

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

MAY 3 0 2014

PPPO-02-2328584-14

Ms. Robin Green
Division of Waste Management
Kentucky Department for Environmental Protection
200 Fair Oaks Lane, 2nd Floor
Frankfort, Kentucky 40601

Mr. Todd Hendricks
Division of Waste Management
Kentucky Department for Environmental Protection
200 Fair Oaks Lane, 2nd Floor
Frankfort, Kentucky 40601

Mr. Bill McDonough Division of Waste Management Kentucky Department for Environmental Protection 625 Hospital Drive Madisonville, Kentucky 42431

Ms. Green, Mr. Hendricks, and Mr. McDonough:

C-746-S&T LANDFILLS FIRST QUARTER CALENDAR YEAR 2014 (JANUARY-MARCH) COMPLIANCE MONITORING REPORT, PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, PAD-ENM-0090/V1, PERMIT NUMBERS 073-00014 AND 073-00015

Enclosed is the subject report for the first quarter calendar year 2014. This report is required in accordance with Conditions ACTV0004, ACTV0005, and ACTV0006, Special Condition Number 3, of the C-746-S&T Solid Waste Landfill Permit Numbers 073-00014 and 073-00015. The report includes groundwater analytical data, validation summary, groundwater flow rate and direction determination, diagrams depicting well locations, and methane monitoring results. There was no surface water sampling conducted this quarter due to insufficient rainfall during normal landfill operating hours.

Methane monitoring this quarter identified two readings in the C-746- S Landfill: 11% of the lower explosive limit (LEL) in Cell 1 Gas Vent 3 and 6% of the LEL in Cell 1 Gas Vent 17. The methane monitoring report and map are in Appendix H. These readings are not considered problematic due to the following:

- The levels are below the reporting limit of 25% of the LEL required by the permit and regulations;
- The readings were centrally located within the C-746-S Landfill, not in landfill buildings or the facility boundary;
- These levels do not pose a threat to personnel performing monitoring;
- Follow-up readings identified 0% of the LEL at both locations.

Given these factors, the permitees believe that continuing the planned detection monitoring is appropriate, and methane monitoring will be evaluated again as part of the next quarterly report.

The statistical analyses on the first quarter 2014 monitoring well data collected from the C-746-S&T Landfills were performed in accordance with GSTR0003 Standard Requirement 3 using the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). This report serves as the statistical increase notification for the first quarter calendar year 2014, in accordance with Condition GSTR0003, Standard Requirement 8, of C-746-S&T Solid Waste Landfill Permit Numbers 073-00014 and 073-00015.

If you have any questions or require additional information, please contact Lisa Santoro at (270) 441-6804.

Sincerely,

Suchel a

Rachel H. Blumenfeld Acting Paducah Site Lead

Portsmouth/Paducah Project Office

Enclosure:

C-746-S&T Landfills First Quarter Calendar Year 2014 (January-March) Compliance Monitoring Report

e-copy w/enclosure:

brandy.mitchell@lataky.com, LATA/Kevil brian.begley@ky.gov, KDEP/Frankfort darla.bowen@lataky.com, LATA/Kevil gary.hines@lataky.com, LATA/Kevil jennifer.woodard@lex.doe.gov, PPPO/PAD latacorrespondence@lataky.com, LATA/Kevil leo.williamson@ky.gov, KDEP/Frankfort lisa.santoro@lex.doe.gov, PPPO/PAD mark.duff@lataky.com, LATA/Kevil

michael.gerle@lataky.com, LATA/Kevil mike.guffey@ky.gov, KDEP/Frankfort myrna.redfield@lataky.com, LATA/Kevil pad.dmc@swiftstaley.com, SST/Kevil rachel.blumenfeld@lex.doe.gov, PPPO/PAD reinhard.knerr@lex.doe.gov, PPPO/PAD rob.seifert@lex.doe.gov, PPPO/PAD stephaniec.brock@ky.gov, KYRHB/Frankfort todd.mullins@ky.gov, KDEP/Frankfort

C-746-S&T Landfills First Quarter Calendar Year 2014 (January-March) **Compliance Monitoring Report,** Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

LATA Kentucky Classification Support

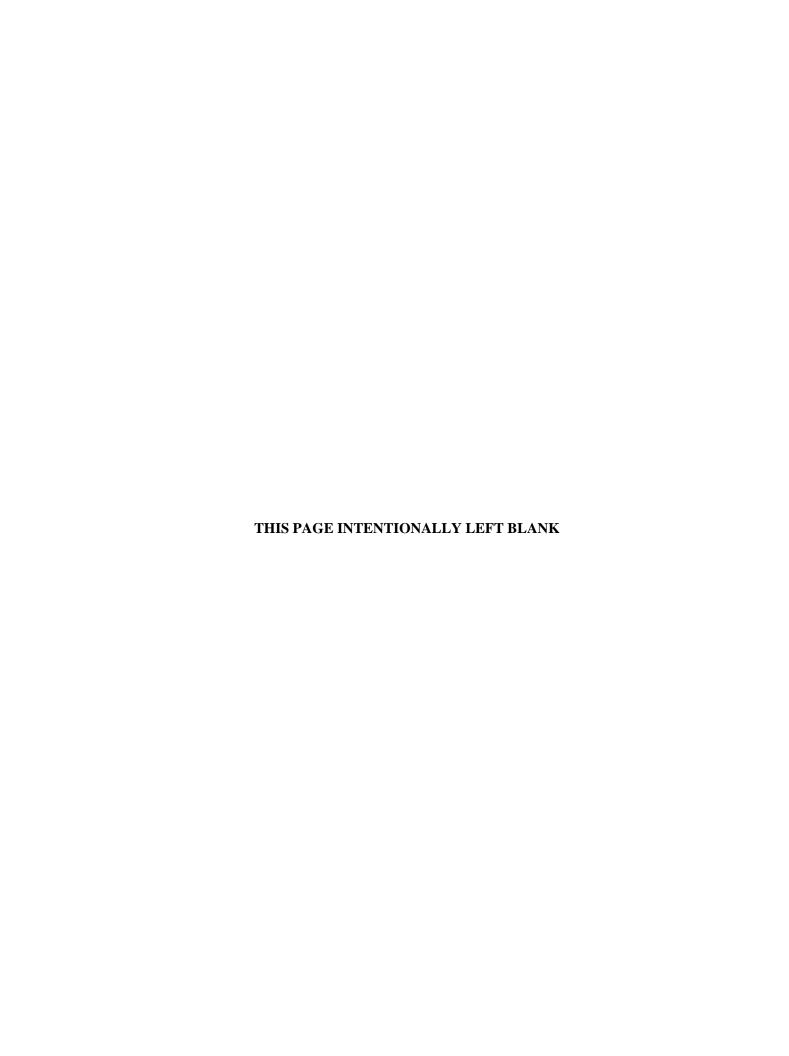
<u>5-21-2014</u> Date

C-746-S&T Landfills
First Quarter Calendar Year 2014
(January–March)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—May 2014

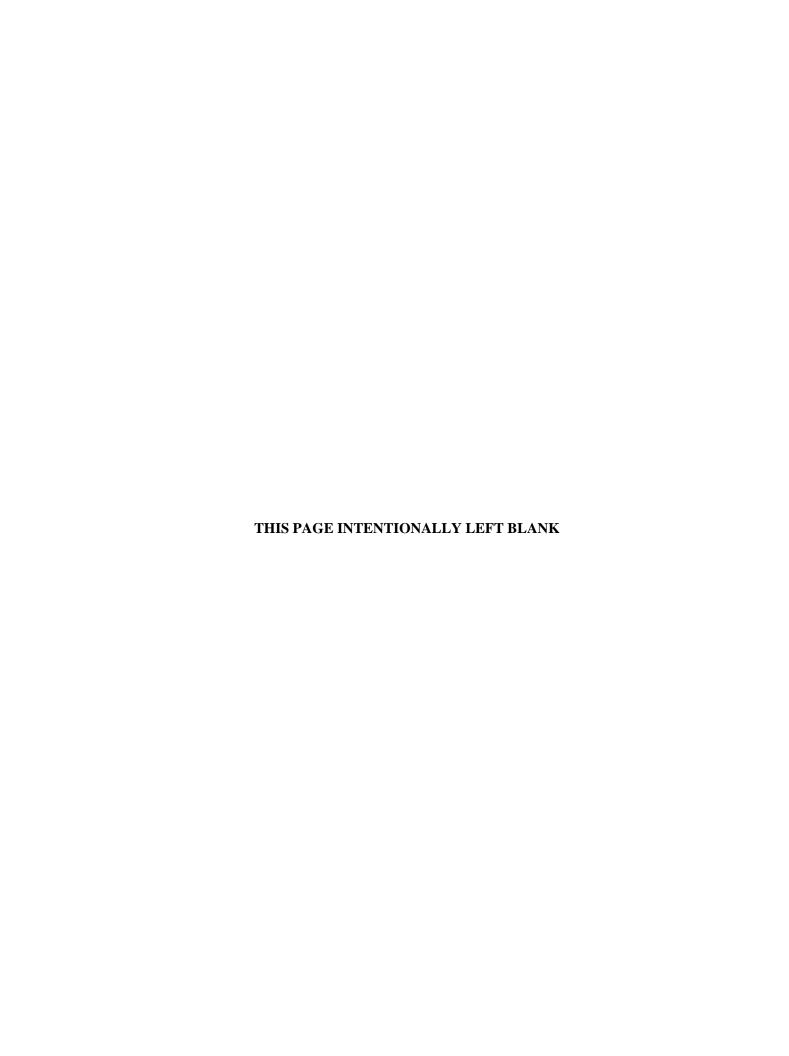
Prepared for the U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by

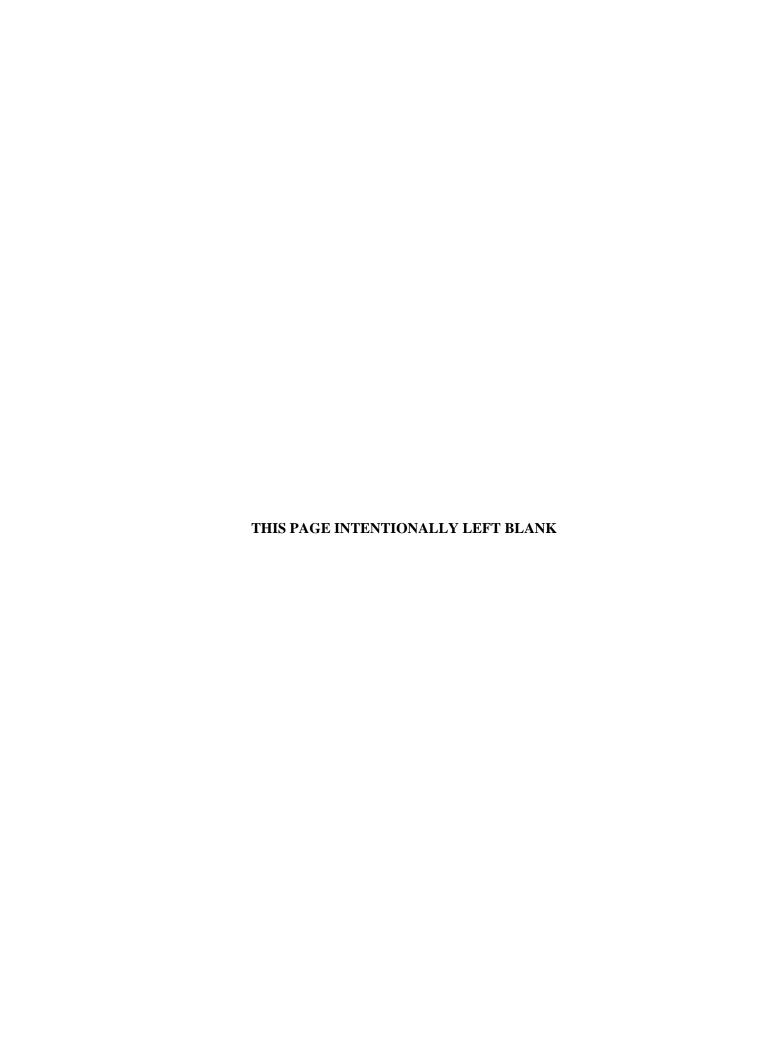

LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC

managing the

Environmental Remediation Activities at the


Paducah Gaseous Diffusion Plant

under contract DE-AC30-10CC40020


CONTENTS

FI	GURE		v
ΤÆ	ABLES		v
A(CRONYMS	S	vii
1.	1.1 BA 1.2 MC 1.2 1.2 1.2	.2 Methane Monitoring	1122
2.	DATA E	VALUATION/STATISTICAL SYNOPSIS	5
3.	DATA V	ALIDATION	7
4.	PROFES	SIONAL GEOLOGIST AUTHORIZATION	9
5.	REFERE	NCE	11
ΑI	PPENDIX A	A: GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
ΑI	PPENDIX I	B: FACILITY INFORMATION SHEET	B-1
ΑI	PPENDIX (C: GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑI	PPENDIX I	D: STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑI	PPENDIX I	E: GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑI	PPENDIX I	F: NOTIFICATIONS	F-1
Αŀ	PPENDIX (G: CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES	G-1
ΑI	PPENDIX I	H: METHANE MONITORING DATA	H-1

FIGURE

1.	Groundwater Monitoring Well Network for the C-746-S&T Landfills					
	TABLES					
1						
1.	Summary of MCL Exceedances	4				
2.	Summary of Statistically Significant Increases	4				
3.	Monitoring Wells Included Historically in Statistical Analysis	5				

ACRONYMS

CFR Code of Federal Regulations

EPA U.S. Environmental Protection Agency
KAR Kentucky Administrative Regulations
KDWM Kentucky Division of Waste Management

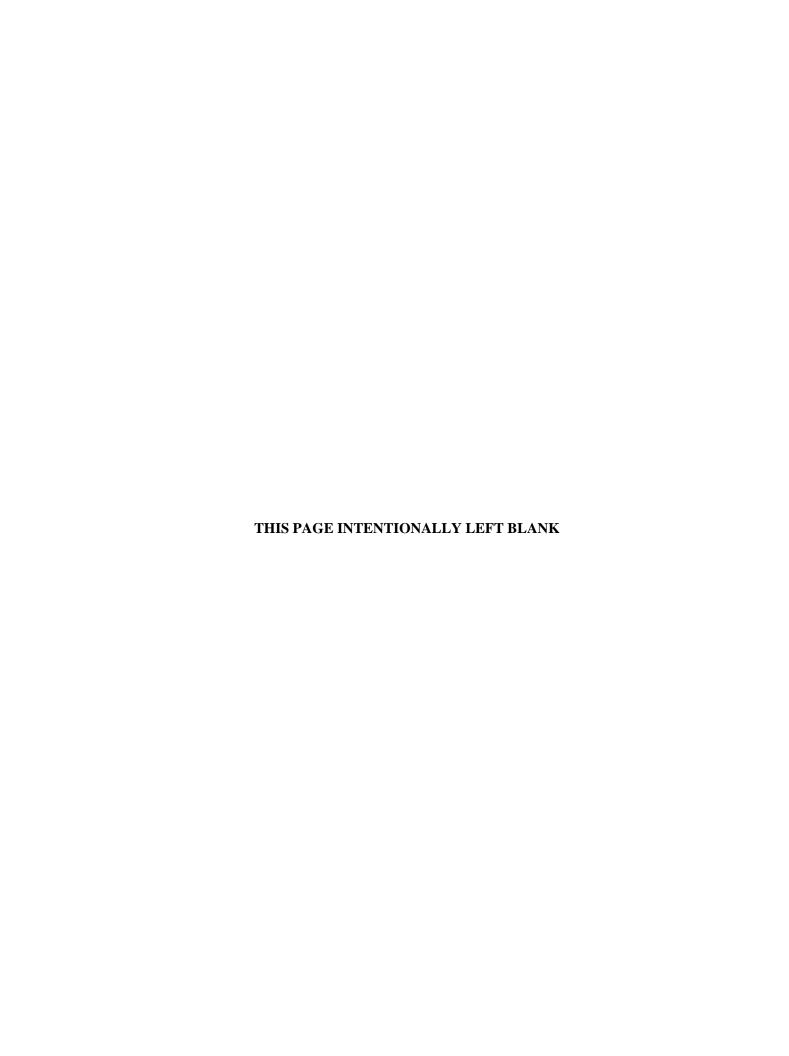
KRS Kentucky Revised Statutes

LATA Kentucky LATA Environmental Services of Kentucky, LLC

LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well


PCB polychlorinated biphenyl

PGDP Paducah Gaseous Diffusion Plant

QC quality control

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

1. INTRODUCTION

This report, C-746-S&T Landfills First Quarter Calendar Year 2014 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number 073-00014 for the C-746-S Residential Landfill and Permit Number 073-00015 for the C-746-T Inert Landfill.

The groundwater, surface water, leachate, and methane monitoring sample data reporting form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) groundwater reporting forms, which are presented in Appendix C. The total metals results reported in Appendix C are measured in an unfiltered sample, as required by Permit Condition GSTR0003, Standard Requirement 4. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determination are provided in Appendix E. Appendix F contains the notifications for parameters that exceed the maximum contaminant level (MCL) and for all parameters that had statistically significant increased concentrations relative to background concentrations, including those parameters listed in 40 *CFR* § 302.4, Appendix A. Appendix G provides a chart of MCL exceedances and statistically significant increases that have occurred, beginning in the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-S&T Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 *KAR* 48:090 § 4.

1.1 BACKGROUND

The C-746-S&T Landfills are closed solid waste landfills located north of the Paducah Gaseous Diffusion Plant (PGDP) and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a cover of compacted soil. The C-746-S Landfill was a sanitary landfill for PGDP. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from PGDP. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Groundwater sampling was conducted within the first quarter 2014 during January using LATA Environmental Services of Kentucky, LLC, (LATA Kentucky) procedure PAD-ENM-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratories that performed analysis used U.S. Environmental Protection Agency (EPA)-approved methods, as applicable.

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the monitoring well locations is presented in Figure 1. All MWs were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for this location. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

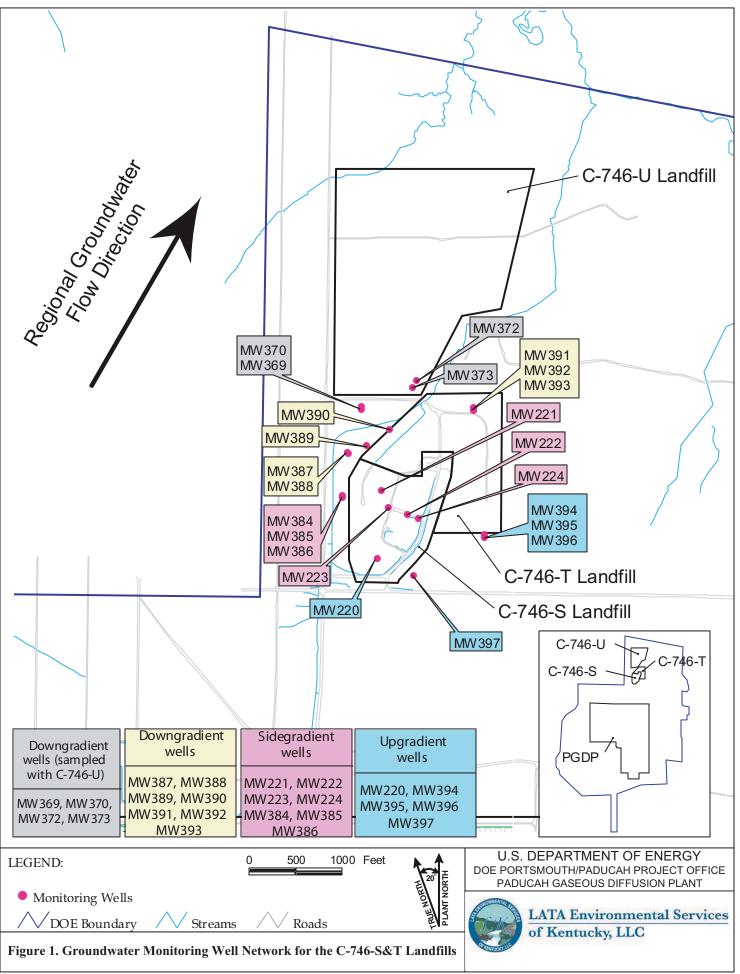
The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water measurements were collected on January 30, 2014, in MWs of the C-746-S&T Landfills (see Table E.1), in MWs of the C-746-U Landfill, and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 38 vicinity wells define the potentiometric surface for the Regional Gravel Aquifer (RGA). As in previous quarters, a groundwater mound under the C-746-S&T Landfills resulted in radial flow away from the landfill area. Normal regional flow in the RGA is northeastward, toward the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in January was 1.90×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 2.19×10^{-3} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 3.73 to 6.36 ft/day (see Table E.3). The mound is an area of high hydraulic potential in the RGA that approximately mirrors the land topography in the area of the landfill.

1.2.2 Methane Monitoring

Landfill operations staff monitored for the occurrence of methane on March 20, 2014, in 1 on-site building location, 4 locations along the landfill boundary, and 27 gas-passive vents located in Cells 1, 2, and 3 of the C-746-S Landfill. See Appendix H for a map of the monitoring locations. Monitoring identified 11% of the lower explosive limit (LEL) of methane at Cell 1 Gas Vent 3 and 6% of the LEL of methane at Cell 1 Gas Vent 17, which are compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. Methane monitoring identified 0% of the LEL of methane at all other locations. The results are documented on the approved C-746-S&T Landfill Methane Monitoring Report form provided in Appendix H.

1.2.3 Surface Water Monitoring

There was no surface water sampling conducted in the first quarter 2014 due to insufficient rainfall during normal landfill operating hours.


1.3 KEY RESULTS

The following parameters had concentrations that either exceeded the MCL (Table 1) or were shown to have statistically significant increases (Table 2) in concentrations² relative to background concentrations during the first quarter 2014.

1

¹ Although depth-to-water is measured in the UCRS wells, the UCRS has a strong vertical hydraulic gradient that varies locally. The UCRS wells are screened over different elevations; therefore, the UCRS well measurements are not sufficient for mapping the potentiometric surface.

² The term "concentration" may refer to a field measurement result, such as pH, oxidation-reduction potential, or an analytical parameter such as trichloroethene or polychlorinated biphenyls.

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
MW390: beta activity	MW372: beta activity, trichloroethene	MW373: trichloroethene
	MW384: beta activity	MW385: beta activity
	MW387: beta activity	MW392: trichloroethene
	MW391: trichloroethene	
	MW394: trichloroethene	

Table 2. Summary of Statistically Significant Increases

UCRS	URGA	LRGA
MW386: oxidation-reduction	MW221: oxidation-reduction potential	MW370: calcium, magnesium,
potential	MW222: aluminum, oxidation-reduction	oxidation-reduction potential,
MW390: oxidation-reduction	potential	sulfate
potential,	MW223: sulfate	MW373: calcium, conductivity,
technetium-99	MW224: oxidation-reduction potential	dissolved solids, magnesium,
MW393: oxidation-reduction	MW369: oxidation-reduction potential	oxidation-reduction
potential	MW372: conductivity, dissolved solids,	potential, sulfate,
	oxidation-reduction potential,	technetium-99
	sodium, sulfate, technetium-99	MW385: oxidation-reduction potential,
	MW384: sulfate, technetium-99	sulfate, technetium-99
	MW387: dissolved solids, oxidation-	MW388: oxidation-reduction potential,
	reduction potential,	sulfate, technetium-99
	sulfate, technetium-99	MW392: oxidation-reduction potential
	MW391: oxidation-reduction potential	

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393 Upgradient wells: MW220, MW394, MW395, MW396, MW397

There were no new MCL exceedances for this quarter. MCL exceedances for beta activity in wells MW372, MW384, MW385, MW387, and MW390 are related to sources of contamination that are upgradient of the C-746-S&T Landfills. The trichloroethene detected in MW372, MW373, MW391, MW392, and MW394 is derived from an alternate source in the vicinity of the C-746-S&T Landfills. The notification of parameters that exceeded the MCL has been submitted electronically to KDWM in accordance with 401 *KAR* 48:300 § 7 prior to the submittal of this report.

There were two new statistically significant increases during this quarter for calcium and magnesium in MW370. The other 39 statistically significant increases have occurred previously at least once since fourth quarter calendar year 2002.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to background concentrations, as required by Permit Numbers 073-00014 and 073-00015, Condition GSTR0003, Standard Requirement 8, and 401 KAR 48:300 § 7.

In accordance with Permit Condition GSTR0003, Variance 2, of the Solid Waste Permit (Permit), the groundwater assessment and corrective action requirements of 401 KAR 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the Permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 KAR 34:060 § 12.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the first quarter 2014 groundwater data collected from the C-746-S&T Residential/Inert Landfills MWs were performed in accordance with Permit Condition GSTR0003, Standard Requirement 3, using EPA guidance (EPA 1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the statistician. The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (D-22–D-78).

For chemicals with an established MCL, no statistical analysis was performed. Parameters that have an MCL can be found in 401 KAR 47:030 § 6. For parameters with no established MCL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistically significant increase in concentration with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations exist in concentrations with respect to upgradient (background) well data. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 3.

Table 3. Monitoring Wells Included Historically in Statistical Analysis*

UCRS	URGA	LRGA
MW386	MW220 (upgradient)**	MW370
MW389 (dry)***	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396 (upgradient)**	MW224	MW392
	MW369	MW395 (upgradient)**
	MW372	MW397 (upgradient)**
	MW384	
	MW387	
	MW391	
	MW394 (upgradient)**	

^{*}A map showing the monitoring well locations is shown in Figure 1.

STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining statistically significant increases is provided in Appendix D under Statistical Analysis Process. Appendix G summarizes the occurrences (by well and by quarter) of statistically significant increases and MCL exceedances.

^{**}Included as background only.

^{***}MW389 had sufficient water to permit a water level measurement but insufficient water to provide water samples for laboratory analysis.

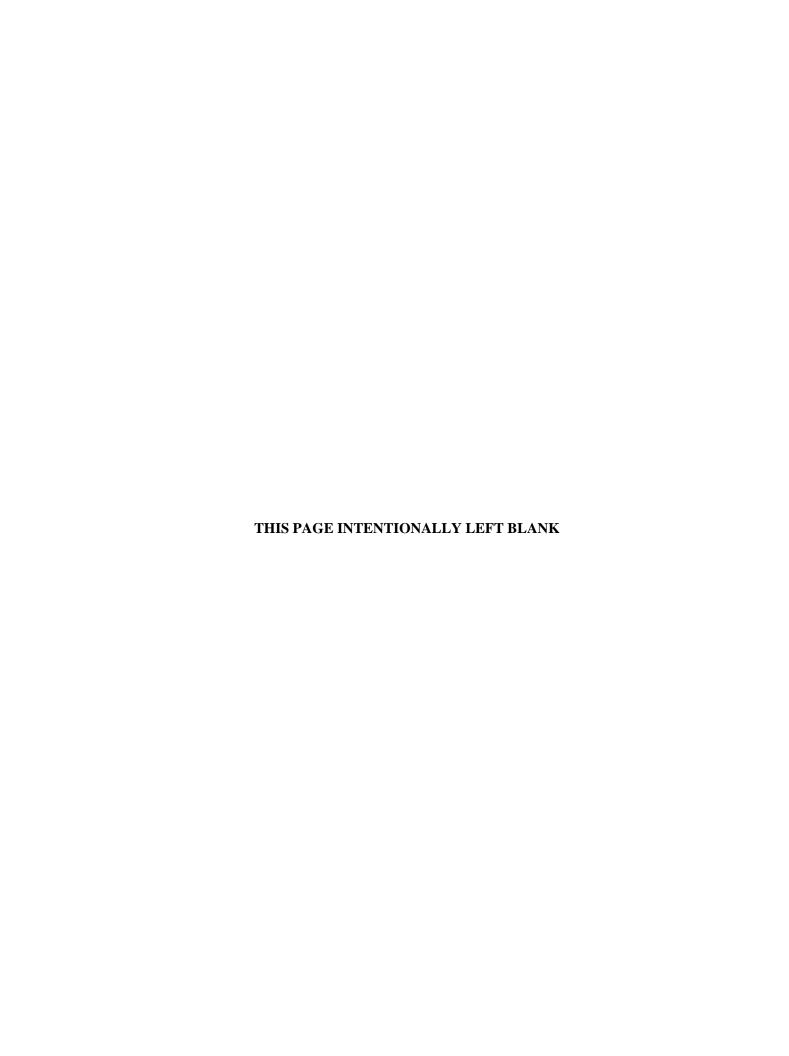
Upper Continental Recharge System

In this quarter, statistical analysis was performed on 18 parameters in the UCRS. The statistical analysis was conducted separately for each parameter in each well. During the first quarter, oxidation-reduction potential and technetium-99 displayed elevated concentrations that were determined to qualify as statistically significant increases.

Upper Regional Gravel Aquifer

In this quarter, statistical analysis was performed on 21 parameters in the URGA. The statistical analysis was conducted separately for each parameter in each well. During the first quarter, aluminum, conductivity, dissolved solids, oxidation-reduction potential, sodium, sulfate, and technetium-99 displayed elevated concentrations that were determined to qualify as statistically significant increases.

Lower Regional Gravel Aquifer


In this quarter, statistical analysis was performed on 16 parameters in the LRGA. The statistical analysis was conducted separately for each parameter in each well. During the first quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed elevated concentrations that were determined to qualify as statistically significant increases.

3. DATA VALIDATION

Data validation was performed on the organic, inorganic, and radiochemical analytical data by an independent third-party validator. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control (QC) samples are collected quarterly during each sampling event. Equipment blanks, field blanks, and trip blanks are obtained to ensure QC and are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory QC samples such as matrix spikes, matrix spike duplicates, and method blanks are performed by the laboratory. Both field and laboratory QC sample results are reviewed as part of the data validation process.

Data validation results for this data set indicated that all data were considered acceptable.

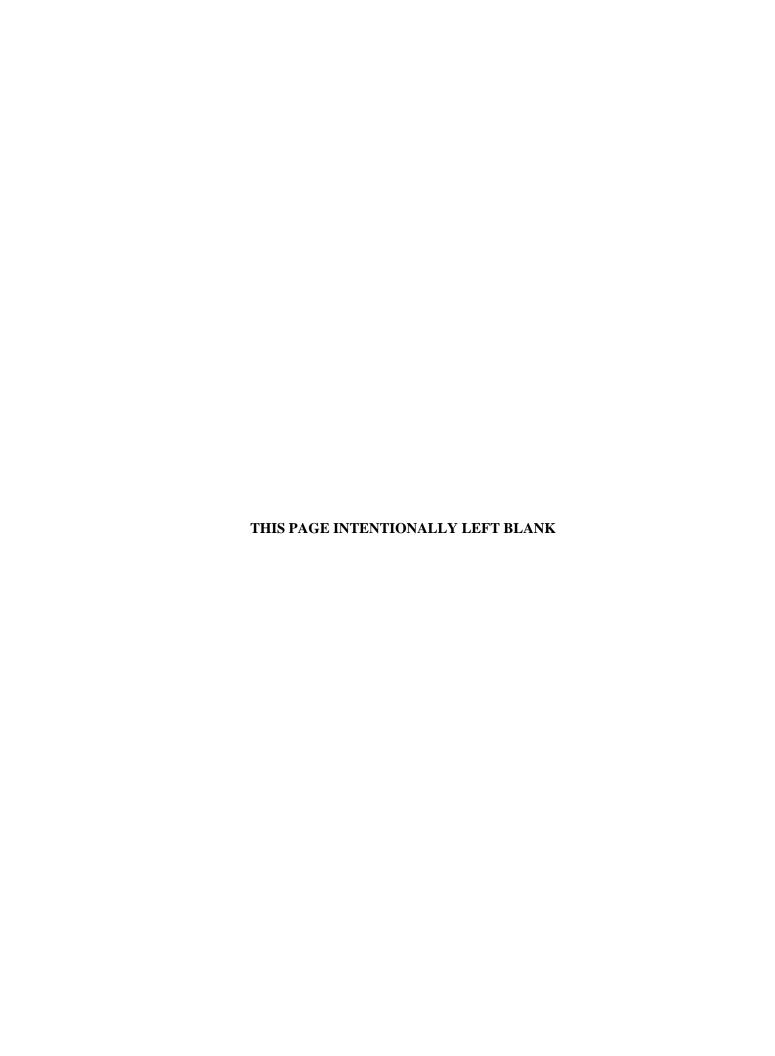
4. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills

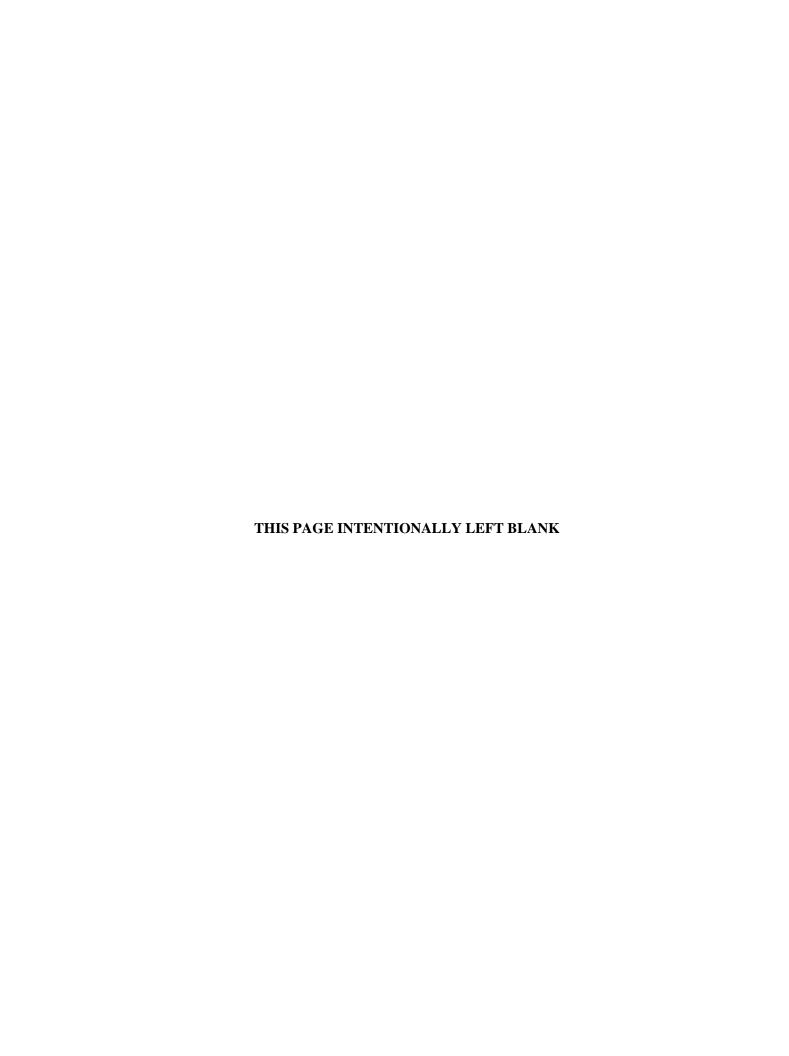
First Quarter Calendar Year 2014 (January–March)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

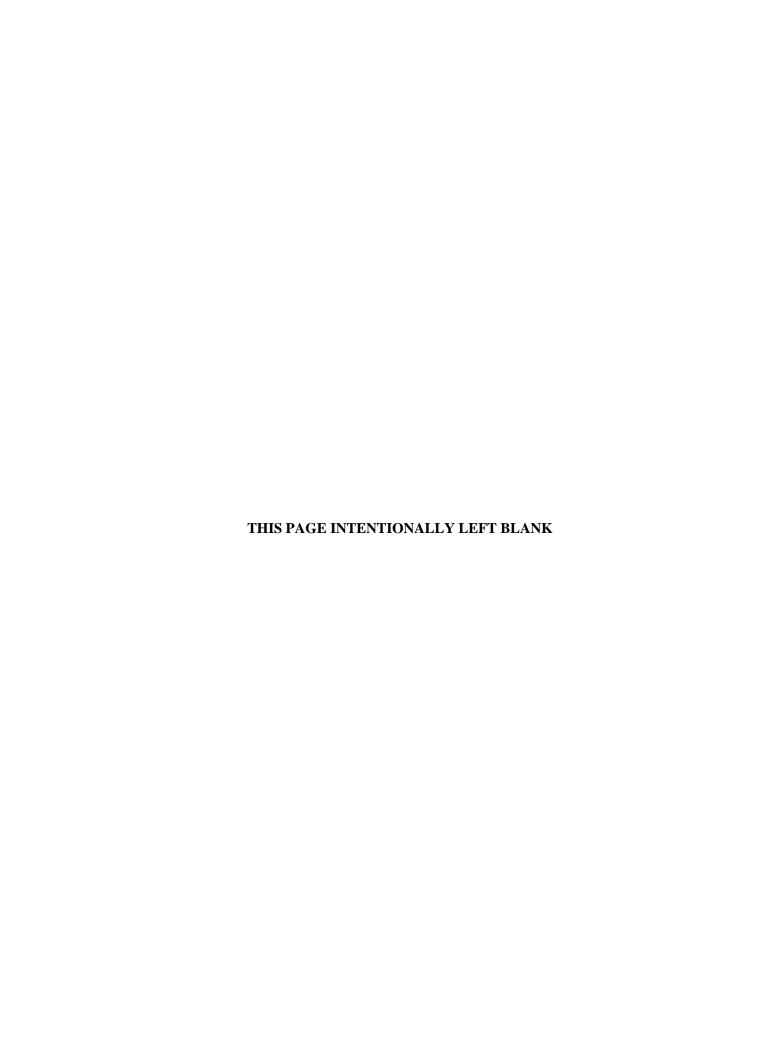

Paducah, Kentucky (PAD-ENM-0090/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

O Registration for Angel of Single o

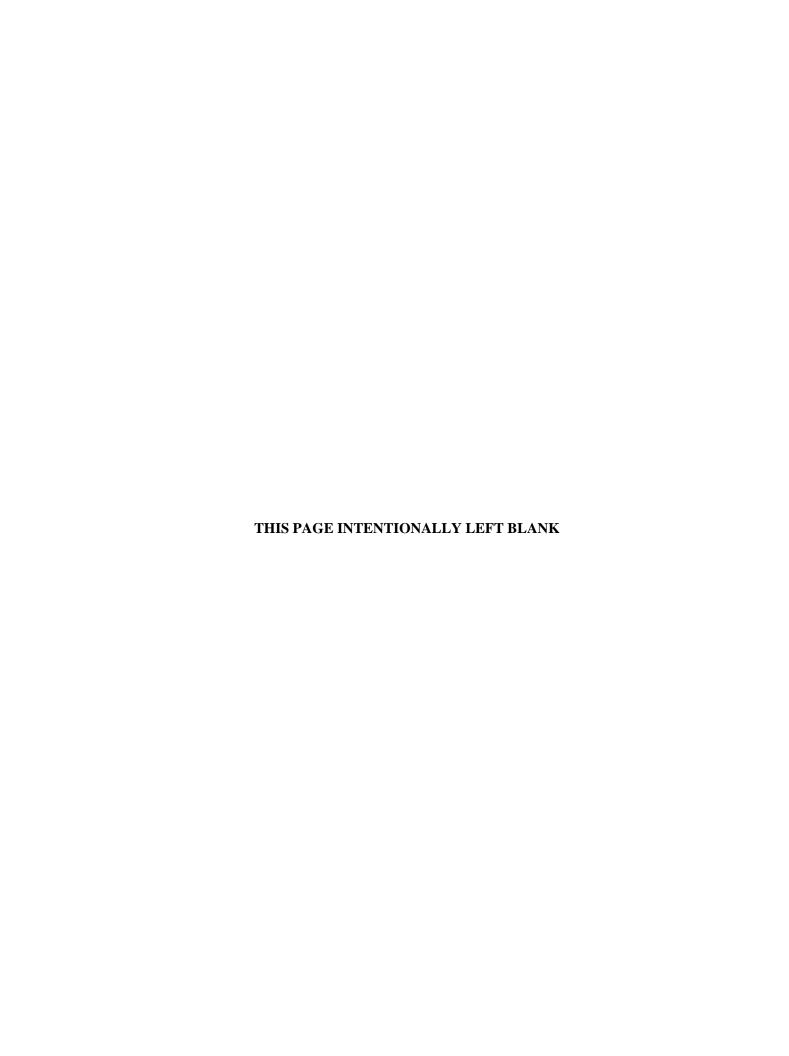

Kenneth R. Davis

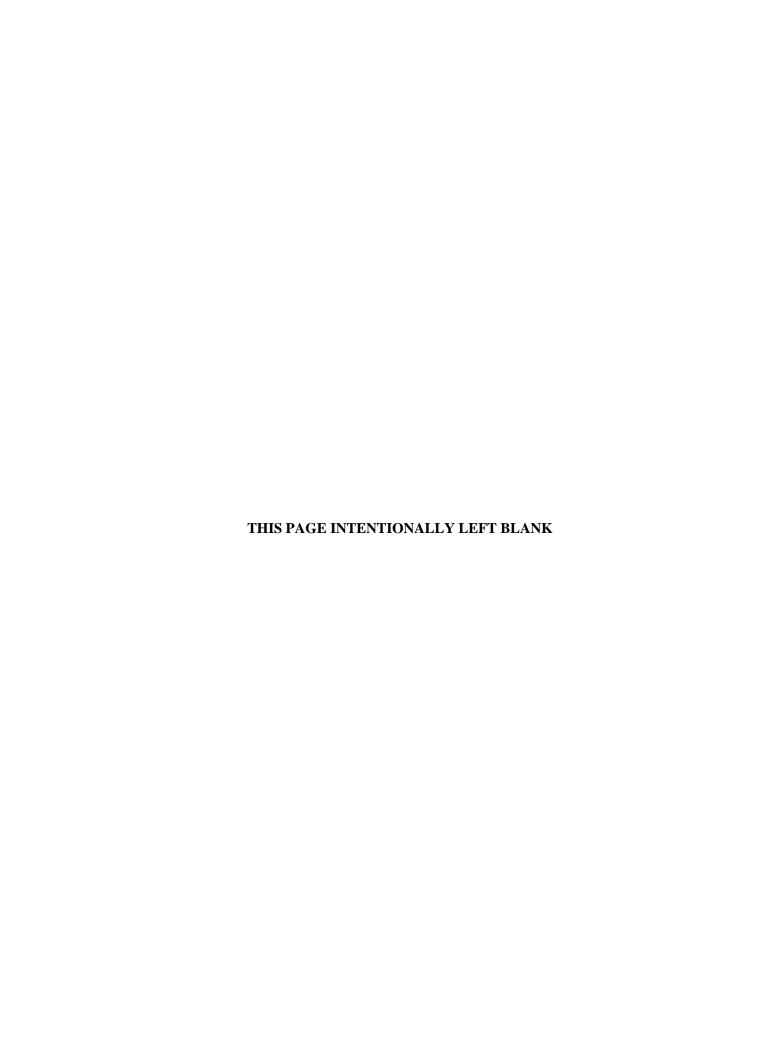
PG1194


5. REFERENCE

EPA (U.S. Environmental Protection Agency) 1989. *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Final Guidance, Office of Resource Conservation and Recovery, U.S. Environmental Protection Agency, Washington, DC.

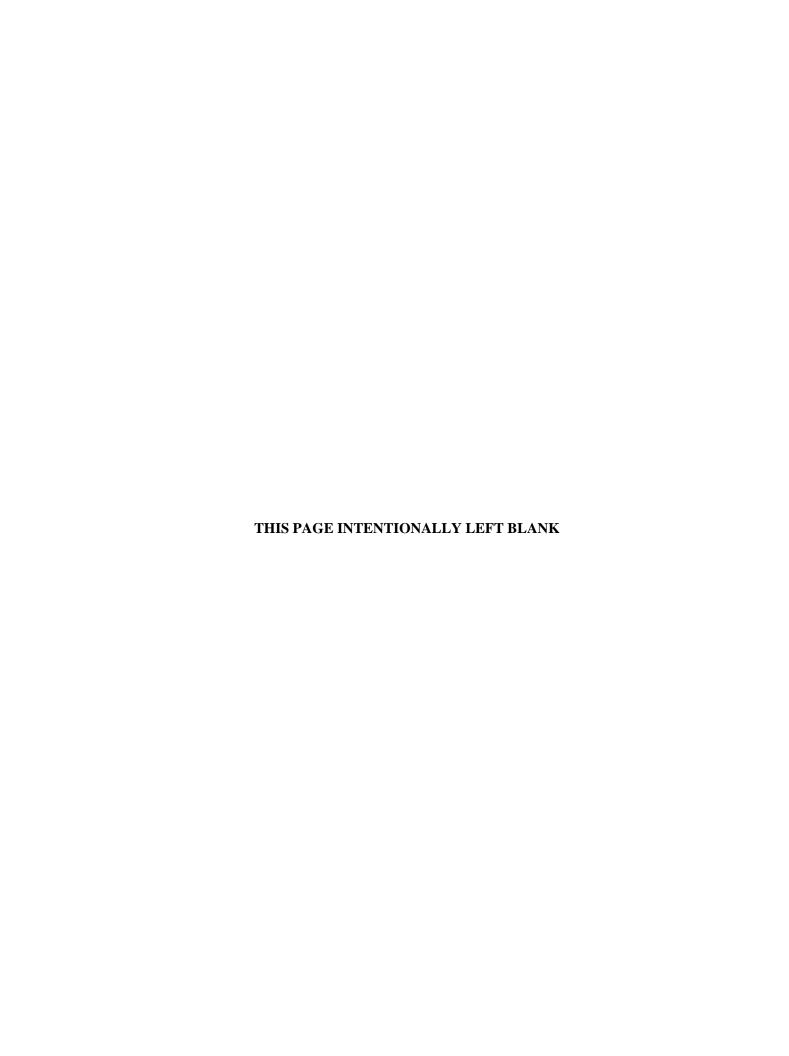
APPENDIX A


GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM


GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Permit No: 073-00014 & 073-00015 Finds/Unit No: Quarter & Year 1st Qtr. CY 2014 Please check the following as applicable: Characterization X Quarterly Semiannual Annual Assessment Please check applicable submittal(s): X Groundwater Surface Water Leachate X Methane Monitoring This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 at 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under trigorisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (4 hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submittin the lab report is NOT considered notification. Instructions for completing the form are attached. Do not submit the instruction accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting fals information, including the possibility of fine and imprisonment for such violations. Mark J. Duff, Paducah Project Manager LATA Environmental Services of Kentucky, LLC	Facility Name:	U.S. DOE – Padue	cah Gaseous	Diffusion Plant	Activity:	C-746-S&T Landfills
Please check the following as applicable: Characterization X Quarterly Semiannual Annual Assessment Please check applicable submittal(s): X Groundwater Surface Water Leachate X Methane Monitoring This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 at 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under to jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (4 hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is NOT considered notification. Instructions for completing the form are attached. Do not submit the instruction pages. I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting fals information, including the possibility of fine and imprisonment for such violations. Mark J. Duff, Paducah Project Manager Date		(As officially sho	own on DWM Po	ermit Face)		
Characterization X Quarterly Semiannual Annual Assessment Please check applicable submittal(s): X Groundwater Surface Water Leachate X Methane Monitoring This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 at 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under tigurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (4 hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is NOT considered notification. Instructions for completing the form are attached. Do not submit the instruction pages. I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting fals information, including the possibility of fine and imprisonment for such violations. Mark J. Duff, Paducah Project Manager Date	Permit No: 073	3-00014 & 073-0001	5 Find	s/Unit No:	Quarter & Yea	nr 1 st Qtr. CY 2014
Please check applicable submittal(s): Leachate Leachate X Methane Monitoring This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 a 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under tipurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (4 hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is NOT considered notification. Instructions for completing the form are attached. Do not submit the instruction pages. I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting fals information, including the possibility of fine and imprisonment for such violations. Mark J. Duff, Paducah Project Manager Date	Please check the f	following as applicat	ble:			
Leachate X Methane Monitoring This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 at 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (4 hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is NOT considered notification. Instructions for completing the form are attached. Do not submit the instruction pages. I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations. Mark J. Duff, Paducah Project Manager Date	Characteri	zation X Q	uarterly _	Semiannual	Annua	d Assessment
This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 at 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (4 hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is NOT considered notification. Instructions for completing the form are attached. Do not submit the instruction pages. I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting fals information, including the possibility of fine and imprisonment for such violations. Mark J. Duff, Paducah Project Manager Date	Please check appl	icable submittal(s):	X	Groundwater		Surface Water
45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under to jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (4 hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is NOT considered notification. Instructions for completing the form are attached. Do not submit the instruction pages. I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted as a supervision of my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations. Mark J. Duff, Paducah Project Manager Date				Leachate	X	Methane Monitoring
· ·	45:160) or by statute jurisdiction of the Di hours of making the the lab report is NO pages. I certify under penal accordance with a sy Based on my inquiry best of my knowledge	(Kentucky Revised S vision of Waste Mana e determination using T considered notificated lty of law that the detected designed to assure of the person or person e and belief, true, accurate	statues Chapte gement. You g statistical and station. Instruction ocument and a pre that qualifiers directly reserved.	r 224) to conduct groun must report any indica nalyses, direct compari ons for completing the f all attachments were pried personnel properly g ponsible for gathering in plete. I am aware that the	dwater and surface ation of contamina ison, or other sim form are attached. It depared under my exather and evaluate afformation, the information, the information of the pre-	e water monitoring under the ation within forty-eight (48 ilar techniques. Submittin Do not submit the instruction direction or supervision in the information submitted by the information submitted is, to the
		· ·	•	LC		Date
Rachel H. Blumenfeld, Acting Paducah Site Lead U.S. Department of Energy		•	cah Site Lea	ad		Date



APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

G	Constant Income 2014	Court M. Coulton	Daniel Man	073-00014 &
Sampling Date:	Groundwater: January 2014	County: McCracken	Permit Nos.	0/3-00015
Facility Name:	U.S. DOE, Paducah Gaseous Diffusion Pla (As officially shown on DW			
C'4 - A 11				42052
Site Address:	5600 Hobbs Road Street	Kevil, Kentucky City/State		42053 Zip
Dhana Na		•	I amaitada.	•
Phone No:	(270) 441-6800 Latitude:	N 37° 07' 37.70"	Longitude:	W 88° 47' 55.41"
	OWNER	INFORMATION		
E114 O	HC DOE W E Ml.'. M		Diama Na	(950) 210 4001
	U.S. DOE, W. E. Murphie, Manager		_	(859) 219-4001
Contact Person:	Mark J. Duff		Phone No:	(270) 441-5030
Contact Person Ti				
Mailing Address:	761 Veterans Avenue Street	Kevil, Kentucky City/State		42053 Zip
	Sueei	City/State		Zip
Company:		NG PERSONNEL ANDFILL OR LABORATORY) cky, LLC		
Contact Person:	Jeff Boulton	•	Phone No:	(270) 441-5444
Mailing Address:	761 Veterans Avenue	Kevil, Kentucky		42053
	Street	City/State		Zip
	LABORA	ΓORY RECORD #1		
Laboratory:	USEC Analytical Laboratories, Paducah	Lab ID No:	KY00906 (EPA	ID Number)
Contact Person:	John Price		Phone No:	(270) 441-5867
Mailing Address:	P.O. Box 1410	Paducah, Kentucky	4	2002-1410
J	Street	City/State		Zip
	LABORA	ΓORY RECORD #2		
Laboratory:	TestAmerica Laboratories, Inc.	Lab ID No:	MO00054 (E	PA ID Number)
Contact Person:	Elaine Wild			(314) 298-8566
			1110110 1101	(61.) 270 0000
Mailing Address:	13715 Rider Trail North	Earth City, MO		63045
171411111g 1 1001 0001	Street	City/State		Zip
	LABORA	FORY RECORD #3		
Labouate		Lab ID No:		
Laboratory:	_			
Contact Person:			Phone No:	
Mailing Address:	Street	City/State		Zip
	Bucci	City/Duite		~1P

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502)564-6716

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ , Facility Well/Spring Number		8000-520 ⁻	1	8000-5202		8000-5242		8000-5243				
Facility's Loc	cal Well or Spring Number (e.g., I	/W−1	, MW-2, etc	·.)	220		221		222		223	
Sample Sequence	Sample Sequence #			1		1		1		1		
If sample is a F	Slank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date and Time (Month/Day/Year hour: minut		tes)		1/22/2014 09	9:01	1/21/2014	13:00	1/21/2014	08:22	1/21/2014	14:04
Duplicate ("Y" or "N") ²					N		N		N		N	
Split ("Y" or "N") ³					N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW220SG2	-14	MW221S0	G2-14	MW222S0	G2-14	MW223SG	2-14
Laboratory Sample ID Number (if applicable)					C14022009001		C14021038001		C14021016001		C14021038002	
Date of Analysis (Month/Day/Year) For Volatile Organ		ganics Anal	ysis	1/23/2014		1/23/2014		1/23/2014		1/23/2014		
Gradient with respect to Monitored Unit (UP, DO		, NWC	WN, SIDE, UNKNOWN)		UP		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride(s)	т	mg/L	9056	24		39		36		36	
16984-48-8	Fluoride	т	mg/L	9214	0.19		0.18		0.24		0.19	
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.4		1.2		1		<1	
14808-79-8	Sulfate	Т	mg/L	9056	18		14		12		25	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.17		29.92		29.92		29.92	
s0145	Specific Conductance	Т	μMH0/cm	Field	386		385		364		390	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	KGWA NUMBER ¹ , Facility Well/Spring Number			8000-520	1	8000-5202		8000-5242		8000-5243		
Facility's Lo	acility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.)		F, etc.)	220		221		222		223		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.34		320.28		320.38		324.22	
N238	Dissolved Oxygen	Т	mg/L	Field	4.97		5.13		3.7		4.22	
s0266	Total Dissolved Solids	Т	mg/L	160.1	219		215		231		216	
s0296	рн	Т	Units	Field	6.49		6.51		6.59		6.59	
NS215	Eh	Т	mV	Field	381		421		700		359	
s0907	Temperature	Т	°C	Field	13		13.33		12.5		14.11	
7429-90-5	Aluminum	Т	mg/L	6020	<0.2		<0.2		1.39		<0.2	
7440-36-0	Antimony	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-38-2	Arsenic	Т	mg/L	7060	<0.001	В	<0.001	В	0.0015	В	<0.001	В
7440-39-3	Barium	Т	mg/L	6020	0.196		0.209		0.298		0.241	
7440-41-7	Beryllium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-42-8	Boron	Т	mg/L	6010	<0.2	*	<0.2	*	<0.2	*	<0.2	*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6010	22.9		20		19.1		20.5	
7440-47-3	Chromium	Т	mg/L	6020	<0.01	*	0.0367	*	0.0624	*	<0.01	*
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		<0.01		<0.001	
7440-50-8	Copper	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7439-89-6	Iron	т	mg/L	6010	<0.1	В	0.223	В	2.54	В	<0.1	В
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013		<0.0013		<0.0013	
7439-95-4	Magnesium	Т	mg/L	6010	9.57		8.97		8.38		8.7	
7439-96-5	Manganese	т	mg/L	6020	<0.005	*	<0.005	*	0.101	*	0.0143	*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8000-520	01	8000-52	:02	8000-52	42	8000-52	:43
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	0.00134		0.00546		0.00128		0.00273	
7440-02-0	Nickel	т	mg/L	6020	0.0364	*	0.0626	*	0.195	*	0.478	*
7440-09-7	Potassium	т	mg/L	6010	6.59		1.63		0.685		3.73	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005	В	<0.005	В	<0.005		<0.005	В
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001	*	<0.001	*	<0.001	*	<0.001	*
7440-23-5	Sodium	Т	mg/L	6010	39.5		41.6		42.6		42.4	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
67-64-1	Acetone	т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
107-02-8	Acrolein	Т	mg/L	8260	<0.01	*J	<0.01	*J	<0.01	*J	<0.01	*J
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-520)2	8000-52	242	8000-5	243
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	, MW-2, et	.c.)	220		221		222		223	i
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01	*	<0.01	*	<0.01	*	<0.01	*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-66-3	Chloroform	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-87-3	Methyl chloride	т	mg/L	8260	<0.005	J	<0.005	٦	<0.005	J	<0.005	J
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-52	42	8000-52	43
Facility's Lo	cal Well or Spring Number (e.g., M	IW-1	L, MW-2, et	c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5201		8000-5202)	8000-524	2	8000-524	13
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	0.551	*	1.23	*	0.237	*	0.677	*
12587-47-2	Gross Beta	т	pCi/L	9310	21.2	*	5.77	*	6.62	*	8.84	*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129	0.357	*	0.144	*	-0.00293	*	0.131	*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	0.186	В	0.778	В	0.35	В	0.253	*
14133-76-7	Technetium-99	т	pCi/L	RL-7100	32.1	*	17.3	*	1.19	*	17.5	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	0.0212	*	0.0397	*	0.0129	*	0.0382	*
10028-17-8	Tritium	Т	pCi/L	704R6	467	*	69.6	*	116	*	5.65	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36		<36		<36		<36	
57-12-5	Cyanide	Т	mg/L	9010	<0.04		<0.04		<0.04		<0.04	
20461-54-5	Iodide	т	mg/L	345.1	<2	В	<2	BJ	<2	BJ	<2	BJ
s0268	Total Organic Carbon	т	mg/L	9060	<1		<1		<1		<1	
s0586	Total Organic Halides	Т	mg/L	9020	0.0092		0.014		0.011		0.011	

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Frankfort, KY 40601 (502)564-6716

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	1	8004-48	320	8004-48	318	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g., 1	/W−1	, MW-2, etc	.)	224		369		370		372	
Sample Sequence	ce #				1		1		1		1	
If sample is a E	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/21/2014 09	9:33	1/14/2014	08:37	1/14/2014	13:06	1/14/2014 (08:35
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW224SG2	-14	MW369U0	G2-14	MW370U0	G2-14	MW372UG	i2-14
Laboratory Sam	poratory Sample ID Number (if applicable)						C1401401	13001	C1401401	19001	C14014014	4001
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis						1/19/20	14	1/19/20	14	1/19/201	14
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	SIDE		DOW	N	DOW	N	DOWN	I
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride(s)	т	mg/L	9056	34		36		42		48	
16984-48-8	Fluoride	т	mg/L	9214	0.25		0.19		0.13		0.16	
s0595	Nitrate & Nitrite	т	mg/L	9056	<1		<1		1.3		<1	
14808-79-8	Sulfate	т	mg/L	9056	17		8.1		18		140	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.92		29.88		29.88		29.88	
s0145	Specific Conductance	Т	μ MH 0/cm	Field	458		392		421		759	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	}	8004-4808	
Facility's Loca	al Well or Spring Number (e.g., MW	-1, l	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	320.33		324		324.05		324.04	
N238	Dissolved Oxygen	Т	mg/L	Field	3.66		0.94		3.74		0.75	
S0266	Total Dissolved Solids	т	mg/L	160.1	264		216		221		455	
s0296	рН	Т	Units	Field	6.45		6.22		6.11		6.44	
NS215	Eh	Т	mV	Field	449		438		443		740	
s0907	Temperature	Т	°C	Field	14.11		12.17		15.06		14.61	
7429-90-5	Aluminum	Т	mg/L	6020	<0.2		<0.2		<0.2		0.289	
7440-36-0	Antimony	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-38-2	Arsenic	Т	mg/L	7060	<0.001	В	0.00124		0.00118		0.00152	
7440-39-3	Barium	Т	mg/L	6020	0.244		0.418		0.209		0.0543	
7440-41-7	Beryllium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-42-8	Boron	T	mg/L	6010	<0.2	*	<0.2		<0.2		1.04	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6010	23.8		21.8		75.8		31.3	
7440-47-3	Chromium	T	mg/L	6020	<0.01	*	<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.0219		<0.001		<0.001	
7440-50-8	Copper	T	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7439-89-6	Iron	T	mg/L	6010	<0.1	В	1.91		<0.1		0.436	
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013		<0.0013		<0.0013	
7439-95-4	Magnesium	T	mg/L	6010	9.97		9.54		28.5		12.8	
7439-96-5	Manganese	Т	mg/L	6020	0.00881	*	0.206		<0.005		0.00697	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	t ¹ , Facility Well/Spring Number				8000-524	44	8004-48	20	8004-48	18	8004-48	808
Facility's I	ocal Well or Spring Number (e.g.	, MW-	·1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	0.00652	*	0.00677		<0.005		<0.005	
7440-09-7	Potassium	т	mg/L	6010	0.878		2.79		3.01		0.364	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		0.00646	
7440-22-4	Silver	Т	mg/L	6020	<0.001	*	<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6010	53.9		30.6		62.9		123	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01	J	<0.01		<0.01		<0.01	
67-64-1	Acetone	Т	mg/L	8260	<0.01	J	<0.01	UJ	<0.01	UJ	<0.01	UJ
107-02-8	Acrolein	Т	mg/L	8260	<0.01	*J	<0.01		<0.01		<0.01	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8000-524	4	8004-482	20	8004-48	318	8004-4	308
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.01	*	<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-66-3	Chloroform	T mg/L	8260	<0.005		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	T mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	T mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.005	J	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	T mg/L	8260	<0.001		<0.001		0.0015		0.0069	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-482	0	8004-48	18	8004-48	08
Facility's Loc	cal Well or Spring Number (e.g., 1	/IW-1	, MW-2, et	:c.)	224		369		370		372	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.17		<0.17		<0.17	
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.16		<0.16		<0.16	
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.17		<0.17		<0.17	
11141-16-5	PCB-1232	Т	ug/L	8082		*	<0.14		<0.13		<0.13	
53469-21-9	PCB-1242	Т	ug/L	8082		*	<0.1		<0.1		<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.12		<0.11		<0.11	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244		8004-4820)	8004-481	8	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.07		<0.07		<0.07	
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.05		<0.05		<0.05	
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.09		<0.09		<0.09	
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.124	*	0.87	*	1.17	*	1.04	*
12587-47-2	Gross Beta	Т	pCi/L	9310	7.04	*	26.8	*	11.4	*	102	*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129	0.0242	*	0.191	*	0.314	*	0.075	*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	0.791	В	0.685	*B	0.374	*B	0.703	*B
14133-76-7	Technetium-99	т	pCi/L	RL-7100	26.3	*	25.3	*	10.6	*	131	*
14269-63-7	Thorium-230	т	pCi/L	RL-7128	0.00196	*	-0.0225	*	0.0283	*	0.0131	*
10028-17-8	Tritium	т	pCi/L	704R6	396	*	-152	*	-270	*	156	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36		<36		<36		<36	
57-12-5	Cyanide	Т	mg/L	9010	<0.04		<0.04		<0.04		<0.04	
20461-54-5	Iodide	т	mg/L	345.1	<2	BJ	<2		<2		<2	
s0268	Total Organic Carbon	т	mg/L	9060	<1		1.9		<1		<1	
s0586	Total Organic Halides	Т	mg/L	9020	0.013		0.05		0.012		0.019	

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-48	309	8004-48	310	8004-480	04
Facility's Loc	cal Well or Spring Number (e.g., N	/W−1	., MW-2, etc	.)	373		384		385		386	
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		1/14/2014 10	0:07	1/23/2014	12:28	1/27/2014	09:20	1/23/2014 1	13:30
Duplicate ("Y'	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW373UG2	2-14	MW384S0	G2-14	MW385S0	32-14	MW386SG	2-14
Laboratory San	poratory Sample ID Number (if applicable)						C1402307	78001	C1402706	3001	C14023078	8002
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					1	1/24/20	14	1/30/20	14	1/24/201	14
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	OWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride(s)	Т	mg/L	9056	46		38		31		19	
16984-48-8	Fluoride	т	mg/L	9214	0.16		0.17		0.14		0.61	
s0595	Nitrate & Nitrite	т	mg/L	9056	<1		<1		<1		<1	
14808-79-8	Sulfate	т	mg/L	9056	190		23		20		47	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.88		30.5		30.17		30.5	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	959		480	_	424		645	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Lo	cal Well or Spring Number (e.g., MV	I-1 , 1	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	324.03		323.44		323.72		344.54	
N238	Dissolved Oxygen	Т	mg/L	Field	0.79		3.61		2.64		1.64	
s0266	Total Dissolved Solids	Т	mg/L	160.1	567		243		227		394	
s0296	Нд	Т	Units	Field	6.28		6.53		6.43		7.04	
NS215	Eh	Т	mV	Field	494		368		434		205	
s0907	Temperature	т	°C	Field	16.17		11.5		12.72		13.72	
7429-90-5	Aluminum	Т	mg/L	6020	<0.2		<0.2		<0.2		<0.2	
7440-36-0	Antimony	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-38-2	Arsenic	Т	mg/L	7060	0.00117		0.00156	В	0.00116	В	<0.001	В
7440-39-3	Barium	Т	mg/L	6020	0.0295		0.193		0.207		0.16	
7440-41-7	Beryllium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-42-8	Boron	Т	mg/L	6010	1.73		<0.2	*	<0.2	*	<0.2	*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6010	61.1		24.6		23.8		21.7	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01	*	<0.01	*	<0.01	*
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		<0.001		0.00138	
7440-50-8	Copper	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7439-89-6	Iron	т	mg/L	6010	0.114		0.468	В	0.107	В	0.495	В
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013		<0.0013		<0.0013	
7439-95-4	Magnesium	т	mg/L	6010	22.5		9.72		8.92		9.34	
7439-96-5	Manganese	т	mg/L	6020	0.0494		0.0177	*	<0.005	*	0.313	*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBE	ER ¹ , Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's	Local Well or Spring Number (e.g.	., MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	<0.005		<0.005	*	<0.005	*	<0.005	*
7440-09-7	Potassium	Т	mg/L	6010	2.42		1.49		1.6		0.337	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005	В	<0.005	В	<0.005	В
7782-49-2	Selenium	т	mg/L	6020	0.00564		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001	*	<0.001	*	<0.001	*
7440-23-5	Sodium	Т	mg/L	6010	59.5		47.1		43		103	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01		<0.01	J	<0.01		<0.01	J
67-64-1	Acetone	Т	mg/L	8260	<0.01	UJ	<0.01	J	<0.01	J	<0.01	J
107-02-8	Acrolein	Т	mg/L	8260	<0.01		<0.01	*J	<0.01		<0.01	*J
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.01		<0.01	*J	<0.01		<0.01	*J
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3	Toluene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005	*J	<0.005		<0.005	*J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4792	2	8004-480)9	8004-48	310	8004-48	304
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	373		384		385		386	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01		<0.01	*	<0.01		<0.01	*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005	J	<0.005		<0.005	J
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.005		<0.001		<0.005	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005	J	<0.005		<0.005	J
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005	J	<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.005	*	<0.001		<0.005	*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0064		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-480	9	8004-48	10	8004-48	04
Facility's Loc	cal Well or Spring Number (e.g., M	1W – 1	l, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.01		<0.01	J	<0.01		<0.01	J
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.17			*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.16			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.17			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.14			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.1			*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.12			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-4809		8004-481	0	8004-480)4
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	.c.)	373		384		385		386	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.07			*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.05			*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.09			*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.603	*	2.13	*	3.51	*	0.611	*
12587-47-2	Gross Beta	Т	pCi/L	9310	38.6	*	93.5	*	92.8	*	1.83	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129	-0.0187	*	0.316	*	0.35	*	0.0735	*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	0.495	*B	-0.159	В	-0.0456	В	0.113	В
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	37.8	*	143	*	134	*	15.8	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	0.0381	*	-0.00804	*	0.023	*	0.0509	*
10028-17-8	Tritium	Т	pCi/L	704R6	153	*	-4.7	*	-111	*	287	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36		<36		<36		<36	
57-12-5	Cyanide	Т	mg/L	9010	<0.04		<0.04	J	<0.04	J	<0.04	J
20461-54-5	Iodide	Т	mg/L	345.1	<2		<2		<2		<2	
s0268	Total Organic Carbon	Т	mg/L	9060	<1		<1		<1		10.2	D
s0586	Total Organic Halides	Т	mg/L	9020	0.019		0.018		0.012		0.24	

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-4815	5	8004-48	16	8004-481	12	8004-481	1	
Facility's Loc	al Well or Spring Number (e.g., 1	1W-1	L, MW-2, etc	:.)	387		388		389		390	
Sample Sequenc	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)∈	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		1/21/2014 08	3:50	1/21/2014	09:53	NA		1/27/2014 08	8:11
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW387SG2	-14	MW388S0	92-14	NA		MW390SG2	2-14
Laboratory Sam	ple ID Number (if applicable)		C140210170	001	C1402101	7002	NA		C14027063	002		
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						1/23/20	14	NA		1/30/2014	4
Gradient with	respect to Monitored Unit (UP, DO	NWO,	, SIDE, UNKN	OWN)	DOWN		DOWI	٧	SIDE		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	<2		<2			*	<2	
16887-00-6	Chloride(s)	т	mg/L	9056	46		33			*	100	
16984-48-8	Fluoride	Т	mg/L	9214	0.71		0.2			*	0.29	
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.1		1.1			*	3.7	
14808-79-8	Sulfate	т	mg/L	9056	32		21			*	40	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.92		29.92			*	30.17	
s0145	Specific Conductance	Т	μ MH 0/cm	Field	564		434			*	759	

¹AKGWA # is 0000-0000 for any type of blank.

Solid Waste Branch

14 Reilly Road

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

				(00110								
AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	324.08		323.99			*	324.03	
N238	Dissolved Oxygen	т	mg/L	Field	3.86		5.2			*	4.91	
s0266	Total Dissolved Solids	Т	mg/L	160.1	309		243			*	411	
s0296	рН	Т	Units	Field	6.22		6.16			*	6.68	
NS215	Eh	Т	mV	Field	616		558		_	*	695	
s0907	Temperature	Т	°C	Field	8.72		9.72			*	13.11	
7429-90-5	Aluminum	т	mg/L	6020	<0.2		<0.2			*	0.833	*
7440-36-0	Antimony	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-38-2	Arsenic	т	mg/L	7060	0.00379	В	<0.001	В		*	0.00229	В
7440-39-3	Barium	т	mg/L	6020	0.141		0.205			*	0.262	
7440-41-7	Beryllium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	В
7440-42-8	Boron	Т	mg/L	6010	<0.2	*	<0.2	*		*	<0.2	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6010	36.8		25.9			*	32.8	
7440-47-3	Chromium	т	mg/L	6020	<0.01	*	<0.01	*		*	<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-50-8	Copper	Т	mg/L	6020	<0.02		<0.02			*	<0.02	
7439-89-6	Iron	Т	mg/L	6010	<0.1	В	<0.1	В		*	0.5	
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013			*	<0.0013	
7439-95-4	Magnesium	Т	mg/L	6010	14.8		10.9			*	14.1	
7439-96-5	Manganese	Т	mg/L	6020	<0.005	*	<0.005	*		*	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBE	ER ¹ , Facility Well/Spring Number				8004-48	15	8004-48	16	8004-4812	2	8004-481	1
Facility's	Local Well or Spring Number (e.g.	, MW-	·1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-02-0	Nickel	т	mg/L	6020	<0.005	*	<0.005	*		*	<0.005	
7440-09-7	Potassium	т	mg/L	6010	1.83		1.85			*	0.465	
7440-16-6	Rhodium	т	mg/L	6020	<0.005	В	<0.005	В		*	<0.005	В
7782-49-2	Selenium	Т	mg/L	6020	0.00574		<0.005			*	0.00991	
7440-22-4	Silver	Т	mg/L	6020	<0.001	*	<0.001	*		*	<0.001	
7440-23-5	Sodium	Т	mg/L	6010	53.1		41.6			*	89.3	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02			*	<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02			*	<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01	J	<0.01	J		*	<0.01	
67-64-1	Acetone	Т	mg/L	8260	<0.01	J	<0.01	J		*	<0.01	J
107-02-8	Acrolein	Т	mg/L	8260	<0.01	*J	<0.01	*J		*	<0.01	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.01		<0.01			*	<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
1330-20-7	Xylenes	Т	mg/L	8260	<0.015		<0.015			*	<0.015	
100-42-5	Styrene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005	J	<0.005	J		*	<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-481	5	8004-48	16	8004-481	2	8004-481	1
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1, MW	-2, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	D C	nit METHOD OF SURE	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	T mg	g/L 8260	<0.005		<0.005			*	<0.005	
75-25-2	Tribromomethane	T mg	g/L 8260	<0.005		<0.005			*	<0.005	
74-83-9	Methyl bromide	T mg	g/L 8260	<0.005		<0.005			*	<0.005	
78-93-3	Methyl ethyl ketone	T mg	g/L 8260	<0.01	*	<0.01	*		*	<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	T mg	g/L 8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	T mg	g/L 8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	T mg	g/L 8260	<0.005		<0.005			*	<0.005	
67-66-3	Chloroform	T mg	g/L 8260	<0.005		<0.005			*	<0.001	
74-87-3	Methyl chloride	T mg	g/L 8260	<0.005	J	<0.005	J		*	<0.005	
156-59-2	cis-1,2-Dichloroethene	T mg	g/L 8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	T mg	g/L 8260	<0.005		<0.005			*	<0.005	
75-34-3	1,1-Dichloroethane	T mg	g/L 8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	T mg	g/L 8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	T mg	g/L 8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg	g/L 8260	<0.005		<0.005			*	<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg	g/L 8260	<0.005		<0.005			*	<0.005	J
71-55-6	Ethane, 1,1,1-Trichloro-	T mg	g/L 8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg	g/L 8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg	g/L 8260	<0.005		<0.005			*	<0.005	
75-01-4	Vinyl chloride	T mg	g/L 8260	<0.002		<0.002			*	<0.002	
127-18-4	Ethene, Tetrachloro-	T mg	g/L 8260	<0.005	*	<0.005	*		*	<0.001	
79-01-6	Ethene, Trichloro-	T mg	g/L 8260	0.0013		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815		8004-4816		8004-4812	2	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g., M	1 W−1	l, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01			*	<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01			*	<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005		<0.005			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.01		<0.01			*	<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002			*	<0.0002	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815	i	8004-4816	6	8004-4812	2	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g., 1	MW-1	, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	10.6	*	2.98	*		*	4.53	*
12587-47-2	Gross Beta	Т	pCi/L	9310	191	*	28.4	*		*	50.3	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129	-0.15	*	-0.0386	*		*	0.302	*
10098-97-2	Strontium-90	т	pCi/L	RL-7140	-0.0189	В	-0.0167	В		*	0.106	В
14133-76-7	Technetium-99	т	pCi/L	RL-7100	307	*	49.9	*		*	82.6	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	-0.0385	*	-0.0257	*		*	0.045	*
10028-17-8	Tritium	Т	pCi/L	704R6	-80.9	*	405	*		*	28.2	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36		<36			*	<36	
57-12-5	Cyanide	Т	mg/L	9010	<0.04		<0.04			*	<0.04	J
20461-54-5	Iodide	Т	mg/L	345.1	<2	BJ	<2	BJ		*	<2	
s0268	Total Organic Carbon	т	mg/L	9060	1		<1			*	1.8	
s0586	Total Organic Halides	т	mg/L	9020	0.024		0.0079			*	0.015	

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

For Official Use Only

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-480	5	8004-48	306	8004-48	807	8004-480	02	
Facility's Loc	cal Well or Spring Number (e.g., 1	ſW−1	, MW-2, etc	.)	391		392		393		394	
Sample Sequence	ce #				1		1		1		1	
If sample is a E	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/23/2014 08	3:17	1/22/2014	12:45	1/22/2014	13:51	1/22/2014 (08:11
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW391SG2	-14	MW392S0	G2-14	MW393S0	G2-14	MW394SG	2-14
Laboratory Sam	mple ID Number (if applicable)		C140230110	001	C1402201	14001	C1402201	4002	C1402200	7001		
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						1/24/20	14	1/24/20	14	1/23/201	14
Gradient with	respect to Monitored Unit (UP, DO	, NW	SIDE, UNKN	OWN)	DOWN		DOW	N	DOW	N	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride(s)	Т	mg/L	9056	50		48		17		48	
16984-48-8	Fluoride	т	mg/L	9214	0.15		0.19		0.17		0.13	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.1		<1		<1		1.3	
14808-79-8	Sulfate	т	mg/L	9056	12		9.5		15		10	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.5		30.17		30.17		30.18	
s0145	Specific Conductance	Т	μ MH 0/cm	Field	392		379	_	425		382	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807	,	8004-4802	
Facility's Loca	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-E	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	323.51		324.02		339.03		324.06	
N238	Dissolved Oxygen	Т	mg/L	Field	3.82		0.74		0.49		4.17	
s0266	Total Dissolved Solids	Т	mg/L	160.1	209		206		267		208	
s0296	рн	Т	Units	Field	6.42		6.54		6.53		6.14	
NS215	Eh	Т	mV	Field	650		333		155		832	
s0907	Temperature	Т	°C	Field	12.5		13.44		13.28		9.44	
7429-90-5	Aluminum	Т	mg/L	6020	<0.2		<0.2		<0.2		<0.2	
7440-36-0	Antimony	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-38-2	Arsenic	Т	mg/L	7060	0.00115	В	0.00124	В	0.00299	В	0.00122	В
7440-39-3	Barium	Т	mg/L	6020	0.239		0.209		0.111		0.232	
7440-41-7	Beryllium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-42-8	Boron	T	mg/L	6010	<0.2	*	<0.2	*	<0.2	*	<0.2	*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6010	26.1		25.6		11.3		25.6	
7440-47-3	Chromium	T	mg/L	6020	<0.01	*	<0.01	*	<0.01	*	<0.01	*
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7439-89-6	Iron	Т	mg/L	6010	<0.1	В	<0.1	В	2.71	В	0.343	В
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013		<0.0013		<0.0013	
7439-95-4	Magnesium	Т	mg/L	6010	10.3		9.97		3.36		10.3	
7439-96-5	Manganese	Т	mg/L	6020	<0.005	*	0.108	*	0.0388	*	0.00665	*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-480	05	8004-48	06	8004-48	07	8004-48	02
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-09-7	Potassium	т	mg/L	6010	1.5		1.87		0.467		1.18	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005	В	<0.005	В	<0.005	В	<0.005	В
7782-49-2	Selenium	Т	mg/L	6020	0.00566		<0.005		<0.005		0.00563	
7440-22-4	Silver	Т	mg/L	6020	<0.001	*	<0.001	*	<0.001	*	<0.001	*
7440-23-5	Sodium	Т	mg/L	6010	30.5		29.3		77.1		28.8	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
67-64-1	Acetone	Т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
107-02-8	Acrolein	Т	mg/L	8260	<0.01	*J	<0.01	*J	<0.01	*J	<0.01	*J
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.01	*J	<0.01	*J	<0.01	*J	<0.01	
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005	*J	<0.005	*J	<0.005	*J	<0.005	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-480	5	8004-480	06	8004-48	307	8004-4	802
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1, MW-2, e	tc.)	391		392		393		394	+
CAS RN⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.01	*	<0.01	*	<0.01	*	<0.01	*
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-66-3	Chloroform	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-87-3	Methyl chloride	T mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	T mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
79-01-6	Ethene, Trichloro-	T mg/L	8260	0.018		0.019		<0.001		0.0074	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

ſ	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-480	6	8004-48	07	8004-48	02
ľ	Facility's Loca	al Well or Spring Number (e.g., N	w−1	L, MW-2, et	:c.)	391		392		393		394	
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
ľ	591-78-6	2-Hexanone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
	74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
	124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.01	7	<0.01	7	<0.01	J	<0.01	
Ĩ	96-12-8	Propane, 1,2-Dibromo-3-chloro	T	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
	78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	10061-01-5	cis-1,3-Dichloro-1-propene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4	Trichlorofluoromethane	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
L	96-18-4	1,2,3-Trichloropropane	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	106-46-7	Benzene, 1,4-Dichloro-	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
L	1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
	12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
	11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
	11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
	53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
	12672-29-6	PCB-1248	T	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4805		8004-4806	;	8004-480	7	8004-480)2
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	:c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	2.03	*	0.212	*	2.09	*	1.99	*
12587-47-2	Gross Beta	Т	pCi/L	9310	4.32	*	6.63	*	5.41	*	5.63	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129	0.25	*	0.00353	*	0.188	*	-0.0832	*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	0.525	В	-0.539	В	-0.387	В	-0.1	В
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	16.8	*	11.7	*	7.83	*	18.8	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	0.0244	*	0.028	*	0.0535	*	0.00975	*
10028-17-8	Tritium	Т	pCi/L	704R6	-69.6	*	-148	*	-477	*	106	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36		<36		<36		<36	
57-12-5	Cyanide	Т	mg/L	9010	<0.04	-	<0.04		<0.04		<0.04	
20461-54-5	Iodide	Т	mg/L	345.1	<2		<2	В	<2	В	<2	В
s0268	Total Organic Carbon	Т	mg/L	9060	<1		<1		2.6		<1	
s0586	Total Organic Halides	Т	mg/L	9020	0.022		0.03		0.033		0.019	
		\prod										

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Frankfort, KY 40601 (502)564-6716

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4801	1	8004-48	303	8004-48	17	0000-000	00
Facility's Loc	cal Well or Spring Number (e.g., I	w−1	, MW-2, etc	.)	395		396		397		E. BLAN	K
Sample Sequence	e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		Е	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/22/2014 12	2:17	1/22/2014	09:14	1/22/2014	09:59	1/23/2014 0	6:48
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW395SG2	-14	MW396S0	G2-14	MW397S0	G2-14	RI1SG2-1	14
Laboratory Sam	mple ID Number (if applicable)		C140220110	001	C1402200	7002	C1402200	9002	C14023010	001		
Date of Analys	sis (Month/Day/Year) For Volatile	ysis	1/23/2014	ļ	1/23/20	14	1/23/20	14	1/24/201	4		
Gradient with	respect to Monitored Unit (UP, Do	, NWC	, SIDE, UNKN	OWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2			*
16887-00-6	Chloride(s)	Т	mg/L	9056	48		86		41			*
16984-48-8	Fluoride	Т	mg/L	9214	0.12		0.53		0.14			*
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.7		<1		1.3			*
14808-79-8	Sulfate	Т	mg/L	9056	9.8		24		12			*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.18		30.18		30.17			*
s0145	Specific Conductance	т	μ MH0/cm	Field	387		805		338			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817	7	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., MV	I-1 , I	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	324.53		369.43		323.96			*
N238	Dissolved Oxygen	Т	mg/L	Field	7.07		2.07		5.43			*
s0266	Total Dissolved Solids	Т	mg/L	160.1	213		465		190			*
s0296	Нд	Т	Units	Field	6.15		6.5		6.34			*
NS215	Eh	Т	mV	Field	803		549		389			*
s0907	Temperature	Т	°C	Field	9.56		9.67		14.5			*
7429-90-5	Aluminum	Т	mg/L	6020	<0.2		<0.2		<0.2		<0.2	
7440-36-0	Antimony	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-38-2	Arsenic	Т	mg/L	7060	0.00105	В	0.00213	В	<0.001	В	<0.001	В
7440-39-3	Barium	Т	mg/L	6020	0.25		0.414		0.13		<0.005	
7440-41-7	Beryllium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-42-8	Boron	Т	mg/L	6010	<0.2	*	<0.2	*	<0.2	*	<0.2	*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6010	27		35.9		19.5		<1	
7440-47-3	Chromium	Т	mg/L	6020	<0.01	*	<0.01	*	<0.01	*	<0.01	*
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.00154		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7439-89-6	Iron	Т	mg/L	6010	<0.1	В	1.66	В	<0.1	В	<0.1	В
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013		<0.0013		<0.0013	
7439-95-4	Magnesium	Т	mg/L	6010	10.8		15.5		8.08		<0.025	
7439-96-5	Manganese	Т	mg/L	6020	<0.005	*	0.354	*	<0.005	*	<0.005	*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMB	ER ¹ , Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-00	00
Facility's	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	395		396		397		E. BLAI	ΝK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-02-0	Nickel	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-09-7	Potassium	т	mg/L	6010	1.58		0.902		1.9		<0.2	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005	В	<0.005	В	<0.005	В	<0.005	В
7782-49-2	Selenium	Т	mg/L	6020	<0.005		0.00748		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001	*	<0.001	*	<0.001	*	<0.001	*
7440-23-5	Sodium	Т	mg/L	6010	27.2		107		32.7		<1	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-62-2	Vanadium	T	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	T	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
67-64-1	Acetone	T	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
107-02-8	Acrolein	Т	mg/L	8260	<0.01	*J	<0.01	*J	<0.01	*J	<0.01	*J
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	*J
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	*J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480	03	8004-48	317	0000-00	000
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01	*	<0.01	*	<0.01	*	<0.01	*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	J
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0046		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-48	17	0000-00	000
Facility's Lo	cal Well or Spring Number (e.g., M	IW-1	L, MW-2, et	c.)	395		396		397		E. BLA	νK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	J
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4801		8004-4803	1	8004-481	7	0000-000)0
Facility's Loc	cal Well or Spring Number (e.g.,	MW−1	, MW-2, et	.c.)	395		396		397		E. BLAN	K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.237	*	-0.717	*	0.736	*	-0.816	*
12587-47-2	Gross Beta	Т	pCi/L	9310	9.4	*	3.08	*	10	*	-0.31	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129	0.116	*	0.255	*	0.0698	*	-0.0478	*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	0.148	В	0.0221	В	-0.48	В	0.77	В
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	20	*	8.86	*	33.7	*	9.69	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	0.052	*	0.0299	*	0.0703	*	0.0208	*
10028-17-8	Tritium	Т	pCi/L	704R6	-211	*	80	*	-55.5	*	16.9	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36		<36		<36			*
57-12-5	Cyanide	Т	mg/L	9010	<0.04		<0.04		<0.04			*
20461-54-5	Iodide	Т	mg/L	345.1	<2	В	<2	В	<2	В	<2	
s0268	Total Organic Carbon	Т	mg/L	9060	<1		6.1		<1			*
s0586	Total Organic Halides	Т	mg/L	9020	0.012		0.13		0.013			*
		Ш										
		Ш										

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Frankfort, KY 40601 (502)564-6716

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., N	w−1	L, MW-2, etc	·)	F. BLAN	K	T. BLAN	K 1	T. BLAN	(2	T. BLANK	(3
Sample Sequenc	e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	F		Т		Т		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/23/2014 0	8:08	1/21/2014	07:00	1/21/2014 0	7:05	1/22/2014 0	6:50
Duplicate ("Y"	or "N") ²				N		N		N		N	-
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				FB1SG2-	14	TB1SG2	-14	TB2SG2-	14	TB3SG2-	14
Laboratory Sam	uple ID Number (if applicable)		C14023010	0002	C1402104	0001	C14021034	1001	C14022015	001		
Date of Analys	sis (Month/Day/Year) For Volatile	ysis	1/24/201	4	1/23/20	14	1/23/201	4	1/23/201	4		
Gradient with	respect to Monitored Unit (UP, DO	, NWC	, SIDE, UNKN	OWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9214		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	Т	μ MHO /cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., MV	I-1, I	MW-2, BLANK-	F, etc.)	F. BLAN	<	T. BLANK	. 1	T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	рн	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020	<0.2			*		*		*
7440-36-0	Antimony	Т	mg/L	6020	<0.005			*		*		*
7440-38-2	Arsenic	Т	mg/L	7060	<0.001	В		*		*		*
7440-39-3	Barium	Т	mg/L	6020	<0.005			*		*		*
7440-41-7	Beryllium	Т	mg/L	6020	<0.001			*		*		*
7440-42-8	Boron	Т	mg/L	6010	<0.2	*		*		*		*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6010	<1			*		*		*
7440-47-3	Chromium	Т	mg/L	6020	<0.01	*		*		*		*
7440-48-4	Cobalt	Т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	Т	mg/L	6020	<0.02			*		*		*
7439-89-6	Iron	Т	mg/L	6010	<0.1	В		*		*		*
7439-92-1	Lead	Т	mg/L	6020	<0.0013			*		*		*
7439-95-4	Magnesium	Т	mg/L	6010	<0.025			*		*		*
7439-96-5	Manganese	Т	mg/L	6020	<0.005	*		*		*		*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA N	NUMBER	1, Facility Well/Spring Number				0000-00	00	0000-00	00	0000-00	00	0000-00	00
Facilit	ty's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	F. BLAN	1K	T. BLAN	K 1	T. BLAN	K 2	T. BLAN	K 3
CAS R	RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98	8-7	Molybdenum	т	mg/L	6020	<0.001			*		*		*
7440-02	2-0	Nickel	т	mg/L	6020	<0.005	*		*		*		*
7440-09	9-7	Potassium	т	mg/L	6010	<0.2			*		*		*
7440-16	6-6	Rhodium	Т	mg/L	6020	<0.005	В		*		*		*
7782-49	9-2	Selenium	Т	mg/L	6020	<0.005			*		*		*
7440-22	2-4	Silver	Т	mg/L	6020	<0.001	*		*		*		*
7440-23	3-5	Sodium	Т	mg/L	6010	<1			*		*		*
7440-25	5-7	Tantalum	Т	mg/L	6020	<0.005			*		*		*
7440-28	8-0	Thallium	Т	mg/L	6020	<0.002			*		*		*
7440-61	1-1	Uranium	T	mg/L	6020	<0.001			*		*		*
7440-62	2-2	Vanadium	T	mg/L	6020	<0.02			*		*		*
7440-66	6-6	Zinc	T	mg/L	6020	<0.02			*		*		*
108-05-	-4	Vinyl acetate	Т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
67-64-1	1	Acetone	Т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
107-02-	-8	Acrolein	Т	mg/L	8260	<0.01	*J	<0.01	*J	<0.01	*J	<0.01	*J
107-13-	-1	Acrylonitrile	Т	mg/L	8260	<0.01	*J	<0.01		<0.01		<0.01	
71-43-2	2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-	-7	Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20	0-7	Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-	-5	Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-	-3	Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	5	Chlorobromomethane	T	mg/L	8260	<0.005	*J	<0.005	J	<0.005	J	<0.005	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			0000-000	0	0000-000	00	0000-00	000	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g.,	tc.)	F. BLAN	K	T. BLAN	< 1	T. BLAN	NK 2	T. BLAN	VK 3	
CAS RN⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.01	*	<0.01	*	<0.01	*	<0.01	*
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-66-3	Chloroform	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-87-3	Methyl chloride	T mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	T mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	*
79-01-6	Ethene, Trichloro-	T mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-0000	0	0000-00	00	0000-00	00
Facility's Loc						(T. BLANK	1	T. BLAN	K 2	T. BLANK 3	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.01	J	<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000	0	0000-0000		0000-0000)	0000-000	0
Facility's Loc	cal Well or Spring Number (e.g., N	.c.)	F. BLANK	(T. BLANK 1		T. BLANK	2	T. BLANK	. 3		
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.276	*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	0.644	*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129	-0.042	*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	0.134	В		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	5.77	*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	0.00322	*		*		*		*
10028-17-8	Tritium	Т	pCi/L	704R6	-461	*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9010		*		*		*		*
20461-54-5	Iodide	Т	mg/L	345.1	<2			*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

For Official Use Only

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	WA NUMBER ¹ , Facility Well/Spring Number cility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.					00	0000-00	00	0000-000	00	8004-480)5
Facility's Loc	al Well or Spring Number (e.g., N	/W−1	, MW-2, etc	:.)	T. BLANK	(4	T. BLANI	₹5	T. BLANK	(6	391	
Sample Sequenc	e #				1		1		1		2	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	ethod, or (E)	quipment	Т		Т		Т		NA		
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		1/22/2014 0	6:45	1/23/2014 (06:45	1/27/2014 0	6:47	1/23/2014 0	8:17
Duplicate ("Y"	or "N") ²				N		N		N		Y	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				TB4SG2-	14	TB5SG2-14		TB6SG2-14		MW391DSG	2-14
Laboratory Sam	ple ID Number (if applicable)				C14022010	0001	C1402307	9001	C14027062	2001	C14023011	002
Date of Analys	is (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	1/23/201	4	1/24/20	14	1/30/201	4	1/24/201	4
Gradient with	respect to Monitored Unit (UP, DO	NWO	, SIDE, UNKN	IOWN)	NA		NA		NA		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*	<2	
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*	51	
16984-48-8	Fluoride	т	mg/L	9214		*		*		*	0.14	
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*	1.1	
14808-79-8	Sulfate	т	mg/L	9056		*		*		*	11	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*	30.5	
s0145	Specific Conductance	Т	μ MHO /cm	Field		*		*		*	392	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	8004-4805	
Facility's Lo	ocal Well or Spring Number (e.g., MV	7-1, I	MW-2, BLANK-	F, etc.)	T. BLANK	4	T. BLANK	. 5	T. BLANK	6	391	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*	323.51	
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*	3.82	
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*	213	
s0296	рн	т	Units	Field		*		*		*	6.42	
NS215	Eh	т	mV	Field		*		*		*	650	
s0907	Temperature	т	°C	Field		*		*		*	12.5	
7429-90-5	Aluminum	Т	mg/L	6020		*		*		*	<0.2	
7440-36-0	Antimony	Т	mg/L	6020		*		*		*	<0.005	
7440-38-2	Arsenic	Т	mg/L	7060		*		*		*	0.00102	В
7440-39-3	Barium	Т	mg/L	6020		*		*		*	0.229	
7440-41-7	Beryllium	Т	mg/L	6020		*		*		*	<0.001	
7440-42-8	Boron	Т	mg/L	6010		*		*		*	<0.2	*
7440-43-9	Cadmium	Т	mg/L	6020		*		*		*	<0.001	
7440-70-2	Calcium	т	mg/L	6010		*		*		*	25.4	
7440-47-3	Chromium	Т	mg/L	6020		*		*		*	<0.01	*
7440-48-4	Cobalt	Т	mg/L	6020		*		*		*	<0.001	
7440-50-8	Copper	Т	mg/L	6020		*		*		*	<0.02	
7439-89-6	Iron	т	mg/L	6010		*		*		*	<0.1	В
7439-92-1	Lead	Т	mg/L	6020		*		*		*	<0.0013	
7439-95-4	Magnesium	т	mg/L	6010		*		*		*	10.1	
7439-96-5	Manganese	Т	mg/L	6020		*		*		*	<0.005	*
7439-97-6	Mercury	т	mg/L	7470		*		*		*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUM	BER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	8004-48	05
Facility'	s Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANI	K 4	T. BLAN	K 5	T. BLANI	K 6	391	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	,	Molybdenum	Т	mg/L	6020		*		*		*	<0.001	
7440-02-0	,	Nickel	Т	mg/L	6020		*		*		*	<0.005	*
7440-09-7	,	Potassium	Т	mg/L	6010		*		*		*	1.49	
7440-16-6	;	Rhodium	Т	mg/L	6020		*		*		*	<0.005	В
7782-49-2	!	Selenium	Т	mg/L	6020		*		*		*	0.00524	
7440-22-4	:	Silver	Т	mg/L	6020		*		*		*	<0.001	*
7440-23-5	5	Sodium	Т	mg/L	6010		*		*		*	31.4	
7440-25-7	'	Tantalum	Т	mg/L	6020		*		*		*	<0.005	
7440-28-0)	Thallium	Т	mg/L	6020		*		*		*	<0.002	
7440-61-1		Uranium	Т	mg/L	6020		*		*		*	<0.001	
7440-62-2	2	Vanadium	Т	mg/L	6020		*		*		*	<0.02	
7440-66-6	i	Zinc	Т	mg/L	6020		*		*		*	<0.02	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.01	J	<0.01	J	<0.01		<0.01	J
67-64-1		Acetone	T	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
107-02-8		Acrolein	T	mg/L	8260	<0.01	*J	<0.01	*J	<0.01		<0.01	*J
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.01		<0.01	*J	<0.01		<0.01	*J
71-43-2		Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	'	Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5		Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3		Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.005	J	<0.005	*J	<0.005		<0.005	*J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000	0	0000-000	00	0000-00	000	8004-4	305
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	T. BLANK	4	T. BLAN	(5	T. BLAN	IK 6	391	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01	*	<0.01	*	<0.01		<0.01	*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005	J	<0.005		<0.005	J
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.005		<0.005		<0.001		<0.005	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005	J	<0.005	J	<0.005		<0.005	J
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005	J	<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.005	*	<0.005	*	<0.001		<0.005	*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		0.018	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-0000)	0000-00	00	8004-48	05
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	.c.)	T. BLANK	4	T. BLANK	5	T. BLAN	K 6	391	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.01		<0.01	J	<0.01		<0.01	J
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000	0	0000-0000		0000-0000)	8004-480)5
Facility's Loc	al Well or Spring Number (e.g., 1	.c.)	T. BLANK	4	T. BLANK 5	1	T. BLANK	6	391			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*		*	-0.305	*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*	2.29	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129		*		*		*	0.361	*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140		*		*		*	0.323	В
14133-76-7	Technetium-99	Т	pCi/L	RL-7100		*		*		*	19.5	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128		*		*		*	0.0244	*
10028-17-8	Tritium	Т	pCi/L	704R6		*		*		*	6.58	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*	<36	
57-12-5	Cyanide	Т	mg/L	9010		*		*		*	<0.04	J
20461-54-5	Iodide	Т	mg/L	345.1		*		*		*	<2	
s0268	Total Organic Carbon	т	mg/L	9060		*		*		*	<1	
s0586	Total Organic Halides	т	mg/L	9020		*		*		*	0.019	
											_	

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-5201 MW22	0 MW220SG2-14	Boron	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	Χ	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		PCB, Total		Analysis of constituent not required and not perform
		PCB-1016		Analysis of constituent not required and not perform
		PCB-1221		Analysis of constituent not required and not perform
		PCB-1232		Analysis of constituent not required and not perform
		PCB-1242		Analysis of constituent not required and not perform
		PCB-1248		Analysis of constituent not required and not perform
		PCB-1254		Analysis of constituent not required and not perform
		PCB-1260		Analysis of constituent not required and not perform
		PCB-1268		Analysis of constituent not required and not perform
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.274. Rad error is 0.253.
		Gross beta		TPU is 3.37. Rad error is 2.63.
		lodine-131		Analysis of constituent not required and not perform
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.278. Rad error is 0.201.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0679. Rad error is 0.0393.
		Technetium-99		TPU is 11.3. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.138. Rad error is 0.0524.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 639. Rad error is 637.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5202 MW221	MW221SG2-14	Boron	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance crit
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		PCB, Total		Analysis of constituent not required and not perform
		PCB-1016		Analysis of constituent not required and not perform
		PCB-1221		Analysis of constituent not required and not perform
		PCB-1232		Analysis of constituent not required and not perform
		PCB-1242		Analysis of constituent not required and not perform
		PCB-1248		Analysis of constituent not required and not perform
		PCB-1254		Analysis of constituent not required and not perform
		PCB-1260		Analysis of constituent not required and not perform
		PCB-1268		Analysis of constituent not required and not perform
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.643. Rad error is 0.597.
		Gross beta		TPU is 1.13. Rad error is 0.976.
		lodine-131		Analysis of constituent not required and not perform
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.314. Rad error is 0.252.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.277. Rad error is 0.152.
		Technetium-99		TPU is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.14. Rad error is 0.0565.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 628. Rad error is 627.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5242 MW222	MW222SG2-14	Boron	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance crit
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance crit
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		PCB, Total		Analysis of constituent not required and not perform
		PCB-1016		Analysis of constituent not required and not perform
		PCB-1221		Analysis of constituent not required and not perform
		PCB-1232		Analysis of constituent not required and not perform
		PCB-1242		Analysis of constituent not required and not perform
		PCB-1248		Analysis of constituent not required and not perform
		PCB-1254		Analysis of constituent not required and not perform
		PCB-1260		Analysis of constituent not required and not perform
		PCB-1268		Analysis of constituent not required and not perform
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.135. Rad error is 0.127.
		Gross beta		TPU is 1.28. Rad error is 1.1.
		lodine-131		Analysis of constituent not required and not perform
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.225. Rad error is 0.00585.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.127. Rad error is 0.0722.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.141. Rad error is 0.0471.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 631. Rad error is 631.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5243 MW223 MW223SG2-14		Boron	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Nickel	X	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance crit
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		PCB, Total		Analysis of constituent not required and not perform
		PCB-1016		Analysis of constituent not required and not perform
		PCB-1221		Analysis of constituent not required and not perform
		PCB-1232		Analysis of constituent not required and not perform
		PCB-1242		Analysis of constituent not required and not perform
		PCB-1248		Analysis of constituent not required and not perform
		PCB-1254		Analysis of constituent not required and not perform
		PCB-1260		Analysis of constituent not required and not perform
		PCB-1268		Analysis of constituent not required and not perform
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.363. Rad error is 0.339.
		Gross beta		TPU is 1.64. Rad error is 1.38.
		lodine-131		Analysis of constituent not required and not perform
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.242. Rad error is 0.154.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0919. Rad error is 0.0526.
		Technetium-99		TPU is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.136. Rad error is 0.0482.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 800. Rad error is 800.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

· ·	cility mple ID	Constituent	Flag	Description
8000-5244 MW224 MW2	24SG2-14	Boron	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	X	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0731. Rad error is 0.069.
		Gross beta		TPU is 1.35. Rad error is 1.16.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.244. Rad error is 0.0484.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.281. Rad error is 0.154.
		Technetium-99		TPU is 11.1. Rad error is 11.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.135. Rad error is 0.0252.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 640. Rad error is 639.
8004-4820 MW369 MW3	69UG2-14	Gross alpha	*	TPU is 0.578. Rad error is 0.55.
		Gross beta		TPU is 4.14. Rad error is 3.46.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	*	TPU is 0.252. Rad error is 0.199.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.245. Rad error is 0.136.
		Technetium-99		TPU is 12.1. Rad error is 12.1.
		Thorium-230	*	TPU is 0.141. Rad error is 0.0214.
		Tritium	*	TPU is 646. Rad error is 646.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4818 MW370 MW370UG2-14		Gross alpha	*	TPU is 0.817. Rad error is 0.781.
		Gross beta		TPU is 2.14. Rad error is 1.91.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	*	TPU is 0.268. Rad error is 0.217.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.136. Rad error is 0.0772.
		Technetium-99	*	TPU is 11.6. Rad error is 11.6.
		Thorium-230	*	TPU is 0.14. Rad error is 0.0567.
		Tritium	*	TPU is 635. Rad error is 634.
004-4808 MW372	2 MW372UG2-14	Gross alpha	*	TPU is 0.535. Rad error is 0.49.
		Gross beta		TPU is 11.7. Rad error is 7.85.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	*	TPU is 0.217. Rad error is 0.15.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.251. Rad error is 0.138.
		Technetium-99		TPU is 15.4. Rad error is 15.1.
		Thorium-230	*	TPU is 0.135. Rad error is 0.044.
		Tritium	*	TPU is 647. Rad error is 647.
004-4792 MW373	3 MW373UG2-14	Gross alpha	*	TPU is 0.296. Rad error is 0.241.
		Gross beta		TPU is 5.48. Rad error is 2.72.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	*	TPU is 0.204. Rad error is 0.0375.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.178. Rad error is 0.0999.
		Technetium-99		TPU is 12.5. Rad error is 12.5.
		Thorium-230	*	TPU is 0.144. Rad error is 0.0659.
		Tritium	*	TPU is 646. Rad error is 646.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4809 MW384 MW384SG2-14		Boron	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	Χ	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance crit
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance crit
		Chlorobromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance crit
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		PCB, Total		Analysis of constituent not required and not perform
		PCB-1016		Analysis of constituent not required and not perform
		PCB-1221		Analysis of constituent not required and not perform
		PCB-1232		Analysis of constituent not required and not perform
		PCB-1242		Analysis of constituent not required and not perform
		PCB-1248		Analysis of constituent not required and not perform
		PCB-1254		Analysis of constituent not required and not perform
		PCB-1260		Analysis of constituent not required and not perform
		PCB-1268		Analysis of constituent not required and not perform
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.758. Rad error is 0.635.
		Gross beta		TPU is 11.3. Rad error is 6.45.
		lodine-131		Analysis of constituent not required and not perform
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.311. Rad error is 0.246.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0589. Rad error is 0.0352.
		Technetium-99		TPU is 14.9. Rad error is 14.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.137. Rad error is 0.00522.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 679. Rad error is 679.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4810 MW385 MW385SG2-14		Boron	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	X	Other specific flags and footnotes may be required to properly define the results.
		Manganese	X	Other specific flags and footnotes may be required t properly define the results.
		Nickel	Χ	Other specific flags and footnotes may be required t properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not perform
		PCB-1016		Analysis of constituent not required and not perform
		PCB-1221		Analysis of constituent not required and not perform
		PCB-1232		Analysis of constituent not required and not perform
		PCB-1242		Analysis of constituent not required and not perform
		PCB-1248		Analysis of constituent not required and not perforn
		PCB-1254		Analysis of constituent not required and not perform
		PCB-1260		Analysis of constituent not required and not perform
		PCB-1268		Analysis of constituent not required and not perform
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.22. Rad error is 1.01.
		Gross beta		TPU is 11.3. Rad error is 6.47.
		lodine-131		Analysis of constituent not required and not perform
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.298. Rad error is 0.228.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0168. Rad error is 0.00994.
		Technetium-99		TPU is 14.6. Rad error is 14.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.139. Rad error is 0.0552.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 637. Rad error is 637.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4804 MW386 MW38	86 MW386SG2-14	Boron	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	Χ	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Chlorobromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance crit
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance crit
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance crit
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.359. Rad error is 0.339.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.4. Rad error is 0.356.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.262. Rad error is 0.147.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0414. Rad error is 0.0241.
		Technetium-99		TPU is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.138. Rad error is 0.0514.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 643. Rad error is 642.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4815 MW387 MW387SG2-14		Boron	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance crit
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		PCB, Total		Analysis of constituent not required and not perform
		PCB-1016		Analysis of constituent not required and not perform
		PCB-1221		Analysis of constituent not required and not perform
		PCB-1232		Analysis of constituent not required and not perform
		PCB-1242		Analysis of constituent not required and not perform
		PCB-1248		Analysis of constituent not required and not perform
		PCB-1254		Analysis of constituent not required and not perform
		PCB-1260		Analysis of constituent not required and not perform
		PCB-1268		Analysis of constituent not required and not perform
		Gross alpha		TPU is 3.21. Rad error is 2.45.
		Gross beta		TPU is 21.3. Rad error is 9.77.
		lodine-131		Analysis of constituent not required and not perform
		Radium-226	UT	Indicates analyte/nuclide was analyzed for, but not detected. Tracer recovery is < or equal to 30% or > equal to 105%. TPU is 0.306. Rad error is 0.241.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.00697. Rad error is 0.00411.
		Technetium-99		TPU is 19.7. Rad error is 18.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.14. Rad error is 0.0558.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 635. Rad error is 635.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4816 MW38	88 MW388SG2-14	Boron	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	X	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance crit
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance crit
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance crit
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.31. Rad error is 1.17.
		Gross beta		TPU is 4.26. Rad error is 3.19.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	UT	Indicates analyte/nuclide was analyzed for, but not detected. Tracer recovery is < or equal to 30% or > equal to 105%. TPU is 0.477. Rad error is 0.0772.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.00613. Rad error is 0.00361.
		Technetium-99		TPU is 11.9. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.136. Rad error is 0.0301.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 639. Rad error is 638.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no samp was collected.
		Chloride		During sampling, the well was dry; therefore, no samp was collected.
		Fluoride		During sampling, the well was dry; therefore, no samp was collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no samp was collected.
		Sulfate		During sampling, the well was dry; therefore, no samp was collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no samp was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no samp was collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no samp was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no samp was collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no samp was collected.
		рН		During sampling, the well was dry; therefore, no samp was collected.
		Eh		During sampling, the well was dry; therefore, no samp was collected.
		Temperature		During sampling, the well was dry; therefore, no samp was collected.
		Aluminum		During sampling, the well was dry; therefore, no samp was collected.
		Antimony		During sampling, the well was dry; therefore, no samp was collected.
		Arsenic		During sampling, the well was dry; therefore, no samp was collected.
		Barium		During sampling, the well was dry; therefore, no samp was collected.
		Beryllium		During sampling, the well was dry; therefore, no samp was collected.
		Boron		During sampling, the well was dry; therefore, no samp was collected.
		Cadmium		During sampling, the well was dry; therefore, no samp was collected.
		Calcium		During sampling, the well was dry; therefore, no samp was collected.
		Chromium		During sampling, the well was dry; therefore, no samp was collected.
		Cobalt		During sampling, the well was dry; therefore, no samp was collected.
		Copper		During sampling, the well was dry; therefore, no samp was collected.
		Iron		During sampling, the well was dry; therefore, no samp was collected.
		Lead		During sampling, the well was dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		Magnesium		During sampling, the well was dry; therefore, no samp was collected.
		Manganese		During sampling, the well was dry; therefore, no samp was collected.
		Mercury		During sampling, the well was dry; therefore, no samp was collected.
		Molybdenum		During sampling, the well was dry; therefore, no samp was collected.
		Nickel		During sampling, the well was dry; therefore, no samp was collected.
		Potassium		During sampling, the well was dry; therefore, no samp was collected.
		Rhodium		During sampling, the well was dry; therefore, no samp was collected.
		Selenium		During sampling, the well was dry; therefore, no samp was collected.
		Silver		During sampling, the well was dry; therefore, no samp was collected.
		Sodium		During sampling, the well was dry; therefore, no samp was collected.
		Tantalum		During sampling, the well was dry; therefore, no samp was collected.
		Thallium		During sampling, the well was dry; therefore, no samp was collected.
		Uranium		During sampling, the well was dry; therefore, no samp was collected.
		Vanadium		During sampling, the well was dry; therefore, no samp was collected.
		Zinc		During sampling, the well was dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no samp was collected.
		Acetone		During sampling, the well was dry; therefore, no samp was collected.
		Acrolein		During sampling, the well was dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no samp was collected.
		Benzene		During sampling, the well was dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no samp was collected.
		Xylenes		During sampling, the well was dry; therefore, no samp was collected.
		Styrene		During sampling, the well was dry; therefore, no samp was collected.
		Toluene		During sampling, the well was dry; therefore, no samp was collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		Tribromomethane		During sampling, the well was dry; therefore, no samp was collected.
		Methyl bromide		During sampling, the well was dry; therefore, no samp was collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no samp was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no samp was collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no samp was collected.
		Chloroethane		During sampling, the well was dry; therefore, no samp was collected.
		Chloroform		During sampling, the well was dry; therefore, no samp was collected.
		Methyl chloride		During sampling, the well was dry; therefore, no samp was collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no samp was collected.
		Methylene bromide		During sampling, the well was dry; therefore, no samp was collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no samp was collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sam was collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sampling was collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no samp was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sam was collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no samp was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sampliant was collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sampling was collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no samp was collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well was dry; therefore, no samp was collected.
		lodomethane		During sampling, the well was dry; therefore, no samp was collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no samp was collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sampli was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Dichloromethane		During sampling, the well was dry; therefore, no samp was collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no samp was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no samp was collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no samp was collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no samp was collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no samp was collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no samp was collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no samp was collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no samp was collected.
		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no samp was collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no samp was collected.
		PCB, Total		During sampling, the well was dry; therefore, no samp was collected.
		PCB-1016		During sampling, the well was dry; therefore, no samp was collected.
		PCB-1221		During sampling, the well was dry; therefore, no samp was collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well was dry; therefore, no samp was collected.
		PCB-1254		During sampling, the well was dry; therefore, no samp was collected.
		PCB-1260		During sampling, the well was dry; therefore, no samp was collected.
		PCB-1268		During sampling, the well was dry; therefore, no samp was collected.
		Gross alpha		During sampling, the well was dry; therefore, no samp was collected.
		Gross beta		During sampling, the well was dry; therefore, no samp was collected.
		lodine-131		During sampling, the well was dry; therefore, no samp was collected.
		Radium-226		During sampling, the well was dry; therefore, no samp was collected.
		Strontium-90		During sampling, the well was dry; therefore, no samp was collected.
		Technetium-99		During sampling, the well was dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Thorium-230		During sampling, the well was dry; therefore, no samp was collected.
		Tritium		During sampling, the well was dry; therefore, no samp was collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sampl was collected.
		Cyanide		During sampling, the well was dry; therefore, no sampl was collected.
		Iodide		During sampling, the well was dry; therefore, no sampl was collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sampl was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sampl was collected.
3004-4811 MW390 I	MW390SG2-14	Aluminum	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.9. Rad error is 1.68.
		Gross beta		TPU is 6.89. Rad error is 4.76.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.197. Rad error is 0.169.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0387. Rad error is 0.0225.
		Technetium-99		TPU is 13. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.139. Rad error is 0.0539.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 639. Rad error is 639.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4805 MW391	1 MW391SG2-14	Boron	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	Χ	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Chlorobromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.01. Rad error is 0.929.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.876. Rad error is 0.764.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.302. Rad error is 0.236.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.188. Rad error is 0.105.
		Technetium-99		TPU is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.135. Rad error is 0.0435.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 626. Rad error is 626.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4806 MW39	92 MW392SG2-14	Boron	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	Χ	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Chlorobromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.12. Rad error is 0.113.
		Gross beta		TPU is 1.28. Rad error is 1.09.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.197. Rad error is 0.00707.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.206. Rad error is 0.129.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.6. Rad error is 10.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.139. Rad error is 0.0546.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 623. Rad error is 623.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4807 MW39	3 MW393SG2-14	Boron	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	Χ	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Chlorobromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance cr
		PCB, Total		Analysis of constituent not required and not perform
		PCB-1016		Analysis of constituent not required and not perform
		PCB-1221		Analysis of constituent not required and not perform
		PCB-1232		Analysis of constituent not required and not perform
		PCB-1242		Analysis of constituent not required and not perform
		PCB-1248		Analysis of constituent not required and not perform
		PCB-1254		Analysis of constituent not required and not perform
		PCB-1260		Analysis of constituent not required and not perform
		PCB-1268		Analysis of constituent not required and not perform
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.07. Rad error is 0.985.
		Gross beta		TPU is 1.08. Rad error is 0.935.
		lodine-131		Analysis of constituent not required and not perform
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.258. Rad error is 0.176.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.146. Rad error is 0.0893.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.5. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.135. Rad error is 0.0433.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 625. Rad error is 623.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4802 MW39	94 MW394SG2-14	Boron	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	Х	Other specific flags and footnotes may be required to properly define the results.
	Manganese	Х	Other specific flags and footnotes may be required to properly define the results.	
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		PCB, Total		Analysis of constituent not required and not perform
		PCB-1016		Analysis of constituent not required and not perform
		PCB-1221		Analysis of constituent not required and not perform
		PCB-1232		Analysis of constituent not required and not perform
		PCB-1242		Analysis of constituent not required and not perform
		PCB-1248		Analysis of constituent not required and not perform
		PCB-1254		Analysis of constituent not required and not perform
		PCB-1260		Analysis of constituent not required and not perform
		PCB-1268		Analysis of constituent not required and not perform
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.97. Rad error is 0.89.
		Gross beta		TPU is 1.1. Rad error is 0.951.
		lodine-131		Analysis of constituent not required and not perform
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.282. Rad error is 0.166.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0371. Rad error is 0.022.
		Technetium-99		TPU is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.138. Rad error is 0.0408.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 624. Rad error is 624.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4801 MW39	95 MW395SG2-14	Boron	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Nickel	X	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		PCB, Total		Analysis of constituent not required and not perform
		PCB-1016		Analysis of constituent not required and not perform
		PCB-1221		Analysis of constituent not required and not perform
		PCB-1232		Analysis of constituent not required and not perform
		PCB-1242		Analysis of constituent not required and not perform
		PCB-1248		Analysis of constituent not required and not perform
		PCB-1254		Analysis of constituent not required and not perform
		PCB-1260		Analysis of constituent not required and not perform
		PCB-1268		Analysis of constituent not required and not perform
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.131. Rad error is 0.122.
		Gross beta		TPU is 1.71. Rad error is 1.44.
		lodine-131		Analysis of constituent not required and not perform
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.277. Rad error is 0.205.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0541. Rad error is 0.0313.
		Technetium-99		TPU is 10.9. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.136. Rad error is 0.0469.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 616. Rad error is 616.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
		Boron	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	X	Other specific flags and footnotes may be required to properly define the results.
		Nickel	X	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance crit
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance crit
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not perform
		PCB-1221		Analysis of constituent not required and not perform
		PCB-1232		Analysis of constituent not required and not perform
		PCB-1242		Analysis of constituent not required and not perform
		PCB-1248		Analysis of constituent not required and not perform
		PCB-1254		Analysis of constituent not required and not perform
		PCB-1260		Analysis of constituent not required and not perform
		PCB-1268		Analysis of constituent not required and not perform
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.447. Rad error is 0.398.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.521. Rad error is 0.357.
		Iodine-131		Analysis of constituent not required and not perform
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.271. Rad error is 0.194.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.00814. Rad error is 0.00478.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.5. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.14. Rad error is 0.0586.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 623. Rad error is 623.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4817 MW397	MW397SG2-14	Boron	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		PCB, Total		Analysis of constituent not required and not perform
		PCB-1016		Analysis of constituent not required and not perform
		PCB-1221		Analysis of constituent not required and not perform
		PCB-1232		Analysis of constituent not required and not perform
		PCB-1242		Analysis of constituent not required and not perform
		PCB-1248		Analysis of constituent not required and not perform
		PCB-1254		Analysis of constituent not required and not perform
		PCB-1260		Analysis of constituent not required and not perform
		PCB-1268		Analysis of constituent not required and not perform
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.385. Rad error is 0.357.
		Gross beta		TPU is 1.81. Rad error is 1.51.
		lodine-131		Analysis of constituent not required and not perform
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.216. Rad error is 0.108.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.182. Rad error is 0.113.
		Technetium-99		TPU is 11.4. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.139. Rad error is 0.055.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 603. Rad error is 603.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG2-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Boron	Χ	Other specific flags and footnotes may be required to properly define the results.
		Chromium	X	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Chlorobromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.637. Rad error is 0.617.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0722. Rad error is 0.0653.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.211. Rad error is 0.0956.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG2-14	Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.273. Rad error is 0.149.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.5. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.133. Rad error is 0.039.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 616. Rad error is 616.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1SG2-14	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performe
		Boron	Χ	Other specific flags and footnotes may be required to properly define the results.
		Chromium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Chlorobromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance cri
		PCB, Total		Analysis of constituent not required and not perform
		PCB-1016		Analysis of constituent not required and not perform
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not perform
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.162. Rad error is 0.153.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.144. Rad error is 0.129.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.196. Rad error is 0.0593.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG2-14	Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0489. Rad error is 0.0284.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.4. Rad error is 10.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.137. Rad error is 0.0277.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 622. Rad error is 620.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG2-14	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not perform
		Nitrate & Nitrite		Analysis of constituent not required and not perform
		Sulfate		Analysis of constituent not required and not perform
		Barometric Pressure Reading		Analysis of constituent not required and not perform
		Specific Conductance		Analysis of constituent not required and not perform
		Static Water Level Elevation		Analysis of constituent not required and not perform
		Dissolved Oxygen		Analysis of constituent not required and not perform
		Total Dissolved Solids		Analysis of constituent not required and not perform
		рН		Analysis of constituent not required and not perform
		Eh		Analysis of constituent not required and not perform
		Temperature		Analysis of constituent not required and not perform
		Aluminum		Analysis of constituent not required and not perform
		Antimony		Analysis of constituent not required and not perform
		Arsenic		Analysis of constituent not required and not perform
		Barium		Analysis of constituent not required and not perform
		Beryllium		Analysis of constituent not required and not perform
		Boron		Analysis of constituent not required and not perform
		Cadmium		Analysis of constituent not required and not perform
		Calcium		Analysis of constituent not required and not perform
		Chromium		Analysis of constituent not required and not perform
		Cobalt		Analysis of constituent not required and not perform
		Copper		Analysis of constituent not required and not perform
		Iron		Analysis of constituent not required and not perform
		Lead		Analysis of constituent not required and not perform
		Magnesium		Analysis of constituent not required and not perform
		Manganese		Analysis of constituent not required and not perform
		Mercury		Analysis of constituent not required and not perform
		Molybdenum		Analysis of constituent not required and not perform
		Nickel		Analysis of constituent not required and not perform
		Potassium		Analysis of constituent not required and not perform
		Rhodium		Analysis of constituent not required and not perform
		Selenium		Analysis of constituent not required and not perform
		Silver		Analysis of constituent not required and not perform
		Sodium		Analysis of constituent not required and not perform
		Tantalum		Analysis of constituent not required and not perform
		Thallium		Analysis of constituent not required and not perform
		Uranium		Analysis of constituent not required and not perform

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG2-14	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		Iodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG2-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG2-14	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG2-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG2-14	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		Iodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG2-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG2-14	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		Iodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5SG2-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5SG2-14	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Chlorobromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		Iodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB6SG2-14	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB6SG2-14	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
	Cyanide		Analysis of constituent not required and not performed	
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4805 MW391	MW391DSG2-14	Boron	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	Χ	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Χ	Other specific flags and footnotes may be required to properly define the results.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	N	Sample spike recovery not within control limits.
		Acrolein	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Acrylonitrile	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Chlorobromomethane	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Methyl Ethyl Ketone	Υ	MS,MSD recovery and/or RPD failed acceptance crite
		Tetrachloroethene	Υ	MS,MSD recovery and/or RPD failed acceptance crit
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.193. Rad error is 0.184.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.489. Rad error is 0.433.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.327. Rad error is 0.265.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.117. Rad error is 0.0663.
		Technetium-99		TPU is 10.9. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.141. Rad error is 0.0611.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 608. Rad error is 608.

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Facility: U.S. DOE – Paducah Gaseous Diffusion Plant

Permit Number: 073-00045

Finds/Unit:	
Lab ID: None	
For Official Use Only	

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the first quarter 2014 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of analysis of pH. The method for conducting the statistical analysis of pH was selected by the project statistician.

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data included two background wells for comparison with at least three test wells or sidegradient wells (Exhibit 1). The first quarter 2014 data used to conduct the statistical analyses was collected in January 2014. The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

For chemicals with established maximum contaminant levels (MCLs), no statistical analysis was performed. Parameters that have MCLs can be found in 401 KAR 47:030, Section 6. For parameters with no established MCL, the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. Results of the one-sided tolerance interval statistical test conclude whether the data show a statistically significant increase of concentrations with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the data for the current quarter are compared to that value. If the value is exceeded, the well has a statistically significant increase in concentration compared to the background concentration.

The following is a summarized stepwise list of the one-sided tolerance interval statistical procedure applied to the data.¹

- 1. The tolerance limit (TL) was calculated for the background data.
 - For each parameter, the background data were used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) were computed.
 - The data set was checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be potentially normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage was determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit was calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells was compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well has increased concentration with respect to background data.

Type of Data Used

Exhibit 1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit 2 presents the parameters from the available data set and the statistical test performed using the one-sided tolerance interval.

Excluding parameters that have an MCL, Exhibits 3, 4, and 5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), and missing observations by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate that the one-sided tolerance interval statistical test was performed. The data presented in Exhibits 3, 4, and 5 were collected during the current quarter, first quarter 2014. The observations that are listed are not background data. Background data are presented on pages D-22 through D-80. The sampling dates associated with background data are listed next to the result on pages D-22 through D-80. When field duplicate data are available, the higher of the two readings is retained for further evaluation.

lower $TL = X - (K \times S)$

-

 $^{^{1}}$ For pH, two-sided TL (upper and lower) were calculated with an adjusted K factor using the following equations: upper TL = X + (K x S)

Exhibit 1. Station Identification for Monitoring Wells Analyzed

Station	Type	Aquifer
MW357	TW	URGA
MW358	TW	LRGA
MW359*	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362*	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365*	TW	UCRS
MW366	SG	URGA
MW367	SG	LRGA
MW368*	SG	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374	BG	UCRS
MW375	SG	UCRS
MW376*	SG	UCRS
MW377*	SG	UCRS

BG: upgradient or background wells
TW: downgradient or test wells
SG: sidegradient wells
*Well was dry this quarter, and a groundwater sample could not be collected.

Exhibit 2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test

Parameters	
Aluminum	
Boron	
Calcium	
Chloride	
Cobalt	
Conductivity	
Dissolved Oxygen	
Dissolved Solids	
Iron	
Magnesium	
Manganese	
Nickel	
Oxidation-Reduction Potential	
PCB, Total	
PCB-1242	
pH*	
Potassium	
Sodium	
Sulfate	
Technetium-99	
Total Organic Carbon (TOC)	
Total Organic Halides (TOX)	
Uranium	

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if statistically significant deviations exist in concentrations with respect to upgradient well data.

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	3	0	3	0	No
1,1,2,2-Tetrachloroethane	3	0	3	0	No
1,1,2-Trichloroethane	3	0	3	0	No
1,1-Dichloroethane	3	0	3	0	No
1,2,3-Trichloropropane	3	0	3	0	No
1,2-Dibromo-3-chloropropane	3	0	3	0	No
1,2-Dibromoethane	3	0	3	0	No
1,2-Dichlorobenzene	3	0	3	0	No
1,2-Dichloropropane	3	0	3	0	No
2-Butanone	3	0	3	0	No
2-Hexanone	3	0	3	0	No
4-Methyl-2-pentanone	3	0	3	0	No
Acetone	3	0	3	0	No
Acrolein	3	0	3	0	No
Acrylonitrile	3	0	3	0	No
Aluminum	3	0	1	2	YES
Antimony	3	0	3	0	No
Beryllium	3	0	3	0	No
Boron	3	0	3	0	No
Bromide	3	0	3	0	No
Bromochloromethane	3	0	3	0	No
Bromodichloromethane	3	0	3	0	No
Bromoform	3	0	3	0	No
Bromomethane	3	0	3	0	No
Calcium	3	0	0	3	YES
Carbon disulfide	3	0	3	0	No
Chemical Oxygen Demand (COD)	3	0	3	0	No
Chloride	3	0	0	3	YES
Chlorobenzene	3	0	3	0	No
Chloroethane	3	0	3	0	No
Chloroform	3	0	3	0	No
Chloromethane	3	0	3	0	No
cis-1,2-Dichloroethene	3	0	3	0	No
cis-1,3-Dichloropropene	3	0	3	0	No
Cobalt	3	0	3	0	No
Conductivity	3	0	0	3	YES
Copper	3	0	3	0	No
Cyanide	3	0	3	0	No
Dibromochloromethane	3	0	3	0	No
Dibromomethane	3	0	3	0	No

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dimethylbenzene, Total	3	0	3	0	No
Dissolved Oxygen	3	0	0	3	YES
Dissolved Solids	3	0	0	3	YES
Ethylbenzene	3	0	3	0	No
Iodide	3	0	3	0	No
Iodomethane	3	0	3	0	No
Iron	3	0	1	2	YES
Magnesium	3	0	0	3	YES
Manganese	3	0	0	3	YES
Methylene chloride	3	0	3	0	No
Molybdenum	3	0	3	0	No
Nickel	3	0	3	0	No
Oxidation-Reduction Potential	3	0	0	3	YES
PCB, Total	3	0	3	0	No
PCB-1016	3	0	3	0	No
PCB-1221	3	0	3	0	No
PCB-1232	3	0	3	0	No
PCB-1242	3	0	3	0	No
PCB-1248	3	0	3	0	No
PCB-1254	3	0	3	0	No
PCB-1260	3	0	3	0	No
PCB-1268	3	0	3	0	No
pН	3	0	0	3	YES
Potassium	3	0	0	3	YES
Radium-226	3	0	3	0	No
Rhodium	3	0	3	0	No
Sodium	3	0	0	3	YES
Styrene	3	0	3	0	No
Sulfate	3	0	0	3	YES
Tantalum	3	0	3	0	No
Technetium-99	3	0	3	0	No
Tetrachloroethene	3	0	3	0	No
Thallium	3	0	3	0	No
Thorium-230	3	0	3	0	No
Toluene	3	0	3	0	No
Total Organic Carbon (TOC)	3	0	0	3	YES
Total Organic Halides (TOX)	3	0	0	3	YES
trans-1,2-Dichloroethene	3	0	3	0	No
trans-1,3-Dichloropropene	3	0	3	0	No
Trans-1,4-Dichloro-2-butene	3	0	3	0	No

Exhibit 3. Summary of Missing, Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Trichlorofluoromethane	3	0	3	0	No
Uranium	3	0	2	1	YES
Vanadium	3	0	3	0	No
Vinyl acetate	3	0	3	0	No
Zinc	3	0	3	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	0	6	0	No
1,1,2,2-Tetrachloroethane	6	0	6	0	No
1,1,2-Trichloroethane	6	0	6	0	No
1,1-Dichloroethane	6	0	6	0	No
1,2,3-Trichloropropane	6	0	6	0	No
1,2-Dibromo-3-chloropropane	6	0	6	0	No
1,2-Dibromoethane	6	0	6	0	No
1,2-Dichlorobenzene	6	0	6	0	No
1,2-Dichloropropane	6	0	6	0	No
2-Butanone	6	0	6	0	No
2-Hexanone	6	0	6	0	No
4-Methyl-2-pentanone	6	0	6	0	No
Acetone	6	0	6	0	No
Acrolein	6	0	6	0	No
Acrylonitrile	6	0	6	0	No
Aluminum	6	0	5	1	YES
Antimony	6	0	6	0	No
Beryllium	6	0	6	0	No
Boron	6	0	4	2	YES
Bromide	6	0	6	0	No
Bromochloromethane	6	0	6	0	No
Bromodichloromethane	6	0	6	0	No
Bromoform	6	0	6	0	No
Bromomethane	6	0	6	0	No
Calcium	6	0	0	6	YES
Carbon disulfide	6	0	6	0	No
Chemical Oxygen Demand (COD)	6	0	6	0	No
Chloride	6	0	0	6	YES
Chlorobenzene	6	0	6	0	No
Chloroethane	6	0	6	0	No
Chloroform	6	0	6	0	No
Chloromethane	6	0	6	0	No
cis-1,2-Dichloroethene	6	0	6	0	No
cis-1,3-Dichloropropene	6	0	6	0	No
Cobalt	6	0	3	3	YES
Conductivity	6	0	0	6	YES
Copper	6	0	6	0	No
Cyanide	6	0	6	0	No
Dibromochloromethane	6	0	6	0	No
Dibromomethane	6	0	6	0	No

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistica Analysis?
Dimethylbenzene, Total	6	0	6	0	No
Dissolved Oxygen	6	0	0	6	YES
Dissolved Solids	6	0	0	6	YES
Ethylbenzene	6	0	6	0	No
Iodide	6	0	6	0	No
Iodomethane	6	0	6	0	No
Iron	6	0	2	4	YES
Magnesium	6	0	0	6	YES
Manganese	6	0	1	5	YES
Methylene chloride	6	0	6	0	No
Molybdenum	6	0	6	0	No
Nickel	6	0	5	1	YES
Oxidation-Reduction Potential	6	0	0	6	YES
PCB, Total	6	0	5	1	YES
PCB-1016	6	0	6	0	No
PCB-1221	6	0	6	0	No
PCB-1232	6	0	6	0	No
PCB-1242	6	0	5	1	YES
PCB-1248	6	0	6	0	No
PCB-1254	6	0	6	0	No
PCB-1260	6	0	6	0	No
PCB-1268	6	0	6	0	No
рН	6	0	0	6	YES
Potassium	6	0	0	6	YES
Radium-226	6	0	6	0	No
Rhodium	6	0	6	0	No
Sodium	6	0	0	6	YES
Styrene	6	0	6	0	No
Sulfate	6	0	0	6	YES
Tantalum	6	0	6	0	No
Technetium-99	6	0	2	4	YES
Tetrachloroethene	6	0	6	0	No
Thallium	6	0	6	0	No
Thorium-230	6	0	6	0	No
Toluene	6	0	6	0	No
Total Organic Carbon (TOC)	6	0	4	2	YES
Total Organic Halides (TOX)	6	0	0	6	YES
trans-1,2-Dichloroethene	6	0	6	0	No
trans-1,3-Dichloropropene	6	0	6	0	No
Trans-1,4-Dichloro-2-butene	6	0	6	0	No

Exhibit 4. Summary of Missing, Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Trichlorofluoromethane	6	0	6	0	No
Uranium	6	0	6	0	No
Vanadium	6	0	6	0	No
Vinyl acetate	6	0	6	0	No
Zinc	6	0	6	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	0	6	0	No
1,1,2,2-Tetrachloroethane	6	0	6	0	No
1,1,2-Trichloroethane	6	0	6	0	No
1,1-Dichloroethane	6	0	6	0	No
1,2,3-Trichloropropane	6	0	6	0	No
1,2-Dibromo-3-chloropropane	6	0	6	0	No
1,2-Dibromoethane	6	0	6	0	No
1,2-Dichlorobenzene	6	0	6	0	No
1,2-Dichloropropane	6	0	6	0	No
2-Butanone	6	0	6	0	No
2-Hexanone	6	0	6	0	No
4-Methyl-2-pentanone	6	0	6	0	No
Acetone	6	0	6	0	No
Acrolein	6	0	6	0	No
Acrylonitrile	6	0	6	0	No
Aluminum	6	0	5	1	YES
Antimony	6	0	6	0	No
Beryllium	6	0	6	0	No
Boron	6	0	4	2	YES
Bromide	6	0	6	0	No
Bromochloromethane	6	0	6	0	No
Bromodichloromethane	6	0	6	0	No
Bromoform	6	0	6	0	No
Bromomethane	6	0	6	0	No
Calcium	6	0	1	5	YES
Carbon disulfide	6	0	6	0	No
Chemical Oxygen Demand (COD)	6	0	6	0	No
Chloride	6	0	0	6	YES
Chlorobenzene	6	0	6	0	No
Chloroethane	6	0	6	0	No
Chloroform	6	0	6	0	No
Chloromethane	6	0	6	0	No
cis-1,2-Dichloroethene	6	0	6	0	No
cis-1,3-Dichloropropene	6	0	6	0	No
Cobalt	6	0	4	2	YES
Conductivity	6	0	0	6	YES
Copper	6	0	6	0	No
Cyanide	6	0	6	0	No
Dibromochloromethane	6	0	6	0	No
Dibromomethane	6	0	6	0	No
Dimethylbenzene, Total	6	0	6	0	No

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dissolved Oxygen	6	0	0	6	YES
Dissolved Solids	6	0	0	6	YES
Ethylbenzene	6	0	6	0	No
Iodide	6	0	6	0	No
Iodomethane	6	0	6	0	No
Iron	6	0	2	4	YES
Magnesium	6	0	1	5	YES
Manganese	6	0	2	4	YES
Methylene chloride	6	0	6	0	No
Molybdenum	6	0	6	0	No
Nickel	6	0	6	0	No
Oxidation-Reduction Potential	6	0	0	6	YES
PCB, Total	6	0	6	0	No
PCB-1016	6	0	6	0	No
PCB-1221	6	0	6	0	No
PCB-1232	6	0	6	0	No
PCB-1242	6	0	6	0	No
PCB-1248	6	0	6	0	No
PCB-1254	6	0	6	0	No
PCB-1260	6	0	6	0	No
PCB-1268	6	0	6	0	No
рН	6	0	0	6	YES
Potassium	6	0	0	6	YES
Radium-226	6	0	6	0	No
Rhodium	6	0	6	0	No
Sodium	6	0	0	6	YES
Styrene	6	0	6	0	No
Sulfate	6	0	0	6	YES
Tantalum	6	0	6	0	No
Technetium-99	6	0	1	5	YES
Tetrachloroethene	6	0	6	0	No
Thallium	6	0	6	0	No
Thorium-230	6	0	6	0	No
Toluene	6	0	6	0	No
Total Organic Carbon (TOC)	6	0	6	0	No
Total Organic Halides (TOX)	6	0	0	6	YES
trans-1,2-Dichloroethene	6	0	6	0	No
trans-1,3-Dichloropropene	6	0	6	0	No
<i>Trans</i> -1,4-Dichloro-2-butene	6	0	6	0	No
Trichlorofluoromethane	6	0	6	0	No
Uranium	6	0	6	0	No

Exhibit 5. Summary of Missing, Censored, and Uncensored Data—LRGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Vanadium	6	0	6	0	No
Vinyl acetate	6	0	6	0	No
Zinc	6	0	6	0	No

Bold denotes parameters with at least one uncensored observation.

Discussion of Results

For the UCRS, URGA, and LRGA, the results of the one-sided upper tolerance interval test are presented on pages D-22 through D-80 and the statistician qualification statement is presented on page D-81. For the UCRS, URGA, and LRGA, the test was applied to 17, 22, and 18 parameters, respectively, listed in bold print in Exhibits 3, 4, and 5. A summary of statistically significant increases by well number is shown in Exhibit 6.

UCRS

In this quarter, statistical test results indicated there were statistically significant increases relative to background data for oxidation-reduction potential and sulfate.

URGA

In this quarter, statistical test results indicated that there were statistically significant increases relative to background data for conductivity, dissolved solids, oxidation-reduction potential, sodium, sulfate, and technetium-99.

LRGA

In this quarter, statistical test results indicated that there were statistically significant increases relative to background data for oxidation-reduction potential, potassium, and technetium-99.

Conclusion

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit 7, Exhibit 8, and Exhibit 9, respectively.

Exhibit 6. Summary of Statistically Significant Increases

UCRS	URGA	LRGA
MW371: oxidation-reduction potential	MW357: oxidation-reduction potential	MW358: oxidation-reduction potential
MW374: oxidation-reduction potential	MW360: oxidation-reduction potential	MW361: oxidation-reduction potential, technetium-99
MW375: oxidation-reduction potential, sulfate	MW363: oxidation-reduction potential	MW364: oxidation-reduction potential, technetium-99
1	MW366: oxidation-reduction potential	MW367: oxidation-reduction potential, potassium
	MW369: oxidation-reduction potential	MW370: oxidation-reduction potential
	MW372: conductivity, dissolved solids, oxidation-reduction potential, sodium, sulfate, technetium-99	MW373: oxidation-reduction potential

Exhibit 7. Tests Summary for Qualified Parameters—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.40	No statistically significant increases relative to background data
Chloride	Tolerance Interval	0.95	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.45	No statistically significant increases relative to background data
Dissolved Oxygen	Tolerance Interval	0.55	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.42	No statistically significant increases relative to background data
Iron	Tolerance Interval	0.98	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.27	No statistically significant increases relative to background data
Manganese	Tolerance Interval	0.89	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	3.54	Statistically significant increases relative to background data in MW371, MW374, and MW375
рН	Tolerance Interval	0.05	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	0.72	No statistically significant increases relative to background data
Sodium	Tolerance Interval	0.40	No statistically significant increases relative to background data
Sulfate	Tolerance Interval	0.49	Statistically significant increases relative to background data in MW375
Total Organic Carbon	Tolerance Interval	1.38	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	1.08	No statistically significant increases relative to background data
Uranium	Tolerance Interval	1.68	No statistically significant increases relative to background data

CV: coefficient of variation

Exhibit 8. Tests Summary for Qualified Parameters—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No statistically significant increases relative to background data
Boron	Tolerance Interval	0.84	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.29	No statistically significant increases relative to background data
Chloride	Tolerance Interval	0.10	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	0.85	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.12	Statistically significant increase relative to background data in MW372
Dissolved Oxygen	Tolerance Interval	0.76	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.16	Statistically significant increase relative to background data in MW372
Iron	Tolerance Interval	0.95	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.27	No statistically significant increases relative to background data
Manganese	Tolerance Interval	0.66	No statistically significant increases relative to background data
Nickel	Tolerance Interval	0.91	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	1.26	Statistically significant increases relative to background data in MW357, MW360, MW363, MW366, MW369, and MW372
PCB, Total	Tolerance Interval	0.90	No statistically significant increases relative to background data
PCB-1242	Tolerance Interval	1.36	No statistically significant increases relative to background data
рН	Tolerance Interval	0.03	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	0.29	No statistically significant increases relative to background data

Exhibit 8. Tests Summary for Qualified Parameters—URGA (Continued)

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Sodium	Tolerance Interval	0.26	Statistically significant increase relative to background data in MW372
Sulfate	Tolerance Interval	0.75	Statistically significant increase relative to background data in MW372
Technetium-99	Tolerance Interval	0.87	Statistically significant increases relative to background data in MW372
Total Organic Carbon	Tolerance Interval	1.23	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	0.95	No statistically significant increases relative to background data

CV: coefficient of variation

Exhibit 9. Tests Summary for Qualified Parameters—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No statistically significant increases relative to background data
Boron	Tolerance Interval	0.68	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.31	No statistically significant increases relative to background data
Chloride	Tolerance Interval	0.16	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	1.17	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.26	No statistically significant increases relative to background data
Dissolved Oxygen	Tolerance Interval	0.83	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.30	No statistically significant increases relative to background data
Iron	Tolerance Interval	0.96	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.34	No statistically significant increases relative to background data
Manganese	Tolerance Interval	0.62	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	1.31	Statistically significant increases relative to background data in MW358, MW361, MW364, MW367, MW370, and MW373
pH	Tolerance Interval	0.03	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	0.19	Statistically significant increases relative to background data in MW367
Sodium	Tolerance Interval	0.30	No statistically significant increases relative to background data
Sulfate	Tolerance Interval	1.59	No statistically significant increases relative to background data
Technetium-99	Tolerance Interval	1.73	Statistically significant increases relative to background data in MW361 and MW364

Exhibit 8. Tests Summary for Qualified Parameters—URGA (Continued) Exhibit 9. Tests Summary for Qualified Parameters—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Total Organic Halides	Tolerance Interval	0.98	No statistically significant increases relative to background data

CV: coefficient of variation

C-746-S and C-746-T First Quarter 2014 Statistical Analysis Aluminum **UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.393
9/16/2002	0.200
10/16/2002	0.200
1/13/2003	0.501
4/8/2003	0.200
7/16/2003	0.200
10/14/2003	0.200
1/14/2004	0.668

Statistics on **Background Data**

X = 0.320S = 0.182CV = 0.567K factor** = 3.188TL = 0.900

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result > TL?
MW386	0.200	Sidegradient	NO
MW390	0.833	Downgradie	nt NO
MW393	0.200	Downgradie	nt NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-22

C-746-S and C-746-T First Quarter 2014 Statistical Analysis UCRS Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	38.400
9/16/2002	42.900
10/16/2002	40.200
1/13/2003	46.700
4/8/2003	49.800
7/16/2003	43.300
10/14/2003	49.700
1/14/2004	23.600

Statistics on Background Data

X= 41.825 S= 8.445 CV= 0.202 K factor** = 3.188 TL= 68.748

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result > TL?
MW386	21.700	Sidegradient	NO
MW390	32.800	Downgradie	nt NO
MW393	11.300	Downgradie	nt NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis UCRS Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	91.600
9/16/2002	98.300
10/16/2002	101.400
1/13/2003	108.300
4/8/2003	100.500
7/16/2003	102.500
10/14/2003	106.800
1/14/2004	104.400

Statistics on Background Data

X= 101.725 S= 5.245 CV= 0.052 K factor** = 3.188 TL= 118.447

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result > TL?
MW386	19.000	Sidegradient	NO
MW390	100.00	Downgradie	nt NO
MW393	17.000	Downgradie	nt NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis Cobalt UNITS: UCRS mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.025
9/16/2002	0.025
10/16/2002	0.001
1/13/2003	0.003
4/8/2003	0.004
7/16/2003	0.003
10/14/2003	0.001
1/14/2004	0.001

Statistics on Background Data

X= 0.008 S= 0.011 CV= 1.340 K factor** = 3.188 TL= 0.042

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data
X= -5.645
S= 1.339
CV = -0.237
K factor** = 3.188
TL = -1.377

Transformed Background Data from Upgradient Wells

MW396
LN(Result)
-3.689
-3.689
-6.908
-5.732
-5.435
-5.893
-6.908
-6.908

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result > TL
MW386	0.001	Sidegradient	N/A
MW390	0.001	Downgradie	nt N/A
MW393	0.001	Downgradie	nt N/A

First Quarter 2014 Dry/Partially Dry Wells

?	Well No.	Gradient
	MW389	Downgradient

Transformed First Quarter 2014 Data Collected in January 2014

Well Number	LN(Result)	Result > TL?
MW386	-6.586	NO
MW390	-6.908	NO
MW393	-6.908	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis UCRS Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	784.000
9/30/2002	871.000
10/16/2002	868.000
1/13/2003	912.000
4/8/2003	942.000
7/16/2003	910.000
10/14/2003	935.000
1/14/2004	1158.00

Statistics on Background Data

X= 922.500 S= 107.616 CV= 0.117 K factor** = 3.188 TL= 1265.579

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result > TL?
MW386	645.00	Sidegradient	NO
MW390	759.00	Downgradie	nt NO
MW393	425.00	Downgradie	nt NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis UCRS Dissolved Oxygen UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	5.450
9/16/2002	0.400
10/16/2002	0.540
1/13/2003	0.720
4/8/2003	0.690
7/16/2003	1.100
10/14/2003	0.710
1/14/2004	1.550

Statistics on Background Data

X= 1.395 S= 1.677 CV= 1.202 K factor** = 3.188 TL= 6.743

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data
X= -0.043
S= 0.814
CV= -18.867
K factor** = 3.188
TL = 2.553

Transformed Background Data from Upgradient Wells

MW396
LN(Result)
1.696
-0.916
-0.616
-0.329
-0.371
0.095
-0.342
0.438

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result > TL?
MW386	1.640	Sidegradient	N/A
MW390	4.910	Downgradie	nt N/A
MW393	0.490	Downgradie	nt N/A

First Quarter 2014 Dry/Partially Dry Wells

?	Well No.	Gradient	
	MW389	Downgradient	

Transformed First Quarter 2014 Data Collected in January 2014

Well Number	LN(Result)	Result $>$ TL?	
MW386	0.495	NO	
MW390	1.591	NO	
MW393	-0.713	NO	

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis UCRS Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	502.000
9/16/2002	506.000
10/16/2002	543.000
1/13/2003	521.000
4/8/2003	504.000
7/16/2003	532.000
10/14/2003	490.000
1/14/2004	805,000

Statistics on Background Data

X= 550.375 S= 104.330 CV= 0.190 K factor** = 3.188 TL= 882.980

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result > TL?
MW386	394.00	Sidegradient	NO
MW390	411.00	Downgradie	nt NO
MW393	267.00	Downgradie	nt NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis **UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	1.800
9/16/2002	9.530
10/16/2002	7.430
1/13/2003	9.930
4/8/2003	10.200
7/16/2003	9.160
10/14/2003	11.900
1/14/2004	2.420

Statistics on **Background Data**

X = 7.796S = 3.723CV = 0.478K factor** = 3.188 TL = 19.666

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result > TL?
MW386	0.495	Sidegradient	NO
MW390	0.500	Downgradie	nt NO
MW393	2.710	Downgradie	nt NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-29

C-746-S and C-746-T First Quarter 2014 Statistical Analysis UCRS Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from
Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	15.500
9/16/2002	17.300
10/16/2002	17.800
1/13/2003	19.200
4/8/2003	17.800
7/16/2003	17.800
10/14/2003	20.200
1/14/2004	9.410

Statistics on Background Data

X= 16.876 S= 3.313 CV= 0.196 K factor** = 3.188 TL= 27.438

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Result	Gradient	Result > TL?
9.340	Sidegradient	NO
14.100	Downgradie	nt NO
3.360	Downgradie	nt NO
	9.340 14.100	Result Gradient 9.340 Sidegradient 14.100 Downgradien 3.360 Downgradien

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis UCRS Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.570
9/16/2002	0.647
10/16/2002	0.880
1/13/2003	1.132
4/8/2003	0.965
7/16/2003	0.983
10/14/2003	0.984
1/14/2004	0.031

Statistics on Background Data

X= 0.774 S= 0.353 CV= 0.456 K factor** = 3.188 TL= 1.900

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result > TL?
MW386	0.313	Sidegradient	NO
MW390	0.005	Downgradie	nt NO
MW393	0.039	Downgradie	nt NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis Oxidation-Reduction Potential UNITS: WV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

MW396
Result
60.000
71.000
-56.000
-54.000
-22.000
-6.000
-3.000
114.000

Statistics on Background Data X= 13.000 S= 61.952 CV= 4.766

K factor** = 3.188
TL= 210.502

Statistics on Transformed Background Data
X = error
S = error
CV = error
K factor** = 3.188
TL# = 4.736

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Transformed Background
Data from Upgradient Wells

Well Number:	MW396
Date Collected	LN(Result)
8/13/2002	4.094
4/8/2003	4.263
7/16/2003	#Func!
10/14/2003	#Func!
1/14/2004	#Func!
4/12/2004	#Func!
7/20/2004	#Func!
10/12/2004	4.736

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result > TL
MW386	205.000	Sidegradient	N/A
MW390	695.000	Downgradier	nt N/A
MW393	155.000	Downgradie	nt N/A

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Transformed First Quarter 2014 Data Collected in January 2014 Well Number LN(Result) Result >TL?

	. ,	
MW386	5.323	YES
MW390	6.544	YES
MW393	5.043	YES

Conclusion of Statistical Analysis on Transformed Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW386

MW390

MW393

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

[#] Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis UCRS pH UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from
Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	6.170
9/16/2002	6.400
10/16/2002	5.900
1/13/2003	6.400
4/8/2003	6.650
7/16/2003	6.400
10/14/2003	6.710
1/14/2004	7.050

Statistics on	
Background Data	

X= 6.460 S= 0.350 CV= 0.054 K factor** = 3.736 TL= 7.766 LL= 5.154

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Resul	t >TL?	Result <ll?< th=""></ll?<>
MW386	7.040	Sidegradi	ent	NO	NO
MW390	6.680	Downgrad	ient	NO	NO
MW393	6.530	Downgrad	ient	NO	NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T First Quarter 2014 Statistical Analysis Potassium UNITS: uCRS mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	2.000
9/16/2002	2.000
10/16/2002	0.978
1/13/2003	1.080
4/8/2003	1.120
7/16/2003	1.380
10/14/2003	1.240
1/14/2004	1.490

Statistics on Background Data

X= 1.411 S= 0.399 CV= 0.282 K factor** = 3.188 TL= 2.682

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result > TL?
MW386	0.337	Sidegradient	NO
MW390	0.465	Downgradie	nt NO
MW393	0.467	Downgradie	nt NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis UCRS Sodium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	115.000
9/16/2002	116.000
10/16/2002	117.000
1/13/2003	122.000
4/8/2003	106.000
7/16/2003	117.000
10/14/2003	132.000
1/14/2004	29.600

Statistics on Background Data

X= 106.825 S= 32.041 CV= 0.300 K factor** = 3.188 TL= 208.973

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result > TL?
MW386	103.00	Sidegradient	NO
MW390	89.300	Downgradie	nt NO
MW393	77.100	Downgradie	nt NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	41.900
9/16/2002	26.300
10/16/2002	20.600
1/13/2003	16.600
4/8/2003	23.900
7/16/2003	18.800
10/14/2003	12.900
1/14/2004	18.700

Statistics on Background Data

X= 22.463 S= 8.876 CV= 0.395 K factor** = 3.188 TL= 50.759

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result > TL?
MW386	47.000	Sidegradient	NO
MW390	40.000	Downgradie	nt NO
MW393	15.000	Downgradie	nt NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis UCRS Technetium-99 UNITS: UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	16.700
9/16/2002	6.390
10/16/2002	4.550
1/13/2003	16.500
4/8/2003	3.040
7/16/2003	0.354
10/14/2003	11.900
1/14/2004	1.560

Statistics on Background Data

X= 7.624 S= 6.558 CV= 0.860 K factor** = 3.188 TL= 28.531

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Resu	lt > TL?
MW386	15.800	Sidegradient		NO
MW390	82.600	Downgradie	nt	YES
MW393	7.830	Downgradie	nt	NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW390

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis Total Organic Carbon (TOC) UNITS: UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from
Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	19.000
9/16/2002	14.600
10/16/2002	10.400
1/13/2003	4.400
4/8/2003	7.000
7/16/2003	7.300
10/14/2003	9.100
1/14/2004	8.100

Statistics on Background Data

X= 9.988 S= 4.696 CV= 0.470 K factor** = 3.188 TL= 24.959

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

.?
•

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis Total Organic Halides (TOX) UNITS: UCRS ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	193.000
9/16/2002	190.000
10/16/2002	221.000
1/13/2003	106.000
4/8/2003	77.800
7/16/2003	122.000
10/14/2003	86.400
1/14/2004	145.000

Statistics on Background Data

X= 142.650 S= 53.533 CV= 0.375 K factor** = 3.188 TL= 313.314

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result > TL?
MW386	240.00	Sidegradient	NO
MW390	15.000	Downgradie	nt NO
MW393	33.000	Downgradie	nt NO

First Quarter 2014 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis URGA Aluminum UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	0.200
1/15/2003	0.200
4/10/2003	0.200
7/14/2003	0.200
10/13/2003	0.427
1/13/2004	0.309
4/13/2004	0.200
7/21/2004	0.202
7/21/2004 Well Number:	0.202 MW394
// 21 /200.	0.202
Well Number:	MW394
Well Number: Date Collected	MW394 Result
Well Number: Date Collected 8/13/2002	MW394 Result 0.200
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 0.200 0.200
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 0.200 0.200 0.200
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 0.200 0.200 0.200 0.200
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	MW394 Result 0.200 0.200 0.200 0.200 0.200 0.200

1/13/2004

Statistics on	
Background Data	

X= 0.221 S= 0.061 CV= 0.277 K factor** = 2.523 TL= 0.376

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

0.200

Well No.	Result	Gradient Resu	lt > TL?
MW221	0.200	Sidegradient	NO
MW222	1.390	Sidegradient	YES
MW223	0.200	Sidegradient	NO
MW224	0.200	Sidegradient	NO
MW369	0.200	Downgradient	NO
MW372	0.289	Downgradient	NO
MW384	0.200	Sidegradient	NO
MW387	0.200	Downgradient	NO
MW391	0.200	Downgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW222

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis URGA Boron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

ground D adient W		Statistics on Background Data		Transformed Data from Up	
l Number:	MW220	X= 0.425		Well Number:	MW220
e Collected 0/14/2002 /15/2003 /10/2003 /14/2003 0/13/2003	Result 0.200 0.200 0.200 0.200 0.200	S= 0.615 CV= 1.447 K factor** = 2.523 TL= 1.976 Because CV greater tha logarithm of backgroun were calculated.	,	Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003	LN(Resu -1.609 -1.609 -1.609 -1.609
1/13/2004 1/13/2004 1/21/2004 11 Number:	0.200 0.200 0.200 MW394	Statistics on Transformed Background Data		1/13/2004 4/13/2004 7/21/2004 Well Number:	-1.609 -1.609 -1.609 MW394
ate Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2.000 2.000 0.200 0.200 0.200	X= -1.322 S= 0.786 CV= -0.595 K factor** = 2.523 TL= 0.663		Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	LN(Result 0.693 0.693 -1.609 -1.609
7/16/2003 10/14/2003 1/13/2004	0.200 0.200 0.200			7/16/2003 10/14/2003 1/13/2004	-1.609 -1.609 -1.609

First Quarter 2014 Data Collected in	n
January 2014	

Well No.	Result	Gradient	Result > TL
MW221	0.200	Sidegradient	N/A
MW222	0.200	Sidegradient	N/A
MW223	0.200	Sidegradient	N/A
MW224	0.200	Sidegradient	N/A
MW369	0.200	Downgradien	nt N/A
MW372	1.040	Downgradien	nt N/A
MW384	0.200	Sidegradient	N/A
MW387	0.200	Downgradien	nt N/A
MW391	0.200	Downgradien	nt N/A

Transformed First Quarter 2014 Data Collected in January 2014

Well Number	LN(Result)	Result > TL?
MW221	-1.609	NO
MW222	-1.609	NO
MW223	-1.609	NO
MW224	-1.609	NO
MW369	-1.609	NO
MW372	0.039	NO
MW384	-1.609	NO
MW387	-1.609	NO
MW391	-1.609	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis URGA Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

MW220
Result
23.600
25.900
30.400
33.900
21.300
20.300
23.800
19.000
MW394
Result
29.500
29.900
31.200
30.700
34.400

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data X= 27.638

S= 4.743 CV= 0.172 K factor** = 2.523 TL= 39.604

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

29.600

30.300

28.400

Well No.	Result	Gradient	Result $>$ TL?
MW221	20.000	Sidegradient	NO
MW222	19.100	Sidegradient	NO
MW223	20.500	Sidegradient	NO
MW224	23.800	Sidegradient	NO
MW369	21.800	Downgradier	nt NO
MW372	31.300	Downgradier	nt NO
MW384	24.600	Sidegradient	NO
MW387	36.800	Downgradier	nt NO
MW391	26.100	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis URGA Chloride UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	44.600
1/15/2003	43.200
4/10/2003	31.500
7/14/2003	30.800
10/13/2003	40.900
1/13/2004	40.800
4/13/2004	37.500
7/21/2004	40.800
Well Number:	MW394
Date Collected	Result
8/13/2002	60.400
9/16/2002	60.300
10/16/2002	58.000
1/13/2003	60.700
4/10/2003	62.900
7/16/2003	58.100
10/14/2003	58.200
1/13/2004	56.000

Statistics on		
Background Data		
X= 49.044		

S= 11.278 CV= 0.230 K factor** = 2.523 TL= 77.499

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result $>$ TL?
MW221	39.000	Sidegradient	NO
MW222	36.000	Sidegradient	NO
MW223	36.000	Sidegradient	NO
MW224	34.000	Sidegradient	NO
MW369	36.000	Downgradier	nt NO
MW372	48.000	Downgradier	nt NO
MW384	38.000	Sidegradient	NO
MW387	46.000	Downgradier	nt NO
MW391	51.000	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis URGA Cobalt UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background D	ata	Transformed Data from Up	
Well Number:	MW220	X = 0.016		Well Number:	MW220
Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004 7/21/2004 Well Number:	Result 0.004 0.005 0.003 0.161 0.023 0.005 0.001 0.003 MW394		ater than 1, the natural aground and test well results	Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004 7/21/2004 Well Number:	LN(Result -5.497 -5.306 -5.846 -1.826 -3.790 -5.373 -6.908 -5.937 MW394
Date Collected	Result	X= -5.582		Date Collected	LN(Result
8/13/2002	0.025	S= 1.573		8/13/2002	-3.689
9/16/2002	0.025	CV = -0.282		9/16/2002	-3.689
10/16/2002	0.001	K factor** = 2.	.523	10/16/2002	-6.908
1/13/2003	0.001	TL = -1.613		1/13/2003	-6.908
4/10/2003	0.001	1L1.013		4/10/2003	-6.908
7/16/2003	0.001			7/16/2003	-6.908
10/14/2003	0.001			10/14/2003	-6.908
1/13/2004	0.001			1/13/2004	-6.908

First Quarter 2014 Data Collected in	
January 2014	

Well No.	Result	Gradient F	Result > TL
MW221	0.001	Sidegradient	N/A
MW222	0.010	Sidegradient	N/A
MW223	0.001	Sidegradient	N/A
MW224	0.001	Sidegradient	N/A
MW369	0.022	Downgradient	N/A
MW372	0.001	Downgradient	N/A
MW384	0.001	Sidegradient	N/A
MW387	0.001	Downgradient	N/A
MW391	0.001	Downgradient	N/A

Transformed First Quarter 2014 Data Collected in January 2014

	·	
Well Number	LN(Result)	Result > TL?
MW221	-6.908	NO
MW222	-4.605	NO
MW223	-6.908	NO
MW224	-6.908	NO
MW369	-3.821	NO
MW372	-6.908	NO
MW384	-6.908	NO
MW387	-6.908	NO
MW391	-6.908	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis URGA Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220	
Date Collected	Result	
10/14/2002	368.000	
1/15/2003	433.200	
4/10/2003	489.000	
7/14/2003	430.000	
10/13/2003	346.000	
1/13/2004	365.000	
4/13/2004	416.000	
7/21/2004	353.000	
Well Number:	MW394	
Date Collected	Result	
8/13/2002	406.000	
9/16/2002	418.000	
10/16/2002	411.000	
1/13/2003	422.000	
4/10/2003	420.000	

10/14/2003

1/13/2004

Statistics on Background Data

X= 382.132 S= 107.134 CV= 0.280 K factor** = 2.523 TL= 652.432

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

3.910

395.000

Well No.	Result	Gradient	Result $>$ TL?
MW221	385.00	Sidegradient	NO
MW222	364.00	Sidegradient	NO
MW223	390.00	Sidegradient	NO
MW224	458.00	Sidegradient	NO
MW369	392.00	Downgradier	nt NO
MW372	759.00	Downgradier	nt YES
MW384	480.00	Sidegradient	NO
MW387	564.00	Downgradier	nt NO
MW391	392.00	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis URGA Dissolved Oxygen UNITS: uRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	6.790
1/15/2003	7.250
4/10/2003	3.600
7/14/2003	0.940
10/13/2003	1.650
1/13/2004	3.480
4/13/2004	1.050
7/21/2004	4.460
772172001	7.700
Well Number:	MW394
Well Number:	MW394
Well Number: Date Collected	MW394 Result
Well Number: Date Collected 8/13/2002	MW394 Result 6.090
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 6.090 3.850
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 6.090 3.850 5.110
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 6.090 3.850 5.110 3.830
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	MW394 Result 6.090 3.850 5.110 3.830 4.150

Statistics on
Background Data

X= 3.784 S= 1.887 CV= 0.499 K factor** = 2.523 TL= 8.545

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result $>$ TL?
MW221	5.130	Sidegradient	NO
MW222	3.700	Sidegradient	NO
MW223	4.220	Sidegradient	NO
MW224	3.660	Sidegradient	NO
MW369	0.940	Downgradier	nt NO
MW372	0.750	Downgradier	nt NO
MW384	3.610	Sidegradient	NO
MW387	3.860	Downgradier	nt NO
MW391	3.820	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	208.000
1/15/2003	257.000
4/10/2003	288.000
7/14/2003	262.000
10/13/2003	197.000
1/13/2004	198.000
4/13/2004	245.000
7/21/2004	204.000
Well Number:	MW394
Date Collected	Result
8/13/2002	247.000
9/16/2002	259.000
10/16/2002	201.000
1/13/2003	228.000
4/10/2003	249.000

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data

X= 232.688 S= 27.490 CV= 0.118 K factor** = 2.523 TL= 302.045

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

240.000

230.000

210.000

Well No.	Result	Gradient	Result $>$ TL?
MW221	215.00	Sidegradient	NO
MW222	231.00	Sidegradient	NO
MW223	216.00	Sidegradient	NO
MW224	264.00	Sidegradient	NO
MW369	216.00	Downgradier	nt NO
MW372	455.00	Downgradier	nt YES
MW384	243.00	Sidegradient	NO
MW387	309.00	Downgradier	nt YES
MW391	213.00	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

MW387

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis URGA Iron UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

	Statistics on Background Data		Transformed Background Data from Upgradient Wells	
MW220	X = 0.897		Well Number:	MW220
Result 0.200 0.200 0.429 4.330 1.810 0.793 0.130 0.382	logarithm of backgroun were calculated. Statistics on		Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004	LN(Result) -1.609 -1.609 -0.846 1.466 0.593 -0.232 -2.040 -0.962
MW394	Background Data		Well Number:	MW394
Result 1.340 0.328 1.380 1.300 0.494 0.620 0.370	X= -0.565 S= 0.951 CV= -1.683 K factor** = 2.523 TL= 1.834		Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003	LN(Result) 0.293 -1.115 0.322 0.262 -0.705 -0.478 -0.994 -1.382
	Result 0.200 0.200 0.429 4.330 1.810 0.793 0.130 0.382 MW394 Result 1.340 0.328 1.380 1.300 0.494 0.620	MW220 X = 0.897 S = 1.050 CV = 1.170 K factor** = 2.523 TL = 3.545 MW394 Result 0.328 1.380 1.300 0.494 0.620 0.370 MW220 X = 0.897 S = 1.050 CV = 1.170 K factor** = 2.523 TL = 3.545 MW394 Because CV greater that logarithm of background were calculated. Statistics on Transformed Background Data Transformed Background Data Transformed Background Data Transformed Background Data TL = 1.834 TL = 1.	MW220	NW220

First Quarter 2014 Data Collected in	n
January 2014	

Well No.	Result	Gradient	Result > TL?
MW221	0.223	Sidegradient	N/A
MW222	2.540	Sidegradient	N/A
MW223	0.100	Sidegradient	N/A
MW224	0.100	Sidegradient	N/A
MW369	1.910	Downgradien	t N/A
MW372	0.436	Downgradien	t N/A
MW384	0.468	Sidegradient	N/A
MW387	0.100	Downgradien	t N/A
MW391	0.100	Downgradien	t N/A

Transformed First Quarter 2014 Data Collected in January 2014

Well Number	LN(Result)	Result $>$ TL?
MW221	-1.501	NO
MW222	0.932	NO
MW223	-2.303	NO
MW224	-2.303	NO
MW369	0.647	NO
MW372	-0.830	NO
MW384	-0.759	NO
MW387	-2.303	NO
MW391	-2.303	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis URGA Magnesium UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	9.160
1/15/2003	10.000
4/10/2003	10.800
7/14/2003	14.700
10/13/2003	9.030
1/13/2004	8.490
4/13/2004	9.700
7/21/2004	8.060
Well Number:	MW394
Well Number: Date Collected	MW394 Result
Date Collected	Result
Date Collected 8/13/2002	Result 11.800
Date Collected 8/13/2002 9/16/2002	Result 11.800 12.100
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.800 12.100 11.300
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.800 12.100 11.300 10.300
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.800 12.100 11.300 10.300 11.700

Statistics on Background Data

X= 10.796 S= 1.703 CV= 0.158 K factor** = 2.523 TL= 15.092

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result $>$ TL?
MW221	8.970	Sidegradient	NO
MW222	8.380	Sidegradient	NO
MW223	8.700	Sidegradient	NO
MW224	9.970	Sidegradient	NO
MW369	9.540	Downgradier	nt NO
MW372	12.800	Downgradier	nt NO
MW384	9.720	Sidegradient	NO
MW387	14.800	Downgradier	nt NO
MW391	10.300	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis URGA Manganese UNITS: URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data		Transformed Background Data from Upgradient Wells	
Well Number:	MW220	X=0.287		Well Number:	MW220
Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004 7/21/2004 Well Number:	Result 0.031 0.029 0.014 2.540 0.378 0.159 0.007 0.084 MW394	logarithm of backgroun were calculated. Statistics on Transformed	CV= 2.156 K factor** = 2.523 CL= 1.848 Cause CV greater than 1, the natural arithm of background and test well results re calculated. Ctatistics on Cransformed Cackground Data	Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004 7/21/2004	LN(Result) -3.487 -3.537 -4.290 0.932 -0.973 -1.839 -4.952 -2.476
Date Collected	Result	X= -2.455		Well Number: Date Collected	MW394 LN(Result)
8/13/2002	0.542	S= 1.619		8/13/2002	-0.612
9/16/2002	0.155	CV = -0.659		9/16/2002	-1.864
10/16/2002 1/13/2003 4/10/2003	0.103 0.128 0.005	K factor** = 2.523 TL= 1.630		10/16/2002 1/13/2003 4/10/2003	-2.273 -2.056 -5.298
7/16/2003 10/14/2003	0.272 0.080			7/16/2003 10/14/2003	-1.302 -2.532
1/13/2004	0.066			1/13/2004	-2.721

First Quarter 2014	Data Collected in
January 2014	

Well No.	Result	Gradient	Result > TL
MW221	0.005	Sidegradient	N/A
MW222	0.101	Sidegradient	N/A
MW223	0.014	Sidegradient	N/A
MW224	0.009	Sidegradient	N/A
MW369	0.206	Downgradien	t N/A
MW372	0.007	Downgradien	t N/A
MW384	0.018	Sidegradient	N/A
MW387	0.005	Downgradien	t N/A
MW391	0.005	Downgradien	t N/A

Transformed First Quarter 2014 Data Collected in January 2014

Well Number	LN(Result)	Result > TL?
MW221	-5.298	NO
MW222	-2.293	NO
MW223	-4.247	NO
MW224	-4.732	NO
MW369	-1.580	NO
MW372	-4.966	NO
MW384	-4.034	NO
MW387	-5.298	NO
MW391	-5.298	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis **URGA** Molybdenum **UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	Background gradient Wells
Well Number:	MW220	X= 0.006		Well Number:	MW220
Date Collected	Result	S = 0.008		Date Collected	LN(Result)
10/14/2002	0.006	CV= 1.261 K factor** = 2.523		10/14/2002	-5.189
1/15/2003	0.010	TL = 0.026		1/15/2003	-4.622
4/10/2003	0.011			4/10/2003	-4.519
7/14/2003	0.002	Because CV greater tha		7/14/2003	-6.012
10/13/2003	0.006	logarithm of background were calculated.	a and test well results	10/13/2003	-5.174
1/13/2004	0.006	were calculated.		1/13/2004	-5.164
4/13/2004	0.001	Statistics on		4/13/2004	-6.908
7/21/2004	0.004	Transformed		7/21/2004	-5.542
Well Number:	MW394	Background Data		Well Number:	MW394
Date Collected	Result	X= -5.747		Date Collected	LN(Result)
8/13/2002	0.025	S = 1.205		8/13/2002	-3.689
9/16/2002	0.025	CV = -0.210		9/16/2002	-3.689
10/16/2002	0.001	K factor** = 2.523		10/16/2002	-6.908
1/13/2003	0.001	TL = -2.708		1/13/2003	-6.908
4/10/2003	0.001	112.700		4/10/2003	-6.908
7/16/2003	0.001			7/16/2003	-6.908
10/14/2003	0.001			10/14/2003	-6.908
1/13/2004	0.001			1/13/2004	-6.908

First Quarter	Collected	in
January 2014		

Well No.	Result	Gradient	Result > TL
MW221	0.005	Sidegradient	N/A
MW222	0.001	Sidegradient	N/A
MW223	0.003	Sidegradient	N/A
MW224	0.001	Sidegradient	N/A
MW369	0.001	Downgradien	t N/A
MW372	0.001	Downgradien	t N/A
MW384	0.001	Sidegradient	N/A
MW387	0.001	Downgradien	t N/A
MW391	0.001	Downgradien	t N/A

Transformed First Quarter 2014 Data Collected in January 2014

Well Number	r LN(Result)	Result $>$ TL?
MW221	-5.210	NO
MW222	-6.661	NO
MW223	-5.903	NO
MW224	-6.908	NO
MW369	-6.908	NO
MW372	-6.908	NO
MW384	-6.908	NO
MW387	-6.908	NO
MW391	-6.908	NO

Conclusion of Statistical Analysis on Transformed Data

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)TL

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-51

C-746-S and C-746-T First Quarter 2014 Statistical Analysis **URGA** mg/L Nickel **UNITS:**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data	Transformed B Data from Upgi		
Well Number:	MW220	X= 0.127		Well Number:	MW220
Date Collected	Result	S= 0.228		Date Collected	LN(Result)
10/14/2002	0.418	CV= 1.790 K factor** = 2.523		10/14/2002	-0.872
1/15/2003	0.738	TL= 0.701		1/15/2003	-0.304
4/10/2003	0.544			4/10/2003	-0.609
7/14/2003	0.106	Because CV greater than		7/14/2003	-2.244
10/13/2003	0.053	logarithm of background were calculated.	and test well results	10/13/2003	-2.939
1/13/2004	0.021	were calculated.		1/13/2004	-3.868
4/13/2004	0.005	Statistics on		4/13/2004	-5.298
7/21/2004	0.019	Transformed		7/21/2004	-3.953
Well Number:	MW394	Background Data		Well Number:	MW394
Date Collected	Result	X= -3.617		Date Collected	LN(Result)
8/13/2002	0.050	S= 1.837		8/13/2002	-2.996
9/16/2002	0.050	CV = -0.508		9/16/2002	-2.996
10/16/2002	0.005	K factor** = 2.523		10/16/2002	-5.298
1/13/2003	0.005	TL= 1.019		1/13/2003	-5.298
4/10/2003	0.005	1L- 1.017		4/10/2003	-5.298
7/16/2003	0.005			7/16/2003	-5.298
10/14/2003	0.005			10/14/2003	-5.298
1/13/2004	0.005			1/13/2004	-5.298

First Quarter 2014 Data Collected	l in
January 2014	

Well No.	Result	Gradient	Result > TL
MW221	0.063	Sidegradient	N/A
MW222	0.195	Sidegradient	N/A
MW223	0.478	Sidegradient	N/A
MW224	0.007	Sidegradient	N/A
MW369	0.007	Downgradier	nt N/A
MW372	0.005	Downgradier	nt N/A
MW384	0.005	Sidegradient	N/A
MW387	0.005	Downgradier	nt N/A
MW391	0.005	Downgradier	nt N/A

Transformed First Quarter 2014 Data Collected in January 2014

	·	
Well Number	LN(Result)	Result > TL?
MW221	-2.771	NO
MW222	-1.635	NO
MW223	-0.738	NO
MW224	-5.033	NO
MW369	-4.995	NO
MW372	-5.298	NO
MW384	-5.298	NO
MW387	-5.298	NO
MW391	-5.298	NO

Conclusion of Statistical Analysis on Transformed Data

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)TL

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-52

C-746-S and C-746-T First Quarter 2014 Statistical Analysis Oxidation-Reduction Potential UNITS: WV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	205.000
1/15/2003	1.950
4/10/2003	203.000
7/14/2003	30.000
10/13/2003	107.000
1/13/2004	295.000
4/13/2004	190.000
7/21/2004	319.000
Well Number:	MW394
Date Collected	Result
8/13/2002	90.000
9/16/2002	240.000
10/16/2002	185.000
1/13/2003	220.000

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data

X= 179.872 S= 86.318 CV= 0.480 K factor** = 2.523 TL= 397.652

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

196.000

172.000

175.000

249.000

Well No.	Result	Gradient Resu	lt > TL?
MW221	421.00	Sidegradient	YES
MW222	700.00	Sidegradient	YES
MW223	359.00	Sidegradient	NO
MW224	449.00	Sidegradient	YES
MW369	438.00	Downgradient	YES
MW372	740.00	Downgradient	YES
MW384	368.00	Sidegradient	NO
MW387	616.00	Downgradient	YES
MW391	650.00	Downgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW221

MW222

MW224

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quai	ter 2014 Sta	tistical Analysis	URGA
Oxidation-Reduction Potential	(Continued)	UNITS:	mV

MW369	
MW372	
MW387	
MW391	

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-54

C-746-S and C-746-T First Quarter 2014 Statistical Analysis URGA pH UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from Upgradient Wells

18	
Well Number:	MW220
Date Collected	Result
10/14/2002	6.040
1/15/2003	6.310
4/10/2003	6.500
7/14/2003	6.300
10/13/2003	6.340
1/13/2004	6.330
4/13/2004	6.300
7/21/2004	5.900
Well Number:	MW394
Well Number: Date Collected	MW394 Result
Date Collected	Result
Date Collected 8/13/2002	Result 5.800
Date Collected 8/13/2002 9/30/2002	Result 5.800 5.930
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5.800 5.930 5.420
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5.800 5.930 5.420 6.000
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.800 5.930 5.420 6.000 6.040
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 5.800 5.930 5.420 6.000 6.040 6.200

Statistics on	
Background Data	

X= 6.138 S= 0.282 CV= 0.046 K factor** = 2.904 TL= 6.957 LL= 5.318

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result >TL?	Result <ll?< th=""></ll?<>
MW221	6.510	Sidegradi	ent NO	NO
MW222	6.590	Sidegradi	ent NO	NO
MW223	6.590	Sidegradi	ent NO	NO
MW224	6.450	Sidegradi	ent NO	NO
MW369	6.220	Downgrad	ient NO	NO
MW372	6.440	Downgrad	ient NO	NO
MW384	6.530	Sidegradi	ent NO	NO
MW387	6.220	Downgrad	ient NO	NO
MW391	6.420	Downgrad	ient NO	NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T First Quarter 2014 Statistical Analysis Potassium UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells Statistics on Background Data			Transformed Background Data from Upgradient Wells		
Well Number:	MW220	X = 6.654		Well Number:	MW220
Date Collected	Result		S= 9.310 CV= 1.399	Date Collected	LN(Result)
10/14/2002	6.700	K factor** = 2.523		10/14/2002	1.902
1/15/2003	29.700	TL= 30.144		1/15/2003	3.391
4/10/2003	24.900			4/10/2003	3.215
7/14/2003	1.130	Because CV greater tha		7/14/2003	0.122
10/13/2003	3.430	logarithm of backgroun were calculated.	a and test well results	10/13/2003	1.233
1/13/2004	6.710	were carearated.		1/13/2004	1.904
4/13/2004	19.300	Statistics on		4/13/2004	2.960
7/21/2004	3.970	Transformed	ransformed ackground Data	7/21/2004	1.379
Well Number:	MW394	Background Data		Well Number:	MW394
Date Collected	Result	X = 1.130		Date Collected	LN(Result)
8/13/2002	2.000	S= 1.208		8/13/2002	0.693
9/16/2002	2.000	CV = 1.069		9/16/2002	0.693
10/16/2002	1.030	K factor** = 2.523		10/16/2002	0.030
1/13/2003	1.100	TL=4.178		1/13/2003	0.095
4/10/2003	1.240	1L- 4.176		4/10/2003	0.215
7/16/2003	1.140			7/16/2003	0.131
10/14/2003	1.050			10/14/2003	0.049
1/13/2004	1.070			1/13/2004	0.068

First Quarter 2	2014	Data	Collected in
January 2014			

Well No.	Result	Gradient	Result > TL?
MW221	1.630	Sidegradient	N/A
MW222	0.685	Sidegradient	N/A
MW223	3.730	Sidegradient	N/A
MW224	0.878	Sidegradient	N/A
MW369	2.790	Downgradien	t N/A
MW372	0.364	Downgradien	t N/A
MW384	1.490	Sidegradient	N/A
MW387	1.830	Downgradien	t N/A
MW391	1.500	Downgradien	t N/A

Transformed First Quarter 2014 Data Collected in January 2014

Well Number	LN(Result)	Result > TL?
MW221	0.489	NO
MW222	-0.378	NO
MW223	1.316	NO
MW224	-0.130	NO
MW369	1.026	NO
MW372	-1.011	NO
MW384	0.399	NO
MW387	0.604	NO
MW391	0.405	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis URGA Sodium UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	35.400
1/15/2003	40.600
4/10/2003	51.000
7/14/2003	58.200
10/13/2003	38.100
1/13/2004	37.000
4/13/2004	43.200
7/21/2004	33.800
Well Number:	MW394
Date Collected	Result
8/13/2002	32.900
9/16/2002	29.900
10/16/2002	29.000
10/16/2002 1/13/2003	29.000 27.100
10/10/2002	
1/13/2003	27.100

1/13/2004

Statistics on Background Data

X= 36.363 S= 8.666 CV= 0.238 K factor** = 2.523 TL= 58.227

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

31.300

Well No.	Result	Gradient	Result $>$ TL?
MW221	41.600	Sidegradient	NO
MW222	42.600	Sidegradient	NO
MW223	42.400	Sidegradient	NO
MW224	53.900	Sidegradient	NO
MW369	30.600	Downgradier	nt NO
MW372	123.00	Downgradier	nt YES
MW384	47.100	Sidegradient	NO
MW387	53.100	Downgradier	nt NO
MW391	31.400	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis URGA Sulfate UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

MW220
Result
10.400
9.800
15.400
14.900
13.500
10.300
14.300
10.500
MW394
Result
11.200
8.300
8.300 8.000
8.000
8.000 8.500

1/13/2004

Statistics on Background Data

X= 10.481 S= 2.648 CV= 0.253 K factor** = 2.523 TL= 17.161

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

8.100

Well No.	Result	Gradient R	esult > TL?
MW221	14.000	Sidegradient	NO
MW222	12.000	Sidegradient	NO
MW223	25.000	Sidegradient	YES
MW224	17.000	Sidegradient	NO
MW369	8.100	Downgradient	NO
MW372	140.00	Downgradient	YES
MW384	23.000	Sidegradient	YES
MW387	32.000	Downgradient	YES
MW391	12.000	Downgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW223

MW372

MW384

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

D-58

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis **URGA UNITS:** mg/L Sulfate (Continued)

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-59

C-746-S and C-746-T First Quarter 2014 Statistical Analysis URGA Technetium-99 UNITS: URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	19.700
1/15/2003	26.100
4/10/2003	3.560
7/14/2003	0.000
10/13/2003	21.000
1/13/2004	6.320
4/13/2004	3.000
7/21/2004	14.600
772172001	17.000
Well Number:	MW394
	1
Well Number:	MW394
Well Number: Date Collected	MW394 Result
Well Number: Date Collected 8/13/2002	MW394 Result 14.000
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 14.000 5.450
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 14.000 5.450 2.490
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 14.000 5.450 2.490 18.300

1/13/2004

Statistics on Background Data

X= 9.354 S= 9.280 CV= 0.992 K factor** = 2.523 TL= 32.768

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

0.000

Well No.	Result	Gradient	Result $>$ TL?
MW221	17.300	Sidegradient	NO
MW222	1.190	Sidegradient	NO
MW223	17.500	Sidegradient	NO
MW224	26.300	Sidegradient	NO
MW369	25.300	Downgradier	nt NO
MW372	131.00	Downgradier	nt YES
MW384	143.00	Sidegradient	YES
MW387	307.00	Downgradier	nt YES
MW391	19.500	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

MW384

MW387

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

D-60

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis URGA Total Organic Carbon (TOC) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

10	
Well Number:	MW220
Date Collected	Result
10/14/2002	1.000
1/15/2003	1.100
4/10/2003	1.000
7/14/2003	3.300
10/13/2003	1.800
1/13/2004	1.000
4/13/2004	2.000
7/21/2004	3.100
Well Number:	MW394
Date Collected	Result
8/13/2002	1.300
9/16/2002	1.000
10/16/2002	1.000
1/13/2003	1.600
4/10/2003	1.000
7/16/2003	1.400
10/14/2002	
10/14/2003	1.300

K factor** = 2.523 TL= 3.353

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result $>$ TL?
MW221	1.000	Sidegradient	NO
MW222	1.000	Sidegradient	NO
MW223	1.000	Sidegradient	NO
MW224	1.000	Sidegradient	NO
MW369	1.900	Downgradie	nt NO
MW372	1.000	Downgradie	nt NO
MW384	1.000	Sidegradient	NO
MW387	1.000	Downgradie	nt NO
MW391	1.000	Downgradie	nt NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis Total Organic Halides (TOX) UNITS: URGA ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	Background gradient Wells
Well Number:	MW220	X = 63.475		Well Number:	MW220
Date Collected	Result	S= 163.135 CV= 2.570		Date Collected	LN(Result)
10/14/2002	50.000	K factor** = 2.523		10/14/2002	3.912
1/15/2003	10.000	TL= 475.063		1/15/2003	2.303
4/10/2003	10.000			4/10/2003	2.303
7/14/2003	10.000	Because CV greater tha		7/14/2003	2.303
10/13/2003	10.000	logarithm of backgroun were calculated.	d and test well results	10/13/2003	2.303
1/13/2004	10.000	were calculated.	•	1/13/2004	2.303
4/13/2004	10.000	Statistics on		4/13/2004	2.303
7/21/2004	10.000	Transformed		7/21/2004	2.303
Well Number:	MW394	Background Data	_	Well Number:	MW394
Date Collected	Result	X = 3.103		Date Collected	LN(Result)
8/13/2002	50.000	S= 1.145		8/13/2002	3.912
9/16/2002	672.000	CV = 0.369		9/16/2002	6.510
10/16/2002	50.000	K factor** = 2.523		10/16/2002	3.912
1/13/2003	36.100	TL= 5.992		1/13/2003	3.586
4/10/2003	10.000	1L- 3.992		4/10/2003	2.303
7/16/2003	42.700			7/16/2003	3.754
10/14/2003	22.000			10/14/2003	3.091
1/13/2004	12.800			1/13/2004	2.549

First Quarter 2014 Data Collected in	
January 2014	

Well No.	Result	Gradient	Result > TL?
MW221	14.000	Sidegradient	N/A
MW222	11.000	Sidegradient	N/A
MW223	11.000	Sidegradient	N/A
MW224	13.000	Sidegradient	N/A
MW369	50.000	Downgradien	nt N/A
MW372	19.000	Downgradien	nt N/A
MW384	18.000	Sidegradient	N/A
MW387	24.000	Downgradien	nt N/A
MW391	22.000	Downgradien	nt N/A

Transformed First Quarter 2014 Data Collected in January 2014

Well Number	LN(Result)	Result > TL?
MW221	2.639	NO
MW222	2.398	NO
MW223	2.398	NO
MW224	2.565	NO
MW369	3.912	NO
MW372	2.944	NO
MW384	2.890	NO
MW387	3.178	NO
MW391	3.091	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis LRGA Boron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	
Well Number:	MW395	X = 0.650		Well Number:	MW395
Date Collected	Result	S= 0.805		Date Collected	LN(Result)
8/13/2002	2.000	CV= 1.238 K factor** = 2.523		8/13/2002	0.693
9/16/2002	2.000	TL= 2.681		9/16/2002	0.693
10/16/2002	0.200		_	10/16/2002	-1.609
1/13/2003	0.200	Because CV greater tha	,	1/13/2003	-1.609
4/10/2003	0.200	logarithm of backgroun were calculated.	d and test well results	4/10/2003	-1.609
7/16/2003	0.200	were careurated.	•	7/16/2003	-1.609
10/14/2003	0.200	Statistics on		10/14/2003	-1.609
1/13/2004	0.200	Transformed		1/13/2004	-1.609
Well Number:	MW397	Background Data		Well Number:	MW397
Date Collected	Result	X = -1.034		Date Collected	LN(Result)
8/13/2002	2.000	S= 1.030		8/13/2002	0.693
9/16/2002	2.000	CV = -0.996		9/16/2002	0.693
10/17/2002	0.200	K factor** = 2.523		10/17/2002	-1.609
1/13/2003	0.200	TL= 1.564		1/13/2003	-1.609
4/8/2003	0.200	1L- 1.304		4/8/2003	-1.609
7/16/2003	0.200			7/16/2003	-1.609
10/14/2003	0.200			10/14/2003	-1.609
1/13/2004	0.200			1/13/2004	-1.609

First Quarter 2014 Data Collected	l in
January 2014	

Well No.	Result	Gradient	Result > TL?
MW370	0.200	Downgradier	nt N/A
MW373	1.730	Downgradier	nt N/A
MW385	0.200	Sidegradient	N/A
MW388	0.200	Downgradier	nt N/A
MW392	0.200	Downgradier	nt N/A

Transformed First Quarter 2014 Data Collected in January 2014

Well Number	LN(Result)	Result > TL?
MW370	-1.609	NO
MW373	0.548	NO
MW385	-1.609	NO
MW388	-1.609	NO
MW392	-1.609	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis LRGA Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

10	
Well Number:	MW395
Date Collected	Result
8/13/2002	32.200
9/16/2002	33.000
10/16/2002	0.030
1/13/2003	32.100
4/10/2003	40.200
7/16/2003	32.400
10/14/2003	33.900
1/13/2004	31.200
Well Number:	MW397
Date Collected	Result
8/13/2002	19.400
9/16/2002	19.000
10/17/2002	0.018
1/13/2003	17.800
4/8/2003	20.300
7/16/2003	19.400
10/14/2003	19.900

Statistics on Background Data

X= 23.103 S= 11.538 CV= 0.499 K factor** = 2.523 TL= 52.213

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

18.800

Well No. Result Gradie	ent Result $>$ TL?
MW370 75.800 Down	gradient YES
MW373 61.100 Down	gradient YES
MW385 23.800 Sidegr	radient NO
MW388 25.900 Down	gradient NO
MW392 25.600 Down	gradient NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW370

1/13/2004

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis LRGA Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	62.200
9/16/2002	64.700
10/16/2002	62.200
1/13/2003	63.500
4/10/2003	64.100
7/16/2003	64.000
10/14/2003	63.200
1/13/2004	60.600
1/13/2004	00.000
Well Number:	MW397
-,,, -	
Well Number:	MW397
Well Number: Date Collected	MW397 Result
Well Number: Date Collected 8/13/2002	MW397 Result 38.900
Well Number: Date Collected 8/13/2002 9/16/2002	MW397 Result 38.900 39.800
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002	MW397 Result 38.900 39.800 39.300
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	MW397 Result 38.900 39.800 39.300 40.500
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	MW397 Result 38.900 39.800 39.300 40.500 42.100

Statistics on Background Data
X= 51.844
S= 11.652
CV = 0.225

K factor** = 2.523 TL= 81.242

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result $> TL$?
MW370	42.000	Downgradier	nt NO
MW373	46.000	Downgradier	nt NO
MW385	31.000	Sidegradient	NO
MW388	33.000	Downgradier	nt NO
MW392	48.000	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis LRGA Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	405.000
9/16/2002	401.000
10/16/2002	392.000
1/13/2003	404.000
4/10/2003	488.000
7/16/2003	450.000
10/14/2003	410.000
1/13/2004	413.000
Well Number:	MW397
Date Collected	Result
8/13/2002	322.000
9/16/2002	315.000
10/17/2002	317.000
1/13/2003	320.000
4/8/2003	390.000

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data

X= 377.875 S= 52.101 CV= 0.138 K factor** = 2.523 TL= 509.326

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

354.000

331.000

334.000

Well No.	Result	Gradient R	esult > TL?
MW370	421.00	Downgradient	NO
MW373	959.00	Downgradient	YES
MW385	424.00	Sidegradient	NO
MW388	434.00	Downgradient	NO
MW392	379.00	Downgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis LRGA Dissolved Oxygen UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

10	
Well Number:	MW395
Date Collected	Result
8/13/2002	7.290
9/30/2002	4.030
10/16/2002	3.850
1/13/2003	2.360
4/10/2003	1.140
7/16/2003	1.760
10/14/2003	4.050
1/13/2004	4.260
Well Number:	MW397
Date Collected	Result
8/13/2002	11.560
9/16/2002	5.860
10/17/2002	5.940
1/13/2003	4.660
4/8/2003	3.770
7/16/2003	3.470
10/14/2003	5.340
1/13/2004	

Statistics on Background Data
X= 4.678
S = 2.431
CV = 0.520

K factor** = 2.523 TL= 10.812

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result $>$ TL?
MW370	3.740	Downgradien	nt NO
MW373	0.790	Downgradien	nt NO
MW385	2.640	Sidegradient	NO
MW388	5.200	Downgradien	nt NO
MW392	0.740	Downgradien	nt NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis LRGA Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	249.000
9/16/2002	272.000
10/16/2002	255.000
1/13/2003	211.000
4/10/2003	289.000
7/16/2003	236.000
10/14/2003	224.000
1/13/2004	235.000
Well Number:	MW397
Date Collected	Result
8/13/2002	187.000
9/16/2002	197.000
10/17/2002	183.000
	105.000
1/13/2003	182.000
1/13/2003 4/8/2003	

7/16/2003 10/14/2003

1/13/2004

Statistics on Background Data

X= 219.250 S= 34.107 CV= 0.156 K factor** = 2.523 TL= 305.301

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

196.000

198.000

177.000

Э
S
С
C
C

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis LRGA Iron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

ground Da adient We			Statistics on Background Data		Transformed Data from Up	
ll Number:	MW395		X= 0.400		Well Number:	MW395
te Collected	Result		S= 0.514		Date Collected	LN(Result)
3/13/2002	0.294		CV= 1.286 K factor** = 2.523		8/13/2002	-1.224
/16/2002	0.200		TL= 1.698		9/16/2002	-1.609
0/16/2002	0.000				10/16/2002	-8.517
/13/2003	1.330		Because CV greater tha	,	1/13/2003	0.285
1/10/2003	1.310		ogarithm of backgroun were calculated.	d and test well results	4/10/2003	0.270
7/16/2003	0.200	,	were carearated.	İ	7/16/2003	-1.609
0/14/2003	0.100		Statistics on		10/14/2003	-2.303
/13/2004	0.100		Transformed		1/13/2004	-2.303
ell Number:	MW397		Background Data		Well Number:	MW397
te Collected	Result		X = -2.197		Date Collected	LN(Result)
3/13/2002	1.580		S = 2.634		8/13/2002	0.457
/16/2002	0.232		CV = -1.199		9/16/2002	-1.461
0/17/2002	0.000		K factor** = 2.523		10/17/2002	-8.517
/13/2003	0.453		TL= 4.449		1/13/2003	-0.792
/8/2003	0.200		111- 1011/		4/8/2003	-1.609
/16/2003	0.200				7/16/2003	-1.609
0/14/2003	0.100				10/14/2003	-2.303
/13/2004	0.100				1/13/2004	-2.303

First Quarter 2014 Data Collected in	
January 2014	

Well No.	Result	Gradient	Result > TL?
MW370	0.100	Downgradien	t N/A
MW373	0.114	Downgradien	t N/A
MW385	0.107	Sidegradient	N/A
MW388	0.100	Downgradien	t N/A
MW392	0.100	Downgradien	t N/A

Transformed First Quarter 2014 Data Collected in January 2014

Well Number	LN(Result)	Result > TL?
MW370	-2.303	NO
MW373	-2.172	NO
MW385	-2.235	NO
MW388	-2.303	NO
MW392	-2.303	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

D-69

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis LRGA Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	12.500
9/16/2002	13.000
10/16/2002	0.013
1/13/2003	11.200
4/10/2003	17.500
7/16/2003	12.900
10/14/2003	13.400
1/13/2004	12.400
Well Number:	MW397
wen rumber.	IVI VV 397
Date Collected	Result
· · · · · · · · · · · · · · · · · · ·	
Date Collected	Result
Date Collected 8/13/2002	Result 7.830
Date Collected 8/13/2002 9/16/2002	Result 7.830 7.640
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 7.830 7.640 0.007
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 7.830 7.640 0.007 6.690
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 7.830 7.640 0.007 6.690 7.280

Statistics on Background Data

X= 9.102 S= 4.685 CV= 0.515 K factor** = 2.523 TL= 20.922

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No. Resu	lt Gradient	Result > TL?
MW370 28.50	00 Downgrad	lient YES
MW373 22.50	00 Downgrad	dient YES
MW385 8.920	O Sidegradie	ent NO
MW388 10.90	00 Downgrad	lient NO
MW392 9.970	0 Downgrad	lient NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW370

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis LRGA Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

ground D Idient W	ata from ells		Statistics on Background Data		Transformed Data from Up	
Number:	MW395	_	X= 0.131		Well Number:	MW395
Collected	Result		S= 0.195		Date Collected	LN(Result)
13/2002	0.361		CV= 1.487 K factor** = 2.523		8/13/2002	-1.019
16/2002	0.028		TL = 0.624		9/16/2002	-3.576
0/16/2002	0.026				10/16/2002	-3.650
13/2003	0.071		Because CV greater tha	*	1/13/2003	-2.641
10/2003	0.629		logarithm of backgroun were calculated.	d and test well results	4/10/2003	-0.464
16/2003	0.297		were carcurated.	Ī	7/16/2003	-1.214
/14/2003	0.020		Statistics on		10/14/2003	-3.922
3/2004	0.013		Transformed		1/13/2004	-4.374
l Number:	MW397		Background Data		Well Number:	MW397
e Collected	Result		X= -3.104		Date Collected	LN(Result)
13/2002	0.466		S= 1.529		8/13/2002	-0.764
6/2002	0.077		CV = -0.493		9/16/2002	-2.564
17/2002	0.028		K factor** = 2.523		10/17/2002	-3.576
3/2003	0.016		TL=0.755		1/13/2003	-4.110
/2003	0.041		11- 0.755		4/8/2003	-3.202
6/2003	0.017				7/16/2003	-4.092
/14/2003	0.006				10/14/2003	-5.194
3/2004	0.005				1/13/2004	-5.298

First Quarter 2014 Data Collected	l in
January 2014	

Well No.	Result	Gradient	Result > TL?
MW370	0.005	Downgradier	nt N/A
MW373	0.049	Downgradier	nt N/A
MW385	0.005	Sidegradient	N/A
MW388	0.005	Downgradier	nt N/A
MW392	0.108	Downgradier	nt N/A

Transformed First Quarter 2014 Data Collected in January 2014

-	Well Number	LN(Result)	Result > TL?
	MW370	-5.298	NO
	MW373	-3.008	NO
	MW385	-5.298	NO
	MW388	-5.298	NO
	MW392	-2.226	NO

Conclusion of Statistical Analysis on Transformed Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis **Oxidation-Reduction Potential UNITS:**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	80.000
9/16/2002	145.000
10/16/2002	125.000
1/13/2003	85.000
4/10/2003	159.000
7/16/2003	98.000
10/14/2003	138.000
1/13/2004	233,000
Well Number:	MW397
Well Number: Date Collected	MW397 Result
Date Collected	Result
Date Collected 8/13/2002	Result 115.000
Date Collected 8/13/2002 9/30/2002	Result 115.000 140.000
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115.000 140.000 185.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115.000 140.000 185.000 230.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115.000 140.000 185.000 230.000 155.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 115.000 140.000 185.000 230.000 155.000 188.000

Statistics on **Background Data**

X = 157.250S = 52.376CV = 0.333K factor** = 2.523 TL = 289.395

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient Resu	It > TL?
MW370	443.00	Downgradient	YES
MW373	494.00	Downgradient	YES
MW385	434.00	Sidegradient	YES
MW388	558.00	Downgradient	YES
MW392	333.00	Downgradient	YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW370

MW373

MW385

MW388

- Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-72

C-746-S and C-746-T First Quarter 2014 Statistical Analysis LRGA pH UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from
Upgradient Wells

10	
Well Number:	MW395
Date Collected	Result
8/13/2002	5.800
9/16/2002	6.000
10/16/2002	5.470
1/13/2003	6.000
4/10/2003	6.180
7/16/2003	6.000
10/14/2003	6.310
1/13/2004	6.240
Well Number:	MW397
Well Number: Date Collected	MW397 Result
Date Collected	Result
Date Collected 8/13/2002	Result 5.840
Date Collected 8/13/2002 9/30/2002	Result 5.840 6.000
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5.840 6.000 5.750
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5.840 6.000 5.750 6.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5.840 6.000 5.750 6.000 6.300
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5.840 6.000 5.750 6.000 6.300 6.200

Statistics on Background Data	
X= 6.048	

X- 0.046 S= 0.248 CV= 0.041 K factor** = 2.904 TL= 6.767

LL = 5.329

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient Re	sult >TL?	Result <ll?< th=""></ll?<>
MW370	6.110	Downgradient	NO	NO
MW373	6.280	Downgradient	NO	NO
MW385	6.430	Sidegradient	NO	NO
MW388	6.160	Downgradient	NO	NO
MW392	6.540	Downgradient	NO	NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T First Quarter 2014 Statistical Analysis LRGA Potassium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	2.000
9/16/2002	2.000
10/16/2002	0.001
1/13/2003	1.510
4/10/2003	1.670
7/16/2003	1.730
10/14/2003	1.700
1/13/2004	1.580
1/13/2004 Well Number:	1.580 MW397
1, 10, 200 .	
Well Number:	MW397
Well Number: Date Collected	MW397 Result
Well Number: Date Collected 8/13/2002	MW397 Result 2.030
Well Number: Date Collected 8/13/2002 9/16/2002	MW397 Result 2.030 2.000
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002	MW397 Result 2.030 2.000 0.001
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	MW397 Result 2.030 2.000 0.001 1.690
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	MW397 Result 2.030 2.000 0.001 1.690 1.730

Statistics on
Background Data
X= 1.590
S = 0.642

CV= 0.404 K factor** = 2.523 TL= 3.208

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

1.870

1/13/2004

Well No.	Result	Gradient	Result $>$ TL?
MW370	3.010	Downgradien	t NO
MW373	2.420	Downgradien	t NO
MW385	1.600	Sidegradient	NO
MW388	1.850	Downgradien	t NO
MW392	1.870	Downgradien	t NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis **LRGA** Sodium **UNITS:**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	27.000
9/16/2002	27.200
10/16/2002	0.025
1/13/2003	22.600
4/10/2003	53.900
7/16/2003	30.000
10/14/2003	29.100
1/13/2004	26.400
Well Number:	MW397
Well Number: Date Collected	MW397 Result
Date Collected	Result
Date Collected 8/13/2002	Result 35.200
Date Collected 8/13/2002 9/16/2002	Result 35.200 34.300
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.200 34.300 0.034
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.200 34.300 0.034 31.300
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.200 34.300 0.034 31.300 46.100

Statistics on
Background Data
X= 29.560
S = 13.894

CV = 0.470K factor** = 2.523 TL = 64.616

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result $>$ TL?
MW370	62.900	Downgradier	nt NO
MW373	59.500	Downgradier	nt NO
MW385	43.000	Sidegradient	NO
MW388	41.600	Downgradier	nt NO
MW392	29.300	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-75

C-746-S and C-746-T First Quarter 2014 Statistical Analysis LRGA Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	10.300
9/16/2002	9.100
10/16/2002	8.800
1/13/2003	9.000
4/10/2003	8.300
7/16/2003	8.200
10/14/2003	8.300
1/13/2004	8.200
1/13/2004 Well Number:	8.200 MW397
-,,, -	
Well Number:	MW397
Well Number: Date Collected	MW397 Result
Well Number: Date Collected 8/13/2002	MW397 Result 14.000
Well Number: Date Collected 8/13/2002 9/16/2002	MW397 Result 14.000 12.800
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002	MW397 Result 14.000 12.800 12.300

7/16/2003

10/14/2003

1/13/2004

Statistics on Background Data

X= 10.756 S= 2.147 CV= 0.200 K factor** = 2.523 TL= 16.173

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

13.100

12.100

12.100

Well No.	Result	Gradient Resu	ılt > TL?
MW370	18.000	Downgradient	YES
MW373	190.00	Downgradient	YES
MW385	20.000	Sidegradient	YES
MW388	21.000	Downgradient	YES
MW392	9.500	Downgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW370

MW373

MW385

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis LRGA Technetium-99 UNITS: LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	20.800
9/16/2002	16.200
10/16/2002	8.280
1/13/2003	13.000
4/10/2003	-9.370
7/16/2003	0.826
10/14/2003	14.100
1/13/2004	0.000
Well Number:	MW397
Date Collected	Result
8/13/2002	6.060
9/16/2002	17.300
10/17/2002	25.700
1/13/2003	20.900
4/8/2003	20.100
7/16/2003	9.200
10/14/2003	10.100
1/13/2004	8.540

Statistics on Background Data

X= 11.359 S= 9.138 CV= 0.805 K factor** = 2.523 TL= 34.414

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient Res	ult > TL?
MW370	10.600	Downgradient	NO
MW373	37.800	Downgradient	YES
MW385	134.00	Sidegradient	YES
MW388	49.900	Downgradient	YES
MW392	11.700	Downgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW373

MW385

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T First Quarter 2014 Statistical Analysis LRGA Total Organic Halides (TOX) UNITS: LRGA ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	50.000
9/16/2002	50.000
10/16/2002	50.000
1/13/2003	18.300
4/10/2003	51.200
7/16/2003	42.600
10/14/2003	12.300
1/13/2004	10.000
Well Number:	MW397
Date Collected	Result
8/13/2002	50.000
9/16/2002	50.000
10/17/2002	50.000
1/13/2003	12.000
4/8/2003	19.900
7/16/2003	17.900
10/14/2003	10.000

Statistics on
Background Data

X= 31.513 S= 18.609 CV= 0.591 K factor** = 2.523 TL= 78.462

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

First Quarter 2014 Data Collected in January 2014

Well No.	Result	Gradient	Result $>$ TL?
MW370	12.000	Downgradier	nt NO
MW373	19.000	Downgradier	nt NO
MW385	12.000	Sidegradient	NO
MW388	7.900	Downgradier	nt NO
MW392	30.000	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

April 17th, 2014

Mr. Craig Jones LATA Environmental Services of Kentucky, LLC 761 Veterans Avenue Kevil, Kentucky 42053

Dear Mr. Jones:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Chemist, with a Bachelor of Science degree in chemistry and a minor in mathematics, I have over two years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist with LATA.

For this project, the statistical analyses conducted on the first quarter 2014 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). For pH, an additional lower tolerance interval was established. For pH only, the test well data was compared to both the upper and lower tolerance intervals to determine if statistically significant deviations in concentration with respect to upgradient well exist.

Sincerely,

Cory Tackett

LATA Project Chemist

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

GROUNDWATER FLOW RATE AND DIRECTION

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the first quarter 2014 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on January 30, 2014. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had sufficient water for a measurement of the water level but insufficient water for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill is 2.19×10^{-3} ft/ft. Additional water level measurements in January (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 1.90×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for Solid Waste Landfill Permit No. 073-00045 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for January 2014, the groundwater flow direction in the immediate area of the landfill commonly varies slightly from regional trends; however, as groundwater flows away from the landfill, it eventually conforms to the regional flow direction.

-

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

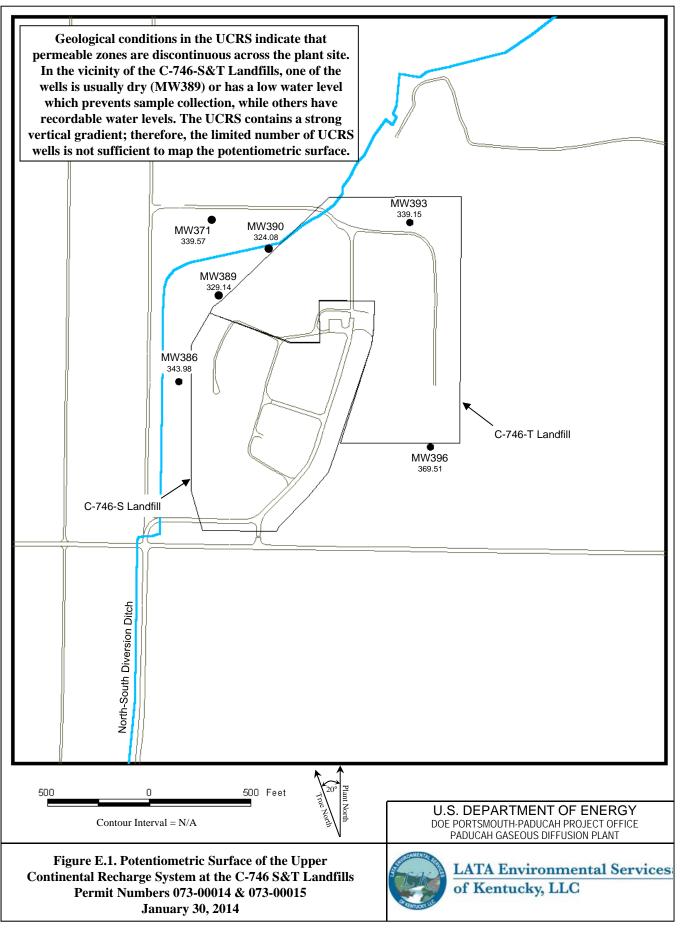


Table E.1. C-746-S&T Landfills Fourth Quarter 2014 (January) Water Levels

C-746-S&T Landfills (January 2014) Water Levels										
							Raw Data		*Corre	ected Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H ₂ O)	(ft)	(ft amsl)	(ft)	(ft amsl)
1/30/2014	9:46	MW220	URGA	381.65	30.18	0.00	57.14	324.51	57.14	324.51
1/30/2014	9:52	MW221	URGA	391.14	30.18	0.00	66.64	324.50	66.64	324.50
1/30/2014	9:59	MW222	URGA	395.20	30.15	0.03	70.73	324.47	70.76	324.44
1/30/2014	9:54	MW223	URGA	394.34	30.15	0.03	69.86	324.48	69.89	324.45
1/30/2014	10:02	MW224	URGA	395.70	30.15	0.03	71.23	324.47	71.26	324.44
1/30/2014	9:48	MW225	URGA	385.86	30.18	0.00	61.33	324.53	61.33	324.53
1/30/2014	10:06	MW353	LRGA	374.97	30.15	0.03	50.56	324.41	50.59	324.38
1/30/2014	8:55	MW369	URGA	364.28	30.18	0.00	40.31	323.97	40.31	323.97
1/30/2014	8:59	MW370	LRGA	365.15	30.18	0.00	41.2	323.95	41.20	323.95
1/30/2014	8:57	MW371	UCRS	364.71	30.18	0.00	25.14	339.57	25.14	339.57
1/30/2014	9:00	MW372	URGA	359.49	30.18	0.00	35.51	323.98	35.51	323.98
1/30/2014	9:02	MW373	LRGA	359.79	30.18	0.00	35.82	323.97	35.82	323.97
1/30/2014	9:41	MW384	URGA	365.00	30.18	0.00	40.89	324.11	40.89	324.11
1/30/2014	9:43	MW385	LRGA	365.42	30.18	0.00	41.37	324.05	41.37	324.05
1/30/2014	9:42	MW386	UCRS	365.17	30.18	0.00	21.19	343.98	21.19	343.98
1/30/2014	9:38	MW387	URGA	363.21	30.18	0.00	39.06	324.15	39.06	324.15
1/30/2014	9:39	MW388	LRGA	363.18	30.18	0.00	39.06	324.12	39.06	324.12
1/30/2014	9:36	MW389	UCRS	363.81	30.18	0.00	34.67	329.14	34.67	329.14
1/30/2014	9:34	MW390	UCRS	360.31	30.18	0.00	36.23	324.08	36.23	324.08
1/30/2014	9:22	MW391	URGA	366.51	30.18	0.00	42.41	324.1	42.41	324.10
1/30/2014	9:19	MW392	LRGA	365.63	30.18	0.00	41.58	324.05	41.58	324.05
1/30/2014	9:21	MW393	UCRS	366.64	30.18	0.00	27.49	339.15	27.49	339.15
1/30/2014	9:28	MW394	URGA	378.23	30.18	0.00	54.12	324.11	54.12	324.11
1/30/2014	9:25	MW395	LRGA	378.87	30.18	0.00	54.76	324.11	54.76	324.11
1/30/2014	9:27	MW396	UCRS	378.62	30.18	0.00	9.11	369.51	9.11	369.51
1/30/2014	9:30	MW397	LRGA	386.84	30.18	0.00	62.73	324.11	62.73	324.11
1/30/2014	9:09	MW418	URGA	366.68	30.18	0.00	42.66	324.02	42.66	324.02
1/30/2014	9:11	MW419	LRGA	366.59	30.18	0.00	42.55	324.04	42.55	324.04

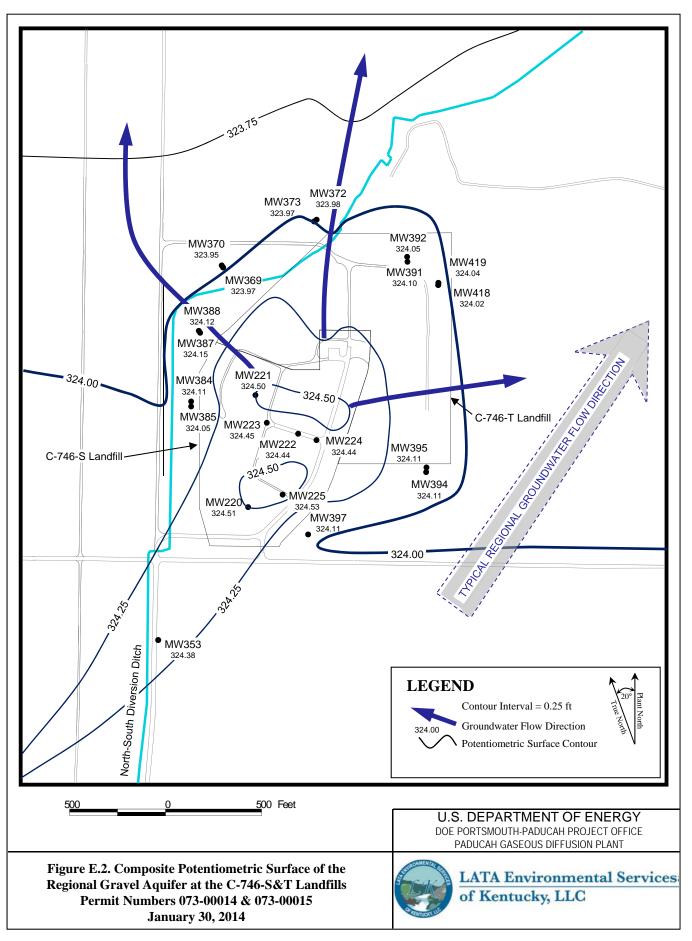
Initial Barometric Pressure

30.18

Elev = elevation

amsl = above mean sea level

BP = barometric pressure


DTW = depth to water in feet below datum

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

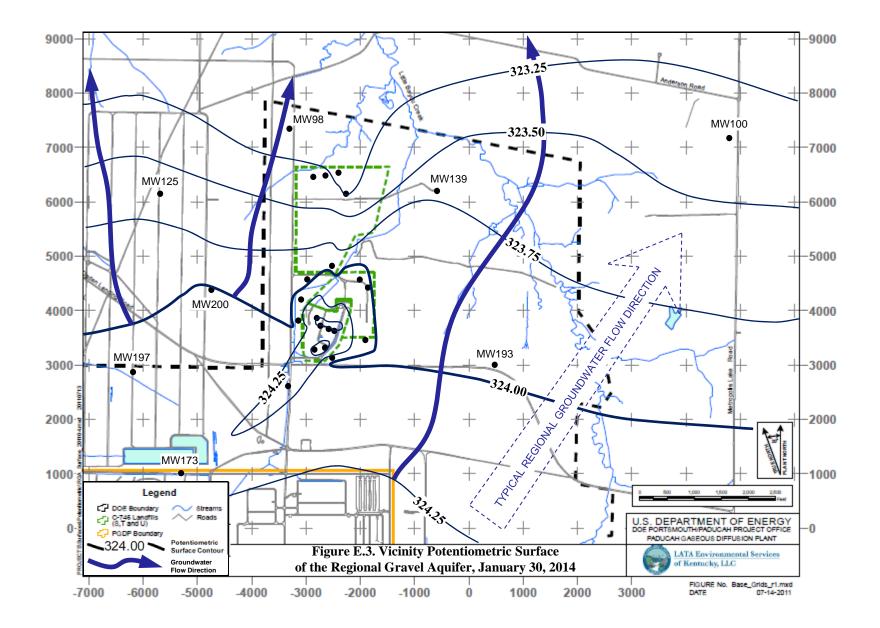


Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	2.19×10^{-3}
Vicinity	1.90×10^{-4}

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Conductivity (K)		Specific 1	Discharge (q)	Average Linear Velocity (v)		
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s	
Beneath Landfill Mound						
725 0.256		1.59	5.61 × 10 ⁻⁴	6.36	2.24×10^{-3}	
425	0.150	0.93	3.29×10^{-4}	3.73	1.32×10^{-3}	
<u>Vicinity</u>						
725 0.256		0.14	4.87×10^{-5}	0.55	1.95×10^{-4}	
425	0.150	0.08	2.85×10^{-5}	0.32	1.14×10^{-4}	

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The notification for parameters that had statistically significant increased concentrations relative to background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the first quarter 2014 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit Condition, GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the statistician.

The following are the parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to background concentrations.

Parameter	Monitoring Well
Upper Continental Recharge System	
Technetium-99	MW390
Upper Regional Gravel Aquifer	
Sodium Technetium-99	MW372 MW372, MW384, MW387
Lower Regional Gravel Aquifer	
Technetium-99	MW373, MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, these radionuclides are being reported along with the parameters of this regulation.

MCL NOTIFICATION

A notification was submitted for parameters that exceeded the MCL. The parameters submitted are listed on the following page.

3/10/2014

LATA Environmental Services of Kentucky PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S and -T LANDFILLS PERMIT NUMBERS 073-00014 and 073-00015 MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4808	MW372	Beta activity	9310/RL7111	102	pCi/L	50
		Trichloroethene	8260B/OA7302E	6.9	ug/L	5
8004-4792	MW373	Trichloroethene	8260B/OA7302E	6.4	ug/L	5
8004-4809	MW384	Beta activity	9310/RL7111	93.5	pCi/L	50
8004-4810	MW385	Beta activity	9310/RL7111	92.8	pCi/L	50
8004-4815	MW387	Beta activity	9310/RL7111	191	pCi/L	50
8004-4811	MW390	Beta activity	9310/RL7111	50.3	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B/OA7302E	18	ug/L	5
8004-4806	MW392	Trichloroethene	8260B/OA7302E	19	ug/L	5
8004-4802	MW394	Trichloroethene	8260B/OA7302E	7.4	ug/L	5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES

Groundwater Flow System		U	CR	S						U	RG	A							I	RG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
1,2,3-TRICHLOROPROPANI	E																						
Quarter 2, 2009			*																				
ACETONE									•			•											
Quarter 3, 2003							*					*											
Quarter 4, 2003											*								*				
Quarter 1, 2005									*														
ALPHA ACTIVITY									•			•											
Quarter 4, 2002																							
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM									•			•											
Quarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003			*				*						*	*									
Quarter 3, 2003			*				*	*					*	*									
Quarter 4, 2003							*	*			*			*									
Quarter 1, 2004			*				*	*			*												
Quarter 2, 2004							*							*									
Quarter 3, 2004							*							*									
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*				*																
Quarter 3, 2005			*				*			*											*		
Quarter 4, 2005			*				*				*												
Quarter 1, 2006							*						*										
Quarter 2, 2006			*				*																
Quarter 3, 2006							*																
Quarter 4, 2006			*				*																
Quarter 1, 2007							*										*						
Quarter 2, 2007							*										*						
Quarter 3, 2007							*																
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008							*																
Quarter 1, 2009			*				*				*												
Quarter 1, 2010			*				*				*												
Quarter 2, 2010			*								*												
Quarter 3, 2010			*								*			*			*			*			
Quarter 1, 2011							*				*												
Quarter 2, 2011			*								*												
Quarter 2, 2012			*																				

Groundwater Flow System		J	JCR	S						U	RG	4							L	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2012							*																
Quarter 1, 2013							*				*												
Quarter 3, 2013			*																				
Quarter 1, 2014							*																
BARIUM																							
Quarter 3, 2003																							
Quarter 4, 2003																							
BETA ACTIVITY																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 3, 2006																							
Quarter 4, 2006																							
Quarter 1, 2007																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							

Groundwater Flow System		J	JCR	S						U	RGA	Α							L	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013																							
Quarter 1, 2014																							
BROMIDE																							
Quarter 1, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 3, 2006			*																				
CALCIUM		•	ı				•							1			•	ı	ı				ı
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											
Quarter 3, 2003			*																				
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005	_					_						*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006	1											*							*				
Quarter 4, 2006	1											*							*				
Quarter 1, 2007	1					_						*							*				
Quarter 2, 2007												*							*				

Groundwater Flow System		J	JCR	S						U.	RGA	1							L	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				
CARBON DISULFIDE		1			1	-					<u> </u>		1						1				1
Quarter 4, 2010											*												
Quarter 1, 2011												*									*		
CHEMICAL OXYGEN DEMA	ND	ı					ı						ı					ı					1
Quarter 1, 2003				*																			
Quarter 2, 2003				*																			
Quarter 3, 2003				*			*			*													
Quarter 4, 2003				*																			
Quarter 1, 2004	*			*																			
Quarter 4, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 2, 2003	4																	<u> </u>					

Groundwater Flow System		J	JCR	S						U	RG	4							L	RG.	Ą		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2005	*									*		*									*		
Quarter 4, 2005	*									*													
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																						
Quarter 1, 2008	*																						
Quarter 2, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																			*			
Quarter 3, 2009	*																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 3, 2011	*																						
Quarter 4, 2011	*																						
Quarter 1, 2012	*																						
Quarter 1, 2013	*																						
Quarter 3, 2013	*																						
CHLORIDE																							_
Quarter 1, 2003			*																				
Quarter 2, 2003			*																				
Quarter 3, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*																				

Groundwater Flow System	1	J	JCR	S						U	RG	4							L	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2005			*																				
Quarter 4, 2005			*																				
Quarter 1, 2006																		*					
Quarter 2, 2006			*																				
Quarter 3, 2006			*																				
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*																				
Quarter 3, 2007			*																				
Quarter 4, 2007			*																				
Quarter 1, 2008			*																				
Quarter 2, 2008			*		-																		
Quarter 3, 2008			*																				
Quarter 4, 2008			*																				
Quarter 1, 2009			*																				
Quarter 2, 2009			*																				
Quarter 3, 2009			*																				
Quarter 4, 2009			*																				
Quarter 1, 2010			*																				
Quarter 2, 2010			*																				
Quarter 3, 2010			*																				
Quarter 4, 2010			*																				
Quarter 2, 2011			*																				
Quarter 3, 2011			*																				
Quarter 4, 2011			*																				
Quarter 3, 2012			*																				
Quarter 3, 2013			*																				
Quarter 4, 2013			*																				
CHROMIUM			ı				1		1									1	1				
Quarter 4, 2002																							<u> </u>
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2009																							
COBALT	I						48:		I														
Quarter 3, 2003							*]				<u> </u>
CONDUCTIVITY Quarter 4, 2002	1									*									*				
Quarter 4, 2002 Quarter 1, 2003	1		*							*									*				
Quarter 2, 2003			*							*									*				

Groundwater Flow System		Ţ	JCR	S						U	RGA	Α							I	RGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
				393	396	221											385				392	395	397
Quarter 3, 2003			*					*		*									*				
Quarter 4, 2003			*							*									*				
Quarter 1, 2004			7,1							71									*				
Quarter 2, 2004										*									*				
Quarter 3, 2004										*									*				
Quarter 4, 2004			*							*									*				
			т							*		*							*				
Quarter 1, 2005 Quarter 2, 2005										Т.		*							*				
												- Т							*				
Quarter 4, 2005										*		*							*				
Quarter 4, 2005										*		*							*				
Quarter 1, 2006												*							*				\vdash
Quarter 2, 2006																	_						
Quarter 4, 2006												*					ىد		* *				
Quarter 4, 2006												<u>.</u>					*		* *				
Quarter 1, 2007												*					٠Ψ٠		*				
Quarter 2, 2007																	*		*				_
Quarter 3, 2007												414					*		*				
Quarter 4, 2007												*					*		*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*					*		*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*							*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				<u> </u>
Quarter 1, 2012											*	*							*				
Quarter 2, 2012												*							*				<u> </u>
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*							*				
DISSOLVED OXYGEN		1		, ,			1				1		1		1			1					1
Quarter 3, 2006			*					*															

Groundwater Flow System		J	JCR	.S						U	RG	A							I	RG.	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED SOLIDS																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				
Quarter 1, 2004			*									*							*				
Quarter 2, 2004										*		*							*				
Quarter 3, 2004										*		*							*				
Quarter 4, 2004										*		*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006																	*	*	*	*	*		
Quarter 4, 2006										*		*					*		*				
Quarter 1, 2007																			*				
Quarter 2, 2007										*		*							*				
Quarter 3, 2007										*		*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008										*		*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009	1											*	*						*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	*						*				
Quarter 1, 2010												*	*						*				
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010										*		*							*				
Quarter 4, 2010										*		*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*	*						*				

Groundwater Flow System		Į	JCR	S						U	RGA	4							I	.RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*	*						*				
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003						*																	
Quarter 3, 2003													*										
Quarter 1, 2004				*																			
Quarter 3, 2010																					*		
Quarter 2, 2013										*													
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007											*												
Quarter 2, 2008												*											
Quarter 3, 2008												*											
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				

Groundwater Flow System		Ţ	JCR	S						U	RGA	4							L	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*	*						*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013												*							*				
Quarter 2, 2013											-	*							*				
Quarter 3, 2013												*							*				

Groundwater Flow System		U	JCR	S						U	RG	4							I	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				
MANGANESE																							
Quarter 4, 2002																					*		
Quarter 3, 2003							*	*															
Quarter 4, 2003							*	*															
Quarter 1, 2004							*																
Quarter 2, 2004							*																
Quarter 4, 2004							*	*															
Quarter 1, 2005							*															<u></u>	
Quarter 3, 2005																					*		
Quarter 3, 2009	*																						
OXIDATION-REDUCTION I	POT	ENT	ΊΑΙ																			,	1
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				
Quarter 2, 2006			*																				
Quarter 3, 2006			*															*					
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*				*																
Quarter 3, 2007			*				*																
Quarter 4, 2007			*																				
Quarter 1, 2008			*			*			*														
Quarter 2, 2008	*		*	*		*							*				*		*	*		<u> </u>	
Quarter 3, 2008			*	*		*							*				*		*	*			
Quarter 4, 2008			*	*		*	*	*	*				*				*	*		*			
Quarter 1, 2009			*				*	*	*				*	*				*		*			
Quarter 3, 2009			*	*		*											*	*	*	*		<u> </u>	
Quarter 4, 2009			*			*			*									*		*			
Quarter 1, 2010	*		*																	*			
Quarter 2, 2010	*		*	*					*				*				*	*		*			
Quarter 3, 2010	*		*	*		*											*	*	*	*			

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		J	JCR	.S						U	RG	Ą							L	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2010			*					*			*			*			*	*	*	*			
Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 3, 2011	*		*	*			*		*		*		*				*	*	*	*			
Quarter 4, 2011	*		*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2013				*		*		*	*		*		*	*				*		*	*		
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
PCB, 1016				•																			
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004											*												
Quarter 3, 2005							*				*												
Quarter 1, 2006											*												
Quarter 2, 2006											*												
Quarter 4, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007												*											
Quarter 3, 2007											*												
Quarter 2, 2008											*	*											
Quarter 3, 2008											*												
Quarter 4, 2008											*												
Quarter 1, 2009											*												
Quarter 2, 2009											*												
Quarter 3, 2009											*												
Quarter 4, 2009											*												
Quarter 1, 2010											*												
Quarter 2, 2010											*												
Quarter 3, 2010											*												
Quarter 4, 2010											*												
PCB-1232												1				_							
Quarter 1, 2011											*												

Groundwater Flow System		U	CR	S						U	RG	A							Ι	RG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
PCB-1248						_																	
Quarter 2, 2008												*											
PCB-1260																							
Quarter 2, 2006																		*					
pН						_																	
Quarter 4, 2002																	*						
Quarter 2, 2003																	*						
Quarter 3, 2003																	*						
Quarter 4, 2003							*										*						
Quarter 1, 2004							*										*						
Quarter 2, 2004																	*						
Quarter 3, 2004																	*						
Quarter 4, 2004																	*						
Quarter 3, 2005										*							*				*		
Quarter 4, 2005										*							*						
Quarter 1, 2006																	*						
Quarter 2, 2006																	*						
Quarter 3, 2006																	*						
Quarter 3, 2007																	*						
Quarter 4, 2007																	*						
Quarter 4, 2008																	*						
Quarter 1, 2009																	*						
Quarter 1, 2011																	*						
Quarter 2, 2011											*												
Quarter 3, 2011											*												
Quarter 1, 2012														*									
Quarter 1, 2013										*			*				*						
POTASSIUM						_																	
Quarter 4, 2002																		*	*				
Quarter 3, 2004																			*				
Quarter 2, 2005																			*				
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				
Quarter 3, 2006																			*				
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				

Groundwater Flow System		Į	JCR	.S						U	RGA	4							L	RG	4		
-	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
	886	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2013																			*				
Quarter 2, 2013																			*				
Quarter 3, 2013																			*				
RADIUM-226																							
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004																			*				
Quarter 2, 2005									*														
Quarter 1, 2009											*												
RADIUM-228					· ·				<u> </u>	<u> </u>										· ·			•
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
SELENIUM																							·
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
SODIUM																							
Quarter 4, 2002																			*		*		
Quarter 1, 2003				*					*	*	*												
Quarter 2, 2003				*						*	*		*										
Quarter 3, 2003							*	*		*													
Quarter 4, 2003							*		*	*													
Quarter 1, 2004									*	*				*									
Quarter 2, 2004										*													<u> </u>
Quarter 3, 2004										*													
Quarter 4, 2004									*	*													
Quarter 1, 2005										*									*				
Quarter 2, 2005										*									*				
Quarter 3, 2005									*	*									*				
Quarter 4, 2005									*	*													
Quarter 1, 2006									*	*													
Quarter 2, 2006									*														
Quarter 3, 2006									*	*		*							*				
Quarter 4, 2006									*	*							*						

Groundwater Flow System		Ţ	JCR	.S						U	RGA	4							I	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2007									*			*											
Quarter 2, 2007									*	*													
Quarter 3, 2007									*														
Quarter 4, 2007									*														
Quarter 1, 2008									*														
Quarter 3, 2008												*											
Quarter 4, 2008									*	*													
Quarter 1, 2009									*			*							*				
Quarter 3, 2009												*											
Quarter 4, 2009									*			*											
Quarter 1, 2010												*											
Quarter 2, 2010										*		*											
Quarter 3, 2010										*													
Quarter 4, 2010									*	*													
Quarter 1, 2011										*													
Quarter 2, 2011									*														
Quarter 4, 2011																			*				
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*											
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*											
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*											
STRONTIUM-90								I	l						I	l I		I					I
Quarter 2, 2003																							
Quarter 1, 2004																							
SULFATE								I	l						I	l I		I					I
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*				.u	*	*	J.			
Quarter 2, 2004									*	*		*	*				*	*	*	*			
Quarter 3, 2004 Quarter 4, 2004									ボ	*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 1, 2003										不		不	不		<u> </u>		不	不	不				

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		J	JCR	S						U	RGA	4							I	RG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2005										*		*	*					*	*				
Quarter 3, 2005										*		*	*				*	*	*				
Quarter 4, 2005										*		*	*					*	*	*			
Quarter 1, 2006										*		*	*				*	*	*	*			
Quarter 2, 2006									*	*		*	*				*	*	*	*			
Quarter 3, 2006									*	*		*	*				*		*	*			
Quarter 4, 2006									*	*		*	*				*		*				
Quarter 1, 2007									*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*				*		*	*			
Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009									*	*		*	*				*	*	*	*			
Quarter 4, 2009	*									*		*	*				*	*	*				
Quarter 1, 2010	*								*	*		*	*				*		*				
Quarter 2, 2010									*	*		*	*				*	*	*	*			
Quarter 3, 2010										*		*	*				*	*	*	*			
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011	*									*		*	*				*	*	*				
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			
Quarter 4, 2011	*									*		*	*				*	*	*	*			
Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 2, 2012	*									*		*	*				*	*	*	*			
Quarter 3, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012										*		*	*				*	*	*	*			
Quarter 1, 2013										*		*	*				*	*	*	*			
Quarter 2, 2013										*		*	*	*			*	*	*	*			
Quarter 3, 2013										*		*	*	*			*	*	*	*			
Quarter 4, 2013										*		*	*				*	*	*	*			
Quarter 1, 2014								*		*		*	*				*	*	*	*			
TECHNETIUM-99																							
Quarter 4, 2002																			*				
Quarter 1, 2003													*				*		*				
Quarter 2, 2003	*		*							*			*				*						
Quarter 3, 2003			*							AF:		47.	*				*			*			
Quarter 4, 2003			*							*		*	*				*		*	*			

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		ι	JCR	22						U	RG/	A							L	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2004			*									*	*				*		*				
Quarter 2, 2004			*									*	*				*		*	*			
Quarter 3, 2004			*									*					*		*				
Quarter 4, 2004			*							*		*	*				*	*	*				
Quarter 1, 2005			*							*		*	*				*			*			
Quarter 2, 2005			*							*			*				*	*	*	*			
Quarter 3, 2005			*							*		_	*				*	*	*	*			
Quarter 4, 2005			*							*		*	*				*		*	*			
Quarter 1, 2006										*		*	*						*	*			
Quarter 2, 2006			*							*			*				*	*	*	*			
Quarter 3, 2006			*							*			*				*	*	*	*			
Quarter 4, 2006	*									*		*	*						*	*			
Quarter 1, 2007			*							*			*				*		*	*			
Quarter 2, 2007			*							*	_	*	*				*	*		*			
Quarter 3, 2007			*							*	*	*	*				*		*	*			
Quarter 4, 2007			*							*		*	*				*		*	*			
Quarter 1, 2008			*							*	_	*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2009			*							*		*	*				*						
Quarter 2, 2009			*							*		*	*				*	*		*			
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*							*		*	*				*						
Quarter 1, 2010			*							*		*	*				*						
Quarter 2, 2010			*							*			*				*	*		*			
Quarter 3, 2010			*							*	*	*	*				*						
Quarter 4, 2010			*							*		*	*				*						
Quarter 1, 2011										*			*				*						
Quarter 2, 2011			*							*			*				*			*			
Quarter 3, 2011			*							*			*				*			*			
Quarter 4, 2011			*							*	*	*	*				*						
Quarter 1, 2012			*							*			*				*			*			
Quarter 2, 2012			*							*			*				*		*	*			
Quarter 3, 2012			*							*		*	*				*						
Quarter 4, 2012										*		*	*				*		*	*			
Quarter 1, 2013										*			*				*		*	*			
Quarter 2, 2013										*		*	*				*		*	*			
Quarter 3, 2013			*							*		*	*				*		*	*			
Quarter 4, 2013			*							*		*	*				*		*	*			

Quarter 1, 2014 THORIUM-230			D	U	S	~																
Quarter 1, 2014 THORIUM-230	36 38	0 200			ာ	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Quarter 1, 2014 THORIUM-230		9 39(393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
		*							*		*	*				*		*	*			
Quarter 1, 2012	¥							*					*									
THORIUM-234																						
Quarter 2, 2003					*			*					*									
Quarter 4, 2007								*														
TOTAL ORGANIC CARBON																						
Quarter 4, 2002																				*		
Quarter 1, 2003			*						*	*							*	*		*		
Quarter 2, 2003									*	*		*								*		
Quarter 3, 2003						*	*	*	*	*	*											
Quarter 4, 2003						*		*	*													
Quarter 1, 2004									*													
Quarter 2, 2004									*	*												
Quarter 3, 2004									*													
Quarter 4, 2004									*													
Quarter 1, 2005									*													
Quarter 2, 2005									*											*		
Quarter 3, 2005									*		*									*		
Quarter 4, 2005									*											*		
Quarter 1, 2006									*													
Quarter 2, 2006									*		*											
Quarter 4, 2006																*						
Quarter 1, 2007	¥								*													
Quarter 3, 2007	ŧ				*	*	*	*	*			*	*			*						
Quarter 2, 2011										*												
Quarter 3, 2012	¥																					
TOTAL ORGANIC HALIDES																						
Quarter 4, 2002																	*	*		*		
Quarter 1, 2003			*														*			*		igspace
Quarter 3, 2003		\perp	*																	*		<u> </u>
Quarter 2, 2004		+																		*		
Quarter 3, 2004	_	\perp																				
Quarter 1, 2005 Ouarter 2, 2005	_	+																				\vdash
Quarter 2, 2005 Quarter 3, 2005	_																					
Quarter 4, 2005	_	+																				
Quarter 1, 2006	_	+																				
Quarter 2, 2006	_																					

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		τ	JCR	S						U	RGA	4							L	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*																						
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																				*		
Quarter 1, 2008	*																						
Quarter 1, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																				*		
Quarter 3, 2009	*																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 1, 2011	*																						
Quarter 3, 2013																					*		
TRICHLOROETHENE	_																						
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		Ţ	JCR	.S						U	RG	4							I	.RG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013																							
Quarter 1, 2014																							
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC		•							•									•				•	
Quarter 3, 2003	L											*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004	Ĺ						*																
Quarter 4, 2007							*	*	*														
* Statistical test re	esult	s inc	licat	e an	elev	ated	conc	entr	atio	ı (i.e	., a s	statis	stica	lly si	ignif	ican	t inc	reas	e)				
■ MCL Exceedan																							
UCRS Upper Continen	ıtal F	Rech	arge	Sys	tem																		
URGA Upper Regional	URGA Upper Regional Gravel Aquifer																						
LRGA Lower Regional	l Gra	avel	Aqu	ifer																			

Groundwate	er Flow System		J	JCR	S						U	RG	4							L	RG	A		
Gradient		S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring	Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
S	Sidegradient;			D)	D	own	grad	ient;	;		Ţ	J		Upgı	radie	ent							

APPENDIX H METHANE MONITORING DATA

C-746-S & T LANDFILL METHANE MONITORING REPORT

Date: March	n 20, 2014	Time:	13:20	Monitor:	Tamm	y Smith
Weather Condition Sunny at 64.2 degr		out of the s	south west			
Monitoring Equipn MSA Sirius A3-741	nent:			*		,
	Mo	onitoring Lo	cation			Reading (% LEL)
Ogden Landing Road Entrance	Checked at ground	level				0
North Landfill Gate	Checked at ground	level				0
West Side of Landfill: North 37° 07.652' West 88° 48.029'	Checked at ground l	,				0
East Side of Landfill: North 37° 07.628' West 88° 47.798'	Checked at ground I				-	0
Cell 1 Gas Vent (17)	1 2 3 4 0 0 11 0	5 6 7 0 0 0	8 9 10 11 12 0 0 0 0 0	13 14 15 0 0 0	16 17 0 6	11, 6
Cell 2 Gas Vent (3)	1 2 3 0 0 0					0
Cell 3 Gas Vent (7)	1 2 3 4 0 0 0 0	5 6 7 0 0 0				0
Landfill Office	Checked at floor leve	əl				0
Suspect or Problem Areas	No areas noted	·				183:20:14
Remarks:	140 areas noted				,	
ALL VENTS CHEC	CKED 1" FROM M	OUTH OF V	/ENT			
Performed by:	<u> Lomm</u> Sign	uf Juni	utl		3/	20/14 Date

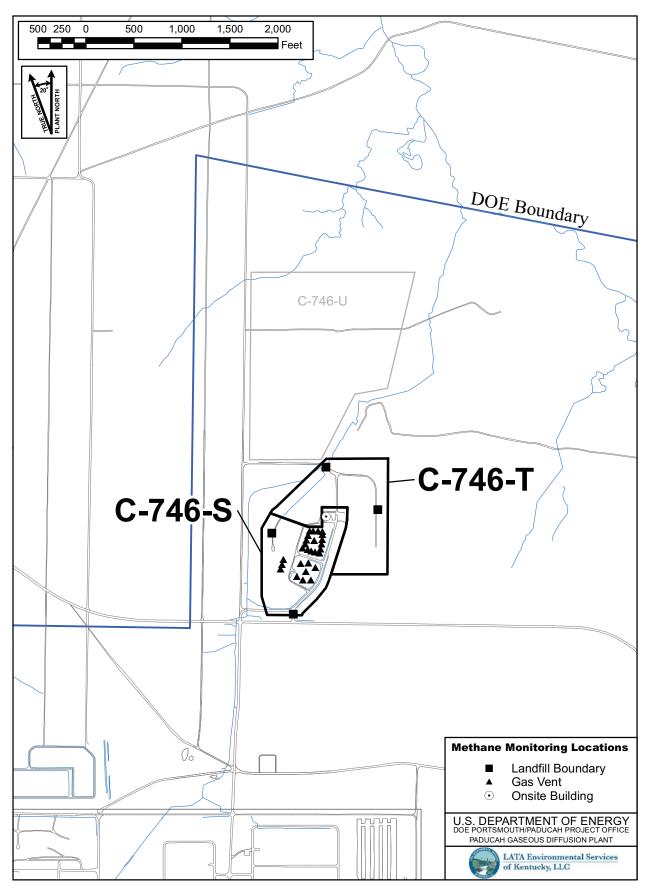


Figure H.1. C-746-S&T Methane Monitoring Locations