.523 TL= 1.000

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

1.000

1.000

1.000

1.000

1.000

1.000

Well No.	Result	Gradient	Result > TL?
MW221	0.490	Sidegradient	NO
MW222	0.530	Sidegradient	NO
MW223	0.498	Sidegradient	NO
MW224	0.491	Sidegradient	NO
MW369	0.364	Downgradie	nt NO
MW372	0.610	Downgradie	nt NO
MW384	0.453	Sidegradient	NO
MW387	0.522	Downgradie	nt NO
MW391	0.609	Downgradie	nt NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Bromide UNITS: URGA mg/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Calcium UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from
Upgradient Wells

Well Number:	MW220	
Date Collected	Result	
10/14/2002	23.600	
1/15/2003	25.900	
4/10/2003	30.400	
7/14/2003	33.900	
10/13/2003	21.300	
1/13/2004	20.300	
4/13/2004	23.800	
7/21/2004	19.000	
Well Number:	MW394	
Date Collected	Result	

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data
X= 27.638
S= 4.743
CV = 0.172
K factor** = 2.523
TL= 39.604

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

29.500

29.900

31.200

30.700

34.400

29.600

30.300

28.400

Well No.	Result	Gradient	Result > TL?
MW221	19.900	Sidegradient	NO
MW222	18.800	Sidegradient	NO
MW223	20.800	Sidegradient	NO
MW224	23.200	Sidegradient	NO
MW369	15.500	Downgradie	nt NO
MW372	59.100	Downgradie	nt YES
MW384	25.200	Sidegradient	NO
MW387	32.800	Downgradie	nt NO
MW391	26.100	Downgradie	nt NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis
Calcium
UNITS: ug/L

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Chemical Oxygen Demand (COD) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from	
Upgradient Wells	

Well Number:	MW220	
Date Collected	Result	
10/14/2002	35.000	
1/15/2003	35.000	
4/10/2003	35.000	
7/14/2003	35.000	
10/13/2003	35.000	
1/13/2004	35.000	
4/13/2004	35.000	
7/21/2004	35.000	
Well Number:	MW394	
Date Collected	Result	
8/13/2002	35.000	

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data		
X= 35.000		
S = 0.000		
CV = 0.000		
K factor** = 2.523		
TL = 35.000		

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

35.000

35.000

35.000

35.000

35.000

35.000

35.000

Well No.	Result	Gradient	Result > TL?
MW221	23.000	Sidegradient	NO
MW222	29.200	Sidegradient	NO
MW223	25.100	Sidegradient	NO
MW224	37.600	Sidegradient	YES
MW369	18.200	Downgradie	nt NO
MW372	7.110	Downgradie	nt NO
MW384	27.100	Sidegradient	NO
MW387	190.00	Downgradie	nt YES
MW391	20.000	Downgradie	nt NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Chemical Oxygen Demand (COD) UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW224

MW387

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Chloride UNITS: URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	44.600
1/15/2003	43.200
4/10/2003	31.500
7/14/2003	30.800
10/13/2003	40.900
1/13/2004	40.800
4/13/2004	37.500
7/21/2004	40.800
Well Number:	MW394
Date Collected	Result
8/13/2002	60.400
9/16/2002	60.300

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data	
X= 49.044	
S= 11.278	
CV = 0.230	
K factor** = 2.523	
TL= 77.499	

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

58.000

60.700

62.900

58.100

58.200

56.000

Well No.	Result	Gradient	Result > TL?
MW221	37.500	Sidegradient	NO
MW222	32.800	Sidegradient	NO
MW223	36.900	Sidegradient	NO
MW224	36.400	Sidegradient	NO
MW369	28.700	Downgradie	nt NO
MW372	44.500	Downgradie	nt NO
MW384	42.900	Sidegradient	NO
MW387	42.000	Downgradie	nt NO
MW391	46,900	Downgradie	nt NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Chloride UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA cis-1,2-Dichloroethene UNITS: Ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from	
Upgradient Wells	

epgradient wens			
Well Number:	MW220		
Date Collected	Result		
10/14/2002	5.000		
1/15/2003	5.000		
4/10/2003	5.000		
7/14/2003	5.000		
10/13/2003	5.000		
1/13/2004	5.000		
4/13/2004	5.000		
7/21/2004	5.000		
Well Number:	MW394		
Date Collected	Result		
8/13/2002	5.000		
9/30/2002	5.000		
10/16/2002	5.000		
1/13/2003	5.000		
4/10/2003	5.000		

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data		
X= 5.000		
S = 0.000		
CV = 0.000		
K factor** - 2 523		

TL=5.000

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

5.000

5.000

5.000

Well No.	Result	Gradient	Result > TL?
MW221	1.000	Sidegradient	NO
MW222	1.000	Sidegradient	NO
MW223	1.000	Sidegradient	NO
MW224	1.000	Sidegradient	NO
MW369	1.000	Downgradier	nt NO
MW372	1.000	Downgradier	nt NO
MW384	1.000	Sidegradient	NO
MW387	0.420	Downgradier	nt NO
MW391	0.660	Downgradier	nt NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis ug/L URGA cis-1,2-Dichloroethene

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Cobalt UNITS: URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

ackground D pgradient W		Statistics on Background Data		Transformed l Data from Upg	_
Vell Number:	MW220	X= 0.016		Well Number:	MW220
ate Collected	Result	S= 0.040		Date Collected	LN(Result)
10/14/2002	0.004	CV= 2.440 K factor** = 2.523		10/14/2002	-5.497
1/15/2003	0.005	TL = 0.116		1/15/2003	-5.306
4/10/2003	0.003			4/10/2003	-5.846
7/14/2003	0.161	Because CV greater than 1, the		7/14/2003	-1.826
10/13/2003	0.023	logarithm of background and were calculated.	test well results	10/13/2003	-3.790
1/13/2004	0.005	were carcurated.		1/13/2004	-5.373
4/13/2004	0.001	Statistics on		4/13/2004	-6.908
7/21/2004	0.003	Transformed		7/21/2004	-5.937
ell Number:	MW394	Background Data		Well Number:	MW394
ate Collected	Result	X= -5.582		Date Collected	LN(Result)
8/13/2002	0.025	S= 1.573		8/13/2002	-3.689
9/16/2002	0.025	CV= -0.282		9/16/2002	-3.689
10/16/2002	0.001	K factor** = 2.523		10/16/2002	-6.908
1/13/2003	0.001	TL= -1.613		1/13/2003	-6.908
4/10/2003	0.001	111.013		4/10/2003	-6.908
7/16/2003	0.001			7/16/2003	-6.908
10/14/2003	0.001			10/14/2003	-6.908
1/13/2004	0.001			1/13/2004	-6.908

Third Quarter 2014 Data Collected in July
2014

Well No.	Result	Gradient	Result > TL?
MW221	0.001	Sidegradient	N/A
MW222	0.001	Sidegradient	N/A
MW223	0.001	Sidegradient	N/A
MW224	0.000	Sidegradient	N/A
MW369	0.007	Downgradie	nt N/A
MW372	0.000	Downgradie	nt N/A
MW384	0.000	Sidegradient	N/A
MW387	0.000	Downgradie	nt N/A
MW391	0.001	Downgradie	nt N/A

Transformed Third Quarter 2014 Data
Collected in July 2014

Well Number	LN(Result)	Result > TL?
MW221	-6.803	NO
MW222	-7.452	NO
MW223	-6.786	NO
MW224	-7.875	NO
MW369	-4.930	NO
MW372	-8.112	NO
MW384	-9.210	NO
MW387	-8.948	NO
MW391	-6.908	NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Cobalt UNITS: mg/L

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from
Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	368.000
1/15/2003	433.200
4/10/2003	489.000
7/14/2003	430.000
10/13/2003	346.000
1/13/2004	365.000
4/13/2004	416.000
7/21/2004	353.000
Well Number:	MW394
Date Collected	Result
8/13/2002	406.000

9/16/2002

1/13/2003

4/10/2003 7/16/2003

10/14/2003

1/13/2004

10/16/2002

Statistics on Background Data
X= 382.132
S= 107.134
CV = 0.280
K factor** = 2.523
TL = 652.432

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

418.000

411.000

422.000 420.000

438.000

395.000

3.910

Well No.	Result	Gradient	Result > TL?
MW221	391.00	Sidegradient	NO
MW222	370.00	Sidegradient	NO
MW223	409.00	Sidegradient	NO
MW224	452.00	Sidegradient	NO
MW369	370.00	Downgradie	nt NO
MW372	839.00	Downgradie	nt YES
MW384	521.00	Sidegradient	NO
MW387	534.00	Downgradie	nt NO
MW391	401.00	Downgradie	nt NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Conductivity UNITS: umho/cm

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Copper UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	0.021
1/15/2003	0.020
4/10/2003	0.020
7/14/2003	0.020
10/13/2003	0.020
1/13/2004	0.020
4/13/2004	0.020
7/21/2004	0.020
Well Number:	MW394
Date Collected	Result
8/13/2002	0.050
9/16/2002	0.050
10/16/2002	0.020

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data

X= 0.024 S= 0.010 CV= 0.429 K factor** = 2.523 TL= 0.050

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

0.020

0.020

0.020

0.020

0.020

Well No.	Result	Gradient	Result > TL?
MW221	0.006	Sidegradient	NO
MW222	0.001	Sidegradient	NO
MW223	0.001	Sidegradient	NO
MW224	0.001	Sidegradient	NO
MW369	0.001	Downgradie	nt NO
MW372	0.001	Downgradie	nt NO
MW384	0.001	Sidegradient	NO
MW387	0.001	Downgradier	nt NO
MW391	0.001	Downgradier	nt NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Copper UNITS: URGA mg/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Dissolved Oxygen UNITS: uRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from
Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	6.790
1/15/2003	7.250
4/10/2003	3.600
7/14/2003	0.940
10/13/2003	1.650
1/13/2004	3.480
4/13/2004	1.050
7/21/2004	4.460
Well Number:	MW394
Date Collected	Result
8/13/2002	6.090
9/16/2002	3.850
10/16/2002	5.110

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data
X= 3.784 S= 1.887 CV= 0.499
K factor** = 2.523 TL= 8.545

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

3.830

4.150

1.830

3.330

3.140

Well No.	Result	Gradient	Result > TL?
MW221	4.420	Sidegradient	NO
MW222	2.490	Sidegradient	NO
MW223	1.490	Sidegradient	NO
MW224	3.640	Sidegradient	NO
MW369	2.290	Downgradier	nt NO
MW372	1.260	Downgradier	nt NO
MW384	4.220	Sidegradient	NO
MW387	3.690	Downgradier	nt NO
MW391	3.470	Downgradier	nt NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Dissolved Oxygen UNITS: URGA mg/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from
Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	208.000
1/15/2003	257.000
4/10/2003	288.000
7/14/2003	262.000
10/13/2003	197.000
1/13/2004	198.000
4/13/2004	245.000
7/21/2004	204.000
Well Number:	MW394
Date Collected	Result

Statistics on
Background Data
X= 232.688
S= 27.490
CV= 0.118

K factor** = 2.523 TL= 302.045

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

8/13/2002 247.000 259.000 9/16/2002 10/16/2002 201.000 1/13/2003 228.000 4/10/2003 249.000 7/16/2003 240.000 10/14/2003 230.000 1/13/2004 210.000

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result > TL?
MW221	199.00	Sidegradient	NO
MW222	201.00	Sidegradient	NO
MW223	240.00	Sidegradient	NO
MW224	383.00	Sidegradient	YES
MW369	150.00	Downgradier	nt NO
MW372	314.00	Downgradier	nt YES
MW384	236.00	Sidegradient	NO
MW387	311.00	Downgradier	nt YES
MW391	179.00	Downgradier	nt NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Dissolved Solids UNITS: URGA mg/L

Conclusion of Statistical Analysis on Historical Data
The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.
MW224
MW372
MW387

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Iron UNITS: URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

ckground D gradient W		Statistics on Background Data	Transformed Backgroun Data from Upgradient V
ell Number:	MW220	X= 0.897	Well Number: MW220
te Collected	Result	S= 1.050	Date Collected LN(Resu
0/14/2002	0.200	CV= 1.170 K factor** = 2.523	10/14/2002 -1.609
/15/2003	0.200	TL= 3.545	1/15/2003 -1.609
/10/2003	0.429		4/10/2003 -0.846
7/14/2003	4.330	Because CV greater than 1, the natural	
0/13/2003	1.810	logarithm of background and test we were calculated.	10/13/2003 0.593
/13/2004	0.793	were carearated.	1/13/2004 -0.232
/13/2004	0.130	Statistics on	4/13/2004 -2.040
/21/2004	0.382	Transformed	7/21/2004 -0.962
ell Number:	MW394	Background Data	Well Number: MW394
te Collected	Result	X= -0.565	Date Collected LN(Resu
8/13/2002	1.340	S= 0.951	8/13/2002 0.293
9/16/2002	0.328	CV= -1.683	9/16/2002 -1.115
0/16/2002	1.380	K factor** = 2.523	10/16/2002 0.322
/13/2003	1.300	TL= 1.834	1/13/2003 0.262
/10/2003	0.494	111- 1:007	4/10/2003 -0.705
7/16/2003	0.620		7/16/2003 -0.478
0/14/2003	0.370		10/14/2003 -0.994
/13/2004	0.251		1/13/2004 -1.382

Third Quarter 2014 Data Collected	in July
2014	

Well No.	Result	Gradient	Result > TL?
MW221	0.185	Sidegradient	N/A
MW222	0.164	Sidegradient	N/A
MW223	0.049	Sidegradient	N/A
MW224	0.066	Sidegradient	N/A
MW369	0.483	Downgradien	t N/A
MW372	0.520	Downgradien	t N/A
MW384	0.328	Sidegradient	N/A
MW387	0.088	Downgradien	t N/A
MW391	0.098	Downgradien	t N/A

Transformed Third Quarter 2014 Data		
Collected in July 2014		

Well Number	LN(Result)	Result > TL?
MW221	-1.687	NO
MW222	-1.808	NO
MW223	-3.016	NO
MW224	-2.714	NO
MW369	-0.728	NO
MW372	-0.654	NO
MW384	-1.115	NO
MW387	-2.428	NO
MW391	-2.320	NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Iron UNITS: mg/L

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Magnesium UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from
Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	9.160
1/15/2003	10.000
4/10/2003	10.800
7/14/2003	14.700
10/13/2003	9.030
1/13/2004	8.490
4/13/2004	9.700
7/21/2004	8.060
Well Number:	MW394
Date Collected	Result

Statistics on Background Data
X= 10.796
S= 1.703
CV= 0.158
K factor** = 2.523
TL= 15.092

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

4/10/2003 11.700 7/16/2003 12.000 10/14/2003 12.200 1/13/2004 11.400

8/13/2002

9/16/2002

10/16/2002

1/13/2003

Third Quarter 2014 Data Collected in July 2014

11.800

12.100

11.300

10.300

Well No.	Result	Gradient	Result > TL?
MW221	8.620	Sidegradient	NO
MW222	8.170	Sidegradient	NO
MW223	8.750	Sidegradient	NO
MW224	9.840	Sidegradient	NO
MW369	5.660	Downgradier	nt NO
MW372	21.600	Downgradier	nt YES
MW384	9.850	Sidegradient	NO
MW387	13.700	Downgradier	nt NO
MW391	11.200	Downgradier	nt NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis
Magnesium
UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statistics on Background Data		Transformed l Data from Upg	
Well Number:	MW220	X= 0.287		Well Number:	MW220
Date Collected	Result	S= 0.619		Date Collected	LN(Result)
10/14/2002	0.031	CV= 2.156 K factor** = 2.523		10/14/2002	-3.487
1/15/2003	0.029	TL= 1.848		1/15/2003	-3.537
4/10/2003	0.014			4/10/2003	-4.290
7/14/2003	2.540	Because CV greater than 1, the		7/14/2003	0.932
10/13/2003	0.378	logarithm of background and test	logarithm of background and test well results		-0.973
1/13/2004	0.159	were carculated.	were carculated.	1/13/2004	-1.839
4/13/2004	0.007	Statistics on		4/13/2004	-4.952
7/21/2004	0.084	Transformed		7/21/2004	-2.476
Vell Number:	MW394	Background Data		Well Number:	MW394
ate Collected	Result	X= -2.455		Date Collected	LN(Result)
8/13/2002	0.542	S= 1.619		8/13/2002	-0.612
9/16/2002	0.155	CV= -0.659		9/16/2002	-1.864
10/16/2002	0.103	K factor** = 2.523		10/16/2002	-2.273
1/13/2003	0.128	TL= 1.630		1/13/2003	-2.056
4/10/2003	0.005	11_ 1.050		4/10/2003	-5.298
7/16/2003	0.272			7/16/2003	-1.302
10/14/2003	0.080			10/14/2003	-2.532
1/13/2004	0.066			1/13/2004	-2.721

Third Quarter	2014 Data	Collected	in July
2014			

Well No.	Result	Gradient	Result > TL
MW221	0.004	Sidegradient	N/A
MW222	0.013	Sidegradient	N/A
MW223	0.083	Sidegradient	N/A
MW224	0.008	Sidegradient	N/A
MW369	0.033	Downgradien	t N/A
MW372	0.017	Downgradien	t N/A
MW384	0.015	Sidegradient	N/A
MW387	0.003	Downgradien	t N/A
MW391	0.005	Downgradien	t N/A

Transformed Third Quarter 2014 Data Collected in July 2014

Well Number	LN(Result)	Result > TL?
MW221	-5.435	NO
MW222	-4.366	NO
MW223	-2.488	NO
MW224	-4.859	NO
MW369	-3.408	NO
MW372	-4.098	NO
MW384	-4.180	NO
MW387	-5.948	NO
MW391	-5.298	NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Manganese UNITS: mg/L

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Molybdenum UNITS: uRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statistics on Background Data		Transformed Backgrou Data from Upgradient	
Vell Number:	MW220	X= 0.006		Well Number:	MW220
Date Collected	Result	S= 0.008		Date Collected	LN(Result)
10/14/2002	0.006	CV= 1.261 K factor** = 2.523		10/14/2002	-5.189
1/15/2003	0.010	TL = 0.026		1/15/2003	-4.622
4/10/2003	0.011			4/10/2003	-4.519
7/14/2003	0.002	Because CV greater than 1, th		7/14/2003	-6.012
10/13/2003	0.006	logarithm of background and were calculated.	test well results	10/13/2003	-5.174
1/13/2004	0.006	were careurated.		1/13/2004	-5.164
4/13/2004	0.001	Statistics on		4/13/2004	-6.908
7/21/2004	0.004	Transformed		7/21/2004	-5.542
Well Number:	MW394	Background Data		Well Number:	MW394
ate Collected	Result	X= -5.747		Date Collected	LN(Result)
8/13/2002	0.025	S= 1.205		8/13/2002	-3.689
9/16/2002	0.025	CV= -0.210		9/16/2002	-3.689
10/16/2002	0.001	K factor** = 2.523		10/16/2002	-6.908
1/13/2003	0.001	TL= -2.708		1/13/2003	-6.908
4/10/2003	0.001	11/2.700		4/10/2003	-6.908
7/16/2003	0.001			7/16/2003	-6.908
10/14/2003	0.001			10/14/2003	-6.908
1/13/2004	0.001			1/13/2004	-6.908

Third Quarter 2014 Data Collected in	in July
2014	

Well No.	Result	Gradient	Result > TL?
MW221	0.006	Sidegradient	N/A
MW222	0.000	Sidegradient	N/A
MW223	0.005	Sidegradient	N/A
MW224	0.001	Sidegradient	N/A
MW369	0.000	Downgradier	nt N/A
MW372	0.000	Downgradier	nt N/A
MW384	0.000	Sidegradient	N/A
MW387	0.001	Downgradier	nt N/A
MW391	0.001	Downgradier	nt N/A

Transformed Third Quarter 2014 Data
Collected in July 2014

Well Number	LN(Result)	Result > TL?
MW221	-5.174	NO
MW222	-8.422	NO
MW223	-5.310	NO
MW224	-7.264	NO
MW369	-8.181	NO
MW372	-7.663	NO
MW384	-8.568	NO
MW387	-7.601	NO
MW391	-7.601	NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Molybdenum UNITS: mg/L

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Nickel UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells		Statistics on Background Data	Transformed Background Data from Upgradient Wel		
ell Number:	MW220	X= 0.127		Well Number:	MW220
ate Collected	Result	S= 0.228		Date Collected	LN(Result)
10/14/2002	0.418	CV= 1.790 K factor** = 2.523		10/14/2002	-0.872
1/15/2003	0.738	R = 2.525 $TL = 0.701$		1/15/2003	-0.304
4/10/2003	0.544			4/10/2003	-0.609
7/14/2003	0.106	Because CV greater than 1, the		7/14/2003	-2.244
10/13/2003	0.053	logarithm of background and te were calculated.	st well results	10/13/2003	-2.939
1/13/2004	0.021	were careurated.		1/13/2004	-3.868
4/13/2004	0.005	Statistics on		4/13/2004	-5.298
7/21/2004	0.019	Transformed		7/21/2004	-3.953
ell Number:	MW394	Background Data		Well Number:	MW394
ate Collected	Result	X= -3.617		Date Collected	LN(Result)
8/13/2002	0.050	S= 1.837		8/13/2002	-2.996
9/16/2002	0.050	CV= -0.508		9/16/2002	-2.996
10/16/2002	0.005	K factor** = 2.523		10/16/2002	-5.298
1/13/2003	0.005	TL= 1.019		1/13/2003	-5.298
4/10/2003	0.005	11/- 1.017		4/10/2003	-5.298
7/16/2003	0.005			7/16/2003	-5.298
10/14/2003	0.005			10/14/2003	-5.298
1/13/2004	0.005			1/13/2004	-5.298

Third Quarter 2014 Data	Collected in July
2014	

Well No.	Result	Gradient	Result > TL
MW221	0.118	Sidegradient	N/A
MW222	0.162	Sidegradient	N/A
MW223	0.683	Sidegradient	N/A
MW224	0.007	Sidegradient	N/A
MW369	0.011	Downgradien	t N/A
MW372	0.002	Downgradien	t N/A
MW384	0.001	Sidegradient	N/A
MW387	0.001	Downgradien	t N/A
MW391	0.001	Downgradien	t N/A

Transformed Third Quarter 2014 Data
Collected in July 2014

Well Number	LN(Result)	Result > TL?
MW221	-2.137	NO
MW222	-1.820	NO
MW223	-0.381	NO
MW224	-5.027	NO
MW369	-4.483	NO
MW372	-6.463	NO
MW384	-6.822	NO
MW387	-6.638	NO
MW391	-6.991	NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Nickel UNITS: mg/L

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Oxidation-Reduction Potential UNITS: WV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	205.000
1/15/2003	1.950
4/10/2003	203.000
7/14/2003	30.000
10/13/2003	107.000
1/13/2004	295.000
4/13/2004	190.000
7/21/2004	319.000
Well Number:	MW394
Date Collected	Result
8/13/2002	90.000

9/16/2002 10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on		
Background Data		
X= 179.872		
S= 86.318		
CV = 0.480		
K factor** = 2.523		

TL= 397.652

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

240.000

185.000

220.000

196.000

172.000

175.000

249.000

Well No.	Result	Gradient	Result > TL?
MW221	414.00	Sidegradient	YES
MW222	357.00	Sidegradient	NO
MW223	354.00	Sidegradient	NO
MW224	343.00	Sidegradient	NO
MW369	331.00	Downgradien	t NO
MW372	126.00	Downgradien	t NO
MW384	331.00	Sidegradient	NO
MW387	334.00	Downgradien	t NO
MW391	348.00	Downgradien	t NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Oxidation-Reduction Potential UNITS: WV

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW221

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA pH UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

10	
Well Number:	MW220
Date Collected	Result
10/14/2002	6.040
1/15/2003	6.310
4/10/2003	6.500
7/14/2003	6.300
10/13/2003	6.340
1/13/2004	6.330
4/13/2004	6.300
7/21/2004	5.900
Well Number:	MW394
Well Number: Date Collected	MW394 Result
Date Collected	Result
Date Collected 8/13/2002	Result 5.800
Date Collected 8/13/2002 9/30/2002	Result 5.800 5.930
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5.800 5.930 5.420
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5.800 5.930 5.420 6.000
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.800 5.930 5.420 6.000 6.040
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 5.800 5.930 5.420 6.000 6.040 6.200

Statistics on	
Background Data	

X= 6.138 S= 0.282 CV= 0.046 K factor** = 2.904 TL= 6.957 LL= 5.318

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result >TL?	Result <ll?< th=""></ll?<>
MW221	6.180	Sidegrad	ient NO	NO
MW222	6.180	Sidegrad	ient NO	NO
MW223	6.210	Sidegrad	ient NO	NO
MW224	6.190	Sidegrad	ient NO	NO
MW369	6.180	Downgrad	dient NO	NO
MW372	6.160	Downgrad	dient NO	NO
MW384	6.210	Sidegrad	ient NO	NO
MW387	6.210	Downgrad	dient NO	NO
MW391	6.160	Downgrad	dient NO	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Radium-226 UNITS: URGA pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

ground D adient W		Statistics on Background Data		Transformed l Data from Up	
ll Number:	MW220	X = 0.031		Well Number:	MW220
te Collected 10/14/2002 1/15/2003 10/13/2003 1/13/2004 4/13/2004 7/21/2004 10/11/2004 1/20/2005 ell Number:	Result -0.804 0.000 0.389 -0.120 0.159 0.382 0.211 0.229 MW394	S= 0.383 CV= 12.290 K factor** = 2.523 TL= 0.998 Because CV greater tha logarithm of backgroun were calculated. Statistics on Transformed Background Data		Date Collected 10/14/2002 1/15/2003 10/13/2003 1/13/2004 4/13/2004 7/21/2004 10/11/2004 1/20/2005	#Func! #Func! -0.944 #Func! -1.839 -0.962 -1.556 -1.474
ate Collected	Result	X = error	-	Well Number: Date Collected	MW394 LN(Resul
10/16/2002	0.584	S = error		10/16/2002	-0.538
1/13/2003	-0.839	CV = error		1/13/2003	#Func!
10/14/2003	0.033	K factor** = 2.523		10/14/2003	-3.427
1/13/2004	-0.004	TL# = -0.538		1/13/2004	#Func!
4/12/2004	-0.079		1	4/12/2004	#Func!
7/20/2004	0.290	# Because the natural lo		7/20/2004	-1.238
10/12/2004	0.037	all background values, equal to the maximum l		10/12/2004	-3.308
1/18/2005	0.032	equal to the maximum	background value.	1/18/2005	-3.445

Third (Quarter 2014 Data Collected in July
2014	

Well No.	Result	Gradient	Result > TL?
MW221	0.240	Sidegradient	N/A
MW222	0.307	Sidegradient	N/A
MW223	0.017	Sidegradient	N/A
MW224	0.617	Sidegradient	N/A
MW369	0.502	Downgradier	nt N/A
MW372	0.597	Downgradier	nt N/A
MW384	0.231	Sidegradient	N/A
MW387	0.221	Downgradier	nt N/A
MW391	0.297	Downgradier	nt N/A

Transformed Third Quarter 2014 Data Collected in July 2014

Well Number	LN(Result)	Result >TL?	
MW221	-1.427	NO	
MW222	-1.181	NO	
MW223	-4.069	NO	
MW224	-0.483	YES	
MW369	-0.689	NO	
MW372	-0.516	YES	
MW384	-1.465	NO	
MW387	-1.510	NO	
MW391	-1.214	NO	

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Radium-226 UNITS: URGA pCi/L

Conclusion of Statistical Analysis on Transformed Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW224

MW372

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Sodium UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from	
Upgradient Wells	

Well Number:	MW220
Date Collected	Result
10/14/2002	35.400
1/15/2003	40.600
4/10/2003	51.000
7/14/2003	58.200
10/13/2003	38.100
1/13/2004	37.000
4/13/2004	43.200
7/21/2004	33.800
Well Number:	MW394
Date Collected	Result

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data
X= 36.363
S= 8.666
CV = 0.238

K factor** = 2.523 TL= 58.227

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

32.900

29.900

29.000

27.100

24.800

35.600

33.900

31.300

Well No.	Result	Gradient	Result > TL?
MW221	42.400	Sidegradient	NO
MW222	44.600	Sidegradient	NO
MW223	43.500	Sidegradient	NO
MW224	51.700	Sidegradient	NO
MW369	48.800	Downgradie	nt NO
MW372	60.700	Downgradie	nt YES
MW384	51.000	Sidegradient	NO
MW387	48.300	Downgradie	nt NO
MW391	34.200	Downgradie	nt NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis
Sodium
UNITS: ug/L

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW372

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Sulfate UNITS: URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	10.400
1/15/2003	9.800
4/10/2003	15.400
7/14/2003	14.900
10/13/2003	13.500
1/13/2004	10.300
4/13/2004	14.300
7/21/2004	10.500
Well Number:	MW394
Date Collected	Result

8/13/2002

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data
X= 10.481
S= 2.648
CV = 0.253
K factor** = 2.523
TL= 17.161

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

11.200

8.300

8.000

8.500

7.900

8.400

8.200

8.100

Well No.	Result	Gradient Re	esult > TL?
MW221	14.200	Sidegradient	NO
MW222	11.100	Sidegradient	NO
MW223	16.700	Sidegradient	NO
MW224	17.000	Sidegradient	NO
MW369	8.170	Downgradient	NO
MW372	170.00	Downgradient	YES
MW384	20.600	Sidegradient	YES
MW387	30.400	Downgradient	YES
MW391	17.400	Downgradient	YES

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Sulfate UNITS: URGA mg/L

Conclusion of Statistical Analysis on Historical Data
The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.
MW372
MW384
MW387
MW391

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Technetium-99 UNITS: URGA pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from	
Upgradient Wells	

Well Number:	MW220
Date Collected	Result
10/14/2002	19.700
1/15/2003	26.100
4/10/2003	3.560
7/14/2003	0.000
10/13/2003	21.000
1/13/2004	6.320
4/13/2004	3.000
7/21/2004	14.600
Well Number:	MW394
Date Collected	Result

Statistics on Background Data
X= 9.354
S= 9.280
CV= 0.992
K factor** = 2.523
TL= 32.768

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

1/13/2003 18.300 4/10/2003 -1.450 7/16/2003 -1.710 10/14/2003 18.300 1/13/2004 0.000

8/13/2002

9/16/2002

10/16/2002

Third Quarter 2014 Data Collected in July 2014

14.000

5.450

2.490

Well No.	Result	Gradient	Result > TL?
MW221	2.710	Sidegradient	NO
MW222	3.290	Sidegradient	NO
MW223	2.570	Sidegradient	NO
MW224	7.000	Sidegradient	NO
MW369	15.800	Downgradie	nt NO
MW372	26.600	Downgradie	nt NO
MW384	165.00	Sidegradient	YES
MW387	200.00	Downgradie	nt YES
MW391	9.980	Downgradie	nt NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Technetium-99 UNITS: URGA pCi/L

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW384

MW387

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Total Organic Carbon (TOC) UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	1.000
1/15/2003	1.100
4/10/2003	1.000
7/14/2003	3.300
10/13/2003	1.800
1/13/2004	1.000
4/13/2004	2.000
7/21/2004	3.100
Well Number:	MW394
Date Collected	Result
8/13/2002	1.300
9/16/2002	1.000
10/16/2002	1.000

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on
Background Data
X= 1.494
S = 0.737
CV= 0.493
K factor** = 2.523

TL = 3.353

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

1.600

1.000

1.400

1.300

1.000

Well No.	Result	Gradient	Result > TL?
MW221	1.100	Sidegradient	NO
MW222	1.250	Sidegradient	NO
MW223	0.993	Sidegradient	NO
MW224	1.190	Sidegradient	NO
MW369	1.260	Downgradie	nt NO
MW372	1.380	Downgradie	nt NO
MW384	1.260	Sidegradient	NO
MW387	1.430	Downgradie	nt NO
MW391	0.828	Downgradie	nt NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Total Organic Carbon (TOC) UNITS: URGA mg/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Total Organic Halides (TOX) UNITS: URGA ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

ackground D Jpgradient W		Statistics on Background Data		Transformed l Data from Upg	_
Vell Number:	MW220	X= 63.475		Well Number:	MW220
ate Collected	Result	S= 163.135		Date Collected	LN(Result)
10/14/2002	50.000	CV= 2.570 K factor** = 2.523		10/14/2002	3.912
1/15/2003	10.000	TL = 475.063		1/15/2003	2.303
4/10/2003	10.000			4/10/2003	2.303
7/14/2003	10.000	Because CV greater than 1,		7/14/2003	2.303
10/13/2003	10.000	logarithm of background an were calculated.	d test well results	10/13/2003	2.303
1/13/2004	10.000	were calculated.		1/13/2004	2.303
4/13/2004	10.000	Statistics on		4/13/2004	2.303
7/21/2004	10.000	Transformed		7/21/2004	2.303
ell Number:	MW394	Background Data		Well Number:	MW394
ate Collected	Result	X= 3.103		Date Collected	LN(Result)
8/13/2002	50.000	S= 1.145		8/13/2002	3.912
9/16/2002	672.000	CV=0.369		9/16/2002	6.510
10/16/2002	50.000	K factor** = 2.523		10/16/2002	3.912
1/13/2003	36.100	TL= 5.992		1/13/2003	3.586
4/10/2003	10.000	11_ 3.772		4/10/2003	2.303
7/16/2003	42.700			7/16/2003	3.754
10/14/2003	22.000			10/14/2003	3.091
1/13/2004	12.800			1/13/2004	2.549

Third Quarter 2014 Data Collecte	ed in July
2014	

Well No.	Result	Gradient	Result > TL?
MW221	4.060	Sidegradient	N/A
MW222	10.000	Sidegradient	N/A
MW223	6.260	Sidegradient	N/A
MW224	7.400	Sidegradient	N/A
MW369	20.600	Downgradier	nt N/A
MW372	11.100	Downgradier	nt N/A
MW384	8.700	Sidegradient	N/A
MW387	6.920	Downgradier	nt N/A
MW391	11.000	Downgradier	nt N/A

Transformed Third Quarter 2014 Data
Collected in July 2014

Well Number	LN(Result)	Result > TL?
MW221	1.401	NO
MW222	2.303	NO
MW223	1.834	NO
MW224	2.001	NO
MW369	3.025	NO
MW372	2.407	NO
MW384	2.163	NO
MW387	1.934	NO
MW391	2.398	NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Total Organic Halides (TOX) UNITS: URGA ug/L

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Trichloroethene UNITS: URGA ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	1.000
1/15/2003	1.000
4/10/2003	1.000
7/14/2003	1.000
10/13/2003	1.000
1/13/2004	1.000
4/13/2004	1.000
7/21/2004	1.000
Well Number:	MW394
Date Collected	Result
8/13/2002	16.000

9/30/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data
X= 8.813
S= 8.376
CV= 0.951
K factor** = 2.523
LTL= 29.946

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

20.000

17.000

15.000

10.000

19.000

20.000

16.000

Well No.	Result	Gradient	Result > TL?
MW221	1.000	Sidegradient	NO
MW222	1.000	Sidegradient	NO
MW223	1.000	Sidegradient	NO
MW224	1.000	Sidegradient	NO
MW369	0.480	Downgradie	nt NO
MW372	9.820	Downgradie	nt NO
MW384	0.600	Sidegradient	NO
MW387	0.820	Downgradie	nt NO
MW391	13.600	Downgradie	nt NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Trichloroethene UNITS: URGA ug/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Vanadium UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	0.020
1/15/2003	0.020
4/10/2003	0.020
7/14/2003	0.020
10/13/2003	0.020
1/13/2004	0.020
4/13/2004	0.020
7/21/2004	0.020
Well Number:	MW394
Date Collected	Result
8/13/2002	0.025
9/16/2002	0.025
10/16/2002	0.020
1/13/2003	0.020

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data

X= 0.021 S= 0.002 CV= 0.083 K factor** = 2.523 TL= 0.025

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

0.020

0.020

0.020

0.020

Well No.	Result	Gradient	Result > TL?
MW221	0.005	Sidegradient	NO
MW222	0.005	Sidegradient	NO
MW223	0.005	Sidegradient	NO
MW224	0.001	Sidegradient	NO
MW369	0.005	Downgradie	nt NO
MW372	0.005	Downgradie	nt NO
MW384	0.005	Sidegradient	NO
MW387	0.005	Downgradier	nt NO
MW391	0.005	Downgradier	nt NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Vanadium UNITS: mg/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Zinc UNITS: URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	0.025
1/15/2003	0.035
4/10/2003	0.035
7/14/2003	0.039
10/13/2003	0.026
1/13/2004	0.020
4/13/2004	0.020
7/21/2004	0.020
Well Number:	MW394
Date Collected	Result
8/13/2002	0.100

9/16/2002

10/16/2002

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data
X= 0.036
S = 0.026
CV = 0.722
K factor** = 2.523
TI _ 0 101

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

0.100

0.025

0.035

0.035

0.020

0.020

0.020

Well No.	Result	Gradient	Result > TL?
MW221	0.010	Sidegradient	NO
MW222	0.004	Sidegradient	NO
MW223	0.004	Sidegradient	NO
MW224	0.010	Sidegradient	NO
MW369	0.004	Downgradie	nt NO
MW372	0.010	Downgradie	nt NO
MW384	0.004	Sidegradient	NO
MW387	0.005	Downgradie	nt NO
MW391	0.010	Downgradie	nt NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Zinc UNITS: URGA mg/L

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	0.200
9/16/2002	0.200
10/16/2002	0.000
1/13/2003	0.737
4/10/2003	0.200
7/16/2003	0.200
10/14/2003	0.200
1/13/2004	0.200
Well Number:	MW397
Date Collected	Result
8/13/2002	0.824
9/16/2002	0.200
10/17/2002	0.000
1/13/2003	0.363
4/8/2003	0.200

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data

X= 0.258 S= 0.221 CV= 0.856 K factor** = 2.523 TL= 0.815

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

0.200

0.200

0.200

1	Well No.	Result	Gradient	Result > TL?
I	MW370	0.050	Downgradier	nt NO
I	MW373	0.050	Downgradier	nt NO
ľ	MW385	0.050	Sidegradient	NO
ľ	MW388	0.050	Downgradier	nt NO
I	MW392	0.050	Downgradier	nt NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Beta activity UNITS: LRGA pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	1.090
9/16/2002	5.790
10/16/2002	6.820
1/13/2003	5.010
4/10/2003	6.100
7/16/2003	8.510
10/14/2003	4.990
1/13/2004	6.580
Well Number:	MW397
Date Collected	Result
8/13/2002	9.570
9/16/2002	11.000

10/17/2002 1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on
Background Data
X= 7.183
S= 2.612
CV= 0.364
K factor** = 2.523

TL = 13.773

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

9.300

8.630

10.000

6.890

10.100

4.550

Well No.	Result	Gradient Resu	ılt > TL?
MW370	19.200	Downgradient	YES
MW373	16.700	Downgradient	YES
MW385	90.000	Sidegradient	YES
MW388	98.400	Downgradient	YES
MW392	5.290	Downgradient	NO

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW370

MW373

MW385

MW388

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Boron UNITS: LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells Well Number: MW395		Statistics on Background Data			
		X= 0.650	X= 0.650]
Collected	Result	S= 0.805		Date Collected	
13/2002	2.000	CV= 1.238 K factor** = 2.523		8/13/2002	
16/2002	2.000	TL= 2.681		9/16/2002	
16/2002	0.200			10/16/2002	
3/2003	0.200	Because CV greater than 1, t		1/13/2003	
/2003	0.200	logarithm of background and were calculated.	test well results	4/10/2003	
2003	0.200	were carculated.	were carculated.	7/16/2003	
2003	0.200	Statistics on		10/14/2003	
004	0.200	Transformed		1/13/2004	
Number:	MW397	Background Data		Well Number:	
ollected	Result	X= -1.034		Date Collected	
/2002	2.000	S= 1.030		8/13/2002	
/2002	2.000	CV= -0.996		9/16/2002	
7/2002	0.200	K factor** = 2.523		10/17/2002	
003	0.200	TL= 1.564		1/13/2003	
3	0.200	11/- 1.007		4/8/2003	
003	0.200			7/16/2003	
003	0.200			10/14/2003	
ļ	0.200			1/13/2004	

Third Quarter 2014 Data Collect	ted in July
2014	

Well No.	Result	Gradient	Result > TL?
MW370	0.029	Downgradien	nt N/A
MW373	1.670	Downgradier	nt N/A
MW385	0.012	Sidegradient	N/A
MW388	0.021	Downgradier	nt N/A
MW392	0.027	Downgradier	nt N/A

Transformed Third Quarter 2014 Data Collected in July 2014

Well Number	LN(Result)	Result > TL?
MW370	-3.547	NO
MW373	0.513	NO
MW385	-4.406	NO
MW388	-3.882	NO
MW392	-3.601	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Bromide UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395	
Date Collected	Result	
8/13/2002	1.000	
9/16/2002	1.000	
10/16/2002	1.000	
1/13/2003	1.000	
4/10/2003	1.000	
7/16/2003	1.000	
10/14/2003	1.000	
1/13/2004	1.000	
1/13/2004 Well Number:	1.000 MW397	
-,,		
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	
Well Number: Date Collected 8/13/2002	MW397 Result 1.000	
Well Number: Date Collected 8/13/2002 9/16/2002	MW397 Result 1.000 1.000	
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002	MW397 Result 1.000 1.000 1.000	
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	MW397 Result 1.000 1.000 1.000 1.000	

10/14/2003

1/13/2004

Statistics on Background Data

X= 1.000 S= 0.000 CV= 0.000 K factor** = 2.523 TL= 1.000

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

1.000

1.000

Well No.	Result	Gradient	Result > TL?
MW370	0.529	Downgradier	nt NO
MW373	0.608	Downgradier	nt NO
MW385	0.265	Sidegradient	NO
MW388	0.394	Downgradier	nt NO
MW392	0.592	Downgradier	nt NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	32.200
9/16/2002	33.000
10/16/2002	0.030
1/13/2003	32.100
4/10/2003	40.200
7/16/2003	32.400
10/14/2003	33.900
1/13/2004	31.200
Well Number:	MW397
Date Collected	Result

8/13/2002

9/16/2002 10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data

X= 23.103 S= 11.538 CV= 0.499 K factor** = 2.523 TL= 52.213

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

19.400 19.000

0.018

17.800

20.300

19.400

19.900

18.800

Well No.	Result	Gradient	Result > TL?
MW370	26.100	Downgradien	t NO
MW373	78.400	Downgradien	t YES
MW385	27.600	Sidegradient	NO
MW388	26.100	Downgradien	t NO
MW392	27.300	Downgradien	t NO

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW373

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Chemical Oxygen Demand (COD) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	35.000
9/16/2002	35.000
10/16/2002	35.000
1/13/2003	35.000
4/10/2003	35.000
7/16/2003	35.000
10/14/2003	35.000
1/13/2004	35.000
Well Number:	MW397
Date Collected	Result
8/13/2002	40.000

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data		
Dackground Data		
X= 35.313		
S = 1.250		
CV = 0.035		
K factor** = 2.523		

TL = 38.466

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

35.000

35.000

35.000

35.000

35.000

35.000

35.000

Well No.	Result	Gradient Re	esult > TL?
MW370	51.600	Downgradient	YES
MW373	11.600	Downgradient	NO
MW385	14.600	Sidegradient	NO
MW388	23.000	Downgradient	NO
MW392	20.000	Downgradient	NO

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW370

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Chloride UNITS: LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	62.200
9/16/2002	64.700
10/16/2002	62.200
1/13/2003	63.500
4/10/2003	64.100
7/16/2003	64.000
10/14/2003	63.200
1/13/2004	60.600
Well Number:	MW397
Date Collected	Result
8/13/2002	38.900
9/16/2002	39.800
10/17/2002	39.300
1/13/2003	40.500

4/8/2003 7/16/2003

10/14/2003

1/13/2004

Statistics on		
Background Data		
X= 51.844		
S= 11.652		

S= 11.652 CV= 0.225 K factor** = 2.523 TL= 81.242

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

42.100

42.000

40.800

41.600

Well No.	Result	Gradient	Result > TL?
MW370	39.500	Downgradier	nt NO
MW373	44.200	Downgradier	nt NO
MW385	28.100	Sidegradient	NO
MW388	34.700	Downgradier	nt NO
MW392	49.000	Downgradier	nt NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA cis-1,2-Dichloroethene UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

CHS
MW395
Result
5.000
5.000
5.000
5.000
5.000
5.000
5.000
5.000
MW397
Result
5.000
5.000
5.000
5.000
5.000
5.000

10/14/2003

1/13/2004

Statistics on
Background Data

X= 5.000 S= 0.000 CV= 0.000 K factor** = 2.523 TL= 5.000

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

5.000

5.000

Well No.	Result	Gradient	Result > TL?
MW370	1.000	Downgradier	nt NO
MW373	0.320	Downgradier	nt NO
MW385	1.000	Sidegradient	NO
MW388	0.350	Downgradier	nt NO
MW392	0.840	Downgradier	nt NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Upgradient W		Statistics on Background Data			Transformed Background Data from Upgradient Wells		
Well Number:	MW395	X=0.007		Well Number:	MW395		
Date Collected	Result	S= 0.011		Date Collected	LN(Result)		
8/13/2002	0.025	CV= 1.515 K factor** = 2.523		8/13/2002	-3.689		
9/16/2002	0.025	TL = 0.034		9/16/2002	-3.689		
10/16/2002	0.001			10/16/2002	-6.908		
1/13/2003	0.001	Because CV greater tha	· -	1/13/2003	-6.516		
4/10/2003	0.002	logarithm of backgroun were calculated.	d and test well results	4/10/2003	-6.496		
7/16/2003	0.001	were caretrated.	•	7/16/2003	-6.908		
10/14/2003	0.001	Statistics on		10/14/2003	-6.908		
1/13/2004	0.001	Transformed		1/13/2004	-6.908		
Well Number:	MW397	Background Data		Well Number:	MW397		
Date Collected	Result	X = -6.053		Date Collected	LN(Result)		
8/13/2002	0.025	S= 1.416		8/13/2002	-3.689		
9/16/2002	0.025	CV = -0.234		9/16/2002	-3.689		
10/17/2002	0.001	K factor** = 2.523		10/17/2002	-6.908		
1/13/2003	0.001	TI.= -2.480		1/13/2003	-6.908		
4/8/2003	0.001	1L2.400		4/8/2003	-6.908		
7/16/2003	0.001			7/16/2003	-6.908		
10/14/2003	0.001			10/14/2003	-6.908		
1/13/2004	0.001			1/13/2004	-6.908		

Third Quarter 2014 Data (Collected in July
2014	

Well No.	Result	Gradient	Result > TL?
MW370	0.001	Downgradien	nt N/A
MW373	0.000	Downgradien	nt N/A
MW385	0.001	Sidegradient	N/A
MW388	0.000	Downgradien	nt N/A
MW392	0.000	Downgradien	nt N/A

Transformed Third Quarter 2014 Data Collected in July 2014

Well Number	LN(Result)	Result > TL?
MW370	-7.562	NO
MW373	-8.805	NO
MW385	-6.908	NO
MW388	-9.210	NO
MW392	-8.047	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	405.000
9/16/2002	401.000
10/16/2002	392.000
1/13/2003	404.000
4/10/2003	488.000
7/16/2003	450.000
10/14/2003	410.000
1/13/2004	413.000
Well Number:	MW397
Date Collected	Result

8/13/2002

9/16/2002 10/17/2002

1/13/2003

4/8/2003 7/16/2003

10/14/2003

1/13/2004

Statistics on
Background Data

X = 377.875

S= 52.101 CV= 0.138 K factor** = 2.523 TL= 509.326

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

322.000 315.000

317.000

320.000 390.000

354.000

331.000

334.000

Well No.	Result	Gradient F	Result > TL?
MW370	429.00	Downgradient	NO
MW373	904.00	Downgradient	YES
MW385	467.00	Sidegradient	NO
MW388	452.00	Downgradient	NO
MW392	426.00	Downgradient	NO

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW373

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Dissolved Oxygen UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395	
Date Collected	Result	
8/13/2002	7.290	
9/30/2002	4.030	
10/16/2002	3.850	
1/13/2003	2.360	
4/10/2003	1.140	
7/16/2003	1.760	
10/14/2003	4.050	
1/13/2004	4.260	
Well Number:	MW397	
Date Collected	Result	
8/13/2002	11.560	

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data
X= 4.678 S= 2.431 CV= 0.520 K factor** = 2.523 TL= 10.812

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

5.860

5.940

4.660

3.770

3.470

5.340

5.510

Result	Gradient	Result > TL?
3.670	Downgradier	nt NO
2.400	Downgradier	nt NO
0.910	Sidegradient	NO
4.010	Downgradier	nt NO
0.700	Downgradier	nt NO
	3.670 2.400 0.910 4.010	3.670 Downgradier 2.400 Downgradier 0.910 Sidegradient 4.010 Downgradier

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Dissolved Solids LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395	
Date Collected	Result	
8/13/2002	249.000	
9/16/2002	272.000	
10/16/2002	255.000	
1/13/2003	211.000	
4/10/2003	289.000	
7/16/2003	236.000	
10/14/2003	224.000	
1/13/2004	235.000	
Well Number:	MW397	
Date Collected	Result	

8/13/2002

9/16/2002 10/17/2002

1/13/2003

4/8/2003 7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data

X= 219.250 S= 34.107 CV= 0.156 K factor** = 2.523 TL= 305.301

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

187.000 197.000

183.000

182.000 217.000

196,000

198.000

177.000

Well No.	Result	Gradient F	Result > TL?
MW370	119.00	Downgradient	NO
MW373	540.00	Downgradient	YES
MW385	236.00	Sidegradient	NO
MW388	286.00	Downgradient	NO
MW392	194.00	Downgradient	NO

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW373

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Iron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells	
Vell Number:	MW395
Collected	Result
/2002	0.294
2002	0.200
02	0.000
3	1.330
3	1.310
	0.200
)3	0.100
1	0.100
nber:	MW397
ected	Result
002	1.580
002	0.232
002	0.000
)3	0.453
	0.200
03	0.200
)3	0.100
	0.100

Third Quarter 2014 Data Collect	ted in July
2014	

Well No.	Result	Gradient	Result > TL
MW370	0.066	Downgradien	t N/A
MW373	0.146	Downgradien	t N/A
MW385	0.054	Sidegradient	N/A
MW388	0.061	Downgradien	t N/A
MW392	0.749	Downgradien	t N/A

Transformed Third Quarter 2014 Data Collected in July 2014

Well Number	LN(Result)	Result > TL?
MW370	-2.715	NO
MW373	-1.924	NO
MW385	-2.924	NO
MW388	-2.792	NO
MW392	-0.289	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Magnesium LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	12.500
9/16/2002	13.000
10/16/2002	0.013
1/13/2003	11.200
4/10/2003	17.500
7/16/2003	12.900
10/14/2003	13.400
1/13/2004	12.400
Well Number:	MW397
Date Collected	Result

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data

X= 9.102 S= 4.685 CV= 0.515 K factor** = 2.523 TL= 20.922

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

7.830

7.640

0.007

6.690

7.280

7.820

7.940

7.510

Well No.	Result	Gradient	Result > TL?
MW370	11.000	Downgradien	t NO
MW373	27.500	Downgradien	t YES
MW385	9.600	Sidegradient	NO
MW388	11.400	Downgradien	t NO
MW392	10.100	Downgradien	t NO

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW373

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

und I ent W	Oata from Vells
ber:	MW395
l	Result
2	0.361
	0.028
2	0.026
	0.071
	0.629
	0.297
	0.020
ļ	0.013
er:	MW397
ed	Result
2	0.466
2	0.077
)2	0.028
	0.016
	0.041
	0.017
	0.006
	0.005

Third Quarter 2014 Data Collected in July
2014

Well No.	Result	Gradient	Result > TL?
MW370	0.002	Downgradien	nt N/A
MW373	0.003	Downgradien	nt N/A
MW385	0.005	Sidegradient	N/A
MW388	0.005	Downgradien	nt N/A
MW392	0.242	Downgradien	nt N/A

Transformed Third Quarter 2014 Data Collected in July 2014

Well Number	LN(Result)	Result > TL?
MW370	-6.124	NO
MW373	-5.754	NO
MW385	-5.298	NO
MW388	-5.298	NO
MW392	-1.419	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]\^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background D Jpgradient W		Statistics on Background Data		Transformed l Data from Up	_
Vell Number:	MW395	X= 0.007		Well Number:	MW395
ate Collected	Result	S= 0.011		Date Collected	LN(Resul
8/13/2002	0.025	CV= 1.451 K factor** = 2.523		8/13/2002	-3.689
9/16/2002	0.025	TL = 0.034		9/16/2002	-3.689
10/16/2002	0.001		_	10/16/2002	-6.908
1/13/2003	0.006	Because CV greater the		1/13/2003	-5.101
4/10/2003	0.001	logarithm of backgroun were calculated.	ia and test well results	4/10/2003	-6.908
7/16/2003	0.001	were carculated.	-	7/16/2003	-6.908
10/14/2003	0.001	Statistics on		10/14/2003	-6.908
1/13/2004	0.001	Transformed		1/13/2004	-6.908
Vell Number:	MW397	Background Data	_	Well Number:	MW397
ate Collected	Result	X= -5.990		Date Collected	LN(Resul
8/13/2002	0.025	S= 1.443		8/13/2002	-3.689
9/16/2002	0.025	CV = -0.241		9/16/2002	-3.689
10/17/2002	0.001	K factor** = 2.523		10/17/2002	-6.908
1/13/2003	0.001	TL= -2.349		1/13/2003	-6.908
4/8/2003	0.001	11.– -2.54)	J	4/8/2003	-6.908
7/16/2003	0.001			7/16/2003	-6.908
10/14/2003	0.001			10/14/2003	-6.908
1/13/2004	0.001			1/13/2004	-6.908

Third Quarter 2014 Data Collect	ted in July
2014	

Well No.	Result	Gradient	Result > TL?
MW370	0.001	Downgradien	nt N/A
MW373	0.001	Downgradier	nt N/A
MW385	0.000	Sidegradient	N/A
MW388	0.001	Downgradier	nt N/A
MW392	0.000	Downgradier	nt N/A

Transformed Third Quarter 2014 Data Collected in July 2014

Well Number	LN(Result)	Result > TL?
MW370	-7.601	NO
MW373	-7.601	NO
MW385	-7.752	NO
MW388	-7.601	NO
MW392	-8.217	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Nickel UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells		Statistics on Background Data	Transformed Background Data from Upgradient Wells	
Well Number:	MW395	X= 0.018	Well Number:	MW395
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.050 0.050 0.007 0.007 0.029 0.009	S= 0.020 CV= 1.089 K factor** = 2.523 TL= 0.068 Because CV greater that logarithm of background were calculated.	Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	LN(Result) -2.996 -2.996 -4.959 -3.540 -4.699
7/16/2003 10/14/2003 1/13/2004 Well Number:	0.006 0.005 0.005 MW397	Statistics on Transformed Background Data	7/16/2003 10/14/2003 1/13/2004 Well Number:	-5.072 -5.298 -5.298 MW397
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003	Result 0.050 0.050 0.005 0.005 0.005 0.005 0.005	X= -4.540 S= 1.020 CV= -0.225 K factor** = 2.523 TL= -1.965	Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003	LN(Result) -2.996 -2.996 -5.298 -5.294 -5.298 -5.298 -5.298
7/16/2003	0.005			4/8/2003 7/16/2003

Third Quarter 2014 Data Collected in July
2014

Well No.	Result	Gradient	Result > TL?
MW370	0.001	Downgradien	nt N/A
MW373	0.001	Downgradien	nt N/A
MW385	0.001	Sidegradient	N/A
MW388	0.001	Downgradien	nt N/A
MW392	0.001	Downgradien	nt N/A

Transformed Third Quarter 2014 Data Collected in July 2014

Well Number	LN(Result)	Result > TL?
MW370	-6.831	NO
MW373	-6.693	NO
MW385	-6.586	NO
MW388	-6.725	NO
MW392	-6.840	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Oxidation-Reduction Potential LRGA mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	80.000
9/16/2002	145.000
10/16/2002	125.000
1/13/2003	85.000
4/10/2003	159.000
7/16/2003	98.000
10/14/2003	138.000
1/13/2004	233.000
Well Number:	MW397
Date Collected	Result
8/13/2002	115.000
9/30/2002	140.000
10/17/2002	185.000

1/13/2003

4/8/2003 7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data

X= 157.250 S= 52.376 CV= 0.333 K factor** = 2.523 TL= 289.395

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

230.000 155.000

188.000

187.000

253.000

Well No.	Result	Gradient Resu	ılt > TL?
MW370	353.00	Downgradient	YES
MW373	374.00	Downgradient	YES
MW385	306.00	Sidegradient	YES
MW388	344.00	Downgradient	YES
MW392	215.00	Downgradient	NO

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW370

MW373

MW385

MW388

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA pH UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

· F8	
Well Number:	MW395
Date Collected	Result
8/13/2002	5.800
9/16/2002	6.000
10/16/2002	5.470
1/13/2003	6.000
4/10/2003	6.180
7/16/2003	6.000
10/14/2003	6.310
1/13/2004	6.240
Well Number:	MW397
Well Number: Date Collected	MW397 Result
Date Collected	Result
Date Collected 8/13/2002	Result 5.840
Date Collected 8/13/2002 9/30/2002	Result 5.840 6.000
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5.840 6.000 5.750
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5.840 6.000 5.750 6.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5.840 6.000 5.750 6.000 6.300
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5.840 6.000 5.750 6.000 6.300 6.200

Statistics on	
Background Data	

X= 6.048 S= 0.248 CV= 0.041 K factor** = 2.904 TL= 6.767 LL= 5.329

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient 1	Result >TL?	Result <ll?< th=""></ll?<>
MW370	6.080	Downgradie	ent NO	NO
MW373	6.080	Downgradio	ent NO	NO
MW385	6.370	Sidegradie	nt NO	NO
MW388	6.130	Downgradio	ent NO	NO
MW392	6.290	Downgradio	ent NO	NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Radium-226 UNITS: LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells		Statistics on Background Data			ormed Background om Upgradient Well	
Well Number:	MW395	X= 0.039		Well Number:	MW395	
Date Collected	Result	S= 0.419		Date Collected	LN(Result	
10/16/2002	0.661	CV= 10.740 K factor** = 2.523		10/16/2002	-0.414	
1/13/2003	-0.839	TL= 1.096		1/13/2003	#Func!	
10/14/2003	0.027			10/14/2003	-3.627	
1/13/2004	-0.078	Because CV greater tha		1/13/2004	#Func!	
4/12/2004	-0.115	logarithm of backgroun were calculated.	d and test well results	4/12/2004	#Func!	
7/20/2004	0.105	were careatated.		7/20/2004	-2.254	
10/12/2004	0.408	Statistics on		10/12/2004	-0.896	
1/18/2005	0.056	Transformed		1/18/2005	-2.875	
Vell Number:	MW397	Background Data		Well Number:	MW397	
ate Collected	Result	X = error		Date Collected	LN(Result	
10/17/2002	0.576	S = error		10/17/2002	-0.552	
1/13/2003	-0.841	CV = error		1/13/2003	#Func!	
10/14/2003	-0.179	K factor** = 2.523		10/14/2003	#Func!	
1/13/2004	-0.056	TL# = -0.414		1/13/2004	#Func!	
4/12/2004	0.174		J	4/12/2004	-1.749	
7/21/2004	0.227	# Because the natural lo	-	7/21/2004	-1.483	
10/12/2004	0.379		all background values, the TL was considered equal to the maximum background value.		-0.970	
1/20/2005	0.119	equal to the maximum (Jackground value.	1/20/2005	-2.129	

Third (Quarter 2014 Data Collected in July
2014	

Well No.	Result	Gradient I	Result > TL?
MW370	0.635	Downgradient	N/A
MW373	0.425	Downgradient	N/A
MW385	0.551	Sidegradient	N/A
MW388	0.569	Downgradient	N/A
MW392	0.434	Downgradient	N/A

Transformed Third Quarter 2014 Data Collected in July 2014

Well Number	LN(Result)	Result >TL?
MW370	-0.454	NO
MW373	-0.856	NO
MW385	-0.596	NO
MW388	-0.564	NO
MW392	-0.835	NO

Conclusion of Statistical Analysis on Transformed Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Sodium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	27.000
9/16/2002	27.200
10/16/2002	0.025
1/13/2003	22.600
4/10/2003	53.900
7/16/2003	30.000
10/14/2003	29.100
1/13/2004	26.400
Well Number:	MW397
Date Collected	Result
8/13/2002	35.200

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on		
Background Data		
X= 29.560		

S= 13.894 CV= 0.470 K factor** = 2.523 TL= 64.616

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

34.300

0.034

31.300

46.100

38.400

37.100

34.300

Well No.	Result	Gradient	Result > TL?
MW370	36.900	Downgradien	t NO
MW373	66.000	Downgradien	t YES
MW385	40.100	Sidegradient	NO
MW388	46.300	Downgradien	t NO
MW392	40.100	Downgradien	t NO

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW373

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Sulfate UNITS: LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	10.300
9/16/2002	9.100
10/16/2002	8.800
1/13/2003	9.000
4/10/2003	8.300
7/16/2003	8.200
10/14/2003	8.300
1/13/2004	8.200
Well Number:	MW397
Date Collected	Result

8/13/2002

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on		
Background Data		
X= 10.756		

S= 2.147 CV= 0.200 K factor** = 2.523 TL= 16.173

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

14.000

12.800

12.300

12.700

12.800

13.100

12.100

12.100

Well No.	Result	Gradient Resu	lt > TL?
MW370	19.000	Downgradient	YES
MW373	203.00	Downgradient	YES
MW385	19.000	Sidegradient	YES
MW388	25.000	Downgradient	YES
MW392	6.430	Downgradient	NO

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW370

MW373

MW385

MW388

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Technetium-99 UNITS: LRGA pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	20.800
9/16/2002	16.200
10/16/2002	8.280
1/13/2003	13.000
4/10/2003	-9.370
7/16/2003	0.826
10/14/2003	14.100
1/13/2004	0.000
Well Number:	MW397
Date Collected	Result
8/13/2002	6.060

9/16/2002

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on		
Background Data		
X= 11.359		
S= 9.138		
CV = 0.805		
K factor** = 2.523		

TL= 34.414

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

17.300

25.700

20.900

20.100

9.200

10.100

8.540

Well No.	Result	Gradient I	Result > TL?
MW370	30.800	Downgradien	t NO
MW373	20.100	Downgradien	t NO
MW385	132.00	Sidegradient	YES
MW388	143.00	Downgradien	t YES
MW392	2.260	Downgradien	t NO

Conclusion of Statistical Analysis on Historical Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW385

MW388

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Total Organic Carbon (TOC) LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	1.600
9/16/2002	1.100
10/16/2002	1.000
1/13/2003	2.000
4/10/2003	3.400
7/16/2003	2.000
10/14/2003	1.000
1/13/2004	1.000
Well Number:	MW397
Date Collected	Result
8/13/2002	1.000
9/16/2002	1.000
10/17/2002	1.000
1/13/2003	3.600
1/13/2003 4/8/2003	3.600 1.900

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data

X= 1.544 S= 0.856 CV= 0.554 K factor** = 2.523 TL= 3.702

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

1.100

1.000

1.000

Well No.	Result	Gradient	Result > TL?
MW370	0.852	Downgradier	nt NO
MW373	1.200	Downgradier	nt NO
MW385	1.300	Sidegradient	NO
MW388	1.290	Downgradier	nt NO
MW392	1.880	Downgradier	nt NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Total Organic Halides (TOX) LRGA ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	50.000
9/16/2002	50.000
10/16/2002	50.000
1/13/2003	18.300
4/10/2003	51.200
7/16/2003	42.600
10/14/2003	12.300
1/13/2004	10.000
Well Number:	MW397
Date Collected	Result
8/13/2002	50.000
9/16/2002	50.000
10/17/2002	50.000

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on
Background Data
X= 31.513
S= 18.609
CV= 0.591
K factor** = 2.523

TL = 78.462

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

12.000

19.900

17.900

10.000

10.000

Well No.	Result	Gradient	Result > TL?
MW370	7.520	Downgradier	nt NO
MW373	11.800	Downgradier	nt NO
MW385	4.800	Sidegradient	NO
MW388	7.280	Downgradier	nt NO
MW392	40.900	Downgradier	nt NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Trichloroethene UNITS: LRGA ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

MW395
Result
11.000
14.000
12.000
14.000
14.000
13.000
12.000
11.000
MW397
Result
5.000
5.000

10/17/2002

1/13/2003

4/8/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data

X= 7.313 S= 5.701 CV= 0.780 K factor** = 2.523 TL= 21.695

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

1.000

1.000

1.000

1.000

1.000

1.000

Well No.	Result	Gradient	Result > TL?
MW370	1.350	Downgradier	nt NO
MW373	9.640	Downgradier	nt NO
MW385	0.470	Sidegradient	NO
MW388	0.650	Downgradier	nt NO
MW392	14.500	Downgradier	nt NO

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

ATTACHMENT D2

ONE-SIDED UPPER TOLERANCE INTERVAL TEST COMPARED TO CURRENT BACKGROUND DATA

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis UCRS Chemical Oxygen Demand (COD) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from
Upgradient Wells

Well Number:	MW396	
Date Collected	Result	
7/11/2012	27.000	
10/17/2012	25.000	
1/15/2013	26.000	
4/16/2013	25.000	
7/10/2013	36.000	
10/3/2013	36.000	
1/22/2014	36.000	
4/9/2014	33.500	

Statistics on Background Data
X= 30.563
S= 5.247
CV = 0.172
K factor** = 3.188
TL= 47.290

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Third Quarter 2014
Dry/Partially Dry Wells

Well No.	Result	Gradient	Result > TL
MW386	43.800	Sidegradient	NO
MW390	27.100	Downgradien	t NO
MW393	20.000	Downgradien	t NO

	Well No.	Gradient
)	MW389	Downgradient
)		C
`		

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Oxidation-Reduction Potential UNITS: WV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from
Upgradient Wells

Well Number:	MW396	
Date Collected	Result	
7/11/2012	449.000	
10/17/2012	456.000	
1/15/2013	298.000	
4/16/2013	251.000	
7/10/2013	472.000	
10/3/2013	323.000	
1/22/2014	549.000	
4/9/2014	427.000	

Wall No Dagult

Statistics on Background Data		
X= 403.125		
S= 101.494		
CV = 0.252		
K factor** = 3.188		

TL = 726.687

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

Third Quarter 2014
Dry/Partially Dry Wells

well No.	Resuit	Gradient	Result / IL
MW386	122.000	Sidegradient	NO
MW390	433.000	Downgradien	t NO
MW393	298.000	Downgradien	t NO

Cradiant

L.	Well No.	Gradient
)	MW389	Downgradient
)		C
`		

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Technetium-99 UNITS: UCRS pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
7/11/2012	8.190
10/17/2012	-8.400
1/15/2013	3.900
4/16/2013	-1.170
7/10/2013	0.223
10/3/2013	2.120
1/22/2014	8.860
4/9/2014	-5.670

Statistics on Background Data

X = 1.007
S = 6.110
CV= 6.070
K factor** = 3.188
TL= 20,484

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on
Transformed Background Data
X = error

S = error

CV = error K factor** = 3.188

TL# = 2.182

Transformed Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	LN(Result)
7/11/2012	2.103
10/17/2012	#Func!
1/15/2013	1.361
4/16/2013	#Func!
7/10/2013	-1.501
10/3/2013	0.751
1/22/2014	2.182
4/9/2014	#Func!

Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient R	esult > TL
MW386	1.210	Sidegradient	N/A
MW390	74.600	Downgradient	N/A
MW393	6.530	Downgradient	N/A

Third Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Transformed Third Quarter 2014 Data Collected in July 2014

Well Number	LN(Result)	Result >TL?
MW386	0.191	NO
MW390	4.312	YES
MW393	1.876	NO

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data,

MW390

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Beta activity UNITS: URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
7/10/2012	16.800
10/24/2012	17.400
1/15/2013	15.700
4/17/2013	16.500
7/15/2013	13.400
10/1/2013	23.400
1/22/2014	21.200
4/7/2014	7.940
Well Number:	MW394
Date Collected	Result

Statistics on Background Data
X= 11.265 S= 6.461
CV= 0.574
K factor** = 2.523 TL= 27.567

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

10/17/2012 5.990 1/15/2013 2.540 4/22/2013 9.390 7/10/2013 5.210 10/3/2013 7.390 1/22/2014 5.630 4/9/2014 6.270

7/12/2012

Third Quarter 2014 Data Collected in July 2014

5.480

Well No.	Result	Gradient	Result $> TL$
MW221	4.950	Sidegradient	NO
MW222	13.900	Sidegradient	NO
MW223	5.200	Sidegradient	NO
MW224	12.000	Sidegradient	NO
MW369	5.760	Downgradien	t NO
MW372	30.300	Downgradien	t YES
MW384	124.000	Sidegradient	YES
MW387	153.000	Downgradien	t YES
MW391	8.910	Downgradien	t NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Beta activity UNITS: URGA pCi/L

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW372

MW384

MW387

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Calcium UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
7/10/2012	16.900
10/24/2012	18.600
1/15/2013	19.300
4/17/2013	23.700
7/15/2013	23.300
10/1/2013	19.700
1/22/2014	22.900
4/7/2014	25.600
Well Number:	MW394
Date Collected	Result

7/12/2012

10/17/2012

1/15/2013

4/22/2013

7/10/2013

10/3/2013

1/22/2014

4/9/2014

Statistics on Background Data
X= 24.000
S= 3.594
CV = 0.150
K factor** = 2.523
TL= 33.066

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

25.900

26.000

27.000

28.000

28.500

25.700

25.600

27.300

Well No.	Result	Gradient	Result > TL'
MW221	19.900	Sidegradient	NO
MW222	18.800	Sidegradient	NO
MW223	20.800	Sidegradient	NO
MW224	23.200	Sidegradient	NO
MW369	15.500	Downgradien	t NO
MW372	59.100	Downgradien	t YES
MW384	25.200	Sidegradient	NO
MW387	32.800	Downgradien	t NO
MW391	26.100	Downgradien	t NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Calcium UNITS: ug/L

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW372

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Chemical Oxygen Demand (COD) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from	
Upgradient Wells	

Well Number:	MW220
Date Collected	Result
7/10/2012	27.000
10/24/2012	25.000
1/15/2013	25.000
4/17/2013	25.000
7/15/2013	36.000
10/1/2013	36.000
1/22/2014	36.000
4/7/2014	20.000
Well Number:	MW394
Date Collected	Result

Statistics on Background Data
X= 28.506
S = 6.540
CV = 0.229
K factor** = 2.523
TL= 45.006

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

7/10/2013 36.000 10/3/2013 36.000 1/22/2014 36.000 4/9/2014 16.100

7/12/2012

10/17/2012

1/15/2013

4/22/2013

Third Quarter 2014 Data Collected in July 2014

27.000

25.000

25.000

25.000

Well No.	Result	Gradient	Result $> TL'$
MW221	23.000	Sidegradient	NO
MW222	29.200	Sidegradient	NO
MW223	25.100	Sidegradient	NO
MW224	37.600	Sidegradient	NO
MW369	18.200	Downgradien	t NO
MW372	7.110	Downgradien	t NO
MW384	27.100	Sidegradient	NO
MW387	190.000	Downgradien	t YES
MW391	20.000	Downgradien	t NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Chemical Oxygen Demand (COD) UNITS: mg/L

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW387

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells
Upgradient Wells

Well Number:	MW220
Date Collected	Result
7/10/2012	312.000
10/24/2012	317.000
1/15/2013	335.000
4/17/2013	390.000
7/15/2013	392.000
10/1/2013	353.000
1/22/2014	386.000
4/7/2014	403.000
Well Number:	MW394
Date Collected	Result

7/12/2012

10/17/2012 1/15/2013

4/22/2013

7/10/2013 10/3/2013

1/22/2014

4/9/2014

Statistics on Background Data
X= 377.438
S= 30.609
CV = 0.081
K factor** = 2.523
TL= 454.665

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

393.000 390.000

398.000

393.000 405.000

386.000

382.000

404.000

Well No.	Result	Gradient	Result > TL'
MW221	391.000	Sidegradient	NO
MW222	370.000	Sidegradient	NO
MW223	409.000	Sidegradient	NO
MW224	452.000	Sidegradient	NO
MW369	370.000	Downgradien	t NO
MW372	839.000	Downgradien	YES
MW384	521.000	Sidegradient	YES
MW387	534.000	Downgradien	YES
MW391	401.000	Downgradien	t NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Conductivity UNITS: umho/cm

Conclusion of Statistical Analysis on Current Data
The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.
MW372
MW384
MW387

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Dissolved Solids UNITS: uRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells
Upgradient Wells

Well Number:	MW220	
Date Collected	Result	
7/10/2012	180.000	
10/24/2012	196.000	
1/15/2013	196.000	
4/17/2013	218.000	
7/15/2013	233.000	
10/1/2013	200.000	
1/22/2014	219.000	
4/7/2014	226.000	
Well Number:	MW394	
Date Collected	Result	

7/12/2012

10/17/2012 1/15/2013

4/22/2013

7/10/2013

10/3/2013

July 2014

Statistics on Background Data
X= 214.188
S= 16.294
CV = 0.076
K factor** = 2.523
TL= 255.297

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

1/22/2014 208.000 4/9/2014 214.000 Third Quarter 2014 Data Collected in

220.000 204.000

218.000

223.000

246.000

226.000

Well No.	Result	Gradient	Result > TL'
MW221	199.000	Sidegradient	NO
MW222	201.000	Sidegradient	NO
MW223	240.000	Sidegradient	NO
MW224	383.000	Sidegradient	YES
MW369	150.000	Downgradien	t NO
MW372	314.000	Downgradien	t YES
MW384	236.000	Sidegradient	NO
MW387	311.000	Downgradien	t YES
MW391	179.000	Downgradien	t NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Dissolved Solids UNITS: URGA mg/L

Conclusion of Statistical Analysis on Current Data
The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.
MW224
MW372
MW387

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW220	
Date Collected	Result	
7/10/2012	7.090	
10/24/2012	7.580	
1/15/2013	7.740	
4/17/2013	9.730	
7/15/2013	9.070	
10/1/2013	7.700	
1/22/2014	9.570	
4/7/2014	10.500	
Well Number:	MW394	
Date Collected	Result	

Statistics on Background Data
X= 9.724
S= 1.437
CV = 0.148
K factor** = 2.523
TI = 12 240

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

7/10/2013 11.100 10/3/2013 10.700 1/22/2014 10.300 4/9/2014 11.000

7/12/2012

10/17/2012

1/15/2013

4/22/2013

Third Quarter 2014 Data Collected in July 2014

10.500

10.900

11.200

10.900

Well No.	Result	Gradient	Result $> TL'$
MW221	8.620	Sidegradient	NO
MW222	8.170	Sidegradient	NO
MW223	8.750	Sidegradient	NO
MW224	9.840	Sidegradient	NO
MW369	5.660	Downgradien	t NO
MW372	21.600	Downgradien	t YES
MW384	9.850	Sidegradient	NO
MW387	13.700	Downgradien	YES
MW391	11.200	Downgradien	t NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Magnesium UNITS: mg/L

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW372

MW387

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Oxidation-Reduction Potential UNITS: WV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from	
Upgradient Wells	

Well Number:	MW220
Date Collected	Result
7/10/2012	394.000
10/24/2012	418.000
1/15/2013	353.000
4/17/2013	558.000
7/15/2013	467.000
10/1/2013	777.000
1/22/2014	381.000
4/7/2014	400.000
Well Number:	MW394
Date Collected	Result
7/12/2012	830.000

10/17/2012

1/15/2013

4/22/2013

7/10/2013

10/3/2013

1/22/2014

4/9/2014

Statistics on Background Data
X= 582.875
S= 191.674
CV = 0.329
K factor** = 2.523
TL= 1066.468

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

377.000

641.000

823.000

756.000

803.000

832.000

516.000

Well No.	Result	Gradient	Result > TL'
MW221	414.000	Sidegradient	NO
MW222	357.000	Sidegradient	NO
MW223	354.000	Sidegradient	NO
MW224	343.000	Sidegradient	NO
MW369	331.000	Downgradien	t NO
MW372	126.000	Downgradien	t NO
MW384	331.000	Sidegradient	NO
MW387	334.000	Downgradien	t NO
MW391	348.000	Downgradien	t NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Oxidation-Reduction Potential UNITS: WV

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Radium-226 UNITS: URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells		Statistics on Background Data		Transformed Background Data from Upgradient Wells		
ell Number:	MW220	X= 0.480		Well Number:	MW220	
ate Collected	Result	S= 1.058		Date Collected	LN(Result)	
7/10/2012	0.300	CV= 2.203 K factor** = 2.523		7/10/2012	-1.204	
10/24/2012	-0.095	TL= 3.150		10/24/2012	#Func!	
1/15/2013	0.342		1	1/15/2013	-1.073	
4/17/2013	0.054	Because CV greater tha		4/17/2013	-2.913	
7/15/2013	0.252	logarithm of background were calculated.	u and test well results	7/15/2013	-1.378	
10/1/2013	0.199		Ī	10/1/2013	-1.614	
1/22/2014	0.357	Statistics on		1/22/2014	-1.030	
4/7/2014	1.300	Transformed		4/7/2014	0.262	
ell Number:	MW394	Background Data		Well Number:	MW394	
ate Collected	Result	X = error		Date Collected	LN(Result)	
7/12/2012	0.243	S = error		7/12/2012	-1.415	
10/17/2012	0.153	CV = error		10/17/2012	-1.877	
1/15/2013	0.296	K factor** = 2.523		1/15/2013	-1.217	
4/22/2013	0.125	TL# = 1.449		4/22/2013	-2.079	
7/10/2013	0.032			7/10/2013	-3.430	
10/3/2013	-0.051	# Because the natural lo	-	10/3/2013	#Func!	
1/22/2014	-0.083	all background values, t		1/22/2014	#Func!	
4/9/2014	4.260	equal to the maximum t	equal to the maximum background value.		1.449	

Third Quarter 2014	Data Collected in July
2014	

Well No.	Result	Gradient	Result > TL
MW221	0.240	Sidegradient	N/A
MW222	0.307	Sidegradient	N/A
MW223	0.017	Sidegradient	N/A
MW224	0.617	Sidegradient	N/A
MW369	0.502	Downgradien	t N/A
MW372	0.597	Downgradien	t N/A
MW384	0.231	Sidegradient	N/A
MW387	0.221	Downgradien	t N/A
MW391	0.297	Downgradien	t N/A

Transformed Third Quarter 2014 Data Collected in July 2014

Well Number	LN(Result)	Result >TL?
MW221	-1.427	NO
MW222	-1.181	NO
MW223	-4.069	NO
MW224	-0.483	NO
MW369	-0.689	NO
MW372	-0.516	NO
MW384	-1.465	NO
MW387	-1.510	NO
MW391	-1.214	NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis
Radium-226
UNITS: URGA
pCi/L

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Sodium UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
7/10/2012	29.800
10/24/2012	33.500
1/15/2013	35.000
4/17/2013	41.400
7/15/2013	40.500
10/1/2013	34.600
1/22/2014	39.500
4/7/2014	43.900
Well Number:	MW394
Date Collected	Result

7/12/2012

10/17/2012

1/15/2013

4/22/2013

7/10/2013

10/3/2013

1/22/2014

4/9/2014

Statistics on Background Data
X= 33.269
S= 5.292
CV = 0.159
K factor** = 2.523
TL= 46.620

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

28.700

29.700

30.700

28.200

29.300

28.800

28.800

29.900

Well No.	Result	Gradient	Result > TL'
MW221	42.400	Sidegradient	NO
MW222	44.600	Sidegradient	NO
MW223	43.500	Sidegradient	NO
MW224	51.700	Sidegradient	YES
MW369	48.800	Downgradien	t YES
MW372	60.700	Downgradien	t YES
MW384	51.000	Sidegradient	YES
MW387	48.300	Downgradien	t YES
MW391	34.200	Downgradien	t NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Sodium UNITS: URGA mg/L

Conclusion of Statistical Analysis on Current Data	
The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.	
MW224	
MW369	
MW372	
MW384	
MW387	

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis URGA Sulfate UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
7/10/2012	10.000
10/24/2012	13.000
1/15/2013	15.000
4/17/2013	19.000
7/15/2013	17.000
10/1/2013	14.000
1/22/2014	18.000
4/7/2014	18.900
Well Number:	MW394
Date Collected	Result

7/12/2012

10/17/2012

1/15/2013

4/22/2013

7/10/2013 10/3/2013

1/22/2014

4/9/2014

Statistics on Background Data
X= 12.838
S= 3.610
CV = 0.281
K factor** = 2.523
TL = 21.946

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

11.000

10.000

10.000

9.8009.700

10.000

10.000

10.000

Well No.	Result	Gradient	Result $> TL'$
MW221	14.200	Sidegradient	NO
MW222	11.100	Sidegradient	NO
MW223	16.700	Sidegradient	NO
MW224	17.000	Sidegradient	NO
MW369	8.170	Downgradien	t NO
MW372	170.000	Downgradien	t YES
MW384	20.600	Sidegradient	NO
MW387	30.400	Downgradien	t YES
MW391	17.400	Downgradien	t NO

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Sulfate UNITS: mg/L

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW372

MW387

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Technetium-99 UNITS: URGA pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

round D dient W	ata from ells	Statistics on Background Data Transformed Data from Up		_	
Number:	MW220	X= 11.321		Well Number:	MW220
Collected	Result	S= 11.364		Date Collected	LN(Res
10/2012	13.500	CV= 1.004 K factor** = 2.523		7/10/2012	2.603
0/24/2012	4.030	TL= 39.993		10/24/2012	1.394
15/2013	13.600			1/15/2013	2.610
/17/2013	6.610	Because CV greater tha		4/17/2013	1.889
/15/2013	21.300	logarithm of backgroun were calculated.	d and test well results	7/15/2013	3.059
10/1/2013	20.700	were carculated.	1	10/1/2013	3.030
/22/2014	32.100	Statistics on		1/22/2014	3.469
/7/2014	24.800	Transformed		4/7/2014	3.211
ll Number:	MW394	Background Data		Well Number:	MW394
te Collected	Result	X = error		Date Collected	LN(Resu
7/12/2012	-5.650	S = error		7/12/2012	#Func!
10/17/2012	-10.800	CV = error		10/17/2012	#Func!
1/15/2013	-0.751	K factor** = 2.523		1/15/2013	#Func!
1/22/2013	13.900	TL# = 3.469		4/22/2013	2.632
7/10/2013	15.000			7/10/2013	2.708
0/3/2013	9.680		# Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.		2.270
/22/2014	18.800				2.934
/9/2014	4.320	equal to the maximum (1.463

Third Quarter 201	1 Data Collected in July
2014	

Well No.	Result	Gradient	Result > TL
MW221	2.710	Sidegradient	N/A
MW222	3.290	Sidegradient	N/A
MW223	2.570	Sidegradient	N/A
MW224	7.000	Sidegradient	N/A
MW369	15.800	Downgradier	nt N/A
MW372	26.600	Downgradier	nt N/A
MW384	165.000	Sidegradient	N/A
MW387	200.000	Downgradier	nt N/A
MW391	9.980	Downgradier	nt N/A

Transformed Third Quarter 2014
Data Collected in July 2014

Well Number	LN(Result)	Result >TL?	
MW221	0.997	NO	
MW222	1.191	NO	
MW223	0.944	NO	
MW224	1.946	NO	
MW369	2.760	NO	
MW372	3.281	NO	
MW384	5.106	YES	
MW387	5.298	YES	
MW391	2.301	NO	

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis
Technetium-99
UNITS: URGA
pCi/L

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW384

MW387

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S [Sum ([(background result-X)A2]/[count of background results -1])Y0.5

TL Upper Tolerance Limit, TL $X+(K \times S)$

X Mean, X (sum of background results)/(eount of background results)

^{**}Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Alonitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Beta activity UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
7/12/2012	8.910
10/17/2012	8.210
1/15/2013	6.850
4/22/2013	6.420
7/11/2013	6.340
10/3/2013	10.300
1/22/2014	9.400
4/9/2014	2.090
Well Number:	MW397
Date Collected	Result

Statistics on Background Data
X= 9.303
S= 4.324
CV = 0.465
K factor** = 2.523
TL= 20.212

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

7/10/2012 6.880 10/16/2012 7.210 1/15/2013 14.000 4/18/2013 14.400 7/8/2013 16.200 17.600 10/2/2013 1/22/2014 10.000 4/8/2014 4.030

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result $>$ TL'
MW370	19.200	Downgradien	t NO
MW373	16.700	Downgradien	t NO
MW385	90.000	Sidegradient	YES
MW388	98.400	Downgradien	t YES
MW392	5.290	Downgradien	t NO

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW385

MW388

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
7/12/2012	26.400
10/17/2012	27.100
1/15/2013	26.800
4/22/2013	28.700
7/11/2013	28.100
10/3/2013	26.700
1/22/2014	27.000
4/9/2014	27.700
Well Number:	MW397
Date Collected	Result

7/10/2012

10/16/2012

1/15/2013

4/18/2013

7/8/2013

10/2/2013

1/22/2014

4/8/2014

Statistics on Background Data
X= 23.050
S= 4.454
CV = 0.193
K factor** = 2.523
TL= 34.288

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

18.200

18.800

19.500

18.100

18.200

18.600

19.500

19.400

Well No.	Result	Gradient	Result $> TL'$
MW370	26.100	Downgradien	t NO
MW373	78.400	Downgradien	t YES
MW385	27.600	Sidegradient	NO
MW388	26.100	Downgradien	t NO
MW392	27.300	Downgradien	t NO

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW373

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Chemical Oxygen Demand (COD) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395	
Date Collected	Result	
7/12/2012	27.000	
10/17/2012	25.000	
1/15/2013	25.000	
4/22/2013	25.000	
7/11/2013	36.000	
10/3/2013	36.000	
1/22/2014	36.000	
4/9/2014	7.430	
Well Number:	MW397	
Date Collected	Result	

7/10/2012

10/16/2012

1/15/2013

4/18/2013

7/8/2013

10/2/2013

1/22/2014

4/8/2014

Statistics on Background Data		
X= 27.964		
S= 7.862		
CV = 0.281		
K factor** = 2.523		
TL= 47.800		

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

27.000

25.000

25.000

25.000

36.000

36.000

36.000

20.000

Well No.	Result	Gradient	Result $> TL'$
MW370	51.600	Downgradien	t YES
MW373	11.600	Downgradien	t NO
MW385	14.600	Sidegradient	NO
MW388	23.000	Downgradien	t NO
MW392	20.000	Downgradien	t NO

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW370

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395	
Date Collected	Result	
7/12/2012	386.000	
10/17/2012	402.000	
1/15/2013	384.000	
4/22/2013	394.000	
7/11/2013	394.000	
10/3/2013	376.000	
1/22/2014	387.000	
4/9/2014	402.000	
Well Number:	MW397	
Date Collected	Result	

7/10/2012

10/16/2012

1/15/2013

4/18/2013

7/8/2013

10/2/2013

1/22/2014

4/8/2014

Statistics on Background Data		
X= 365.375		
S = 28.329		
CV = 0.078		
K factor** = 2.523		

TL = 436.848

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

339.000

346.000

320.000

362.000

335.000

353.000

338.000

328.000

Well No.	Result	Gradient	Result $> TL$
MW370	429.000	Downgradient	NO
MW373	904.000	Downgradient	YES
MW385	467.000	Sidegradient	YES
MW388	452.000	Downgradient	YES
MW392	426.000	Downgradient	NO

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW373

MW385

MW388

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]\^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Dissolved Solids LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395	
Date Collected	Result	
7/12/2012	217.000	
10/17/2012	214.000	
1/15/2013	234.000	
4/22/2013	226.000	
7/11/2013	229.000	
10/3/2013	225.000	
1/22/2014	213.000	
4/9/2014	217.000	
Well Number:	MW397	
Date Collected	Result	

7/10/2012

10/16/2012 1/15/2013

4/18/2013

7/8/2013 10/2/2013

1/22/2014

4/8/2014

Statistics on Background Data
X= 200.500
S= 23.771
CV= 0.119
K factor** = 2.523
TL = 260.475

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

184.000 176.000

195.000

166.000 182.000

169.000

190.000

171.000

Well No.	Result	Gradient	Result $> TL'$
MW370	119.000	Downgradien	t NO
MW373	540.000	Downgradien	YES
MW385	236.000	Sidegradient	NO
MW388	286.000	Downgradien	t YES
MW392	194.000	Downgradien	t NO

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW373

MW388

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Magnesium LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395	
Date Collected	Result	
7/12/2012	10.600	
10/17/2012	11.200	
1/15/2013	11.100	
4/22/2013	11.100	
7/11/2013	10.900	
10/3/2013	10.400	
1/22/2014	10.800	
4/9/2014	12.200	
Well Number:	MW397	

Statistics on Background Data
X= 9.373
S= 1.783
CV = 0.190
K factor** = 2.523
TL= 13.870

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Date Collected Result 7/10/2012 7.730 10/16/2012 7.680 1/15/2013 7.990 4/18/2013 7.400 7.100 7/8/2013 10/2/2013 7.320 1/22/2014 8.080 4/8/2014 8.360

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result $>$ TL'
MW370	11.000	Downgradien	t NO
MW373	27.500	Downgradien	YES
MW385	9.600	Sidegradient	NO
MW388	11.400	Downgradien	t NO
MW392	10.100	Downgradien	t NO

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW373

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis Oxidation-Reduction Potential LRGA mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
7/12/2012	663.000
10/17/2012	374.000
1/15/2013	527.000
4/22/2013	635.000
7/11/2013	495.000
10/3/2013	542.000
1/22/2014	803.000
4/9/2014	537.000
Well Number:	MW397
Date Collected	Result
7/10/2012	591.000

10/16/2012 1/15/2013

4/18/2013

7/8/2013

10/2/2013

1/22/2014

4/8/2014

Statistics on Background Data
X= 552.063
S= 144.470
CV = 0.262
K factor** = 2.523
TL= 916.560

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

586.000

823.000

383.000

443.000

679.000

389.000

363.000

Well No.	Result	Gradient	Result $> TL'$
MW370	353.000	Downgradien	t NO
MW373	374.000	Downgradien	t NO
MW385	306.000	Sidegradient	NO
MW388	344.000	Downgradien	t NO
MW392	215.000	Downgradien	t NO

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Sodium UNITS: LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
7/12/2012	25.800
10/17/2012	27.300
1/15/2013	27.100
4/22/2013	28.400
7/11/2013	28.200
10/3/2013	26.500
1/22/2014	27.200
4/9/2014	28.900
Well Number:	MW397
Date Collected	Result

7/10/2012

10/16/2012

1/15/2013

4/18/2013

7/8/2013

10/2/2013

1/22/2014

4/8/2014

Statistics on		
Background Data		
X= 29.775		
S = 2.821		

CV= 0.095 K factor** = 2.523 TL= 36.892

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2014 Data Collected in July 2014

30.200

30.800

31.800

30.400

33.900

31.700

32,700

35.500

Well No.	Result	Gradient I	Result > TL'
MW370	36.900	Downgradient	YES
MW373	66.000	Downgradient	YES
MW385	40.100	Sidegradient	YES
MW388	46.300	Downgradient	YES
MW392	40.100	Downgradient	YES

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW370

MW373

MW385

MW388

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis
Sodium
UNITS: LRGA
mg/L

MW392

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis LRGA Sulfate UNITS: LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
7/12/2012	9.600
10/17/2012	9.800
1/15/2013	10.000
4/22/2013	9.800
7/11/2013	9.700
10/3/2013	20.000
1/22/2014	9.800
4/9/2014	9.770
Well Number:	MW397
Date Collected	Regult

Statistics on Background Data
X= 12.011
S= 3.657
CV = 0.305
K factor** = 2.523
TL= 21.238

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Date Collected Result 7/10/2012 12.000 10/16/2012 12.000 1/15/2013 12.000 4/18/2013 11.000 11.000 7/8/2013 10/2/2013 22.000 1/22/2014 12.000 4/8/2014 11.700

Third Quarter 2014 Data Collected in July 2014

Well No.	Result	Gradient	Result $> TL'$
MW370	19.000	Downgradient	t NO
MW373	203.000	Downgradient	YES
MW385	19.000	Sidegradient	NO
MW388	25.000	Downgradient	YES
MW392	6.430	Downgradient	t NO

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW373

MW388

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2014 Statistical Analysis **LRGA** pCi/L **UNITS: Technetium-99**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
7/12/2012	1.070
10/17/2012	-4.870
1/15/2013	-4.100
4/22/2013	3.110
7/11/2013	10.700
10/3/2013	10.600
1/22/2014	20.000
4/9/2014	11.200
Well Number:	MW397
Date Collected	Result

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

4/18/2013 16.600 7/8/2013 14.600 10/2/2013 19.100 1/22/2014 33.700 4/8/2014 16.500

7/10/2012

10/16/2012

1/15/2013

Third Quarter 2014 Data Collected in July 2014

8.540

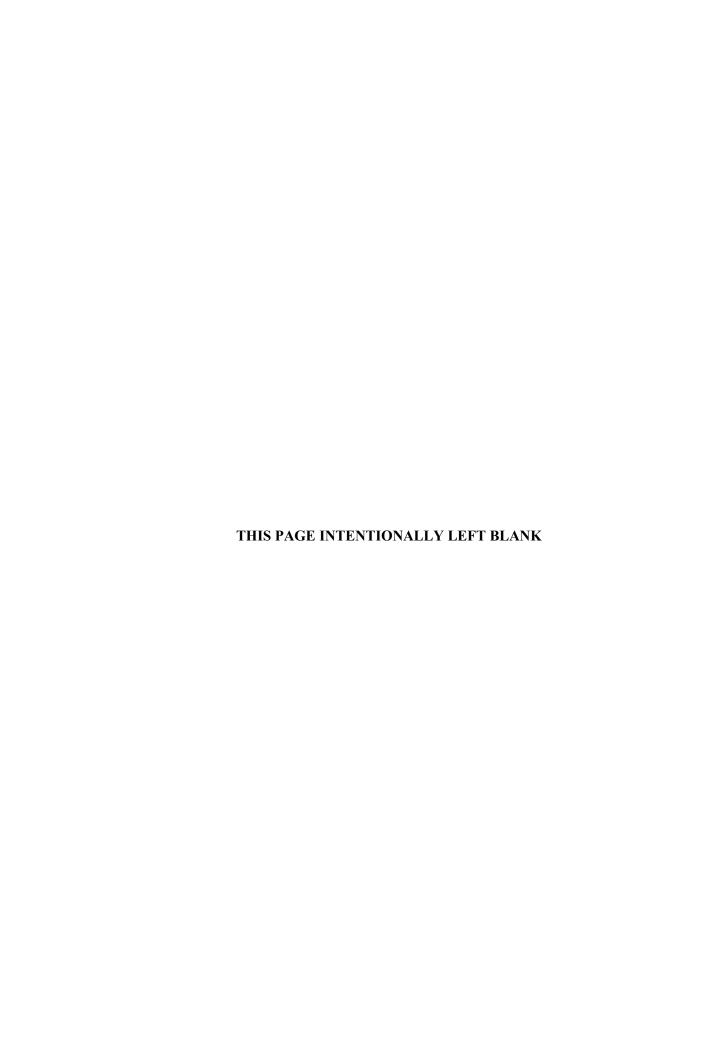
2.800

6.960

Well No.	Result	Gradient	Result $> TL'$
MW370	30.800	Downgradient	t NO
MW373	20.100	Downgradient	t NO
MW385	132.000	Sidegradient	YES
MW388	143.000	Downgradient	t YES
MW392	2.260	Downgradient	t NO

Conclusion of Statistical Analysis on Current Data

The following test well(s) exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.


MW385

MW388

- Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- Upper Tolerance Limit, TL = X + (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

November 3rd, 2014

Mr. Craig Jones LATA Environmental Services of Kentucky, LLC 761 Veterans Avenue Kevil, Kentucky 42053

Dear Mr. Jones:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in mathematics, I have over two years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with LATA.

For this project, the statistical analyses conducted on the second quarter 2014 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). For pH, an additional lower tolerance interval was established. For pH only, the test well data was compared to both the upper and lower tolerance intervals to determine if statistically significant deviations in concentration with respect to upgradient well exist.

Sincerely.

Cory Tagkett

LATA Project Chemist

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

Permit Numbers: 073-00014 and 073-00015

GROUNDWATER FLOW RATE AND DIRECTION

Finds/Unit: KY8-890-008-982/1

LAB ID: None

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300 § 11 requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the third quarter 2014 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on July 30 and 31, 2014. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for a measurement of the water level and for sampling.

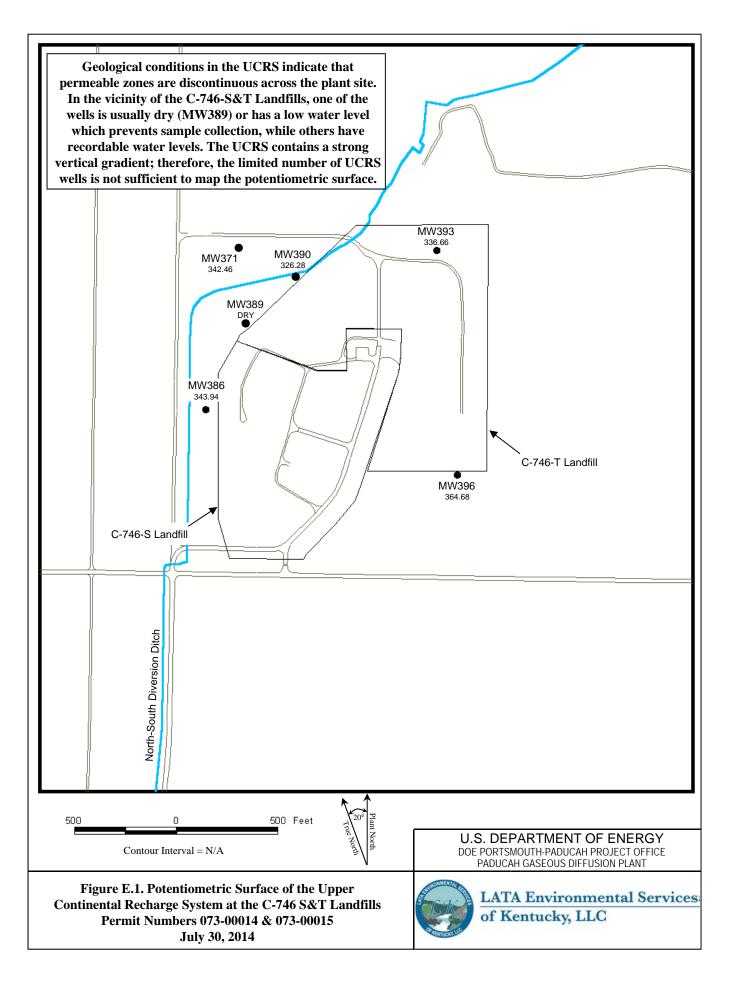
The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill is 2.43×10^{-4} ft/ft. Additional water level measurements in July (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 3.51×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

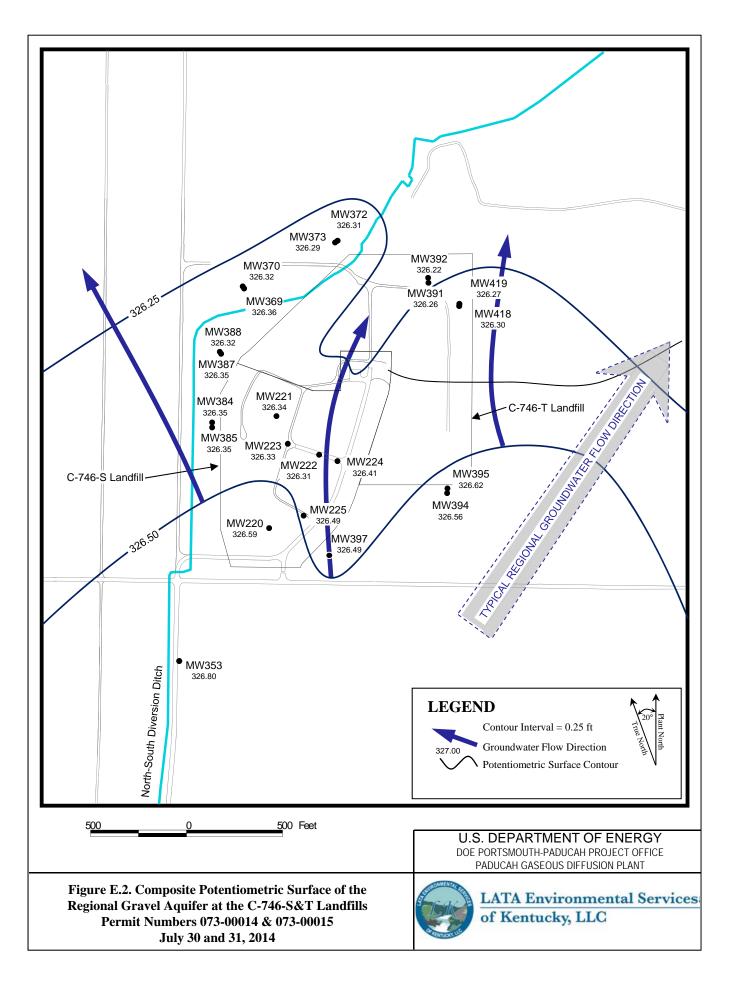
The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for July 2014, the groundwater flow direction in the immediate area of the landfill conforms to the typical regional flow direction.

_

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.




Table E.1. C-746-S&T Landfills Third Quarter 2014 (July) Water Levels

C-746-S&T Landfills (July 2014) Water Levels										
					-		Raw Data		Corrected Data*	
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H ₂ O)	(ft)	(ft amsl)	(ft)	(ft amsl)
7/30/2014	9:46	MW220	URGA	381.44	30.11	0.00	54.85	326.59	54.85	326.59
7/30/2014	9:59	MW221	URGA	390.83	30.11	0.00	64.49	326.34	64.49	326.34
7/30/2014	9:54	MW222	URGA	394.87	30.11	0.00	68.56	326.31	68.56	326.31
7/30/2014	9:57	MW223	URGA	394.03	30.11	0.00	67.70	326.33	67.70	326.33
7/30/2014	9:52	MW224	URGA	395.41	30.11	0.00	69.00	326.41	69.00	326.41
7/30/2014	9:49	MW225	URGA	385.55	30.11	0.00	59.06	326.49	59.06	326.49
7/31/2014	12:58	MW353	LRGA	374.86	30.10	0.01	48.05	326.81	48.06	326.80
7/30/2014	15:50	MW369	URGA	364.48	30.10	0.01	38.11	326.37	38.12	326.36
7/30/2014	15:51	MW370	LRGA	365.35	30.10	0.01	39.02	326.33	39.03	326.32
7/30/2014	10:01	MW371	UCRS	364.88	30.11	0.00	22.42	342.46	22.42	342.46
7/30/2014	15:47	MW372	URGA	359.66	30.10	0.01	33.34	326.32	33.35	326.31
7/30/2014	15:48	MW373	LRGA	359.95	30.10	0.01	33.65	326.30	33.66	326.29
7/30/2014	9:42	MW384	URGA	365.06	30.11	0.00	38.71	326.35	38.71	326.35
7/30/2014	9:44	MW385	LRGA	365.54	30.11	0.00	39.19	326.35	39.19	326.35
7/30/2014	9:43	MW386	UCRS	365.21	30.11	0.00	21.27	343.94	21.27	343.94
7/30/2014	9:39	MW387	URGA	363.27	30.11	0.00	36.92	326.35	36.92	326.35
7/30/2014	9:40	MW388	LRGA	363.25	30.11	0.00	36.93	326.32	36.93	326.32
7/30/2014	9:37	MW389	UCRS	363.82	30.11	0.00	DRY		DRY	
7/30/2014	9:35	MW390	UCRS	360.36	30.11	0.00	34.08	326.28	34.08	326.28
7/31/2014	12:42	MW391	URGA	366.54	30.10	0.01	40.27	326.27	40.28	326.26
7/31/2014	12:45	MW392	LRGA	365.67	30.10	0.01	39.44	326.23	39.45	326.22
7/30/2014	9:19	MW393	UCRS	366.59	30.11	0.00	29.93	336.66	29.93	336.66
7/30/2014	15:55	MW394	URGA	378.32	30.10	0.01	51.75	326.57	51.76	326.56
7/30/2014	15:56	MW395	LRGA	379.01	30.10	0.01	52.38	326.63	52.39	326.62
7/30/2014	9:26	MW396	UCRS	378.64	30.11	0.00	13.96	364.68	13.96	364.68
7/31/2014	12:51	MW397	LRGA	386.90	30.10	0.01	60.40	326.50	60.41	326.49
7/31/2014	13:08	MW418	URGA	366.78	30.10	0.01	40.47	326.31	40.48	326.30
7/31/2014	13:10	MW419	LRGA	366.68	30.10	0.01	40.40	326.28	40.41	326.27
Initial Barometric Pressure 30.11										

Elev = elevation

amsl = above mean sea level

BP = barowe filean sea rever
BP = barometric pressure
DTW = depth to water in feet below datum
URGA = Upper Regional Gravel Aquifer
LRGA = Lower Regional Gravel Aquifer
UCRS = Upper Continental Recharge System
*Assumes a barometric efficiency of 1.0

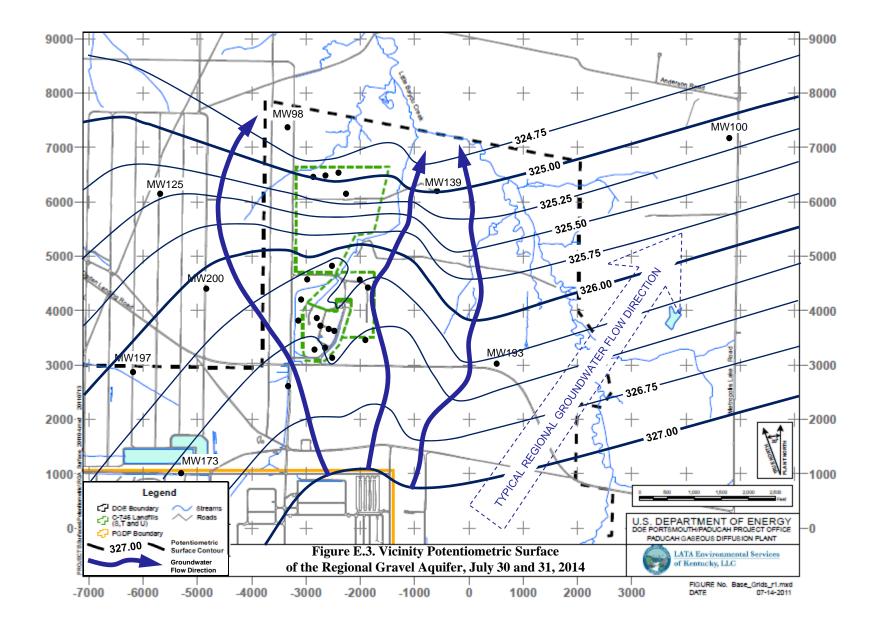


Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft		
Beneath Landfill Mound	2.43×10^{-4}		
Vicinity	3.51×10^{-4}		

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Co	Hydraulic Conductivity (K)		Discharge (q)	Average Linear Velocity (v)		
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s	
Beneath Landfill Mound						
725	0.256	0.18	6.21 × 10 ⁻⁵	0.70	2.48×10^{-4}	
425	0.150	0.10	3.64×10^{-5}	0.41	1.46×10^{-4}	
<u>Vicinity</u>						
725	0.256	0.25	8.99 × 10 ⁻⁵	1.02	3.60×10^{-4}	
425	0.150	0.15	5.27×10^{-5}	0.60	2.11×10^{-4}	

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the third quarter 2014 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, (LATA Kentucky 2014).*

The following are the parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	
Technetium-99	MW390
Upper Regional Gravel Aquifer	
Sodium	MW372
Technetium-99	MW384, MW387
Lower Regional Gravel Aquifer	
Sodium	MW373
Technetium-99	MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, these radionuclides are being reported along with the parameters of this regulation.

8/27/2014

LATA Environmental Services of Kentucky PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S and -T LANDFILLS PERMIT NUMBERS 073-00014 and 073-00015 MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4808	MW372	Trichloroethene	8260B	9.82	ug/L	5
8004-4792	MW373	Trichloroethene	8260B	9.64	ug/L	5
8004-4809	MW384	Beta activity	900.0	124	pCi/L	50
8004-4810	MW385	Beta activity	900.0	90	pCi/L	50
8004-4815	MW387	Beta activity	900.0	153	pCi/L	50
8004-4816	MW388	Beta activity	900.0	98.4	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B	13.6	ug/L	5
8004-4806	MW392	Trichloroethene	8260B	14.5	ug/L	5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Groundwater Flow System		U	JCR	S						U	RG	A							Ι	RG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
1,2,3-TRICHLOROPROPANE	E																	•					
Quarter 2, 2009			*																				
ACETONE	•																						
Quarter 3, 2003							*					*											
Quarter 4, 2003											*								*				
Quarter 1, 2005									*														
ALPHA ACTIVITY																							
Quarter 4, 2002																							
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM																							
Quarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003			*				*						*	*									
Quarter 3, 2003			*				*	*					*	*									
Quarter 4, 2003							*	*			*			*									
Quarter 1, 2004			*				*	*			*												
Quarter 2, 2004							*							*									
Quarter 3, 2004							*							*									
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*				*																
Quarter 3, 2005			*				*			*											*		
Quarter 4, 2005			*				*				*												
Quarter 1, 2006							*						*										
Quarter 2, 2006			*				*																
Quarter 3, 2006							*																
Quarter 4, 2006			*				*																
Quarter 1, 2007							*										*						
Quarter 2, 2007							*										*						
Quarter 3, 2007							*																
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008							*																
Quarter 1, 2009			*				*				*												
Quarter 1, 2010			*				*				*												
Quarter 2, 2010			*								*												
Quarter 3, 2010			*								*			*			*			*			
Quarter 1, 2011							*				*												
Quarter 2, 2011			*								*												
Quarter 2, 2012			*																				

Groundwater Flow System		J	JCR	S						U	RG	4							Ι	RG	Ą		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2012							*																
Quarter 1, 2013							*				*												
Quarter 3, 2013			*																				
Quarter 1, 2014							*																
Quarter 2, 2014											*												
BARIUM																							
Quarter 3, 2003																							
Quarter 4, 2003																							
BETA ACTIVITY																							
Quarter 4, 2002																							
Quarter 1, 2003	Ī					Ī																	
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 3, 2006																							
Quarter 4, 2006																							
Quarter 1, 2007																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010	Ī																						

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		J	JCR	S						U	RGA	4							I	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013																							
Quarter 1, 2014																							
Quarter 2, 2014																							
Quarter 3, 2014																							
BROMIDE		ı												ı						ı			
Quarter 1, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 3, 2006			*																				
CALCIUM				ı					ı					ı						ı			
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											
Quarter 3, 2003			*																				
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				

Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2014												*							*				
Groundwater Flow System		J	JCR	S						U	RGA	۸							I	RG	A	l	
Gradient	S	D		D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009	<u> </u>											*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*							*				
Quarter 1, 2010	_											*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014	1											-						*	*				
Quarter 2, 2014	1											*							*				
CARBON DISULFIDE		<u> </u>	<u> </u>									-17	<u> </u>						-17		<u> </u>		
Quarter 4, 2010											*												
Quarter 1, 2011											-	*									*		
CHEMICAL OXYGEN DEMA	ND	<u> </u>	<u> </u>				l						<u> </u>		l						<u> </u>	<u> </u>	<u> </u>
Quarter 1, 2003	1111			*																			
Quarter 1, 2003 Quarter 2, 2003	1			*																			
	1			*			*			*													
Quarter 3, 2003				木			木			木													

Groundwater Flow System		J	JCR	S						U	RG	4							I	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2003				*																			
Quarter 1, 2004	*			*																			
Quarter 4, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*									*		*									*		
Quarter 4, 2005	*									*													
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																						
Quarter 1, 2008	*																						
Quarter 2, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																			*			
Quarter 3, 2009	*																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 3, 2011	*																						
Quarter 4, 2011	*																						
Quarter 1, 2012	*																						
Quarter 1, 2013	*																						
Quarter 3, 2013	*																						
Quarter 3, 2014	*								*				*					*					
CHLORIDE										1			1					1					
Quarter 1, 2003			*																				$oxed{oxed}$
Quarter 2, 2003			*																				
Quarter 3, 2003			*																				
Quarter 4, 2003			*																				

Groundwater Flow System		J	JCR	S						U	RG	4					I	RG	A				
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*																				
Quarter 3, 2005			*																				
Quarter 4, 2005			*																				
Quarter 1, 2006																		*					
Quarter 2, 2006			*																				
Quarter 3, 2006			*																				
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*																				
Quarter 3, 2007			*																				
Quarter 4, 2007			*																				
Quarter 1, 2008			*																				
Quarter 2, 2008			*																				
Quarter 3, 2008			*																				
Quarter 4, 2008			*																				
Quarter 1, 2009			*																				
Quarter 2, 2009			*																				
Quarter 3, 2009			*																				
Quarter 4, 2009			*																				
Quarter 1, 2010			*																				
Quarter 2, 2010			*																				
Quarter 3, 2010			*																				
Quarter 4, 2010			*																				
Quarter 2, 2011			*																				
Quarter 3, 2011			*																				
Quarter 4, 2011			*																				
Quarter 3, 2012			*																				Ш
Quarter 3, 2013			*																				
Quarter 4, 2013			*																				Щ
CHROMIUM				I			1	_	l	l	l		l										\longrightarrow
Quarter 4, 2002																							\square
Quarter 1, 2003							_																
Quarter 2, 2003																							

Groundwater Flow System		J	JCR	S						U	RGA	4							L	RGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2009																							
COBALT						1																	
Quarter 3, 2003							*																
CONDUCTIVITY														- U	l l	•			- U				
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*					*		*									*				
Quarter 4, 2003			*							*									*				
Quarter 1, 2004																			*				
Quarter 2, 2004										*									*				
Quarter 3, 2004										*									*				
Quarter 4, 2004			*							*									*				
Quarter 1, 2005										*		*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005																			*				
Quarter 4, 2005										*		*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006																	*		*				
Quarter 1, 2007												*							*				
Quarter 2, 2007																	*		*				
Quarter 3, 2007																	*		*				
Quarter 4, 2007												*					*		*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*					*		*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*							*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		J	JCR	S						U	RGA	4							I	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*							*				
Quarter 2, 2014 Quarter 3, 2014												*							*				
DISSOLVED OXYGEN												4							T				
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS			ı						ı			<u>l</u>	ı					l .		l .			
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				
Quarter 1, 2004			*									*							*				
Quarter 2, 2004										*		*							*				
Quarter 3, 2004										*		*							*				
Quarter 4, 2004										*		*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006																	*	*	*	*	*		
Quarter 4, 2006										*		*					*		*				
Quarter 1, 2007																			*				
Quarter 2, 2007										*		*							*				
Quarter 3, 2007										*		*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008										*		*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*	*						*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	*						*				

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		J	JCR	S						U	RG	4							I	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2010												*	*						*				
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010										*		*							*				
Quarter 4, 2010										*		*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*	*						*				
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*	*						*				
Quarter 2, 2014												*							*				
Quarter 3, 2014									*			*	*						*				
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003						*																	
Quarter 3, 2003													*										
Quarter 1, 2004				*																			
Quarter 3, 2010																					*		
Quarter 2, 2013										*													
IRON		1							1														
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		J	JCR	S						U	RG	4							I	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2006												*											
Quarter 3, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007											*												
Quarter 2, 2008												*											
Quarter 3, 2008												*											
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*	*						*				
Quarter 3, 2010												*							*				

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		J	JCR	S						U	RG	4							I	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				
Quarter 2, 2014												*	*						*				
Quarter 3, 2014												*							*				
MANGANESE		1	1						1				1					1					
Quarter 4, 2002																					*		
Quarter 3, 2003							*	*															
Quarter 4, 2003							*	*															
Quarter 1, 2004							*																
Quarter 2, 2004							*																
Quarter 4, 2004							*	*															
Quarter 1, 2005							*																
Quarter 3, 2005																					*		
Quarter 3, 2009	*																						
OXIDATION-REDUCTION F	OT	ENT	TAI	,			•	•				•			•								
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				
Quarter 2, 2006			*																				
Quarter 3, 2006			*															*					
Quarter 4, 2006			*																				

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		J	JCR	S						U	RG	4							Ι	RG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2007			*																				
Quarter 2, 2007			*				*																
Quarter 3, 2007			*				*																
Quarter 4, 2007			*																				
Quarter 1, 2008			*			*			*														
Quarter 2, 2008	*		*	*		*							*				*		*	*			
Quarter 3, 2008			*	*		*							*				*		*	*			
Quarter 4, 2008			*	*		*	*	*	*				*				*	*		*			
Quarter 1, 2009			*				*	*	*				*	*				*		*			
Quarter 3, 2009			*	*		*											*	*	*	*			
Quarter 4, 2009			*			*			*									*		*			
Quarter 1, 2010	*		*																	*			
Quarter 2, 2010	*		*	*					*				*				*	*		*			
Quarter 3, 2010	*		*	*		*											*	*	*	*			
Quarter 4, 2010			*					*			*			*			*	*	*	*			
Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 3, 2011	*		*	*			*		*		*		*				*	*	*	*			
Quarter 4, 2011	*		*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2013				*		*		*	*		*		*	*				*		*	*		
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*		
Quarter 3, 2014	*		*	*		*											*	*	*	*			
PCB, 1016																							
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004											*												
Quarter 3, 2005							*				*												
Quarter 1, 2006											*												
Quarter 2, 2006											*												
Quarter 4, 2006											*												
Quarter 1, 2007											*	*											

Groundwater Flow System		J	JCR	.S						U	RGA	4							Ι	RG	Ą		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2007												*											
Quarter 3, 2007											*												
Quarter 2, 2008											*	*											
Quarter 3, 2008											*												
Quarter 4, 2008											*												
Quarter 1, 2009											*												
Quarter 2, 2009											*												
Quarter 3, 2009											*												
Quarter 4, 2009											*												
Quarter 1, 2010											*												
Quarter 2, 2010											*												
Quarter 3, 2010											*												
Quarter 4, 2010											*												
PCB-1232																							
Quarter 1, 2011											*												
PCB-1248																							
Quarter 2, 2008												*											
PCB-1260																							
Quarter 2, 2006																		*					
pН								•						•				•					
Quarter 4, 2002																	*						
Quarter 2, 2003																	*						
Quarter 3, 2003																	*						
Quarter 4, 2003							*										*						
Quarter 1, 2004							*										*						
Quarter 2, 2004																	*						
Quarter 3, 2004																	*						
Quarter 4, 2004																	*						
Quarter 3, 2005										*							*				*		
Quarter 4, 2005										*							*						
Quarter 1, 2006																	*						
Quarter 2, 2006																	*						
Quarter 3, 2006																	*						
Quarter 3, 2007																	*						
Quarter 4, 2007																	*						
Quarter 4, 2008																	*						
Quarter 1, 2009																	*						
Quarter 1, 2011																	*						

Groundwater Flow System		Ţ	JCR	S						U	RG	4							Ι	RG	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2011											*												
Quarter 3, 2011											*												
Quarter 1, 2012														*									
Quarter 1, 2013										*			*				*						
POTASSIUM																							
Quarter 4, 2002																		*	*				
Quarter 3, 2004																			*				
Quarter 2, 2005																			*				
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				
Quarter 3, 2006																			*				
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				
Quarter 1, 2013																			*				
Quarter 2, 2013																			*				
Quarter 3, 2013																			*				
RADIUM-226			ı				•		•									ı					ı
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004																			*				
Quarter 2, 2005									*														
Quarter 1, 2009											*												
Quarter 3, 2014									*			*											
RADIUM-228																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
SELENIUM																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
SODIUM			1	, ,								1			, ,						1		
Quarter 4, 2002																			*		*		

Groundwater Flow System		Į	JCR	S						U	RG.	A							Ι	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2003				*					*	*	*												
Quarter 2, 2003				*						*	*		*										
Quarter 3, 2003							*	*		*													
Quarter 4, 2003							*		*	*													
Quarter 1, 2004									*	*				*									
Quarter 2, 2004										*													
Quarter 3, 2004										*													
Quarter 4, 2004									*	*													
Quarter 1, 2005										*									*				
Quarter 2, 2005										*									*				
Quarter 3, 2005									*	*									*				
Quarter 4, 2005									*	*													
Quarter 1, 2006									*	*													
Quarter 2, 2006									*														
Quarter 3, 2006									*	*		*							*				
Quarter 4, 2006									*	*							*						
Quarter 1, 2007									*			*											
Quarter 2, 2007									*	*													
Quarter 3, 2007									*														
Quarter 4, 2007									*														
Quarter 1, 2008									*														
Quarter 3, 2008												*											
Quarter 4, 2008									*	*													
Quarter 1, 2009									*			*							*				
Quarter 3, 2009												*											
Quarter 4, 2009									*			*											
Quarter 1, 2010												*											
Quarter 2, 2010										*		*											
Quarter 3, 2010										*													
Quarter 4, 2010									*	*													
Quarter 1, 2011										*													
Quarter 2, 2011									*														
Quarter 4, 2011																			*				
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*											
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*											

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		J	JCR	S						U	RG	4							I	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*											
Quarter 2, 2014									*		*	*							*				
Quarter 3, 2014												*							*				
STRONTIUM-90							I		I				ı		I	ı		ı					
Quarter 2, 2003																							
Quarter 1, 2004																							
SULFATE																							
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004										*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005										*		*	*					*	*				
Quarter 3, 2005										*		*	*				*	*	*				
Quarter 4, 2005										*		*	*					*	*	*			
Quarter 1, 2006										*		*	*				*	*	*	*			
Quarter 2, 2006									*	*		*	*				*	*	*	*			
Quarter 3, 2006									*	*		*	*				*		*	*			
Quarter 4, 2006									*	*		*	*				*		*				
Quarter 1, 2007									*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*				*		*	*			
Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009									*	*		*	*				*	*	*	*			
Quarter 4, 2009	*									*		*	*				*	*	*				
Quarter 1, 2010	*								*	*		*	*				*		*				
Quarter 2, 2010	Ī								*	*		*	*				*	*	*	*			
Quarter 3, 2010										*		*	*				*	*	*	*			

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		Ţ	JCR	S						U	RG	4							I	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011	*									*		*	*				*	*	*				
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			
Quarter 4, 2011	*									*		*	*				*	*	*	*			
Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 2, 2012	*									*		*	*				*	*	*	*			
Quarter 3, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012										*		*	*				*	*	*	*			
Quarter 1, 2013										*		*	*				*	*	*	*			
Quarter 2, 2013										*		*	*	*			*	*	*	*			
Quarter 3, 2013										*		*	*	*			*	*	*	*			
Quarter 4, 2013										*		*	*				*	*	*	*			
Quarter 1, 2014								*		*		*	*				*	*	*	*			
Quarter 2, 2014										*		*	*	*			*	*	*	*			
Quarter 3, 2014										*		*	*	*			*	*	*	*			
TECHNETIUM-99				l															ı				
Quarter 4, 2002																			*				
Quarter 1, 2003													*				*		*				
Quarter 2, 2003	*		*							*			*				*						
Quarter 3, 2003			*										*				*			*			
Quarter 4, 2003			*							*		*	*				*		*	*			
Quarter 1, 2004			*									*	*				*		*	Ala			
Quarter 2, 2004			*									*	*				*		*	*			
Quarter 3, 2004			*							*		*	*				*	*	*				
Quarter 4, 2004 Quarter 1, 2005			*							*		*	*				*	不	*	*			
,			*							*		不	*				*	*	*	*			
Quarter 2, 2005 Quarter 3, 2005			*							*			*				*	*	*	*			
Quarter 4, 2005			*							*		*	*				*	不	*	*			
Quarter 1, 2006			*							*		*	*				*		*	*			
,			*							*		不	*				*	*		*			
Quarter 2, 2006			*							*			*				*	*	*	*			
Quarter 3, 2006	4		不									4					不	不					
Quarter 1, 2006	*		*							*		*	*				*		*	*			
Quarter 1, 2007												.44.						<u>.</u>	*				
Quarter 2, 2007			*							*	The state of	*	*				*	*	JI.	*			
Quarter 4, 2007			*							*	*	*					*		*				
Quarter 4, 2007			*							*		*	*				*	ᄮ	*	*			
Quarter 1, 2008			*							*	4	*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		Į	JCR	S						U	RGA	A							Ι	RG.	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2009			*							*		*	*				*						
Quarter 2, 2009			*							*		*	*				*	*		*			
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*							*		*	*				*						
Quarter 1, 2010			*							*		*	*				*						
Quarter 2, 2010			*							*			*				*	*		*			
Quarter 3, 2010			*							*	*	*	*				*						
Quarter 4, 2010			*							*		*	*				*						
Quarter 1, 2011										*			*				*						
Quarter 2, 2011			*							*			*				*			*			
Quarter 3, 2011			*							*			*				*			*			
Quarter 4, 2011			*							*	*	*	*				*						
Quarter 1, 2012			*							*			*				*			*			
Quarter 2, 2012			*							*			*				*		*	*			
Quarter 3, 2012			*							*		*	*				*						
Quarter 4, 2012										*		*	*				*		*	*			
Quarter 1, 2013										*			*				*		*	*			
Quarter 2, 2013										*		*	*				*		*	*			
Quarter 3, 2013			*							*		*	*				*		*	*			
Quarter 4, 2013			*							*		*	*				*		*	*			
Quarter 1, 2014			*							*	*		*				*		*	*			
Quarter 2, 2014			*							*	*		*	*			*		*	*			
Quarter 3, 2014			*							*			*				*			*			
THORIUM-230																							
Quarter 1, 2012	*								*					*									
THORIUM-234																							
Quarter 2, 2003						*			*					*									
Quarter 4, 2007									*														
TOLUENE																							
Quarter 2, 2014										*	*		*										
TOTAL ORGANIC CARBON																							
Quarter 4, 2002																					*		
Quarter 1, 2003				*						*	*							*	*		*		
Quarter 2, 2003										*	*		*								*		
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003							*		*	*													
Quarter 1, 2004										*													
Quarter 2, 2004										*	*												

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		J	JCR	S						U	RGA	4							I	RGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005										*													
Quarter 2, 2005										*											*		
Quarter 3, 2005										*		*									*		
Quarter 4, 2005										*											*		
Quarter 1, 2006										*													
Quarter 2, 2006										*		*											
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 3, 2007	*					*	*	*	*	*			*	*			*						
Quarter 2, 2011											*												
Quarter 3, 2012	*																						
TOTAL ORGANIC HALIDES	5	I	I	l I				I	l														I
Quarter 4, 2002																		*	*		*		
Quarter 1, 2003				*														*			*		
Quarter 3, 2003				*																	*		
Quarter 2, 2004																					*		
Quarter 3, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*																						
Quarter 4, 2005	*																						
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*																						
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																				*		
Quarter 1, 2008	*																						
Quarter 1, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																				*		
Quarter 3, 2009	*																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		Į	JCR	S						U.	RGA	1							L	RG	4_		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 1, 2011	*																						
Quarter 3, 2013																					*		
TRICHLOROETHENE					L.							U		U									
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow S	ystem		J	JCR	S						U	RG	Ą							I	.RG	A		
Gradient		S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	3	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2012																								
Quarter 1, 2013																								
Quarter 2, 2013																								
Quarter 3, 2013																								
Quarter 4, 2013																								
Quarter 1, 2014																								
Quarter 2, 2014																								
Quarter 3, 2014																								
TURBIDITY																								
Quarter 4, 2002																						*		
Quarter 1, 2003								*					*		*									
URANIUM																								
Quarter 4, 2002																			*	*				
Quarter 1, 2003																				*				
Quarter 4, 2003								*																
Quarter 1, 2004								*	*	*					*			*						
Quarter 4, 2004																		*						
Quarter 4, 2006																				*		*		
ZINC																								
Quarter 3, 2003													*											
Quarter 4, 2003								*		*			*											
Quarter 4, 2004								*																
Quarter 4, 2007								*	*	*														
* Statistic	al test res	sult	s inc	licat	e an	elev	ated	conc	entr	atio	1 (i.e	e., a	statis	stica	lly s	igni	fican	t inc	reas	e)				
■ MCL Ex	xceedanc	e																						
UCRS Upper C	Continent	al R	Rech	arge	Sys	tem																		
URGA Upper R	Regional (Gra	vel 1	Aqu	ifer																			
LRGA Lower F	Regional	Gra	vel.	Aqu	ifer																			
S Sidegrae	dient;			D)	D	own	grad	ient;			Ţ	J	-	Upg	radi	ent							

APPENDIX H METHANE MONITORING DATA

C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	9/25/2	014					7	ſime) :	13	:13					Мо	nitor	: •	Tar	nm	y Smith
Weather Co Sunny at 83			ith c	alm	win	ds (out	of t	he i	no	rth							•			
Monitoring MSA Sirius																					
					М	onit	orir	ng L	.oc	ati	on										Reading (% LEL)
Ogden Landi Road Entrand		Chec	cked a	at gro	und	leve	1														0
North Landfil		Chec	cked a	at gro	und	leve															0
	North 37° 07.652' West 88° 48.029' Checked at ground level 0 ast Side of 0																				
East Side of Landfill: North 37°	West 88° 48.029' Checked at ground level 0 ist Side of indfill: North 37° 07.628' Checked at ground level 0 west 88° 47.798' Checked at ground level 0 all 1 Gas Vent (17) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17																				
Cell 1 Gas Ve	ent (17)	0	0	0	4 0	5 0												1	- 1		0
Cell 2 Gas Vo	ent (3)	7.8	2 6.6	3 7.8																	1-7.8, 2-6.6, 3-7.8
Cell 3 Gas Ve	ent (7)	1 0	0	3 0	0	5 0	6 0	0													0
Landfill		Chec	ked a	t floo	r leve	el															0
Suspect or Pr	Areas	No ar	eas r	oted																	18 9-25-14
Remarks:	S CHE	CKE	D 1'	' FR	ΟM	1 T	HE	MC	DU'	Tŀ	l OI	= T⊦	∃Ε \	√EN	NT (PE	NIN	G [*]			
Performed by	y:				Sign	latu	<i>m</i> ire	na j	4	2	Su.	in E	Z.						4	//	25/14 Date

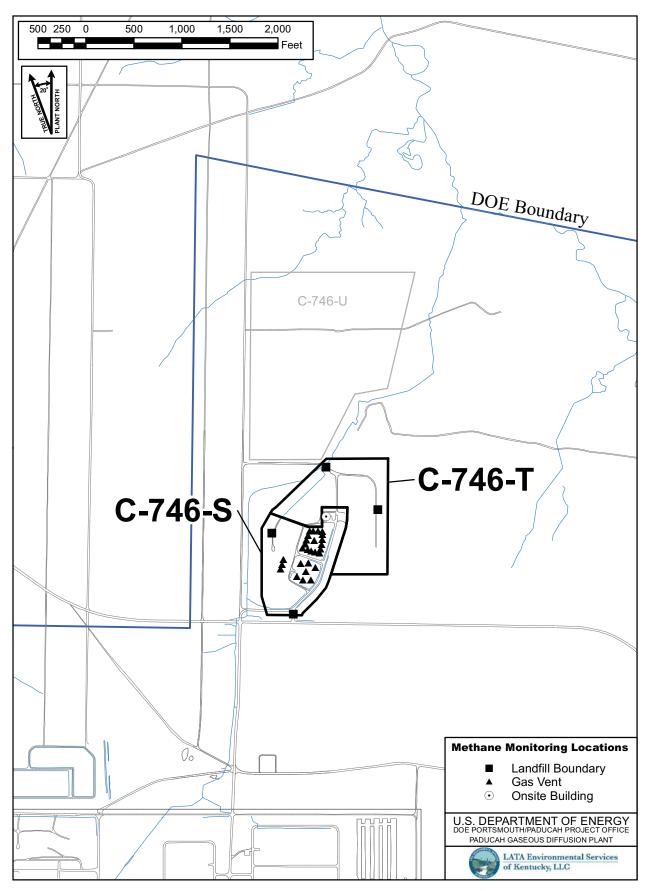


Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I

SURFACE WATER SAMPLE ANALYSIS AND WRITTEN COMMENTS

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Frankfort, KY 40601 (502)564-6716

Solid Waste Branch

14 Reilly Road

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Po	(KPDES Discharge Number, or "U	L135 UPSTREAM L15		L154 DOWNSTREAM		L136 AT SITE			$\overline{}$				
Sample Seque	#	1		1		1			=				
If sample is	lank, specify Type: (F)ield, (NA		NA		NA			$\overline{}$				
Sample Date and Time (Month/Day/Year hour: minutes)							9/11/2014 12:30 9/11		9/11/2014 12:20		NA		\mathcal{T}
Duplicate ("Y" or "N") ¹							N N			N			\overline{I}
Split ('Y' o	V") ²	N N		N									
Facility Samp	Facility Sample ID Number (if applicable)						1	L154US4-14		NA		\ /	
Laboratory Sa	Laboratory Sample ID Number (if applicable)							356720002		NA			
Date of Analy	Date of Analysis (Month/Day/Year)					9/29/2014		9/29/2014		NA			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL	F L A G
A200-00-0	0	Flow	Т	MGD	Field	0.84		0.21			*		*
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	7.95		6.04			*		*
14808-79-8	0	Sulfate	Т	MG/L	300.0	8.41		7.22			*		*
7439-89-6	0	Iron	Т	MG/L	200.8	0.41		0.501			*		*
7440-23-5	0	Sodium	Т	MG/L	200.8	7.57		5.36			*		*
s0268	0	Organic Carbon ⁶	Т	MG/L	9060	20.7		20.2			*		*
s0097	0	BOD ⁶	Т	MG/L	not applicable		*		*		*		*
s0130	0	Chemical Oxygen Demand	т	MG/L	410.4	64.8		109			*		*

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required

⁷Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Point (KPDES Discharge Number, or "UPSTREAM" or "DOWNSTREAM")						L135 UPSTREAM		L154 DOWNSTREAM		L136 AT SITE			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	E L A G S
s0145	1	Specific Conductance	Т	µнмs/см	Field	212		185			*		*
s0270	0	Total Suspended Solids	Т	mg/L	160.1	5.8		7.4			*		*
s0266	0	Total Dissolved Solids	Т	mg/L	160.2		*	129			*		*
s0269	0	Total Solids	Т	mg/L	SM-2540 B 17	155		153			*		*
s0296	0	рН	Т	Units	Field	7.48		7.72			*		*
7440-61-1		Uranium	Т	mg/L	200.8	0.00389		0.00265			*		*
12587-46-1		Gross Alpha (α)	Т	pCi/L	900.0	-0.958	*	2.82	*		*	V	*
12587-47-2		Gross Beta (β)	Т	pCi/L	900.0	36.1	*	26	*		*	\setminus	*
													<u> </u>
													\perp
													$igwdap_{}$
													$\vdash \vdash$
													$\sqcup \setminus$
													\sqcup
											'		

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 & 073-00015

Finds/Unit:	KY8-890-008-982 /	1					
LAB ID:	None						
For Official Use Only							

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ng Facility Sample ID	Constituent	Flag	Description
L135	L135SS4-14	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Dissolved Solids		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.59. Rad error is 4.59.
		Beta activity		TPU is 12. Rad error is 10.4.
L154	L154US4-14	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.31. Rad error is 5.29.
		Beta activity		TPU is 9.22. Rad error is 8.18.

