C-746-S&T Landfills
Second Quarter Calendar Year 2014
(April—June)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

This document is approved for public release per review by:

ATA Kentucky Classification Support

8-26-19

Date

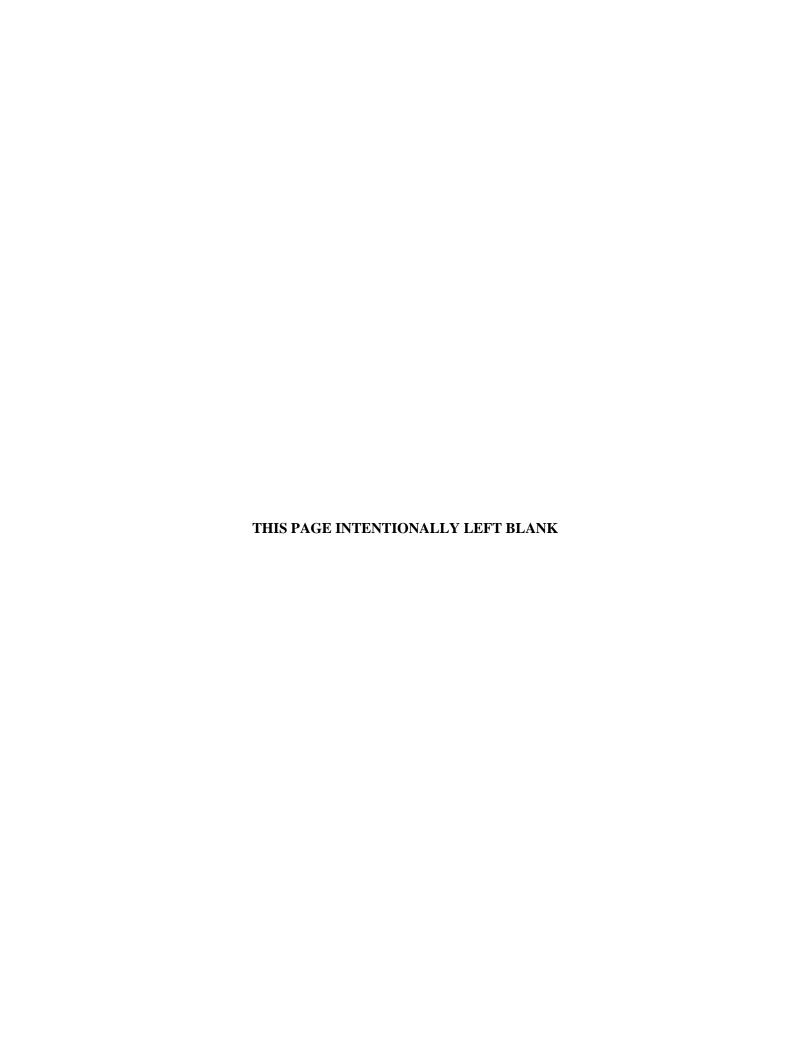
C-746-S&T Landfills
Second Quarter Calendar Year 2014
(April-June)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—August 2014

Prepared for the U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC
managing the
Environmental Remediation Activities at the
Paducah Gaseous Diffusion Plant
under contract DE-AC30-10CC40020

CLEARED FOR PUBLIC RELEASE


CONTENTS

FIGURES		v
TABLES		v
ACRONYMS		vii
1.1 BACK 1.2 MONI 1.2.1 1.2.2 1.2.3	FIONGROUNDFORING PERIOD ACTIVITIES	112
2. DATA EVALU	JATION/STATISTICAL SYNOPSIS	7
3. DATA VALID	ATION	9
4. PROFESSION	AL GEOLOGIST AUTHORIZATION	11
5. REFERENCE.		13
APPENDIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
APPENDIX B:	FACILITY INFORMATION SHEET	B-1
APPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
APPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
APPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
APPENDIX F:	NOTIFICATIONS	F-1
APPENDIX G:	CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES	G-1
APPENDIX H:	METHANE MONITORING DATA	H-1
APPENDIX I	SURFACE WATER SAMPLE ANALYSIS AND WRITTEN COMMENTS	T_1

FIGURES

	Groundwater Monitoring Well Network for the C-746-S&T Landfills	
2.	C 740 Sect Editatin Surface Water Monitoring Educations	
	TABLES	
1.	Summary of MCL Exceedances	. 5
2.	Summary of Statistically Significant Increases	. 5
3.	Monitoring Wells Included Historically in Statistical Analysis	. 7

ACRONYMS

CFR Code of Federal Regulations

EPA U.S. Environmental Protection Agency
KAR Kentucky Administrative Regulations
KDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes

LATA Kentucky LATA Environmental Services of Kentucky, LLC

LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

PGDP Paducah Gaseous Diffusion Plant

QC quality control

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

1. INTRODUCTION

This report, C-746-S&T Landfills Second Quarter Calendar Year 2014 (April-June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number 073-00014 for the C-746-S Residential Landfill and Permit Number 073-00015 for the C-746-T Inert Landfill.

The groundwater, surface water, leachate, and methane monitoring sample data reporting form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) groundwater reporting forms, which are presented in Appendix C. The total metals results reported in Appendix C are measured in an unfiltered sample, as required by Permit Condition GSTR0003, Standard Requirement 4. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determination are provided in Appendix E. Appendix F contains the notifications for parameters that exceed the maximum contaminant level (MCL) and for all parameters that had statistically significant increased concentrations relative to background concentrations, including those parameters listed in 40 CFR § 302.4, Appendix A. Appendix G provides a chart of MCL exceedances and statistically significant increases that have occurred, beginning in the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-S&T Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 4. Surface water was monitored as specified in 401 KAR 48:300 § 2, and the approved surface water monitoring plan. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled for reporting only, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water results are provided in Appendix I.

1.1 BACKGROUND

The C-746-S&T Landfills are closed solid waste landfills located north of the Paducah Gaseous Diffusion Plant (PGDP) and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a cover of compacted soil. The C-746-S Landfill was a sanitary landfill for PGDP. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from PGDP. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Groundwater sampling was conducted within the second quarter 2014 during April using LATA Environmental Services of Kentucky, LLC, (LATA Kentucky) procedure PAD-ENM-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. Due to United States Enrichment Corporation ceasing operations at PGDP, laboratory analyses were contracted

to an off-site laboratory. The laboratory used lower reporting limits than the previously used laboratory. The laboratory also used U.S. Environmental Protection Agency (EPA)-approved methods, as applicable.

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the monitoring well locations is presented in Figure 1. All MWs were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for this location. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water measurements were collected on April 29, 2014, in MWs of the C-746-S&T Landfills (see Table E.1), in MWs of the C-746-U Landfill, and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 38 vicinity wells define the potentiometric surface for the Regional Gravel Aquifer (RGA). As in previous quarters, a groundwater mound under the C-746-S&T Landfills resulted in radial flow away from the landfill area. Normal regional flow in the RGA is northeastward, toward the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in April was 2.86×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 4.71×10^{-3} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.80 to 1.37 ft/day (see Table E.3). The mound is an area of high hydraulic potential in the RGA that approximately mirrors the land topography in the area of the landfill.

1.2.2 Methane Monitoring

Landfill operations staff monitored for the occurrence of methane on June 6, 2014, in 1 on-site building location, 4 locations along the landfill boundary, and 27 gas-passive vents located in Cells 1, 2, and 3 of the C-746-S Landfill. See Appendix H for a map of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was sampled in accordance with 401 KAR 48:300 § 2 and the approved surface water monitoring plan. Sampling was performed in three locations within the C-746-S&T Landfills. The landfills have an upstream location, L135; a downstream location, L154; and a location capturing runoff from the landfill surface, L136. A map of the surface water monitoring locations is presented in Figure 2. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled for report only format, pursuant to Permit Condition GMNP0003, Standard Requirement 1. Surface water results are provided in Appendix I.

-

¹ Although depth-to-water is measured in the UCRS wells, the UCRS has a strong vertical hydraulic gradient that varies locally. The UCRS wells are screened over different elevations; therefore, the UCRS well measurements are not sufficient for mapping the potentiometric surface.

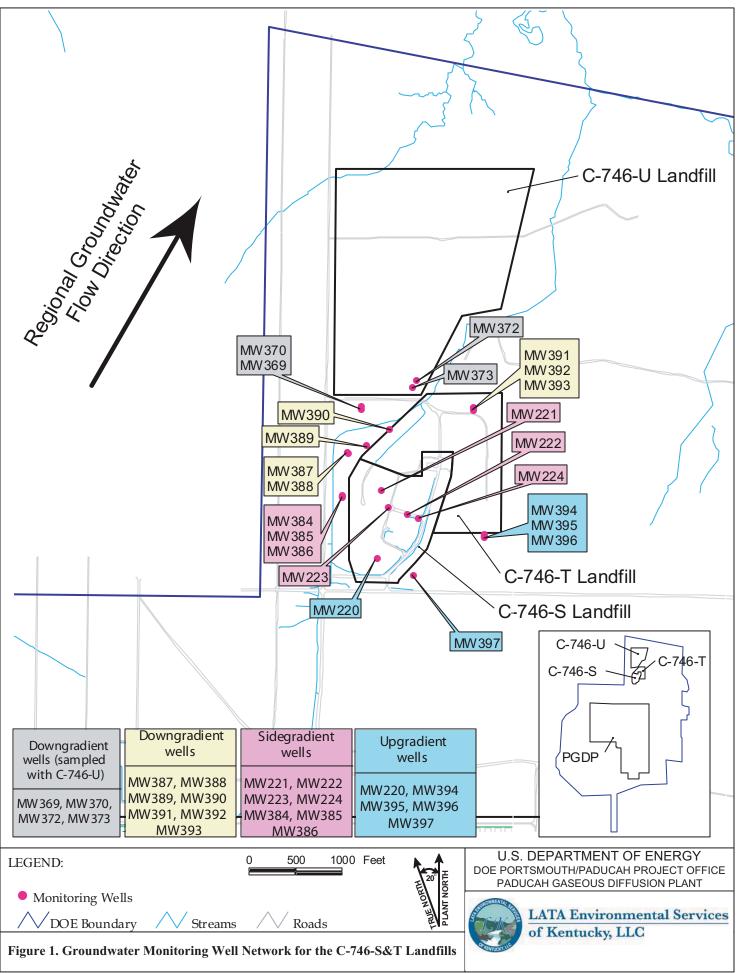


Figure 2. C-746-S&T Landfill Surface Water Monitoring Locations

1.3 KEY RESULTS

The following parameters had concentrations that either exceeded the MCL (Table 1) or were shown to have statistically significant increases (Table 2) in concentrations² relative to background concentrations during the second quarter 2014.

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW372: Trichloroethene	MW385: Beta Activity
	MW384: Beta Activity	MW388: Beta Activity
	MW387: Beta Activity	MW392: Trichloroethene
	MW391: Trichloroethene	

Table 2. Summary of Statistically Significant Increases

<u>UCRS</u>	<u>URGA</u>	<u>LRGA</u>
MW386: Oxidation-reduction	MW221: Oxidation-reduction	MW370: Oxidation-reduction
potential	potential	potential, sulfate
MW390: Oxidation-reduction	MW222: Oxidation-reduction	MW373: Calcium, conductivity
potential, technetium-99	potential	dissolved solids, magnesium,
		oxidation-reduction potential,
		sodium, sulfate, technetium-99
MW393: Oxidation-reduction	MW224: Oxidation-reduction	MW385: Oxidation-reduction
potential	potential, sodium	potential, sulfate, technetium-99
	MW369: Aluminum, oxidation-	MW388: Oxidation-reduction
	reduction potential, sodium,	potential, sulfate, technetium-99
	technetium-99, toluene	
	MW372: Calcium, conductivity,	MW392: Oxidation-reduction
	dissolved solids, magnesium,	potential
	sodium, sulfate	
	MW384: Sulfate, technetium-99,	
	toluene	
	MW387: Magnesium, oxidation-	
	reduction potential, sulfate,	
	technetium-99, toluene	
	MW391: Sulfate	

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393

Upgradient wells: MW220, MW394, MW395, MW396, MW397

There were no new MCL exceedances for this quarter. MCL exceedances for beta activity in wells MW384, MW385, MW387, and MW388 are related to sources of contamination that are upgradient of the C-746-S&T Landfills. The trichloroethene detected in MW372, MW391, and MW392 is derived from an alternate source in the vicinity of the C-746-S&T Landfills. The notification of parameters that exceeded the MCL has been submitted electronically to KDWM in accordance with 401 *KAR* 48:300 § 7 prior to the submittal of this report.

_

² The term "concentration" may refer to a field measurement result, such as pH, oxidation-reduction potential, or an analytical parameter such as trichloroethene or polychlorinated biphenyls.

There was one new statistically significant increase this quarter, toluene. Toluene was detected in MW369, MW384, and MW387. Please note that toluene also was detected in the trip blanks and some data qualified as "U" (nondetect). The source is believed to be the sealing process that was used on the samples in preparation for shipment.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to background concentrations, as required by Permit Numbers 073-00014 and 073-00015, Condition GSTR0003, Standard Requirement 8, and 401 KAR 48:300 § 7.

In accordance with Permit Condition GSTR0003, Variance 2, of the Solid Waste Permit (Permit), the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the Permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the second quarter 2014 groundwater data collected from the C-746-S&T Residential/Inert Landfills MWs were performed in accordance with Permit Condition GSTR0003, Standard Requirement 3, using EPA guidance (EPA 1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the statistician. The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (D-23–D-100).

For chemicals with an established MCL, no statistical analysis is required. Parameters that have an MCL can be found in 401 KAR 47:030 § 6. For parameters with no established MCL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistically significant increase in concentration with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations exist in concentrations with respect to upgradient (background) well data. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 3.

Table 3. Monitoring Wells Included Historically in Statistical Analysis*

UCRS	URGA	LRGA
MW386	MW220 (upgradient)**	MW370
MW389 (dry)***	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396 (upgradient)**	MW224	MW392
	MW369	MW395 (upgradient)**
	MW372	MW397 (upgradient)**
	MW384	
	MW387	
	MW391	
	MW394 (upgradient)**	

^{*}A map showing the monitoring well locations is shown in Figure 1.

STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining statistically significant increases is provided in Appendix D under Statistical Analysis Process. Appendix G summarizes the occurrences (by well and by quarter) of statistically significant increases and MCL exceedances.

^{**}Included as background only.

^{***}MW389 had insufficient water to permit a water level measurement or to provide water samples for laboratory analysis.

Upper Continental Recharge System

In this quarter, statistical analysis was performed on 26 parameters in the UCRS. The statistical analysis was conducted separately for each parameter in each well. During the second quarter, oxidation-reduction potential, and technetium-99 displayed elevated concentrations that were determined to qualify as statistically significant increases.

Upper Regional Gravel Aquifer

In this quarter, statistical analysis was performed on 26 parameters in the URGA. The statistical analysis was conducted separately for each parameter in each well. During the second quarter, aluminum, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, technetium-99, and toluene displayed elevated concentrations that were determined to qualify as statistically significant increases.

Lower Regional Gravel Aquifer

In this quarter, statistical analysis was performed on 24 parameters in the LRGA. The statistical analysis was conducted separately for each parameter in each well. During the second quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, technetium-99 displayed elevated concentrations that were determined to qualify as statistically significant increases.

3. DATA VALIDATION

Data validation was performed on the organic, inorganic, and radiochemical analytical data by an independent third-party validator. Validation qualifiers are not requested on the groundwater reporting forms. Validation qualifiers are used in the statistical analysis. Validation qualifiers are added by the third-party validator and not the laboratory.

Field quality control samples are collected quarterly during each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data validation process.

The following summary from the data validation report is included to provide more information regarding the presence of toluene and radium-226 in the second quarter 2014 sampling event.

All laboratory and field blanks were analyzed at the proper frequency. Toluene was detected in the trip blanks, and the following samples were qualified "U" (nondetect) based on trip blank results by the third-party data validator: MW222, MW224, MW384, MW385, MW386, MW387, MW388, MW390, MW391, MW392, MW393, MW394, MW395, MW396, MW397, FB1, and RI1.

All laboratory and field blanks were analyzed at the proper frequency. Radium-226 was detected in the rinseate blank. Based on the rinseate blank results, the following samples have been qualified "U" (nondetect) by the third-party data validator: MW222, MW384, MW387, MW388, MW390, MW391, MW392, MW394, and MW397.

4. PROFESSIONAL GEOLOGIST AUTHORIZATION

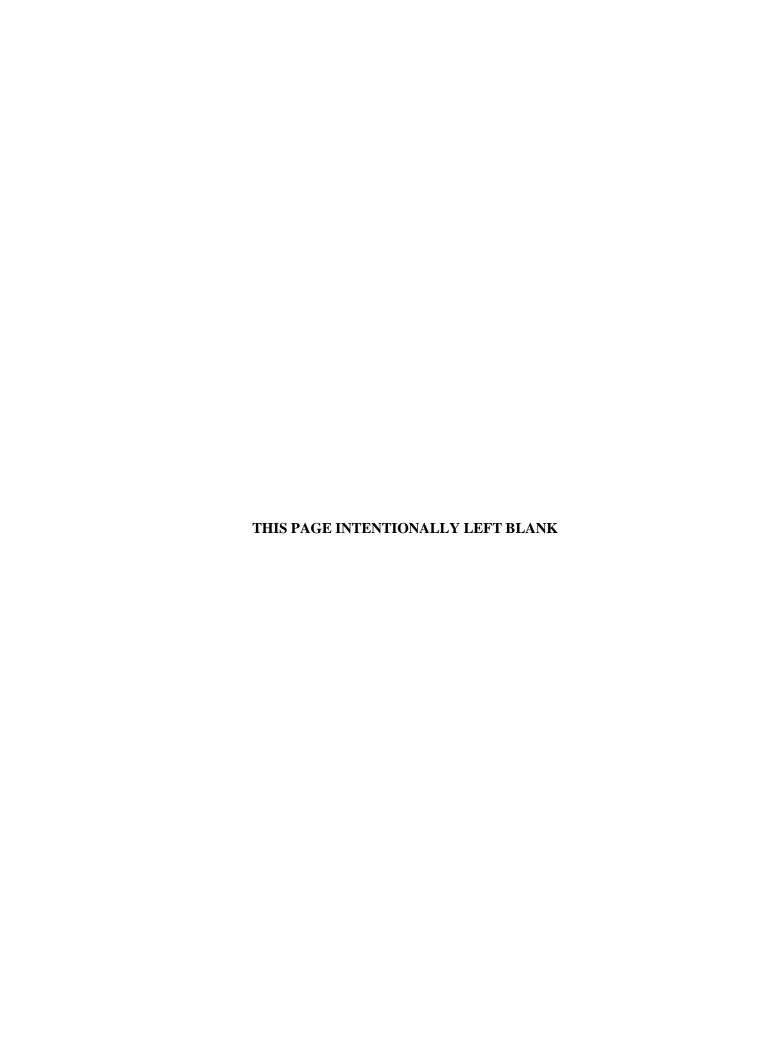
DOCUMENT IDENTIFICATION:

C-746-S&T Landfills

Second Quarter Calendar Year 2014 (April-June)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (PAD-ENM-0090/V2)


Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

Kenneth R. Davis

PG1194

August 26, 2014

5. REFERENCE

EPA (U.S. Environmental Protection Agency) 1989. *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Final Guidance, Office of Resource Conservation and Recovery, U.S. Environmental Protection Agency, Washington, DC.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE – Paducal	h Gaseous Diffusion Plan	nt Activity:	C-746-S&T Landfills
	(As officially show	n on DWM Permit Face)		
Permit No:073	3-00014 & 073-00015	Finds/Unit No:	Quarter & Y	ear2nd Qtr. CY 2014
Please check the J	following as applicable	2:		
Characteri	zation X Qua	arterly Semia	nnual Ann	ual Assessment
Please check appl	icable submittal(s):	X Groundwat	er X	Surface Water
	ā	Leachate	X	Methane Monitoring
the lab report is NO pages. certify under pena accordance with a sy Based on my inquiry pest of my knowledge	Ity of law that the doct extem designed to assure of the person or persons e and belief, true, accurate	on. Instructions for comple ument and all attachments that qualified personnel p directly responsible for ga	ting the form are attached were prepared under more properly gather and evaluathering information, the interest that there are significan	imilar techniques. Submitting d. Do not submit the instruction my direction or supervision in ate the information submitted. Information submitted is, to the the penalties for submitting false
m. 16				
11/1/1/V			8	3-8-14
	dicah Project Manag ental Services of Ker			3-29-14 Date

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Groundwater: April 2014 Surface Water: April 2014 073-00014 & Sampling Date: Methane: June 2014 County: McCracken Permit Nos. 073-00015 Facility Name: U.S. DOE, Paducah Gaseous Diffusion Plant (As officially shown on DWM Permit Face) Site Address: 5600 Hobbs Road 42053 Kevil, Kentucky Street City/State Phone No: (270) 441-6800 W 88° 47' 55<u>.41"</u> Latitude: N 37° 07' 37.70" Longitude: OWNER INFORMATION Facility Owner: U.S. DOE, W. E. Murphie, Manager Phone No: (859) 219-4001 Contact Person: Mark J. Duff Phone No: (270) 441-5030 Contact Person Title: Project Manager, LATA Environmental Services of Kentucky, LLC Mailing Address: 761 Veterans Avenue Kevil, Kentucky 42053 Zip Street City/State SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY) Company: LATA Environmental Services of Kentucky, LLC Contact Person: Jeff Boulton Phone No: (270) 441-5444 Mailing Address: 761 Veterans Avenue Kevil, Kentucky 42053 City/State Street Zip LABORATORY RECORD #1 Laboratory: GEL Laboratories, LLC Lab ID No: SC00012(EPA ID Number) Contact Person: Joanne Harley Phone No: (843) 769-7387 Mailing Address: 2040 Savage Road Charleston, South Carolina 29407 Street City/State Zip LABORATORY RECORD #2 Lab ID No: MO00054 (EPA ID Number) Laboratory: TestAmerica Laboratories, Inc. Contact Person: Elaine Wild Phone No: (314) 298-8566 Mailing Address: 13715 Rider Trail North Earth City, Missouri 63045 Street City/State Zip LABORATORY RECORD #3 Lab ID No: Laboratory: Contact Person: Phone No: Mailing Address: Street City/State

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ , Facility Well/Spring Number					8000-5201 8000-5202		202	8000-5242		8000-5243			
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)					220		221		222		223		
Sample Sequence	Sample Sequence #						1		1		1		
If sample is a B	If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment						NA		NA		NA		
Sample Date an	Sample Date and Time (Month/Day/Year hour: minutes)				4/7/2014 12	:22	4/7/2014 09:05		4/7/2014 09:23		4/7/2014 0	4/7/2014 09:47	
Duplicate ("Y"	or "N") ²				N		N		N		N		
Split ("Y" or	Split ("Y" or "N") ³						N		N		N		
Facility Sampl	e ID Number (if applicable)				MW220SG3	-14	MW221S0	G3-14	MW222S0	93-14	MW223SG	3-14	
Laboratory Sam	uple ID Number (if applicable)				34617600	1	346176	002	346176003		346176005		
Date of Analys	sis (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	4/14/2014 4/14/20		14	4/14/2014		4/14/2014			
Gradient with	respect to Monitored Unit (UP, Do	, NWC	SIDE, UNKN	OWN)	UP		SIDE		SIDE		SIDE		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	
24959-67-9	Bromide	т	mg/L	9056	0.208		0.51		0.505		0.544		
16887-00-6	Chloride(s)	т	mg/L	9056	21.3		34.3		32.4		33.3		
16984-48-8	Fluoride	Т	mg/L	9056	0.204		0.181		0.239		0.17		
s0595	Nitrate & Nitrite	т	mg/L	9056	1.36		1.19		0.994		0.908		
14808-79-8	Sulfate	т	mg/L	9056	18.9		13.2		11.3		15		
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.54		29.55		29.55		29.51		
s0145	Specific Conductance	Т	μ MH0/cm	Field	403		378		344		379		

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	<u> </u>	8000-5243	
Facility's Lo	cal Well or Spring Number (e.g., MV	7-1, I	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.74		326.82		326.72		326.79	
N238	Dissolved Oxygen	Т	mg/L	Field	4.9		5.07		3.02		3.47	
S0266	Total Dissolved Solids	Т	mg/L	160.1	226		217		186		191	
s0296	Нд	Т	Units	Field	6.2		6.12		6.23		6.12	
NS215	Eh	Т	mV	Field	400		497		510		356	
s0907	Temperature	Т	°C	Field	14.72		13.78		14.78		14.72	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		<0.05		0.114		0.0186	J
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.23	*	0.206	*	0.289	*	0.229	*
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.00604	J	0.0131	J	0.0094	J	0.00781	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	25.6		20.8		19		21.1	
7440-47-3	Chromium	Т	mg/L	6020	0.00969	J	0.0749		0.00647	J	0.0147	
7440-48-4	Cobalt	Т	mg/L	6020	0.00023	J	0.00172		0.0017		0.00426	
7440-50-8	Copper	Т	mg/L	6020	0.00098	J	0.00275		0.00113		0.00058	J
7439-89-6	Iron	Т	mg/L	6020	0.0553	J	0.643		0.307		0.0906	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	10.5		9.34		8.95		9.44	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.0169		0.0243		0.0873	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-520	01	8000-52	:02	8000-52	42	8000-52	43
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	0.00184		0.0073		0.00017	J	0.00265	
7440-02-0	Nickel	т	mg/L	6020	0.06		0.129		0.11		0.608	
7440-09-7	Potassium	т	mg/L	6020	7.45		1.21		0.462		1.48	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	43.9		45.2		44.4		44.4	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6010	<0.005		<0.005		<0.005		<0.005	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520 ⁻	1	8000-520	02	8000-52	242	8000-52	243
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	220		221		222		223	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		0.00039	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	42	8000-52	43
Facility's Lo	cal Well or Spring Number (e.g., M	IW-1	L, MW-2, et	c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.00002		<0.00002		<0.0000202		<0.0000201	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5201		8000-5202	2	8000-524	2	8000-524	13
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-4.22	*	-5.26	*	-2.37	*	-6.69	*
12587-47-2	Gross Beta	т	pCi/L	9310	7.94	*	5.94	*	2.26	*	-3.81	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	903.1	1.3	*	2.28	*	4	*	1.54	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.585	*	0.332	*	1.78	*	-1.21	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	24.8	*	12.1	*	18.5	*	19.9	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-1.05	*	1.81	*	1.32	*	-0.489	*
10028-17-8	Tritium	Т	pCi/L	906.0	-43	*	22.1	*	-61.2	*	-43.4	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		31.4		7	J
57-12-5	Cyanide	Т	mg/L	9012	<0.005		<0.005		<0.005		<0.005	
20461-54-5	Iodide	т	mg/L	300.0	<0.1		<0.1		<0.1		<0.1	
s0268	Total Organic Carbon	т	mg/L	9060	1.09	J	0.96	J	0.907	J	0.971	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00648	J	0.00772	J	0.00558	J	0.0052	J
<u> </u>	L							<u> </u>		<u> </u>		<u> </u>

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	318	8004-480)8
	ocal Well or Spring Number (e.g.,	MTA7 1	MW-2 0+0	.)	224	-	369		370	_	372	
-			., mw-z, etc	•• ,								
Sample Sequen	ice #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)∈	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	and Time (Month/Day/Year hour: minu	ıtes)		4/7/2014 13	:01	4/14/2014	09:49	4/15/2014	08:27	4/16/2014 0	8:02
Duplicate ("Y	r or "N") ²				N		N		N		N	
Split ("Y" or	· "N") ³				N		N		N		N	
Facility Samp	ole ID Number (if applicable)				MW224SG3	-14	MW369U0	G3-14	MW370U0	33-14	MW372UG	3-14
Laboratory Sa	ample ID Number (if applicable)		34617600	6	346700	005	3467700	001	34687300	03		
Date of Analy	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						4/18/20	14	4/21/20	14	4/23/201	4
Gradient with	n respect to Monitored Unit (UP, D	OWN,	, SIDE, UNKN	IOWN)	SIDE		DOW	N	DOWI	N	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.434		0.337		0.513		0.624	
16887-00-6	Chloride(s)	Т	mg/L	9056	33.3		31		42.6		56.3	
16984-48-8							0.189		0.17		0.205	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.91		0.192		1.23		<0.1	
14808-79-8	Sulfate	Т	mg/L	9056	16.4		8.09		18.9		176	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.53		29.78		30.15		30.3	
s0145	Specific Conductance	Т	μ MHO /cm	Field	428		380		432		837	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., M	I-1, I	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.73		326.52		322.22		326.03	
N238	Dissolved Oxygen	Т	mg/L	Field	3.42		1.33		4.15		3	
s0266	Total Dissolved Solids	Т	mg/L	160.1	221		213		223		546	
s0296	рн	т	Units	Field	6.25		6.21		6.08		6.14	
NS215	Eh	т	mV	Field	547		514		535		236	
s0907	Temperature	Т	°C	Field	15.11		15.67		13.17		13.11	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.62		<0.05		0.0492	J
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.233	*	0.37		0.197		0.0665	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0211		0.0108	J	0.0309		1.7	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	25.2		16.4		28		70.5	
7440-47-3	Chromium	Т	mg/L	6020	0.0021	J	0.00416	J	<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00041	J	0.0119		0.00049	J	0.00027	J
7440-50-8	Copper	Т	mg/L	6020	0.00065	J	0.002		0.00085	J	0.00301	
7439-89-6	Iron	Т	mg/L	6020	0.0692	J	1.42		0.163		1.99	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.3		6.7		11.8		26.1	
7439-96-5	Manganese	т	mg/L	6020	0.00897		0.138		0.00577		0.0372	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8000-524	44	8004-48	320	8004-48	18	8004-48	08
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	0.00047	J	0.00056		0.00018	J	0.0004	J
7440-02-0	Nickel	т	mg/L	6020	0.00592		0.00806		0.00172	J	0.0009	J
7440-09-7	Potassium	т	mg/L	6020	0.897		0.601		2.38		2.66	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	62.4		58.7		39.6		65.5	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005	*	<0.005	*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6010	<0.005		<0.005		<0.005		<0.005	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		0.00421	J	<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	0.0006	J	0.00716		0.0122		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244	4	8004-482	20	8004-48	318	8004-48	308
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	224		369		370		372	
CAS RN⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		0.00031	J
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00076	J	0.0014		0.00759	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	4	8004-4820	0	8004-48′	18	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g., 1	/W−1	L, MW-2, et	:c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000203		<0.00002		<0.0000202		<0.0000201	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*	0.0806	J	<0.102		<0.0971	
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.098		<0.102		<0.0971	
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.098		<0.102		<0.0971	
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.098		<0.102		<0.0971	
53469-21-9	PCB-1242	т	ug/L	8082		*	0.0806	J	<0.102		<0.0971	
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.098		<0.102		<0.0971	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244		8004-4820	١	8004-481	8	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.098		<0.102		<0.0971	
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.098		<0.102		<0.0971	
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.098		<0.102		<0.0971	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-5.17	*	4.44	*	0.000434	*	-1.2	*
12587-47-2	Gross Beta	Т	pCi/L	9310	-2.38	*	15.7	*	27.2	*	7.56	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	903.1	1.67	*	2.67	*	1.86	*	0.375	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.538	*	-1.12	*	4.37	*	-1.75	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	17.6	*	35.4	*	27.9	*	13.4	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.563	*	0.751	*	0.782	*	0.85	*
10028-17-8	Tritium	Т	pCi/L	906.0	69.3	*	-61.7	*	23.8	*	81.2	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		7.49	J	<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.005		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.1		<0.1		<0.1		<0.1	
s0268	Total Organic Carbon	Т	mg/L	9060	1.13	J	1.38	J	0.993	J	1.68	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00762	J	0.0256		0.00612	J	0.0139	
		Ш										
		Ш										
		Ш										

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management

Facility: US DOE - Paducah Gaseous Diffusion Plant

Solid Waste Branch

14 Reilly Road

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-48	309	8004-48	310	8004-480	04
Facility's Loc	al Well or Spring Number (e.g., 1	MW−1	, MW-2, etc	.)	373		384		385		386	
Sample Sequence	e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/16/2014 08	3:50	4/8/2014	08:20	4/8/2014 (09:29	4/8/2014 0	8:53
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW373UG3	-14	MW384S0	G3-14	MW385S0	G3-14	MW386SG	i3-14
Laboratory Sam	uple ID Number (if applicable)		34687300	1	346275	001	3462750	002	3462750	03		
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organics Analysis						4/15/20	14	4/14/20	14	4/14/201	14
Gradient with	respect to Monitored Unit (UP, Do	, NWC	SIDE, UNKN	OWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.606		0.55		0.316		0.172	J
16887-00-6	Chloride(s)	т	mg/L	9056	44		46.4		30.9		16	
16984-48-8	Fluoride	Т	mg/L	9056	0.222		0.189		0.145		0.653	
s0595	S0595 Nitrate & Nitrite T mg/L				0.895		1.24		0.932		<0.1	
14808-79-8	Sulfate	Т	mg/L	9056	209		22.9		20.5		43.8	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.32		29.8		29.81		29.8	
s0145	Specific Conductance	Т	μ MH 0/cm	Field	914		479		409		623	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved ⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-E	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.02		326.29		326.23		347.4	
N238	Dissolved Oxygen	т	mg/L	Field	3.01		4.15		3.39		0.78	
s0266	Total Dissolved Solids	Т	mg/L	160.1	573		246		194		409	
s0296	рH	Т	Units	Field	6.08		6.16		6.12		6.87	
NS215	Eh	Т	mV	Field	398		344		363		334	
s0907	Temperature	т	°C	Field	15.17		13.83		14.72		14.33	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.0237		0.192	*	0.194	*	0.132	*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	2.18		0.0154		0.0124	J	0.00486	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	78.4		27.6		25.1		22.9	
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.00304	J	<0.01		0.00284	J
7440-48-4	Cobalt	Т	mg/L	6020	0.00013	J	0.00011	J	0.00013	J	0.00056	J
7440-50-8	Copper	Т	mg/L	6020	0.00098	J	0.00133		0.00067	J	0.0025	
7439-89-6	Iron	Т	mg/L	6020	0.116		0.171		0.0547	J	0.437	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	27		11.1		9.53		10.1	
7439-96-5	Manganese	Т	mg/L	6020	0.00319	J	0.00485	J	<0.005		0.059	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-479	92	8004-48	809	8004-48	10	8004-48	04
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.00017	J	<0.0005		0.00061	
7440-02-0	Nickel	Т	mg/L	6020	0.00115	J	0.00373		0.0017	J	0.00336	
7440-09-7	Potassium	Т	mg/L	6020	2.69		1.43		1.44		0.289	J
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		0.00232	J	<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	68		53.1		44.2		113	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6010	<0.005		<0.005		<0.005		<0.005	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		0.0165		0.00423		0.0373	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-480	9	8004-48	310	8004-48	304
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00432		0.00088	J	0.0014		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809)	8004-48	10	8004-48	04
Facility's Loc	al Well or Spring Number (e.g., N	1 W−1	l, MW-2, et	:c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.000198		<0.0000198		<0.00002		<0.0000199	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0952			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0952			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0952			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0952			*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0952			*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0952			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-4809		8004-481	0	8004-480)4
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	:c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952			*		*		*
11096-82-5	PCB-1260	т	ug/L	8082	<0.0952			*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0952			*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-2.35	*	-0.817	*	0.818	*	-2.92	*
12587-47-2	Gross Beta	т	pCi/L	9310	19.1	*	110	*	106	*	-2.47	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	903.1	2.13	*	2.88	*	-0.164	*	0.871	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.6	*	-0.101	*	0.291	*	-0.0688	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	43.6	*	229	*	156	*	13.4	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	3.23	*	-0.106	*	1.93	*	-0.287	*
10028-17-8	Tritium	Т	pCi/L	906.0	1.59	*	13.4	*	-25.5	*	50.1	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		<20		<20		17.2	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.005		<0.005		<0.005	
20461-54-5	Iodide	т	mg/L	300.0	<0.1		<0.1		<0.1		<0.1	
s0268	Total Organic Carbon	Т	mg/L	9060	1.29	J	1.25	J	1.19	J	7.21	
s0586	Total Organic Halides	Т	mg/L	9020	0.00904	J	0.0109		0.0106		0.214	

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road

Frankfort, KY 40601 (502)564-6716

Solid Waste Branch

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-48	316	8004-481	12	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g., N	ww−1	., MW-2, etc	.)	387		388		389		390	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)∈	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		4/8/2014 08	:46	4/8/2014	09:32	NA		4/8/2014 12	2:17
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)		MW387SG3	3-14	MW388S	G3-14	NA		MW390SG3	3-14		
Laboratory Sa	mple ID Number (if applicable)		34627500	14	346275	005	NA		34627500)7		
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	ysis	4/14/2014	1	4/14/20	14	NA		4/14/2014	4		
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOWN		DOW	N	SIDE		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.493		0.326			*	0.771	
16887-00-6	Chloride(s)	Т	mg/L	9056	37.9		31.5			*	86.8	
16984-48-8	Fluoride	Т	mg/L	9056	0.711		0.292			*	0.328	
s0595	595 Nitrate & Nitrite T			9056	1.01		1			*	3.37	
14808-79-8	Sulfate	т	mg/L	9056	28.7		22.6			*	27.6	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.8		29.8			*	29.82	
s0145	Specific Conductance	т	μ M H0/cm	Field	544		458			*	708	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g., MV	/-1, I	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.35		322.3			*	326.34	
N238	Dissolved Oxygen	т	mg/L	Field	3.79		4.14			*	5.1	
s0266	Total Dissolved Solids	Т	mg/L	160.1	279		247			*	393	
s0296	НФ	Т	Units	Field	6.19		6.09			*	6.42	
NS215	Eh	Т	mV	Field	561		556			*	357	
s0907	Temperature	т	°C	Field	14.44		15.17			*	14.28	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05			*	0.295	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.125	*	0.187	*		*	0.262	*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0297		0.0209			*	0.00667	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	34.9		29.3			*	33.6	
7440-47-3	Chromium	Т	mg/L	6020	0.00356	J	0.00201	J		*	0.00293	J
7440-48-4	Cobalt	Т	mg/L	6020	0.00013	J	0.00011	J		*	0.00051	J
7440-50-8	Copper	т	mg/L	6020	0.00068	J	0.00069	J		*	0.00093	J
7439-89-6	Iron	т	mg/L	6020	0.0688	J	0.0651	J		*	0.359	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	15.8		12.7			*	15.3	
7439-96-5	Manganese	Т	mg/L	6020	0.00192	J	<0.005			*	0.00201	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-48	15	8004-48	316	8004-4812	2	8004-481	1
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		<0.0005			*	0.00059	
7440-02-0	Nickel	Т	mg/L	6020	0.00119	J	0.00139	J		*	0.00271	
7440-09-7	Potassium	Т	mg/L	6020	1.89		1.9			*	0.341	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	Т	mg/L	6020	0.00157	J	<0.005			*	<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	Т	mg/L	6020	52.4		46.1			*	93.1	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002			*	0.00011	J
7440-62-2	Vanadium	Т	mg/L	6010	<0.005		<0.005			*	0.00134	J
7440-66-6	Zinc	Т	mg/L	6020	<0.01		0.004	J		*	<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	т	mg/L	8260	0.0284		0.032			*	0.00463	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-48	16	8004-481	2	8004-481	1
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	, MW-2, et	:c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00091	J	0.00077	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-4816	6	8004-48	12	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g., M	IW-1	L, MW-2, et	c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198		<0.0000199			*	<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815		8004-4816	6	8004-4812	2	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.334	*	3.64	*		*	0.453	*
12587-47-2	Gross Beta	Т	pCi/L	9310	120	*	53.9	*		*	40.7	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	903.1	2.65	*	2.49	*		*	2.58	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	1.94	*	-2.25	*		*	-0.143	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	200	*	116	*		*	74.3	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.219	*	0.0189	*		*	2.38	*
10028-17-8	Tritium	Т	pCi/L	906.0	32.5	*	-117	*		*	-2.07	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	9.93	J	<20			*	12.4	J
57-12-5	Cyanide	Т	mg/L	9012	<0.005		<0.005			*	<0.005	
20461-54-5	Iodide	Т	mg/L	300.0		*		*		*	<0.1	
s0268	Total Organic Carbon	Т	mg/L	9060	1.29	J	1.21	J		*	2.01	
S0586	Total Organic Halides	Т	mg/L	9020	0.0146		0.00986	J		*	0.0148	

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

Solid Waste Branch

14 Reilly Road

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-480	5	8004-48	306	8004-48	07	8004-480	02	
Facility's Loc	al Well or Spring Number (e.g., 1	MW−1	, MW-2, etc	.)	391		392		393		394	
Sample Sequence	e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		4/9/2014 09	:17	4/9/2014	08:07	4/9/2014 (08:41	4/9/2014 1	2:48
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW391SG3	-14	MW392S0	G3-14	MW393S0	3-14	MW394SG	3-14
Laboratory Sam	uple ID Number (if applicable)		34640700	5	346407	003	3464070	004	3464070	01		
Date of Analys	is (Month/Day/Year) For Volatile	ysis	4/15/2014	ļ	4/14/20	14	4/14/20	14	4/14/201	4		
Gradient with	dient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)						DOW	N	DOWI	7	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.506		0.602		0.193	J	0.536	
16887-00-6	Chloride(s)	Т	mg/L	9056	36.4		47		15.7		48.1	
16984-48-8	Fluoride	Т	mg/L	9056	0.163		0.205		0.24		0.122	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.824		0.201		0.134		1.7	
14808-79-8	Sulfate	Т	mg/L	9056	20.6		6.79		16.4		10	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.11		30.08		30.11		30.14	
s0145	Specific Conductance	Т	μ MH0/cm	Field	393		389		413		404	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number		8004-480	5	8004-480	6	8004-4807	•	8004-4802			
Facility's Lo	cal Well or Spring Number (e.g., MW	/-1, I	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.97		325.84		339.87		325.76	
N238	Dissolved Oxygen	т	mg/L	Field	2.42		2.97		0.72		4.29	
s0266	Total Dissolved Solids	Т	mg/L	160.1	263		211		244		214	
s0296	Нд	Т	Units	Field	6.27		6.28		6.33		6.07	
NS215	Eh	Т	mV	Field	373		384		360		516	
s0907	Temperature	т	°C	Field	14.78		12.06		14.33		15.94	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0182	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		<0.005		0.0043	J	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.22		0.205		0.081		0.251	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0419		0.0265		0.019		0.0209	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	23.7		26.5		11.7		27.3	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.00043	J	0.00116		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00037	J	0.00046	J	0.00236		0.00087	J
7439-89-6	Iron	т	mg/L	6020	0.153		0.412		1.18		0.211	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	10.4		10.2		3.56		11	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.136		0.0186		0.00241	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-48	05	8004-48	806	8004-48	07	8004-48	02
Facility's L	ocal Well or Spring Number (e.g.	, MW-	·1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.00049	J	0.00082		0.00018	J
7440-02-0	Nickel	т	mg/L	6020	0.001	J	0.00158	J	0.00634		0.00296	
7440-09-7	Potassium	т	mg/L	6020	1.52		1.94		0.47		1.39	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	0.0015	J	<0.005		0.00208	J	<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	40		36.8		86.5		29.9	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.00149		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6010	<0.005		<0.005		0.00132	J	<0.005	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		0.0138		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	0.00361		0.0247		0.00121		0.0328	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	06	8004-48	307	8004-48	302
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	0.00041	J	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0108		0.0187		0.00039	J	0.00461	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	6	8004-48	07	8004-480	02
Facility's Loc	cal Well or Spring Number (e.g., 1	∕w-1	L, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000201		<0.0000198		<0.00002		<0.0000202	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4805	;	8004-4806	6	8004-480)7	8004-480)2
Facility's Lo	ocal Well or Spring Number (e.g	., MW-1	, MW-2, et	:c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-2.37	*	1.47	*	-2.66	*	7.61	*
12587-47-2	Gross Beta	т	pCi/L	9310	0.264	*	-0.827	*	1.13	*	6.27	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	903.1	2.88	*	2.57	*	0.763	*	4.26	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.196	*	0.304	*	-0.842	*	-0.697	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	5.15	*	11.5	*	-8.36	*	4.32	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-1.87	*	-1.39	*	-0.454	*	-1.65	*
10028-17-8	Tritium	т	pCi/L	906.0	99	*	45.9	*	1.62	*	0.723	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		18.3	J	20.5		16.1	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.1		<0.1		<0.1		<0.1	
S0268	Total Organic Carbon	т	mg/L	9060	0.869	J	1.07	J	2.45		0.877	J
s0586	Total Organic Halides	т	mg/L	9020	0.0115		0.0282		0.0181		0.00864	J
								-				
								-				₩

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Frankfort, KY 40601 (502)564-6716

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-480°	1	8004-48	303	8004-48	317	0000-000	0
Facility's Loc	cal Well or Spring Number (e.g., N	ſW−1	, MW-2, etc	·•)	395		396		397		E. BLANI	K
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		E	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/9/2014 09	:13	4/9/2014	09:56	4/8/2014	13:01	4/9/2014 07	':15
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW395SG3	3-14	MW396S0	G3-14	MW397S0	G3-14	RI1SG3-1	4
Laboratory San	mple ID Number (if applicable)				34640700	6	346407	002	3462750	006	34642300)7
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	4/15/2014	1	4/14/20	14	4/14/20	14	4/15/201	4
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.624		1.23		0.444			*
16887-00-6	Chloride(s)	Т	mg/L	9056	48.7		80.5		37.5			*
16984-48-8	Fluoride	Т	mg/L	9056	0.113		0.644		0.12			*
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.79		0.0637	J	1.2			*
14808-79-8	Sulfate	т	mg/L	9056	9.77		24		11.7			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.11		30.11		29.82			*
s0145	Specific Conductance						793		328			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved ⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817	7	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., MW	7-1, I	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	326.17		373.12		325.95			*
N238	Dissolved Oxygen	Т	mg/L	Field	4.57		1.62		5.01			*
s0266	Total Dissolved Solids	Т	mg/L	160.1	217		456		171			*
s0296	Нд	Т	Units	Field	6.07		6.55		6.08			*
NS215	Eh	Т	mV	Field	537		427		363			*
s0907	Temperature	Т	°C	Field	14.22		14.39		14.33			*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.0978		<0.05		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.257		0.376		0.152	*	<0.002	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0225		0.0062	J	0.00806	J	<0.015	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	27.7		36.4		19.4		<0.2	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.00061	J	<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00073	J	0.00162		0.00035	J	<0.001	
7439-89-6	Iron	Т	mg/L	6020	0.0709	J	1.15		0.0492	J	0.0475	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	12.2		15.4		8.36		<0.03	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.147		<0.005		<0.005	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	t ¹ , Facility Well/Spring Number				8004-48	01	8004-48	303	8004-48	17	0000-00	00
Facility's I	Local Well or Spring Number (e.g.	, MW-	·1, MW-2, e	tc.)	395		396		397		E. BLAI	ΝK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	0.00018	J	0.00048	J	<0.0005		<0.0005	
7440-02-0	Nickel	Т	mg/L	6020	0.00125	J	0.00154	J	0.0014	J	<0.002	
7440-09-7	Potassium	Т	mg/L	6020	1.62		0.793		1.81		<0.3	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		0.00172	J	<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	28.9		121		35.5		<0.25	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		0.000092	J	<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6010	<0.005		<0.005		<0.005		<0.005	
7440-66-6	Zinc	Т	mg/L	6020	0.0042	J	0.00398	J	<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	0.00483		0.02		0.00335		0.00064	J
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-480	1	8004-480	03	8004-48	317	0000-0	000
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1, MW-2, e	tc.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T mg/L	8260	0.00457		<0.001		0.00043	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-48	17	0000-000	00
Facility's Loc	cal Well or Spring Number (e.g., M	1W -1	l, MW-2, et	.c.)	395		396		397		E. BLAN	IK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000203		<0.000199		<0.0000194		<0.0000198	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4801		8004-4803		8004-481	7	0000-000	00
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	:c.)	395		396		397		E. BLAN	K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-2.01	*	-1.38	*	1.95	*	-3.52	*
12587-47-2	Gross Beta	Т	pCi/L	9310	2.09	*	-0.524	*	4.03	*	5.52	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	903.1	2.13	*	2.28	*	3.11	*	2.38	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.188	*	2.81	*	-1.71	*	0.601	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	11.2	*	-5.67	*	16.5	*	5.29	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	3.53	*	0.768	*	-0.126	*	-1.83	*
10028-17-8	Tritium	Т	pCi/L	906.0	127	*	1.22	*	29.4	*	160	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	7.43	J	33.5		<20			*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.005			*
20461-54-5	Iodide	т	mg/L	300.0	<0.1		0.16	J	<0.1		<0.1	
s0268	Total Organic Carbon	Т	mg/L	9060	0.819	J	5.26		0.835	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.00738	J	0.113		0.00464	J		*

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

Frankfort, KY 40601 (502)564-6716

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000)0
Facility's Loc	cal Well or Spring Number (e.g., N	1W−1	, MW-2, etc	:.)	F. BLAN	K	T. BLAN	K 1	T. BLANK	(2	T. BLANK	(3
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	F		Т		Т		Т	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		4/9/2014 09	9:15	4/7/2014 (8:05	4/7/2014 0	8:00	4/8/2014 07	7:30
Duplicate ("Y	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				FB1SG3-	14	TB1SG3	-14	TB2SG3-	14	TB3SG3-	14
Laboratory San	mple ID Number (if applicable)				34642300	08	3461760	07	3461760	08	34627500)8
Date of Analys	sis (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	4/15/201	4	4/14/20	14	4/14/201	4	4/14/201	4
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	Т	μ MH 0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., MW	/-1, I	MW-2, BLANK-	F, etc.)	F. BLAN	<	T. BLANK	1	T. BLANK	2	T. BLANK 3	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	Нд	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	Т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	Т	mg/L	6020	<0.002			*		*		*
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	Т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	Т	mg/L	6020	0.00189			*		*		*
7439-89-6	Iron	Т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	Т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	Т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				0000-000	00	0000-00	000	0000-00	00	0000-00	000
Facility's L	ocal Well or Spring Number (e.g.	, MW-	-1, MW-2, e	tc.)	F. BLAN	lK	T. BLAN	IK 1	T. BLAN	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005			*		*		*
7440-02-0	Nickel	Т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	Т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	Т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	Т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	Т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	Т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	Т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	Т	mg/L	6010	<0.005			*		*		*
7440-66-6	Zinc	Т	mg/L	6020	0.0178			*		*		*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	0.0036		<0.001		0.00071	J	0.0345	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			0000-000	0	0000-000	00	0000-00	000	0000-0	000
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1, MW-2, 6	etc.)	F. BLAN	<	T. BLAN	< 1	T. BLAN	NK 2	T. BLAN	NK 3
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000	0	0000-000	00	0000-000	00
Facility's Loc	cal Well or Spring Number (e.g., 1	∕w-1	, MW-2, et	:c.)	F. BLAN	(T. BLANK	1	T. BLAN	< 2	T. BLAN	< 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000201		<0.00002		<0.0000204		<0.0000199	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000	0	0000-0000		0000-0000)	0000-000	0
Facility's Loc	al Well or Spring Number (e.g., N	™ −1	L, MW-2, et	.c.)	F. BLANK	(T. BLANK 1		T. BLANK	2	T. BLANK	. 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-3.74	*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	-1.68	*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	903.1	3.09	*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.73	*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-0.282	*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	3.53	*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0	0.0596	*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0	<0.1			*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

Frankfort, KY 40601 (502)564-6716

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	8000-5242	2
Facility's Loc	cal Well or Spring Number (e.g., N	/W−1	, MW-2, etc	·•)	T. BLANK	(4	T. BLAN	K 5	T. BLAN	(6	222	
Sample Sequence	ce #				1		1		1		2	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	Т		Т		Т		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		4/8/2014 07	7:30	4/9/2014 (7:00	4/9/2014 0	7:10	4/7/2014 09:	.23
Duplicate ("Y	or "N") ²				N		N		N		Υ	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	cility Sample ID Number (if applicable)						TB5SG3	-14	TB6SG3-	14	MW222DSG	3-14
Laboratory San	aboratory Sample ID Number (if applicable)						3464070	009	3464070	10	346204004	
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	4/14/201	4	4/15/20	14	4/15/201	4	4/14/2014	1
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	NA		NA		NA		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*	0.456	
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*	33	
16984-48-8	Fluoride	т	mg/L	9056		*		*		*	0.277	
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*	1.01	
14808-79-8	Sulfate	т	mg/L	9056		*		*		*	11.3	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*	29.55	
s0145	Specific Conductance	Т	μ MH 0/cm	Field	_	*		*		*	344	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved ⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	8000-5242	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, i	MW-2, BLANK-	F, etc.)	T. BLANK	4	T. BLANK	5	T. BLANK	6	222	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*	326.72	
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*	3.02	
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*	217	
s0296	Н	т	Units	Field		*		*		*	6.23	
NS215	Eh	Т	mV	Field		*		*		*	510	
s0907	Temperature	Т	°C	Field		*		*		*	14.78	
7429-90-5	Aluminum	Т	mg/L	6020		*		*		*	0.113	
7440-36-0	Antimony	Т	mg/L	6020		*		*		*	<0.003	
7440-38-2	Arsenic	Т	mg/L	6020		*		*		*	<0.005	
7440-39-3	Barium	Т	mg/L	6020		*		*		*	0.281	*
7440-41-7	Beryllium	т	mg/L	6020		*		*		*	<0.0005	
7440-42-8	Boron	т	mg/L	6020		*		*		*	0.00928	J
7440-43-9	Cadmium	т	mg/L	6020		*		*		*	<0.001	
7440-70-2	Calcium	т	mg/L	6020		*		*		*	18.1	
7440-47-3	Chromium	Т	mg/L	6020		*		*		*	0.00519	J
7440-48-4	Cobalt	Т	mg/L	6020		*		*		*	0.00149	
7440-50-8	Copper	Т	mg/L	6020		*		*		*	0.00103	
7439-89-6	Iron	Т	mg/L	6020		*		*		*	0.276	
7439-92-1	Lead	Т	mg/L	6020		*		*		*	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020		*		*		*	8.28	
7439-96-5	Manganese	Т	mg/L	6020		*		*		*	0.0194	
7439-97-6	Mercury	т	mg/L	7470		*		*		*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				0000-000	00	0000-00	000	0000-00	00	8000-52	42
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANI	K 4	T. BLAN	IK 5	T. BLAN	K 6	222	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020		*		*		*	<0.0005	
7440-02-0	Nickel	т	mg/L	6020		*		*		*	0.0941	
7440-09-7	Potassium	т	mg/L	6020		*		*		*	0.425	
7440-16-6	Rhodium	т	mg/L	6020		*		*		*	<0.005	
7782-49-2	Selenium	Т	mg/L	6020		*		*		*	<0.005	
7440-22-4	Silver	Т	mg/L	6020		*		*		*	<0.001	
7440-23-5	Sodium	Т	mg/L	6020		*		*		*	42.7	
7440-25-7	Tantalum	Т	mg/L	6020		*		*		*	<0.005	
7440-28-0	Thallium	т	mg/L	6020		*		*		*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020		*		*		*	<0.0002	
7440-62-2	Vanadium	Т	mg/L	6010		*		*		*	<0.005	
7440-66-6	Zinc	т	mg/L	6020		*		*		*	<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	0.014		0.0126		0.0341		0.00288	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			0000-000	0	0000-000	00	0000-00	000	8000-5	242
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2, e	tc.)	T. BLANK	4	T. BLAN	< 5	T. BLAN	1K 6	222	<u>,</u>
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-0000)	0000-000	00	8000-52	42
Facility's Loc	cal Well or Spring Number (e.g., M	1W -1	l, MW-2, et	.c.)	T. BLANK	4	T. BLANK	5	T. BLAN	< 6	222	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.00002		<0.0000201		<0.0000201		<0.00002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000	0	0000-0000		0000-0000)	8000-524	2
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	T. BLANK	4	T. BLANK 5		T. BLANK	6	222	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*		*	-2.92	*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*	-0.24	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	903.1		*		*		*	0.789	*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*		*	0.19	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*		*	17.1	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*		*	-1.58	*
10028-17-8	Tritium	Т	pCi/L	906.0		*		*		*	-79.1	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*	16.8	J
57-12-5	Cyanide	Т	mg/L	9012		*		*		*	<0.005	
20461-54-5	Iodide	Т	mg/L	300.0		*		*		*	<0.1	
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*	0.911	J
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*	0.00484	J
											_	

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

Solid Waste Branch

14 Reilly Road

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AVCWA MIMPED¹	, Facility Well/Spring Number				8004-481	5	8004-48	16	Ν			$\overline{}$
						-		10	 			/
Facility's Lo	cal Well or Spring Number (e.g., N	W−1	., MW-2, etc	.)	387		388					
Sample Sequen	ce #				2		2					
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA				,	<u>/</u>
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		4/23/2014 0	8:21	4/23/2014	08:45			/	
Duplicate ("Y	" or "N") ²				N		N					
Split ("Y" or	"N") ³				N		N		\	\		
Facility Samp	le ID Number (if applicable)		MW387SG3	-14-2	MW388SG	3-14-2						
Laboratory San	mple ID Number (if applicable)		160-6376	-4	160-637	6-5						
Date of Analys	sis (Month/Day/Year) For Volatile	ysis	NA		NA							
Gradient with	respect to Monitored Unit (UP, DC	, NW	SIDE, UNKN	IOWN)	DOWN		DOW	١		\	(
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*	/	*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*	/	*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*	'	*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.08		30.08			*		*
s0145	Specific Conductance	т	μ MH0/cm	Field	529		434		/	*		*\

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

			~ 1~ ~ ~ .		1 00110							
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815	5	8004-481	6	\			
Facility's Loca	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	387		388					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.05		326.99			*		*
N238	Dissolved Oxygen	т	mg/L	Field	4.05		4.22			*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рН	т	Units	Field	6.27		6.18			*		*
NS215	Eh	т	mV	Field	446		447			*		*
s0907	Temperature	т	°C	Field	14.39		14.67			*		*
7429-90-5	Aluminum	Т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	т	mg/L	6020		*		*		* \		*
7440-38-2	Arsenic	т	mg/L	6020		*		*		*	X	*
7440-39-3	Barium	т	mg/L	6020		*		*		* /		*
7440-41-7	Beryllium	т	mg/L	6020		*		*		*/		*
7440-42-8	Boron	т	mg/L	6020		*		*		/*		*
7440-43-9	Cadmium	т	mg/L	6020		*		*	<u> </u>	*		*
7440-70-2	Calcium	т	mg/L	6020		*		*		*		*
7440-47-3	Chromium	т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	Т	mg/L	6020		*		*		*		*
7440-50-8	Copper	Т	mg/L	6020		*		*		*		*
7439-89-6	Iron	Т	mg/L	6020		*		*		*		*
7439-92-1	Lead	Т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	Т	mg/L	6020		*		*		*		
7439-96-5	Manganese	Т	mg/L	6020		*		*		*		* \
7439-97-6	Mercury	т	mg/L	7470		*		*	/	*		* \

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ , Facility Well/Spring Number				8004-481	5	8004-4816		\setminus				
Facility's Loc	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						388					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR POL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*	/	*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*	\	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	903.1		*		*		* \		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*		* \	$\sqrt{}$	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*		* /	\land	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*		*		* /		*
10028-17-8	Tritium	Т	pCi/L	906.0		*		*		*/		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0	<0.1		<0.1			*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*
											\	
									7			
									/			

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5201 MW22	20 MW220SG3-14	Barium	E	Result estimated due to interferences.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.35. Rad error is 4.35.
		Gross beta		TPU is 5.28. Rad error is 5.09.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.43. Rad error is 1.41.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.23. Rad error is 1.23.
		Technetium-99		TPU is 12.8. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.38. Rad error is 1.38.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 130. Rad error is 130.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5202 MW221	MW221SG3-14	Barium	Е	Result estimated due to interferences.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.56. Rad error is 3.56.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.12. Rad error is 3.97.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.79. Rad error is 1.75.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.47. Rad error is 2.47.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.7. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.46. Rad error is 2.43.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 136. Rad error is 136.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3000-5242 MW22	2 MW222SG3-14	Barium	E	Result estimated due to interferences.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.02. Rad error is 4.02.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.55. Rad error is 4.54.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 2.13. Rad error is 2.02.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.53. Rad error is 2.52.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.7. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.45. Rad error is 2.42.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 127. Rad error is 127.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3000-5243 MW223 MW223SG3-14		Barium	E	Result estimated due to interferences.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3. Rad error is 3.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.08. Rad error is 5.08.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.37. Rad error is 1.33.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.38. Rad error is 1.38.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.9. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.49. Rad error is 2.49.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 128. Rad error is 128.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

ū	acility ample ID	Constituent	Flag	Description
3000-5244 MW224 MW2	224SG3-14	Barium	E	Result estimated due to interferences.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
				Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.08. Rad error is 2.07.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.78. Rad error is 3.78.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.47. Rad error is 1.44.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.63. Rad error is 1.62.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.6. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.23. Rad error is 2.22.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 136. Rad error is 136.
8004-4820 MW369 MW3	369UG3-14	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.95. Rad error is 6.91.
		Gross beta		TPU is 8.28. Rad error is 7.88.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 1.86. Rad error is 1.81.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.22. Rad error is 2.22.
		Technetium-99		TPU is 15.3. Rad error is 14.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.54. Rad error is 3.52.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 136. Rad error is 136.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4818 MW370 M	W370UG3-14	Tantalum	N	Sample spike recovery not within control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.08. Rad error is 4.08.
		Gross beta		TPU is 10.9. Rad error is 9.99.
		lodine-131		Analysis of constituent not required and not perform
		Radium-226		TPU is 1.32. Rad error is 1.28.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.16. Rad error is 3.09.
		Technetium-99		TPU is 14.4. Rad error is 14.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.21. Rad error is 4.19.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 140. Rad error is 140.
3004-4808 MW372 MW372UG3-14		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.07. Rad error is 4.07.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.88. Rad error is 5.75.
		Iodine-131		Analysis of constituent not required and not perform
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.56. Rad error is 1.56.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.01. Rad error is 2.01.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.5. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.03. Rad error is 3.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 107. Rad error is 106.
004-4792 MW373 M	W373UG3-14	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.84. Rad error is 4.84.
		Gross beta		TPU is 8.11. Rad error is 7.49.
		lodine-131		Analysis of constituent not required and not perform
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.66. Rad error is 1.61.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.71. Rad error is 2.71.
		Technetium-99		TPU is 14.9. Rad error is 14.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.34. Rad error is 4.26.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 88.7. Rad error is 88.7.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4809 MW38	34 MW384SG3-14	Barium	E	Result estimated due to interferences.
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.73. Rad error is 3.72.
		Gross beta		TPU is 21.9. Rad error is 12.9.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 1.75. Rad error is 1.7.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.44. Rad error is 1.44.
		Technetium-99		TPU is 32.2. Rad error is 19.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.83. Rad error is 1.83.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 133. Rad error is 133.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4810 MW385 MW385SG3-14		Barium	E	Result estimated due to interferences.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.44. Rad error is 4.44.
		Gross beta		TPU is 21.6. Rad error is 13.1.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.07. Rad error is 1.07.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.61. Rad error is 1.61.
		Technetium-99		TPU is 24.8. Rad error is 17.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.64. Rad error is 2.6.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 131. Rad error is 131.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4804 MW38	6 MW386SG3-14	Barium	E	Result estimated due to interferences.
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.36. Rad error is 3.36.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.11. Rad error is 3.11.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.18. Rad error is 1.17.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.7. Rad error is 1.7.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.2. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.63. Rad error is 1.62.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 135. Rad error is 135.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4815 MW38	87 MW387SG3-14	Barium	E	Result estimated due to interferences.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.68. Rad error is 3.68.
		Gross beta		TPU is 23.5. Rad error is 13.2.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 1.57. Rad error is 1.51.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.66. Rad error is 1.63.
		Technetium-99		TPU is 29.2. Rad error is 19.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.79. Rad error is 1.79.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 136. Rad error is 136.
		lodide		Collected during a second sampling event.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4816 MW38	88 MW388SG3-14	Barium	E	Result estimated due to interferences.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.16. Rad error is 4.11.
		Gross beta		TPU is 13.3. Rad error is 9.77.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 1.6. Rad error is 1.55.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.79. Rad error is 1.79.
		Technetium-99		TPU is 21. Rad error is 16.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.84. Rad error is 3.84.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 126. Rad error is 126.
		lodide		Collected during a second sampling event.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Chloride During sampling, the well was dry; therefore, no s was collected. Fluoride During sampling, the well was dry; therefore, no s was collected. Nitrate & Nitrite During sampling, the well was dry; therefore, no s was collected. Sulfate During sampling, the well was dry; therefore, no s was collected. Barometric Pressure Reading Barometric Pressure Reading During sampling, the well was dry; therefore, no s was collected. Specific Conductance During sampling, the well was dry; therefore, no s was collected. Static Water Level Elevation Dissolved Oxygen During sampling, the well was dry; therefore, no s was collected. Total Dissolved Solids During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. Ph During sampling, the well was dry; therefore, no s was collected. Aluminum During sampling, the well was dry; therefore, no s was collected. Antimony During sampling, the well was dry; therefore, no s was collected. Arsenic During sampling, the well was dry; therefore, no s was collected. Barium During sampling, the well was dry; therefore, no s was collected. Beryllium During sampling, the well was dry; therefore, no s was collected. Boron During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Chromium During sampling, the well was dry; therefore, no s was collected. Cobalt During sampling, the well was dry; therefore, no s was collected. Copper During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the we	Monitoring Point	Facility Sample ID	Constituent	Flag	Description
Was collected. Nitrate & Nitrite During sampling, the well was dry; therefore, no s was collected. Sulfate During sampling, the well was dry; therefore, no s was collected. Barometric Pressure Reading During sampling, the well was dry; therefore, no s was collected. Specific Conductance During sampling, the well was dry; therefore, no s was collected. Static Water Level Elevation Dissolved Oxygen Dissolved Oxygen Dissolved Solids During sampling, the well was dry; therefore, no s was collected. PH During sampling, the well was dry; therefore, no s was collected. PH During sampling, the well was dry; therefore, no s was collected. Eh During sampling, the well was dry; therefore, no s was collected. Eh During sampling, the well was dry; therefore, no s was collected. Temperature During sampling, the well was dry; therefore, no s was collected. Aluminum During sampling, the well was dry; therefore, no s was collected. Aluminum During sampling, the well was dry; therefore, no s was collected. Antimony During sampling, the well was dry; therefore, no s was collected. Arsenic During sampling, the well was dry; therefore, no s was collected. Arsenic During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Calcium During sampling, the well was dry; therefore, no s was collected. Chromium During sampling, the well was dry; therefore, no s was collected. Copper During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. Dur	8004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sampl was collected.
was collected. Nitrate & Nitrite Sulfate During sampling, the well was dry; therefore, no s was collected. Barometric Pressure Reading During sampling, the well was dry; therefore, no s was collected. Specific Conductance During sampling, the well was dry; therefore, no s was collected. Static Water Level Elevation Dissolved Oxygen During sampling, the well was dry; therefore, no s was collected. Dissolved Solids During sampling, the well was dry; therefore, no s was collected. PH During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. PH During sampling, the well was dry; therefore, no s was collected. Eh During sampling, the well was dry; therefore, no s was collected. Temperature During sampling, the well was dry; therefore, no s was collected. Aluminum During sampling, the well was dry; therefore, no s was collected. Aluminum During sampling, the well was dry; therefore, no s was collected. Arsenic During sampling, the well was dry; therefore, no s was collected. Arsenic During sampling, the well was dry; therefore, no s was collected. Barium During sampling, the well was dry; therefore, no s was collected. Beryllium During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Calcium During sampling, the well was dry; therefore, no s was collected. Chromium During sampling, the well was dry; therefore, no s was collected. Copper During sampling, the well was dry; therefore, no s was collected. Copper During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected.			Chloride		During sampling, the well was dry; therefore, no sampl was collected.
Sulfate During sampling, the well was dry; therefore, no s was collected. Barometric Pressure Reading During sampling, the well was dry; therefore, no s was collected. Specific Conductance During sampling, the well was dry; therefore, no s was collected. Static Water Level Elevation Dissolved Oxygen Dissolved Oxygen During sampling, the well was dry; therefore, no s was collected. Total Dissolved Solids During sampling, the well was dry; therefore, no s was collected. PH During sampling, the well was dry; therefore, no s was collected. Eh During sampling, the well was dry; therefore, no s was collected. Temperature During sampling, the well was dry; therefore, no s was collected. Aluminum During sampling, the well was dry; therefore, no s was collected. Antimony Antimony Arsenic During sampling, the well was dry; therefore, no s was collected. Barium During sampling, the well was dry; therefore, no s was collected. Beryllium During sampling, the well was dry; therefore, no s was collected. Boron During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Calcium During sampling, the well was dry; therefore, no s was collected. Calcium During sampling, the well was dry; therefore, no s was collected. Calcium During sampling, the well was dry; therefore, no s was collected. Calcium During sampling, the well was dry; therefore, no s was collected. Cobalt During sampling, the well was dry; therefore, no s was collected. Copper During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was c			Fluoride		During sampling, the well was dry; therefore, no sampl was collected.
Mas collected. Barometric Pressure Reading During sampling, the well was dry; therefore, no s was collected. Specific Conductance During sampling, the well was dry; therefore, no s was collected. Static Water Level Elevation Dissolved Oxygen During sampling, the well was dry; therefore, no s was collected. Total Dissolved Solids During sampling, the well was dry; therefore, no s was collected. PH During sampling, the well was dry; therefore, no s was collected. Eh During sampling, the well was dry; therefore, no s was collected. Eh During sampling, the well was dry; therefore, no s was collected. Aluminum During sampling, the well was dry; therefore, no s was collected. Antimony During sampling, the well was dry; therefore, no s was collected. Arsenic During sampling, the well was dry; therefore, no s was collected. Barium During sampling, the well was dry; therefore, no s was collected. Beryllium During sampling, the well was dry; therefore, no s was collected. Boron During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Calcium During sampling, the well was dry; therefore, no s was collected. Calcium During sampling, the well was dry; therefore, no s was collected. Calcium During sampling, the well was dry; therefore, no s was collected. Cobalt During sampling, the well was dry; therefore, no s was collected. Copper During sampling, the well was dry; therefore, no s was collected. Copper During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. Copper During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected.			Nitrate & Nitrite		During sampling, the well was dry; therefore, no sampl was collected.
was collected. Specific Conductance During sampling, the well was dry; therefore, no s was collected. Static Water Level Elevation Dissolved Oxygen During sampling, the well was dry; therefore, no s was collected. Dissolved Solids During sampling, the well was dry; therefore, no s was collected. PH During sampling, the well was dry; therefore, no s was collected. Eh During sampling, the well was dry; therefore, no s was collected. Temperature During sampling, the well was dry; therefore, no s was collected. Temperature During sampling, the well was dry; therefore, no s was collected. Aluminum During sampling, the well was dry; therefore, no s was collected. Antimony During sampling, the well was dry; therefore, no s was collected. Arsenic During sampling, the well was dry; therefore, no s was collected. Barium During sampling, the well was dry; therefore, no s was collected. Beryllium During sampling, the well was dry; therefore, no s was collected. Boron During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Calcium During sampling, the well was dry; therefore, no s was collected. Chromium During sampling, the well was dry; therefore, no s was collected. Chromium During sampling, the well was dry; therefore, no s was collected. Cubalt During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. Copper During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected.			Sulfate		During sampling, the well was dry; therefore, no sampl was collected.
Was collected. Dissolved Oxygen Dissolved Oxygen During sampling, the well was dry; therefore, no swas collected. Total Dissolved Solids During sampling, the well was dry; therefore, no swas collected. PH During sampling, the well was dry; therefore, no swas collected. Eh During sampling, the well was dry; therefore, no swas collected. Temperature During sampling, the well was dry; therefore, no swas collected. Aluminum During sampling, the well was dry; therefore, no swas collected. Antimony During sampling, the well was dry; therefore, no swas collected. Arsenic During sampling, the well was dry; therefore, no swas collected. Barium During sampling, the well was dry; therefore, no swas collected. Beryllium During sampling, the well was dry; therefore, no swas collected. Boron During sampling, the well was dry; therefore, no swas collected. Cadmium During sampling, the well was dry; therefore, no swas collected. Cadmium During sampling, the well was dry; therefore, no swas collected. Calcium During sampling, the well was dry; therefore, no swas collected. Chromium During sampling, the well was dry; therefore, no swas collected. Chromium During sampling, the well was dry; therefore, no swas collected. Cobalt During sampling, the well was dry; therefore, no swas collected. Copper During sampling, the well was dry; therefore, no swas collected. Copper During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected.			Barometric Pressure Reading		During sampling, the well was dry; therefore, no sampl was collected.
was collected. Dissolved Oxygen During sampling, the well was dry; therefore, no s was collected. PH During sampling, the well was dry; therefore, no s was collected. Eh During sampling, the well was dry; therefore, no s was collected. Eh During sampling, the well was dry; therefore, no s was collected. Temperature During sampling, the well was dry; therefore, no s was collected. Aluminum During sampling, the well was dry; therefore, no s was collected. Antimony During sampling, the well was dry; therefore, no s was collected. Arsenic During sampling, the well was dry; therefore, no s was collected. Barium During sampling, the well was dry; therefore, no s was collected. Beryllium During sampling, the well was dry; therefore, no s was collected. Boron During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Calcium During sampling, the well was dry; therefore, no s was collected. Calcium During sampling, the well was dry; therefore, no s was collected. Chromium During sampling, the well was dry; therefore, no s was collected. Cobalt During sampling, the well was dry; therefore, no s was collected. Copper During sampling, the well was dry; therefore, no s was collected. Copper During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. Copper During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected.			Specific Conductance		During sampling, the well was dry; therefore, no sampl was collected.
was collected. During sampling, the well was dry; therefore, no s was collected. PH During sampling, the well was dry; therefore, no s was collected. Eh During sampling, the well was dry; therefore, no s was collected. Temperature During sampling, the well was dry; therefore, no s was collected. Aluminum During sampling, the well was dry; therefore, no s was collected. Antimony During sampling, the well was dry; therefore, no s was collected. Arsenic During sampling, the well was dry; therefore, no s was collected. Barium During sampling, the well was dry; therefore, no s was collected. Beryllium During sampling, the well was dry; therefore, no s was collected. Boron During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Calcium During sampling, the well was dry; therefore, no s was collected. Chromium During sampling, the well was dry; therefore, no s was collected. Chobalt During sampling, the well was dry; therefore, no s was collected. Cobalt During sampling, the well was dry; therefore, no s was collected. Copper During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected.			Static Water Level Elevation		During sampling, the well was dry; therefore, no sampl was collected.
was collected. pH During sampling, the well was dry; therefore, no s was collected. Eh During sampling, the well was dry; therefore, no s was collected. Temperature During sampling, the well was dry; therefore, no s was collected. Aluminum During sampling, the well was dry; therefore, no s was collected. Antimony During sampling, the well was dry; therefore, no s was collected. Arsenic During sampling, the well was dry; therefore, no s was collected. Barium During sampling, the well was dry; therefore, no s was collected. Beryllium During sampling, the well was dry; therefore, no s was collected. Boron During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Calcium During sampling, the well was dry; therefore, no s was collected. Chromium During sampling, the well was dry; therefore, no s was collected. Chromium During sampling, the well was dry; therefore, no s was collected. Cobalt During sampling, the well was dry; therefore, no s was collected. Copper During sampling, the well was dry; therefore, no s was collected. Lead During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected.			Dissolved Oxygen		During sampling, the well was dry; therefore, no sampl was collected.
was collected. Eh During sampling, the well was dry; therefore, no s was collected. Temperature During sampling, the well was dry; therefore, no s was collected. Aluminum During sampling, the well was dry; therefore, no s was collected. Antimony During sampling, the well was dry; therefore, no s was collected. Arsenic During sampling, the well was dry; therefore, no s was collected. Barium During sampling, the well was dry; therefore, no s was collected. Beryllium During sampling, the well was dry; therefore, no s was collected. Boron During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Calcium During sampling, the well was dry; therefore, no s was collected. Calcium During sampling, the well was dry; therefore, no s was collected. Chromium During sampling, the well was dry; therefore, no s was collected. Cobalt During sampling, the well was dry; therefore, no s was collected. Copper During sampling, the well was dry; therefore, no s was collected. Lead During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected.			Total Dissolved Solids		During sampling, the well was dry; therefore, no sampl was collected.
Was collected. Temperature During sampling, the well was dry; therefore, no swas collected. Aluminum During sampling, the well was dry; therefore, no swas collected. Antimony During sampling, the well was dry; therefore, no swas collected. Arsenic During sampling, the well was dry; therefore, no swas collected. Barium During sampling, the well was dry; therefore, no swas collected. Beryllium During sampling, the well was dry; therefore, no swas collected. Boron During sampling, the well was dry; therefore, no swas collected. Cadmium During sampling, the well was dry; therefore, no swas collected. Calcium During sampling, the well was dry; therefore, no swas collected. Calcium During sampling, the well was dry; therefore, no swas collected. Chromium During sampling, the well was dry; therefore, no swas collected. Cobalt During sampling, the well was dry; therefore, no swas collected. Copper During sampling, the well was dry; therefore, no swas collected. Copper During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. Lead During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected.			рН		During sampling, the well was dry; therefore, no sampl was collected.
Aluminum During sampling, the well was dry; therefore, no s was collected. Antimony During sampling, the well was dry; therefore, no s was collected. Arsenic During sampling, the well was dry; therefore, no s was collected. Barium During sampling, the well was dry; therefore, no s was collected. Beryllium During sampling, the well was dry; therefore, no s was collected. Boron During sampling, the well was dry; therefore, no s was collected. Cadmium During sampling, the well was dry; therefore, no s was collected. Calcium During sampling, the well was dry; therefore, no s was collected. Chromium During sampling, the well was dry; therefore, no s was collected. Chromium During sampling, the well was dry; therefore, no s was collected. Cobalt During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. Copper During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. Lead During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected.			Eh		During sampling, the well was dry; therefore, no sampl was collected.
Was collected. Antimony During sampling, the well was dry; therefore, no swas collected. Arsenic During sampling, the well was dry; therefore, no swas collected. Barium During sampling, the well was dry; therefore, no swas collected. Beryllium During sampling, the well was dry; therefore, no swas collected. Boron During sampling, the well was dry; therefore, no swas collected. Cadmium During sampling, the well was dry; therefore, no swas collected. Calcium During sampling, the well was dry; therefore, no swas collected. Chromium During sampling, the well was dry; therefore, no swas collected. Chromium During sampling, the well was dry; therefore, no swas collected. Cobalt During sampling, the well was dry; therefore, no swas collected. Copper During sampling, the well was dry; therefore, no swas collected. Iron During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected.			Temperature		During sampling, the well was dry; therefore, no sampl was collected.
was collected. Arsenic During sampling, the well was dry; therefore, no swas collected. Barium During sampling, the well was dry; therefore, no swas collected. Beryllium During sampling, the well was dry; therefore, no swas collected. Boron During sampling, the well was dry; therefore, no swas collected. Cadmium During sampling, the well was dry; therefore, no swas collected. Calcium During sampling, the well was dry; therefore, no swas collected. Chromium During sampling, the well was dry; therefore, no swas collected. Chromium During sampling, the well was dry; therefore, no swas collected. Copper During sampling, the well was dry; therefore, no swas collected. Copper During sampling, the well was dry; therefore, no swas collected. Lead During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected.			Aluminum		During sampling, the well was dry; therefore, no sampl was collected.
Was collected. Barium During sampling, the well was dry; therefore, no swas collected. Beryllium During sampling, the well was dry; therefore, no swas collected. Boron During sampling, the well was dry; therefore, no swas collected. Cadmium During sampling, the well was dry; therefore, no swas collected. Calcium During sampling, the well was dry; therefore, no swas collected. Chromium During sampling, the well was dry; therefore, no swas collected. Cobalt During sampling, the well was dry; therefore, no swas collected. Copper During sampling, the well was dry; therefore, no swas collected. Copper During sampling, the well was dry; therefore, no swas collected. Lead During sampling, the well was dry; therefore, no swas collected.			Antimony		During sampling, the well was dry; therefore, no sampl was collected.
Was collected. Beryllium During sampling, the well was dry; therefore, no swas collected. Boron During sampling, the well was dry; therefore, no swas collected. Cadmium During sampling, the well was dry; therefore, no swas collected. Calcium During sampling, the well was dry; therefore, no swas collected. Chromium During sampling, the well was dry; therefore, no swas collected. Choalt During sampling, the well was dry; therefore, no swas collected. Copper During sampling, the well was dry; therefore, no swas collected. Copper During sampling, the well was dry; therefore, no swas collected. Lead During sampling, the well was dry; therefore, no swas collected.			Arsenic		During sampling, the well was dry; therefore, no sampl was collected.
was collected. Boron During sampling, the well was dry; therefore, no swas collected. Cadmium During sampling, the well was dry; therefore, no swas collected. Calcium During sampling, the well was dry; therefore, no swas collected. Chromium During sampling, the well was dry; therefore, no swas collected. Cobalt During sampling, the well was dry; therefore, no swas collected. Copper During sampling, the well was dry; therefore, no swas collected. Copper During sampling, the well was dry; therefore, no swas collected. Iron During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected.			Barium		During sampling, the well was dry; therefore, no sampl was collected.
Cadmium Cadmium During sampling, the well was dry; therefore, no swas collected. Calcium During sampling, the well was dry; therefore, no swas collected. Chromium During sampling, the well was dry; therefore, no swas collected. Cobalt During sampling, the well was dry; therefore, no swas collected. Copper During sampling, the well was dry; therefore, no swas collected. Copper During sampling, the well was dry; therefore, no swas collected. Iron During sampling, the well was dry; therefore, no swas collected. Lead During sampling, the well was dry; therefore, no swas collected.			Beryllium		During sampling, the well was dry; therefore, no sampl was collected.
was collected. Calcium During sampling, the well was dry; therefore, no swas collected. Chromium During sampling, the well was dry; therefore, no swas collected. Cobalt During sampling, the well was dry; therefore, no swas collected. Copper During sampling, the well was dry; therefore, no swas collected. Iron During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. Lead During sampling, the well was dry; therefore, no swas collected.			Boron		During sampling, the well was dry; therefore, no sampl was collected.
was collected. Chromium During sampling, the well was dry; therefore, no s was collected. Cobalt During sampling, the well was dry; therefore, no s was collected. Copper During sampling, the well was dry; therefore, no s was collected. Iron During sampling, the well was dry; therefore, no s was collected. During sampling, the well was dry; therefore, no s was collected. Lead During sampling, the well was dry; therefore, no s was collected.			Cadmium		During sampling, the well was dry; therefore, no sampl was collected.
was collected. Cobalt During sampling, the well was dry; therefore, no swas collected. Copper During sampling, the well was dry; therefore, no swas collected. Iron During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected. Lead During sampling, the well was dry; therefore, no swas collected.			Calcium		During sampling, the well was dry; therefore, no sampl was collected.
Cobalt During sampling, the well was dry; therefore, no swas collected. Copper During sampling, the well was dry; therefore, no swas collected. Iron During sampling, the well was dry; therefore, no swas collected. Lead During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected.			Chromium		During sampling, the well was dry; therefore, no sampl
Copper During sampling, the well was dry; therefore, no swas collected. Iron During sampling, the well was dry; therefore, no swas collected. Lead During sampling, the well was dry; therefore, no swas collected. During sampling, the well was dry; therefore, no swas collected.			Cobalt		During sampling, the well was dry; therefore, no sampl
Iron During sampling, the well was dry; therefore, no s was collected. Lead During sampling, the well was dry; therefore, no s			Copper		During sampling, the well was dry; therefore, no sampl
Lead During sampling, the well was dry; therefore, no s			Iron		During sampling, the well was dry; therefore, no sampl
was collected.			Lead		During sampling, the well was dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Magnesium		During sampling, the well was dry; therefore, no samp was collected.
		Manganese		During sampling, the well was dry; therefore, no samp was collected.
		Mercury		During sampling, the well was dry; therefore, no samp was collected.
		Molybdenum		During sampling, the well was dry; therefore, no samp was collected.
		Nickel		During sampling, the well was dry; therefore, no samp was collected.
		Potassium		During sampling, the well was dry; therefore, no samp was collected.
		Rhodium		During sampling, the well was dry; therefore, no samp was collected.
		Selenium		During sampling, the well was dry; therefore, no samp was collected.
		Silver		During sampling, the well was dry; therefore, no samp was collected.
		Sodium		During sampling, the well was dry; therefore, no samp was collected.
		Tantalum		During sampling, the well was dry; therefore, no samp was collected.
		Thallium		During sampling, the well was dry; therefore, no samp was collected.
		Uranium		During sampling, the well was dry; therefore, no samp was collected.
		Vanadium		During sampling, the well was dry; therefore, no samp was collected.
		Zinc		During sampling, the well was dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no samp was collected.
		Acetone		During sampling, the well was dry; therefore, no samp was collected.
		Acrolein		During sampling, the well was dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no samp was collected.
		Benzene		During sampling, the well was dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no samp was collected.
		Xylenes		During sampling, the well was dry; therefore, no samp was collected.
		Styrene		During sampling, the well was dry; therefore, no samp was collected.
		Toluene		During sampling, the well was dry; therefore, no samp was collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Tribromomethane		During sampling, the well was dry; therefore, no samp was collected.
		Methyl bromide		During sampling, the well was dry; therefore, no samp was collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no samp was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no samp was collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no samp was collected.
		Chloroethane		During sampling, the well was dry; therefore, no samp was collected.
		Chloroform		During sampling, the well was dry; therefore, no samp was collected.
		Methyl chloride		During sampling, the well was dry; therefore, no samp was collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no samp was collected.
		Methylene bromide		During sampling, the well was dry; therefore, no samp was collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no samp was collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no samp was collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sampling was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sam was collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no samp was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no samp was collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no samp was collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no samp was collected.
		Trichloroethene		During sampling, the well was dry; therefore, no samp was collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no samp was collected.
		2-Hexanone		During sampling, the well was dry; therefore, no samp was collected.
		Iodomethane		During sampling, the well was dry; therefore, no samp was collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no samp was collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sam was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Dichloromethane		During sampling, the well was dry; therefore, no sampl was collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sampl was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sampl was collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sampl was collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sampl was collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sampl was collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sampl was collected.
		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sampl was collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sampl was collected.
		PCB, Total		During sampling, the well was dry; therefore, no sampl was collected.
		PCB-1016		During sampling, the well was dry; therefore, no sampl was collected.
		PCB-1221		During sampling, the well was dry; therefore, no sampl was collected.
		PCB-1232		During sampling, the well was dry; therefore, no sampl was collected.
		PCB-1242		During sampling, the well was dry; therefore, no sampl was collected.
		PCB-1248		During sampling, the well was dry; therefore, no sampl was collected.
		PCB-1254		During sampling, the well was dry; therefore, no sampl was collected.
		PCB-1260		During sampling, the well was dry; therefore, no sampl was collected.
		PCB-1268		During sampling, the well was dry; therefore, no sampl was collected.
		Gross alpha		During sampling, the well was dry; therefore, no sampl was collected.
		Gross beta		During sampling, the well was dry; therefore, no sampl was collected.
		lodine-131		During sampling, the well was dry; therefore, no sampl was collected.
		Radium-226		During sampling, the well was dry; therefore, no sampl was collected.
		Strontium-90		During sampling, the well was dry; therefore, no sampl was collected.
		Technetium-99		During sampling, the well was dry; therefore, no sampl was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389)	Thorium-230		During sampling, the well was dry; therefore, no samp was collected.
		Tritium		During sampling, the well was dry; therefore, no samp was collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no samp was collected.
		Cyanide		During sampling, the well was dry; therefore, no samp was collected.
		lodide		During sampling, the well was dry; therefore, no samp was collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no samp was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no samp was collected.
004-4811 MW390	MW390SG3-14	Barium	Е	Result estimated due to interferences.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.15. Rad error is 5.15.
		Gross beta		TPU is 10.8. Rad error is 8.59.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 1.69. Rad error is 1.64.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.59. Rad error is 1.59.
		Technetium-99		TPU is 17.4. Rad error is 15.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.57. Rad error is 2.52.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 131. Rad error is 131.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4805 MW391	MW391SG3-14	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.73. Rad error is 3.73.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.57. Rad error is 5.57.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 1.69. Rad error is 1.64.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.79. Rad error is 1.79.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.2. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.92. Rad error is 1.91.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 110. Rad error is 109.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4806 MW39	92 MW392SG3-14	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.58. Rad error is 3.57.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.66. Rad error is 3.66.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 1.75. Rad error is 1.7.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.9. Rad error is 1.9.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.5. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.23. Rad error is 5.22.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 101. Rad error is 100.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4807 MW39	93 MW393SG3-14	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.07. Rad error is 5.07.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5. Rad error is 4.99.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.943. Rad error is 0.932.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.5. Rad error is 1.5.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.3. Rad error is 10.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.27. Rad error is 3.26.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 88.7. Rad error is 88.7.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4802 MW39	94 MW394SG3-14	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.4. Rad error is 6.27.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.48. Rad error is 6.39.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 2.22. Rad error is 2.08.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.12. Rad error is 1.12.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.2. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.77. Rad error is 2.76.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 90.5. Rad error is 90.5.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4801 MW39	5 MW395SG3-14	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.28. Rad error is 4.28.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.26. Rad error is 4.24.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.58. Rad error is 1.55.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.57. Rad error is 1.57.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.5. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.02. Rad error is 4.92.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 115. Rad error is 113.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4803 MW39	96 MW396SG3-14	PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.71. Rad error is 3.7.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.25. Rad error is 4.24.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.78. Rad error is 1.75.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.95. Rad error is 2.92.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.4. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.12. Rad error is 3.1.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 89.5. Rad error is 89.5.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4817 MW39	7 MW397SG3-14	Barium	E	Result estimated due to interferences.
	PCB, Total		Analysis of constituent not required and not performed	
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.89. Rad error is 3.88.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.47. Rad error is 4.4.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 1.91. Rad error is 1.84.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.93. Rad error is 1.93.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.5. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.97. Rad error is 1.97.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 133. Rad error is 133.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG3-14	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.41. Rad error is 2.41.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.9. Rad error is 4.82.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.81. Rad error is 1.73.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.55. Rad error is 1.55.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.4. Rad error is 2.38.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 119. Rad error is 115.
		Chemical Oxygen Demand		Analysis of constituent not required and not performe
		Cyanide		Analysis of constituent not required and not performe
		Total Organic Carbon		Analysis of constituent not required and not performe
		Total Organic Halides		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG3-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.99. Rad error is 2.99.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.1. Rad error is 3.1.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		TPU is 1.82. Rad error is 1.75.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.16. Rad error is 3.13.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.7. Rad error is 10.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.16. Rad error is 5.04.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 92.2. Rad error is 92.1.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG3-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG3-14	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG3-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG3-14	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG3-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG3-14	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG3-14	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG3-14	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5SG3-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5SG3-14	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB6SG3-14	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not perform
		Fluoride		Analysis of constituent not required and not perform
		Nitrate & Nitrite		Analysis of constituent not required and not perform
		Sulfate		Analysis of constituent not required and not perform
		Barometric Pressure Reading		Analysis of constituent not required and not perform
		Specific Conductance		Analysis of constituent not required and not perform
		Static Water Level Elevation		Analysis of constituent not required and not perform
		Dissolved Oxygen		Analysis of constituent not required and not perform
		Total Dissolved Solids		Analysis of constituent not required and not perform
		рН		Analysis of constituent not required and not perform
		Eh		Analysis of constituent not required and not perform
		Temperature		Analysis of constituent not required and not perform
		Aluminum		Analysis of constituent not required and not perform
		Antimony		Analysis of constituent not required and not perform
		Arsenic		Analysis of constituent not required and not perform
		Barium		Analysis of constituent not required and not perform
		Beryllium		Analysis of constituent not required and not perform
		Boron		Analysis of constituent not required and not perform
		Cadmium		Analysis of constituent not required and not perform
		Calcium		Analysis of constituent not required and not perform
		Chromium		Analysis of constituent not required and not perform
		Cobalt		Analysis of constituent not required and not perform
		Copper		Analysis of constituent not required and not perform
		Iron		Analysis of constituent not required and not perform
		Lead		Analysis of constituent not required and not perform
		Magnesium		Analysis of constituent not required and not perform
		Manganese		Analysis of constituent not required and not perform
		Mercury		Analysis of constituent not required and not perform
		Molybdenum		Analysis of constituent not required and not perform
		Nickel		Analysis of constituent not required and not perform
		Potassium		Analysis of constituent not required and not perform
		Rhodium		Analysis of constituent not required and not perform
		Selenium		Analysis of constituent not required and not perform
		Silver		Analysis of constituent not required and not perform
		Sodium		Analysis of constituent not required and not perform
		Tantalum		Analysis of constituent not required and not perform
		Thallium		Analysis of constituent not required and not perform
		Uranium		Analysis of constituent not required and not perform

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB6SG3-14	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-5242 MW22	2 MW222DSG3-14	Barium	Е	Result estimated due to interferences.
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.85. Rad error is 4.84.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.96. Rad error is 4.96.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.42. Rad error is 1.42.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.36. Rad error is 1.36.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 12.6. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.74. Rad error is 1.74.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 129. Rad error is 129.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
.004-4815 MW38	7 MW387SG3-14-2	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not perform
		Lead		Analysis of constituent not required and not perform
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not perform
		Mercury		Analysis of constituent not required and not perform
		Molybdenum		Analysis of constituent not required and not perform
		Nickel		Analysis of constituent not required and not perform
		Potassium		Analysis of constituent not required and not perform
		Rhodium		Analysis of constituent not required and not perform
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not perform
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not perform
		Thallium		Analysis of constituent not required and not perform
		Uranium		Analysis of constituent not required and not perform
		Vanadium		Analysis of constituent not required and not perform
		Zinc		Analysis of constituent not required and not perform
		Vinyl acetate		Analysis of constituent not required and not perform
		Acetone		Analysis of constituent not required and not perform
		Acrolein		Analysis of constituent not required and not perform
		Acrylonitrile		Analysis of constituent not required and not perform
		Benzene		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4815 MW387	MW387SG3-14-2	Chlorobenzene		Analysis of constituent not required and not performe
		Xylenes		Analysis of constituent not required and not performe
		Styrene		Analysis of constituent not required and not performe
		Toluene		Analysis of constituent not required and not performe
		Chlorobromomethane		Analysis of constituent not required and not performe
		Bromodichloromethane		Analysis of constituent not required and not performe
		Tribromomethane		Analysis of constituent not required and not performe
		Methyl bromide		Analysis of constituent not required and not performe
		Methyl Ethyl Ketone		Analysis of constituent not required and not performe
		trans-1,4-Dichloro-2-butene		Analysis of constituent not required and not performe
		Carbon disulfide		Analysis of constituent not required and not performe
		Chloroethane		Analysis of constituent not required and not performe
		Chloroform		Analysis of constituent not required and not performe
		Methyl chloride		Analysis of constituent not required and not performe
		cis-1,2-Dichloroethene		Analysis of constituent not required and not performe
		Methylene bromide		Analysis of constituent not required and not performe
		1,1-Dichloroethane		Analysis of constituent not required and not performe
		1,2-Dichloroethane		Analysis of constituent not required and not performe
		1,1-Dichloroethylene		Analysis of constituent not required and not performed
		1,2-Dibromoethane		Analysis of constituent not required and not performed
		1,1,2,2-Tetrachloroethane		Analysis of constituent not required and not performed
		1,1,1-Trichloroethane		Analysis of constituent not required and not performed
		1,1,2-Trichloroethane		Analysis of constituent not required and not performe
		1,1,1,2-Tetrachloroethane		Analysis of constituent not required and not performe
		Vinyl chloride		Analysis of constituent not required and not performed
		Tetrachloroethene		Analysis of constituent not required and not performed
		Trichloroethene		Analysis of constituent not required and not performe
		Ethylbenzene		Analysis of constituent not required and not performe
		2-Hexanone		Analysis of constituent not required and not performed
		Iodomethane		Analysis of constituent not required and not performe
		Dibromochloromethane		Analysis of constituent not required and not performe
		Carbon tetrachloride		Analysis of constituent not required and not performe
		Dichloromethane		Analysis of constituent not required and not performe
		Methyl Isobutyl Ketone		Analysis of constituent not required and not performe
		1,2-Dibromo-3-chloropropane		Analysis of constituent not required and not performe
		1,2-Dichloropropane		Analysis of constituent not required and not performe
		trans-1,3-Dichloropropene		Analysis of constituent not required and not performe
		cis-1,3-Dichloropropene		Analysis of constituent not required and not performe
		trans-1,2-Dichloroethene		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4815 MW38	37 MW387SG3-14-2	Trichlorofluoromethane		Analysis of constituent not required and not performed
		1,2,3-Trichloropropane		Analysis of constituent not required and not performed
		1,2-Dichlorobenzene		Analysis of constituent not required and not performed
		1,4-Dichlorobenzene		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4816 MW38	38 MW388SG3-14-2	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed
		Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		Vinyl acetate		Analysis of constituent not required and not performed
		Acetone		Analysis of constituent not required and not performed
		Acrolein		Analysis of constituent not required and not performed
		Acrylonitrile		Analysis of constituent not required and not performed
		Benzene		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4816 MW388	MW388SG3-14-2	Chlorobenzene		Analysis of constituent not required and not performed
		Xylenes		Analysis of constituent not required and not performed
		Styrene		Analysis of constituent not required and not performed
		Toluene		Analysis of constituent not required and not performed
		Chlorobromomethane		Analysis of constituent not required and not performed
		Bromodichloromethane		Analysis of constituent not required and not performed
		Tribromomethane		Analysis of constituent not required and not performed
		Methyl bromide		Analysis of constituent not required and not performed
		Methyl Ethyl Ketone		Analysis of constituent not required and not performed
		trans-1,4-Dichloro-2-butene		Analysis of constituent not required and not performed
		Carbon disulfide		Analysis of constituent not required and not performed
		Chloroethane		Analysis of constituent not required and not performed
		Chloroform		Analysis of constituent not required and not performed
		Methyl chloride		Analysis of constituent not required and not performed
		cis-1,2-Dichloroethene		Analysis of constituent not required and not performed
		Methylene bromide		Analysis of constituent not required and not performe
		1,1-Dichloroethane		Analysis of constituent not required and not performe
		1,2-Dichloroethane		Analysis of constituent not required and not performe
		1,1-Dichloroethylene		Analysis of constituent not required and not performe
		1,2-Dibromoethane		Analysis of constituent not required and not performe
		1,1,2,2-Tetrachloroethane		Analysis of constituent not required and not performe
		1,1,1-Trichloroethane		Analysis of constituent not required and not performe
		1,1,2-Trichloroethane		Analysis of constituent not required and not performe
		1,1,1,2-Tetrachloroethane		Analysis of constituent not required and not performe
		Vinyl chloride		Analysis of constituent not required and not performe
		Tetrachloroethene		Analysis of constituent not required and not performe
		Trichloroethene		Analysis of constituent not required and not performe
		Ethylbenzene		Analysis of constituent not required and not performe
		2-Hexanone		Analysis of constituent not required and not performe
		Iodomethane		Analysis of constituent not required and not performe
		Dibromochloromethane		Analysis of constituent not required and not performe
		Carbon tetrachloride		Analysis of constituent not required and not performe
		Dichloromethane		Analysis of constituent not required and not performe
		Methyl Isobutyl Ketone		Analysis of constituent not required and not performe
		1,2-Dibromo-3-chloropropane		Analysis of constituent not required and not performed
		1,2-Dichloropropane		Analysis of constituent not required and not performe
		trans-1,3-Dichloropropene		Analysis of constituent not required and not performed
		cis-1,3-Dichloropropene		Analysis of constituent not required and not performe
		trans-1,2-Dichloroethene		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
 004-4816 MW38	88 MW388SG3-14-2	Trichlorofluoromethane		Analysis of constituent not required and not performed
		1,2,3-Trichloropropane		Analysis of constituent not required and not performed
		1,2-Dichlorobenzene		Analysis of constituent not required and not performed
		1,4-Dichlorobenzene		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performe
		Total Organic Halides		Analysis of constituent not required and not performed

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Facility: U.S. DOE – Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit:	
Lab ID: <u>N</u>	Vone
For Officia	l Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the second quarter 2014 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician.

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data included a minimum of one background well for comparison with at least three test wells (Exhibit 1). The second quarter 2014 data used to conduct the statistical analyses were sampled in April 2014. The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

For chemicals with established maximum contaminant levels (MCLs), no statistical analysis was performed. Parameters that have MCLs can be found in 401 KAR 47:030, Section 6. For parameters with no established MCL, the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. Results of the one-sided tolerance interval statistical test conclude whether the data show a statistically significant increase of concentrations with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on historical background data, not on data from the current quarter. Once a statistical result is obtained using the background data, the data from the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant increase in concentration compared to the background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below: 1

- 1. The tolerance limit (TL) was calculated for the background data.
 - For each parameter, the first eight sampling events results were used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) were computed.
 - The data set was checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be potentially normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage was determined (Table 5, Appendix B; EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit was calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells was compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well has increased concentration with respect to background data.

Type of Data Used

Exhibit 1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential/Inert Landfills. Exhibit 2 presents the parameters from the available data set and the statistical test performed using the one-sided tolerance interval.

Excluding parameters which have an MCL, Exhibits 3, 4, and 5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), and missing observations by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits 3, 4, and 5 were collected during the current quarter, second quarter 2014. The observations that are listed are not background data. Background data are presented on pages D-23 through D-100. The sampling dates associated with background data are listed next to the result on pages D-23 through D-100. When field duplicate data are available, the higher of the two readings is retained for further evaluation.

lower $TL = X - (K \times S)$

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$

Exhibit 1. Station Identification for Monitoring Wells Analyzed

Station	Type	Aquifer
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW357	TW	URGA
MW358	TW	LRGA
MW359	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365	TW	UCRS
MW366	SG	URGA
MW367	SG	LRGA
MW368	SG	UCRS
MW369	TW	URGA
MW370	TW	LRGA
MW371	BG	UCRS
MW372	TW	URGA
MW373	TW	LRGA
MW374	BG	UCRS
MW375	SG	URGA
MW376	SG	LRGA
MW377	SG	UCRS
MW384	SG	URGA
MW385	SG	LRGA
MW386	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389*	TW	UCRS
MW390	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396	BG	UCRS
MW397	BG	LRGA

BG: upgradient or background wells TW: downgradient or test wells SG: sidegradient wells * Well was dry this quarter.

Exhibit 2. List of Parameters Tested Using the Tolerance Level Test

Aluminum

Boron

Bromide

Calcium

Chemical Oxygen Demand (COD)

Chloride

cis-1,2-Dichloroethene

Cobalt

Conductivity

Copper

Dissolved Oxygen

Dissolved Solids

Iron

Magnesium

Manganese

Molybdenum

Nickel

Oxidation-Reduction Potential

PCB, Total

PCB-1242

pH*

Potassium

Sodium

Sulfate

Technetium-99

Toluene

Total Organic Carbon (TOC)

Total Organic Halides (TOX)

Uranium

Vanadium

Zinc

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if statistically significant deviations exist in concentrations with respect to upgradient well data.

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane		4	0	4 0	No
1,1,2,2-Tetrachloroethane		4	0 4	4 0	No
1,1,2-Trichloroethane		4	0	1 0	No
1,1-Dichloroethane		4	0 4	4 0	No
1,2,3-Trichloropropane		4	0	1 0	No
1,2-Dibromo-3-chloropropane		4	0	4 0	No
1,2-Dibromoethane		4	0	1 0	No
1,2-Dichlorobenzene		4	0	4 0	No
1,2-Dichloropropane		4	0	1 0	No
2-Butanone		4	0 4	4 0	No
2-Hexanone		4	0	4 0	No
4-Methyl-2-pentanone		4	0 4	4 0	No
Acetone		4	0	4 0	No
Acrolein		4	0 4	4 0	No
Acrylonitrile		4	0	4 0	No
Aluminum		4	0 1	1 3	YES
Antimony		4	0	4 0	No
Beryllium		4	0 4	4 0	No
Boron		4	0) 4	YES
Bromide		4	0 () 4	YES
Bromochloromethane		4	0	4 0	No
Bromodichloromethane		4	0 4	4 0	No
Bromoform		4	0	4 0	No
Bromomethane		4	0 4	4 0	No
Calcium		4	0) 4	YES
Carbon disulfide		4	0 4	4 0	No
Chemical Oxygen Demand (COL))	4	0) 4	YES
Chloride		4	0) 4	YES
Chlorobenzene		4	0	4 0	No
Chloroethane		4	0 4	4 0	No
Chloroform		4	0	4 0	No
Chloromethane		4	0 4	4 0	No
cis-1,2-Dichloroethene		4	0	4 0	No
cis-1,3-Dichloropropene		4	0 4	4 0	No
Cobalt		4	0) 4	YES
Conductivity		4	0 () 4	YES
Copper		4	0 2	2 2	YES
Cyanide		4	0 4	4 0	No
Dibromochloromethane		4	0	4 0	No
Dibromomethane		4	0 4	4 0	No

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistica Analysis?
Dimethylbenzene, Total		4	0	4 0	No
Dissolved Oxygen		4	0	0 4	YES
Dissolved Solids		4	0	0 4	YES
Ethylbenzene		4	0	4 0	No
Iodide		4	0	4 0	No
Iodomethane		4	0	4 0	No
Iron		4	0	0 4	YES
Magnesium		4	0	0 4	YES
Manganese		4	0	0 4	YES
Methylene chloride		4	0	4 0	No
Molybdenum		4	0	2 2	YES
Nickel		4	0	0 4	YES
Oxidation-Reduction Potential		4	0	0 4	YES
PCB, Total		4	4	0 0	No
PCB-1016		4	4	0 0	No
PCB-1221		4	4	0 0	No
PCB-1232		4	4	0 0	No
PCB-1242		4	4	0 0	No
PCB-1248		4	4	0 0	No
PCB-1254		4	4	0 0	No
PCB-1260		4	4	0 0	No
PCB-1268		4	4	0 0	No
pН		4	0	0 4	YES
Potassium		4	0	0 4	YES
Radium-226		4		4 0	No
Rhodium		4	0	4 0	No
Sodium		4	0	0 4	YES
Styrene		4	0	4 0	No
Sulfate		4		0 4	YES
Tantalum		4		4 0	No
Technetium-99		4		3 1	YES
Tetrachloroethene		4		4 0	No
Thallium		4		4 0	No
Thorium-230		4		4 0	No
Toluene		4		4 0	No
Total Organic Carbon (TOC)		4		0 4	YES
Total Organic Halides (TOX)		4		0 4	YES
trans-1,2-Dichloroethene		4		4 0	No
trans-1,3-Dichloropropene		4		4 0	No
Trans-1,4-Dichloro-2-butene		4		4 0	No
Trichlorofluoromethane		4		4 0	No

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Uranium		4	0	1 3	YES
Vanadium	-	4	0	2 2	YES
Vinyl acetate		4	0	4 0	No
Zinc		4	0	4 0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane		11	0 1	1 0	No
1,1,2,2-Tetrachloroethane		11	0 1	1 0	No
1,1,2-Trichloroethane		11	0 1	1 0	No
1,1-Dichloroethane		11	0 1	1 0	No
1,2,3-Trichloropropane		11	0 1	1 0	No
1,2-Dibromo-3-chloropropane		11	0 1	1 0	No
1,2-Dibromoethane		11	0 1	1 0	No
1,2-Dichlorobenzene		11	0 1	1 0	No
1,2-Dichloropropane		11	0 1	1 0	No
2-Butanone		11	0 1	1 0	No
2-Hexanone		11	0 1	1 0	No
4-Methyl-2-pentanone		11	0 1	1 0	No
Acetone		11	0 1	1 0	No
Acrolein		11	0 1	1 0	No
Acrylonitrile		11	0 1	1 0	No
Aluminum		11	0	7 4	YES
Antimony		11	0 1:	1 0	No
Beryllium		11	0 1:	1 0	No
Boron		11	0) 11	YES
Bromide		11	0) 11	YES
Bromochloromethane		11	0 1	1 0	No
Bromodichloromethane		11	0 1	1 0	No
Bromoform		11	0 1	1 0	No
Bromomethane		11	0 1	1 0	No
Calcium		11	0) 11	YES
Carbon disulfide		11	0 1	1 0	No
Chemical Oxygen Demand (COD))	11	0	7 4	YES
Chloride		11	0) 11	YES
Chlorobenzene		11	0 1	1 0	No
Chloroethane		11	0 1	1 0	No
Chloroform		11	0 1	1 0	No
Chloromethane		11	0 1	1 0	No
cis-1,2-Dichloroethene		11	0	2	YES
cis-1,3-Dichloropropene		11	0 1	1 0	No
Cobalt		11	0 2	2 9	YES
Conductivity		11	0) 11	YES
Copper		11	0	1 7	YES
Cyanide		11	0 1	1 0	No
Dibromochloromethane		11	0 1	1 0	No
Dibromomethane		11	0 1	1 0	No

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dimethylbenzene, Total		11	0 11	. 0	No
Dissolved Oxygen		11	0 0	11	YES
Dissolved Solids		11	0 0	11	YES
Ethylbenzene		11	0 11	. 0	No
Iodide		11	0 11	. 0	No
Iodomethane		11	0 11	. 0	No
Iron		11	0 2	9	YES
Magnesium		11	0 0	11	YES
Manganese		11	0 3	8	YES
Methylene chloride		11	0 11	. 0	No
Molybdenum		11	0 6	5 5	YES
Nickel		11	0 0	11	YES
Oxidation-Reduction Potential		11	0 0	11	YES
PCB, Total		11	9 2	2 0	No
PCB-1016		11	9 2	2 0	No
PCB-1221		11	9 2	2 0	No
PCB-1232		11	9 2	2 0	No
PCB-1242		11	9 2	2 0	No
PCB-1248		11	9 2	2 0	No
PCB-1254		11	9 2	2 0	No
PCB-1260		11	9 2	2 0	No
PCB-1268		11	9 2	2 0	No
pH		11	0 0	11	YES
Potassium		11	0 2	9	YES
Radium-226		11	0 11	. 0	No
Rhodium		11	0 11	. 0	No
Sodium		11	0 0	11	YES
Styrene		11	0 11	. 0	No
Sulfate		11	0 0	11	YES
Tantalum		11	0 11		No
Technetium-99		11	0 7	4	YES
Tetrachloroethene		11	0 11	. 0	No
Thallium		11	0 11	. 0	No
Thorium-230		11	0 11	. 0	No
Toluene		11	0 10		YES
Total Organic Carbon (TOC)		11	0 0		YES
Total Organic Halides (TOX)		11	0 0		YES
trans-1,2-Dichloroethene		11	0 11		No
trans-1,3-Dichloropropene		11	0 11		No
Trans-1,4-Dichloro-2-butene		11	0 11		No
Trichlorofluoromethane		11	0 11		No

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored n Observation	Statistical Analysis?
Uranium		11	0	11 0	No
Vanadium		11	0	11 0	No
Vinyl acetate		11	0	11 0	No
Zinc		11	0	11 0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	0	7	0	No
1,1,2,2-Tetrachloroethane	7	0	7	0	No
1,1,2-Trichloroethane	7	0	7	0	No
1,1-Dichloroethane	7	0	7	0	No
1,2,3-Trichloropropane	7	0	7	0	No
1,2-Dibromo-3-chloropropane	7	0	7	0	No
1,2-Dibromoethane	7	0	7	0	No
1,2-Dichlorobenzene	7	0	7	0	No
1,2-Dichloropropane	7	0	7	0	No
2-Butanone	7	0	7	0	No
2-Hexanone	7	0	7	0	No
4-Methyl-2-pentanone	7	0	7	0	No
Acetone	7	0	7	0	No
Acrolein	7	0	7	0	No
Acrylonitrile	7	0	7	0	No
Aluminum	7	0	7	0	No
Antimony	7	0	7	0	No
Beryllium	7	0	7	0	No
Boron	7	0	0	7	YES
Bromide	7	0	0	7	YES
Bromochloromethane	7	0	7	0	No
Bromodichloromethane	7	0	7	0	No
Bromoform	7	0	7	0	No
Bromomethane	7	0	7	0	No
Calcium	7	0	0	7	YES
Carbon disulfide	7	0	7	0	No
Chemical Oxygen Demand (COD)	7	0	4	3	YES
Chloride	7	0	0	7	YES
Chlorobenzene	7	0	7	0	No
Chloroethane	7	0	7	0	No
Chloroform	7	0	7	0	No
Chloromethane	7	0	7	0	No
cis-1,2-Dichloroethene	7	0	7	0	No
cis-1,3-Dichloropropene	7	0	7	0	No
Cobalt	7	0	2	5	YES
Conductivity	7	0	0	7	YES
Copper	7	0	4	3	YES
Cyanide	7	0	7	0	No
Dibromochloromethane	7	0	7	0	No
Dibromomethane	7	0	7	0	No

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dimethylbenzene, Total	7	0	7	0	No
Dissolved Oxygen	7	0	0	7	YES
Dissolved Solids	7	0	0	7	YES
Ethylbenzene	7	0	7	0	No
Iodide	7	0	7	0	No
Iodomethane	7	0	7	0	No
Iron	7	0	1	6	YES
Magnesium	7	0	0	7	YES
Manganese	7	0	4	3	YES
Methylene chloride	7	0	7	0	No
Molybdenum	7	0	4	3	YES
Nickel	7	0	0	7	YES
Oxidation-Reduction Potential	7	0	0	7	YES
PCB, Total	7	5	2	0	No
PCB-1016	7	5	2	0	No
PCB-1221	7	5	2	0	No
PCB-1232	7	5	2	0	No
PCB-1242	7	5	2	0	No
PCB-1248	7	5	2	0	No
PCB-1254	7	5	2	0	No
PCB-1260	7	5	2	0	No
PCB-1268	7	5	2	0	No
рН	7	0	0	7	YES
Potassium	7	0	2	5	YES
Radium-226	7	0	7	0	No
Rhodium	7	0	7	0	No
Sodium	7	0	0	7	YES
Styrene	7	0	7	0	No
Sulfate	7	0	0	7	YES
Tantalum	7	0	7	0	No
Technetium-99	7	0	3	4	YES
Tetrachloroethene	7	0	7	0	No
Thallium	7	0	7	0	No
Thorium-230	7	0	7	0	No
Toluene	7	0	7	0	No
Total Organic Carbon (TOC)	7	0	0	7	YES
Total Organic Halides (TOX)	7	0	0	7	YES
trans-1,2-Dichloroethene	7	0	7	0	No
trans-1,3-Dichloropropene	7	0	7	0	No
Trans-1,4-Dichloro-2-butene	7	0	7	0	No
Trichlorofluoromethane	7	0	7	0	No

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	
Uranium	7	0	7	0	No
Vanadium	7	0	7	0	No
Vinyl acetate	7	0	7	0	No
Zinc	7	0	6	1	YES

Bold denotes parameters with at least one uncensored observation

Discussion of Results

For the UCRS, URGA, and LRGA, the results of the tolerance interval tests are presented on pages D-23 through D-100 and the statistician qualification statement is presented on page D-101. For the UCRS, URGA, and LRGA, the test was applied to 26, 26, and 24 parameters, respectively, listed in Exhibits 3, 4, and 5. A summary of statistical exceedances by well number is shown in Exhibit 6.

UCRS

In this quarter, statistical test results indicated there were statistically significant increases for oxidation-reduction potential and technetium-99.

URGA

In this quarter, statistical test results indicated there were statistically significant increases for aluminum, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, technetium-99, and toluene.

LRGA

In this quarter, statistical test results indicated there were statistically significant increases for calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

Conclusion

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit 7, Exhibit 8, and Exhibit 9, respectively.

Exhibit 6. Summary of Statistically Significant Increases

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential	MW221: Oxidation-reduction potential	MW370: Oxidation-reduction potential, sulfate
MW390: Oxidation- reduction potential, technetium-99	MW222: Oxidation-reduction potential	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, technetium-99
MW393: Oxidation-reduction potential	MW224: Oxidation-reduction potential, sodium	MW385: Oxidation-reduction potential, sulfate, technetium-99
	MW369: Aluminum, oxidation- reduction potential, sodium, technetium-99, toluene MW372: Calcium, conductivity,	MW388: Oxidation-reduction potential, sulfate, technetium-99
	dissolved solids, magnesium, sodium, sulfate	MW392: Oxidation-reduction potential
	MW384: Sulfate, technetium-99, toluene	
	MW387: Magnesium, oxidation- reduction potential, technetium-99, sulfate, toluene	
	MW391: Sulfate	

Exhibit 7. Summary of Parameters Identified for Statistical Analysis and the Test Results—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No statistically significant increases relative to background data
Boron	Tolerance Interval	1.28	No statistically significant increases relative to background data
Bromide	Tolerance Interval	0.24	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.20	No statistically significant increases relative to background data
Chemical Oxygen Demand (COD)	Tolerance Interval	0.02	No statistically significant increases relative to background data
Chloride	Tolerance Interval	0.05	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	1.34	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.12	No statistically significant increases relative to background data
Copper	Tolerance Interval	0.48	No statistically significant increases relative to background data
Dissolved Oxygen	Tolerance Interval	1.20	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.19	No statistically significant increases relative to background data
Iron	Tolerance Interval	0.48	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.20	No statistically significant increases relative to background data
Manganese	Tolerance Interval	0.46	No statistically significant increases relative to background data
Molybdenum	Tolerance Interval	1.51	No statistically significant increases relative to background data

Exhibit 7. Summary of Parameters Identified for Statistical Analysis and the Test Results—UCRS (Continued)

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	1.27	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	4.77	Statistically significant increases relative to background data in MW386, MW390, and MW393
рН	Tolerance Interval	0.05	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	0.28	No statistically significant increases relative to background data
Sodium	Tolerance Interval	0.30	No statistically significant increases relative to background data
Sulfate	Tolerance Interval	0.40	No statistically significant increases relative to background data
Technetium-99	Tolerance Interval	0.86	Statistically significant increase relative to background data in MW390
Total Organic Carbon	Tolerance Interval	0.47	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	0.38	No statistically significant increases relative to background data
Uranium	Tolerance Interval	0.31	No statistically significant increases relative to background data
Vanadium	Tolerance Interval	0.11	No statistically significant increases relative to background data

CV: coefficient of variation

Exhibit 8. Summary of Parameters Identified for Statistical Analysis and the Test Results—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	Statistically significant increase relative to background data in MW369
Boron	Tolerance Interval	1.45	No statistically significant increases relative to background data
Bromide	Tolerance Interval	0.00	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.17	Statistically significant increase relative to background data in MW372
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	No statistically significant increases relative to background data
Chloride	Tolerance Interval	0.23	No statistically significant increases relative to background data
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	2.44	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.28	Statistically significant increase relative to background data in MW372
Copper	Tolerance Interval	0.43	No statistically significant increases relative to background data
Dissolved Oxygen	Tolerance Interval	0.50	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.12	Statistically significant increase relative to background data in MW372
Iron	Tolerance Interval	1.17	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.16	Statistically significant increase relative to background data in MW372 and MW387
Manganese	Tolerance Interval	2.16	No statistically significant increases relative to background data
Molybdenum	Tolerance Interval	1.26	No statistically significant increases relative to background data
Nickel	Tolerance Interval	1.79	No statistically significant increases relative to background data

Exhibit 8. Summary of Parameters Identified for Statistical Analysis and the Test Results—URGA (Continued)

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.48	Statistically significant increases relative to background data in MW221, MW222, MW224, MW369, and MW387
рН	Tolerance Interval	0.05	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	1.40	No statistically significant increases relative to background data
Sodium	Tolerance Interval	0.24	Statistically significant increase relative to background data in MW224, MW369, and MW372
Sulfate	Tolerance Interval	0.25	Statistically significant increases relative to background data in MW372, MW384, MW387, and MW391
Technetium-99	Tolerance Interval	0.99	Statistically significant increases relative to background data in MW369, MW384, and MW387
Toluene	Tolerance Interval	0.00	Statistically significant increases relative to background data in MW369, MW384, and MW387
Total Organic Carbon	Tolerance Interval	0.49	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	2.57	No statistically significant increases relative to background data

CV: coefficient of variation

Exhibit 9. Summary of Parameters Identified for Statistical Analysis and the Test Results—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Boron	Tolerance Interval	1.24	No statistically significant increases relative to background data
Bromide	Tolerance Interval	0.00	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.50	Statistically significant increase relative to background data in MW373
Chemical Oxygen Demand (COD)	Tolerance Interval	0.04	No statistically significant increases relative to background data
Chloride	Tolerance Interval	0.23	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	1.52	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.14	Statistically significant increase relative to background data in MW373
Copper	Tolerance Interval	0.47	No statistically significant increases relative to background data
Dissolved Oxygen	Tolerance Interval	0.52	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.16	Statistically significant increase relative to background data in MW373
Iron	Tolerance Interval	1.29	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.52	Statistically significant increase relative to background data in MW373
Manganese	Tolerance Interval	1.49	No statistically significant increases relative to background data
Molybdenum	Tolerance Interval	1.45	No statistically significant increases relative to background data
Nickel	Tolerance Interval	1.09	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	0.33	Statistically significant increase relative to background data in MW370, MW373, MW385, MW388, and MW392
рН	Tolerance Interval	0.04	No statistically significant deviations relative to background data

Exhibit 9. Summary of Parameters Identified for Statistical Analysis and the Test Results—LRGA (Continued)

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Potassium	Tolerance Interval	0.40	No statistically significant increases relative to background data
Sodium	Tolerance Interval	0.47	Statistically significant increase relative to background data in MW373
Sulfate	Tolerance Interval	0.20	Statistically significant increases relative to background data in MW370, MW373, MW385, and MW388
Technetium-99	Tolerance Interval	0.81	Statistically significant increases relative to background data in MW373, MW385, and MW388
Total Organic Carbon	Tolerance Interval	0.55	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	0.59	No statistically significant increases relative to background data
Zinc	Tolerance Interval	0.76	No statistically significant increases relative to background data

CV: coefficient of variation

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.393
9/16/2002	0.200
10/16/2002	0.200
1/13/2003	0.501
4/8/2003	0.200
7/16/2003	0.200
10/14/2003	0.200
1/14/2004	0.668

Statistics on Background Data

X= 0.320 S= 0.182 CV= 0.567 K factor** = 3.188 TL= 0.900

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW386	0.050	Sidegradient	NO
MW390	0.295	Downgradie	nt NO
MW393	0.018	Downgradie	nt NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Boron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	2.000
9/16/2002	2.000
10/16/2002	0.200
1/13/2003	0.200
4/8/2003	0.200
7/16/2003	0.200
10/14/2003	0.200
1/14/2004	0.200

Statistics on Background Data

X= 0.650 S= 0.833 CV= 1.282 K factor** = 3.188 TL= 3.306

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data X= -1.034 S= 1.066 CV= -1.031 K factor** = 3.188 TL= 2.364

Transformed Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	LN(Result)
8/13/2002	0.693
9/16/2002	0.693
10/16/2002	-1.609
1/13/2003	-1.609
4/8/2003	-1.609
7/16/2003	-1.609
10/14/2003	-1.609
1/14/2004	-1.609

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient R	esult > TL
MW386	0.005	Sidegradient	N/A
MW390	0.007	Downgradient	N/A
MW393	0.019	Downgradient	N/A

Second Quarter 2014 Dry/Partially Dry Wells

•	Well No.	Gradient
	MW389	Downgradient

Transformed Second Quarter 2014 Data Collected in April 2014

well Number	LN(Result)	Result > 1L?
MW386	-5.327	NO
MW390	-5.010	NO
MW393	-3.963	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Bromide UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	1.500
9/16/2002	1.600
10/16/2002	1.600
1/13/2003	1.000
4/8/2003	1.000
7/16/2003	1.000
10/14/2003	1.700
1/14/2004	1.700

Statistics on Background Data

X= 1.388 S= 0.327 CV= 0.236 K factor** = 3.188 TL= 2.430

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW386	0.172	Sidegradient	NO
MW390	0.771	Downgradie	nt NO
MW393	0.193	Downgradie	nt NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	38.400
9/16/2002	42.900
10/16/2002	40.200
1/13/2003	46.700
4/8/2003	49.800
7/16/2003	43.300
10/14/2003	49.700
1/14/2004	23.600

Statistics on Background Data

X= 41.825 S= 8.445 CV= 0.202 K factor** = 3.188 TL= 68.748

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW386	22.900	Sidegradient	NO
MW390	33.600	Downgradie	nt NO
MW393	11.700	Downgradie	nt NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Chemical Oxygen Demand (COD) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	36.000
9/16/2002	35.000
10/16/2002	37.000
1/13/2003	35.000
4/8/2003	35.000
7/16/2003	35.000
10/14/2003	35.000
1/14/2004	35.000

Statistics on Background Data

X= 35.375 S= 0.744 CV= 0.021 K factor** = 3.188 TL= 37.747

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW386	17.200	Sidegradient	NO
MW390	12.400	Downgradie	nt NO
MW393	20.500	Downgradie	nt NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis UCRS Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	91.600
9/16/2002	98.300
10/16/2002	101.400
1/13/2003	108.300
4/8/2003	100.500
7/16/2003	102.500
10/14/2003	106.800
1/14/2004	104.400

Statistics on Background Data

X= 101.725 S= 5.245 CV= 0.052 K factor** = 3.188 TL= 118.447

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW386	16.000	Sidegradient	NO
MW390	86.800	Downgradie	nt NO
MW393	15.700	Downgradie	nt NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.025
9/16/2002	0.025
10/16/2002	0.001
1/13/2003	0.003
4/8/2003	0.004
7/16/2003	0.003
10/14/2003	0.001
1/14/2004	0.001

Statistics on Background Data

X= 0.008 S= 0.011 CV= 1.340 K factor** = 3.188 TL= 0.042

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data X= -5.645 S= 1.339 CV= -0.237 K factor** = 3.188 TL= -1.377

Transformed Background Data from Upgradient Wells

MW396
LN(Result)
-3.689
-3.689
-6.908
-5.732
-5.435
-5.893
-6.908
-6.908

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW386	0.001	Sidegradient	N/A
MW390	0.001	Downgradien	t N/A
MW393	0.001	Downgradien	t N/A

Second Quarter 2014 Dry/Partially Dry Wells

?	Well No.	Gradient
	MW389	Downgradient

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result $>$ TL?
MW386	-7.488	NO
MW390	-7.581	NO
MW393	-6.759	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis UCRS Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	784.000
9/30/2002	871.000
10/16/2002	868.000
1/13/2003	912.000
4/8/2003	942.000
7/16/2003	910.000
10/14/2003	935.000
1/14/2004	1158.00

Statistics on Background Data

X= 922.500 S= 107.616 CV= 0.117 K factor** = 3.188 TL= 1265.579

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW386	623.00	Sidegradient	NO
MW390	708.00	Downgradie	nt NO
MW393	413.00	Downgradie	nt NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Copper UNITS: UCRS mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.050
9/16/2002	0.050
10/16/2002	0.026
1/13/2003	0.020
4/8/2003	0.020
7/16/2003	0.020
10/14/2003	0.020
1/14/2004	0.020

Statistics on Background Data

X= 0.028 S= 0.014 CV= 0.481 K factor** = 3.188 TL= 0.072

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW386	0.003	Sidegradient	NO
MW390	0.001	Downgradie	nt NO
MW393	0.002	Downgradie	nt NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Dissolved Oxygen UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	5.450
9/16/2002	0.400
10/16/2002	0.540
1/13/2003	0.720
4/8/2003	0.690
7/16/2003	1.100
10/14/2003	0.710
1/14/2004	1.550

Statistics on Background Data

X= 1.395 S= 1.677 CV= 1.202 K factor** = 3.188 TL= 6.743

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data
X= -0.043
S= 0.814
CV= -18.867
K factor** = 3.188
TL = 2.553

Transformed Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	LN(Result)
8/13/2002	1.696
9/16/2002	-0.916
10/16/2002	-0.616
1/13/2003	-0.329
4/8/2003	-0.371
7/16/2003	0.095
10/14/2003	-0.342
1/14/2004	0.438

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient 1	Result > TL
MW386	0.780	Sidegradient	N/A
MW390	5.100	Downgradien	t N/A
MW393	0.720	Downgradien	t N/A

Second Quarter 2014 Dry/Partially Dry Wells

?	Well No.	Gradient
	MW389	Downgradient

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result $>$ TL?
MW386	-0.248	NO
MW390	1.629	NO
MW393	-0.329	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	502.000
9/16/2002	506.000
10/16/2002	543.000
1/13/2003	521.000
4/8/2003	504.000
7/16/2003	532.000
10/14/2003	490.000
1/14/2004	805.000

Statistics on Background Data

X= 550.375 S= 104.330 CV= 0.190 K factor** = 3.188 TL= 882.980

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW386	409.00	Sidegradient	NO
MW390	393.00	Downgradie	nt NO
MW393	244.00	Downgradie	nt NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis UCRS Iron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	1.800
9/16/2002	9.530
10/16/2002	7.430
1/13/2003	9.930
4/8/2003	10.200
7/16/2003	9.160
10/14/2003	11.900
1/14/2004	2.420

Statistics on Background Data

X= 7.796 S= 3.723 CV= 0.478 K factor** = 3.188 TL= 19.666

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW386	0.437	Sidegradient	NO
MW390	0.359	Downgradie	nt NO
MW393	1.180	Downgradie	nt NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	15.500
9/16/2002	17.300
10/16/2002	17.800
1/13/2003	19.200
4/8/2003	17.800
7/16/2003	17.800
10/14/2003	20.200
1/14/2004	9.410

Statistics on Background Data

X= 16.876 S= 3.313 CV= 0.196 K factor** = 3.188 TL= 27.438

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW386	10.100	Sidegradient	NO
MW390	15.300	Downgradie	nt NO
MW393	3.560	Downgradie	nt NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.570
9/16/2002	0.647
10/16/2002	0.880
1/13/2003	1.132
4/8/2003	0.965
7/16/2003	0.983
10/14/2003	0.984
1/14/2004	0.031

Statistics on Background Data

X= 0.774 S= 0.353 CV= 0.456 K factor** = 3.188 TL= 1.900

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW386	0.059	Sidegradient	NO
MW390	0.002	Downgradie	nt NO
MW393	0.019	Downgradie	nt NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.025
9/16/2002	0.025
10/16/2002	0.001
1/13/2003	0.001
4/8/2003	0.003
7/16/2003	0.001
10/14/2003	0.001
1/14/2004	0.001

Statistics on Background Data

X= 0.007 S= 0.011 CV= 1.507 K factor** = 3.188 TL= 0.042

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data X= -5.928 S= 1.420 CV= -0.240 K factor** = 3.188 TL= -1.400

Transformed Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	LN(Result)
8/13/2002	-3.689
9/16/2002	-3.689
10/16/2002	-6.908
1/13/2003	-6.661
4/8/2003	-5.911
7/16/2003	-6.751
10/14/2003	-6.908
1/14/2004	-6.908

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient F	Result > TL?
MW386	0.001	Sidegradient	N/A
MW390	0.001	Downgradient	N/A
MW393	0.001	Downgradient	N/A

Second Quarter 2014 Dry/Partially Dry Wells

•	Well No.	Gradient
	MW389	Downgradient

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result $>$ TL?
MW386	-7.402	NO
MW390	-7.435	NO
MW393	-7.106	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Nickel UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.050
9/16/2002	0.050
10/16/2002	0.005
1/13/2003	0.005
4/8/2003	0.006
7/16/2003	0.005
10/14/2003	0.005
1/14/2004	0.005

Statistics on Background Data

X= 0.016 S= 0.021 CV= 1.272 K factor** = 3.188 TL= 0.083

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data X= -4.706 S= 1.057 CV= -0.225 K factor** = 3.188 TL= -1.338

Transformed Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	LN(Result)
8/13/2002	-2.996
9/16/2002	-2.996
10/16/2002	-5.298
1/13/2003	-5.298
4/8/2003	-5.166
7/16/2003	-5.298
10/14/2003	-5.298
1/14/2004	-5.298

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL
MW386	0.003	Sidegradient	N/A
MW390	0.003	Downgradien	t N/A
MW393	0.006	Downgradien	t N/A

Second Quarter 2014 Dry/Partially Dry Wells

?	Well No.	Gradient
	MW389	Downgradient

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result $>$ TL?
MW386	-5.696	NO
MW390	-5.911	NO
MW393	-5.061	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Oxidation-Reduction Potential UNITS: WV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	60.000
4/8/2003	71.000
7/16/2003	-56.000
10/14/2003	-54.000
1/14/2004	-22.000
4/12/2004	-6.000
7/20/2004	-3.000
10/12/2004	114.000

Statistics on Background Data

X= 13.000 S= 61.952 CV= 4.766 K factor** = 3.188 TL= 210.502

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data
X = error
S = error
CV = error
K factor** = 3.188
TL# = 4.736

Transformed Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	LN(Result)
8/13/2002	4.094
4/8/2003	4.263
7/16/2003	#Func!
10/14/2003	#Func!
1/14/2004	#Func!
4/12/2004	#Func!
7/20/2004	#Func!
10/12/2004	4.736

Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

Second Quarter 2014 Data Collected in April 2014

Result	Gradient	Result > TL?
334.000	Sidegradient	N/A
357.000	Downgradier	nt N/A
360.000	Downgradie	nt N/A
	334.000 357.000	Result Gradient 334.000 Sidegradient 357.000 Downgradien 360.000 Downgradien

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result >TL?
MW386	5.811	YES
MW390	5.878	YES
MW393	5.886	YES

Conclusion of Statistical Analysis on Transformed Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW386

MW390

MW393

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis UCRS pH UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from	
Upgradient Wells	

Well Number:	MW396
Date Collected	Result
8/13/2002	6.170
9/16/2002	6.400
10/16/2002	5.900
1/13/2003	6.400
4/8/2003	6.650
7/16/2003	6.400
10/14/2003	6.710
1/14/2004	7.050

Statistics on
Background Data

X= 6.460 S= 0.350 CV= 0.054 K factor** = 3.736 TL= 7.766 LL= 5.154

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

•	Well No.	Result	Gradient	Result	>TL?	Result <ll?< th=""></ll?<>
	MW386	6.870	Sidegradi	ent	NO	NO
	MW390	6.420	Downgrad	ient	NO	NO
	MW393	6.330	Downgrad	ient	NO	NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Potassium UCRS mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	2.000
9/16/2002	2.000
10/16/2002	0.978
1/13/2003	1.080
4/8/2003	1.120
7/16/2003	1.380
10/14/2003	1.240
1/14/2004	1.490

Statistics on Background Data

X= 1.411 S= 0.399 CV= 0.282 K factor** = 3.188 TL= 2.682

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW386	0.289	Sidegradient	NO
MW390	0.341	Downgradie	nt NO
MW393	0.470	Downgradie	nt NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis mg/L Sodium **UNITS:**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	115.000
9/16/2002	116.000
10/16/2002	117.000
1/13/2003	122.000
4/8/2003	106.000
7/16/2003	117.000
10/14/2003	132.000
1/14/2004	29.600

Statistics on **Background Data**

X = 106.825S = 32.041CV = 0.300K factor** = 3.188 TL = 208.973

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW386	113.00	Sidegradient	NO
MW390	93.100	Downgradie	nt NO
MW393	86.500	Downgradie	nt NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-42

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis UCRS Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	41.900
9/16/2002	26.300
10/16/2002	20.600
1/13/2003	16.600
4/8/2003	23.900
7/16/2003	18.800
10/14/2003	12.900
1/14/2004	18 700

Statistics on Background Data

X= 22.463 S= 8.876 CV= 0.395 K factor** = 3.188 TL= 50.759

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW386	43.800	Sidegradient	NO
MW390	27.600	Downgradie	nt NO
MW393	16.400	Downgradie	nt NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Technetium-99 UNITS: UCRS pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	16.700
9/16/2002	6.390
10/16/2002	4.550
1/13/2003	16.500
4/8/2003	3.040
7/16/2003	0.354
10/14/2003	11.900
1/14/2004	1.560

Statistics on Background Data

X= 7.624 S= 6.558 CV= 0.860 K factor** = 3.188 TL= 28.531

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Resu	lt > TL?
MW386	13.400	Sidegradient		NO
MW390	74.300	Downgradier	nt	YES
MW393	-8.360	Downgradier	nt	NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW390

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Total Organic Carbon (TOC) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	19.000
9/16/2002	14.600
10/16/2002	10.400
1/13/2003	4.400
4/8/2003	7.000
7/16/2003	7.300
10/14/2003	9.100
1/14/2004	8.100

Statistics on Background Data

X= 9.988 S= 4.696 CV= 0.470 K factor** = 3.188 TL= 24.959

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW386	7.210	Sidegradient	NO
MW390	2.010	Downgradie	nt NO
MW393	2.450	Downgradie	nt NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Total Organic Halides (TOX) UNITS: UCRS ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	193.000
9/16/2002	190.000
10/16/2002	221.000
1/13/2003	106.000
4/8/2003	77.800
7/16/2003	122.000
10/14/2003	86.400
1/14/2004	145.000

Statistics on Background Data

X= 142.650 S= 53.533 CV= 0.375 K factor** = 3.188 TL= 313.314

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW386	214.00	Sidegradient	NO
MW390	14.800	Downgradie	nt NO
MW393	18.100	Downgradie	nt NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis UCRS Uranium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.002
9/16/2002	0.001
10/16/2002	0.001
1/13/2003	0.001
4/8/2003	0.001
7/16/2003	0.001
10/14/2003	0.001
1/14/2004	0.001

Statistics on Background Data

X= 0.001 S= 0.000 CV= 0.314 K factor** = 3.188 TL= 0.002

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW386	0.000	Sidegradient	NO
MW390	0.000	Downgradie	nt NO
MW393	0.001	Downgradie	nt NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Vanadium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.025
9/16/2002	0.025
10/16/2002	0.020
1/13/2003	0.020
4/8/2003	0.020
7/16/2003	0.020
10/14/2003	0.020

1/14/2004

Statistics on Background Data

X= 0.021 S= 0.002 CV= 0.109 K factor** = 3.188 TL= 0.029

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

0.020

Well No.	Result	Gradient	Result > TL?
MW386	0.005	Sidegradient	NO
MW390	0.001	Downgradie	nt NO
MW393	0.001	Downgradie	nt NO

Second Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Aluminum UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	0.200
1/15/2003	0.200
4/10/2003	0.200
7/14/2003	0.200
10/13/2003	0.427
1/13/2004	0.309
4/13/2004	0.200
7/21/2004	0.202
	0.202
Well Number:	MW394
Well Number: Date Collected	
	MW394
Date Collected	MW394 Result
Date Collected 8/13/2002	MW394 Result 0.200
Date Collected 8/13/2002 9/16/2002	MW394 Result 0.200 0.200
Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 0.200 0.200 0.200
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 0.200 0.200 0.200 0.200 0.200
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	MW394 Result 0.200 0.200 0.200 0.200 0.200 0.200

Statistics on Background Data

X= 0.221 S= 0.061 CV= 0.277 K factor** = 2.523 TL= 0.376

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result $>$ TL?
MW221	0.050	Sidegradient	NO
MW222	0.114	Sidegradient	NO
MW223	0.019	Sidegradient	NO
MW224	0.050	Sidegradient	NO
MW369	0.620	Downgradier	nt YES
MW372	0.049	Downgradier	nt NO
MW384	0.050	Sidegradient	NO
MW387	0.050	Downgradier	nt NO
MW391	0.050	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW369

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Boron UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	Background gradient Wells
Well Number:	MW220	X= 0.425		Well Number:	MW220
Date Collected	Result	S= 0.615 CV= 1.447		Date Collected	LN(Result)
10/14/2002	0.200	K factor** = 2.523		10/14/2002	-1.609
1/15/2003	0.200	TL= 1.976		1/15/2003	-1.609
4/10/2003	0.200			4/10/2003	-1.609
7/14/2003	0.200	Because CV greater tha		7/14/2003	-1.609
10/13/2003	0.200	logarithm of background were calculated.	a and test well results	10/13/2003	-1.609
1/13/2004	0.200	were calculated.		1/13/2004	-1.609
4/13/2004	0.200	Statistics on		4/13/2004	-1.609
7/21/2004	0.200	Transformed		7/21/2004	-1.609
Well Number:	MW394	Background Data		Well Number:	MW394
Date Collected	Result	X= -1.322		Date Collected	LN(Result)
8/13/2002	2.000	S=~0.786		8/13/2002	0.693
9/16/2002	2.000	CV = -0.595		9/16/2002	0.693
10/16/2002	0.200	K factor** = 2.523		10/16/2002	-1.609
1/13/2003	0.200	TL= 0.663		1/13/2003	-1.609
4/10/2003	0.200	1L= 0.003		4/10/2003	-1.609
7/16/2003	0.200			7/16/2003	-1.609
10/14/2003	0.200			10/14/2003	-1.609
1/13/2004	0.200			1/13/2004	-1.609

Second Quarter 2014 Data Collected in	n
April 2014	

Well No.	Result	Gradient R	esult > TL?
MW221	0.013	Sidegradient	N/A
MW222	0.009	Sidegradient	N/A
MW223	0.008	Sidegradient	N/A
MW224	0.021	Sidegradient	N/A
MW369	0.011	Downgradient	N/A
MW372	1.700	Downgradient	N/A
MW384	0.015	Sidegradient	N/A
MW387	0.030	Downgradient	N/A
MW391	0.042	Downgradient	N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result $>$ TL?
MW221	-4.335	NO
MW222	-4.667	NO
MW223	-4.852	NO
MW224	-3.858	NO
MW369	-4.528	NO
MW372	0.531	NO
MW384	-4.173	NO
MW387	-3.517	NO
MW391	-3.172	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Bromide UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	1.000
1/15/2003	1.000
4/10/2003	1.000
7/14/2003	1.000
10/13/2003	1.000
1/13/2004	1.000
4/13/2004	1.000
7/21/2004	1.000
772172001	1.000
Well Number:	MW394
Well Number:	MW394
Well Number: Date Collected	MW394 Result
Well Number: Date Collected 8/13/2002	MW394 Result 1.000
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 1.000 1.000
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 1.000 1.000 1.000
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 1.000 1.000 1.000 1.000
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	MW394 Result 1.000 1.000 1.000 1.000 1.000

Statistics on Background Data

X= 1.000 S= 0.000 CV= 0.000 K factor** = 2.523 TL= 1.000

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient 1	Result $>$ TL?
MW221	0.510	Sidegradient	NO
MW222	0.505	Sidegradient	NO
MW223	0.544	Sidegradient	NO
MW224	0.434	Sidegradient	NO
MW369	0.337	Downgradien	t NO
MW372	0.624	Downgradien	t NO
MW384	0.550	Sidegradient	NO
MW387	0.493	Downgradien	t NO
MW391	0.506	Downgradien	t NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Calcium UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

10	
Well Number:	MW220
Date Collected	Result
10/14/2002	23.600
1/15/2003	25.900
4/10/2003	30.400
7/14/2003	33.900
10/13/2003	21.300
1/13/2004	20.300
4/13/2004	23.800
7/21/2004	19.000
Well Number:	MW394
Date Collected	Result
8/13/2002	29.500
9/16/2002	29.900
9/16/2002 10/16/2002	
	29.900
10/16/2002	29.900 31.200

10/14/2003

1/13/2004

Statistics on Background Data

X= 27.638 S= 4.743 CV= 0.172 K factor** = 2.523 TL= 39.604

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

30.300

28.400

Well No.	Result	Gradient	Result $>$ TL?
MW221	20.800	Sidegradient	NO
MW222	19.000	Sidegradient	NO
MW223	21.100	Sidegradient	NO
MW224	25.200	Sidegradient	NO
MW369	16.400	Downgradier	nt NO
MW372	70.500	Downgradier	nt YES
MW384	27.600	Sidegradient	NO
MW387	34.900	Downgradier	nt NO
MW391	23.700	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Chemical Oxygen Demand (COD) UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	35.000
1/15/2003	35.000
4/10/2003	35.000
7/14/2003	35.000
10/13/2003	35.000
1/13/2004	35.000
4/13/2004	35.000
7/21/2004	35.000
Well Number:	MW394
Date Collected	Result
	Result
8/13/2002	35.000
8/13/2002 9/16/2002	
000.	35.000
9/16/2002	35.000 35.000
9/16/2002 10/16/2002	35.000 35.000 35.000
9/16/2002 10/16/2002 1/13/2003	35.000 35.000 35.000 35.000
9/16/2002 10/16/2002 1/13/2003 4/10/2003	35.000 35.000 35.000 35.000 35.000

Statistics on Background Data

X= 35.000 S= 0.000 CV= 0.000 K factor** = 2.523 TL= 35.000

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result $>$ TL?
MW221	20.000	Sidegradient	NO
MW222	31.400	Sidegradient	NO
MW223	7.000	Sidegradient	NO
MW224	20.000	Sidegradient	NO
MW369	20.000	Downgradie	nt NO
MW372	20.000	Downgradie	nt NO
MW384	20.000	Sidegradient	NO
MW387	9.930	Downgradie	nt NO
MW391	20.000	Downgradie	nt NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Chloride UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	44.600
1/15/2003	43.200
4/10/2003	31.500
7/14/2003	30.800
10/13/2003	40.900
1/13/2004	40.800
4/13/2004	37.500
7/21/2004	40.800
7/21/2004 Well Number:	40.800 MW394
Well Number:	MW394
Well Number: Date Collected	MW394 Result
Well Number: Date Collected 8/13/2002	MW394 Result 60.400
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 60.400 60.300
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 60.400 60.300 58.000
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 60.400 60.300 58.000 60.700
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	MW394 Result 60.400 60.300 58.000 60.700 62.900

1/13/2004

Statistics on Background Data

X= 49.044 S= 11.278 CV= 0.230 K factor** = 2.523 TL= 77.499

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

56.000

Well No.	Result	Gradient	Result $>$ TL?
MW221	34.300	Sidegradient	NO
MW222	33.000	Sidegradient	NO
MW223	33.300	Sidegradient	NO
MW224	33.300	Sidegradient	NO
MW369	31.000	Downgradie	nt NO
MW372	56.300	Downgradier	nt NO
MW384	46.400	Sidegradient	NO
MW387	37.900	Downgradier	nt NO
MW391	36.400	Downgradie	nt NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis URGA cis-1,2-Dichloroethene UNITS: URGA ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	5.000
1/15/2003	5.000
4/10/2003	5.000
7/14/2003	5.000
10/13/2003	5.000
1/13/2004	5.000
4/13/2004	5.000
7/21/2004	5.000
Well Number:	MW394
Well Number: Date Collected	
Date Collected	Result
Date Collected 8/13/2002	Result 5.000
Date Collected 8/13/2002 9/30/2002	Result 5.000 5.000
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5.000 5.000 5.000
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5.000 5.000 5.000 5.000
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.000 5.000 5.000 5.000 5.000
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 5.000 5.000 5.000 5.000 5.000 5.000

Statistics on			
Background Data			
X= 5.000			
S- 0.000			

S= 0.000 CV= 0.000 K factor** = 2.523 TL= 5.000

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result $>$ TL?
MW221	1.000	Sidegradient	NO
MW222	1.000	Sidegradient	NO
MW223	1.000	Sidegradient	NO
MW224	1.000	Sidegradient	NO
MW369	1.000	Downgradier	nt NO
MW372	0.310	Downgradier	nt NO
MW384	1.000	Sidegradient	NO
MW387	1.000	Downgradier	nt NO
MW391	0.410	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Cobalt UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data		Transformed Data from Up	Background gradient Wells
Well Number:	MW220	X= 0.016		Well Number:	MW220
Date Collected 10/14/2002 1/15/2003	Result 0.004 0.005	S= 0.040 CV= 2.440 K factor** = 2.523		Date Collected 10/14/2002 1/15/2003	LN(Result) -5.497 -5.306
4/10/2003 7/14/2003 10/13/2003 1/13/2004	0.003 0.161 0.023 0.005	TL= 0.116 Because CV greater the logarithm of backgrour were calculated.	,	4/10/2003 7/14/2003 10/13/2003 1/13/2004	-5.846 -1.826 -3.790 -5.373
4/13/2004 7/21/2004 Well Number:	0.001 0.003 MW394	Statistics on Transformed Background Data		4/13/2004 7/21/2004 Well Number:	-6.908 -5.937 MW394
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.001 0.001	X= -5.582 S= 1.573 CV= -0.282 K factor** = 2.523 TL= -1.613		Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	LN(Result) -3.689 -3.689 -6.908 -6.908
7/16/2003 10/14/2003 1/13/2004	0.001 0.001 0.001			7/16/2003 10/14/2003 1/13/2004	-6.908 -6.908 -6.908

Second Quarter	2014 Data	Collected in
April 2014		

Well No.	Result	Gradient	Result > TL
MW221	0.002	Sidegradient	N/A
MW222	0.002	Sidegradient	N/A
MW223	0.004	Sidegradient	N/A
MW224	0.000	Sidegradient	N/A
MW369	0.012	Downgradien	nt N/A
MW372	0.000	Downgradien	nt N/A
MW384	0.000	Sidegradient	N/A
MW387	0.000	Downgradien	nt N/A
MW391	0.001	Downgradien	nt N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result > TL?
MW221	-6.365	NO
MW222	-6.377	NO
MW223	-5.458	NO
MW224	-7.799	NO
MW369	-4.431	NO
MW372	-8.217	NO
MW384	-9.115	NO
MW387	-8.948	NO
MW391	-6.908	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis URGA Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	368.000
1/15/2003	433.200
4/10/2003	489.000
7/14/2003	430.000
10/13/2003	346.000
1/13/2004	365.000
4/13/2004	416.000
7/21/2004	353.000
Well Number:	MW394
Date Collected	Result
8/13/2002	406.000
9/16/2002	418.000
10/16/2002	411.000
1/13/2003	422.000
4/10/2003	420.000
7/16/2003	438.000
10/14/2003	3.910
1/13/2004	395.000

Statistics on Background Data

X= 382.132 S= 107.134 CV= 0.280 K factor** = 2.523

TL = 652.432

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result $>$ TL?
MW221	378.00	Sidegradient	NO
MW222	344.00	Sidegradient	NO
MW223	379.00	Sidegradient	NO
MW224	428.00	Sidegradient	NO
MW369	380.00	Downgradier	nt NO
MW372	837.00	Downgradier	nt YES
MW384	479.00	Sidegradient	NO
MW387	544.00	Downgradie	nt NO
MW391	393.00	Downgradie	nt NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Copper UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

10	
Well Number:	MW220
Date Collected	Result
10/14/2002	0.021
1/15/2003	0.020
4/10/2003	0.020
7/14/2003	0.020
10/13/2003	0.020
1/13/2004	0.020
4/13/2004	0.020
7/21/2004	0.020
Well Number:	MW394
Date Collected	Result
8/13/2002	0.050
9/16/2002	0.050
10/16/2002	0.020
1/13/2003	0.020
4/10/2003	0.020
7/16/2003	0.020
10/14/2003	0.020
1/13/2004	

Statistics on Background Data

X= 0.024 S= 0.010 CV= 0.429 K factor** = 2.523 TL= 0.050

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result $>$ TL?
MW221	0.003	Sidegradient	NO
MW222	0.001	Sidegradient	NO
MW223	0.001	Sidegradient	NO
MW224	0.001	Sidegradient	NO
MW369	0.002	Downgradier	nt NO
MW372	0.003	Downgradier	nt NO
MW384	0.001	Sidegradient	NO
MW387	0.001	Downgradier	nt NO
MW391	0.000	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Dissolved Oxygen UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

10	
Well Number:	MW220
Date Collected	Result
10/14/2002	6.790
1/15/2003	7.250
4/10/2003	3.600
7/14/2003	0.940
10/13/2003	1.650
1/13/2004	3.480
4/13/2004	1.050
7/21/2004	4.460
Well Number:	MW394
Date Collected	Result
8/13/2002	6.090
9/16/2002	3.850
10/16/2002	5.110
1/13/2003	3.830
4/10/2003	4.150
7/16/2003	1.830
10/14/2003	3.330
10/14/2003	3.330

Statistics on Background Data

X= 3.784 S= 1.887 CV= 0.499 K factor** = 2.523 TL= 8.545

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result $>$ TL?
MW221	5.070	Sidegradient	NO
MW222	3.020	Sidegradient	NO
MW223	3.470	Sidegradient	NO
MW224	3.420	Sidegradient	NO
MW369	1.330	Downgradier	nt NO
MW372	3.000	Downgradier	nt NO
MW384	4.150	Sidegradient	NO
MW387	3.790	Downgradier	nt NO
MW391	2.420	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Dissolved Solids UNITS: uRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	208.000
1/15/2003	257.000
4/10/2003	288.000
7/14/2003	262.000
10/13/2003	197.000
1/13/2004	198.000
4/13/2004	245.000
7/01/0004	204.000
7/21/2004	204.000
Well Number:	204.000 MW394
Well Number:	MW394
Well Number: Date Collected	MW394 Result
Well Number: Date Collected 8/13/2002	MW394 Result 247.000
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 247.000 259.000
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 247.000 259.000 201.000
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 247.000 259.000 201.000 228.000

1/13/2004

Statistics on Background Data

X= 232.688 S= 27.490 CV= 0.118 K factor** = 2.523 TL= 302.045

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

210.000

Result $>$ TL?
NO
NO
NO
NO
t NO
t YES
NO
t NO
t NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Iron UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	_
Well Number:	MW220	X= 0.897		Well Number:	MW220
Date Collected	Result	S= 1.050		Date Collected	LN(Result)
10/14/2002	0.200	CV= 1.170 K factor** = 2.523		10/14/2002	-1.609
1/15/2003	0.200	TL= 3.545		1/15/2003	-1.609
4/10/2003	0.429			4/10/2003	-0.846
7/14/2003	4.330	Because CV greater than		7/14/2003	1.466
10/13/2003	1.810	logarithm of background were calculated.	logarithm of background and test well results		0.593
1/13/2004	0.793	were carculated.		1/13/2004	-0.232
4/13/2004	0.130	Statistics on		4/13/2004	-2.040
7/21/2004	0.382	Transformed		7/21/2004	-0.962
Well Number:	MW394	Background Data		Well Number:	MW394
Date Collected	Result	X= -0.565		Date Collected	LN(Result)
8/13/2002	1.340	S= 0.951		8/13/2002	0.293
9/16/2002	0.328	CV= -1.683		9/16/2002	-1.115
10/16/2002	1.380	K factor** = 2.523		10/16/2002	0.322
1/13/2003	1.300	TL= 1.834		1/13/2003	0.262
4/10/2003	0.494	1L= 1.034		4/10/2003	-0.705
7/16/2003	0.620			7/16/2003	-0.478
10/14/2003	0.370			10/14/2003	-0.994
1/13/2004	0.251			1/13/2004	-1.382

Second Quarter	2014	Data	Collected in
April 2014			

Well No.	Result	Gradient	Result > TL?
MW221	0.643	Sidegradient	N/A
MW222	0.307	Sidegradient	N/A
MW223	0.091	Sidegradient	N/A
MW224	0.069	Sidegradient	N/A
MW369	1.420	Downgradien	t N/A
MW372	1.990	Downgradien	t N/A
MW384	0.171	Sidegradient	N/A
MW387	0.069	Downgradien	t N/A
MW391	0.153	Downgradien	t N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result $>$ TL?
MW221	-0.442	NO
MW222	-1.181	NO
MW223	-2.401	NO
MW224	-2.671	NO
MW369	0.351	NO
MW372	0.688	NO
MW384	-1.766	NO
MW387	-2.677	NO
MW391	-1.877	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Magnesium UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

MW220
Result
9.160
10.000
10.800
14.700
9.030
8.490
9.700
8.060
MW394
Result
11.800
12.100
11.300
10.300
11.700
12.000

10/14/2003

1/13/2004

Statistics on Background Data

X= 10.796 S= 1.703 CV= 0.158 K factor** = 2.523 TL= 15.092

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

12.200

11.400

Well No.	Result	Gradient	Result $>$ TL?
MW221	9.340	Sidegradient	NO
MW222	8.950	Sidegradient	NO
MW223	9.440	Sidegradient	NO
MW224	10.300	Sidegradient	NO
MW369	6.700	Downgradien	nt NO
MW372	26.100	Downgradien	t YES
MW384	11.100	Sidegradient	NO
MW387	15.800	Downgradien	t YES
MW391	10.400	Downgradien	nt NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Manganese UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data	Transformed Data from Up	Background gradient Wells
Well Number:	MW220	X=0.287	Well Number:	MW220
Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004 7/21/2004	Result 0.031 0.029 0.014 2.540 0.378 0.159 0.007 0.084	S= 0.619 CV= 2.156 K factor** = 2.523 TL= 1.848 Because CV greater tha logarithm of backgroun were calculated. Statistics on Transformed	Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004 7/21/2004	LN(Result) -3.487 -3.537 -4.290 0.932 -0.973 -1.839 -4.952 -2.476
Well Number:	MW394	Background Data	Well Number:	-2.470 MW394
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004	Result 0.542 0.155 0.103 0.128 0.005 0.272 0.080 0.066	X= -2.455 S= 1.619 CV= -0.659 K factor** = 2.523 TL= 1.630	Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004	LN(Result) -0.612 -1.864 -2.273 -2.056 -5.298 -1.302 -2.532 -2.721

Second Quarter	2014 Data	Collected in
April 2014		

Well No.	Result	Gradient	Result > TL?
MW221	0.017	Sidegradient	N/A
MW222	0.024	Sidegradient	N/A
MW223	0.087	Sidegradient	N/A
MW224	0.009	Sidegradient	N/A
MW369	0.138	Downgradien	t N/A
MW372	0.037	Downgradien	t N/A
MW384	0.005	Sidegradient	N/A
MW387	0.002	Downgradien	t N/A
MW391	0.005	Downgradien	t N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result > TL?
MW221	-4.080	NO
MW222	-3.717	NO
MW223	-2.438	NO
MW224	-4.714	NO
MW369	-1.981	NO
MW372	-3.291	NO
MW384	-5.329	NO
MW387	-6.255	NO
MW391	-5.298	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Molybdenum UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	
Well Number:	MW220	X= 0.006		Well Number:	MW220
Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003	Result 0.006 0.010 0.011 0.002	S= 0.008 CV= 1.261 K factor** = 2.523 TL= 0.026		Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003	LN(Result) -5.189 -4.622 -4.519 -6.012
10/13/2003 1/13/2004 4/13/2004 7/21/2004 Well Number:	0.006 0.006 0.001 0.004 MW394	logarithm of backgroun were calculated. Statistics on Transformed Background Data	d and test well results	10/13/2003 1/13/2004 4/13/2004 7/21/2004	-5.174 -5.164 -6.908 -5.542
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.001 0.001 0.001	X= -5.747 S= 1.205 CV= -0.210 K factor** = 2.523 TL= -2.708		Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	MW394 LN(Result) -3.689 -3.689 -6.908 -6.908
7/16/2003 10/14/2003 1/13/2004	0.001 0.001 0.001			7/16/2003 10/14/2003 1/13/2004	-6.908 -6.908 -6.908

Second Quarter	2014 Data	Collected in
April 2014		

Well No.	Result	Gradient	Result > TL
MW221	0.007	Sidegradient	N/A
MW222	0.001	Sidegradient	N/A
MW223	0.003	Sidegradient	N/A
MW224	0.000	Sidegradient	N/A
MW369	0.001	Downgradien	t N/A
MW372	0.000	Downgradien	t N/A
MW384	0.000	Sidegradient	N/A
MW387	0.001	Downgradien	t N/A
MW391	0.001	Downgradien	t N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result > TL?
MW221	-4.920	NO
MW222	-7.601	NO
MW223	-5.933	NO
MW224	-7.663	NO
MW369	-7.488	NO
MW372	-7.824	NO
MW384	-8.680	NO
MW387	-7.601	NO
MW391	-7.601	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Nickel UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	_
Well Number:	MW220	X= 0.127		Well Number:	MW220
Date Collected	Result	S = 0.228		Date Collected	LN(Result)
10/14/2002	0.418	CV= 1.790 K factor** = 2.523		10/14/2002	-0.872
1/15/2003	0.738	TL = 0.701		1/15/2003	-0.304
4/10/2003	0.544			4/10/2003	-0.609
7/14/2003	0.106	Because CV greater tha		7/14/2003	-2.244
10/13/2003	0.053	logarithm of backgroun were calculated.	d and test well results	10/13/2003	-2.939
1/13/2004	0.021	were calculated.	•	1/13/2004	-3.868
4/13/2004	0.005	Statistics on		4/13/2004	-5.298
7/21/2004	0.019	Transformed		7/21/2004	-3.953
Well Number:	MW394	Background Data		Well Number:	MW394
Date Collected	Result	X= -3.617		Date Collected	LN(Result)
8/13/2002	0.050	S= 1.837		8/13/2002	-2.996
9/16/2002	0.050	CV = -0.508		9/16/2002	-2.996
10/16/2002	0.005	K factor** = 2.523		10/16/2002	-5.298
1/13/2003	0.005	TL= 1.019		1/13/2003	-5.298
4/10/2003	0.005	1L= 1.017		4/10/2003	-5.298
7/16/2003	0.005			7/16/2003	-5.298
10/14/2003	0.005			10/14/2003	-5.298
1/13/2004	0.005			1/13/2004	-5.298

Second Quarter 201	4 Data Collected in
April 2014	

Well No.	Result	Gradient	Result > TL
MW221	0.129	Sidegradient	N/A
MW222	0.110	Sidegradient	N/A
MW223	0.608	Sidegradient	N/A
MW224	0.006	Sidegradient	N/A
MW369	0.008	Downgradien	t N/A
MW372	0.001	Downgradien	t N/A
MW384	0.004	Sidegradient	N/A
MW387	0.001	Downgradien	t N/A
MW391	0.001	Downgradien	t N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result > TL?
MW221	-2.048	NO
MW222	-2.207	NO
MW223	-0.498	NO
MW224	-5.129	NO
MW369	-4.821	NO
MW372	-7.013	NO
MW384	-5.591	NO
MW387	-6.734	NO
MW391	-6.908	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Oxidation-Reduction Potential UNITS: WV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220	
Date Collected	Result	
10/14/2002	205.000	
1/15/2003	1.950	
4/10/2003	203.000	
7/14/2003	30.000	
10/13/2003	107.000	
1/13/2004	295.000	
4/13/2004	190.000	
7/21/2004	319.000	
Well Number:	MW394	
Date Collected	Result	
8/13/2002	90.000	
9/16/2002	240.000	
10/16/2002	185.000	

1/13/2003 4/10/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data

X= 179.872 S= 86.318 CV= 0.480 K factor** = 2.523 TL= 397.652

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

220.000

196.000

172.000

175.000

249.000

Well No.	Result	Gradient Resu	lt > TL?
MW221	497.00	Sidegradient	YES
MW222	510.00	Sidegradient	YES
MW223	356.00	Sidegradient	NO
MW224	547.00	Sidegradient	YES
MW369	514.00	Downgradient	YES
MW372	236.00	Downgradient	NO
MW384	344.00	Sidegradient	NO
MW387	561.00	Downgradient	YES
MW391	373.00	Downgradient	NO
IVI W 391	3/3.00	Downgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW221

MW222

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis
Oxidation-Reduction Potential**Eqpvlpwgf + UNITS: mV

MW369	
MW387	

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis URGA PH UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from
Upgradient Wells

opgradient w	opgradient wens				
Well Number:	MW220				
Date Collected	Result				
10/14/2002	6.040				
1/15/2003	6.310				
4/10/2003	6.500				
7/14/2003	6.300				
10/13/2003	6.340				
1/13/2004	6.330				
4/13/2004	6.300				
7/21/2004	5.900				
Well Number:	MW394				
Well Number: Date Collected	MW394 Result				
Date Collected	Result				
Date Collected 8/13/2002	Result 5.800				
Date Collected 8/13/2002 9/30/2002	Result 5.800 5.930				
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5.800 5.930 5.420				
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5.800 5.930 5.420 6.000				
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.800 5.930 5.420 6.000 6.040				
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 5.800 5.930 5.420 6.000 6.040 6.200				

Statistics on Background Data
X= 6.138
S = 0.282
CV = 0.046
K factor** = 2.904

TL= 6.957 LL= 5.318

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result >TL?	Result <ll?< th=""></ll?<>
MW221	6.120	Sidegradi	ent NO	NO
MW222	6.230	Sidegradi	ent NO	NO
MW223	6.120	Sidegradi	ent NO	NO
MW224	6.250	Sidegradi	ent NO	NO
MW369	6.210	Downgrad	ient NO	NO
MW372	6.140	Downgrad	ient NO	NO
MW384	6.160	Sidegradi	ent NO	NO
MW387	6.190	Downgrad	ient NO	NO
MW391	6.270	Downgrad	ient NO	NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Potassium UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells			Statistics on Background Data		Transformed Background Data from Upgradient Wells	
Well Number:	MW220		X= 6.654		Well Number:	MW220
Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004 7/21/2004 Well Number:	Result 6.700 29.700 24.900 1.130 3.430 6.710 19.300 3.970 MW394	1	S= 9.310 CV= 1.399 K factor** = 2.523 TL= 30.144 Because CV greater tha logarithm of backgroun were calculated. Statistics on Transformed Background Data		Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004 7/21/2004 Well Number:	LN(Result) 1.902 3.391 3.215 0.122 1.233 1.904 2.960 1.379 MW394
Date Collected	Result		X= 1.130		Date Collected	LN(Result)
8/13/2002	2.000		S= 1.208		8/13/2002	0.693
9/16/2002	2.000		CV= 1.069		9/16/2002	0.693
10/16/2002	1.030		K factor** = 2.523		10/16/2002	0.030
1/13/2003	1.100		TL= 4.178		1/13/2003	0.095
4/10/2003	1.240		1L= 4.176		4/10/2003	0.215
7/16/2003	1.140				7/16/2003	0.131
10/14/2003	1.050				10/14/2003	0.049
1/13/2004	1.070				1/13/2004	0.068

Second Quarter 201	4 Data Collected in
April 2014	

Well No.	Result	Gradient	Result > TL
MW221	1.210	Sidegradient	N/A
MW222	0.462	Sidegradient	N/A
MW223	1.480	Sidegradient	N/A
MW224	0.897	Sidegradient	N/A
MW369	0.601	Downgradien	t N/A
MW372	2.660	Downgradien	t N/A
MW384	1.430	Sidegradient	N/A
MW387	1.890	Downgradien	t N/A
MW391	1.520	Downgradien	t N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result > TL?
MW221	0.191	NO
MW222	-0.772	NO
MW223	0.392	NO
MW224	-0.109	NO
MW369	-0.509	NO
MW372	0.978	NO
MW384	0.358	NO
MW387	0.637	NO
MW391	0.419	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Sodium UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	35.400
1/15/2003	40.600
4/10/2003	51.000
7/14/2003	58.200
10/13/2003	38.100
1/13/2004	37.000
4/13/2004	43.200
7/21/2004	33.800
Well Number:	MW394
Date Collected	Result
8/13/2002	32.900
9/16/2002	29.900
10/16/2002	29.000
1/13/2003	27.100
4/10/2003	24.800
7/16/2003	35.600
10/14/2003	33.900

1/13/2004

Statistics on Background Data

X= 36.363 S= 8.666 CV= 0.238 K factor** = 2.523

TL = 58.227

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

31.300

Well No.	Result	Gradient I	Result $>$ TL?
MW221	45.200	Sidegradient	NO
MW222	44.400	Sidegradient	NO
MW223	44.400	Sidegradient	NO
MW224	62.400	Sidegradient	YES
MW369	58.700	Downgradien	YES
MW372	65.500	Downgradien	YES
MW384	53.100	Sidegradient	NO
MW387	52.400	Downgradien	t NO
MW391	40.000	Downgradien	t NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW224

MW369

MW372

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

D-70

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Sulfate UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	10.400
1/15/2003	9.800
4/10/2003	15.400
7/14/2003	14.900
10/13/2003	13.500
1/13/2004	10.300
4/13/2004	14.300
7/21/2004	10.500
Well Number:	MW394
	11111371
Date Collected	Result
Date Collected 8/13/2002	
	Result
8/13/2002	Result 11.200
8/13/2002 9/16/2002	Result 11.200 8.300
8/13/2002 9/16/2002 10/16/2002	Result 11.200 8.300 8.000
8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.200 8.300 8.000 8.500
8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.200 8.300 8.000 8.500 7.900

Statistics on Background Data

X= 10.481 S= 2.648 CV= 0.253 K factor** = 2.523 TL= 17.161

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient F	Result $>$ TL?
MW221	13.200	Sidegradient	NO
MW222	11.300	Sidegradient	NO
MW223	15.000	Sidegradient	NO
MW224	16.400	Sidegradient	NO
MW369	8.090	Downgradient	i NO
MW372	176.00	Downgradient	YES
MW384	22.900	Sidegradient	YES
MW387	28.700	Downgradient	YES
MW391	20.600	Downgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

MW384

MW387

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

D-71

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis **URGA UNITS:** Sulfate'*Eqpvlpwgf + mg/L

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-72

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Technetium-99 UNITS: URGA pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	19.700
1/15/2003	26.100
4/10/2003	3.560
7/14/2003	0.000
10/13/2003	21.000
1/13/2004	6.320
4/13/2004	3.000
7/21/2004	14.600
Well Number:	MW394
Date Collected	Result
8/13/2002	14.000
9/16/2002	5.450
10/16/2002	2.490
10/16/2002 1/13/2003	2.490 18.300
	_,,,,

10/14/2003

1/13/2004

Statistics on Background Data

X= 9.354 S= 9.280 CV= 0.992 K factor** = 2.523 TL= 32.768

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

18.300

0.000

Well No.	Result	Gradient	Result $>$ TL?
MW221	12.100	Sidegradient	NO
MW222	18.500	Sidegradient	NO
MW223	19.900	Sidegradient	NO
MW224	17.600	Sidegradient	NO
MW369	35.400	Downgradier	nt YES
MW372	13.400	Downgradier	nt NO
MW384	229.00	Sidegradient	YES
MW387	200.00	Downgradier	nt YES
MW391	5.150	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW369

MW384

MW387

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

D-73

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Toluene UNITS: URGA ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	5.000
1/15/2003	5.000
4/10/2003	5.000
7/14/2003	5.000
10/13/2003	5.000
1/13/2004	5.000
4/13/2004	5.000
7/21/2004	5.000
Well Number:	MW394
Date Collected	Result
8/13/2002	5.000
9/30/2002	5.000
10/16/2002	5.000
1/13/2003	5.000
4/10/2003	5.000
7/16/2003	5.000
10/14/2003	5.000

Statistics on Background Data

X= 5.000 S= 0.000 CV= 0.000 K factor** = 2.523 TL= 5.000

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result $>$ TL?
MW221	1.000	Sidegradient	NO
MW222	2.880	Sidegradient	NO
MW223	1.000	Sidegradient	NO
MW224	0.600	Sidegradient	NO
MW369	7.160	Downgradier	nt YES
MW372	1.000	Downgradier	nt NO
MW384	16.500	Sidegradient	YES
MW387	28.400	Downgradier	nt YES
MW391	3.610	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW369

MW384

MW387

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

D-74

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis **URGA Total Organic Carbon (TOC) UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well

Background Data from Upgradient Wells

MW220
Result
1.000
1.100
1.000
3.300
1.800
1.000
2.000
3.100
5.100
3.100 MW394
MW394
MW394 Result
MW394 Result 1.300
MW394 Result 1.300 1.000
MW394 Result 1.300 1.000 1.000
MW394 Result 1.300 1.000 1.000 1.600
MW394 Result 1.300 1.000 1.000 1.600 1.000

Statistics on **Background Data**

X = 1.494S = 0.737CV = 0.493K factor** = 2.523TL = 3.353

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result $>$ TL?
MW221	0.960	Sidegradient	NO
MW222	0.911	Sidegradient	NO
MW223	0.971	Sidegradient	NO
MW224	1.130	Sidegradient	NO
MW369	1.380	Downgradier	nt NO
MW372	1.680	Downgradier	nt NO
MW384	1.250	Sidegradient	NO
MW387	1.290	Downgradier	nt NO
MW391	0.869	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-75

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Total Organic Halides (TOX) UNITS: URGA ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

S = 163.135 Date Collected LN(Res 10/14/2002 3.912 10/15/2003 2.303 10.000 Looo Doo	Background Data from Upgradient Wells		Statistics on Background Data		Transformed Data from Up	_
CV = 2.570	umber:	MW220			Well Number:	MW220
14/2002 50.000 5/2003 10.000 10.000 10.000 10.000 10.000 13/2003 10.000 10.000 10.000 13/2004 10.000	Collected	Result			Date Collected	LN(Resu
TL= 475.063 10.000 TL= 475.063 1/15/2003 2.303 4/10/2003 2.303 4/10/2003 2.303 4/10/2003 2.303 4/10/2003 2.303 1/13/2003 2.303 10.000 1/13/2003 2.303 10.000 1/13/2004 2.303 1/13/2004 1/13/2004 2.303 1/13/2004 1/13/2004 1/13/2004 1/13/2004 1/13/2004 1/13/2004 1/13/2004 1/13/2004 1/13/2004 1/13/2004 1/13/2004 1/13/2004 1/13/2004 1/13/2004 1/13/2004 1/13/2004 1/13/2004 1/13/2004 1/13/2004 1/13/20	14/2002	50.000			10/14/2002	3.912
10,000	5/2003	10.000			1/15/2003	2.303
logarithm of background and test well results 10/13/2003 2.303 10/13/2003 2.303 10/13/2004 2.303 11/13/2004 11/13/2004 2.303 11/13/2004	0/2003	10.000		Į	4/10/2003	2.303
10/13/2003 10.000	4/2003	10.000	C	,	7/14/2003	2.303
1/3/2004 10.000 1/13/2004 2.303 2.303 2.3004 10.000 Transformed Tran	/13/2003	10.000		d and test well results	10/13/2003	2.303
Transformed Background Data Well Number: MW394 X = 3.103 Date Collected LN(Res 13/2002 50.000 S = 1.145 S/13/2002 50.000 CV = 0.369 S/16/2002 50.000 K factor** = 2.523 TL= 5.992 T/16/2003 3.754 T/16/2003 3.091 T/16/200	13/2004	10.000	were calculated.	1	1/13/2004	2.303
Number: MW394 Background Data Well Number: MW394 Collected Result X= 3.103 Date Collected LN(Result LN(Result LN) 13/2002 50.000 S= 1.145 8/13/2002 3.912 16/2002 672.000 CV= 0.369 9/16/2002 6.510 13/2003 36.100 K factor** = 2.523 10/16/2002 3.912 10/2003 10.000 1/13/2003 3.586 16/2003 42.700 7/16/2003 3.754 7/14/2003 22.000 10/14/2003 3.091	13/2004	10.000	Statistics on		4/13/2004	2.303
X = 3.103 Date Collected LN(Res Interpretation In	21/2004	10.000			7/21/2004	2.303
S 1.145 S	Number:	MW394	Background Data		Well Number:	MW394
CV = 0.369 9/16/2002 6.510	Collected	Result	X = 3.103		Date Collected	LN(Resu
K factor** = 2.523 10/16/2002 3.912 13/2003 36.100 TL= 5.992 11/3/2003 3.586 10/2003 42.700 10/4/2003 22.000 10/14/2003 3.091	13/2002	50.000	S= 1.145		8/13/2002	3.912
13/2003 36.100 10/2003 10.000 16/2003 42.700 16/2003 22.000 17/13/2003 3.586 4/10/2003 2.303 7/16/2003 3.754 10/14/2003 3.091	16/2002	672.000	CV = 0.369		9/16/2002	6.510
10/2003 10.000 4/10/2003 2.303 16/2003 42.700 7/16/2003 3.754 1/14/2003 22.000 10/14/2003 3.091	/16/2002	50.000	K factor** = 2.523		10/16/2002	3.912
10/2003 10.000 16/2003 42.700 7/16/2003 3.754 10/14/2003 22.000 10/14/2003 3.091	13/2003	36.100	TI = 5 992		1/13/2003	3.586
/14/2003 22.000 10/14/2003 3.091	10/2003	10.000	11_ 3.332		4/10/2003	2.303
	16/2003	42.700			7/16/2003	3.754
13/2004 12.800 1/13/2004 2.549	/14/2003	22.000			10/14/2003	3.091
	13/2004	12.800			1/13/2004	2.549

Second Quarter	2014	Data	Collected in
April 2014			

Well No.	Result	Gradient	Result > TL
MW221	7.720	Sidegradient	N/A
MW222	5.580	Sidegradient	N/A
MW223	5.200	Sidegradient	N/A
MW224	7.620	Sidegradient	N/A
MW369	25.600	Downgradier	nt N/A
MW372	13.900	Downgradier	nt N/A
MW384	10.900	Sidegradient	N/A
MW387	14.600	Downgradier	nt N/A
MW391	11.500	Downgradier	nt N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result > TL?
MW221	2.044	NO
MW222	1.719	NO
MW223	1.649	NO
MW224	2.031	NO
MW369	3.243	NO
MW372	2.632	NO
MW384	2.389	NO
MW387	2.681	NO
MW391	2.442	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Boron UNITS: LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells				Transformed Background Data from Upgradient Wells	
Well Number: MW395		X= 0.650		Well Number:	MW395
Date Collected	Result	S= 0.805		Date Collected	LN(Result)
8/13/2002	2.000	CV= 1.238 K factor** = 2.523		8/13/2002	0.693
9/16/2002	2.000	TL = 2.681		9/16/2002	0.693
10/16/2002	0.200			10/16/2002	-1.609
1/13/2003	0.200	Because CV greater tha		1/13/2003	-1.609
4/10/2003	0.200	logarithm of background were calculated.	d and test well results	4/10/2003	-1.609
7/16/2003	0.200	were calculated.	were carculated.	7/16/2003	-1.609
10/14/2003	0.200	Statistics on		10/14/2003	-1.609
1/13/2004	0.200	Transformed		1/13/2004	-1.609
Well Number:	MW397	Background Data		Well Number:	MW397
Date Collected	Result	X= -1.034		Date Collected	LN(Result)
8/13/2002	2.000	S = 1.030		8/13/2002	0.693
9/16/2002	2.000	CV = -0.996		9/16/2002	0.693
10/17/2002	0.200	K factor** = 2.523		10/17/2002	-1.609
1/13/2003	0.200	TL= 1.564		1/13/2003	-1.609
4/8/2003	0.200	IL= 1.304		4/8/2003	-1.609
7/16/2003	0.200			7/16/2003	-1.609
10/14/2003	0.200			10/14/2003	-1.609
1/13/2004	0.200			1/13/2004	-1.609

Second Quarter 2014 Data Collected	in
April 2014	

Well No.	Result	Gradient	Result > TL?
MW370	0.031	Downgradie	nt N/A
MW373	2.180	Downgradie	nt N/A
MW385	0.012	Sidegradient	N/A
MW388	0.021	Downgradie	nt N/A
MW392	0.027	Downgradie	nt N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result > TL?
MW370	-3.477	NO
MW373	0.779	NO
MW385	-4.390	NO
MW388	-3.868	NO
MW392	-3.631	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

D-77

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Bromide UNITS: LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	1.000
9/16/2002	1.000
10/16/2002	1.000
1/13/2003	1.000
4/10/2003	1.000
7/16/2003	1.000
10/14/2003	1.000
1/13/2004	1.000
Well Number:	MW397
Date Collected	Result
Date Collected 8/13/2002	Result 1.000
8/13/2002	1.000
8/13/2002 9/16/2002	1.000 1.000
8/13/2002 9/16/2002 10/17/2002	1.000 1.000 1.000
8/13/2002 9/16/2002 10/17/2002 1/13/2003	1.000 1.000 1.000 1.000
8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	1.000 1.000 1.000 1.000 1.000

Statistics on Background Data

X= 1.000 S= 0.000 CV= 0.000 K factor** = 2.523 TL= 1.000

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW370	0.513	Downgradie	nt NO
MW373	0.606	Downgradie	nt NO
MW385	0.316	Sidegradient	NO
MW388	0.326	Downgradie	nt NO
MW392	0.602	Downgradie	nt NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

D-78

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Calcium UNITS: LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	32.200
9/16/2002	33.000
10/16/2002	0.030
1/13/2003	32.100
4/10/2003	40.200
7/16/2003	32.400
10/14/2003	33.900
1/13/2004	31.200
Well Number:	MW397
Date Collected	Result
8/13/2002	19.400
9/16/2002	19.000
10/17/2002	0.018
1/13/2003	17.800
4/8/2003	20.300
7/16/2003	19.400
10/14/2003	19.900

Statistics on Background Data

X= 23.103 S= 11.538 CV= 0.499 K factor** = 2.523 TL= 52.213

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

18.800

Well No.	Result	Gradient Resu	llt > TL?
MW370	28.000	Downgradient	NO
MW373	78.400	Downgradient	YES
MW385	25.100	Sidegradient	NO
MW388	29.300	Downgradient	NO
MW392	26.500	Downgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW373

1/13/2004

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Chemical Oxygen Demand (COD) LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	35.000
9/16/2002	35.000
10/16/2002	35.000
1/13/2003	35.000
4/10/2003	35.000
7/16/2003	35.000
10/14/2003	35.000
1/13/2004	35.000
Well Number:	MW397
Well Number: Date Collected	MW397 Result
Date Collected	Result
Date Collected 8/13/2002	Result 40.000
Date Collected 8/13/2002 9/16/2002	Result 40.000 35.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 40.000 35.000 35.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 40.000 35.000 35.000 35.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 40.000 35.000 35.000 35.000 35.000

Statistics on Background Data

X= 35.313 S= 1.250 CV= 0.035 K factor** = 2.523 TL= 38.466

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result $>$ TL?
MW370	7.490	Downgradien	nt NO
MW373	20.000	Downgradien	nt NO
MW385	20.000	Sidegradient	NO
MW388	20.000	Downgradien	nt NO
MW392	18.300	Downgradien	nt NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Chloride LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

MW395
Result
62.200
64.700
62.200
63.500
64.100
64.000
63.200
60.600
MW397
Result
38.900
39.800
39.300
40.500
42.100
42.000
40.800

Statistics on Background Data

X= 51.844 S= 11.652 CV= 0.225 K factor** = 2.523 TL= 81.242

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result $>$ TL?
MW370	42.600	Downgradier	nt NO
MW373	44.000	Downgradier	nt NO
MW385	30.900	Sidegradient	NO
MW388	31.500	Downgradier	nt NO
MW392	47.000	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis **LRGA** Cobalt **UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data		Transformed Background Data from Upgradient Well	
umber:	MW395	X= 0.007		Well Number:	MW395
Collected	Result	S= 0.011		Date Collected	LN(Result
3/2002	0.025	CV= 1.515 K factor** = 2.523		8/13/2002	-3.689
5/2002	0.025	TL = 0.034		9/16/2002	-3.689
16/2002	0.001	<u> </u>	ļ	10/16/2002	-6.908
3/2003	0.001	Because CV greater tha	*	1/13/2003	-6.516
0/2003	0.002	logarithm of backgroun were calculated.	d and test well results	4/10/2003	-6.496
6/2003	0.001	were calculated.	1	7/16/2003	-6.908
14/2003	0.001	Statistics on		10/14/2003	-6.908
3/2004	0.001	Transformed		1/13/2004	-6.908
Number:	MW397	Background Data	Data	Well Number:	MW397
Collected	Result	X= -6.053		Date Collected	LN(Resul
13/2002	0.025	S= 1.416		8/13/2002	-3.689
16/2002	0.025	CV = -0.234		9/16/2002	-3.689
/17/2002	0.001	K factor** = 2.523		10/17/2002	-6.908
3/2003	0.001	TL = -2.480		1/13/2003	-6.908
3/2003	0.001	1L2.400]	4/8/2003	-6.908
6/2003	0.001			7/16/2003	-6.908
/14/2003	0.001			10/14/2003	-6.908
3/2004	0.001			1/13/2004	-6.908

Second Quarter	2014 Da	ata Collected ir	ı
April 2014			

Well No.	Result	Gradient	Result > TL
MW370	0.000	Downgradier	nt N/A
MW373	0.000	Downgradier	nt N/A
MW385	0.000	Sidegradient	N/A
MW388	0.000	Downgradier	nt N/A
MW392	0.000	Downgradier	nt N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result $>$ TL?
MW370	-7.621	NO
MW373	-8.948	NO
MW385	-8.948	NO
MW388	-9.115	NO
MW392	-7.752	NO

Conclusion of Statistical Analysis on Transformed Data

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-82

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis LRGA Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	405.000
9/16/2002	401.000
10/16/2002	392.000
1/13/2003	404.000
4/10/2003	488.000
7/16/2003	450.000
10/14/2003	410.000
1/13/2004	413.000
Well Number:	MW397
Date Collected	Result
8/13/2002	322.000
9/16/2002	315.000
10/17/2002	317.000
1/13/2003	320.000
1/13/2003	320.000
4/8/2003	390.000

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data

X= 377.875 S= 52.101 CV= 0.138 K factor** = 2.523 TL= 509.326

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

354.000

331.000

334.000

Well No.	Result	Gradient	Result $> TL$?	•
MW370	432.00	Downgradien	t NO	
MW373	914.00	Downgradien	t YES	
MW385	409.00	Sidegradient	NO	
MW388	458.00	Downgradien	t NO	
MW392	389.00	Downgradien	t NO	

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Copper UNITS: LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	0.050
9/16/2002	0.050
10/16/2002	0.028
1/13/2003	0.020
4/10/2003	0.020
7/16/2003	0.020
10/14/2003	0.020
1/13/2004	0.020
Well Number:	MW397
Date Collected	Result
Date Collected 8/13/2002	Result 0.050
8/13/2002	0.050
8/13/2002 9/16/2002	0.050 0.050
8/13/2002 9/16/2002 10/17/2002	0.050 0.050 0.020
8/13/2002 9/16/2002 10/17/2002 1/13/2003	0.050 0.050 0.020 0.020
8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	0.050 0.050 0.020 0.020 0.020

Statistics on Background Data

X= 0.028 S= 0.013 CV= 0.474 K factor** = 2.523

TL = 0.061

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result $>$ TL?
MW370	0.001	Downgradien	nt NO
MW373	0.001	Downgradien	nt NO
MW385	0.001	Sidegradient	NO
MW388	0.001	Downgradien	nt NO
MW392	0.000	Downgradien	nt NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Dissolved Oxygen LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	7.290
9/30/2002	4.030
10/16/2002	3.850
1/13/2003	2.360
4/10/2003	1.140
7/16/2003	1.760
10/14/2003	4.050
1/12/2004	1.000
1/13/2004	4.260
Well Number:	4.260 MW397
-,,	
Well Number:	MW397
Well Number: Date Collected	MW397 Result
Well Number: Date Collected 8/13/2002	MW397 Result 11.560
Well Number: Date Collected 8/13/2002 9/16/2002	MW397 Result 11.560 5.860
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002	MW397 Result 11.560 5.860 5.940
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	MW397 Result 11.560 5.860 5.940 4.660
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	MW397 Result 11.560 5.860 5.940 4.660 3.770

Statistics on Background Data

X= 4.678 S= 2.431 CV= 0.520 K factor** = 2.523 TL= 10.812

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW370	4.150	Downgradie	nt NO
MW373	3.010	Downgradie	nt NO
MW385	3.390	Sidegradient	NO
MW388	4.140	Downgradie	nt NO
MW392	2.970	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Dissolved Solids LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	249.000
9/16/2002	272.000
10/16/2002	255.000
1/13/2003	211.000
4/10/2003	289.000
7/16/2003	236.000
10/14/2003	224.000
1/13/2004	235.000
Well Number:	MW397
Date Collected	Result
8/13/2002	187.000
9/16/2002	197.000
10/17/2002	183.000
1/13/2003	182.000
4/8/2003	217.000

10/14/2003

1/13/2004

Statistics on Background Data

X= 219.250 S= 34.107 CV= 0.156 K factor** = 2.523 TL= 305.301

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

198.000

177.000

Well No.	Result	Gradient 1	Result $>$ TL?
MW370	223.00	Downgradien	t NO
MW373	573.00	Downgradien	t YES
MW385	194.00	Sidegradient	NO
MW388	247.00	Downgradien	t NO
MW392	211.00	Downgradien	t NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis LRGA Iron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

ata from ells	Statistics on Background Data			Background gradient Wells
MW395	X=0.400		Well Number:	MW395
Result 0.294 0.200 0.000 1.330 1.310 0.200 0.100	logarithm of backgroun were calculated. Statistics on		Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003	LN(Result) -1.224 -1.609 -8.517 0.285 0.270 -1.609 -2.303 -2.303
MW397	Background Data		Well Number:	-2.303 MW397
Result 1.580 0.232 0.000 0.453 0.200 0.200 0.100	X= -2.197 S= 2.634 CV= -1.199 K factor** = 2.523 TL= 4.449		Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003	LN(Result) 0.457 -1.461 -8.517 -0.792 -1.609 -1.609 -2.303 -2.303
	Result 0.294 0.200 0.000 1.330 1.310 0.200 0.100 0.100 MW397 Result 1.580 0.232 0.000 0.453 0.200 0.200	Name	MW395	MW395

Second Quarter	2014 Data	Collected in
April 2014		

Well No.	Result	Gradient	Result > TL?
MW370	0.163	Downgradie	nt N/A
MW373	0.116	Downgradie	nt N/A
MW385	0.055	Sidegradient	N/A
MW388	0.065	Downgradie	nt N/A
MW392	0.412	Downgradie	nt N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result > TL?
MW370	-1.814	NO
MW373	-2.154	NO
MW385	-2.906	NO
MW388	-2.732	NO
MW392	-0.887	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

D-87

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Magnesium UNITS: LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	12.500
9/16/2002	13.000
10/16/2002	0.013
1/13/2003	11.200
4/10/2003	17.500
7/16/2003	12.900
10/14/2003	13.400
1/13/2004	12.400
Well Number:	MW397
Date Collected	Result
8/13/2002	7.830
9/16/2002	7.640
10/17/2002	0.007
1/13/2003	6.690
4/8/2003	7.280
7/16/2003	7.820
7/10/2003	7.820

Statistics on Background Data

X= 9.102 S= 4.685 CV= 0.515 K factor** = 2.523 TL= 20.922

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

7.510

Well No. Result Gradient	Result $>$ TL?
MW370 11.800 Downgrad	ient NO
MW373 27.000 Downgrad	ient YES
MW385 9.530 Sidegradie	ent NO
MW388 12.700 Downgrad	ient NO
MW392 10.200 Downgrad	ient NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW373

1/13/2004

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Manganese UNITS: LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W			Statistics on Background Data		Transformed Background Data from Upgradient Wells		
Well Number:	MW395		X= 0.131		Well Number:	MW395	
Date Collected	Result		S= 0.195 CV= 1.487		Date Collected	LN(Result)	
8/13/2002	0.361		Cv= 1.467 K factor** = 2.523		8/13/2002	-1.019	
9/16/2002	0.028		TL = 0.624		9/16/2002	-3.576	
10/16/2002	0.026				10/16/2002	-3.650	
1/13/2003	0.071		Because CV greater tha		1/13/2003	-2.641	
4/10/2003	0.629		ogarithm of backgroun were calculated.	d and test wen results	4/10/2003	-0.464	
7/16/2003	0.297	·		1	7/16/2003	-1.214	
10/14/2003	0.020		Statistics on		10/14/2003	-3.922	
1/13/2004	0.013		Transformed		1/13/2004	-4.374	
Well Number:	MW397		Background Data		Well Number:	MW397	
Date Collected	Result		X= -3.104		Date Collected	LN(Result)	
8/13/2002	0.466		S= 1.529		8/13/2002	-0.764	
9/16/2002	0.077		CV = -0.493		9/16/2002	-2.564	
10/17/2002	0.028		K factor** = 2.523		10/17/2002	-3.576	
1/13/2003	0.016		TL=0.755		1/13/2003	-4.110	
4/8/2003	0.041		111- 0.733		4/8/2003	-3.202	
7/16/2003	0.017				7/16/2003	-4.092	
10/14/2003	0.006				10/14/2003	-5.194	
1/13/2004	0.005				1/13/2004	-5.298	

Second Quarter 201	4 Data Collected in
April 2014	

Well No.	Result	Gradient	Result > TL
MW370	0.006	Downgradier	nt N/A
MW373	0.003	Downgradier	nt N/A
MW385	0.005	Sidegradient	N/A
MW388	0.005	Downgradier	nt N/A
MW392	0.136	Downgradier	nt N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result $>$ TL?
MW370	-5.155	NO
MW373	-5.748	NO
MW385	-5.298	NO
MW388	-5.298	NO
MW392	-1.995	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

D-89

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

ckground D gradient W		Statistics on Background Data		Transformed Background Data from Upgradient Well		
ell Number:	MW395	X= 0.007		Well Number:	MW395	
ate Collected	Result	S= 0.011		Date Collected	LN(Result)	
8/13/2002	0.025	CV= 1.451 K factor** = 2.523		8/13/2002	-3.689	
9/16/2002	0.025	TL = 0.034		9/16/2002	-3.689	
10/16/2002	0.001			10/16/2002	-6.908	
1/13/2003	0.006	Because CV greater tha	,	1/13/2003	-5.101	
4/10/2003	0.001	logarithm of backgroun were calculated.	a and test well results	4/10/2003	-6.908	
7/16/2003	0.001	were carearated.	Ī	7/16/2003	-6.908	
10/14/2003	0.001	Statistics on		10/14/2003	-6.908	
1/13/2004	0.001	Transformed		1/13/2004	-6.908	
ell Number:	MW397	Background Data		Well Number:	MW397	
ate Collected	Result	X = -5.990		Date Collected	LN(Result)	
8/13/2002	0.025	S= 1.443		8/13/2002	-3.689	
9/16/2002	0.025	CV = -0.241		9/16/2002	-3.689	
10/17/2002	0.001	K factor** = 2.523		10/17/2002	-6.908	
1/13/2003	0.001	TL= -2.349		1/13/2003	-6.908	
4/8/2003	0.001	112,57/		4/8/2003	-6.908	
7/16/2003	0.001			7/16/2003	-6.908	
10/14/2003	0.001			10/14/2003	-6.908	
1/13/2004	0.001			1/13/2004	-6.908	

Second Quarter 201	4 Data Collected in
April 2014	

Well No.	Result	Gradient	Result > TL
MW370	0.000	Downgradier	nt N/A
MW373	0.001	Downgradier	nt N/A
MW385	0.001	Sidegradient	N/A
MW388	0.001	Downgradier	nt N/A
MW392	0.000	Downgradier	nt N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number LN(Result) Result >	12.
MW370 -8.623 NO)
MW373 -7.601 NO)
MW385 -7.601 NO)
MW388 -7.601 NO)
MW392 -7.621 NO)

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

D-90

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis **LRGA Nickel UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

ckground D gradient W		Statistics on Background Data		Transformed Data from Up	
ell Number:	MW395	X= 0.018		Well Number:	MW395
ate Collected	Result	S= 0.020 CV= 1.089		Date Collected	LN(Result)
8/13/2002	0.050	K factor** = 2.523		8/13/2002	-2.996
9/16/2002	0.050	TL= 0.068		9/16/2002	-2.996
10/16/2002	0.007			10/16/2002	-4.959
1/13/2003	0.029	Because CV greater tha	,	1/13/2003	-3.540
4/10/2003	0.009	logarithm of backgroun were calculated.	d and test well results	4/10/2003	-4.699
7/16/2003	0.006	were calculated.	Ī	7/16/2003	-5.072
10/14/2003	0.005	Statistics on		10/14/2003	-5.298
1/13/2004	0.005	Transformed		1/13/2004	-5.298
Vell Number:	MW397	Background Data		Well Number:	MW397
ate Collected	Result	X= -4.540		Date Collected	LN(Result)
8/13/2002	0.050	S= 1.020		8/13/2002	-2.996
9/16/2002	0.050	CV = -0.225		9/16/2002	-2.996
10/17/2002	0.005	K factor** = 2.523		10/17/2002	-5.298
1/13/2003	0.005	TL= -1.965		1/13/2003	-5.294
4/8/2003	0.005	11,1.705		4/8/2003	-5.298
7/16/2003	0.005			7/16/2003	-5.298
10/14/2003	0.005			10/14/2003	-5.298
1/13/2004	0.005			1/13/2004	-5.298

Second Quarter	2014	Data	Collected in
April 2014			

Well No.	Result	Gradient	Result > TL?
MW370	0.002	Downgradier	nt N/A
MW373	0.001	Downgradier	nt N/A
MW385	0.002	Sidegradient	N/A
MW388	0.001	Downgradier	nt N/A
MW392	0.002	Downgradier	nt N/A

Transformed Second Quarter 2014 Data Collected in April 2014

Well Number	LN(Result)	Result > TL?
MW370	-6.365	NO
MW373	-6.768	NO
MW385	-6.377	NO
MW388	-6.578	NO
MW392	-6.450	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-91

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	80.000
9/16/2002	145.000
10/16/2002	125.000
1/13/2003	85.000
4/10/2003	159.000
7/16/2003	98.000
10/14/2003	138.000
1/13/2004	233.000
Well Number:	MW397
Well Number: Date Collected	MW397 Result
Date Collected	Result
Date Collected 8/13/2002	Result 115.000
Date Collected 8/13/2002 9/30/2002	Result 115.000 140.000
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115.000 140.000 185.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115.000 140.000 185.000 230.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115.000 140.000 185.000 230.000 155.000

Statistics on Background Data

X= 157.250 S= 52.376 CV= 0.333 K factor** = 2.523 TL= 289.395

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient Resu	It > TL?
MW370	535.00	Downgradient	YES
MW373	398.00	Downgradient	YES
MW385	363.00	Sidegradient	YES
MW388	556.00	Downgradient	YES
MW392	384.00	Downgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW370

MW373

MW385

MW388

MW392

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis LRGA pH UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from
Background Data from Upgradient Wells

10	
Well Number:	MW395
Date Collected	Result
8/13/2002	5.800
9/16/2002	6.000
10/16/2002	5.470
1/13/2003	6.000
4/10/2003	6.180
7/16/2003	6.000
10/14/2003	6.310
1/13/2004	6.240
Well Number:	MW397
Well Number: Date Collected	MW397 Result
Date Collected	Result
Date Collected 8/13/2002	Result 5.840
Date Collected 8/13/2002 9/30/2002	Result 5.840 6.000
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5.840 6.000 5.750
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5.840 6.000 5.750 6.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5.840 6.000 5.750 6.000 6.300
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5.840 6.000 5.750 6.000 6.300 6.200

Background Data
X= 6.048
S = 0.248
CV = 0.041
K factor** = 2.904

TL= 6.767 LL= 5.329

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient Res	sult >TL?	Result <ll?< th=""></ll?<>
MW370	6.080	Downgradient	NO	NO
MW373	6.080	Downgradient	NO	NO
MW385	6.120	Sidegradient	NO	NO
MW388	6.090	Downgradient	NO	NO
MW392	6.280	Downgradient	NO	NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Potassium UNITS: LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395	
Date Collected	Result	
8/13/2002	2.000	
9/16/2002	2.000	
10/16/2002	0.001	
1/13/2003	1.510	
4/10/2003	1.670	
7/16/2003	1.730	
10/14/2003	1.700	
1/13/2004	1.580	
1/13/2004	1.560	
Well Number:	MW397	
-,,, -		
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	
Well Number: Date Collected 8/13/2002	MW397 Result 2.030	
Well Number: Date Collected 8/13/2002 9/16/2002	MW397 Result 2.030 2.000	
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002	MW397 Result 2.030 2.000 0.001	
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	MW397 Result 2.030 2.000 0.001 1.690	
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	MW397 Result 2.030 2.000 0.001 1.690 1.730	

Statistics on Background Data

X= 1.590 S= 0.642 CV= 0.404 K factor** = 2.523 TL= 3.208

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result $>$ TL?
MW370	2.380	Downgradier	nt NO
MW373	2.690	Downgradier	nt NO
MW385	1.440	Sidegradient	NO
MW388	1.900	Downgradier	nt NO
MW392	1.940	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis LRGA Sodium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	27.000
9/16/2002	27.200
10/16/2002	0.025
1/13/2003	22.600
4/10/2003	53.900
7/16/2003	30.000
10/14/2003	29.100
1/13/2004	26.400
Well Number:	MW397
Date Collected	Result
8/13/2002	35.200
9/16/2002	34.300
10/17/2002	0.034
1/13/2003	31.300
4/8/2003	46.100
7/16/2003	38.400
10/14/2003	37.100
1/13/2004	34.300

Statistics on Background Data

X= 29.560 S= 13.894 CV= 0.470 K factor** = 2.523 TL= 64.616

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient F	Result > TL?
MW370	39.600	Downgradient	NO
MW373	68.000	Downgradient	YES
MW385	44.200	Sidegradient	NO
MW388	46.100	Downgradient	NO
MW392	36.800	Downgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW373

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis LRGA Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	10.300
9/16/2002	9.100
10/16/2002	8.800
1/13/2003	9.000
4/10/2003	8.300
7/16/2003	8.200
10/14/2003	8.300
1/13/2004	8.200
1/13/2004 Well Number:	8.200 MW397
-,,	MW397
Well Number:	MW397
Well Number: Date Collected	MW397 Result
Well Number: Date Collected 8/13/2002	MW397 Result 14.000
Well Number: Date Collected 8/13/2002 9/16/2002	MW397 Result 14.000 12.800
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002	MW397 Result 14.000 12.800 12.300
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	MW397 Result 14.000 12.800 12.300 12.700
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	MW397 Result 14.000 12.800 12.300 12.700 12.800

Statistics on Background Data

X= 10.756 S= 2.147 CV= 0.200 K factor** = 2.523 TL= 16.173

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

12.100

Well No.	Result	Gradient Resu	It > TL?
MW370	18.900	Downgradient	YES
MW373	209.00	Downgradient	YES
MW385	20.500	Sidegradient	YES
MW388	22.600	Downgradient	YES
MW392	6.790	Downgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW370

1/13/2004

MW373

MW385

MW388

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Technetium-99 UNITS: LRGA pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

MW395	
Result	
20.800	
16.200	
8.280	
13.000	
-9.370	
0.826	
14.100	
0.000	
MW397	
Result	
Result 6.060	
6.060	
6.060 17.300	
6.060 17.300 25.700	
6.060 17.300 25.700 20.900	
	Result 20.800 16.200 8.280 13.000 -9.370 0.826 14.100 0.000

Statistics on Background Data

X= 11.359 S= 9.138 CV= 0.805 K factor** = 2.523 TL= 34.414

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

8.540

Well No.	Result	Gradient Resi	ult > TL?
MW370	27.900	Downgradient	NO
MW373	43.600	Downgradient	YES
MW385	156.00	Sidegradient	YES
MW388	116.00	Downgradient	YES
MW392	11.500	Downgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW373

1/13/2004

MW385

MW388

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Total Organic Carbon (TOC) LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	1.600
9/16/2002	1.100
10/16/2002	1.000
1/13/2003	2.000
4/10/2003	3.400
7/16/2003	2.000
10/14/2003	1.000
1/13/2004	1.000
Well Number:	MW397
Well Number: Date Collected	
Date Collected	Result
Date Collected 8/13/2002	Result 1.000
Date Collected 8/13/2002 9/16/2002	Result 1.000 1.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1.000 1.000 1.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1.000 1.000 1.000 3.600
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1.000 1.000 1.000 3.600 1.900
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 1.000 1.000 1.000 3.600 1.900 1.100

Statistics on Background Data

X= 1.544 S= 0.856 CV= 0.554 K factor** = 2.523 TL= 3.702

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result $>$ TL?
MW370	0.993	Downgradien	t NO
MW373	1.290	Downgradien	t NO
MW385	1.190	Sidegradient	NO
MW388	1.210	Downgradien	t NO
MW392	1.070	Downgradien	t NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Total Organic Halides (TOX) LRGA ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	50.000
9/16/2002	50.000
10/16/2002	50.000
1/13/2003	18.300
4/10/2003	51.200
7/16/2003	42.600
10/14/2003	12.300
1/13/2004	10.000
Well Number:	MW397
Date Collected	Result
8/13/2002	50.000
9/16/2002	50.000
10/17/2002	50.000
1/13/2003	12.000
4/8/2003	19.900
7/16/2003	17.900
10/14/2003	10.000
1/13/2004	10.000

Statistics on Background Data

X= 31.513 S= 18.609 CV= 0.591 K factor** = 2.523 TL= 78.462

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result $>$ TL?
MW370	6.120	Downgradier	nt NO
MW373	9.040	Downgradier	nt NO
MW385	10.600	Sidegradient	NO
MW388	9.860	Downgradier	nt NO
MW392	28.200	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

D-99

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2014 Statistical Analysis Zinc UNITS: LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	0.100
9/16/2002	0.100
10/16/2002	0.025
1/13/2003	0.035
4/10/2003	0.035
7/16/2003	0.020
10/14/2003	0.020
1/13/2004	0.020
Well Number:	MW397
Date Collected	Result
Date Collected 8/13/2002	Result 0.100
8/13/2002	0.100
8/13/2002 9/16/2002	0.100 0.100
8/13/2002 9/16/2002 10/17/2002	0.100 0.100 0.025
8/13/2002 9/16/2002 10/17/2002 1/13/2003	0.100 0.100 0.025 0.035
8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	0.100 0.100 0.025 0.035 0.035
8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	0.100 0.100 0.025 0.035 0.035 0.020

Statistics on Background Data

X= 0.044 S= 0.034 CV= 0.760 K factor** = 2.523 TL= 0.129

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Second Quarter 2014 Data Collected in April 2014

Well No.	Result	Gradient	Result > TL?
MW370	0.010	Downgradie	nt NO
MW373	0.010	Downgradier	nt NO
MW385	0.010	Sidegradient	NO
MW388	0.004	Downgradier	nt NO
MW392	0.010	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

August 18th, 2014

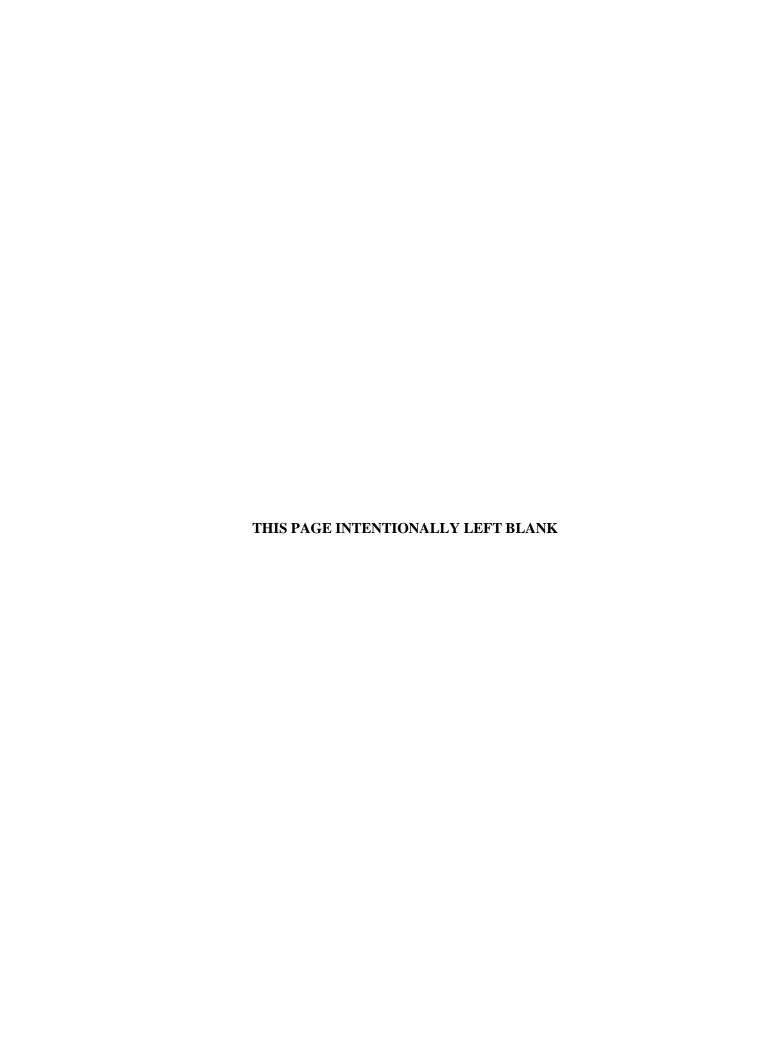
Mr. Craig Jones LATA Environmental Services of Kentucky, LLC 761 Veterans Avenue Kevil, Kentucky 42053

Dear Mr. Jones:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in mathematics, I have over two years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with LATA.

For this project, the statistical analyses conducted on the second quarter 2014 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). For pH, an additional lower tolerance interval was established. For pH only, the test well data was compared to both the upper and lower tolerance intervals to determine if statistically significant deviations in concentration with respect to upgradient well exist.


Sincerely,

Cory Tackett

LATA Project Chemist

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

Facility: U.S. DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

GROUNDWATER FLOW RATE AND DIRECTION

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the second quarter 2014 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on April 29, 2014. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for both measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill is 4.71×10^{-4} ft/ft. Additional water level measurements in April (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 2.86×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. During April 2014, groundwater flow in the vicinity of the landfills was directed eastward, in response to changes in the Ohio River stage. As demonstrated on the potentiometric map for April 2014, the groundwater flow direction in the immediate area of the landfill commonly varies slightly from regional trends; however, as groundwater flows away from the landfill, it eventually conforms to the regional flow direction.

-

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

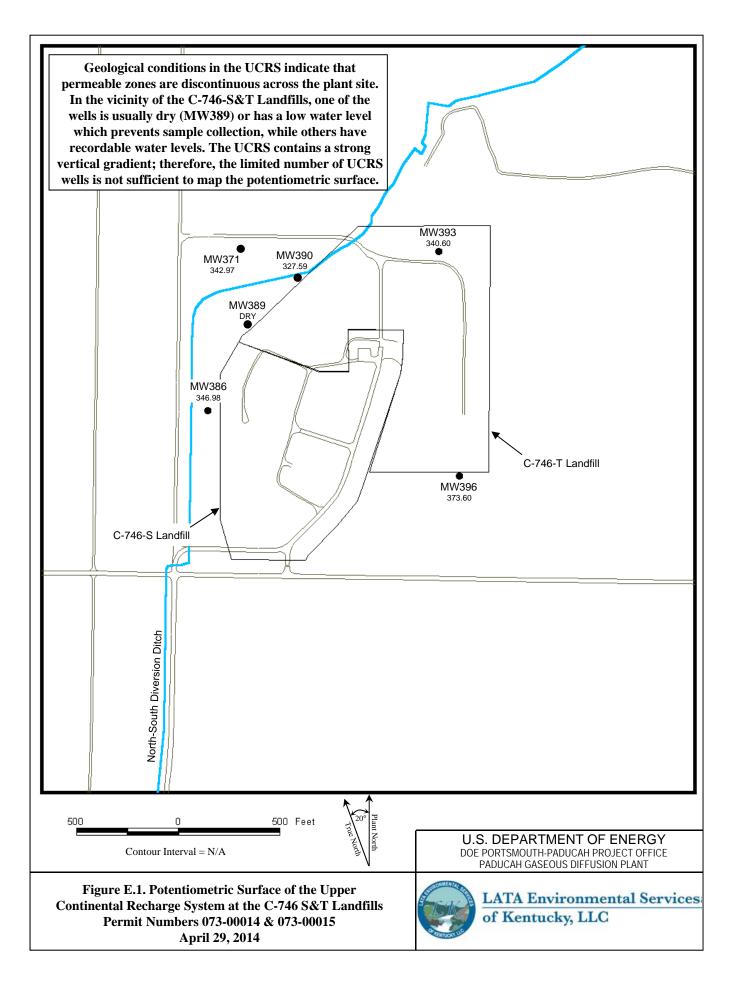


Table E.1. C-746-S&T Landfills Second Quarter 2014 (April) Water Levels

			C-7	46-S&T Landfi	lls (April 2	014) Water L	evels			
							Rav	v Data	*Correc	ted Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
4/29/2014	8:30	MW220	URGA	381.44	29.63	0.00	53.92	327.52	53.92	327.52
4/29/2014	8:42	MW221	URGA	390.83	29.63	0.00	63.27	327.56	63.27	327.56
4/29/2014	8:38	MW222	URGA	394.87	29.63	0.00	67.39	327.48	67.39	327.48
4/29/2014	8:40	MW223	URGA	394.03	29.63	0.00	66.49	327.54	66.49	327.54
4/29/2014	8:36	MW224	URGA	395.41	29.63	0.00	67.91	327.5	67.91	327.50
4/29/2014	8:33	MW225	URGA	385.55	29.63	0.00	58.12	327.43	58.12	327.43
4/29/2014	7:18	MW353	LRGA	374.86	29.61	0.02	47.71	327.15	47.73	327.13
4/29/2014	7:57	MW369	URGA	364.48	29.63	0.00	36.81	327.67	36.81	327.67
4/29/2014	8:00	MW370	LRGA	365.35	29.63	0.00	37.70	327.65	37.70	327.65
4/29/2014	7:58	MW371	UCRS	364.88	29.63	0.00	21.91	342.97	21.91	342.97
4/29/2014	7:52	MW372	URGA	359.66	29.61	0.02	32.05	327.61	32.07	327.59
4/29/2014	7:56	MW373	LRGA	359.95	29.63	0.00	32.38	327.57	32.38	327.57
4/29/2014	8:19	MW384	URGA	365.06	29.63	0.00	37.46	327.6	37.46	327.60
4/29/2014	8:21	MW385	LRGA	365.54	29.63	0.00	37.95	327.59	37.95	327.59
4/29/2014	8:20	MW386	UCRS	365.21	29.63	0.00	18.23	346.98	18.23	346.98
4/29/2014	8:23	MW387	URGA	363.27	29.63	0.00	35.62	327.65	35.62	327.65
4/29/2014	8:24	MW388	LRGA	363.25	29.63	0.00	35.62	327.63	35.62	327.63
4/29/2014	8:28	MW389	UCRS	363.82	29.63	0.00	DRY	NA	DRY	NA
4/29/2014	8:26	MW390	UCRS	360.36	29.63	0.00	32.77	327.59	32.77	327.59
4/29/2014	8:05	MW391	URGA	366.54	29.63	0.00	39.03	327.51	39.03	327.51
4/29/2014	8:03	MW392	LRGA	365.67	29.63	0.00	38.18	327.49	38.18	327.49
4/29/2014	8:04	MW393	UCRS	366.59	29.63	0.00	25.99	340.6	25.99	340.60
4/29/2014	8:11	MW394	URGA	378.32	29.63	0.00	50.91	327.41	50.91	327.41
4/29/2014	8:13	MW395	LRGA	379.01	29.63	0.00	51.55	327.46	51.55	327.46
4/29/2014	8:12	MW396	UCRS	378.64	29.63	0.00	5.04	373.6	5.04	373.60
4/29/2014	8:14	MW397	LRGA	386.90	29.63	0.00	59.58	327.32	59.58	327.32
4/29/2014	8:06	MW418	URGA	366.78	29.63	0.00	39.26	327.52	39.26	327.52
4/29/2014	8:07	MW419	LRGA	366.68	29.63	0.00	39.20	327.48	39.20	327.48

Initial Barometric Pressure

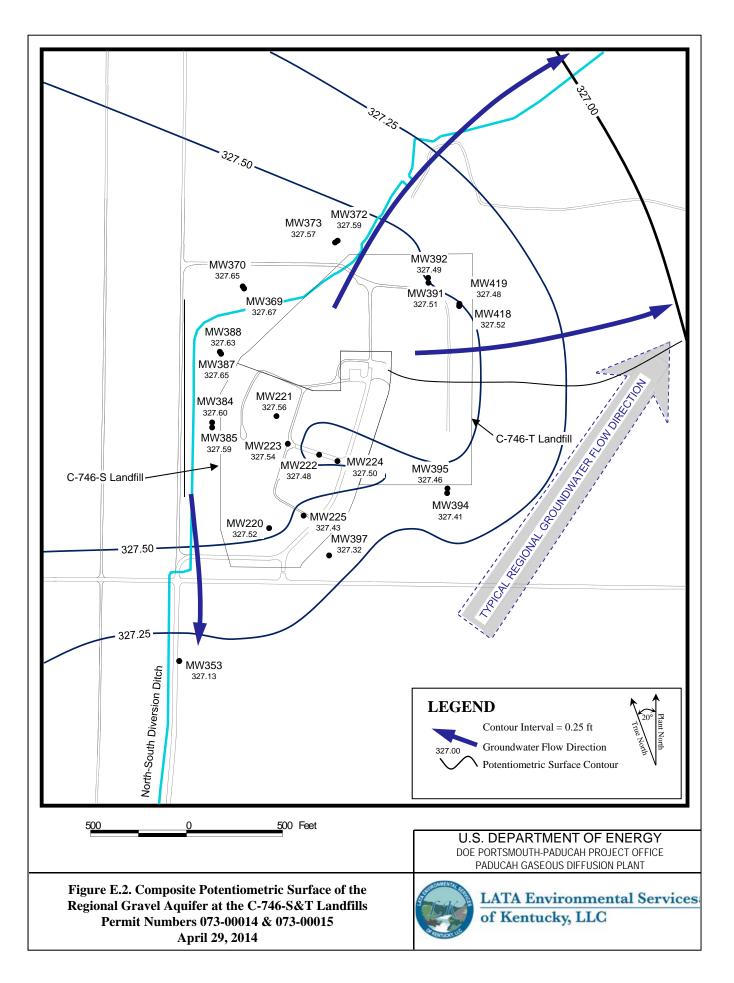
29.63

Elev = elevation

amsl = above mean sea level

BP = barometric

pressure


DTW = depth to water in feet below datum

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

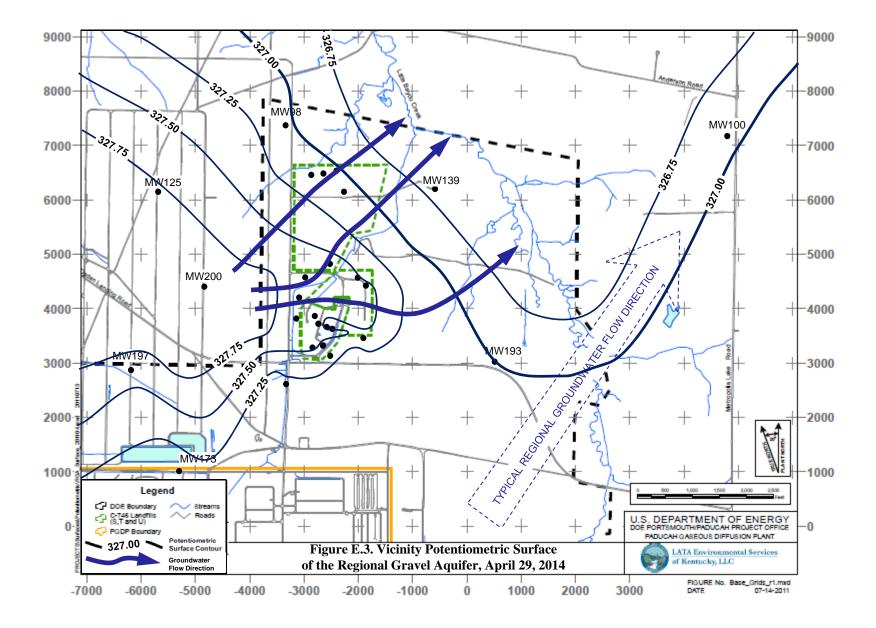


Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	4.71×10^{-4}
Vicinity	2.86×10^{-4}

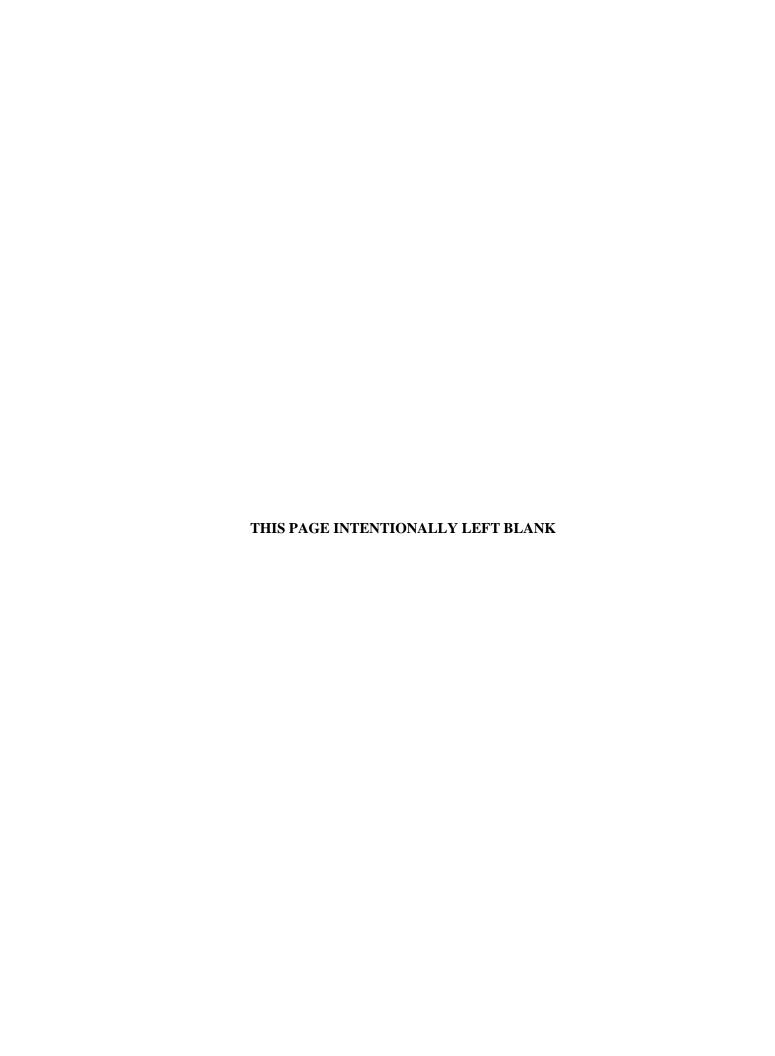
Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific 1	Discharge (q)	Average	e Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Beneath Landfill	Mound				
725	0.256	0.34	1.21×10^{-4}	1.37	4.82×10^{-4}
425	0.150	0.21	7.06×10^{-5}	0.80	2.83×10^{-4}
Vicinity					
725	0.256	0.21	7.32 x 10 ⁻⁵	0.83	2.93×10^{-4}
425	0.150	0.12	4.29×10^{-5}	0.49	1.72×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that had statistically significant increased concentrations relative to background concentrations is provided below.


STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the second quarter 2014 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit Condition, GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the statistician.

The following are the parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to background concentrations.

<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	
Technetium-99	MW390
Upper Regional Gravel Aquifer	
Sodium	MW224, MW369, MW372
Technetium-99	MW369, MW372, MW384, MW387
Toluene	MW369, MW384, MW387
Lower Regional Gravel Aquifer	
Sodium	MW373
Technetium-99	MW373, MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, these radionuclides are being reported along with the parameters of this regulation.

APPENDIX G

CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		Ţ	JCR	.S						U	RG	A							I	RG	۸		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
1,2,3-TRICHLOROPROPANE	E																						
Quarter 2, 2009			*																				
ACETONE																							
Quarter 3, 2003							*					*											
Quarter 4, 2003											*								*				
Quarter 1, 2005									*														
ALPHA ACTIVITY																							
Quarter 4, 2002																							
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM	•									u u											u u		
Quarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003			*				*						*	*									
Quarter 3, 2003			*				*	*					*	*									
Quarter 4, 2003	Ī						*	*			*			*									
Quarter 1, 2004			*				*	*			*												
Quarter 2, 2004							*							*									
Quarter 3, 2004							*							*									
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*				*																
Quarter 3, 2005			*				*			*											*		
Quarter 4, 2005			*				*				*												
Quarter 1, 2006							*						*										
Quarter 2, 2006			*				*																
Quarter 3, 2006							*																
Quarter 4, 2006			*				*																
Quarter 1, 2007							*										*						
Quarter 2, 2007							*										*						
Quarter 3, 2007							*																
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008							*																
Quarter 1, 2009			*				*				*												
Quarter 1, 2010			*				*				*												
Quarter 2, 2010			*								*												
Quarter 3, 2010			*								*			*			*			*			
Quarter 1, 2011							*				*												
Quarter 2, 2011			*								*												
Quarter 2, 2012			*																				

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		Į	JCR	S						U	RGA	4							L	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2012							*																
Quarter 1, 2013							*				*												
Quarter 3, 2013			*																				
Quarter 1, 2014							*																
Quarter 2, 2014											*												
BARIUM				ı														ı					
Quarter 3, 2003																							
Quarter 4, 2003																							
BETA ACTIVITY										u u	u u				<u> </u>								
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 3, 2006																							
Quarter 4, 2006																							
Quarter 1, 2007																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009						_																	
Quarter 2, 2009																							
Quarter 3, 2009						_																	
Quarter 4, 2009						_																	
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		J	JCR	S						U	RGA	A							L	RG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013																							
Quarter 1, 2014																							
Quarter 2, 2014																							
BROMIDE																							
Quarter 1, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 3, 2006			*																				
CALCIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											
Quarter 3, 2003			*																				
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Groundwater Flow System		J	JCR	S				l		U	RGA	A		l	l	ı			I	.RG	A	I	<u> </u>
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				<u> </u>
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				
Quarter 2, 2014												*						1	*				
CARBON DISULFIDE		<u> </u>	l]			l]		<u> </u>	'''		l	l]]	<u> </u>	<u> </u>	<u> </u>
Quarter 4, 2010											*												
Quarter 1, 2011												*									*		
CHEMICAL OXYGEN DEMA	ND	<u> </u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>		<u> </u>	<u>.</u>
Quarter 1, 2003	111			*																			
Quarter 2, 2003				*																			
Quarter 3, 2003	╂			*			*			*													<u> </u>
Quarter 4, 2003				*			ጥ			ጥ													-
	*			*																			
Quarter 1, 2004	不			不																			<u> </u>

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		Ţ	JCR	S						U	RGA	4							Ι	RG.	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*									*		*									*		
Quarter 4, 2005	*									*													
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																						
Quarter 1, 2008	*																						
Quarter 2, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																			*			
Quarter 3, 2009	*																						
Quarter 4, 2009	*																						ſ
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						ſ
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 3, 2011	*																						
Quarter 4, 2011	*																						ſ
Quarter 1, 2012	*																						
Quarter 1, 2013	*																						
Quarter 3, 2013	*																						
CHLORIDE																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*																				
Quarter 3, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		Ţ	JCR	S						U	RGA	4							L	RGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*																				
Quarter 3, 2005			*																				
Quarter 4, 2005			*																				
Quarter 1, 2006																		*					
Quarter 2, 2006			*																				
Quarter 3, 2006			*																				
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*																				
Quarter 3, 2007			*																				
Quarter 4, 2007			*																				
Quarter 1, 2008			*																				
Quarter 2, 2008			*																				
Quarter 3, 2008			*																				
Quarter 4, 2008			*																				
Quarter 1, 2009			*																				
Quarter 2, 2009			*																				
Quarter 3, 2009			*																				
Quarter 4, 2009			*																				
Quarter 1, 2010			*																				
Quarter 2, 2010			*																				
Quarter 3, 2010			*																				
Quarter 4, 2010			*																				
Quarter 2, 2011			*																				
Quarter 3, 2011			*																				
Quarter 4, 2011			*																				
Quarter 3, 2012			*																				
Quarter 3, 2013			*																				
Quarter 4, 2013			*																				
CHROMIUM		l					1	_	1														
Quarter 4, 2002	<u> </u>																					_	
Quarter 1, 2003							<u> </u>																
Quarter 2, 2003	_					<u> </u>																	
Quarter 3, 2009																							
COBALT							<u>.</u>																
Quarter 3, 2003 CONDUCTIVITY	<u> </u>						*																<u> </u>
COMPOCITALL																							

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		J	JCR	S						U	RGA	A							Ι	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*					*		*									*				
Quarter 4, 2003			*							*									*				
Quarter 1, 2004																			*				
Quarter 2, 2004										*									*				
Quarter 3, 2004										*									*				
Quarter 4, 2004			*							*									*				
Quarter 1, 2005										*		*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005																			*				
Quarter 4, 2005										*		*							*				
Quarter 1, 2006										•		*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006																	*		*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												_					*		*				
Quarter 3, 2007																	*		*				
Quarter 4, 2007												*					*		*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*					*		*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011	ĺ											*							*				
Quarter 3, 2011	Ī											*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012	Ĭ										*	*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				

Groundwater Flow System		J	JCR	S						U	RG/	Α							I	RG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2014												*							*				
Quarter 2, 2014												*							*				
DISSOLVED OXYGEN	•						1						ı					ı	ı	1			1
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS	I		1							u			1					1	4				
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				
Quarter 1, 2004			*									*							*				
Quarter 2, 2004										*		*							*				
Quarter 3, 2004										*		*							*				
Quarter 4, 2004										*		*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006																	*	*	*	*	*		
Quarter 4, 2006										*		*					*		*				
Quarter 1, 2007																			*				
Quarter 2, 2007										*		*							*				
Quarter 3, 2007										*		*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008	1											*							*				
Quarter 3, 2008	1											*							*				
Quarter 4, 2008										*		*							*				
Quarter 1, 2009	f											*							*				
Quarter 2, 2009												*	*						*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009	1											*	*						*				
Quarter 1, 2010												*	*						*				
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010	1									*		*							*				
Quarter 4, 2010										*		*							*				
Quarter 1, 2011										*		*							*				
Zuarter 1, 2011	<u> </u>		<u> </u>							7/1		7/7	<u> </u>					<u> </u>	٠٢				

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		J	JCR	S						U	RGA	4							L	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*	*						*				
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*	*						*				
Quarter 2, 2014												*							*				
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003						*																	
Quarter 3, 2003													*										
Quarter 1, 2004				*																			
Quarter 3, 2010																					*		
Quarter 2, 2013										*													
IRON		1					1		1	1				1							1		ı
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007											*												
Quarter 2, 2008												*											
Quarter 3, 2008												*											

Groundwater Flow System		J	JCR	S						U	RGA	4							I	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005					_							*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*	*						*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012	ĺ											*							*				

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		J	JCR	S						U	RGA	4							L	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2012												*							*				
Quarter 3, 2012												*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				
Quarter 2, 2014												*	*						*				
MANGANESE		1	1	1		1	1		1			1											
Quarter 4, 2002																					*		
Quarter 3, 2003							*	*															
Quarter 4, 2003							*	*															
Quarter 1, 2004							*																
Quarter 2, 2004							*																
Quarter 4, 2004							*	*															
Quarter 1, 2005							*																
Quarter 3, 2005																					*		
Quarter 3, 2009	*																						
OXIDATION-REDUCTION F	OT	ENT				T	1		ı	1	1	1	1	1	1				1		1		
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				
Quarter 2, 2006			*																				
Quarter 3, 2006			*															*					
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*				*																
Quarter 3, 2007			*				*																
Quarter 4, 2007			*																				
Quarter 1, 2008			*			*			*														
Quarter 2, 2008	*		*	*		*							*				*		*	*			
Quarter 3, 2008			*	*		*							*				*		*	*			

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System	Π	Į	JCR	.S						U	RGA	Α							L	RG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2008			*	*		*	*	*	*				*				*	*		*			
Quarter 1, 2009			*				*	*	*				*	*				*		*			
Quarter 3, 2009			*	*		*											*	*	*	*			
Quarter 4, 2009			*			*			*									*		*			
Quarter 1, 2010	*		*																	*			
Quarter 2, 2010	*		*	*					*				*				*	*		*			
Quarter 3, 2010	*		*	*		*											*	*	*	*			
Quarter 4, 2010			*					*			*			*			*	*	*	*			
Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 3, 2011	*		*	*			*		*		*		*				*	*	*	*			
Quarter 4, 2011	*		*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2013				*		*		*	*		*		*	*				*		*	*		
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*		
PCB, 1016																							
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004											*												
Quarter 3, 2005							*				*												
Quarter 1, 2006											*												
Quarter 2, 2006											*												
Quarter 4, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007												*											
Quarter 3, 2007											*				L								
Quarter 2, 2008											*	*											
Quarter 3, 2008											*												
Quarter 4, 2008											*												
Quarter 1, 2009											*												
Quarter 2, 2009											*												
Quarter 3, 2009	1										*												
Z	1		<u> </u>						<u> </u>													<u> </u>	

Groundwater Flow System		Į	JCR	S						U	RGA	4							I	RG	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2009											*												
Quarter 1, 2010											*												
Quarter 2, 2010											*												
Quarter 3, 2010											*												
Quarter 4, 2010											*												
PCB-1232																							
Quarter 1, 2011											*												
PCB-1248																							
Quarter 2, 2008												*											
PCB-1260																							
Quarter 2, 2006																		*					
pН																							
Quarter 4, 2002																	*						
Quarter 2, 2003																	*						
Quarter 3, 2003																	*						
Quarter 4, 2003							*										*						
Quarter 1, 2004							*										*						
Quarter 2, 2004																	*						
Quarter 3, 2004																	*						
Quarter 4, 2004																	*						
Quarter 3, 2005										*							*				*		
Quarter 4, 2005										*							*						
Quarter 1, 2006																	*						
Quarter 2, 2006																	*						
Quarter 3, 2006																	*						
Quarter 3, 2007																	*						
Quarter 4, 2007																	*						
Quarter 4, 2008																	*						
Quarter 1, 2009																	*						
Quarter 1, 2011																	*						
Quarter 2, 2011											*												
Quarter 3, 2011											*												
Quarter 1, 2012														*									
Quarter 1, 2013										*			*				*						
POTASSIUM														•						1			
Quarter 4, 2002																		*	*				
Quarter 3, 2004																			*				
Quarter 2, 2005																			*				

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		Ţ	JCR	S						U	RG	4							L	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				
Quarter 3, 2006																			*				
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				
Quarter 1, 2013																			*				
Quarter 2, 2013																			*				
Quarter 3, 2013																			*				
RADIUM-226																							
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004																			*				
Quarter 2, 2005									*														
Quarter 1, 2009											*												
RADIUM-228																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
SELENIUM																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
SODIUM																							
Quarter 4, 2002																			*		*		
Quarter 1, 2003				*					*	*	*												
Quarter 2, 2003				*						*	*		*										
Quarter 3, 2003							*	*		*													
Quarter 4, 2003							*		*	*													
Quarter 1, 2004									*	*				*									
Quarter 2, 2004										*													
Quarter 3, 2004										*													
Quarter 4, 2004									*	*													
Quarter 1, 2005										*									*				

Groundwater Flow System		J	JCR	S						U	RGA	4							L	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2005										*									*				
Quarter 3, 2005									*	*									*				
Quarter 4, 2005									*	*													
Quarter 1, 2006									*	*													
Quarter 2, 2006									*														
Quarter 3, 2006									*	*		*							*				
Quarter 4, 2006									*	*							*						
Quarter 1, 2007									*			*											
Quarter 2, 2007									*	*													
Quarter 3, 2007									*														
Quarter 4, 2007									*														
Quarter 1, 2008									*														
Quarter 3, 2008												*											
Quarter 4, 2008									*	*													
Quarter 1, 2009									*			*							*				
Quarter 3, 2009												*											
Quarter 4, 2009									*			*											
Quarter 1, 2010												*											
Quarter 2, 2010										*		*											
Quarter 3, 2010										*													
Quarter 4, 2010									*	*													
Quarter 1, 2011										*													
Quarter 2, 2011									*														
Quarter 4, 2011																			*				
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*											
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*											
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*											
Quarter 2, 2014									*		*	*							*				
STRONTIUM-90						•	1		1														
Quarter 2, 2003																							
Quarter 1, 2004																							
SULFATE					-		1																
Quarter 4, 2002																			*				

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		J	JCR	S						U	RG/	Α							L	RG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004										*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005										*		*	*					*	*				
Quarter 3, 2005										*		*	*				*	*	*				
Quarter 4, 2005										*		*	*					*	*	*			
Quarter 1, 2006										*		*	*				*	*	*	*			
Quarter 2, 2006									*	*		*	*				*	*	*	*			
Quarter 3, 2006									*	*		*	*				*		*	*			
Quarter 4, 2006									*	*		*	*				*		*				
Quarter 1, 2007									*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*				*		*	*			
Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009									*	*		*	*				*	*	*	*			
Quarter 4, 2009	*									*		*	*				*	*	*				
Quarter 1, 2010	*								*	*		*	*				*		*				
Quarter 2, 2010									*	*		*	*				*	*	*	*			
Quarter 3, 2010	Ī									*		*	*				*	*	*	*			
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011	*									*		*	*				*	*	*				
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			
Quarter 4, 2011	*									*		*	*				*	*	*	*			
Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 2, 2012	*									*		*	*				*	*	*	*			
Quarter 3, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012										*		*	*				*	*	*	*			
Quarter 1, 2013										*		*	*				*	*	*	*			
	┢													*									
Quarter 2, 2013										*		*	*	*			*	*	*	*			

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		J	JCR	.S						U	RGA	٨							I	RG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2013										*		*	*	*			*	*	*	*			
Quarter 4, 2013										*		*	*				*	*	*	*			
Quarter 1, 2014								*		*		*	*				*	*	*	*			
Quarter 2, 2014										*		*	*	*			*	*	*	*			
TECHNETIUM-99										u u													
Quarter 4, 2002																			*				
Quarter 1, 2003													*				*		*				
Quarter 2, 2003	*		*							*			*				*						
Quarter 3, 2003			*										*				*			*			
Quarter 4, 2003			*							*		*	*				*		*	*			
Quarter 1, 2004			*									*	*				*		*				
Quarter 2, 2004			*									*	*				*		*	*			
Quarter 3, 2004			*									*					*		*			<u> </u>	
Quarter 4, 2004			*							*		*	*				*	*	*			<u> </u>	
Quarter 1, 2005			*							*		*	*				*			*			
Quarter 2, 2005			*							*			*				*	*	*	*			
Quarter 3, 2005			*							*			*				*	*	*	*			
Quarter 4, 2005			*							*		*	*				*		*	*			
Quarter 1, 2006										*		*	*						*	*			
Quarter 2, 2006			*							*			*				*	*	*	*			
Quarter 3, 2006			*							*			*				*	*	*	*			
Quarter 4, 2006	*									*		*	*						*	*			
Quarter 1, 2007			*							*			*				*		*	*			
Quarter 2, 2007			*							*		*	*				*	*		*			
Quarter 3, 2007			*							*	*	*	*				*		*	*			
Quarter 4, 2007			*							*		*	*				*		*	*			
Quarter 1, 2008			*							*		*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2009			*							*		*	*				*						
Quarter 2, 2009			*							*		*	*				*	*		*			
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*							*	-	*	*				*						
Quarter 1, 2010			*							*		*	*				*						
Quarter 2, 2010			*							*			*				*	*		*			
			*							*	*	*	*				*	*		~		\vdash	
Quarter 3, 2010											不											 	
Quarter 4, 2010			*							*		*	*				*					<u> </u>	
Quarter 1, 2011										*			*				*			_		<u> </u>	
Quarter 2, 2011			*							*			*				*			*		<u> </u>	
Quarter 3, 2011			*							*			*				*			*			

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		Į	JCR	S						U	RG	<u> </u>							I	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2011			*							*	*	*	*				*						
Quarter 1, 2012			*							*			*				*			*			
Quarter 2, 2012			*							*			*				*		*	*			
Quarter 3, 2012			*							*		*	*				*						
Quarter 4, 2012										*		*	*				*		*	*			
Quarter 1, 2013										*			*				*		*	*			
Quarter 2, 2013										*		*	*				*		*	*			
Quarter 3, 2013			*							*		*	*				*		*	*			
Quarter 4, 2013			*							*		*	*				*		*	*			
Quarter 1, 2014			*							*	*		*				*		*	*			
Quarter 2, 2014			*							*	*		*	*			*		*	*			
THORIUM-230																							
Quarter 1, 2012	*								*					*									
THORIUM-234																							
Quarter 2, 2003						*			*					*									
Quarter 4, 2007									*														
TOLUENE																							
Quarter 2, 2014										*	*		*										
TOTAL ORGANIC CARBON	1																						
Quarter 4, 2002																					*		
Quarter 1, 2003				*						*	*							*	*		*		
Quarter 2, 2003										*	*		*								*		
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003							*		*	*													
Quarter 1, 2004										*													
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005										*													
Quarter 2, 2005										*											*		
Quarter 3, 2005										*		*									*		
Quarter 4, 2005										*											*		
Quarter 1, 2006										*													
Quarter 2, 2006										*		*											
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 3, 2007	*					*	*	*	*	*			*	*			*						
Quarter 2, 2011											*												

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		Ţ	JCR	S						U	RGA	١							L	RGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2012	*																						
TOTAL ORGANIC HALIDES	5	l	l							<u> </u>						l		l					
Quarter 4, 2002																		*	*		*		
Quarter 1, 2003				*														*			*		
Quarter 3, 2003				*																	*		
Quarter 2, 2004																					*		
Quarter 3, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*																						
Quarter 4, 2005	*																						
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*																						
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																				*		
Quarter 1, 2008	*																						
Quarter 1, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																				*		
Quarter 3, 2009	*																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 1, 2011	*																						
Quarter 3, 2013																					*		
TRICHLOROETHENE																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		J	JCR	S						U	RGA	Α							L	RGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008	Ī																						
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012	Ī																						
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013	Ī																						
Quarter 1, 2014																							
Quarter 2, 2014																							
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				

Groundwater Fl	low System		J	JCR	S						U	RG	A							L	RG	4		
Gradient		S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Wel	1	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2003								*																
Quarter 1, 2004								*	*	*					*			*						
Quarter 4, 2004																		*						
Quarter 4, 2006																				*		*		
ZINC												•												
Quarter 3, 2003													*											
Quarter 4, 2003								*		*			*											
Quarter 4, 2004								*																
Quarter 4, 2007								*	*	*														
*	Statistical test re	esult	s inc	licat	e an	elev	ated	conc	centr	atio	1 (i.e	e., a s	statis	stical	ly si	ignif	ican	t inc	reas	e)				
	MCL Exceedan	ce																						
UCRS	Upper Continen	tal F	Rech	arge	Sys	tem																		
URGA	Upper Regional	Gra	vel .	Aqui	ifer																			
LRGA	Lower Regional	Gra	ivel	Aqu	ifer																			
S	Sidegradient;			D)	D	own	grad	ient	;		Ţ	J	Ţ	Jpgı	radie	ent							

APPENDIX H METHANE MONITORING DATA

C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	6/06/20	014					T	ime	: 1	5:10					Moni	itor:	T	amr	ny Sr	nith	
Weather Con Sunny at 89			with	win	ds o	ut o	f the	nor	th e	ast											
Monitoring I	Equipm	ent:		*****	<u></u>			, 1101		<u></u>											
MSA Sirius	A3-129	81					torir	ng Lo		ion			<u> </u>				.,,,,			Read	
Ogden Landir						//0111	LOTTI	ig L	UCAL	1011										(% L	EL)
Road Entranc		Che	ecked	d at g	round	d leve	el												ļ	0	!
North Landfill	Gate	Che	ecked	d at g	round	d leve	el													0	<u> </u>
West Side of Landfill:																					
North 37° (West 88° 4		Che	ecked	d at q	round	d leve	el													0	l
East Side of Landfill:				- 3																	
North 37° 0															٠.					0	
West 88° 4 Cell 1 Gas Ve		1	2 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17		0	
		1	2	3	.0	0	0	0	0	0	0	0	0	0	0	0	0	0		0]
Cell 2 Gas Ve		0	0	3	4	5	6	7	1		44									0]
Cell 3 Gas Ve	ent (7)	ò	ō	Ö	Ö	ō	0	Ö				-								0	,
Landfill		Che	ecked	at flo	oor le	vel															
Suspect or Pr	oblem Areas	No	areas	s note	ed														找	6-6-1	149
Remarks:			·																		
ALL VENTS	CHEC	KE	O 1"	FRO	M MC	NOL	JTH	OF	VEI	٧T											
,																					
																			•		
Performed by	/ :		. —		1	/	_		0	بع	,							/			46
					Sig	<i>mn</i> gnat	ng. We	<u> </u>	nu	ith	<u> </u>							6	-0	6-/ Date	Ψ
4					Sig	gnat	u <i>ff</i> e													Date	

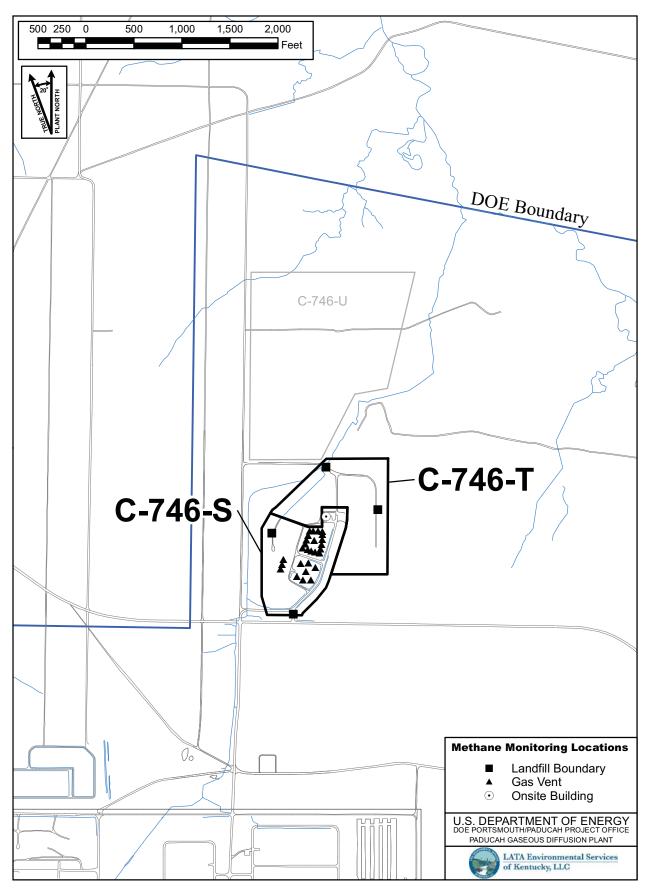


Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I

SURFACE WATER SAMPLE ANALYSIS AND WRITTEN COMMENTS

Division of Waste Management

RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502) 564-6716

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po	int	(KPDES Discharge Number, or "U	REAM", or "DO	OWNSTREAM")	L135 UPSTREA	AM	L136 AT SIT	E	L154 DOWNSTF	REAM	F. BLANI	K	
Sample Seque	nce	#				1		1		1		1	
If sample is	a B	lank, specify Type: (F)ield, (T) r:	ip, (M) ethod	, or (E) quipment	NA		NA		NA		F	
Sample Date	and	Time (Month/Day/Year hour: m	inu	tes)		4/28/2014 08:2	28	4/28/2014 08:	38	4/28/2014 08	:13	4/28/2014 0	8:30
Duplicate ("	Y" (or "N") 1				N		N		N		N	
Split ('Y' o	r "1	N") ²				N		N		N		N	
Facility Sam	ple	ID Number (if applicable)				L135SS3-14		L136SS3-14	ļ	L154US3-1	4	FB1SS3-	14
Laboratory S	amp.	le ID Number (if applicable)				347653001		347653003		347655003		34765300)4
Date of Anal	ysi	s (Month/Day/Year)				5/6/2014		5/6/2014		5/7/2014		5/20/201	4
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G 7	DETECTED VALUE OR PQL ⁵	F L A G S
A200-00-0	0	Flow	т	MGD	Field	34.58		1.21		12.86			*
16887-00-6	2	Chloride(s)	T	MG/L	300.0	1.25		0.63		1.13		1.38	
14808-79-8	0	Sulfate	T	MG/L	300.0	3.19		16.8		3.35		<0.4	
7439-89-6	0	Iron	т	MG/L	200.8	1.19		0.549		1.46		<0.1	
7440-23-5	0	Sodium	т	MG/L	200.8	2.4		2.34		2.51		0.688	
s0268	0	Organic Carbon ⁶	T	MG/L	9060	16.7		15.2		14.6			*
s0097	0	BOD ⁶	т	MG/L	not applicable		*		*		*		*
s0130	0	Chemical Oxygen Demand	т	MG/L	410.4	39.4		39.4		47.2			*

I-3

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

^{* =} See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution factor

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	int	: (KPDES Discharge Number, or	ן" נ	JPSTREAM" or	"DOWNSTREAM")	L135 UPSTRE	EAM	L136 AT SI	TE	L154 DOWNST	REAM	F. BLANK	
CAS RN ³		CONSTITUENT	T D	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G
S0145	1	Specific Conductance	т	μмно/см	Field	88		296		80			*
S0270	0	Total Suspended Solids	т	MG/L	160.2	18.7		6.86		20			*
s0266	0	Total Dissolved Solids	т	MG/L	160.1	92.9		170		98.6			*
s0269	0	Total Solids	т	MG/L	2540B	119		236		117			*
s0296	0	Нд	т	Units	Field	7.31		7.73		7.32			*
7440-61-1		Uranium	т	MG/L	200.8	0.00166		0.0036		0.00197		<0.0002	
12587-46-1		Gross Alpha (α)	т	pCi/L	900.0	-2.02	*	3.8	*	2.26	*	-1.39	*
12587-47-2		Gross Beta (β)	т	pCi/L	900.0	5.42	*	-0.0875	*	8.47	*	6.98	*
							_						

<u>I-4</u>

Division of Waste Management

RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

Frankfort, KY 40601 (502)564-6716

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (S)

L	Monitoring Poi	int	(KPDES Discharge Number, or "U	JPSI	REAM", or "DO	OWNSTREAM")	L135 UPSTRE	AM	L154 DOWNSTF	REAM				
	Sample Sequen	ce	#				2		2					
	If sample is a	Bl	ank, specify Type: (F)ield, (T) r:	ip, (M) ethod	, or (E) quipment	NA		NA					/
	Sample Date a	nd	Time (Month/Day/Year hour: m	inu	tes)		4/28/2014 08:	28	4/28/2014 08	:13				
	Duplicate ("Y	" c	or "N") ¹				Υ		Υ					
	Split ('Y' or	"N	T") ²				N		N					
	Facility Samp	le	ID Number (if applicable)				L135DSS3-1	4	L154DUS3-	14				
	Laboratory Sa	mpl	e ID Number (if applicable)				347653002		347655002	2	\	\		
	Date of Analy	sis	(Month/Day/Year)				5/6/2014		5/7/2014					
1.5	CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A	DETECTED VALUE OR PQL ⁵	F L A G S ⁷
	A200-00-0	0	Flow	T	MGD	Field	34.58		12.86					
	16887-00-6	2	Chloride(s)	T	MG/L	300.0	1.29		1.13					
	14808-79-8	0	Sulfate	T	MG/L	300.0	3.25		3.35					
	7439-89-6	0	Iron	т	MG/L	200.8	1.17		1.44					
	7440-23-5	0	Sodium	T	MG/L	200.8	2.37		2.23					
	S0268	0	Organic Carbon ⁶	T	MG/L	9060	15		14					
	s0097	0	BOD ⁶	т	MG/L	not applicable		*		*				
	s0130	0	Chemical Oxygen Demand	т	MG/L	410.4	39.4		24.7					

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

<u>-5</u>

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

						•	•					
Monitoring Po	int	: (KPDES Discharge Number, o	r "(JPSTREAM" or	"DOWNSTREAM")	L135 UPSTRI	EAM	L154 DOWNST	REAM	\		/
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G 5	VALUE OR EQL ⁵	F A G S	DETECTED F L COR PQL ⁵ G S ⁷
S0145	1	Specific Conductance	т	µмно/см	Field	88		80				
s0270	0	Total Suspended Solids	т	MG/L	160.2	19.9		19.9				
s0266	0	Total Dissolved Solids	т	MG/L	160.1	84.3		78.6				
s0269	0	Total Solids	T	MG/L	2540B	119		113				
s0296	0	рН	Т	Units	Field	7.31		7.32				
7440-61-1		Uranium	т	MG/L	200.8	0.00167		0.00192				
12587-46-1		Gross Alpha (α)	Т	pCi/L	900.0	2.97	*	1.84	*			
12587-47-2		Gross Beta (β)	т	pCi/L	900.0	14.4	*	3.41	*		\	/
											$\overline{}$	
											/	
												<u> </u>
										/		

I-6

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 & 073-00015

Finds/Unit:	KY8-890-008-982 / 1
LAB ID:	None
For Official U	se Only

SURFACE WATER WRITTEN COMMENTS

Monitoring Point	g Facility Sample ID	Constituent	Flag	Description
L135	L135SS3-14			
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.74. Rad error is 2.74.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.75. Rad error is 4.67.
L136	L136SS3-14			
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.72. Rad error is 4.68.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.47. Rad error is 7.47.
L154	L154US3-14	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity		TPU is 1.15. Rad error is 1.07.
		Beta activity		TPU is 2.56. Rad error is 2.15.
QC	FB1SS3-14	Flow Rate		Analysis of constituent not required and not performed.
		Total Organic Carbon (TOC)		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)		Analysis of constituent not required and not performed.
		Conductivity		Analysis of constituent not required and not performed.
		Suspended Solids		Analysis of constituent not required and not performed.
		Dissolved Solids		Analysis of constituent not required and not performed.
		Total Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.65. Rad error is 3.64.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.38. Rad error is 7.29.
L135	L135DSS3-14			
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.88. Rad error is 4.85.
		Beta activity		TPU is 7.45. Rad error is 7.06.
L154	L154DUS3-14	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.43. Rad error is 1.35.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.31. Rad error is 2.24.

