C-746-S&T Landfills Third Quarter Calendar Year 2013 (July-September) **Compliance Monitoring Report,** Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

C-746-S&T Landfills
Third Quarter Calendar Year 2013
(July–September)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—November 2013

Prepared for the U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC
managing the
Environmental Remediation Activities at the
Paducah Gaseous Diffusion Plant
under contract DE-AC30-10CC40020

CONTENTS

FI	GURES		v
Τź	ABLES		v
A	CRONYMS		vii
1.	1.1 BACK 1.2 MONI 1.2.1 1.2.2 1.2.3	TION GROUND TORING PERIOD ACTIVITIES Groundwater Monitoring. Methane Monitoring Surface Water Monitoring	112
2.	DATA EVA	LUATION/STATISTICAL SYNOPSIS	7
3.	DATA VAL	IDATION	9
4.	PROFESSIO	NAL GEOLOGIST AUTHORIZATION	11
5.	REFERENC	ES	13
A]	PPENDIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
A]	PPENDIX B:	FACILITY INFORMATION SHEET	B-1
A]	PPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
A]	PPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
A]	PPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
A]	PPENDIX F:	NOTIFICATIONS	F-1
A]	PPENDIX G:	CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES	G-1
A]	PPENDIX H:	METHANE MONITORING DATA	H-1
Δ]	PPFNDIX I	SURFACE WATER MONITORING DATA	I_1

FIGURES

	Groundwater Monitoring Well Network for the C-746-S&T Landfills	
۷.	C-740 S&1 Landini Surface water Mointoinig Locations	4
	TABLES	
1.	Summary of MCL Exceedances	5
2.	Summary of Statistically Significant Increases	5
3.	Monitoring Wells Included Historically in Statistical Analysis	7

ACRONYMS

CFR Code of Federal Regulations
COD chemical oxygen demand

EPA U.S. Environmental Protection Agency
KAR Kentucky Administrative Regulations
KDWM Kentucky Division of Waste Management

LATA Kentucky LATA Environmental Services of Kentucky, LLC

LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

PGDP Paducah Gaseous Diffusion Plant

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

1. INTRODUCTION

This report, C-746-S&T Landfills Third Quarter Calendar Year 2013 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number 073-00014 for the C-746-S Residential Landfill and Permit Number 073-00015 for the C-746-T Inert Landfill.

The groundwater, surface water, leachate, and methane monitoring sample data reporting form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) groundwater reporting forms, which are presented in Appendix C. The total metals results reported in Appendix C are measured in an unfiltered sample, as required by Permit Condition GSTR0003, Standard Requirement 4. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determination are provided in Appendix E. Appendix F contains the notifications for parameters that exceed the maximum contaminant level (MCL) and for all parameters that had statistically significant increased concentrations relative to background concentrations, including those parameters listed in 40 *CFR* § 302.4, Appendix A. Appendix G provides a chart of MCL exceedances and statistically significant increases that have occurred, beginning in the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-S&T Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 *KAR* 48:090 § 4. Appendix I contains the surface water monitoring data.

1.1 BACKGROUND

The C-746-S&T Landfills are closed solid waste landfills located north of the Paducah Gaseous Diffusion Plant (PGDP) and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a cover of compacted soil. The C-746-S Landfill was a sanitary landfill for PGDP. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from PGDP. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

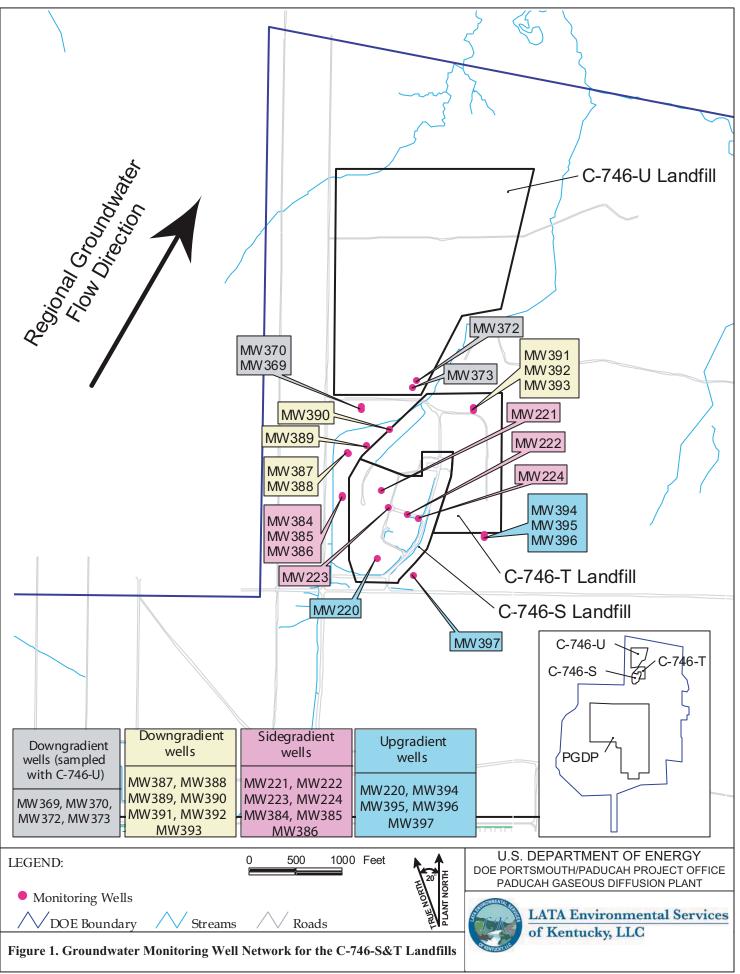
1.2.1 Groundwater Monitoring

Groundwater sampling was conducted within the third quarter 2013 during July and August using LATA Environmental Services of Kentucky, LLC, (LATA Kentucky) procedure PAD-ENM-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratories that performed analysis used U.S. Environmental Protection Agency (EPA)-approved methods, as applicable. A resample for chemical oxygen demand (COD) was taken in August due to a lab preservation error for the initial sample in July.

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the monitoring well locations is presented in Figure 1. All MWs were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no analytical results for this location. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water measurements were collected on August 5 and 6, 2013, in MWs of the C-746-S&T Landfills (see Table E.1), in MWs of the C-746-U Landfill, and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 38 vicinity wells define the potentiometric surface for the Regional Gravel Aquifer (RGA). As in previous quarters, a groundwater mound under the C-746-S&T Landfills resulted in radial flow away from the landfill area. Normal regional flow in the RGA is northeastward, toward the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in August was 3.41×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 5.00×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.85 to 1.45 ft/day (see Table E.3). The mound is an area of high hydraulic potential in the RGA that approximately mirrors the land topography in the area of the landfill.

1.2.2 Methane Monitoring


Landfill operations staff monitored for the occurrence of methane on September 18, 2013, in 1 on-site building location, 4 locations along the landfill boundary, and 27 gas-passive vents located in Cells 1, 2, and 3 of the C-746-S Landfill. See Appendix H for a map of the monitoring locations. No potential gas problem areas (i.e., suspect or problem areas) were identified. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the approved C-746-S&T Landfill Methane Monitoring Report form provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was conducted on August 7, 2013, using LATA Kentucky procedure PAD-ENM-2203, *Surface Water Sampling*. Appropriate sample containers and preservatives were utilized. The laboratories that performed analysis used EPA-approved methods, as applicable. The landfills have an upgradient location, L135; a downgradient location, L154; and a location capturing runoff from the landfill surface, L136. No sample was collected at L136 this quarter due to insufficient rainfall during normal business hours. A map of the surface water monitoring locations is presented in Figure 2. Surface water was monitored as specified in 401 *KAR* 48:300 § 2, and the approved surface water monitoring plan. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled for reporting only, pursuant to Permit Condition GMNP0003, Standard Requirement 1.

-

¹ Although depth-to-water is measured in the UCRS wells, the UCRS has a strong vertical hydraulic gradient that varies locally. The UCRS wells are screened over different elevations; therefore, the UCRS well measurements are not sufficient for mapping the potentiometric surface.

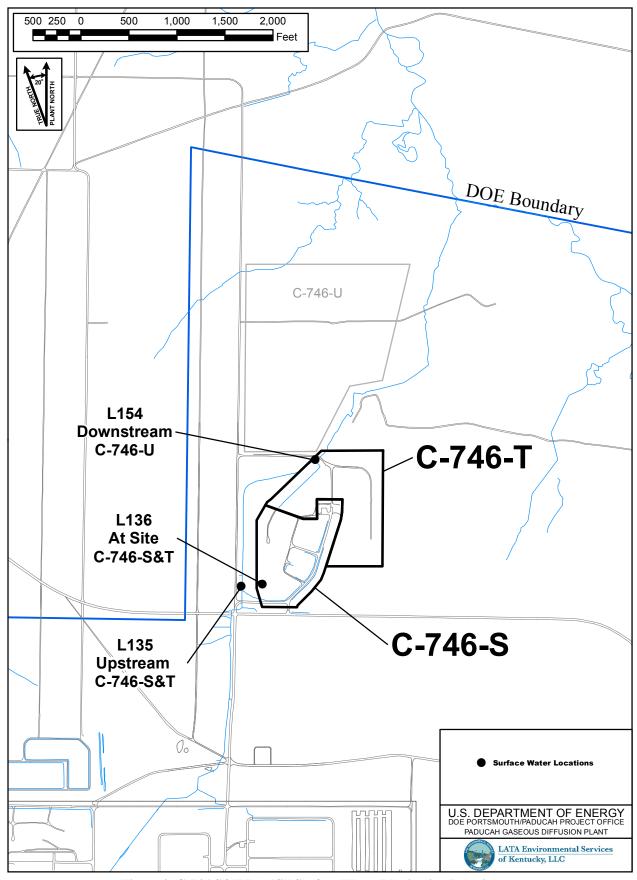


Figure 2. C-746-S&T Landfill Surface Water Monitoring Locations

1.3 KEY RESULTS

The following parameters had concentrations that either exceeded the MCL (Table 1) or were shown to have statistically significant increases (Table 2) in concentrations² relative to background concentrations during the third quarter 2013.

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW372: beta activity, trichloroethene	MW373: beta activity, trichloroethene
	MW384: beta activity	MW385: beta activity
	MW387: beta activity	MW388: beta activity
	MW391: trichloroethene	MW392: trichloroethene

Table 2. Summary of Statistically Significant Increases

UCRS	URGA	LRGA
MW386: chemical oxygen	MW221: oxidation-reduction potential	MW370: oxidation-reduction potential,
demand, oxidation-	MW222: oxidation-reduction potential	sulfate
reduction potential	MW223: oxidation-reduction potential	MW373: calcium, conductivity,
MW390: aluminum, chloride,	MW224: oxidation-reduction potential	dissolved solids, magnesium,
oxidation-reduction	MW372: calcium, conductivity,	oxidation-reduction
potential,	dissolved solids, magnesium,	potential, sodium, sulfate,
technetium-99	sodium, sulfate, technetium-99	technetium-99
MW393: oxidation-reduction	MW384: oxidation-reduction potential,	MW385: oxidation-reduction potential,
potential	sulfate, technetium-99	sulfate, technetium-99
	MW387: oxidation-reduction potential,	MW388: oxidation-reduction potential,
	sulfate, technetium-99	sulfate, technetium-99
	MW391: sulfate	MW392: total organic halides

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393 Upgradient wells: MW220, MW394, MW395, MW396, MW397

There were no new MCL exceedances for this quarter. MCL exceedances for beta activity in MW372, MW373, MW384, MW385, MW387, and MW388 are related to sources of contamination that are upgradient of the C-746-S&T Landfills. The trichloroethene detected in MW372, MW373, MW391, and MW392 is derived from an alternate source in the vicinity of the C-746-S&T Landfills. The notification of parameters that exceeded the MCL has been submitted electronically to KDWM in accordance with 401 KAR 48:300 § 7 prior to the submittal of this report.

There were no new statistically significant increases during this quarter. All 42 statistically significant increases have occurred previously at least once since fourth quarter calendar year 2002.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to background concentrations, as required by Permit Numbers 073-00014 and 073-00015, Condition GSTR0003, Standard Requirement 8, and 401 KAR 48:300 § 7.

.

² The term "concentration" may refer to a field measurement result, such as pH, oxidation-reduction potential, or an analytical parameter such as trichloroethene or polychlorinated biphenyls.

In accordance with Permit Condition GSTR0003, Variance 2, of the Solid Waste Permit (Permit), the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the Permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the third quarter 2013 groundwater data collected from the C-746-S&T Residential/Inert Landfills MWs were performed in accordance with Permit Condition, GSTR0003, Standard Requirement 3, using EPA guidance (EPA 1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician. The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (D-21–D-82).

For chemicals with an established MCL, no statistical analysis was performed. Parameters that have an MCL can be found in 401 KAR 47:030 § 6. For parameters with no established MCL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistically significant increase in concentration with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations exist in concentrations with respect to upgradient (background) well data. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 3.

Table 3. Monitoring Wells Included Historically in Statistical Analysis*

UCRS	URGA	LRGA
MW386	MW220 (upgradient)**	MW370
MW389 (dry)	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396 (upgradient)**	MW224	MW392
	MW369	MW395 (upgradient)**
	MW372	MW397 (upgradient)**
	MW384	
	MW387	
	MW391	
	MW394 (upgradient)**	

^{*}A map showing the monitoring well locations is shown in Figure 1.

STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining statistically significant increases is provided in Appendix D under Statistical Analysis Process. Appendix G summarizes the occurrences (by well and by quarter) of statistically significant increases and MCL exceedances.

^{**}Included as background only.

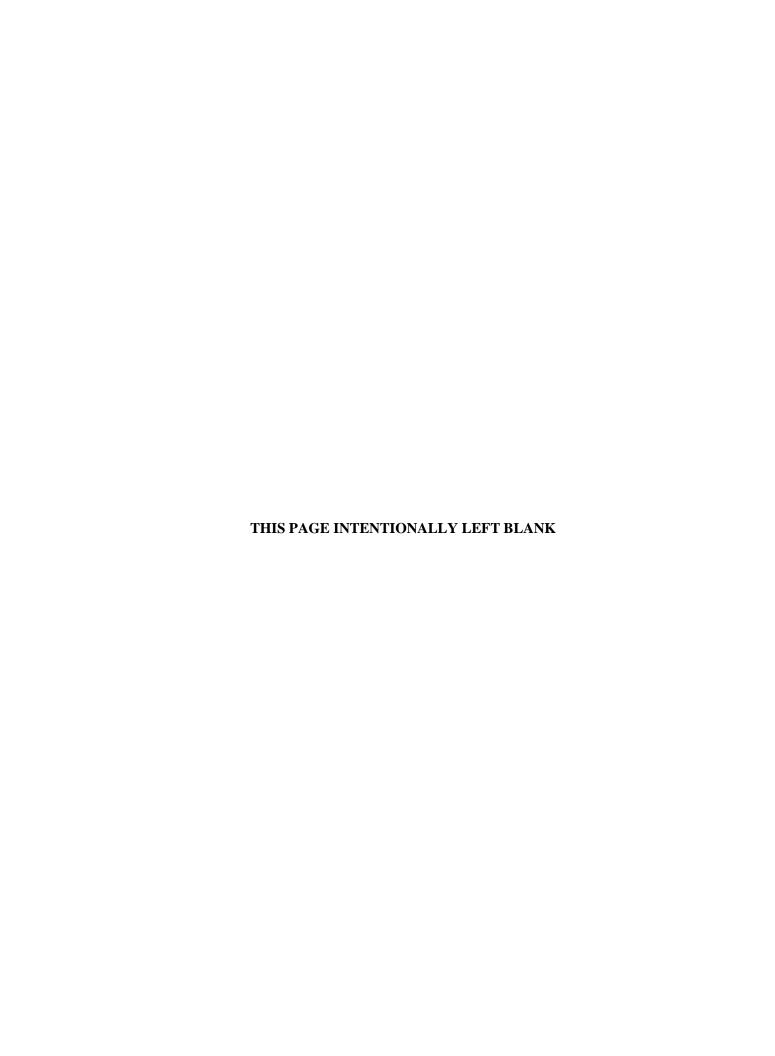
Upper Continental Recharge System

In this quarter, statistical analysis was performed on 20 parameters in the UCRS. The statistical analysis was conducted separately for each parameter in each well. During the third quarter, aluminum, chemical oxygen demand, chloride, oxidation-reduction potential, and technetium-99 displayed an elevated concentration that was determined to qualify as a statistically significant increase.

Upper Regional Gravel Aquifer

In this quarter, statistical analysis was performed on 22 parameters in the URGA. The statistical analysis was conducted separately for each parameter in each well. During the third quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99 displayed elevated concentrations that were determined to qualify as statistically significant increases.

Lower Regional Gravel Aquifer


In this quarter, statistical analysis was performed on 18 parameters in the LRGA. The statistical analysis was conducted separately for each parameter in each well. During the third quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, technetium-99, and total organic halides displayed elevated concentrations that were determined to qualify as statistically significant increases.

3. DATA VALIDATION

Data validation was performed on the organic, inorganic, and radiochemical analytical data by an independent third-party validator. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected quarterly during each sampling event. Equipment blanks, field blanks, and trip blanks are obtained to ensure quality control and are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples such as matrix spikes, matrix spike duplicates, and method blanks are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data validation process.

Four trip blanks for acrolein and acylonitrile were rejected during data validation due to incorrect preservation. No additional samples were collected as a result of the incorrect preservation because the sample results were undetected at the laboratory's reporting limit; therefore, the rejected trip blanks did not impact the quality of the sample results. Subsequently, no additional actions were necessary. Additionally, a resample for COD was taken in August because results for samples collected in July at MW221, MW222, MW223, MW384, MW385, MW386, and MW390 were rejected during validation due to a laboratory preservation error. Resamples were collected from these wells for COD, and the results from the resamples were acceptable. No rejected data were used. Data validation results for this data set indicated that all other data were considered acceptable.

4. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills

Third Quarter Calendar Year 2013 (July-September)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (PAD-ENM-0085/V3)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of

KRS Chapter 322A.

11

5. REFERENCES

EPA (U.S. Environmental Protection Agency) 1989. *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Final Guidance, office of Resource Conservation and recovery, U.S. Environmental Protection Agency, Washington, DC.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name: U.S. DOE – Paducah Gaseous Diffusion Plant	Activity:	C-746-S&T Landfills
(As officially shown on DWM Permit Face)		
Permit No:073-00014 & 073-00015 Finds/Unit No:	Quarter & Yea	r3 rd Qtr. CY 2013
Please check the following as applicable:		
Characterization X Quarterly Semiannual	Annua	Assessment
Please check applicable submittal(s): X Groundwater	X	Surface Water
Leachate	X	Methane Monitoring
This form is to be utilized by those sites required by regulation (Kentucky Waste 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct grou jurisdiction of the Division of Waste Management. You must report any indic hours of making the determination using statistical analyses, direct comparthe lab report is NOT considered notification. Instructions for completing the pages. I certify under penalty of law that the document and all attachments were paccordance with a system designed to assure that qualified personnel properly Based on my inquiry of the person or persons directly responsible for gathering is best of my knowledge and belief, true, accurate, and complete. I am aware that the information, including the possibility of fine and imprisonment for such violations.	andwater and surface cation of contamina rison, or other simi form are attached. I prepared under my gather and evaluate information, the info here are significant p	water monitoring under the tion within forty-eight (48 ilar techniques. Submitting Do not submit the instruction direction or supervision in the information submitted rmation submitted is, to the
Craig S. Jones, Manager of Projects LATA Environmental Services of Kentucky, LLC		Date
Zivi Zivi omnomu Services of Rentacky, ZZC		
Rachel H. Blumenfeld, Acting Paducah Site Lead		Date
U.S. Department of Energy		

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date:	Groundwater: July and August 2013 Surface Water: August 2013	County: McCracken	Permit Nos.	073-00014 & 073-00015
Facility Name:	U.S. DOE, Paducah Gaseous Diffusion Pla			
	(As officially shown on DW)	M Permit Face)		
Site Address:	5600 Hobbs Road	Kevil, Kentucky		42053
	Street	City/State		Zip
Phone No:	(270) 441-6800 Latitude:	N 37° 07' 38.87"	Longitude:	W 88° 48' 13.42"
	OWNER	INFORMATION		
Facility Owner:	U.S. DOE, W. E. Murphie, Manager		Phone No:	(859) 219-4001
Contact Person:	Mark J. Duff		_	(270) 441-5030
Contact Person Ti		ntal Sarvices of Kentucky LLC	Thone Ivo.	(270) 441-3030
Mailing Address:	761 Veterans Avenue	Kevil, Kentucky		42053
Walling Address.	Street	City/State		Zip
		NG PERSONNEL ANDFILL OR LABORATORY)		
Company:	LATA Environmental Services of Kentuc	cky, LLC		
Contact Person:	Jeff Boulton	J /	Phone No:	(270) 441-5444
Mailing Address:	761 Veterans Avenue	Kevil, Kentucky		42053
	Street	City/State		Zip
	LABORAT	TORY RECORD #1		
Laboratory:	USEC Analytical Laboratories, Paducah	Lab ID No:	KY00906 (EPA	ID Number)
Contact Person:	John Price		Phone No:	(270) 441-5867
Mailing Address:	P.O. Box 1410	Paducah, Kentucky	4	2002-1410
	Street	City/State		Zip
	LABORAT	TORY RECORD #2		
Laboratory:	TestAmerica Laboratories, Inc.	Lab ID No:	MO00054 (E	EPA ID Number)
Contact Person:	Elaine Wild			(314) 298-8566
Mailing Adduson	12715 Diday Toril March	Forth City MO		62045
Mailing Address:	13715 Rider Trail North Street	Earth City, MO City/State		63045 Zip
				r
	LABUKAI	TORY RECORD #3		
Laboratory:		Lab ID No:		
Contact Person:			Phone No:	-
Mailing Address:	- Oc	C'. /C		7'
	Street	City/State		Zip

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ , Facility Well/Spring Number					8000-520°	1	8000-5202		8000-5242		8000-5243	
Facility's Loc	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)				220		221		222		223	
Sample Sequenc	Sample Sequence #			1		1		1		1		
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/15/2013 13	3:37	7/15/2013	14:28	7/11/2013	09:17	7/11/2013 ()8:12
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW220SG4	-13	MW221S0	G4-13	MW222S0	G4-13	MW223SG	4-13
Laboratory Sar	mple ID Number (if applicable)				C13196038	001	C1319603	38002	C13192008001		C13192008002	
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	Or	ganics Anal	ysis	7/16/2013 7/16/2013		7/12/2013		7/12/2013			
Gradient with	respect to Monitored Unit (UP, DC	, NW	, SIDE, UNKN	OWN)	UP		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride(s)	т	mg/L	9056	23		36		36		35	
16984-48-8	Fluoride	Т	mg/L	9214	0.23		0.18		0.26		0.21	
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.4		1.2		1.1		<1	
14808-79-8	Sulfate	т	mg/L	9056	17		13		11		15	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.17		30.17		29.95		29.95	
s0145	Specific Conductance	т	μ MHO/cm	Field	392		396		362		394	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ , Facility Well/Spring Number			8000-5201		8000-5202		8000-5242		8000-5243			
Facility's Loc	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.)		F, etc.)	220		221		222		223		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	325.76		325.79		325.98		325.98	
N238	Dissolved Oxygen	Т	mg/L	Field	4.95		4.14		2.84		1.96	
s0266	Total Dissolved Solids	Т	mg/L	160.1	233		226		223		230	
s0296	рн	т	Units	Field	6.15		6.09		6.12		6.13	
NS215	Eh	Т	mV	Field	467		478		533		755	
s0907	Temperature	т	°C	Field	19.17		19.89		18.22		17.94	
7429-90-5	Aluminum	т	mg/T	6020	<0.2		<0.2		0.345		<0.2	
7440-36-0	Antimony	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-38-2	Arsenic	Т	mg/L	7060	<0.001		<0.001		<0.001		<0.001	
7440-39-3	Barium	Т	mg/L	6020	0.196		0.219		0.301		0.242	
7440-41-7	Beryllium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-42-8	Boron	т	mg/L	6010	<0.2		<0.2		<0.2		<0.2	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6010	23.3		23		18		21.7	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		0.0391		0.0112		0.019	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00204		0.00206		<0.001	
7440-50-8	Copper	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7439-89-6	Iron	т	mg/L	6010	<0.1		0.186		0.541		<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.0013		<0.0013		<0.0013		<0.0013	
7439-95-4	Magnesium	т	mg/L	6010	9.07		8.76		7.86		8.63	
7439-96-5	Manganese	т	mg/L	6020	<0.005		0.00595		0.0231		0.0173	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8000-520	01	8000-52	02	8000-52	42	8000-52	43
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	0.00116	В	0.0067		<0.001	В	0.00371	
7440-02-0	Nickel	Т	mg/L	6020	0.057		0.201		0.094		0.406	
7440-09-7	Potassium	Т	mg/L	6010	3.16		1.44		0.511		1.72	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		0.00558		0.00633		0.00647	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/₽5	6010	40.5		41.6		42.1		43.1	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01	J	<0.01	7	<0.01	*	<0.01	*
67-64-1	Acetone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-02-8	Acrolein	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
71-43-2	Benzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520 ⁻	1	8000-520	02	8000-52	242	8000-52	243
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	l, MW-2, et	:c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg(7]L	8260	<0.005		<0.005		<0.005	J	<0.005	J
67-66-3	Chloroform	Т	mg/L	8260	<0.005		<0.005		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.005		<0.005		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.005		<0.005		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-520	2	8000-52	42	8000-52	.43
Facility's Loc	cal Well or Spring Number (e.g., M	1W -1	l, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L 🔿	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5201		8000-5202)	8000-524	12	8000-524	1 3
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.87	*	2.17	*	-0.0718	*	-1.23	*
12587-47-2	Gross Beta	Т	pCi/L	9310	13.4	*	4.03	*	9.03	*	1.6	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/IC-	RL-7129	0.252	*	0.18	*	0.489	*	0.182	*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	-0.263	*B	-0.0168	*B	1.04	*B	0.239	*B
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	21.3	*	7.08	*	8.25	*	15.4	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	0.00796	*	-0.0289	*	-0.0344	*	-0.0495	*
10028-17-8	Tritium	Т	pCi/L	704R6	-276	*	-600	*	-337	*	-259	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36			*		*		*
57-12-5	Cyanide	Т	mg/L	9010	<0.04		<0.04	J	<0.04		<0.04	
20461-54-5	Iodide	Т	mg/L	345.1	<2		<2		<2		<2	
s0268	Total Organic Carbon	т	mg/L	9060	<1		<1		<1		<1	
s0586	Total Organic Halides	т	mg/L	9020	0.011		0.019		0.0084		0.013	

Division of Waste Management Solid Waste Branch

Frankfort, KY 40601 (502)564-6716

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	318	8004-480	08
Facility's Loc	cal Well or Spring Number (e.g., N	/W−1	., MW-2, etc	·•)	224		369		370		372	
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		7/15/2013 08	3:09	7/16/2013	08:34	7/16/2013	14:21	7/16/2013 1	12:18
Duplicate ("Y'	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW224SG4	-13	MW369U0	G4-13	MW370U0	G4-13	MW372UG	4-13
Laboratory San	mple ID Number (if applicable)		C13196029	001	C1319700	07001	C1319702	20001	C13197019	9001		
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ganics Anal	ysis	7/16/2013	3	7/16/20	13	7/19/20	13	7/16/201	3	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	SIDE		DOW	N	DOW	N	DOWN	I
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride(s)	Т	mg/L	9056	36		40		43		49	
16984-48-8	Fluoride	т	mg/L	9214	0.25		0.54		0.16		0.17	
s0595	Nitrate & Nitrite	т	mg/L	9056	<1		<1		1.2		<1	
14808-79-8	Sulfate	т	mg/L	9056	15		8.7		18		150	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.17		30.28		29.44		29.44	
s0145	Specific Conductance	Т	μ MH 0/cm	Field	448		427		469		822	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

					100110							
AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.81		325.26		325.26		325.28	
N238	Dissolved Oxygen	т	mg/L	Field	3.99		0.79		3.39		0.61	
s0266	Total Dissolved Solids	т	mg/L	160.1	256		232		230		503	
s0296	Н	Т	Units	Field	6.13		6.27		6.27		6.14	
NS215	Eh	Т	mV	Field	701		284		387		273	
s0907	Temperature	Т	°C	Field	20.61		19.22		21.67		19.72	
7429-90-5	Aluminum	Т	mgÆ	6020	<0.2		<0.2		<0.2		<0.2	
7440-36-0	Antimony	Т	mg/L	6020	<0.005	*	<0.005	*B	<0.005	*B	<0.005	*B
7440-38-2	Arsenic	Т	mg/L	7060	<0.001		0.00249		0.00144		0.0024	
7440-39-3	Barium	т	mg/L	6020	0.23		0.402		0.182		0.0675	
7440-41-7	Beryllium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-42-8	Boron	т	mg/L	6010	<0.2		<0.2		<0.2		1.19	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6010	24		19.9		29.2		63.5	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.0274	*	<0.001	*	<0.001	*
7440-50-8	Copper	Т	mg/L	6020	<0.02		<0.02	*	<0.02	*	<0.02	*
7439-89-6	Iron	Т	mg/L	6010	<0.1		2.38		<0.1		0.81	
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013		<0.0013		<0.0013	
7439-95-4	Magnesium	Т	mg/L	6010	9.64		7.62		11.5		23.8	
7439-96-5	Manganese	Т	mg/L	6020	0.00966		0.271		<0.005		0.0209	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8000-524	44	8004-48	20	8004-48	18	8004-48	80
Facility's	Local Well or Spring Number (e.g.,	, MW-	1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-02-0	Nickel	т	mg/L	6020	0.00702		0.00929	*	<0.005	*	<0.005	*
7440-09-7	Potassium	Т	mg/L	6010	0.92		0.734		2.51		2.44	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		0.00556		0.00722	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001	*	<0.001	*	<0.001	*
7440-23-5	Sodium	Т)- <u>1</u> 1 mg	6010	52.7		54.7		38.4		61.6	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01	*J	<0.01	J	<0.01	*J	<0.01	J
67-64-1	Acetone	Т	mg/L	8260	<0.01	J	<0.01		<0.01	J	<0.01	
107-02-8	Acrolein	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		8000-524	4	8004-482	20	8004-48	318	8004-4	308		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005	J	<0.005		<0.005	J	<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.005		<0.001		<0.005	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.005		<0.001		<0.005	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005		<0.005	J	<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.005		<0.001		<0.005	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		0.0017		0.0073	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-482	0	8004-48	18	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., 1	/W−1	, MW-2, et	:c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.01	J	<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L C	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	$_{ t mg/L}$	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005	*	<0.005	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082		*	<0.17		<0.18		<0.18	
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.16		<0.17		<0.17	
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.17		<0.18		<0.18	
11141-16-5	PCB-1232	Т	ug/L	8082		*	<0.14		<0.14		<0.14	
53469-21-9	PCB-1242	т	ug/L	8082		*	0.11		<0.1		<0.1	
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.12		<0.12		<0.12	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-5244		8004-4820)	8004-481	8	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.07		<0.07		<0.07	
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.05		<0.05		<0.05	
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.09		<0.09		<0.09	
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.37	*	1.47	*	-1.08	*	11.5	*
12587-47-2	Gross Beta	Т	pCi/L	9310	6.26	*	16.7	*	19	*	115	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/IC	RL-7129	0.118	*	0.104	*	0.177	*	0.135	*
10098-97-2	Strontium-90	Т	pCi/L ⁴	RL-7140	-0.249	*B	0.411	*B	0.394	*B	1.39	*B
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	11	*	23	*	33.2	*	176	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	-0.0232	*	-0.0191	*	-0.0424	*	-0.0278	*
10028-17-8	Tritium	Т	pCi/L	704R6	-500	*	-99.4	*	-377	*	-212	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36		<36	J	<36	J	<36	J
57-12-5	Cyanide	Т	mg/L	9010	<0.04	J	<0.04	J	<0.04		<0.04	J
20461-54-5	Iodide	Т	mg/L	345.1	<2		<2		<2		<2	
s0268	Total Organic Carbon	Т	mg/L	9060	<1		1.7		<1		<1	
s0586	Total Organic Halides	Т	mg/L	9020	0.022		0.059		0.016		0.022	

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

Frankfort, KY 40601 (502)564-6716

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4792	2	8004-48	309	8004-48	310	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g., M	ſW−1	, MW-2, etc	.)	373		384		385		386	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		7/16/2013 08	3:29	7/9/2013	08:15	7/9/2013	12:32	7/9/2013 0	9:13
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG4	-13	MW384S	G4-13	MW385S0	G4-13	MW386SG	4-13
Laboratory San	poratory Sample ID Number (if applicable)						C1319002	22001	C1319005	55001	C13190022	2002
Date of Analy	ce of Analysis (Month/Day/Year) For Volatile Organics Analysis					3	7/11/20)13	7/11/20	13	7/11/201	.3
Gradient with	respect to Monitored Unit (UP, DC) NW	side, unkn	OWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride(s)	Т	mg/L	9056	46		36		30		20	
16984-48-8	Fluoride	mg/L	9214	0.16		0.17		0.14		0.63		
s0595	Nitrate & Nitrite	Т	mg/L	9056	<1		1.2		<1		<1	
14808-79-8	Sulfate	т	mg/L	9056	220		23		19		48	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.44		30.1		30.1		30.1	
s0145	Specific Conductance	т	μ MH 0/cm	Field	918		416		422		635	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

			1 00110									
AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Lo	ocal Well or Spring Number (e.g., M	I-1 , 1	MW-2, BLANK-	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.25		325.44		325.4		343.95	
N238	Dissolved Oxygen	Т	mg/L	Field	1.38		4.13		1.9		0.44	
S0266	Total Dissolved Solids	Т	mg/L	160.1	618		238		226		421	
s0296	рн	т	Units	Field	6.13		6.14		6.22		6.8	
NS215	Eh	т	mV	Field	500		563		502		320	
s0907	Temperature	т	°C	Field	19.94		18.39		20.33		18.17	
7429-90-5	Aluminum	Т	mg/P	6020	<0.2		<0.2		<0.2		<0.2	
7440-36-0	Antimony	Т	mg/L	6020	<0.005	*B	<0.005	*	<0.005	*	<0.005	*
7440-38-2	Arsenic	т	mg/L	7060	0.00157		0.00111		<0.001		0.00138	
7440-39-3	Barium	Т	mg/L	6020	0.0294		0.17		0.184		0.175	
7440-41-7	Beryllium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-42-8	Boron	Т	mg/L	6010	1.75		<0.2		<0.2		<0.2	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6010	79		22.5		24.6		25	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001	*	<0.001		<0.001		0.00216	
7440-50-8	Copper	т	mg/L	6020	<0.02	*	<0.02		<0.02		<0.02	
7439-89-6	Iron	т	mg/L	6010	<0.1		0.151		<0.1		1.43	
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013		<0.0013		<0.0013	
7439-95-4	Magnesium	т	mg/L	6010	29.2		8.82		8.21		10.3	
7439-96-5	Manganese	т	mg/L	6020	0.00911		<0.005		<0.005		0.285	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-479	92	8004-48	809	8004-48	10	8004-48	04
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-02-0	Nickel	т	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	
7440-09-7	Potassium	т	mg/L	6010	3.09		1.39		1.59		0.354	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	0.00672		0.00597		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001	*	<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/11/	6010	66.5		44.3		42.6		106	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
67-64-1	Acetone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-02-8	Acrolein	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-4792	2	8004-480)9	8004-48	310	8004-48	804	
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	373		384		385		386	i
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-66-3	Chloroform	Т	mg%L	8260	<0.005		<0.005		<0.005		<0.005	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005	J	<0.005	J	<0.005	J
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0076		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-480	9	8004-48	10	8004-48	04
Facility's Loc	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L C	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L 9	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005	J	<0.005	J	<0.005	J
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	т	ug/L	8082	<0.18			*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.17			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.18			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.14			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.1			*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.12			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4792	!	8004-4809)	8004-481	0	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.07			*		*		*
11096-82-5	PCB-1260	т	ug/L	8082	<0.05			*		*		*
11100-14-4	PCB-1268	т	ug/L	8082	<0.09			*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	4.6	*	5.52	*	11.3	*	8.62	*
12587-47-2	Gross Beta	Т	pCi/L	9310	52.2	*	164	*	122	*	0.734	*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129	0.249	*	0.0856	*	0.283	*	0.179	*
10098-97-2	Strontium-90	Т	pCi/LO	RL-7140	0.139	*B	-0.202	*B	0.0586	*B	-0.524	*B
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	63.7	*	192	*	179	*	0.276	*
14269-63-7	Thorium-230	т	pCi/L	RL-7128	0.00578	*	0.0128	*	0.0305	*	0.0344	*
10028-17-8	Tritium	т	pCi/L	704R6	-163	*	-450	*	-466	*	-388	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<36	J		*		*		*
57-12-5	Cyanide	Т	mg/L	9010	<0.04	J	<0.04		<0.04		<0.04	
20461-54-5	Iodide	т	mg/L	345.1	<2		<2		<2		<2	
S0268	Total Organic Carbon	т	mg/L	9060	<1		<1		<1		9.3	D
s0586	Total Organic Halides	т	mg/L	9020	0.022		0.013		0.014		0.29	
		\coprod										
		Ш										

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815	5	8004-48	316	8004-481	12	8004-481	1
Facility's Loca	al Well or Spring Number (e.g., N	⁄W−1	, MW-2, etc	.)	387		388		389		390	
Sample Sequence	e #				1		1		1		1	
If sample is a Bl	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		7/8/2013 09	05	7/8/2013 (08:14	NA		7/15/2013 1:	2:44
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or '	"N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)				MW387SG4	-13	MW388S0	94-13	NA		MW390SG4	l-13
Laboratory Samp	poratory Sample ID Number (if applicable)						C1318903	34001	NA		C13196038	003
Date of Analysi	e of Analysis (Month/Day/Year) For Volatile Organics Analysis						7/11/20	13	NA		7/16/201	3
Gradient with m	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOWN		DOW	V	SIDE		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	<2		<2			*	<2	
16887-00-6	Chloride(s)	т	mg/L	9056	50		34			*	130	
16984-48-8	Fluoride	т	mg/L	9214	0.62		0.28			*	0.3	
s0595					1.4		1.1			*	3.5	
14808-79-8	Sulfate	т	mg/L	9056	20		22			*	24	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.86		29.86			*	30.17	
s0145	Specific Conductance	т	μ MH0/cm	Field	529		428			*	788	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Lo	ocal Well or Spring Number (e.g., M	I-1 , I	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.49		325.46			*	325.43	
N238	Dissolved Oxygen	т	mg/L	Field	2.44		4.03			*	4.68	
S0266	Total Dissolved Solids	т	mg/L	160.1	294		243			*	442	
s0296	Н	Т	Units	Field	6.27		6.2			*	6.19	
NS215	Eh	Т	mV	Field	478		726			*	498	
s0907	Temperature	Т	°C	Field	21.06		20.94			*	21.78	
7429-90-5	Aluminum	Т	mg/H	6020	<0.2		<0.2			*	1.66	
7440-36-0	Antimony	Т	mg/L	6020	<0.005	*	<0.005	*		*	<0.005	*
7440-38-2	Arsenic	Т	mg/L	7060	0.00253		0.00117			*	0.0024	
7440-39-3	Barium	Т	mg/L	6020	0.15		0.16			*	0.29	
7440-41-7	Beryllium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-42-8	Boron	Т	mg/L	6010	<0.2		<0.2			*	<0.2	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6010	31.5		25.3			*	36.7	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01			*	<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-50-8	Copper	т	mg/L	6020	<0.02		<0.02			*	<0.02	
7439-89-6	Iron	Т	mg/L	6010	<0.1		<0.1			*	1.03	
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013			*	<0.0013	
7439-95-4	Magnesium	Т	mg/L	6010	12.1		10.2			*	14.6	
7439-96-5	Manganese	Т	mg/L	6020	0.00642		<0.005			*	0.00631	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-48	15	8004-48	316	8004-4812	2	8004-481	1
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001	В	<0.001	В		*	0.00119	В
7440-02-0	Nickel	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-09-7	Potassium	Т	mg/L	6010	1.29		1.77			*	0.637	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	т	mg/L	6020	0.0071		0.00555			*	0.0119	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	Т	1-23 mg/L3	6010	52.8		42.3			*	93.3	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02			*	<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02			*	<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01	J	<0.01	J		*	<0.01	J
67-64-1	Acetone	Т	mg/L	8260	<0.01		<0.01			*	<0.01	
107-02-8	Acrolein	т	mg/L	8260	<0.01		<0.01			*	<0.01	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01		<0.01			*	<0.01	
71-43-2	Benzene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
1330-20-7	Xylenes	т	mg/L	8260	<0.015		<0.015			*	<0.015	
100-42-5	Styrene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-48	16	8004-4812	2	8004-481	1
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-	1, MW-2, et	:c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01			*	<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-87-3	Methyl chloride	т	mg/L	8260	<0.005		<0.005			*	<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.005		<0.005			*	<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005	J	<0.005	J		*	<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		-	*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002			*	<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0012		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4815		8004-4816		8004-4812	2	8004-481	1
Facility's Loc	cal Well or Spring Number (e.g., I	MW-1	L, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01			*	<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01			*	<0.01	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L C	8260	<0.01		<0.01			*	<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0002		<0.0002			*	<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005			*	<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005	J	<0.005	J		*	<0.005	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005			*	<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815	j	8004-4816	6	8004-4812	2	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	, MW-2, et	:c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	3.31	*	2.98	*		*	4.26	*
12587-47-2	Gross Beta	т	pCi/L	9310	249	*	95.7	*		*	44.5	*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129	-0.151	*	0.397	*		*	0.309	*
10098-97-2	Strontium-90	т	pCi/L	RL-7140	-0.251	*B	-0.155	*B		*	0.387	*B
14133-76-7	Technetium-99	т	pCi/L	RL-7100	314	*	118	*		*	58.4	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	-0.0371	*	0.00104	*		*	0.00863	*
10028-17-8	Tritium	т	pCi/L	704R6	-498	*	-448	*		*	-345	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<36		<36			*		*
57-12-5	Cyanide	Т	mg/L	9010	<0.04		<0.04			*	<0.04	J
20461-54-5	Iodide	т	mg/L	345.1	<2		<2			*	<2	
S0268	Total Organic Carbon	т	mg/L	9060	<1		<1			*	1.6	
s0586	Total Organic Halides	т	mg/L	9020	0.039		0.024			*	0.031	

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Frankfort, KY 40601 (502)564-6716

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-48	306	8004-48	07	8004-480	02
Facility's Loc	al Well or Spring Number (e.g., N	ſW−1	, MW-2, etc	.)	391		392		393		394	
Sample Sequenc	e #				1		1		1		1	
If sample is a B	Slank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		7/11/2013 11	:14	7/11/2013	09:19	7/11/2013	10:06	7/10/2013 (08:04
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW391SG4	-13	MW392S0	G4-13	MW393S0	94-13	MW394SG	4-13
Laboratory Sam	oratory Sample ID Number (if applicable)						C1319201	3001	C1319201	3002	C13191020	0001
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organics Analysis						7/12/20	13	7/12/20	13	7/12/201	13
Gradient with	respect to Monitored Unit (UP, DO	, NWC	side, unkn	OWN)	DOWN		DOW	N	DOWI	V	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride(s)	т	mg/L	9056	42		51		17		56	
16984-48-8	Fluoride	т	mg/L	9214	0.16		0.23		0.21		0.12	
s0595	Nitrate & Nitrite	т	mg/L	9056	<1		<1		<1		1.9	
14808-79-8	Sulfate	т	mg/L	9056	32		6.3		18		9.7	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.44		29.44		29.44		29.96	
s0145	Specific Conductance	т	μ MH 0/cm	Field	436		420		473		405	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807	,	8004-4802	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, I	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	325.57		325.6		338.41		325.75	
N238	Dissolved Oxygen	Т	mg/L	Field	1.63		1.19		0.78		4.99	
S0266	Total Dissolved Solids	Т	mg/L	160.1	242		231		304		246	
s0296	рн	Т	Units	Field	6.2		6.53		6.46		6.13	
NS215	Eh	Т	mV	Field	336		252		249		756	
s0907	Temperature	Т	°C	Field	18.89		19.06		19.22		17.89	
7429-90-5	Aluminum	Т	阳 mg	6020	<0.2		<0.2		<0.2		<0.2	
7440-36-0	Antimony	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-38-2	Arsenic	Т	mg/L	7060	<0.001		0.00148		0.00407		<0.001	
7440-39-3	Barium	Т	mg/L	6020	0.248		0.202		0.126		0.243	
7440-41-7	Beryllium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-42-8	Boron	Т	mg/L	6010	<0.2		<0.2		<0.2		<0.2	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6010	28.2		27.7		12.7		28.5	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7439-89-6	Iron	т	mg/L	6010	<0.1		1.43		4.99		<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013		<0.0013		<0.0013	
7439-95-4	Magnesium	т	mg/L	6010	10.9		9.49		3.47		11.1	
7439-96-5	Manganese	т	mg/L	6020	<0.005		0.37		0.0409		<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-480	05	8004-48	306	8004-48	07	8004-48	02
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-02-0	Nickel	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-09-7	Potassium	т	mg/L	6010	1.66		1.8		0.508		1.42	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	0.00619		0.00616		<0.005		0.00704	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/129	6010	38		39		89.5		29.3	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01	*	<0.01	*	<0.01	*	<0.01	J
67-64-1	Acetone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-02-8	Acrolein	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01		<0.005		<0.01		<0.01	
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	06	8004-48	307	8004-4	302
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	
67-66-3	Chloroform	Т	mg7L	8260	<0.001		<0.001		<0.001		<0.005	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		0.0012		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.005	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	J
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.005	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0091		0.016		<0.001		0.0044	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-480	6	8004-48	07	8004-48	02
Facility's Loc	cal Well or Spring Number (e.g., M	IW-1	L, MW-2, et	c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.001		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L C	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L 1	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	J
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4805		8004-4806	6	8004-480)7	8004-480)2
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	0.44	*	1.93	*	1.7	*	-0.409	*
12587-47-2	Gross Beta	Т	pCi/L	9310	7.39	*	3.65	*	2.68	*	5.21	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/IC	RL-7129	0.296	*	0.195	*	0.137	*	0.0324	*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	0.255	*B	0.169	*B	-0.126	*B	0.25	*B
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	4.24	*	4.85	*	0.725	*	15	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	0.0429	*	0.0127	*	0.0165	*	-0.0296	*
10028-17-8	Tritium	Т	pCi/L	704R6	-713	*	-476	*	-270	*	-486	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36		<36		<36		<36	
57-12-5	Cyanide	Т	mg/L	9010	<0.04	J	<0.04		<0.04		<0.04	
20461-54-5	Iodide	т	mg/L	345.1	<2		<2		<2		<2	
s0268	Total Organic Carbon	Т	mg/L	9060	<1		1.4		3.1		<1	
s0586	Total Organic Halides	Т	mg/L	9020	0.027		0.081		0.062		0.019	

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

Solid Waste Branch

14 Reilly Road

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4801		8004-48	03	8004-48	17	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., h	w−1	L, MW-2, etc	:.)	395		396		397		E. BLAN	K
Sample Sequenc	e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)∈	ethod, or (E)	quipment	NA		NA		NA		Е	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		7/11/2013 12	2:40	7/10/2013	08:58	7/8/2013 1	1:38	7/15/2013 1	1:30
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW395SG4	-13	MW396S0	94-13	MW397S0	94-13	RI1SG4-1	13
Laboratory Sam	ple ID Number (if applicable)		C131920170	001	C1319102	0002	C1318903	4003	C13196039	0001		
Date of Analys	ce of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						7/11/20	13	7/11/20	13	7/16/201	3
Gradient with	respect to Monitored Unit (UP, DO	NWC	, side, unkn	OWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	Т	mg/L	9056	<2		<2		<2			*
16887-00-6	Chloride(s)	Т	mg/L	9056	55		76		39			*
16984-48-8	Fluoride	Т	mg/L	9214	0.12		0.58		0.15			*
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.8		<1		1.1			*
14808-79-8	Sulfate	т	mg/L	9056	9.7		29		11			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.95		29.96		29.86			*
s0145	Specific Conductance	Т	μ MHO /cm	Field	394		792		335			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817	7	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., MV	I-1 , I	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.14		368.11		325.31			*
N238	Dissolved Oxygen	т	mg/L	Field	3.8		0.44		4.6			*
s0266	Total Dissolved Solids	т	mg/L	160.1	229		470		182			*
s0296	рн	Т	Units	Field	6.02		6.68		6.1			*
NS215	Eh	Т	mV	Field	495		472		443			*
s0907	Temperature	Т	°C	Field	18.44		18.22		20.44			*
7429-90-5	Aluminum	Т	mgÆ	6020	<0.2		<0.2		<0.2		<0.2	
7440-36-0	Antimony	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*B
7440-38-2	Arsenic	Т	mg/L	7060	<0.001		0.00139		<0.001		<0.001	В
7440-39-3	Barium	Т	mg/L	6020	0.245		0.39		0.136		<0.005	
7440-41-7	Beryllium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-42-8	Boron	Т	mg/L	6010	<0.2		<0.2		<0.2		<0.2	В
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6010	28.1		36.8		18.2		<1	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	*
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	*
7439-89-6	Iron	Т	mg/L	6010	<0.1		0.144		<0.1		<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.0013		<0.0013		<0.0013		<0.0013	
7439-95-4	Magnesium	Т	mg/L	6010	10.9		15.3		7.1		<0.025	
7439-96-5	Manganese	Т	mg/L	6020	<0.005		0.226		<0.005		<0.005	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-480	01	8004-48	303	8004-48	17	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.,	, MW-	1, MW-2, e	tc.)	395		396		397		E. BLA	ΝK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-02-0	Nickel	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-09-7	Potassium	т	mg/L	6010	1.64		0.925		1.67		<0.2	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	0.00661		0.00899		0.00687		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/Lus	6010	28.2		110		33.9		<1	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01	*	<0.01	J	<0.01	J	<0.01	J
67-64-1	Acetone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-02-8	Acrolein	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
71-43-2	Benzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480)3	8004-48	317	0000-00	000
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	:c.)	395		396		397		E. BLA	NK
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
67-66-3	Chloroform	Т	mg7L	8260	<0.001		<0.005		<0.005		<0.005	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.005		<0.005		<0.005	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005	J	<0.005	J	<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.005		<0.005		<0.005	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.0042		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480	3	8004-48	17	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	c.)	395		396		397		E. BLAN	١K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L C	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L 37	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005	J	<0.005	J	<0.005	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-4801		8004-4803	3	8004-481	7	0000-000)0
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	395		396		397		E. BLAN	IK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.48	*	0.654	*	0.235	*	-0.736	*
12587-47-2	Gross Beta	Т	pCi/L	9310	6.34	*	8.36	*	16.2	*	2.12	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/IC	RL-7129	0.246	*	0.28	*	0.135	*	-0.108	*
10098-97-2	Strontium-90	Т	pCi/L [∞]	RL-7140	0.271	*B	0.317	*B	0.656	*B	-0.0162	*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	10.7	*	0.223	*	14.6	*	7.58	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	-0.00211	*	0.0256	*	0.0102	*	0.0215	*
10028-17-8	Tritium	Т	pCi/L	704R6	-302	*	-325	*	-492	*	-273	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<36		<36		<36			*
57-12-5	Cyanide	Т	mg/L	9010	<0.04		<0.04		<0.04			*
20461-54-5	Iodide	т	mg/L	345.1	<2		<2		<2		<2	
s0268	Total Organic Carbon	Т	mg/L	9060	<1		5.1		<1			*
s0586	Total Organic Halides	Т	mg/L	9020	0.015		0.27		0.012			*

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000)0
Facility's Loc	al Well or Spring Number (e.g., N	/W−1	, MW-2, etc	:.)	F. BLAN	K	T. BLAN	K 1	T. BLANK	(2	T. BLANK	(3
Sample Sequenc	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	F		Т		Т		Т	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		7/15/2013 0	00:8	7/8/2013 0	7:00	7/9/2013 0	7:05	7/10/2013 0	6:45
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				FB1SG4-	13	TB1SG4	-13	TB2SG4-	13	TB3SG4-	13
Laboratory Sam	ple ID Number (if applicable)		C13196028	8001	C1318903	3001	C13190054	1001	C13191019	001		
Date of Analys	e of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis						7/11/20	13	7/11/201	3	7/11/201	3
Gradient with	respect to Monitored Unit (UP, DO	NWO,	, side, unkn	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9214		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	μ MH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

Solid Waste Branch

14 Reilly Road

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	0000-0000	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	F. BLAN	<	T. BLANK	1	T. BLANK	2	T. BLANK 3	,
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	PH	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	阳g mg	6020	<0.2			*		*		*
7440-36-0	Antimony	т	mg/L	6020	<0.005	*		*		*		*
7440-38-2	Arsenic	т	mg/L	7060	<0.001			*		*		*
7440-39-3	Barium	Т	mg/L	6020	<0.005			*		*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.001			*		*		*
7440-42-8	Boron	т	mg/L	6010	<0.2			*		*		*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6010	<1			*		*		*
7440-47-3	Chromium	Т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	Т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	Т	mg/L	6020	<0.02			*		*		*
7439-89-6	Iron	Т	mg/L	6010	<0.1			*		*		*
7439-92-1	Lead	Т	mg/L	6020	<0.0013			*		*		*
7439-95-4	Magnesium	Т	mg/L	6010	<0.025			*		*		*
7439-96-5	Manganese	Т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				0000-000	00	0000-00	000	0000-00	00	0000-00	000
Facility's L	ocal Well or Spring Number (e.g.	MW-	1, MW-2, e	tc.)	F. BLAN	1K	T. BLAN	IK 1	T. BLAN	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001	В		*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.005			*		*		*
7440-09-7	Potassium	т	mg/L	6010	<0.2			*		*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	Т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	Т	mg/141	6010	<1			*		*		*
7440-25-7	Tantalum	Т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	Т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	т	mg/L	6020	<0.001			*		*		*
7440-62-2	Vanadium	т	mg/L	6020	<0.02			*		*		*
7440-66-6	Zinc	Т	mg/L	6020	<0.02			*		*		*
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01	*J	<0.01	J	<0.01	J	<0.01	J
67-64-1	Acetone	т	mg/L	8260	0.014	J	<0.01		0.014		<0.01	
107-02-8	Acrolein	Т	mg/L	8260	<0.01		<0.01	*	<0.01	*	<0.01	*
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01		<0.01	*	<0.01	*	<0.01	*
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3	Toluene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		0000-000	0	0000-000	00	0000-00	000	0000-00	000		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	l, MW-2, et	.c.)	F. BLAN	(T. BLAN	〈 1	T. BLAN	IK 2	T. BLAN	1K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.005		<0.005		<0.005	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.005		<0.005		<0.005	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.005		<0.005		<0.005	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-0000	0	0000-00	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	c.)	F. BLAN	<	T. BLANK	1	T. BLAN	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.01	J	<0.01		<0.01		<0.01	
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L C	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L [℧]	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005	J	<0.005	J	<0.005	J
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000	0	0000-0000		0000-0000)	0000-000	0
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	F. BLANK	(T. BLANK 1		T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.202	*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	0.675	*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	pCi/F	RL-7129	0.0526	*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140	0.324	*B		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100	4.41	*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	0.00662	*		*		*		*
10028-17-8	Tritium	Т	pCi/L	704R6	-344	*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9010		*		*		*		*
20461-54-5	Iodide	Т	mg/L	345.1	<2			*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	KGWA NUMBER ¹ , Facility Well/Spring Number acility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						0000-00	00	0000-000	00	8000-524	4
Facility's Loc	al Well or Spring Number (e.g., N	ſW−1	, MW-2, etc	:.)	T. BLANK	(4	T. BLANI	₹5	T. BLANK	۲6	224	
Sample Sequenc	e #				1		1		1		2	
If sample is a B	sample is a Blank, specify Type: (F)ield, (T)rip,			quipment	Т		Т		Т		NA	
Sample Date an	ample Date and Time (Month/Day/Year hour: min				7/11/2013 0	6:50	7/11/2013 (06:30	7/15/2013 0	7:00	7/15/2013 08	8:09
Duplicate ("Y"	ouplicate ("Y" or "N") ²				N		N		N		Y	
Split ("Y" or	plit ("Y" or "N") ³				N		N		N		N	
Facility Sampl	acility Sample ID Number (if applicable)				TB4SG4-	13	TB5SG4	-13	TB6SG4-	13	MW224DSG	4-13
Laboratory Sam	ple ID Number (if applicable)				C13192016	6001	C1319201	4001	C13196043	3001	C13196029	002
Date of Analys	is (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	7/12/201	3	7/12/20	13	7/16/201	3	7/16/2013	3
Gradient with	respect to Monitored Unit (UP, DO	, NWC	, SIDE, UNKN	IOWN)	NA		NA		NA		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*	<2	
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*	36	
16984-48-8	Fluoride	т	mg/L	9214		*		*		*	0.25	
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*	<1	
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*	15	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	_	*		*		*	30.17	
s0145	Specific Conductance	Т	μ MH0/cm	Field		*		*		*	448	

¹AKGWA # is 0000-0000 for any type of blank.

Solid Waste Branch

14 Reilly Road

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	8000-5244	
Facility's Lo	ocal Well or Spring Number (e.g., MV	-1 , 1	MW-2, BLANK-	F, etc.)	T. BLANK	4	T. BLANK	5	T. BLANK	6	224	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*	325.81	
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*	3.99	
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*	260	
s0296	Нд	Т	Units	Field		*		*		*	6.13	
NS215	Eh	Т	mV	Field		*		*		*	701	
s0907	Temperature	т	°C	Field		*		*		*	20.61	
7429-90-5	Aluminum	т	mg/F	6020		*		*		*	<0.2	
7440-36-0	Antimony	Т	mg/L	6020		*		*		*	<0.005	*
7440-38-2	Arsenic	т	mg/L	7060		*		*		*	<0.001	
7440-39-3	Barium	т	mg/L	6020		*		*		*	0.232	
7440-41-7	Beryllium	т	mg/L	6020		*		*		*	<0.001	
7440-42-8	Boron	Т	mg/L	6010		*		*		*	<0.2	
7440-43-9	Cadmium	т	mg/L	6020		*		*		*	<0.001	
7440-70-2	Calcium	т	mg/L	6010		*		*		*	24.1	
7440-47-3	Chromium	Т	mg/L	6020		*		*		*	<0.01	
7440-48-4	Cobalt	Т	mg/L	6020		*		*		*	<0.001	
7440-50-8	Copper	т	mg/L	6020		*		*		*	<0.02	
7439-89-6	Iron	Т	mg/L	6010		*		*		*	<0.1	
7439-92-1	Lead	Т	mg/L	6020		*		*		*	<0.0013	
7439-95-4	Magnesium	т	mg/L	6010		*		*		*	9.54	
7439-96-5	Manganese	Т	mg/L	6020		*		*		*	0.00875	
7439-97-6	Mercury	т	mg/L	7470		*		*		*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				0000-000	00	0000-00	000	0000-00	00	8000-52	244
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	T. BLANI	K 4	T. BLAN	IK 5	T. BLAN	K 6	224	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020		*		*		*	<0.001	В
7440-02-0	Nickel	Т	mg/L	6020		*		*		*	0.00734	
7440-09-7	Potassium	Т	mg/L	6010		*		*		*	0.946	
7440-16-6	Rhodium	Т	mg/L	6020		*		*		*	<0.005	
7782-49-2	Selenium	Т	mg/L	6020		*		*		*	<0.005	
7440-22-4	Silver	Т	mg/L	6020		*		*		*	<0.001	
7440-23-5	Sodium	Т	mg/147	6010		*		*		*	52.4	
7440-25-7	Tantalum	Т	mg/L	6020		*		*		*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020		*		*		*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020		*		*		*	<0.001	
7440-62-2	Vanadium	Т	mg/L	6020		*		*		*	<0.02	
7440-66-6	Zinc	Т	mg/L	6020		*		*		*	<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01	*	<0.01	*	<0.01	J	<0.01	*J
67-64-1	Acetone	Т	mg/L	8260	<0.01		0.012		<0.01		<0.01	J
107-02-8	Acrolein	Т	mg/L	8260	<0.01		<0.01	*	<0.01		<0.01	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.01		<0.01	*	<0.01		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1330-20-7	Xylenes	Т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	
100-42-5	Styrene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-88-3	Toluene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	00	0000-00	000	8000-52	244
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	c.)	T. BLANK	4	T. BLAN	< 5	T. BLAN	IK 6	224	,
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-83-9	Methyl bromide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005		<0.005	J
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.005		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.005		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	J
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.002		<0.002		<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.005		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-0000)	0000-00	00	8000-52	:44
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	c.)	T. BLANK	4	T. BLANK	5	T. BLAN	K 6	224	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	J
74-88-4	Iodomethane	Т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005		<0.005		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L C	8260	<0.01		<0.01		<0.01		<0.01	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L 9	8011	<0.0002		<0.0002		<0.0002		<0.0002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	ĺ
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				VALUE OR A OR PQL6 G S 2			0000-0000)	8004-524	14	
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	T. BLANK 4 DETECTED F L L A PQL6 S S * * * * * * * * * * * * * * * * *		T. BLANK 5	,	T. BLANK	6	224	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	VALUE OR	L A G	VALUE OR	L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*		*	1.28	*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*	7.23	*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	Т	PCi/F2	RL-7129		*		*		*	0.071	*
10098-97-2	Strontium-90	Т	O pCi/L	RL-7140		*		*		*	0.0509	*B
14133-76-7	Technetium-99	Т	pCi/L	RL-7100		*		*		*	7.98	*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128		*		*		*	-0.0143	*
10028-17-8	Tritium	Т	pCi/L	704R6				*		*	-300	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*	<36	
57-12-5	Cyanide	Т	mg/L	9010				*		*	<0.04	J
20461-54-5	Iodide	Т	mg/L	345.1				*		*	<2	
s0268	Total Organic Carbon	Т	mg/L	9060				*		*	<1	
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*	0.026	
					_							

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent		Flag	Description
8000-5201 MW22	20 MW220SG4-13	Antimony		Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total			Analysis of constituent not required and not performe
		PCB-1016			Analysis of constituent not required and not performe
		PCB-1221			Analysis of constituent not required and not performe
		PCB-1232			Analysis of constituent not required and not performe
		PCB-1242			Analysis of constituent not required and not performe
		PCB-1248			Analysis of constituent not required and not performe
		PCB-1254			Analysis of constituent not required and not performe
		PCB-1260			Analysis of constituent not required and not performe
		PCB-1268			Analysis of constituent not required and not performe
		Gross alpha		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.576. Rad error is 0.55.
		Gross beta			TPU is 1.93. Rad error is 1.79.
		lodine-131			Analysis of constituent not required and not performe
		Radium-226		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.311. Rad error is 0.236.
		Strontium-90		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.091. Rad error is 0.0604.
		Technetium-99			TPU is 11.6. Rad error is 11.6.
		Thorium-230	C-51	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.109. Rad error is 0.0436.
		Tritium		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 609. Rad error is 608.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent		Flag	Description		
000-5202 MW22	1 MW221SG4-13	Antimony		Х	Other specific flags and footnotes may be required to properly define the results.		
		PCB, Total			Analysis of constituent not required and not performe		
		PCB-1016			Analysis of constituent not required and not performed		
		PCB-1221			Analysis of constituent not required and not performe		
		PCB-1232			Analysis of constituent not required and not performe		
		PCB-1242			Analysis of constituent not required and not perform		
		PCB-1248			Analysis of constituent not required and not performe		
		PCB-1254			Analysis of constituent not required and not perform		
		PCB-1260			Analysis of constituent not required and not perform		
		PCB-1268			Analysis of constituent not required and not perform		
		Gross alpha		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.17. Rad error is 1.09.		
		Gross beta		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.685. Rad error is 0.649.		
		lodine-131			Analysis of constituent not required and not perform		
		Radium-226		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.293. Rad error is 0.211.		
		Strontium-90		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0057. Rad error is 0.00368.		
		Technetium-99	C-52	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.2. Rad error is 11.2.		
		Thorium-230		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.106. Rad error is 0.0317.		
		Tritium		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 599. Rad error is 596.		
		Chemical Oxygen D	emand		Collected during re-sampling event.		

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent		Flag	Description
3000-5242 MW22	22 MW222SG4-13	Antimony		Х	Other specific flags and footnotes may be required to properly define the results.
		Vinyl acetate		Υ	MS,MSD recovery and/or RPD failed acceptance criter
		PCB, Total			Analysis of constituent not required and not performed
		PCB-1016			Analysis of constituent not required and not performed
		PCB-1221			Analysis of constituent not required and not performed
		PCB-1232			Analysis of constituent not required and not performed
		PCB-1242			Analysis of constituent not required and not performed
		PCB-1248			Analysis of constituent not required and not performed
		PCB-1254			Analysis of constituent not required and not performed
		PCB-1260			Analysis of constituent not required and not performed
		PCB-1268			Analysis of constituent not required and not performed
		Gross alpha		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0455. Rad error is 0.0433.
		Gross beta			TPU is 1.4. Rad error is 1.31.
		lodine-131			Analysis of constituent not required and not performed
		Radium-226		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.448. Rad error is 0.394.
		Strontium-90		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.335. Rad error is 0.198.
		Technetium-99	C-53	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.2. Rad error is 11.2.
		Thorium-230		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.107. Rad error is 0.0208.
		Tritium		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 604. Rad error is 603.
		Chemical Oxygen [Demand		Collected during re-sampling event.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent		Flag	Description
8000-5243 MW223 MW223SG4-13		Antimony		Х	Other specific flags and footnotes may be required to properly define the results.
		Vinyl acetate		Υ	MS,MSD recovery and/or RPD failed acceptance criter
		PCB, Total			Analysis of constituent not required and not performed.
		PCB-1016			Analysis of constituent not required and not performed.
		PCB-1221			Analysis of constituent not required and not performed.
		PCB-1232			Analysis of constituent not required and not performed.
		PCB-1242			Analysis of constituent not required and not performed.
		PCB-1248			Analysis of constituent not required and not performed.
		PCB-1254			Analysis of constituent not required and not performed.
	PCB-1260			Analysis of constituent not required and not performed	
		PCB-1268			Analysis of constituent not required and not performed.
		Gross alpha		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.96. Rad error is 0.93.
		Gross beta		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.288. Rad error is 0.275.
		lodine-131			Analysis of constituent not required and not performed.
		Radium-226		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.277. Rad error is 0.189.
		Strontium-90	C-54	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0799. Rad error is 0.0505.
	Technetium-99	C-34	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.4. Rad error is 11.4.	
		Thorium-230		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.111. Rad error is 0.00936.
		Tritium		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 612. Rad error is 612.
		Chemical Oxygen D	emand		Collected during re-sampling event.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Fla	ag	Description
8000-5244 MW224	MW224SG4-13	Antimony	X	(Other specific flags and footnotes may be required to properly define the results.
		Vinyl acetate	Υ	1	MS,MSD recovery and/or RPD failed acceptance criteria
		PCB, Total			Analysis of constituent not required and not performed.
		PCB-1016			Analysis of constituent not required and not performed.
		PCB-1221			Analysis of constituent not required and not performed.
		PCB-1232			Analysis of constituent not required and not performed.
		PCB-1242			Analysis of constituent not required and not performed.
		PCB-1248			Analysis of constituent not required and not performed.
		PCB-1254			Analysis of constituent not required and not performed.
		PCB-1260			Analysis of constituent not required and not performed.
		PCB-1268			Analysis of constituent not required and not performed.
		Gross alpha	U	J	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.78. Rad error is 0.733.
		Gross beta			TPU is 1.02. Rad error is 0.961.
		lodine-131			Analysis of constituent not required and not performed.
		Radium-226	U	J	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.314. Rad error is 0.236.
		Strontium-90	U	J	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.086. Rad error is 0.057.
		Technetium-99	C-55 U	J	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.2. Rad error is 11.2.
		Thorium-230	U	J	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.114. Rad error is 0.0432.
		Tritium	U	J	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 606. Rad error is 603.
8004-4820 MW369	MW369UG4-13	Antimony	Х	(Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	1	Sample spike recovery not within control limits.
		Copper	N	1	Sample spike recovery not within control limits.
		Nickel	X	(Other specific flags and footnotes may be required to properly define the results.
		Silver	N	1	Sample spike recovery not within control limits.
		Gross alpha	U	J	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.78. Rad error is 0.733.
		Gross beta			TPU is 2.89. Rad error is 2.28.
		lodine-131			Analysis of constituent not required and not performed.
		Radium-226	U	J	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.254. Rad error is 0.206.
		Strontium-90	U	J	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.136. Rad error is 0.0852.
		Technetium-99			TPU is 11.4. Rad error is 11.4.
		Thorium-230	U	J	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.133. Rad error is 0.057.
		Tritium	U	J	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 558. Rad error is 558.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

<u> </u>	cility mple ID	Constituent	Flag	Description
8004-4818 MW370 MW370UG4-13		Antimony	Х	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	Ν	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Styrene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Dichloromethane	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		cis-1,3-Dichloropropene	Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.682. Rad error is 0.653.
		Gross beta		TPU is 3.2. Rad error is 2.48.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.262. Rad error is 0.215.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.131. Rad error is 0.0817.
		Technetium-99		TPU is 11.9. Rad error is 11.8.
		Thorium-230 C-5	6 U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.121. Rad error is 0.0103.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 572. Rad error is 571.
8004-4808 MW372 MW3	72UG4-13	Antimony	Х	Other specific flags and footnotes may be required to properly define the results.
		Cobalt	N	Sample spike recovery not within control limits.
		Copper	Ν	Sample spike recovery not within control limits.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		Gross alpha		TPU is 3.94. Rad error is 3.35.
		Gross beta		TPU is 14.5. Rad error is 7.83.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.229. Rad error is 0.175.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.444. Rad error is 0.259.
		Technetium-99		TPU is 16.5. Rad error is 16.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.152. Rad error is 0.0396.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 575. Rad error is 575.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent		Flag	Description
8004-4792 MW373 MW373UG4-13		Antimony		Х	Other specific flags and footnotes may be required to properly define the results.
		Cobalt		N	Sample spike recovery not within control limits.
		Copper		N	Sample spike recovery not within control limits.
		Nickel		Χ	Other specific flags and footnotes may be required to properly define the results.
		Silver		N	Sample spike recovery not within control limits.
		Gross alpha		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.66. Rad error is 1.44.
		Gross beta			TPU is 7.09. Rad error is 4.4.
		lodine-131			Analysis of constituent not required and not performe
		Radium-226		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.218. Rad error is 0.157.
		Strontium-90		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0468. Rad error is 0.0298.
		Technetium-99			TPU is 13. Rad error is 12.9.
		Thorium-230		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.113. Rad error is 0.0538.
		Tritium		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 574. Rad error is 573.
3004-4809 MW38	84 MW384SG4-13	Antimony		Χ	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total	C-57		Analysis of constituent not required and not performe
		PCB-1016			Analysis of constituent not required and not performe
		PCB-1221			Analysis of constituent not required and not performe
		PCB-1232			Analysis of constituent not required and not performe
		PCB-1242			Analysis of constituent not required and not performe
		PCB-1248			Analysis of constituent not required and not performe
		PCB-1254			Analysis of constituent not required and not performe
		PCB-1260			Analysis of constituent not required and not performe
		PCB-1268			Analysis of constituent not required and not performe
		Gross alpha			TPU is 1.71. Rad error is 1.33.
		Gross beta			TPU is 12.7. Rad error is 8.96.
		lodine-131			Analysis of constituent not required and not performe
		Radium-226		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.259. Rad error is 0.163.
		Strontium-90		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0693. Rad error is 0.0456.
		Technetium-99			TPU is 17.3. Rad error is 16.6.
		Thorium-230		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.115. Rad error is 0.0557.
		Tritium		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 602. Rad error is 600.
		Chemical Oxygen De	emand		Collected during re-sampling event.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent		Flag	Description
8004-4810 MW3	85 MW385SG4-13	Antimony		Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total			Analysis of constituent not required and not performed
		PCB-1016			Analysis of constituent not required and not performed
		PCB-1221			Analysis of constituent not required and not performed
		PCB-1232			Analysis of constituent not required and not performed
	PCB-1242			Analysis of constituent not required and not performed	
	PCB-1248			Analysis of constituent not required and not performed	
	PCB-1254			Analysis of constituent not required and not performed	
		PCB-1260			Analysis of constituent not required and not performed
		PCB-1268			Analysis of constituent not required and not performed
		Gross alpha			TPU is 3.45. Rad error is 2.65.
		Gross beta			TPU is 10.1. Rad error is 7.6.
		lodine-131			Analysis of constituent not required and not performed
		Radium-226		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.291. Rad error is 0.207.
		Strontium-90		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0198. Rad error is 0.0127.
		Technetium-99			TPU is 16.9. Rad error is 16.3.
		Thorium-230	C-58	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.118. Rad error is 0.0628.
		Tritium		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 604. Rad error is 601.
		Chemical Oxygen Demand			Collected during re-sampling event.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent		Flag	Description
3004-4804 MW38	3004-4804 MW386 MW386SG4-13			Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total			Analysis of constituent not required and not performe
		PCB-1016			Analysis of constituent not required and not performe
		PCB-1221			Analysis of constituent not required and not performe
		PCB-1232			Analysis of constituent not required and not performe
		PCB-1242			Analysis of constituent not required and not performe
		PCB-1248			Analysis of constituent not required and not performe
		PCB-1254			Analysis of constituent not required and not performe
		PCB-1260			Analysis of constituent not required and not performe
		PCB-1268			Analysis of constituent not required and not performe
		Gross alpha			TPU is 3.84. Rad error is 3.45.
		Gross beta		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.135. Rad error is 0.129.
		lodine-131			Analysis of constituent not required and not performe
		Radium-226		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.275. Rad error is 0.186.
		Strontium-90	rontium-90		Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.185. Rad error is 0.126.
		Technetium-99	C 50	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.1. Rad error is 11.1.
		Thorium-230	C-59	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.113. Rad error is 0.0521.
		Tritium		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 605. Rad error is 603.
		Chemical Oxygen Demand			Collected during re-sampling event.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent		Flag	Description
8004-4815 MW38	87 MW387SG4-13	Antimony		Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total			Analysis of constituent not required and not performed
		PCB-1016			Analysis of constituent not required and not performed
		PCB-1221			Analysis of constituent not required and not performed
		PCB-1232			Analysis of constituent not required and not performed
		PCB-1242			Analysis of constituent not required and not performed
		PCB-1248			Analysis of constituent not required and not performed
		PCB-1254			Analysis of constituent not required and not performed
	PCB-1260			Analysis of constituent not required and not performed	
		PCB-1268			Analysis of constituent not required and not performed
		Gross alpha		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.973. Rad error is 0.728.
		Gross beta			TPU is 17.7. Rad error is 11.3.
		lodine-131			Analysis of constituent not required and not performed
		Radium-226		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.338. Rad error is 0.271.
		Strontium-90		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0866. Rad error is 0.0572.
		Technetium-99			TPU is 20.8. Rad error is 19.3.
		Thorium-230	C-60	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.11. Rad error is 0.0154.
		Tritium		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 604. Rad error is 602.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent		Flag	Description
8004-4816 MW38	88 MW388SG4-13	Antimony		Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total			Analysis of constituent not required and not performe
		PCB-1016			Analysis of constituent not required and not performe
		PCB-1221			Analysis of constituent not required and not performe
		PCB-1232			Analysis of constituent not required and not performe
		PCB-1242			Analysis of constituent not required and not performe
		PCB-1248			Analysis of constituent not required and not performe
		PCB-1254			Analysis of constituent not required and not performe
		PCB-1260			Analysis of constituent not required and not performe
		PCB-1268			Analysis of constituent not required and not performe
		Gross alpha		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.08. Rad error is 0.909.
		Gross beta			TPU is 8.44. Rad error is 6.63.
		lodine-131			Analysis of constituent not required and not performe
		Radium-226		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.336. Rad error is 0.265.
		Strontium-90		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0531. Rad error is 0.0348.
		Technetium-99			TPU is 15. Rad error is 14.7.
		Thorium-230	C-61	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.121. Rad error is 0.0684.
		Tritium		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 604. Rad error is 602.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample was collected.
		Chloride		During sampling, the well was dry; therefore, no sample was collected.
		Fluoride		During sampling, the well was dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample was collected.
		Sulfate		During sampling, the well was dry; therefore, no sample was collected.
		Barometric Pressure Readi	ng	During sampling, the well was dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample was collected.
		Static Water Level Elevatio	n	During sampling, the well was dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample was collected.
		рН		During sampling, the well was dry; therefore, no sample was collected.
		Eh		During sampling, the well was dry; therefore, no sample was collected.
		Temperature C-	62	During sampling, the well was dry; therefore, no sample was collected.
		Aluminum		During sampling, the well was dry; therefore, no sample was collected.
		Antimony		During sampling, the well was dry; therefore, no sampl was collected.
		Arsenic		During sampling, the well was dry; therefore, no sample was collected.
		Barium		During sampling, the well was dry; therefore, no sample was collected.
		Beryllium		During sampling, the well was dry; therefore, no sample was collected.
		Boron		During sampling, the well was dry; therefore, no sample was collected.
		Cadmium		During sampling, the well was dry; therefore, no sample was collected.
		Calcium		During sampling, the well was dry; therefore, no sample was collected.
		Chromium		During sampling, the well was dry; therefore, no sample was collected.
		Cobalt		During sampling, the well was dry; therefore, no sample was collected.
		Copper		During sampling, the well was dry; therefore, no sample was collected.
		Iron		During sampling, the well was dry; therefore, no sample was collected.
		Lead		During sampling, the well was dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Magnesium		During sampling, the well was dry; therefore, no samp was collected.
		Manganese		During sampling, the well was dry; therefore, no samp was collected.
		Mercury		During sampling, the well was dry; therefore, no samp was collected.
		Molybdenum		During sampling, the well was dry; therefore, no samp was collected.
		Nickel		During sampling, the well was dry; therefore, no samp was collected.
		Potassium		During sampling, the well was dry; therefore, no samp was collected.
		Rhodium		During sampling, the well was dry; therefore, no samp was collected.
		Selenium		During sampling, the well was dry; therefore, no samp was collected.
		Silver		During sampling, the well was dry; therefore, no samp was collected.
		Sodium		During sampling, the well was dry; therefore, no samp was collected.
		Tantalum		During sampling, the well was dry; therefore, no samp was collected.
		Thallium		During sampling, the well was dry; therefore, no samp was collected.
		Uranium C	2-63	During sampling, the well was dry; therefore, no samp was collected.
		Vanadium		During sampling, the well was dry; therefore, no samp was collected.
		Zinc		During sampling, the well was dry; therefore, no samp was collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no samp was collected.
		Acetone		During sampling, the well was dry; therefore, no samp was collected.
		Acrolein		During sampling, the well was dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no samp was collected.
		Benzene		During sampling, the well was dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no samp was collected.
		Xylenes		During sampling, the well was dry; therefore, no samp was collected.
		Styrene		During sampling, the well was dry; therefore, no samp was collected.
		Toluene		During sampling, the well was dry; therefore, no samp was collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no samp was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Tribromomethane		During sampling, the well was dry; therefore, no samp was collected.
		Methyl bromide		During sampling, the well was dry; therefore, no samp was collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no samp was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no samp was collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no samp was collected.
		Chloroethane		During sampling, the well was dry; therefore, no samp was collected.
		Chloroform		During sampling, the well was dry; therefore, no samp was collected.
		Methyl chloride		During sampling, the well was dry; therefore, no samp was collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no samp was collected.
		Methylene bromide		During sampling, the well was dry; therefore, no samp was collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no samp was collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no samp was collected.
		1,1-Dichloroethylene C-64	1	During sampling, the well was dry; therefore, no samp was collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no samp was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no samp was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no samp was collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no samp was collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no samp was collected.
		Trichloroethene		During sampling, the well was dry; therefore, no samp was collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample was collected.
		2-Hexanone		During sampling, the well was dry; therefore, no samp was collected.
		lodomethane		During sampling, the well was dry; therefore, no samp was collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sam was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description	
004-4812 MW389		Dichloromethane		During sampling, the well was dry; therefore, no sampl was collected.	
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sampl was collected.	
			1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sampl was collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sampl was collected.	
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sampl was collected.	
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sampl was collected.	
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sampl was collected.	
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sampl was collected.	
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sampl was collected.	
		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sampl was collected.	
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sampl was collected.	
		PCB, Total		During sampling, the well was dry; therefore, no samp was collected.	
		PCB-1016 C-65		During sampling, the well was dry; therefore, no samp was collected.	
		PCB-1221		During sampling, the well was dry; therefore, no samp was collected.	
		PCB-1232		During sampling, the well was dry; therefore, no samp was collected.	
		PCB-1242		During sampling, the well was dry; therefore, no samp was collected.	
		PCB-1248		During sampling, the well was dry; therefore, no sampl was collected.	
		PCB-1254		During sampling, the well was dry; therefore, no sampl was collected.	
		PCB-1260		During sampling, the well was dry; therefore, no sampl was collected.	
		PCB-1268		During sampling, the well was dry; therefore, no sampl was collected.	
		Gross alpha		During sampling, the well was dry; therefore, no sampl was collected.	
		Gross beta		During sampling, the well was dry; therefore, no samp was collected.	
		lodine-131		During sampling, the well was dry; therefore, no sampl was collected.	
		Radium-226		During sampling, the well was dry; therefore, no sampl was collected.	
		Strontium-90		During sampling, the well was dry; therefore, no sampl was collected.	
		Technetium-99		During sampling, the well was dry; therefore, no sampl was collected.	

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW38	9	Thorium-230		During sampling, the well was dry; therefore, no sample was collected.
		Tritium		During sampling, the well was dry; therefore, no sample was collected.
		Chemical Oxygen Demand	I	During sampling, the well was dry; therefore, no sample was collected.
		Cyanide		During sampling, the well was dry; therefore, no sample was collected.
		lodide		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample was collected.
3004-4811 MW39	0 MW390SG4-13	Antimony	Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254 C-	-66	Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.91. Rad error is 1.74.
		Gross beta		TPU is 6.53. Rad error is 4.49.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.424. Rad error is 0.372.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.128. Rad error is 0.0794.
		Technetium-99		TPU is 12.9. Rad error is 12.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.118. Rad error is 0.0631.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 609. Rad error is 608.
		Chemical Oxygen Demand	I	Collected during re-sampling event.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent		Flag	Description
8004-4805 MW391	MW391SG4-13	Antimony		Х	Other specific flags and footnotes may be required to properly define the results.
		Vinyl acetate		Υ	MS,MSD recovery and/or RPD failed acceptance criteri
		PCB, Total			Analysis of constituent not required and not performed.
		PCB-1016			Analysis of constituent not required and not performed.
		PCB-1221			Analysis of constituent not required and not performed.
		PCB-1232			Analysis of constituent not required and not performed.
		PCB-1242			Analysis of constituent not required and not performed.
		PCB-1248			Analysis of constituent not required and not performed.
		PCB-1254			Analysis of constituent not required and not performed.
		PCB-1260			Analysis of constituent not required and not performed.
		PCB-1268			Analysis of constituent not required and not performed.
		Gross alpha		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.268. Rad error is 0.254.
		Gross beta			TPU is 1.18. Rad error is 1.1.
		lodine-131			Analysis of constituent not required and not performed.
		Radium-226		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.408. Rad error is 0.353.
		Strontium-90		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.085. Rad error is 0.0535.
		Technetium-99	C-67	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.1. Rad error is 11.1.
		Thorium-230		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.116. Rad error is 0.0568.
		Tritium		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 597. Rad error is 592.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent		Flag	Description
004-4806 MW39	92 MW392SG4-13	Antimony		Х	Other specific flags and footnotes may be required to properly define the results.
		Vinyl acetate		Υ	MS,MSD recovery and/or RPD failed acceptance crite
		PCB, Total			Analysis of constituent not required and not performed
		PCB-1016			Analysis of constituent not required and not performed
		PCB-1221			Analysis of constituent not required and not performed
		PCB-1232			Analysis of constituent not required and not performed
		PCB-1242			Analysis of constituent not required and not performed
		PCB-1248			Analysis of constituent not required and not performed
		PCB-1254			Analysis of constituent not required and not performed
		PCB-1260			Analysis of constituent not required and not performed
		PCB-1268			Analysis of constituent not required and not performed
		Gross alpha		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.06. Rad error is 0.994.
		Gross beta		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.627. Rad error is 0.594.
		lodine-131			Analysis of constituent not required and not performed
		Radium-226		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.273. Rad error is 0.183.
		Strontium-90	C-68	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0565. Rad error is 0.0359.
		Technetium-99	C-08	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11. Rad error is 11.
		Thorium-230		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.115. Rad error is 0.0573.
		Tritium		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 605. Rad error is 603.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent		Flag	Description
004-4807 MW39	93 MW393SG4-13	Antimony		Х	Other specific flags and footnotes may be required to properly define the results.
		Vinyl acetate		Υ	MS,MSD recovery and/or RPD failed acceptance crite
		PCB, Total			Analysis of constituent not required and not performed
		PCB-1016			Analysis of constituent not required and not performed
		PCB-1221			Analysis of constituent not required and not performed
		PCB-1232			Analysis of constituent not required and not performed
		PCB-1242			Analysis of constituent not required and not performed
		PCB-1248			Analysis of constituent not required and not performed
		PCB-1254			Analysis of constituent not required and not performed
		PCB-1260			Analysis of constituent not required and not performed
		PCB-1268			Analysis of constituent not required and not performed
		Gross alpha		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.998. Rad error is 0.941.
		Gross beta		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.472. Rad error is 0.449.
		lodine-131			Analysis of constituent not required and not performed
		Radium-226		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.303. Rad error is 0.226.
		Strontium-90	0.00	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0432. Rad error is 0.0282.
		Technetium-99	C-69	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.4. Rad error is 11.4.
		Thorium-230		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.11. Rad error is 0.0458.
		Tritium		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 615. Rad error is 615.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent		Flag	Description
004-4802 MW39	4 MW394SG4-13	Antimony		Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total			Analysis of constituent not required and not performe
		PCB-1016			Analysis of constituent not required and not performe
		PCB-1221			Analysis of constituent not required and not performe
		PCB-1232			Analysis of constituent not required and not performe
		PCB-1242			Analysis of constituent not required and not performe
		PCB-1248			Analysis of constituent not required and not performe
		PCB-1254			Analysis of constituent not required and not performe
		PCB-1260			Analysis of constituent not required and not performe
		PCB-1268			Analysis of constituent not required and not performe
		Gross alpha		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.284. Rad error is 0.273.
		Gross beta		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.864. Rad error is 0.816.
		lodine-131			Analysis of constituent not required and not performed
		Radium-226		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.283. Rad error is 0.0648.
		Strontium-90		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0835. Rad error is 0.0527.
		Technetium-99	C-70	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.7. Rad error is 11.7.
		Thorium-230		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.113. Rad error is 0.0304.
		Tritium		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 606. Rad error is 603.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent		Flag	Description
004-4801 MV	V395 MW395SG4-13	Antimony		Х	Other specific flags and footnotes may be required to properly define the results.
		Vinyl acetate		Υ	MS,MSD recovery and/or RPD failed acceptance criter
		PCB, Total			Analysis of constituent not required and not performed
		PCB-1016			Analysis of constituent not required and not performed
		PCB-1221			Analysis of constituent not required and not performed
		PCB-1232			Analysis of constituent not required and not performed
		PCB-1242			Analysis of constituent not required and not performed
		PCB-1248			Analysis of constituent not required and not performed
		PCB-1254			Analysis of constituent not required and not performed
		PCB-1260			Analysis of constituent not required and not performed
		PCB-1268			Analysis of constituent not required and not performed
		Gross alpha		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.815. Rad error is 0.762.
		Gross beta			TPU is 1.03. Rad error is 0.966.
		lodine-131			Analysis of constituent not required and not performed
		Radium-226		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.274. Rad error is 0.184.
		Strontium-90		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0902. Rad error is 0.0566.
		Technetium-99	C-71	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.3. Rad error is 11.3.
		Thorium-230		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.106. Rad error is 0.0353.
		Tritium		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 606. Rad error is 605.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent		Flag	Description
8004-4803 MW39	8004-4803 MW396 MW396SG4-13			Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total			Analysis of constituent not required and not performe
		PCB-1016			Analysis of constituent not required and not performe
		PCB-1221			Analysis of constituent not required and not performe
		PCB-1232			Analysis of constituent not required and not performe
		PCB-1242			Analysis of constituent not required and not performe
		PCB-1248			Analysis of constituent not required and not performe
		PCB-1254			Analysis of constituent not required and not performe
		PCB-1260			Analysis of constituent not required and not performe
		PCB-1268			Analysis of constituent not required and not performe
		Gross alpha		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.385. Rad error is 0.363.
		Gross beta			TPU is 1.31. Rad error is 1.22.
		lodine-131			Analysis of constituent not required and not performe
		Radium-226		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.347. Rad error is 0.279.
		Strontium-90		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.105. Rad error is 0.0661.
		Technetium-99	C 72	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.2. Rad error is 11.2.
		Thorium-230	C-72	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.114. Rad error is 0.0535.
		Tritium		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 606. Rad error is 605.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent		Flag	Description
8004-4817 MW39	97 MW397SG4-13	Antimony		Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total			Analysis of constituent not required and not performed
		PCB-1016			Analysis of constituent not required and not performed
		PCB-1221			Analysis of constituent not required and not performed
		PCB-1232			Analysis of constituent not required and not performed
		PCB-1242			Analysis of constituent not required and not performed
		PCB-1248			Analysis of constituent not required and not performed
		PCB-1254			Analysis of constituent not required and not performed
		PCB-1260			Analysis of constituent not required and not performed
		PCB-1268			Analysis of constituent not required and not performed
		Gross alpha		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.133. Rad error is 0.125.
		Gross beta			TPU is 2.25. Rad error is 2.07.
		lodine-131			Analysis of constituent not required and not performed
		Radium-226		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.287. Rad error is 0.204.
		Strontium-90		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.214. Rad error is 0.13.
		Technetium-99	C 72	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.7. Rad error is 11.7.
		Thorium-230	C-73	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.114. Rad error is 0.0548.
		Tritium		U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 601. Rad error is 599.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG4-13	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Readin	g	Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation	ı	Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Antimony	Х	Other specific flags and footnotes may be required to properly define the results.
		Chromium	N	Sample spike recovery not within control limits.
		Copper	N	Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221 C-7	4	Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.618. Rad error is 0.601.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.373. Rad error is 0.354.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.307. Rad error is 0.108.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0055. Rad error is 0.00356.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.2. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.112. Rad error is 0.0551.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 564. Rad error is 563.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG4-13	Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG4-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Readin	g	Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Antimony	X	Other specific flags and footnotes may be required to properly define the results.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance crit
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221	16	Analysis of constituent not required and not performe
		PCB-1232 C-7	6	Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.148. Rad error is 0.143.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.124. Rad error is 0.118.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.277. Rad error is 0.105.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.108. Rad error is 0.0675.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11. Rad error is 11.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.109. Rad error is 0.0443.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 607. Rad error is 606.
		Chemical Oxygen Demand		Analysis of constituent not required and not performe
		Cyanide		Analysis of constituent not required and not performe
		Total Organic Carbon		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG4-13	Total Organic Halides	•	Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG4-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Read	ding	Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation	on	Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron C	-78	Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Vanadium Zinc Analysis of constituent not required and not Zinc Analysis of constituent not required and not Acrolein R Rejected during data validation. Acrylonitrile R Rejected during data validation. PCB, Total Analysis of constituent not required and not PCB-1016 Analysis of constituent not required and not PCB-1221 Analysis of constituent not required and not PCB-1232 Analysis of constituent not required and not PCB-1242 Analysis of constituent not required and not PCB-1248 Analysis of constituent not required and not PCB-1254 Analysis of constituent not required and not PCB-1260 Analysis of constituent not required and not PCB-1268 Analysis of constituent not required and not PCB-1268 Analysis of constituent not required and not Gross alpha Analysis of constituent not required and not Analysis of constituent not required and not Gross beta Analysis of constituent not required and not Iodine-131 Analysis of constituent not required and not Radium-226 Analysis of constituent not required and not	performed performed performed performed
Acrolein R Rejected during data validation. Acrylonitrile R Rejected during data validation. PCB, Total Analysis of constituent not required and not PCB-1016 Analysis of constituent not required and not PCB-1221 Analysis of constituent not required and not PCB-1232 Analysis of constituent not required and not PCB-1242 Analysis of constituent not required and not PCB-1248 Analysis of constituent not required and not PCB-1254 Analysis of constituent not required and not PCB-1260 Analysis of constituent not required and not PCB-1268 Analysis of constituent not required and not PCB-1268 Analysis of constituent not required and not Gross alpha Analysis of constituent not required and not Analysis of constituent not required and not Radium-226 Analysis of constituent not required Analysis of constituent not required Analysis of Constituent Not Radium-226 Analysis of Constituent Not Radium-226 Analysis of Constituent	performed performed performed performed
Acrylonitrile R Rejected during data validation. PCB, Total Analysis of constituent not required and not PCB-1016 Analysis of constituent not required and not PCB-1221 Analysis of constituent not required and not PCB-1232 Analysis of constituent not required and not PCB-1242 Analysis of constituent not required and not PCB-1248 Analysis of constituent not required and not PCB-1254 Analysis of constituent not required and not PCB-1260 Analysis of constituent not required and not PCB-1268 Analysis of constituent not required and not Gross alpha Analysis of constituent not required and not Indine-131 Analysis of constituent not required and not Radium-226 Analysis of constituent not required and Nalysis of constituent not required and Nalysis of constituent not required and Nalysis of constituent not required Analysis of constituent not required Analysis of constituent not required Analysis of constituent not requi	performed performed performed
PCB, Total Analysis of constituent not required and not PCB-1016 Analysis of constituent not required and not PCB-1221 Analysis of constituent not required and not PCB-1232 Analysis of constituent not required and not PCB-1242 Analysis of constituent not required and not PCB-1248 Analysis of constituent not required and not PCB-1254 Analysis of constituent not required and not PCB-1260 Analysis of constituent not required and not PCB-1268 Analysis of constituent not required and not Gross alpha Analysis of constituent not required and not Gross beta Analysis of constituent not required and not Iodine-131 Analysis of constituent not required and not Radium-226 Analysis of constituent not required and not Radium-226	performed performed performed
PCB-1016 PCB-1221 Analysis of constituent not required and not PCB-1232 Analysis of constituent not required and not PCB-1242 Analysis of constituent not required and not PCB-1248 Analysis of constituent not required and not PCB-1254 Analysis of constituent not required and not PCB-1260 Analysis of constituent not required and not PCB-1268 Analysis of constituent not required and not Gross alpha Analysis of constituent not required and not Gross beta Analysis of constituent not required and not Analysis of constituent not required and not Gross beta Analysis of constituent not required and not Analysis of constituent not required and not Radium-226 Analysis of constituent not required and not Radium-226	performed performed performed
PCB-1221 Analysis of constituent not required and not PCB-1232 Analysis of constituent not required and not PCB-1242 Analysis of constituent not required and not PCB-1248 Analysis of constituent not required and not PCB-1254 Analysis of constituent not required and not PCB-1260 Analysis of constituent not required and not PCB-1268 Analysis of constituent not required and not Gross alpha Analysis of constituent not required and not Gross beta Analysis of constituent not required and not Iodine-131 Analysis of constituent not required and not Radium-226 Analysis of constituent not required and not	performed
PCB-1232 Analysis of constituent not required and not PCB-1242 Analysis of constituent not required and not PCB-1248 Analysis of constituent not required and not PCB-1254 Analysis of constituent not required and not PCB-1260 Analysis of constituent not required and not PCB-1268 Analysis of constituent not required and not Gross alpha Analysis of constituent not required and not Gross beta Analysis of constituent not required and not lodine-131 Analysis of constituent not required and not Radium-226 Analysis of constituent not required and not	performe
PCB-1242 Analysis of constituent not required and not PCB-1248 Analysis of constituent not required and not PCB-1254 Analysis of constituent not required and not PCB-1260 Analysis of constituent not required and not PCB-1268 Analysis of constituent not required and not Gross alpha Analysis of constituent not required and not Gross beta Analysis of constituent not required and not lodine-131 Analysis of constituent not required and not Radium-226 Analysis of constituent not required and not Radium-226	•
PCB-1248 Analysis of constituent not required and not PCB-1254 Analysis of constituent not required and not PCB-1260 Analysis of constituent not required and not PCB-1268 Analysis of constituent not required and not Gross alpha Analysis of constituent not required and not Gross beta Analysis of constituent not required and not Iodine-131 Analysis of constituent not required and not Radium-226 Analysis of constituent not required and not Radium-226	performed
PCB-1254 Analysis of constituent not required and not PCB-1260 Analysis of constituent not required and not PCB-1268 Analysis of constituent not required and not Gross alpha Analysis of constituent not required and not Gross beta Analysis of constituent not required and not lodine-131 Analysis of constituent not required and not Radium-226 Analysis of constituent not required and not	p 00
PCB-1260 Analysis of constituent not required and not PCB-1268 Analysis of constituent not required and not Gross alpha Gross beta Iodine-131 Analysis of constituent not required and not Radium-226 Analysis of constituent not required and not Radium-226	performed
PCB-1268 Analysis of constituent not required and not Gross alpha Analysis of constituent not required and not Gross beta Analysis of constituent not required and not lodine-131 Analysis of constituent not required and not Radium-226 Analysis of constituent not required and not	performed
Gross alpha Analysis of constituent not required and not Gross beta Analysis of constituent not required and not lodine-131 Analysis of constituent not required and not Radium-226 Analysis of constituent not required and not	performed
Gross beta Iodine-131 Radium-226 Analysis of constituent not required and not	performed
lodine-131 Analysis of constituent not required and not Radium-226 Analysis of constituent not required and not	performed
Radium-226 Analysis of constituent not required and not	performed
·	performed
	performed
Strontium-90 Analysis of constituent not required and not	performed
Technetium-99 C-79 Analysis of constituent not required and not	performed
Thorium-230 Analysis of constituent not required and not	performed
Tritium Analysis of constituent not required and not	performed
Chemical Oxygen Demand Analysis of constituent not required and not	performed
Cyanide Analysis of constituent not required and not	performed
lodide Analysis of constituent not required and not	performed
Total Organic Carbon Analysis of constituent not required and not	performed
Total Organic Halides Analysis of constituent not required and not	performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG4-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performe
		Boron C-80)	Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

000-0000 QC	TB2SG4-13	Vanadium			
		7:			Analysis of constituent not required and not performed
		Zinc			Analysis of constituent not required and not performed
		Acrolein		R	Rejected during data validation.
		Acrylonitrile		R	Rejected during data validation.
		PCB, Total			Analysis of constituent not required and not performed
		PCB-1016			Analysis of constituent not required and not performed
		PCB-1221			Analysis of constituent not required and not performed
		PCB-1232			Analysis of constituent not required and not performed
		PCB-1242			Analysis of constituent not required and not performed
		PCB-1248			Analysis of constituent not required and not performed
		PCB-1254			Analysis of constituent not required and not performed
		PCB-1260			Analysis of constituent not required and not performed
		PCB-1268			Analysis of constituent not required and not performed
		Gross alpha			Analysis of constituent not required and not performed
		Gross beta			Analysis of constituent not required and not performed
		lodine-131			Analysis of constituent not required and not performed
		Radium-226			Analysis of constituent not required and not performed
		Strontium-90			Analysis of constituent not required and not performed
		Technetium-99	C-81		Analysis of constituent not required and not performed
		Thorium-230			Analysis of constituent not required and not performed
		Tritium			Analysis of constituent not required and not performed
		Chemical Oxygen D	Demand		Analysis of constituent not required and not performed
		Cyanide			Analysis of constituent not required and not performed
		lodide			Analysis of constituent not required and not performed
		Total Organic Carbo	on		Analysis of constituent not required and not performed
		Total Organic Halide	es		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG4-13	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not perform
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not perform
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not perform
		Specific Conductance		Analysis of constituent not required and not perform
		Static Water Level Elevation		Analysis of constituent not required and not perform
		Dissolved Oxygen		Analysis of constituent not required and not perform
		Total Dissolved Solids		Analysis of constituent not required and not perform
		рН		Analysis of constituent not required and not perform
		Eh		Analysis of constituent not required and not perform
		Temperature		Analysis of constituent not required and not perform
		Aluminum		Analysis of constituent not required and not perform
		Antimony		Analysis of constituent not required and not perform
		Arsenic		Analysis of constituent not required and not perform
		Barium		Analysis of constituent not required and not perform
		Beryllium		Analysis of constituent not required and not perform
		Boron C-82		Analysis of constituent not required and not perform
		Cadmium		Analysis of constituent not required and not perform
		Calcium		Analysis of constituent not required and not perform
		Chromium		Analysis of constituent not required and not perform
		Cobalt		Analysis of constituent not required and not perform
		Copper		Analysis of constituent not required and not perform
		Iron		Analysis of constituent not required and not perform
		Lead		Analysis of constituent not required and not perform
		Magnesium		Analysis of constituent not required and not perform
		Manganese		Analysis of constituent not required and not perform
		Mercury		Analysis of constituent not required and not perform
		Molybdenum		Analysis of constituent not required and not perform
		Nickel		Analysis of constituent not required and not perform
		Potassium		Analysis of constituent not required and not perform
		Rhodium		Analysis of constituent not required and not perform
		Selenium		Analysis of constituent not required and not perform
		Silver		Analysis of constituent not required and not perform
		Sodium		Analysis of constituent not required and not perform
		Tantalum		Analysis of constituent not required and not perform
		Thallium		Analysis of constituent not required and not perform
		Uranium		Analysis of constituent not required and not perform

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	F	lag	Description
000-0000 QC	TB3SG4-13	Vanadium			Analysis of constituent not required and not performed
		Zinc			Analysis of constituent not required and not performed
		Acrolein		R	Rejected during data validation.
		Acrylonitrile		R	Rejected during data validation.
		PCB, Total			Analysis of constituent not required and not performed
		PCB-1016			Analysis of constituent not required and not performed
		PCB-1221			Analysis of constituent not required and not performed
		PCB-1232			Analysis of constituent not required and not performed
		PCB-1242			Analysis of constituent not required and not performed
		PCB-1248			Analysis of constituent not required and not performed
		PCB-1254			Analysis of constituent not required and not performe
		PCB-1260			Analysis of constituent not required and not performed
		PCB-1268			Analysis of constituent not required and not performed
		Gross alpha			Analysis of constituent not required and not performed
		Gross beta			Analysis of constituent not required and not performe
		lodine-131			Analysis of constituent not required and not performed
		Radium-226			Analysis of constituent not required and not performed
		Strontium-90			Analysis of constituent not required and not performed
		Technetium-99	C-83		Analysis of constituent not required and not performed
		Thorium-230			Analysis of constituent not required and not performe
		Tritium			Analysis of constituent not required and not performed
		Chemical Oxygen [Demand		Analysis of constituent not required and not performe
		Cyanide			Analysis of constituent not required and not performed
		Iodide			Analysis of constituent not required and not performe
		Total Organic Carbo	on		Analysis of constituent not required and not performed
		Total Organic Halid	les		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG4-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Read	ding	Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevati	on	Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron C	-84	Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4SG4-13	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		Vinyl acetate	Υ	MS,MSD recovery and/or RPD failed acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230	C-85	Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen [Demand	Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carb	on	Analysis of constituent not required and not performed.
		Total Organic Halid	es	Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5SG4-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Readin	g	Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performe
		Boron C-8	6	Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent		Flag	Description
0000-0000 QC	TB5SG4-13	Vanadium			Analysis of constituent not required and not performed.
		Zinc			Analysis of constituent not required and not performed.
		Vinyl acetate		Υ	MS,MSD recovery and/or RPD failed acceptance criter
		Acrolein		R	Rejected during data validation.
		Acrylonitrile		R	Rejected during data validation.
		PCB, Total			Analysis of constituent not required and not performed
		PCB-1016			Analysis of constituent not required and not performed
		PCB-1221			Analysis of constituent not required and not performed.
		PCB-1232			Analysis of constituent not required and not performed.
		PCB-1242			Analysis of constituent not required and not performed
		PCB-1248			Analysis of constituent not required and not performed
		PCB-1254			Analysis of constituent not required and not performed
		PCB-1260			Analysis of constituent not required and not performed
		PCB-1268			Analysis of constituent not required and not performed
		Gross alpha			Analysis of constituent not required and not performed
		Gross beta			Analysis of constituent not required and not performed
		lodine-131			Analysis of constituent not required and not performed
		Radium-226			Analysis of constituent not required and not performed
		Strontium-90	C-87		Analysis of constituent not required and not performed
		Technetium-99			Analysis of constituent not required and not performed
		Thorium-230			Analysis of constituent not required and not performed
		Tritium			Analysis of constituent not required and not performed
		Chemical Oxygen I	Demand		Analysis of constituent not required and not performed
		Cyanide			Analysis of constituent not required and not performed
		lodide			Analysis of constituent not required and not performed
		Total Organic Carb	oon		Analysis of constituent not required and not performed
		Total Organic Halic	des		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB6SG4-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron C-88	;	Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performe

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description				
0000-0000 QC	TB6SG4-13	Vanadium		Analysis of constituent not required and not performed				
		Zinc		Analysis of constituent not required and not performed				
		PCB, Total		Analysis of constituent not required and not performed				
		PCB-1016		Analysis of constituent not required and not performed				
		PCB-1221		Analysis of constituent not required and not performed				
		PCB-1232		Analysis of constituent not required and not performed				
		PCB-1242		Analysis of constituent not required and not performed				
		PCB-1248		Analysis of constituent not required and not performed				
		PCB-1254		Analysis of constituent not required and not performed				
		PCB-1260		Analysis of constituent not required and not performed				
		PCB-1268		Analysis of constituent not required and not performed				
		Gross alpha		Analysis of constituent not required and not performed				
		Gross beta		Analysis of constituent not required and not performed				
		lodine-131		Analysis of constituent not required and not performed				
		Radium-226		Analysis of constituent not required and not performed				
		Strontium-90		Analysis of constituent not required and not performed				
		Technetium-99		Analysis of constituent not required and not performed				
		Thorium-230		Analysis of constituent not required and not performed				
		Tritium	C-89	Analysis of constituent not required and not performed				
	Chem	Chemical Oxygen	Demand	Analysis of constituent not required and not performed				
		Cyanide		Analysis of constituent not required and not performed				
		lodide		Analysis of constituent not required and not performed				
		Total Organic Car	bon	Analysis of constituent not required and not performed				
		Total Organic Hali	des	Analysis of constituent not required and not performed				

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

November 2000-5244 MW224 MW224DSG4-13 Antimony Vinyl acetate PCB, Total PCB-1016	Х	Other an addit flam and factories may be a serviced to
PCB, Total		Other specific flags and footnotes may be required to properly define the results.
,	Υ	MS,MSD recovery and/or RPD failed acceptance crite
PCB-1016		Analysis of constituent not required and not performed
		Analysis of constituent not required and not performed
PCB-1221		Analysis of constituent not required and not performed
PCB-1232		Analysis of constituent not required and not performed
PCB-1242		Analysis of constituent not required and not performed
PCB-1248		Analysis of constituent not required and not performed
PCB-1254		Analysis of constituent not required and not performed
PCB-1260		Analysis of constituent not required and not performed
PCB-1268		Analysis of constituent not required and not performed
Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.73. Rad error is 0.686.
Gross beta		TPU is 1.16. Rad error is 1.09.
lodine-131		Analysis of constituent not required and not performed
Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.261. Rad error is 0.142.
Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0172. Rad error is 0.011.
Technetium-99 C-	90 U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.2. Rad error is 11.2.
Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.109. Rad error is 0.0441.
Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 611. Rad error is 610.

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				\setminus	8000-52	01	8000-52	02	8000-524	12	8000-5243	3
Facility's Loc	cal Well or Spring Number (e.g., I	/W−1	, MW-2, etc	:.)		220		221		222		223	
Sample Sequence	ce #					1		2		2		2	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)∈	ethod, or (E)	quipment	\	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)			NA NA		8/14/201	13	8/14/201	3	8/14/2013	
Duplicate ("Y"	or "N") ²					N		N		N		N	
Split ("Y" or	"N") ³					N		N		N		N	
Facility Sampl	e ID Number (if applicable)					NA /		MW221SG4	4-13R	MW222SG4	l-13R	MW223SG4-	13R
Laboratory Sam	mple ID Number (if applicable)					\NA/		C1322602	1005	C13226021007		C132260210	006
Date of Analys	ate of Analysis (Month/Day/Year) For Volatile Organics Analysis					M							
Gradient with	respect to Monitored Unit (UP, DO	, NWC	, SIDE, UNKN	OWN)		ŊA		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD		ETECTED VALUE OR POL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		1	*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056			 		*		*		*
16984-48-8	Fluoride	т	mg/L	9214			*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056			*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056	П		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field			* \	30.12		30.12		30.12	
S0145	Specific Conductance	т	μ MH 0/cm	Field			*	393		369		403	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ , Facility Well/Spring Number Facility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.) CAS RN ⁴ CONSTITUENT T Unit METHO					\	800	0-520°	1 /	8000-5202	2	8000-5242	2	8000-524	13
Facility's Lo	cal Well or Spring Number (e.g., Mw	-1, 1	MW-2, BLANK-	F, etc.)		:	220		221		222		223	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	Di	ETEC VALU OR PQI	JE	A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field				*	325.76		325.83		325.8	
N238	Dissolved Oxygen	т	mg/L	Field				*	4.07		2.29		1.73	
s0266	Total Dissolved Solids	т	mg/L	160.1				*		*		*		*
s0296	Нд	т	Units	Field				*	6.29		6.31		6.28	
NS215	Eh	т	mV	Field				*	400		370		368	
s0907	Temperature	т	°C	Field		\		*	19.44		19.17		19.11	
7429-90-5	Aluminum	т	(년92	6020		\	\L	*		*		*		*
7440-36-0	Antimony	т	2 mg/L	6020			\bigvee	*		*		*		*
7440-38-2	Arsenic	т	mg/L	7060			X	*		*		*		*
7440-39-3	Barium	т	mg/L	6020			$/\!\!\setminus$	*		*		*		*
7440-41-7	Beryllium	т	mg/L	6020				*		*		*		*
7440-42-8	Boron	Т	mg/L	6010		\neg		*		*		*		*
7440-43-9	Cadmium	Т	mg/L	6020		-1		*		*		*		*
7440-70-2	Calcium	т	mg/L	6010		T		*		*		*		*
7440-47-3	Chromium	т	mg/L	6020		T		*		*		*		*
7440-48-4	Cobalt	т	mg/L	6020		I		*		*		*		*
7440-50-8	Copper	Т	mg/L	6020				*		*		*		*
7439-89-6	Iron	Т	mg/L	6010				1		*		*		*
7439-92-1	Lead	Т	mg/L	6020				*		*		*		*
7439-95-4	Magnesium	T	mg/L	6010				*		*		*		*
7439-96-5	Manganese	Т	mg/L	6020	\int			*		*		*		*
7439-97-6	Mercury	т	mg/L	7470				*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number					8000-520	1	/	8000-5202		8000-5242	2	8000-524	3
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)		220			221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	<i>\</i>	PETECTED VALUE OR PQL ⁶	L A G S		DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082			/ *			*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		\ /	*			*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		\ /	*			*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310		\ /	*			*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310		\/	*			*		*		*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		X	*			*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129		/\	*			*		*		*
10098-97-2	Strontium-90	Т	$_{ t pCi/L}$	RL-7140		/\	*			*		*		*
14133-76-7	Technetium-99	т	pCi/L	RL-7100		/ \	*			*		*		*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128		/ \	*			*		*		*
10028-17-8	Tritium	Т	pCi/L	704R6			*			*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4			*		<36		<36		<36	
57-12-5	Cyanide	Т	mg/L	9010			*			*		*		*
20461-54-5	Iodide	т	mg/L	345.1			*			*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060	1		* \			*		*		*
s0586	Total Organic Halides	Т	mg/L	9020	/		* \	L		*		*		*

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹	, Facility Well/Spring Number				\setminus	8004-479	92	7	8004-480	09	8004-48	10	8004-4804	1
Facility's Lo	cal Well or Spring Number (e.g., M	IW-1	L, MW-2, etc	:.)		373		7	384		385		386	
Sample Sequen	ce #					1		П	2		2		2	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M)∈	ethod, or (E)	quipment		NA NA	\neg		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)			NA	\neg		8/14/201	3	8/14/201	3	8/14/2013	
Duplicate ("Y	" or "N") ²					N	\mathcal{T}		N		N		N	
Split ("Y" or	"N") ³					N	Τ		N		N		N	
Facility Samp	le ID Number (if applicable)					NA /			MW384SG4	I-13R	MW385SG4	l-13R	MW386SG4-	13R
Laboratory Sa	mple ID Number (if applicable)					\ NA			C1322602	1002	C13226021004		C132260210	003
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis		\v4								
Gradient with	Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)					V ∕			SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	D	ETECTED VALUE OR PQL ⁶	F L A G		DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056		-	*			*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		1	\ *			*		*		*
16984-48-8	Fluoride	т	mg/L	9214		1	1			*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056			*			*		*		*
14808-79-8	Sulfate	т	mg/L	9056	П		* \			*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	1/		*	\setminus	30.12		30.12		30.12	
s0145	Specific Conductance	т	μ MH 0/cm	Field	/		*	1	417		451		656	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved ⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ , Facility Well/Spring Number Facility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.)						800	04-4792	2	8000-4809)	8004-4810)	8000-480	04
Facility's Lo	ocal Well or Spring Number (e.g., MV	i-1,	MW-2, BLANK-	F, etc.)			373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	D:	ETEC VAL OF PQ	2	F G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field				*	325.33		325.27		343.9	
N238	Dissolved Oxygen	Т	mg/L	Field				*	3.84		1.1		0.6	
s0266	Total Dissolved Solids	T	mg/L	160.1				*		*		*		*
s0296	рН	Т	Units	Field				*	6.25		6.48		6.87	
NS215	Eh	Т	mV	Field				*	371		465		103	
s0907	Temperature	Т	°C	Field		1	Γ	*	16.89		18.44		17.22	
7429-90-5	Aluminum	Т	mg Æ	6020			∇T	*		*		*		*
7440-36-0	Antimony	Т	mg/L	6020			V	*		*		*		*
7440-38-2	Arsenic	Т	mg/L	7060			X	*		*		*		*
7440-39-3	Barium	Т	mg/L	6020			Λ	*		*		*		*
7440-41-7	Beryllium	Т	mg/L	6020			$I \setminus I$	*		*		*		*
7440-42-8	Boron	Т	mg/L	6010				*		*		*		*
7440-43-9	Cadmium	Т	mg/L	6020		\neg		*		*		*		*
7440-70-2	Calcium	т	mg/L	6010		I		*		*		*		*
7440-47-3	Chromium	Т	mg/L	6020		T		*		*		*		*
7440-48-4	Cobalt	T	mg/L	6020		T		*		*		*		*
7440-50-8	Copper	Т	mg/L	6020				*		*		*		*
7439-89-6	Iron	Т	mg/L	6010				*		*		*		*
7439-92-1	Lead	Т	mg/L	6020	П			1		*		*		*
7439-95-4	Magnesium	Т	mg/L	6010	Π			*		*		*		*
7439-96-5	Manganese	Т	mg/L	6020	\prod			*		*		*		*
7439-97-6	Mercury	т	mg/L	7470	I			*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				\	8004-479	92	8004-4809		8004-481	0	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g	., MW-1	, MW-2, et	.c.)		373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD		TECTED VALUE OR PQL ⁶	A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082			*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082			*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		\ /	*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310		\	*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310		\/	*		*		*		*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		X	*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129		/\	*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140		/\	*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	RL-7100		/ \	*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	RL-7128			*		*		*		*
10028-17-8	Tritium	т	pCi/L	704R6			*		*		*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4			*	<36		<36		38	
57-12-5	Cyanide	Т	mg/L	9010			1		*		*		*
20461-54-5	Iodide	т	mg/L	345.1			*		*		*		*
S0268	Total Organic Carbon	Т	mg/L	9060			* \		*		*		*
s0586	Total Organic Halides	т	mg/L	9020	/		* \	ı	*		*		*
											_		

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	15	8004-48	16	8004-48	12	8004-481	1
Facility's Loca	al Well or Spring Number (e.g., M	w−1	., MW-2, etc	.)	387		388		389		390	
Sample Sequence	#				1		1		1 /		2	
If sample is a Bl	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	22		NA		ŊA		NA	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		NA \		NA		NA		8/14/2013 08	3:44
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or "	"N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)				NA		NA NA		NA		MW390SG4-	-13R
Laboratory Samp	ple ID Number (if applicable)				NA		NA NA		NA		C13226021	001
Date of Analysi	is (Month/Day/Year) For Volatile	Or	ganics Anal	ysis	NA		NA		NA			
Gradient with r	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	OWN)	NA		N _X		NA		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VAI/UE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		* /		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*/		*		*		*
16984-48-8	Fluoride	Т	mg/L	9214	/	<i>/</i> *		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*	\	*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*	30.12	
S0145	Specific Conductance	т	μ M H0/cm	Field		*		*		*	817	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ , Facility Well/Spring Number Facility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.					\ (CC11C		I		I	,		
AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815	5	8004-4816	i	8004-4812	2 /	8000-481	1
Facility's Lo	ocal Well or Spring Number (e.g., M	7-1, 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	FLAGS	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	\	*		*		*	325.39	
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*	5.05	
s0266	Total Dissolved Solids	Т	mg/L	160.1		* \		*		*		*
s0296	рн	Т	Units	Field		*		*		*	6.64	
NS215	Eh	Т	mV	Field		*		* /		*	698	
s0907	Temperature	Т	°C	Field		*		*/		*	16.33	
7429-90-5	Aluminum	Т	mg/L	6020		*		/*		*		*
7440-36-0	Antimony	Т	∞ mg/L	6020		*		*		*		*
7440-38-2	Arsenic	Т	mg/L	7060		*	X	*		*		*
7440-39-3	Barium	Т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	Т	mg/L	6020		*		*		*		*
7440-42-8	Boron	Т	mg/L	6010		*		*		*		*
7440-43-9	Cadmium	Т	mg/L	6020		*		* \		*		*
7440-70-2	Calcium	т	mg/L	6010		* /		*		*		*
7440-47-3	Chromium	Т	mg/L	6020		*/		*		*		*
7440-48-4	Cobalt	Т	mg/L	6020				*		*		*
7440-50-8	Copper	Т	mg/L	6020		*		*		*		*
7439-89-6	Iron	Т	mg/L	6010		*		*		*		*
7439-92-1	Lead	Т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	Т	mg/L	6010		*		*		*		*
7439-96-5	Manganese	Т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	Т	mg/L	7470	/	*		*		* \		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815	5	8004-4816		8004-4812	2 /	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g.	, MW-1	., MW-2, et	c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR POL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*/		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310		*				*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*	X	*		*		*
13982-63-3	Radium-226	Т	pCi/L	RL-7129		*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	RL-7140		*		7,		*		*
14133-76-7	Technetium-99	т	pCi/L	RL-7100		*		* \		*		*
14269-63-7	Thorium-230	т	pCi/L	RL-7128		* /		*		*		*
10028-17-8	Tritium	Т	pCi/L	704R6		*/		*		*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*	<36	
57-12-5	Cyanide	т	mg/L	9010		*		*		*		*
20461-54-5	Iodide	т	mg/L	345.1		*		*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020	/	*		*		*		*

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

RESIDENTIAL/INERT—QUARTERLY, 3rd Quarter 2013

Facility: U.S. DOE, Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit:	
Lab ID: None	
For Official Use Only	

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the third quarter 2013 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician.

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data included a minimum of one background well for comparison with at least three test wells (Exhibit 1). The third quarter 2013 data used to conduct the statistical analyses were sampled in July and August 2013. The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

For chemicals with established maximum contaminant levels (MCLs), no statistical analysis was performed. Parameters that have MCLs can be found in 401 KAR 47:030, Section 6. For parameters with no established MCL, the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. Results of the one-sided tolerance interval statistical test conclude whether the data show a statistically significant increase of concentrations with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on historical background data, not on data from the current quarter. Once a statistical result is obtained using the background data, the data from the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant increase in concentration compared to the background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized as follows. ¹

- 1. The tolerance limit (TL) was calculated for the background data.
 - For each parameter, the first eight sampling events results were used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) were computed.
 - The data set was checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be potentially normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage was determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit was calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells was compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well has increased concentration with respect to background data.

Type of Data Used

Exhibit 1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential/Inert Landfills. Exhibit 2 presents the parameters from the available data set and the statistical test performed using the one-sided tolerance interval.

Excluding parameters which have an MCL, Exhibits 3, 4, and 5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), and missing observations by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits 3, 4, and 5 were collected during the current quarter, third quarter 2013. The observations that are listed are not background data. Background data are presented on pages D-21 through D-82. The sampling dates associated with background data are listed next to the result on pages D-21 through D-82. When field duplicate data are available, the higher of the two readings is retained for further evaluation.

lower $TL = X - (K \times S)$

 $^{^1}$ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper TL = X + (K x S)

Exhibit 1. Station Identification for Monitoring Wells Analyzed

Station	Type	Aquifer
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389*	TW	UCRS
MW390	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396	BG	UCRS
MW397	BG	LRGA

BG = upgradient or background wells TW = downgradient ortest wells SG = sidegradient wells *Well was dry this quarter.

Exhibit 2. List of Parameters Tested Using the Tolerance Level Test

Analysis

Aluminum

Boron Calcium

Chemical Oxygen Demand (COD)

Chloride

cis-1,2-Dichloroethene

Cobalt

Conductivity

Dissolved Oxygen

Dissolved Solids

Iron

Magnesium

Manganese

Molybdenum

Nickel

Oxidation-Reduction Potential

PCB-1242

pН

Potassium

Sodium

Sulfate

Technetium-99

Total Organic Carbon (TOC)

Total Organic Halides (TOX)

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if statistically significant deviations exist in concentrations with respect to upgradient well data.

Exhibit 3. Summary of Missing, Censored, and Uncensored Data-UCRS

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	0	4	0	no
1,1,2,2-Tetrachloroethane	4	0	4	0	no
1,1,2-Trichloroethane	4	0	4	0	no
1,1-Dichloroethane	4	0	4	0	no
1,2,3-Trichloropropane	4	0	4	0	no
1,2-Dibromo-3-chloropropane	4	0	4	0	no
1,2-Dibromoethane	4	0	4	0	no
1,2-Dichlorobenzene	4	0	4	0	no
1,2-Dichloropropane	4	0	4	0	no
2-Butanone	4	0	4	0	no
2-Hexanone	4	0	4	0	no
4-Methyl-2-pentanone	4	0	4	0	no
Acetone	4	0	4	0	no
Acrolein	4	0	4	0	no
Acrylonitrile	4	0	4	0	no
Aluminum	4	0	3	1	YES
Antimony	4	0	4	0	no
Beryllium	4	0	4	0	no
Boron	4	0	4	0	no
Bromide	4	0	4	0	no
Bromochloromethane	4	0	4	0	no
Bromodichloromethane	4	0	4	0	no
Bromoform	4	0	4	0	no
Bromomethane	4	0	4	0	no
Calcium	4	0	0	4	YES
Carbon disulfide	4	0	4	0	no
Chemical Oxygen Demand (COD)	4	0	3	1	YES
Chloride	4	0	0	4	YES
Chlorobenzene	4	0	4	0	no
Chloroethane	4	0	4	0	no
Chloroform	4	0	4	0	no
Chloromethane	4	0	4	0	no
cis-1,2-Dichloroethene	4	0	4	0	no
cis-1,3-Dichloropropene	4	0	4	0	no
Cobalt	4	0	3	1	YES
Conductivity	4	0	0	4	YES
Copper	4	0	4	0	no
Cyanide	4	0	4	0	no
Dibromochloromethane	4	0	4	0	no

Exhibit 3. Summary of Missing, Censored, and Uncensored Data-UCRS (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Dibromomethane	4	0	4	0	no
Dimethylbenzene, Total	4	0	4	0	no
Dissolved Oxygen	4	0	0	4	YES
Dissolved Solids	4	0	0	4	YES
Ethylbenzene	4	0	4	0	no
Iodide	4	0	4	0	no
Iodomethane	4	0	4	0	no
Iron	4	0	0	4	YES
Magnesium	4	0	0	4	YES
Manganese	4	0	0	4	YES
Methylene chloride	4	0	4	0	no
Molybdenum	4	0	3	1	YES
Nickel	4	0	4	0	no
Oxidation-Reduction Potential	4	0	0	4	YES
PCB, Total	4	4	0	0	no
PCB-1016	4	4	0	0	no
PCB-1221	4	4	0	0	no
PCB-1232	4	4	0	0	no
PCB-1242	4	4	0	0	no
PCB-1248	4	4	0	0	no
PCB-1254	4	4	0	0	no
PCB-1260	4	4	0	0	no
PCB-1268	4	4	0	0	no
pH	4	0	0	4	YES
Potassium	4	0	0	4	YES
Radium-226	4	0	4	0	no
Rhodium	4	0	4	0	no
Sodium	4	0	0	4	YES
Styrene	4	0	4	0	no
Sulfate	4	0	0	4	YES
Tantalum	4	0	4	0	no
Technetium-99	4	0	3	1	YES
Tetrachloroethene	4	0	4	0	no
Thallium	4	0	4	0	no
Thorium-230	4	0	4	0	no
Toluene	4	0	4	0	no
Total Organic Carbon (TOC)	4	0	0	4	YES
Total Organic Halides (TOX)	4	0	0	4	YES
trans-1,2-Dichloroethene	4	0	4	0	no
trans-1,3-Dichloropropene	4	0	4	0	no
trans-1,4-Dichloro-2-butene	4	0	4	0	no

Exhibit 3. Summary of Missing, Censored, and Uncensored Data-UCRS (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Trichlorofluoromethane	4	0	4	0	no
Uranium	4	0	4	0	no
Vanadium	4	0	4	0	no
Vinyl acetate	4	0	4	0	no
Zinc	4	0	4	0	no

Bold denotes parameters with at least one uncensored observation.

Exhibit 4. Summary of Missing, Censored, and Uncensored Data-URGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	0	11	0	no
1,1,2,2-Tetrachloroethane	11	0	11	0	no
1,1,2-Trichloroethane	11	0	11	0	no
1,1-Dichloroethane	11	0	11	0	no
1,2,3-Trichloropropane	11	0	11	0	no
1,2-Dibromo-3-chloropropane	11	0	11	0	no
1,2-Dibromoethane	11	0	11	0	no
1,2-Dichlorobenzene	11	0	11	0	no
1,2-Dichloropropane	11	0	11	0	no
2-Butanone	11	0	11	0	no
2-Hexanone	11	0	11	0	no
4-Methyl-2-pentanone	11	0	11	0	no
Acetone	11	0	11	0	no
Acrolein	11	0	11	0	no
Acrylonitrile	11	0	11	0	no
Aluminum	11	0	10	1	YES
Antimony	11	0	11	0	no
Beryllium	11	0	11	0	no
Boron	11	0	10	1	YES
Bromide	11	0	11	0	no
Bromochloromethane	11	0	11	0	no
Bromodichloromethane	11	0	11	0	no
Bromoform	11	0	11	0	no
Bromomethane	11	0	11	0	
Calcium	11	0	0	11	no YES
Carbon disulfide	11	0	11	0	
Chemical Oxygen Demand (COD)	11	0	11	0	no
Chloride	11	0	0	11	no YES
Chlorobenzene	11	0	11	0	
Chloroethane	11	0	11	0	no
Chloroform	11		11	0	no
Chloromethane		0			no
	11	0	11	0	no
cis-1,2-Dichloroethene	11	0	11	0	no
cis-1,3-Dichloropropene	11	0	11	0	no
Cobalt	11	0	8	3	YES
Conductivity	11	0	0	11	YES
Copper	11	0	11	0	no
Cyanide	11	0	11	0	no
Dibromochloromethane	11	0	11	0	no
Dibromomethane	11	0	11	0	no
Dimethylbenzene, Total	11	0	11	0	no
Dissolved Oxygen	11	0	0	11	YES
Dissolved Solids	11	0	0	11	YES
Ethylbenzene	11	0	11	0	no
Iodide	11	0	11	0	no
Iodomethane	11	0	11	0	no

Exhibit 4. Summary of Missing, Censored, and Uncensored Data-URGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Iron	11	0	6	5	YES
Magnesium	11	0	0	11	YES
Manganese	11	0	4	7	YES
Methylene chloride	11	0	11	0	no
Molybdenum	11	0	8	3	YES
Nickel	11	0	5	6	YES
Oxidation-Reduction Potential	11	0	0	11	YES
PCB, Total	11	9	2	0	no
PCB-1016	11	9	2	0	no
PCB-1221	11	9	2	0	no
PCB-1232	11	9	2	0	no
PCB-1242	11	9	1	1	YES
PCB-1248	11	9	2	0	no
PCB-1254	11	9	2	0	no
PCB-1260	11	9	2	0	no
PCB-1268	11	9	2	0	no
pН	11	0	0	11	YES
Potassium	11	0	0	11	YES
Radium-226	11	0	11	0	no
Rhodium	11	0	11	0	no
Sodium	11	0	0	11	YES
Styrene	11	0	11	0	no
Sulfate	11	0	0	11	YES
Tantalum	11	0	11	0	no
Technetium-99	11	0	6	5	YES
Tetrachloroethene	11	0	11	0	no
Thallium	11	0	11	0	no
Thorium-230	11	0	11	0	no
Toluene	11	0	11	0	no
Total Organic Carbon (TOC)	11	0	10	1	YES
Total Organic Halides (TOX)	11	0	0	11	YES
trans-1,2-Dichloroethene	11	0	11	0	no
trans-1,3-Dichloropropene	11	0	11	0	no
trans-1,4-Dichloro-2-butene	11	0	11	0	no
Trichlorofluoromethane	11	0	11	0	no
Uranium	11	0	11	0	no
Vanadium	11	0	11	0	no
Vinyl acetate	11	0	11	0	no
Zinc	11	0	11	0	no

Bold denotes parameters with at least one uncensored observation.

Exhibit 5. Summary of Missing, Censored, and Uncensored Data-LRGA

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	0	7	0	no
1,1,2,2-Tetrachloroethane	7	0	7	0	no
1,1,2-Trichloroethane	7	0	7	0	no
1,1-Dichloroethane	7	0	7	0	no
1,2,3-Trichloropropane	7	0	7	0	no
1,2-Dibromo-3-chloropropane	7	0	7	0	no
1,2-Dibromoethane	7	0	7	0	no
1,2-Dichlorobenzene	7	0	7	0	no
1,2-Dichloropropane	7	0	7	0	no
2-Butanone	7	0	7	0	no
2-Hexanone	7	0	7	0	no
4-Methyl-2-pentanone	7	0	7	0	no
Acetone	7	0	7	0	no
Acrolein	7	0	7	0	no
Acrylonitrile	7	0	7	0	no
Aluminum	7	0	7	0	no
Antimony	7	0	7	0	no
Beryllium	7	0	7	0	no
Boron	7	0	6	1	YES
Bromide	7	0	7	0	no
Bromochloromethane	7	0	7	0	no
Bromodichloromethane	7	0	7	0	no
Bromoform	7	0	7	0	no
Bromomethane	7	0	7	0	no
Calcium	7	0	0	7	YES
Carbon disulfide	7	0	7	0	no
Chemical Oxygen Demand (COD)	7	0	7	0	no
Chloride	7	0	0	7	YES
Chlorobenzene	7	0	7	0	no
Chloroethane	7	0	7	0	no
Chloroform	7	0	7	0	no
Chloromethane	7	0	7	0	no
cis-1,2-Dichloroethene	7	0	6	1	YES
cis-1,3-Dichloropropene	7	0	7	0	no
Cobalt	7	0	7	0	no
Conductivity	7	0	0	7	YES
Copper	7	0	7	0	no
Cyanide	7	0	7	0	no
Dibromochloromethane	7	0	7	0	no
Dibromomethane	7	0	7	0	
Dimethylbenzene, Total	7	0	7	0	no no
•	7	0	0	7	YES
Dissolved Oxygen Dissolved Solids	7	0	0	7	YES
	7	0	0	0	
Ethylbenzene			7		no
Iodide	7	0		0	no
Iodomethane	7	0	7	0	110 NATESC
Iron	7	0	6	1 7	YES
Magnesium	7	0	0	7	YES
Manganese	7	0	5	2	YES

Exhibit 5. Summary of Missing, Censored, and Uncensored Data-LRGA (Continued)

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
Methylene chloride	7	0	7	0	no
Molybdenum	7	0	7	0	no
Nickel	7	0	7	0	no
Oxidation-Reduction Potential	7	0	0	7	YES
PCB, Total	7	5	2	0	no
PCB-1016	7	5	2	0	no
PCB-1221	7	5	2	0	no
PCB-1232	7	5	2	0	no
PCB-1242	7	5	2	0	no
PCB-1248	7	5	2	0	no
PCB-1254	7	5	2	0	no
PCB-1260	7	5	2	0	no
PCB-1268	7	5	2	0	no
рН	7	0	0	7	YES
Potassium	7	0	0	7	YES
Radium-226	7	0	7	0	no
Rhodium	7	0	7	0	no
Sodium	7	0	0	7	YES
Styrene	7	0	7	0	no
Sulfate	7	0	0	7	YES
Tantalum	7	0	7	0	no
Technetium-99	7	0	3	4	YES
Tetrachloroethene	7	0	7	0	no
Thallium	7	0	7	0	no
Thorium-230	7	0	7	0	no
Toluene	7	0	7	0	no
Total Organic Carbon (TOC)	7	0	6	1	YES
Total Organic Halides (TOX)	7	0	0	7	YES
trans-1,2-Dichloroethene	7	0	7	0	no
trans-1,3-Dichloropropene	7	0	7	0	no
trans-1,4-Dichloro-2-butene	7	0	7	0	no
Trichlorofluoromethane	7	0	7	0	no
Uranium	7	0	7	0	no
Vanadium	7	0	7	0	no
Vinyl acetate	7	0	7	0	no
Zinc	7	0	7	0	no

Bold denotes parameters with at least one uncensored observation.

Discussion of Results

For the UCRS, URGA, and LRGA, the results of the tolerance interval tests are presented on pages D-21 through D-82 anpgd the statistician qualification statement is presented on page D-83. For the UCRS, URGA, and LRGA, the test was applied to 20, 22, and 18 parameters, respectively, listed in Exhibits 3, 4, and 5. A summary of statistically significant increases by well number is shown in Exhibit 6.

UCRS

In this quarter, statistical test results indicated there were statistically significant increases for aluminum, chemical oxygen demand, chloride, oxidation-reduction potential, and technetium-99.

URGA

In this quarter, statistical test results indicated there were statistically significant increases for calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

LRGA

In this quarter, statistical test results indicated there were statistically significant increases for calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, technetium-99, and total organic halides.

Conclusion

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit 7, Exhibit 8, and Exhibit 9, respectively.

Exhibit 6. Summary of Statistically Significant Increases

UCRS	URGA	LRGA
MW386: chemical oxygen	MW221: oxidation-reduction potential	MW370: oxidation-reduction potential,
demand, oxidation-	MW222: oxidation-reduction potential	sulfate
reduction potential	MW223: oxidation-reduction potential	MW373: calcium, conductivity,
MW390: aluminum, chloride,	MW224: oxidation-reduction potential	dissolved solids, magnesium,
oxidation-reduction	MW372: calcium, conductivity,	oxidation-reduction potential,
potential, technetium-99	dissolved solids, magnesium,	sodium, sulfate, technetium-99
MW393: oxidation-reduction	sodium, sulfate, technetium-99	MW385: oxidation-reduction potential,
potential	MW384: oxidation-reduction potential,	sulfate, technetium-99
	sulfate, technetium-99	MW388: oxidation-reduction potential,
	MW387: oxidation-reduction potential,	sulfate, technetium-99
	sulfate, technetium-99	MW392: total organic halides
	MW391: sulfate	

Exhibit 7. Summary of Parameters Identified for Statistical Analysis and the Test Results—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	Statistically significant increase relative to background data in MW390
Calcium	Tolerance Interval	0.20	No statistically significant increases relative to background data
Chemical Oxygen Demand	Tolerance Interval	0.02	Statistically significant increase relative to background data in MW386
Chloride	Tolerance Interval	0.05	Statistically significant increase relative to background data in MW390
Cobalt	Tolerance Interval	1.34	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.12	No statistically significant increases relative to background data
Dissolved Oxygen	Tolerance Interval	1.20	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.19	No statistically significant increases relative to background data
Iron	Tolerance Interval	0.48	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.20	No statistically significant increases relative to background data
Manganese	Tolerance Interval	0.46	No statistically significant increases relative to background data
Molybdenum	Tolerance Interval	1.51	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	4.77	Statistically significant increases relative to background data in MW386, MW390, and MW393
pН	Tolerance Interval	0.05	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	0.28	No statistically significant increases relative to background data
Sodium	Tolerance Interval	0.30	No statistically significant increases relative to background data
Sulfate	Tolerance Interval	0.40	No statistically significant increases

Exhibit 7. Summary of Parameters Identified for Statistical Analysis and the Test Results—UCRS (Continued)

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
			relative to background data
Technetium-99	Tolerance Interval	0.86	Statistically significant increase relative to background data in MW390
Total Organic Carbon	Tolerance Interval	0.47	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	0.38	No statistically significant increases relative to background data

CV = coefficient of variation

Exhibit 8. Summary of Parameters Identified for Statistical Analysis and the Test Results—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.38	No statistically significant increases relative to background data
Boron	Tolerance Interval	1.45	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.17	Statistically significant increase relative to background data in MW372
Chloride	Tolerance Interval	0.23	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	2.44	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.28	Statistically significant increase relative to background data in MW372
Dissolved Oxygen	Tolerance Interval	0.50	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.12	Statistically significant increase relative to background data in MW372
Iron	Tolerance Interval	1.17	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.16	Statistically significant increase relative to background data in MW372
Manganese	Tolerance Interval	2.16	No statistically significant increases relative to background data
Molybdenum	Tolerance Interval	1.26	No statistically significant increases relative to background data
Nickel	Tolerance Interval	1.79	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	0.14	Statistically significant increases relative to background data in MW221, MW222, MW223, MW224, MW384, and MW387
PCB-1242	Tolerance Interval	1.79	No statistically significant increases relative to background data
рН	Tolerance Interval	0.05	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	1.40	No statistically significant increases relative to background data

Exhibit 8. Summary of Parameters Identified for Statistical Analysis and the Test Results—URGA (Continued)

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Sodium	Tolerance Interval	0.24	Statistically significant increase relative to background data in MW372
Sulfate	Tolerance Interval	0.25	Statistically significant increases relative to background data in MW372, MW384, MW387, and MW391
Technetium-99	Tolerance Interval	0.99	Statistically significant increases relative to background data in MW372, MW384, and MW387
Total Organic Carbon	Tolerance Interval	0.49	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	0.59	No statistically significant increases relative to background data

CV = coefficient of variation

Exhibit 9. Summary of Parameters Identified for Statistical Analysis and the Test Results—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Boron	Tolerance Interval	1.24	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.50	Statistically significant increase relative to background data in MW373
Chloride	Tolerance Interval	0.23	No statistically significant increases relative to background data
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.14	Statistically significant increase relative to background data in MW373
Dissolved Oxygen	Tolerance Interval	0.52	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.16	Statistically significant increase relative to background data in MW373
Iron	Tolerance Interval	1.29	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.52	Statistically significant increase relative to background data in MW373
Manganese	Tolerance Interval	1.49	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	0.33	Statistically significant increase relative to background data in MW370, MW373, MW385, and MW388
pH	Tolerance Interval	0.04	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	0.40	No statistically significant increases relative to background data
Sodium	Tolerance Interval	0.47	Statistically significant increase relative to background data in MW373
Sulfate	Tolerance Interval	0.20	Statistically significant increases relative to background data in MW370, MW373, MW385, and MW388
Technetium-99	Tolerance Interval	0.81	Statistically significant increases relative to background data in MW373, MW385, and MW388

Exhibit 9. Summary of Parameters Identified for Statistical Analysis and the Test Results—LRGA (Continued)

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Total Organic Carbon	Tolerance Interval	0.55	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	0.59	Statistically significant increase relative to background data in MW392

CV = coefficient of variation

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Aluminum **UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.393
9/16/2002	0.200
10/16/2002	0.200
1/13/2003	0.501
4/8/2003	0.200
7/16/2003	0.200
10/14/2003	0.200
1/14/2004	0.668

Statistics on **Background Data**

X = 0.320S = 0.182CV = 0.567K factor** = 3.188TL = 0.900

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient Re	esult > TL?
MW386	0.200	Sidegradient	NO
MW390	1.660	Downgradient	YES
MW393	0.200	Downgradient	NO

Third Quarter 2013 **Dry/Partially Dry Wells**

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW390

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-21

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis **Calcium UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	38.400
9/16/2002	42.900
10/16/2002	40.200
1/13/2003	46.700
4/8/2003	49.800
7/16/2003	43.300
10/14/2003	49.700
1/14/2004	23.600

Statistics on **Background Data**

X = 41.825S = 8.445CV = 0.202K factor** = 3.188TL = 68.748

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW386	25.000	Sidegradient	NO
MW390	36.700	Downgradie	nt NO
MW393	12.700	Downgradie	nt NO

Third Quarter 2013 **Dry/Partially Dry Wells**

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-22

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis UCRS Chemical Oxygen Demand (COD) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	36.000
9/16/2002	35.000
10/16/2002	37.000
1/13/2003	35.000
4/8/2003	35.000
7/16/2003	35.000
10/14/2003	35.000
1/14/2004	35.000

Statistics on Background Data

X= 35.375 S= 0.744 CV= 0.021 K factor** = 3.188 TL= 37.747

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

t > TL?
YES
NO
NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW386

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis UCRS Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396	
Date Collected	Result	
8/13/2002	91.600	
9/16/2002	98.300	
10/16/2002	101.400	
1/13/2003	108.300	
4/8/2003	100.500	
7/16/2003	102.500	
10/14/2003	106.800	
1/14/2004	104.400	

Statistics on Background Data

X= 101.725 S= 5.245 CV= 0.052 K factor** = 3.188 TL= 118.447

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient R	Result > TL?
MW386	20.000	Sidegradient	NO
MW390	130.00	Downgradient	YES
MW393	17.000	Downgradient	NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW390

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis **Cobalt UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.025
9/16/2002	0.025
10/16/2002	0.001
1/13/2003	0.003
4/8/2003	0.004
7/16/2003	0.003
10/14/2003	0.001
1/14/2004	0.001

Statistics on **Background Data**

X = 0.008S = 0.011CV = 1.340K factor** = 3.188TL = 0.042

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on **Transformed Background Data** X = -5.645S = 1.339CV = -0.237K factor** = 3.188 TL = -1.377

Transformed Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	LN(Result)
8/13/2002	-3.689
9/16/2002	-3.689
10/16/2002	-6.908
1/13/2003	-5.732
4/8/2003	-5.435
7/16/2003	-5.893
10/14/2003	-6.908
1/14/2004	-6.908

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL
MW386	0.002	Sidegradient	N/A
MW390	0.001	Downgradie	nt N/A
MW393	0.001	Downgradie	nt N/A

Third Quarter 2013 **Dry/Partially Dry Wells**

Well No.	Gradient
MW389	Downgradient

Transformed Third Quarter 2013 Data Collected in July 2013

Well Number	LN(Result)	Result $>$ TL?
MW386	-6.138	NO
MW390	-6.908	NO
MW393	-6.908	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-25

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis UCRS Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396	
Date Collected	Result	
8/13/2002	784.000	
9/30/2002	871.000	
10/16/2002	868.000	
1/13/2003	912.000	
4/8/2003	942.000	
7/16/2003	910.000	
10/14/2003	935.000	
1/14/2004	1158.00	

Statistics on Background Data

X= 922.500 S= 107.616 CV= 0.117 K factor** = 3.188 TL= 1265.579

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Wel	l No.	Result	Gradient	Result > TL?
MW	386	635.00	Sidegradient	NO
MW	390	788.00	Downgradie	nt NO
MW	393	473.00	Downgradie	nt NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis **Dissolved Oxygen UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	5.450
9/16/2002	0.400
10/16/2002	0.540
1/13/2003	0.720
4/8/2003	0.690
7/16/2003	1.100
10/14/2003	0.710
1/14/2004	1.550

Statistics on **Background Data**

X = 1.395S = 1.677CV = 1.202K factor** = 3.188TL = 6.743

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data
X= -0.043
S= 0.814
CV= -18.867
K factor** = 3.188
TL = 2.553

Transformed Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	LN(Result)
8/13/2002	1.696
9/16/2002	-0.916
10/16/2002	-0.616
1/13/2003	-0.329
4/8/2003	-0.371
7/16/2003	0.095
10/14/2003	-0.342
1/14/2004	0.438

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL
MW386	0.440	Sidegradient	N/A
MW390	4.680	Downgradie	nt N/A
MW393	0.780	Downgradie	nt N/A

Third Quarter 2013 **Dry/Partially Dry Wells**

Well No.	Gradient
MW389	Downgradient

Transformed Third Quarter 2013 Data Collected in July 2013

Well Number	LN(Result)	Result $>$ TL?
MW386	-0.821	NO
MW390	1.543	NO
MW393	-0.248	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-27

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396	
Date Collected	Result	
8/13/2002	502.000	
9/16/2002	506.000	
10/16/2002	543.000	
1/13/2003	521.000	
4/8/2003	504.000	
7/16/2003	532.000	
10/14/2003	490.000	
1/14/2004	805.000	

Statistics on Background Data

X= 550.375 S= 104.330 CV= 0.190 K factor** = 3.188 TL= 882.980

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW386	421.00	Sidegradient	NO
MW390	442.00	Downgradie	nt NO
MW393	304.00	Downgradie	nt NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Iron **UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	1.800
9/16/2002	9.530
10/16/2002	7.430
1/13/2003	9.930
4/8/2003	10.200
7/16/2003	9.160
10/14/2003	11.900
1/14/2004	2.420

Statistics on **Background Data**

X = 7.796S = 3.723CV = 0.478K factor** = 3.188TL= 19.666

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW386	1.430	Sidegradient	NO
MW390	1.030	Downgradie	nt NO
MW393	4.990	Downgradie	nt NO

Third Quarter 2013 **Dry/Partially Dry Wells**

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-29

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	15.500
9/16/2002	17.300
10/16/2002	17.800
1/13/2003	19.200
4/8/2003	17.800
7/16/2003	17.800
10/14/2003	20.200
1/14/2004	9.410

Statistics on Background Data

X= 16.876 S= 3.313 CV= 0.196 K factor** = 3.188 TL= 27.438

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW386	10.300	Sidegradient	NO
MW390	14.600	Downgradie	nt NO
MW393	3.470	Downgradie	nt NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.570
9/16/2002	0.647
10/16/2002	0.880
1/13/2003	1.132
4/8/2003	0.965
7/16/2003	0.983
10/14/2003	0.984
1/14/2004	0.031

Statistics on Background Data

X= 0.774 S= 0.353 CV= 0.456 K factor** = 3.188 TL= 1.900

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW386	0.285	Sidegradient	NO
MW390	0.006	Downgradie	nt NO
MW393	0.041	Downgradie	nt NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	0.025
9/16/2002	0.025
10/16/2002	0.001
1/13/2003	0.001
4/8/2003	0.003
7/16/2003	0.001
10/14/2003	0.001
1/14/2004	0.001

Statistics on Background Data

X= 0.007 S= 0.011 CV= 1.507 K factor** = 3.188 TL= 0.042

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data
X= -5.928
S= 1.420
CV= -0.240
K factor** = 3.188
TI = 1.400

Transformed Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	LN(Result)
8/13/2002	-3.689
9/16/2002	-3.689
10/16/2002	-6.908
1/13/2003	-6.661
4/8/2003	-5.911
7/16/2003	-6.751
10/14/2003	-6.908
1/14/2004	-6.908

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL
MW386	0.001	Sidegradient	N/A
MW390	0.001	Downgradie	nt N/A
MW393	0.001	Downgradie	nt N/A

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Transformed Third Quarter 2013 Data Collected in July 2013

Well Number	LN(Result)	Result $>$ TL?
MW386	-6.908	NO
MW390	-6.734	NO
MW393	-6.908	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Oxidation-Reduction Potential UNITS: WV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	60.000
4/8/2003	71.000
7/16/2003	-56.000
10/14/2003	-54.000
1/14/2004	-22.000
4/12/2004	-6.000
7/20/2004	-3.000
10/12/2004	114.000

Statistics on Background Data

X= 13.000 S= 61.952 CV= 4.766 K factor** = 3.188 TL= 210.502

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data X = error S = error CV = error K factor** = 3.188 TL# = 4.736

Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

Transformed Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	LN(Result)
8/13/2002	4.094
4/8/2003	4.263
7/16/2003	#Func!
10/14/2003	#Func!
1/14/2004	#Func!
4/12/2004	#Func!
7/20/2004	#Func!
10/12/2004	4.736

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW386	320.000	Sidegradient	N/A
MW390	498.000	Downgradie	nt N/A
MW393	249.000	Downgradie	nt N/A

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Transformed Third Quarter 2013 Data Collected in July 2013

Well Number	LN(Result)	Result >TL?
MW386	5.768	YES
MW390	6.211	YES
MW393	5.517	YES

Conclusion of Statistical Analysis on Transformed Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW386

MW390

MW393

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis UCRS pH UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from	
Upgradient Wells	

MW396
Result
6.170
6.400
5.900
6.400
6.650
6.400
6.710
7.050

Statistics on Background Data

X= 6.460 S= 0.350 CV= 0.054 K factor** = 3.736 TL= 7.766 LL= 5.154

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient Result >	TL? Resu	lt <ll?< th=""></ll?<>
MW386	6.800	Sidegradient	NO	NO
MW390	6.190	Downgradient	NO	NO
MW393	6.460	Downgradient	NO	NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Potassium UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	2.000
9/16/2002	2.000
10/16/2002	0.978
1/13/2003	1.080
4/8/2003	1.120
7/16/2003	1.380
10/14/2003	1.240
1/14/2004	1.490

Statistics on Background Data

X= 1.411 S= 0.399 CV= 0.282 K factor** = 3.188 TL= 2.682

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW386	0.354	Sidegradient	NO
MW390	0.637	Downgradie	nt NO
MW393	0.508	Downgradie	nt NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis UCRS Sodium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	115.000
9/16/2002	116.000
10/16/2002	117.000
1/13/2003	122.000
4/8/2003	106.000
7/16/2003	117.000
10/14/2003	132.000
1/14/2004	29.600

Statistics on Background Data

X= 106.825 S= 32.041 CV= 0.300 K factor** = 3.188 TL= 208.973

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW386	106.00	Sidegradient	NO
MW390	93.300	Downgradie	nt NO
MW393	89.500	Downgradie	nt NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Sulfate UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	41.900
9/16/2002	26.300
10/16/2002	20.600
1/13/2003	16.600
4/8/2003	23.900
7/16/2003	18.800
10/14/2003	12.900
1/14/2004	18.700

Statistics on Background Data

X= 22.463 S= 8.876 CV= 0.395 K factor** = 3.188 TL= 50.759

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW386	48.000	Sidegradient	NO
MW390	24.000	Downgradie	nt NO
MW393	18.000	Downgradie	nt NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Technetium-99 UNITS: UCRS pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	16.700
9/16/2002	6.390
10/16/2002	4.550
1/13/2003	16.500
4/8/2003	3.040
7/16/2003	0.354
10/14/2003	11.900
1/14/2004	1.560

Statistics on Background Data

X= 7.624 S= 6.558 CV= 0.860 K factor** = 3.188 TL= 28.531

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient F	Result > TL?
MW386	0.276	Sidegradient	NO
MW390	58.400	Downgradient	YES
MW393	0.725	Downgradient	NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW390

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Total Organic Carbon (TOC) UNITS: uc/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	19.000
9/16/2002	14.600
10/16/2002	10.400
1/13/2003	4.400
4/8/2003	7.000
7/16/2003	7.300
10/14/2003	9.100
1/14/2004	8.100

Statistics on Background Data

X= 9.988 S= 4.696 CV= 0.470 K factor** = 3.188 TL= 24.959

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW386	9.300	Sidegradient	NO
MW390	1.600	Downgradie	nt NO
MW393	3.100	Downgradie	nt NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Total Organic Halides (TOX) UNITS: UCRS ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW396
Date Collected	Result
8/13/2002	193.000
9/16/2002	190.000
10/16/2002	221.000
1/13/2003	106.000
4/8/2003	77.800
7/16/2003	122.000
10/14/2003	86.400
1/14/2004	145.000

Statistics on Background Data

X= 142.650 S= 53.533 CV= 0.375 K factor** = 3.188 TL= 313.314

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW386	290.00	Sidegradient	NO
MW390	31.000	Downgradie	nt NO
MW393	62.000	Downgradie	nt NO

Third Quarter 2013 Dry/Partially Dry Wells

Well No.	Gradient
MW389	Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Aluminum UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	0.200
1/15/2003	0.200
4/10/2003	0.200
7/14/2003	0.200
10/13/2003	0.427
1/13/2004	0.309
4/13/2004	0.200
7/21/2004	0.202
772172001	0.202
Well Number:	MW394
Well Number:	MW394
Well Number: Date Collected	MW394 Result
Well Number: Date Collected 8/13/2002	MW394 Result 0.200
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 0.200 0.200
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 0.200 0.200 0.200
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 0.200 0.200 0.200 0.200
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	MW394 Result 0.200 0.200 0.200 0.200 0.200 0.200

Statistics on Background Data

X= 0.221 S= 0.061 CV= 0.277 K factor** = 2.523 TL= 0.376

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result $>$ TL?
MW221	0.200	Sidegradient	NO
MW222	0.345	Sidegradient	NO
MW223	0.200	Sidegradient	NO
MW224	0.200	Sidegradient	NO
MW369	0.200	Downgradier	nt NO
MW372	0.200	Downgradier	nt NO
MW384	0.200	Sidegradient	NO
MW387	0.200	Downgradier	nt NO
MW391	0.200	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Boron UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

ckground D gradient W		Statistics on Background Data		Transformed I	
ell Number:	MW220	X=0.425		Well Number:	MW220
ate Collected	Result	S= 0.615 CV= 1.447		Date Collected	LN(Resul
10/14/2002	0.200	K factor** = 2.523		10/14/2002	-1.609
1/15/2003	0.200	TL= 1.976		1/15/2003	-1.609
4/10/2003	0.200	112- 1.570		4/10/2003	-1.609
7/14/2003	0.200	Because CV greater than		7/14/2003	-1.609
10/13/2003	0.200	logarithm of background were calculated.	and test well results	10/13/2003	-1.609
1/13/2004	0.200	were carculated.		1/13/2004	-1.609
4/13/2004	0.200	Statistics on		4/13/2004	-1.609
7/21/2004	0.200	Transformed		7/21/2004	-1.609
Vell Number:	MW394	Background Data		Well Number:	MW394
Date Collected	Result	X= -1.322		Date Collected	LN(Resul
8/13/2002	2.000	S=0.786		8/13/2002	0.693
9/16/2002	2.000	CV = -0.595		9/16/2002	0.693
10/16/2002	0.200	K factor** = 2.523		10/16/2002	-1.609
1/13/2003	0.200	TL = 0.663		1/13/2003	-1.609
4/10/2003	0.200	1L= 0.003		4/10/2003	-1.609
7/16/2003	0.200			7/16/2003	-1.609
10/14/2003	0.200			10/14/2003	-1.609
1/13/2004	0.200			1/13/2004	-1.609

Third Quarter 2013 Data Collected in July
2013

Well No.	Result	Gradient	Result > TL?
MW221	0.200	Sidegradient	N/A
MW222	0.200	Sidegradient	N/A
MW223	0.200	Sidegradient	N/A
MW224	0.200	Sidegradient	N/A
MW369	0.200	Downgradien	t N/A
MW372	1.190	Downgradien	t N/A
MW384	0.200	Sidegradient	N/A
MW387	0.200	Downgradien	t N/A
MW391	0.200	Downgradien	t N/A

Transformed Third Quarter 2013 Data Collected in July 2013

Well Number	LN(Result)	Result $>$ TL?
MW221	-1.609	NO
MW222	-1.609	NO
MW223	-1.609	NO
MW224	-1.609	NO
MW369	-1.609	NO
MW372	0.174	NO
MW384	-1.609	NO
MW387	-1.609	NO
MW391	-1.609	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Calcium UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	23.600
1/15/2003	25.900
4/10/2003	30.400
7/14/2003	33.900
10/13/2003	21.300
1/13/2004	20.300
4/13/2004	23.800
7/21/2004	19.000
7/21/2004	19.000
Well Number:	MW394
.,,_,	
Well Number:	MW394
Well Number: Date Collected	MW394 Result
Well Number: Date Collected 8/13/2002	MW394 Result 29.500
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 29.500 29.900
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 29.500 29.900 31.200
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 29.500 29.900 31.200 30.700
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	MW394 Result 29.500 29.900 31.200 30.700 34.400

Statistics on Background Data

X= 27.638 S= 4.743 CV= 0.172 K factor** = 2.523 TL= 39.604

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result $>$ TL?
MW221	23.000	Sidegradient	NO
MW222	18.000	Sidegradient	NO
MW223	21.700	Sidegradient	NO
MW224	24.100	Sidegradient	NO
MW369	19.900	Downgradie	nt NO
MW372	63.500	Downgradie	nt YES
MW384	22.500	Sidegradient	NO
MW387	31.500	Downgradie	nt NO
MW391	28.200	Downgradie	nt NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis URGA Chloride UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	44.600
1/15/2003	43.200
4/10/2003	31.500
7/14/2003	30.800
10/13/2003	40.900
1/13/2004	40.800
4/13/2004	37.500
7/21/2004	40.800
772172001	40.000
Well Number:	MW394
.,,_,	
Well Number:	MW394
Well Number: Date Collected	MW394 Result
Well Number: Date Collected 8/13/2002	MW394 Result 60.400
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 60.400 60.300
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 60.400 60.300 58.000
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 60.400 60.300 58.000 60.700
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	MW394 Result 60.400 60.300 58.000 60.700 62.900

Statistics on Background Data

X= 49.044 S= 11.278 CV= 0.230 K factor** = 2.523 TL= 77.499

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result $>$ TL?
MW221	36.000	Sidegradient	NO
MW222	36.000	Sidegradient	NO
MW223	35.000	Sidegradient	NO
MW224	36.000	Sidegradient	NO
MW369	40.000	Downgradier	nt NO
MW372	49.000	Downgradier	nt NO
MW384	36.000	Sidegradient	NO
MW387	50.000	Downgradier	nt NO
MW391	42.000	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis **URGA UNITS: Cobalt** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Ups	
Well Number:	MW220	X= 0.016		Well Number:	MW220
Date Collected	Result	S= 0.040 CV= 2.440		Date Collected	LN(Result)
10/14/2002 1/15/2003	0.004 0.005	K factor** = 2.523 TL= 0.116		10/14/2002 1/15/2003	-5.497 -5.306
4/10/2003 7/14/2003	0.003 0.161	Because CV greater that logarithm of background		4/10/2003 7/14/2003	-5.846 -1.826
10/13/2003 1/13/2004	0.023 0.005	were calculated.	a and test wen results	10/13/2003 1/13/2004	-3.790 -5.373
4/13/2004 7/21/2004 Well Number:	0.001 0.003 MW394	Statistics on Transformed Background Data		4/13/2004 7/21/2004 Well Number:	-6.908 -5.937 MW394
Date Collected	Result	X= -5.582		Date Collected	LN(Result)
8/13/2002	0.025	S= 1.573		8/13/2002	-3.689
9/16/2002	0.025	CV= -0.282		9/16/2002	-3.689
10/16/2002	0.001	K factor** = 2.523		10/16/2002	-6.908
1/13/2003	0.001	TL= -1.613		1/13/2003	-6.908
4/10/2003	0.001			4/10/2003	-6.908
7/16/2003	0.001			7/16/2003	-6.908
10/14/2003	0.001			10/14/2003	-6.908
1/13/2004	0.001			1/13/2004	-6.908

Third Quarter 2013 Data Collected in July
2013

Well No.	Result	Gradient	Result > TL?
MW221	0.002	Sidegradient	N/A
MW222	0.002	Sidegradient	N/A
MW223	0.001	Sidegradient	N/A
MW224	0.001	Sidegradient	N/A
MW369	0.027	Downgradien	t N/A
MW372	0.001	Downgradien	t N/A
MW384	0.001	Sidegradient	N/A
MW387	0.001	Downgradien	t N/A
MW391	0.001	Downgradien	t N/A

Transformed Third Quarter 2013 Data Collected in July 2013

Well Number	LN(Result)	Result > TL?
MW221	-6.195	NO
MW222	-6.185	NO
MW223	-6.908	NO
MW224	-6.908	NO
MW369	-3.597	NO
MW372	-6.908	NO
MW384	-6.908	NO
MW387	-6.908	NO
MW391	-6.908	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-45

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis URGA Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	368.000
1/15/2003	433.200
4/10/2003	489.000
7/14/2003	430.000
10/13/2003	346.000
1/13/2004	365.000
4/13/2004	416.000
7/21/2004	353.000
Well Number:	MW394
Date Collected	Result
8/13/2002	406.000
9/16/2002	418.000
10/16/2002	411.000
1/13/2003	422.000
4/10/2003	420.000
7/16/2003	438.000
10/14/2003	3.910
1/13/2004	395.000

Statistics on Background Data

X= 382.132 S= 107.134 CV= 0.280 K factor** = 2.523

TL = 652.432

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW221	396.00	Sidegradient	NO
MW222	362.00	Sidegradient	NO
MW223	394.00	Sidegradient	NO
MW224	448.00	Sidegradient	NO
MW369	427.00	Downgradien	nt NO
MW372	822.00	Downgradien	t YES
MW384	416.00	Sidegradient	NO
MW387	529.00	Downgradien	nt NO
MW391	436.00	Downgradien	nt NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Dissolved Oxygen UNITS: uRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	6.790
1/15/2003	7.250
4/10/2003	3.600
7/14/2003	0.940
10/13/2003	1.650
1/13/2004	3.480
4/13/2004	1.050
7/21/2004	4.460
772172001	7.700
Well Number:	MW394
Well Number:	MW394
Well Number: Date Collected	MW394 Result
Well Number: Date Collected 8/13/2002	MW394 Result 6.090
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 6.090 3.850
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 6.090 3.850 5.110
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 6.090 3.850 5.110 3.830
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	MW394 Result 6.090 3.850 5.110 3.830 4.150
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	MW394 Result 6.090 3.850 5.110 3.830 4.150 1.830

Statistics on Background Data

X= 3.784 S= 1.887 CV= 0.499 K factor** = 2.523 TL= 8.545

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result $>$ TL?
MW221	4.140	Sidegradient	NO
MW222	2.840	Sidegradient	NO
MW223	1.960	Sidegradient	NO
MW224	3.990	Sidegradient	NO
MW369	0.790	Downgradier	nt NO
MW372	0.610	Downgradier	nt NO
MW384	4.130	Sidegradient	NO
MW387	2.440	Downgradier	nt NO
MW391	1.630	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis **URGA Dissolved Solids UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	208.000
1/15/2003	257.000
4/10/2003	288.000
7/14/2003	262.000
10/13/2003	197.000
1/13/2004	198.000
4/13/2004	245.000
7/21/2004	204.000
Well Number:	MW394
Date Collected	Result
8/13/2002	247.000
9/16/2002	259.000
10/16/2002	201.000
1/13/2003	228.000
4/10/2003	249.000
7/16/2003	240.000
10/14/2003	230.000

Statistics on **Background Data**

X = 232.688S = 27.490CV = 0.118**K** factor** = 2.523 TL = 302.045

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result $>$ TL?
MW221	226.00	Sidegradient	NO
MW222	223.00	Sidegradient	NO
MW223	230.00	Sidegradient	NO
MW224	260.00	Sidegradient	NO
MW369	232.00	Downgradier	nt NO
MW372	503.00	Downgradier	nt YES
MW384	238.00	Sidegradient	NO
MW387	294.00	Downgradier	nt NO
MW391	242.00	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis URGA Iron UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data		Transformed Background Data from Upgradient Well	
Well Number:	MW220	X= 0.897		Well Number:	MW220
Date Collected	Result	S= 1.050		Date Collected	LN(Result)
10/14/2002	0.200	CV= 1.170 V. footor** - 2.523		10/14/2002	-1.609
1/15/2003	0.200	K factor** = 2.523 TL= 3.545		1/15/2003	-1.609
4/10/2003	0.429	1L- 3.343	_	4/10/2003	-0.846
7/14/2003	4.330	Because CV greater th	*	7/14/2003	1.466
10/13/2003	1.810	logarithm of backgroung	nd and test well results	10/13/2003	0.593
1/13/2004	0.793	were carculated.	7	1/13/2004	-0.232
4/13/2004	0.130	Statistics on		4/13/2004	-2.040
7/21/2004	0.382	Transformed		7/21/2004	-0.962
Well Number:	MW394	Background Data		Well Number:	MW394
Date Collected	Result	X = -0.565		Date Collected	LN(Result)
8/13/2002	1.340	S = 0.951		8/13/2002	0.293
9/16/2002	0.328	CV= -1.683		9/16/2002	-1.115
10/16/2002	1.380	K factor** = 2.523		10/16/2002	0.322
1/13/2003	1.300	TL= 1.834		1/13/2003	0.262
4/10/2003	0.494	11_ 1.034	_	4/10/2003	-0.705

Third Quarter 2013 Data Collected in July
2013

0.620

0.370

0.251

7/16/2003

10/14/2003

1/13/2004

Well No.	Result	Gradient I	Result > TL?
MW221	0.186	Sidegradient	N/A
MW222	0.541	Sidegradient	N/A
MW223	0.100	Sidegradient	N/A
MW224	0.100	Sidegradient	N/A
MW369	2.380	Downgradien	t N/A
MW372	0.810	Downgradien	t N/A
MW384	0.151	Sidegradient	N/A
MW387	0.100	Downgradien	t N/A
MW391	0.100	Downgradien	t N/A
MW223 MW224 MW369 MW372 MW384 MW387	0.100 0.100 2.380 0.810 0.151 0.100	Sidegradient Sidegradient Downgradient Downgradient Sidegradient Downgradient	N/A N/A N/A N/A N/A N/A

Transformed Third Quarter 2013 Data Collected in July 2013

-0.478

-0.994

-1.382

7/16/2003

10/14/2003

1/13/2004

Well Number	LN(Result)	Result > TL?
MW221	-1.682	NO
MW222	-0.614	NO
MW223	-2.303	NO
MW224	-2.303	NO
MW369	0.867	NO
MW372	-0.211	NO
MW384	-1.890	NO
MW387	-2.303	NO
MW391	-2.303	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Magnesium UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

)
t
0
0
0
1
1
t
t O
t 0 0
t 0 0
t 0 0 0
t 0 0 0 0

Statistics on Background Data

X= 10.796 S= 1.703 CV= 0.158 K factor** = 2.523 TL= 15.092

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result $>$ TL?
MW221	8.760	Sidegradient	NO
MW222	7.860	Sidegradient	NO
MW223	8.630	Sidegradient	NO
MW224	9.640	Sidegradient	NO
MW369	7.620	Downgradie	nt NO
MW372	23.800	Downgradie	nt YES
MW384	8.820	Sidegradient	NO
MW387	12.100	Downgradie	nt NO
MW391	10.900	Downgradie	nt NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis **URGA** Manganese **UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data		Transformed Background Data from Upgradient Wells		
Well Number:	MW220	X= 0.287		Well Number:	MW220	
Date Collected	Result	S= 0.619		Date Collected	LN(Result)	
10/14/2002	0.031	CV= 2.156 K factor** = 2.523		10/14/2002	-3.487	
1/15/2003	0.029	TL= 1.848		1/15/2003	-3.537	
4/10/2003	0.014	112- 1.040		4/10/2003	-4.290	
7/14/2003	2.540	Because CV greater that		7/14/2003	0.932	
10/13/2003	0.378	logarithm of backgroun were calculated.	d and test well results	10/13/2003	-0.973	
1/13/2004	0.159	were calculated.	•	1/13/2004	-1.839	
4/13/2004	0.007	Statistics on Transformed Background Data		4/13/2004	-4.952	
7/21/2004	0.084			7/21/2004	-2.476	
Well Number:	MW394			Well Number:	MW394	
Date Collected	Result	X= -2.455		Date Collected	LN(Result)	
8/13/2002	0.542	S= 1.619		8/13/2002	-0.612	
9/16/2002	0.155	CV= -0.659		9/16/2002	-1.864	
10/16/2002	0.103	K factor** = 2.523		10/16/2002	-2.273	
1/13/2003	0.128	TL= 1.630		1/13/2003	-2.056	
4/10/2003	0.005	1L= 1.030	J	4/10/2003	-5.298	
7/16/2003	0.272			7/16/2003	-1.302	
10/14/2003	0.080			10/14/2003	-2.532	
1/13/2004	0.066			1/13/2004	-2.721	

Third Quarter 2013 Data Collected in July
2013

Well No.	Result	Gradient I	Result > TL?
MW221	0.006	Sidegradient	N/A
MW222	0.023	Sidegradient	N/A
MW223	0.017	Sidegradient	N/A
MW224	0.010	Sidegradient	N/A
MW369	0.271	Downgradien	t N/A
MW372	0.021	Downgradien	t N/A
MW384	0.005	Sidegradient	N/A
MW387	0.006	Downgradien	t N/A
MW391	0.005	Downgradien	t N/A

Transformed Third Quarter 2013 Data Collected in July 2013

Well Number	LN(Result)	Result > TL?
MW221	-5.124	NO
MW222	-3.768	NO
MW223	-4.057	NO
MW224	-4.640	NO
MW369	-1.306	NO
MW372	-3.868	NO
MW384	-5.298	NO
MW387	-5.048	NO
MW391	-5.298	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-51

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Molybdenum UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data		Transformed Background Data from Upgradient Wells		
Well Number:	MW220	X= 0.006		Well Number:	MW220	
Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004	Result 0.006 0.010 0.011 0.002 0.006 0.006 0.001	S= 0.008 CV= 1.261 K factor** = 2.523 TL= 0.026 Because CV greater tha logarithm of backgroun were calculated. Statistics on		Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004	LN(Result) -5.189 -4.622 -4.519 -6.012 -5.174 -5.164 -6.908	
7/21/2004 Well Number:	0.004 MW394	Transformed Background Data		7/21/2004 Well Number:	-5.542 MW394	
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004	Result 0.025 0.025 0.001 0.001 0.001 0.001 0.001 0.001	X= -5.747 S= 1.205 CV= -0.210 K factor** = 2.523 TL= -2.708		Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004	LN(Result) -3.689 -3.689 -6.908 -6.908 -6.908 -6.908 -6.908	

Third Quarter 2013 Data Collected in July	
2013	

Well No.	Result	Gradient I	Result > TL?
MW221	0.007	Sidegradient	N/A
MW222	0.001	Sidegradient	N/A
MW223	0.004	Sidegradient	N/A
MW224	0.001	Sidegradient	N/A
MW369	0.001	Downgradient	N/A
MW372	0.001	Downgradient	N/A
MW384	0.001	Sidegradient	N/A
MW387	0.001	Downgradient	N/A
MW391	0.001	Downgradient	N/A

Transformed Third Quarter 2013 Data Collected in July 2013

Well Number	LN(Result)	Result > TL?
MW221	-5.006	NO
MW222	-6.908	NO
MW223	-5.597	NO
MW224	-6.908	NO
MW369	-6.908	NO
MW372	-6.908	NO
MW384	-6.908	NO
MW387	-6.908	NO
MW391	-6.908	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Nickel UNITS: uRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

ackground D pgradient W	d Data from Statistics on Background Data			Transformed Background Data from Upgradient We	
Vell Number:	MW220	X= 0.127		Well Number:	MW220
Date Collected	Result	S= 0.228		Date Collected	LN(Result
10/14/2002	0.418	CV= 1.790 K factor** = 2.523		10/14/2002	-0.872
1/15/2003	0.738	TL= 0.701		1/15/2003	-0.304
4/10/2003	0.544			4/10/2003	-0.609
7/14/2003	0.106	Because CV greater that		7/14/2003	-2.244
10/13/2003	0.053	logarithm of background were calculated.	d and test well results	10/13/2003	-2.939
1/13/2004	0.021	were calculated.	•	1/13/2004	-3.868
4/13/2004	0.005	Statistics on		4/13/2004	-5.298
7/21/2004	0.019	Transformed		7/21/2004	-3.953
Vell Number:	MW394	Background Data		Well Number:	MW394
ate Collected	Result	X= -3.617		Date Collected	LN(Result
8/13/2002	0.050	S= 1.837		8/13/2002	-2.996
9/16/2002	0.050	CV = -0.508		9/16/2002	-2.996
10/16/2002	0.005	K factor** = 2.523		10/16/2002	-5.298
1/13/2003	0.005	TL= 1.019		1/13/2003	-5.298
4/10/2003	0.005	11,- 1.017		4/10/2003	-5.298
7/16/2003	0.005			7/16/2003	-5.298
10/14/2003	0.005			10/14/2003	-5.298
1/13/2004	0.005			1/13/2004	-5.298

Third Quarter 2013 Data Collected in July
2013

Well No.	Result	Gradient	Result > TL?
MW221	0.201	Sidegradient	N/A
MW222	0.094	Sidegradient	N/A
MW223	0.406	Sidegradient	N/A
MW224	0.007	Sidegradient	N/A
MW369	0.009	Downgradien	t N/A
MW372	0.005	Downgradien	t N/A
MW384	0.005	Sidegradient	N/A
MW387	0.005	Downgradien	t N/A
MW391	0.005	Downgradien	t N/A

Transformed Third Quarter 2013 Data Collected in July 2013

Well Number	LN(Result)	Result $>$ TL?
MW221	-1.604	NO
MW222	-2.364	NO
MW223	-0.901	NO
MW224	-4.914	NO
MW369	-4.679	NO
MW372	-5.298	NO
MW384	-5.298	NO
MW387	-5.298	NO
MW391	-5.298	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Oxidation-Reduction Potential UNITS: WV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	205.000
1/15/2003	1.950
4/10/2003	203.000
7/14/2003	30.000
10/13/2003	107.000
1/13/2004	295.000
4/13/2004	190.000
= /24 /2004	210 000
7/21/2004	319.000
7/21/2004 Well Number:	319.000 MW394
// 2 1/ 2 00 .	017.000
Well Number:	MW394
Well Number: Date Collected	MW394 Result
Well Number: Date Collected 8/13/2002	MW394 Result 90.000
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 90.000 240.000
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 90.000 240.000 185.000
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 90.000 240.000 185.000 220.000

Statistics on Background Data

X= 179.872 S= 86.318 CV= 0.480 K factor** = 2.523

TL = 397.652

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

249.000

1/13/2004

Well No.	Result	Gradient Resu	ılt > TL?
MW221	478.00	Sidegradient	YES
MW222	533.00	Sidegradient	YES
MW223	755.00	Sidegradient	YES
MW224	701.00	Sidegradient	YES
MW369	284.00	Downgradient	NO
MW372	273.00	Downgradient	NO
MW384	563.00	Sidegradient	YES
MW387	478.00	Downgradient	YES
MW391	336.00	Downgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW221

MW222

MW223

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Ar	nalysis	URGA
Oxidation-Reduction Potential'*Eqpvlpwgf +	UNITS:	\mathbf{mV}

MW224	
MW384	
MW387	

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-55

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis URGA PCB-1242 UNITS: URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW394
Date Collected	Result
8/13/2002	0.110
9/16/2002	0.130
7/16/2003	0.130
10/14/2003	0.090
7/20/2004	0.100
7/11/2005	0.100
7/17/2006	0.100
7/17/2007	0.100

Statistics on Background Data

X= 0.108 S= 0.015 CV= 0.138 K factor** = 3.188 TL= 0.155

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient 1	Result $>$ TL?
MW369	0.110	Downgradien	t NO
MW372	0.100	Downgradien	t NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis URGA pH UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from	
Upgradient Wells	

Opgradient wens			
Well Number:	MW220		
Date Collected	Result		
10/14/2002	6.040		
1/15/2003	6.310		
4/10/2003	6.500		
7/14/2003	6.300		
10/13/2003	6.340		
1/13/2004	6.330		
4/13/2004	6.300		
7/21/2004	5.900		
Well Number:	MW394		
Well Number: Date Collected	MW394 Result		
Date Collected	Result		
Date Collected 8/13/2002	Result 5.800		
Date Collected 8/13/2002 9/30/2002	Result 5.800 5.930		
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5.800 5.930 5.420		
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5.800 5.930 5.420 6.000		
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.800 5.930 5.420 6.000 6.040		
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 5.800 5.930 5.420 6.000 6.040 6.200		

Statistics on
Background Data

X= 6.138 S= 0.282 CV= 0.046 K factor** = 2.904 TL= 6.957 LL= 5.318

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013 Well No. Bould Condinate Boulds TI 2 Result of LI 2

well No.	Result (ragient Result >	IL! Kesui	t \LL:
MW221	6.090	Sidegradient	NO	NO
MW222	6.120	Sidegradient	NO	NO
MW223	6.130	Sidegradient	NO	NO
MW224	6.130	Sidegradient	NO	NO
MW369	6.270	Downgradient	NO	NO
MW372	6.140	Downgradient	NO	NO
MW384	6.140	Sidegradient	NO	NO
MW387	6.270	Downgradient	NO	NO
MW391	6.200	Downgradient	NO	NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Potassium UNITS: uRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

ackground D pgradient W		Statistics on Background Data		Transformed I	_
Vell Number:	MW220	X= 6.654		Well Number:	MW220
Date Collected	Result	S= 9.310		Date Collected	LN(Resu
10/14/2002	6.700	CV= 1.399 K factor** = 2.523		10/14/2002	1.902
1/15/2003	29.700	TL= 30.144		1/15/2003	3.391
4/10/2003	24.900	TL- 30.144]	4/10/2003	3.215
7/14/2003	1.130	Because CV greater tha		7/14/2003	0.122
10/13/2003	3.430	logarithm of backgroun were calculated.	d and test well results	10/13/2003	1.233
1/13/2004	6.710	were carculated.	•	1/13/2004	1.904
4/13/2004	19.300	Statistics on		4/13/2004	2.960
7/21/2004	3.970	Transformed		7/21/2004	1.379
Vell Number:	MW394	Background Data		Well Number:	MW394
Date Collected	Result	X = 1.130		Date Collected	LN(Resu
8/13/2002	2.000	S= 1.208		8/13/2002	0.693
9/16/2002	2.000	CV= 1.069		9/16/2002	0.693
10/16/2002	1.030	K factor** = 2.523		10/16/2002	0.030
1/13/2003	1.100	TL= 4.178		1/13/2003	0.095
4/10/2003	1.240	1L= 4.176	J	4/10/2003	0.215
7/16/2003	1.140			7/16/2003	0.131
10/14/2003	1.050			10/14/2003	0.049
1/13/2004	1.070			1/13/2004	0.068

	13 Data Collected in July
2013	

Well No.	Result	Gradient	Result > TL?
MW221	1.440	Sidegradient	N/A
MW222	0.511	Sidegradient	N/A
MW223	1.720	Sidegradient	N/A
MW224	0.946	Sidegradient	N/A
MW369	0.734	Downgradien	t N/A
MW372	2.440	Downgradien	t N/A
MW384	1.390	Sidegradient	N/A
MW387	1.290	Downgradien	t N/A
MW391	1.660	Downgradien	t N/A

Transformed Third Quarter 2013 Data Collected in July 2013

Well Number	LN(Result)	Result > TL?
MW221	0.365	NO
MW222	-0.671	NO
MW223	0.542	NO
MW224	-0.056	NO
MW369	-0.309	NO
MW372	0.892	NO
MW384	0.329	NO
MW387	0.255	NO
MW391	0.507	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis URGA Sodium UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	35.400
1/15/2003	40.600
4/10/2003	51.000
7/14/2003	58.200
10/13/2003	38.100
1/13/2004	37.000
4/13/2004	43.200
7/21/2004	33.800
Well Number:	MW394
Date Collected	Result
8/13/2002	32.900
9/16/2002	29.900
10/16/2002	29.000
1/13/2003	27.100
4/10/2003	24.800
7/16/2003	35.600
10/14/2003	33.900
1/13/2004	31.300

Statistics on Background Data

X= 36.363 S= 8.666 CV= 0.238 K factor** = 2.523 TL= 58.227

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result $>$ TL?
MW221	41.600	Sidegradient	NO
MW222	42.100	Sidegradient	NO
MW223	43.100	Sidegradient	NO
MW224	52.700	Sidegradient	NO
MW369	54.700	Downgradier	nt NO
MW372	61.600	Downgradier	nt YES
MW384	44.300	Sidegradient	NO
MW387	52.800	Downgradier	nt NO
MW391	38.000	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Sulfate UNITS: URGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	10.400
1/15/2003	9.800
4/10/2003	15.400
7/14/2003	14.900
10/13/2003	13.500
1/13/2004	10.300
4/13/2004	14.300
7/21/2004	10.500
7/21/2004	10.500
Well Number:	MW394
Well Number:	MW394
Well Number: Date Collected	MW394 Result
Well Number: Date Collected 8/13/2002	MW394 Result 11.200
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 11.200 8.300
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 11.200 8.300 8.000
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 11.200 8.300 8.000 8.500
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	MW394 Result 11.200 8.300 8.000 8.500 7.900

Statistics on Background Data

X= 10.481 S= 2.648 CV= 0.253 K factor** = 2.523 TL= 17.161

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW221	13.000	Sidegradient	NO
MW222	11.000	Sidegradient	NO
MW223	15.000	Sidegradient	NO
MW224	15.000	Sidegradient	NO
MW369	8.700	Downgradier	nt NO
MW372	150.00	Downgradier	nt YES
MW384	23.000	Sidegradient	YES
MW387	20.000	Downgradier	nt YES
MW391	32.000	Downgradier	nt YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

MW384

MW387

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis
Sulfate'*Eqpvlpwgf + UNITS: mg/L

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Technetium-99 UNITS: URGA pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW220
Date Collected	Result
10/14/2002	19.700
1/15/2003	26.100
4/10/2003	3.560
7/14/2003	0.000
10/13/2003	21.000
1/13/2004	6.320
4/13/2004	3.000
7/21/2004	14.600
772172001	14.000
Well Number:	MW394
.,,_,	
Well Number:	MW394
Well Number: Date Collected	MW394 Result
Well Number: Date Collected 8/13/2002	MW394 Result 14.000
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 14.000 5.450
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 14.000 5.450 2.490
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 14.000 5.450 2.490 18.300
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	MW394 Result 14.000 5.450 2.490 18.300 -1.450
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003	MW394 Result 14.000 5.450 2.490 18.300 -1.450 -1.710 18.300
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	MW394 Result 14.000 5.450 2.490 18.300 -1.450 -1.710

Statistics on Background Data

X= 9.354 S= 9.280 CV= 0.992 K factor** = 2.523 TL= 32.768

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result $>$ TL?
MW221	7.080	Sidegradient	NO
MW222	8.250	Sidegradient	NO
MW223	15.400	Sidegradient	NO
MW224	11.000	Sidegradient	NO
MW369	23.000	Downgradier	nt NO
MW372	176.00	Downgradier	t YES
MW384	192.00	Sidegradient	YES
MW387	314.00	Downgradier	t YES
MW391	4.240	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

MW384

- CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Total Organic Carbon (TOC) UNITS: uRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

· F8	
Well Number:	MW220
Date Collected	Result
10/14/2002	1.000
1/15/2003	1.100
4/10/2003	1.000
7/14/2003	3.300
10/13/2003	1.800
1/13/2004	1.000
4/13/2004	2.000
7/21/2004	3.100
Well Number:	MW394
Date Collected	Result
8/13/2002	1.300
9/16/2002	1.000
10/16/2002	1.000
1/13/2003	1.600
4/10/2003	1.000
7/16/2003	1.400
10/14/2003	1.300
1/13/2004	1.000

Statistics on
Background Data

X= 1.494 S= 0.737 CV= 0.493 K factor** = 2.523 TL= 3.353

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result $>$ TL?
MW221	1.000	Sidegradient	NO
MW222	1.000	Sidegradient	NO
MW223	1.000	Sidegradient	NO
MW224	1.000	Sidegradient	NO
MW369	1.700	Downgradier	nt NO
MW372	1.000	Downgradier	nt NO
MW384	1.000	Sidegradient	NO
MW387	1.000	Downgradier	nt NO
MW391	1.000	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Total Organic Halides (TOX) UNITS: URGA ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	Background gradient Wells
Well Number:	MW220	X= 63.475		Well Number:	MW220
Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004 7/21/2004 Well Number:	Result 50.000 10.000 10.000 10.000 10.000 10.000 10.000 MW394	S= 163.135 CV= 2.570 K factor** = 2.523 TL= 475.063 Because CV greater tha logarithm of backgroun were calculated. Statistics on Transformed Background Data		Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003 10/13/2003 1/13/2004 4/13/2004 7/21/2004 Well Number:	LN(Result) 3.912 2.303 2.303 2.303 2.303 2.303 2.303 2.303 MW394
Date Collected	Result	X= 3.103		Date Collected	LN(Result)
8/13/2002	50.000	S= 1.145		8/13/2002	3.912
9/16/2002	672.000	CV= 0.369		9/16/2002	6.510
10/16/2002	50.000	K factor** = 2.523		10/16/2002	3.912
1/13/2003	36.100	TL= 5.992		1/13/2003	3.586
4/10/2003	10.000	11_ 3.372]	4/10/2003	2.303
7/16/2003	42.700			7/16/2003	3.754
10/14/2003	22.000			10/14/2003	3.091
1/13/2004	12.800			1/13/2004	2.549

	13 Data Collected in July
2013	

Well No.	Result	Gradient	Result > TL?
MW221	19.000	Sidegradient	N/A
MW222	8.400	Sidegradient	N/A
MW223	13.000	Sidegradient	N/A
MW224	26.000	Sidegradient	N/A
MW369	59.000	Downgradien	t N/A
MW372	22.000	Downgradien	t N/A
MW384	13.000	Sidegradient	N/A
MW387	39.000	Downgradien	t N/A
MW391	27.000	Downgradien	t N/A

Transformed Third Quarter 2013 Data Collected in July 2013

Well Number	LN(Result)	Result $>$ TL?
MW221	2.944	NO
MW222	2.128	NO
MW223	2.565	NO
MW224	3.258	NO
MW369	4.078	NO
MW372	3.091	NO
MW384	2.565	NO
MW387	3.664	NO
MW391	3.296	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Boron UNITS: LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

ackground D pgradient W		Statistics on Background Data		Transformed Data from Up	
Well Number:	MW395	X= 0.650		Well Number:	MW395
Date Collected	Result	S = 0.805		Date Collected	LN(Resul
8/13/2002	2.000	CV= 1.238 K factor** = 2.523		8/13/2002	0.693
9/16/2002	2.000	TL= 2.681		9/16/2002	0.693
10/16/2002	0.200			10/16/2002	-1.609
1/13/2003	0.200	Because CV greater than		1/13/2003	-1.609
4/10/2003	0.200	were calculated.	logarithm of background and test well results		-1.609
7/16/2003	0.200	were carculated.	İ	7/16/2003	-1.609
10/14/2003	0.200	Statistics on		10/14/2003	-1.609
1/13/2004	0.200	Transformed		1/13/2004	-1.609
Well Number:	MW397	Background Data		Well Number:	MW397
Date Collected	Result	X= -1.034		Date Collected	LN(Resul
8/13/2002	2.000	S= 1.030		8/13/2002	0.693
9/16/2002	2.000	CV = -0.996		9/16/2002	0.693
10/17/2002	0.200	K factor** = 2.523		10/17/2002	-1.609
1/13/2003	0.200	TL= 1.564		1/13/2003	-1.609
4/8/2003	0.200	112- 1.004		4/8/2003	-1.609
7/16/2003	0.200			7/16/2003	-1.609
10/14/2003	0.200			10/14/2003	-1.609
1/13/2004	0.200			1/13/2004	-1.609

	13 Data Collected in July
2013	

Well No.	Result	Gradient	Result > TL?
MW370	0.200	Downgradier	nt N/A
MW373	1.750	Downgradier	nt N/A
MW385	0.200	Sidegradient	N/A
MW388	0.200	Downgradier	nt N/A
MW392	0.200	Downgradier	nt N/A

Transformed Third Quarter 2013 Data Collected in July 2013

Well Number	LN(Result)	Result $>$ TL?
MW370	-1.609	NO
MW373	0.560	NO
MW385	-1.609	NO
MW388	-1.609	NO
MW392	-1.609	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Calcium UNITS: LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	32.200
9/16/2002	33.000
10/16/2002	0.030
1/13/2003	32.100
4/10/2003	40.200
7/16/2003	32.400
10/14/2003	33.900
1/13/2004	31.200
Well Number:	MW397
Well Number: Date Collected	MW397 Result
Date Collected	Result
Date Collected 8/13/2002	Result 19.400
Date Collected 8/13/2002 9/16/2002	Result 19.400 19.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.400 19.000 0.018
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.400 19.000 0.018 17.800
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.400 19.000 0.018 17.800 20.300

Statistics on Background Data

X= 23.103 S= 11.538 CV= 0.499 K factor** = 2.523 TL= 52.213

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient I	Result $>$ TL?
MW370	29.200	Downgradien	t NO
MW373	79.000	Downgradien	YES
MW385	24.600	Sidegradient	NO
MW388	25.300	Downgradien	t NO
MW392	27.700	Downgradien	t NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis LRGA Chloride UNITS: LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	62.200
9/16/2002	64.700
10/16/2002	62.200
1/13/2003	63.500
4/10/2003	64.100
7/16/2003	64.000
10/14/2003	63.200
1/13/2004	60.600
1/13/2004	00.000
Well Number:	MW397
-,,, -	
Well Number:	MW397
Well Number: Date Collected	MW397 Result
Well Number: Date Collected 8/13/2002	MW397 Result 38.900
Well Number: Date Collected 8/13/2002 9/16/2002	MW397 Result 38.900 39.800
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002	MW397 Result 38.900 39.800 39.300
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	MW397 Result 38.900 39.800 39.300 40.500
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	MW397 Result 38.900 39.800 39.300 40.500 42.100

Statistics on Background Data

X= 51.844 S= 11.652 CV= 0.225 K factor** = 2.523 TL= 81.242

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW370	43.000	Downgradier	nt NO
MW373	46.000	Downgradier	nt NO
MW385	30.000	Sidegradient	NO
MW388	34.000	Downgradier	nt NO
MW392	51.000	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis LRGA cis-1,2-Dichloroethene UNITS: LRGA ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	5.000
9/30/2002	5.000
10/16/2002	5.000
1/13/2003	5.000
4/10/2003	5.000
7/16/2003	5.000
10/14/2003	5.000
1/13/2004	5.000
Well Number:	MW397
Well Number: Date Collected	
Date Collected	Result
Date Collected 8/13/2002	Result 5.000
Date Collected 8/13/2002 9/30/2002	Result 5.000 5.000
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5.000 5.000 5.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5.000 5.000 5.000 5.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5.000 5.000 5.000 5.000 5.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5.000 5.000 5.000 5.000 5.000 5.000

D 1 1D 4	Statistics on
Background Data	Background Data

X= 5.000 S= 0.000 CV= 0.000 K factor** = 2.523 TL= 5.000

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW370	1.000	Downgradie	nt NO
MW373	1.000	Downgradie	nt NO
MW385	1.000	Sidegradient	NO
MW388	1.000	Downgradie	nt NO
MW392	1.200	Downgradie	nt NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis LRGA Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	405.000
9/16/2002	401.000
10/16/2002	392.000
1/13/2003	404.000
4/10/2003	488.000
7/16/2003	450.000
10/14/2003	410.000
1/13/2004	413.000
Well Number:	MW397
Well Number: Date Collected	MW397 Result
Date Collected	Result
Date Collected 8/13/2002	Result 322.000
Date Collected 8/13/2002 9/16/2002	Result 322.000 315.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322.000 315.000 317.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322.000 315.000 317.000 320.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322.000 315.000 317.000 320.000 390.000

Statistics on Background Data

X= 377.875 S= 52.101 CV= 0.138 K factor** = 2.523 TL= 509.326

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

1	Well No.	Result	Gradient	Result	t > TL?	
]	MW370	469.00	Downgradien	ıt	NO	
1	MW373	918.00	Downgradien	ıt	YES	
1	MW385	422.00	Sidegradient		NO	
1	MW388	428.00	Downgradien	ıt	NO	
1	MW392	420.00	Downgradien	ıt	NO	

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW373

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis LRGA Dissolved Oxygen UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

· F8	
Well Number:	MW395
Date Collected	Result
8/13/2002	7.290
9/30/2002	4.030
10/16/2002	3.850
1/13/2003	2.360
4/10/2003	1.140
7/16/2003	1.760
10/14/2003	4.050
1/13/2004	4.260
Well Number:	MW397
Date Collected	Result
8/13/2002	11.560
9/16/2002	5.860
10/17/2002	5.940
1/13/2003	4.660
4/8/2003	3.770
7/16/2003	3.470
10/14/2003	5.340
1/13/2004	5.510

Statistics on		
Background Data		
X= 4.678		
S = 2.431		

CV= 0.520 K factor** = 2.523 TL= 10.812

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result $>$ TL?
MW370	3.390	Downgradier	nt NO
MW373	1.380	Downgradier	nt NO
MW385	1.900	Sidegradient	NO
MW388	4.030	Downgradier	nt NO
MW392	1.190	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Dissolved Solids LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

5
lt
000
000
000
000
000
000
000
000
)00 7
7
7 lt
)7 lt)000
07 lt 000
17 lt 000 000
1t 000 000 000 000
17 lt 1000 000 000 000

Statistics on Background Data

X= 219.250 S= 34.107 CV= 0.156 K factor** = 2.523

TL = 305.301

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW370	230.00	Downgradien	t NO
MW373	618.00	Downgradien	t YES
MW385	226.00	Sidegradient	NO
MW388	243.00	Downgradien	t NO
MW392	231.00	Downgradien	t NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW373

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis LRGA Iron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data	Transformed Data from Up	_
Well Number:	MW395	X= 0.400	Well Number:	MW395
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004	Result 0.294 0.200 0.000 1.330 1.310 0.200 0.100 0.100	S= 0.514 CV= 1.286 K factor** = 2.523 TL= 1.698 Because CV greater tha logarithm of backgroun were calculated. Statistics on Transformed Background Data	Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004	LN(Result) -1.224 -1.609 -8.517 0.285 0.270 -1.609 -2.303 -2.303
Well Number:	MW397	X= -2.197	Well Number: Date Collected	MW397
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1.580 0.232 0.000 0.453	S= 2.634 CV= -1.199 K factor** = 2.523	8/13/2002 9/16/2002 10/17/2002 1/13/2003	LN(Result) 0.457 -1.461 -8.517 -0.792
4/8/2003 7/16/2003 10/14/2003 1/13/2004	0.200 0.200 0.100 0.100	TL= 4.449	4/8/2003 7/16/2003 10/14/2003 1/13/2004	-1.609 -1.609 -2.303 -2.303

Third Quarter	2013 Data	Collected i	n July
2013			

Well No.	Result	Gradient	Result > TL?
MW370	0.100	Downgradier	nt N/A
MW373	0.100	Downgradier	nt N/A
MW385	0.100	Sidegradient	N/A
MW388	0.100	Downgradier	nt N/A
MW392	1.430	Downgradier	nt N/A

Transformed Third Quarter 2013 Data Collected in July 2013

Well Number	LN(Result)	Result > TL?
MW370	-2.303	NO
MW373	-2.303	NO
MW385	-2.303	NO
MW388	-2.303	NO
MW392	0.358	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Magnesium UNITS: LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

10	
Well Number:	MW395
Date Collected	Result
8/13/2002	12.500
9/16/2002	13.000
10/16/2002	0.013
1/13/2003	11.200
4/10/2003	17.500
7/16/2003	12.900
10/14/2003	13.400
1/13/2004	12.400
Well Number:	MW397
Date Collected	Result
8/13/2002	7.830
9/16/2002	7.640
10/17/2002	0.007
1/13/2003	6.690
4/8/2003	7.280
7/16/2003	7.820
10/14/2003	7.940
1/13/2004	7.510

Statistics on Background Data

X= 9.102 S= 4.685 CV= 0.515 K factor** = 2.523 TL= 20.922

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient Re	esult > TL?
MW370	11.500	Downgradient	NO
MW373	29.200	Downgradient	YES
MW385	8.210	Sidegradient	NO
MW388	10.200	Downgradient	NO
MW392	9.490	Downgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Manganese UNITS: LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	
Well Number:	MW395	X= 0.131		Well Number:	MW395
Date Collected	Result	S= 0.195		Date Collected	LN(Result)
8/13/2002	0.361	CV= 1.487 K factor** = 2.523		8/13/2002	-1.019
9/16/2002	0.028	TL= 0.624		9/16/2002	-3.576
10/16/2002	0.026			10/16/2002	-3.650
1/13/2003	0.071	Because CV greater that	· ·	1/13/2003	-2.641
4/10/2003	0.629	logarithm of background were calculated.	a and test well results	4/10/2003	-0.464
7/16/2003	0.297	were calculated.	•	7/16/2003	-1.214
10/14/2003	0.020	Statistics on		10/14/2003	-3.922
1/13/2004	0.013	Transformed		1/13/2004	-4.374
Well Number:	MW397	Background Data		Well Number:	MW397
Date Collected	Result	X= -3.104		Date Collected	LN(Result)
8/13/2002	0.466	S= 1.529		8/13/2002	-0.764
9/16/2002	0.077	CV = -0.493		9/16/2002	-2.564
10/17/2002	0.028	K factor** = 2.523		10/17/2002	-3.576
1/13/2003	0.016	TL= 0.755		1/13/2003	-4.110
4/8/2003	0.041	112 0.733		4/8/2003	-3.202
7/16/2003	0.017			7/16/2003	-4.092
10/14/2003	0.006			10/14/2003	-5.194
1/13/2004	0.005			1/13/2004	-5.298

Third Quarter 2013 Data Collected in July
2013

Well No.	Result	Gradient	Result > TL?
MW370	0.005	Downgradier	nt N/A
MW373	0.009	Downgradier	nt N/A
MW385	0.005	Sidegradient	N/A
MW388	0.005	Downgradier	nt N/A
MW392	0.370	Downgradier	nt N/A

Transformed Third Quarter 2013 Data Collected in July 2013

Well Number	LN(Result)	Result > TL?
MW370	-5.298	NO
MW373	-4.698	NO
MW385	-5.298	NO
MW388	-5.298	NO
MW392	-0.994	NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	80.000
9/16/2002	145.000
10/16/2002	125.000
1/13/2003	85.000
4/10/2003	159.000
7/16/2003	98.000
10/14/2003	138.000
1/13/2004	233.000
Well Number:	MW397
Well Number: Date Collected	MW397 Result
Date Collected	Result
Date Collected 8/13/2002	Result 115.000
Date Collected 8/13/2002 9/30/2002	Result 115.000 140.000
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115.000 140.000 185.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115.000 140.000 185.000 230.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115.000 140.000 185.000 230.000 155.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 115.000 140.000 185.000 230.000 155.000 188.000

Statistics on Background Data

X= 157.250 S= 52.376 CV= 0.333 K factor** = 2.523 TL= 289.395

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient Resu	lt > TL?
MW370	387.00	Downgradient	YES
MW373	500.00	Downgradient	YES
MW385	502.00	Sidegradient	YES
MW388	726.00	Downgradient	YES
MW392	252.00	Downgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW370

MW373

MW385

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis LRGA pH UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background Data from	
Upgradient Wells	

-18	
Well Number:	MW395
Date Collected	Result
8/13/2002	5.800
9/16/2002	6.000
10/16/2002	5.470
1/13/2003	6.000
4/10/2003	6.180
7/16/2003	6.000
10/14/2003	6.310
1/13/2004	6.240
Well Number:	MW397
Well Number: Date Collected	
Date Collected	Result
Date Collected 8/13/2002	Result 5.840
Date Collected 8/13/2002 9/30/2002	Result 5.840 6.000
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5.840 6.000 5.750
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5.840 6.000 5.750 6.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5.840 6.000 5.750 6.000 6.300
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	Result 5.840 6.000 5.750 6.000 6.300 6.200

Statistics on Background Data	
X= 6.048	
S = 0.248	
CV = 0.041	

K factor** = 2.904 TL= 6.767 LL= 5.329

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013 Well No. Result Gradient Result >TL? Result <LL?

MW370	6.270	Downgradient	NO	NO
MW373	6.130	Downgradient	NO	NO
MW385	6.220	Sidegradient	NO	NO
MW388	6.200	Downgradient	NO	NO
MW392	6.530	Downgradient	NO	NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis LRGA Potassium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

MW395
Result
2.000
2.000
0.001
1.510
1.670
1.730
1.700
1.580
1.580 MW397
MW397
MW397 Result
MW397 Result 2.030
MW397 Result 2.030 2.000
MW397 Result 2.030 2.000 0.001
MW397 Result 2.030 2.000 0.001 1.690
MW397 Result 2.030 2.000 0.001 1.690 1.730

Statistics on Background Data

X= 1.590 S= 0.642 CV= 0.404 K factor** = 2.523 TL= 3.208

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW370	2.510	Downgradier	nt NO
MW373	3.090	Downgradier	nt NO
MW385	1.590	Sidegradient	NO
MW388	1.770	Downgradier	nt NO
MW392	1.800	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis LRGA Sodium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	27.000
9/16/2002	27.200
10/16/2002	0.025
1/13/2003	22.600
4/10/2003	53.900
7/16/2003	30.000
10/14/2003	29.100
1/13/2004	26.400
Well Number:	MW397
Date Collected	Result
8/13/2002	35.200
9/16/2002	34.300
10/17/2002	0.034
1 /1 2 /2 2 2 2	
1/13/2003	31.300
1/13/2003 4/8/2003	31.300 46.100
4/8/2003	46.100

Statistics on Background Data

X = 29.560

S= 13.894 CV= 0.470 K factor** = 2.523 TL= 64.616

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW370	38.400	Downgradien	t NO
MW373	66.500	Downgradien	t YES
MW385	42.600	Sidegradient	NO
MW388	42.300	Downgradien	t NO
MW392	39.000	Downgradien	t NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis **LRGA Sulfate UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	10.300
9/16/2002	9.100
10/16/2002	8.800
1/13/2003	9.000
4/10/2003	8.300
7/16/2003	8.200
10/14/2003	8.300
1/13/2004	8.200
1/13/2004 Well Number:	8.200 MW397
1, 10, 200 .	
Well Number:	MW397
Well Number: Date Collected	MW397 Result
Well Number: Date Collected 8/13/2002	MW397 Result 14.000
Well Number: Date Collected 8/13/2002 9/16/2002	MW397 Result 14.000 12.800
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002	MW397 Result 14.000 12.800 12.300
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	MW397 Result 14.000 12.800 12.300 12.700

1/13/2004

Statistics on **Background Data**

X = 10.756S = 2.147CV = 0.200K factor** = 2.523 TL = 16.173

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

12.100

Well No.	Result	Gradient F	Result > TL?
MW370	18.000	Downgradient	YES
MW373	220.00	Downgradient	YES
MW385	19.000	Sidegradient	YES
MW388	22.000	Downgradient	YES
MW392	6.300	Downgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW370

MW373

MW385

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results D-79

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis LRGA Technetium-99 UNITS: LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	20.800
9/16/2002	16.200
10/16/2002	8.280
1/13/2003	13.000
4/10/2003	-9.370
7/16/2003	0.826
10/14/2003	14.100
1/13/2004	0.000
1/13/2001	0.000
Well Number:	MW397
1,10,200.	
Well Number:	MW397
Well Number: Date Collected	MW397 Result
Well Number: Date Collected 8/13/2002	MW397 Result 6.060
Well Number: Date Collected 8/13/2002 9/16/2002	MW397 Result 6.060 17.300
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002	MW397 Result 6.060 17.300 25.700
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	MW397 Result 6.060 17.300 25.700 20.900
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	MW397 Result 6.060 17.300 25.700 20.900 20.100
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003	MW397 Result 6.060 17.300 25.700 20.900 20.100 9.200

Statistics on Background Data

X= 11.359 S= 9.138 CV= 0.805 K factor** = 2.523 TL= 34.414

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient Resu	lt > TL?
MW370	33.200	Downgradient	NO
MW373	63.700	Downgradient	YES
MW385	179.00	Sidegradient	YES
MW388	118.00	Downgradient	YES
MW392	4.850	Downgradient	NO

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW373

MW385

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Total Organic Carbon (TOC) LRGA mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

MW395
Result
1.600
1.100
1.000
2.000
3.400
2.000
1.000
1.000
1.000
1.000 MW397
MW397
MW397 Result
MW397 Result 1.000
MW397 Result 1.000 1.000
MW397 Result 1.000 1.000 1.000
MW397 Result 1.000 1.000 1.000 3.600
MW397 Result 1.000 1.000 1.000 3.600 1.900

Statistics on Background Data

X= 1.544 S= 0.856 CV= 0.554 K factor** = 2.523 TL= 3.702

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient	Result > TL?
MW370	1.000	Downgradier	nt NO
MW373	1.000	Downgradier	nt NO
MW385	1.000	Sidegradient	NO
MW388	1.000	Downgradier	nt NO
MW392	1.400	Downgradier	nt NO

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Third Quarter 2013 Statistical Analysis Total Organic Halides (TOX) LRGA ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells

Well Number:	MW395
Date Collected	Result
8/13/2002	50.000
9/16/2002	50.000
10/16/2002	50.000
1/13/2003	18.300
4/10/2003	51.200
7/16/2003	42.600
10/14/2003	12.300
1/13/2004	10.000
Well Number:	MW397
Date Collected	Result
8/13/2002	50.000
9/16/2002	50.000
10/17/2002	50.000
1/13/2003	12.000
4/8/2003	19.900
7/16/2003	17.900
10/14/2003	10.000
1/13/2004	10.000

Statistics on Background Data

X= 31.513 S= 18.609 CV= 0.591 K factor** = 2.523 TL= 78.462

Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.

Third Quarter 2013 Data Collected in July 2013

Well No.	Result	Gradient I	Result $>$ TL?
MW370	16.000	Downgradien	t NO
MW373	22.000	Downgradien	t NO
MW385	14.000	Sidegradient	NO
MW388	24.000	Downgradien	t NO
MW392	81.000	Downgradien	t YES

Conclusion of Statistical Analysis on Data

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

October 16, 2013

Mr. Craig Jones LATA Environmental Services of Kentucky, LLC 761 Veterans Avenue Kevil, Kentucky 42053

Dear Mr. Jones:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Geologist, with a Bachelor of Science degree, I have over eight years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities.

For this project, the statistical analyses conducted on the third quarter 2013 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). For pH, an additional lower tolerance interval was established. For pH only, the test well data was compared to both the upper and lower tolerance intervals to determine if statistically significant deviations in concentration with respect to upgradient well exist.

Sincerely,

C. Travis Debnam

LATA Project Geologist

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

Facility: U.S. DOE, Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

GROUNDWATER FLOW RATE AND DIRECTION

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the third quarter 2013 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on August 5, 2013, with one make-up measurement on August 6. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 was dry.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill is 5.00×10^{-4} ft/ft. Additional water level measurements in August (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 3.41×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the Solid Waste Landfill Permit No. 073-00045 and range from 425 to 725 ft/day (0.150 to 0.256 m/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for August 2013, the groundwater flow direction in the immediate area of the landfill commonly varies slightly from regional trends; however, as groundwater flows away from the landfill, it eventually conforms to the regional flow direction.

_

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

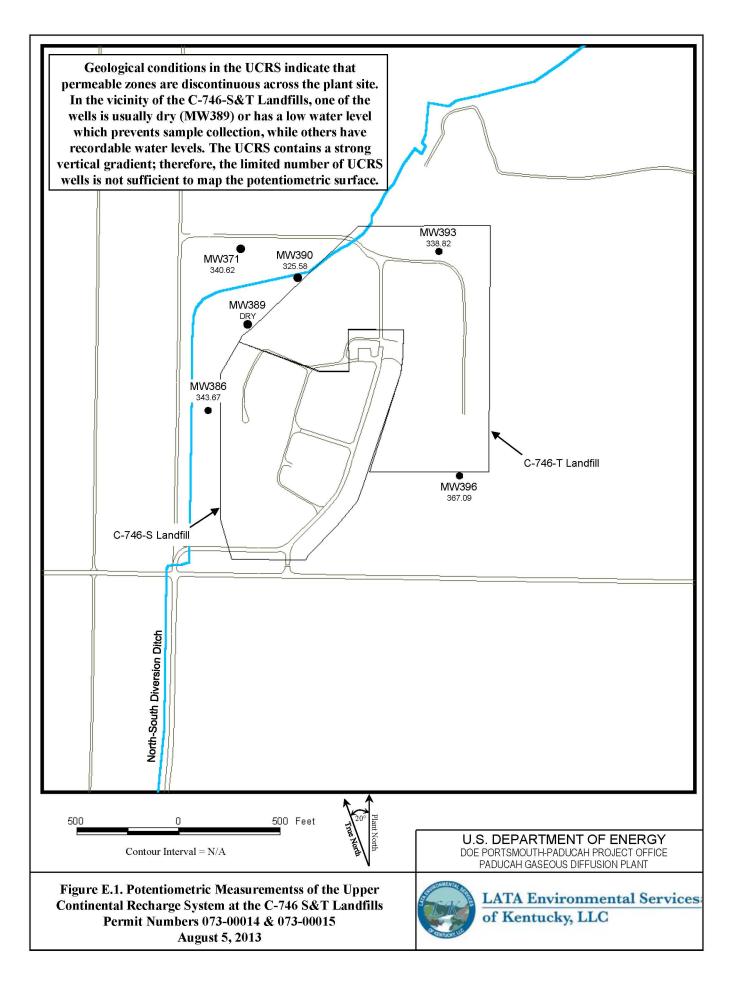


Table E.1. C-746-S&T Landfills Third Quarter 2013 (August) Water Levels

			C-746-S&	T Landfills (Aug	gust 2013) V	Vater Levels				
							Ra	w Data	*Corre	ected Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
8/5/2013	10:35	MW220	URGA	381.65	30.06	0.00	55.68	325.97	55.68	325.97
8/5/2013	10:23	MW221	URGA	391.14	30.06	0.00	65.20	325.94	65.20	325.94
8/5/2013	10:28	MW222	URGA	395.20	30.06	0.00	69.23	325.97	69.23	325.97
8/5/2013	10:25	MW223	URGA	394.34	30.06	0.00	68.40	325.94	68.40	325.94
8/5/2013	10:31	MW224	URGA	395.70	30.06	0.00	69.71	325.99	69.71	325.99
8/5/2013	10:39	MW225	URGA	385.86	30.06	0.00	59.84	326.02	59.84	326.02
8/5/2013	12:07	MW353	LRGA	374.97	30.06	0.00	49.28	325.69	49.28	325.69
8/5/2013	9:55	MW369	URGA	364.28	30.06	0.00	38.84	325.44	38.84	325.44
8/6/2013	10:05	MW370	LRGA	365.15	29.96	0.11	39.66	325.49	39.77	325.38
8/5/2013	9:53	MW371	UCRS	364.71	30.06	0.00	24.09	340.62	24.09	340.62
8/5/2013	9:47	MW372	URGA	359.49	30.06	0.00	34.01	325.48	34.01	325.48
8/5/2013	9:42	MW373	LRGA	359.79	30.06	0.00	34.33	325.46	34.33	325.46
8/5/2013	11:00	MW384	URGA	365.00	30.06	0.00	39.46	325.54	39.46	325.54
8/5/2013	11:06	MW385	LRGA	365.42	30.06	0.00	39.93	325.49	39.93	325.49
8/5/2013	11:03	MW386	UCRS	365.17	30.06	0.00	21.50	343.67	21.50	343.67
8/5/2013	10:56	MW387	URGA	363.21	30.06	0.00	37.65	325.56	37.65	325.56
8/5/2013	10:53	MW388	LRGA	363.18	30.06	0.00	37.63	325.55	37.63	325.55
8/5/2013	10:50	MW389	UCRS	363.81	30.06	0.00	Dry			
8/5/2013	10:44	MW390	UCRS	360.31	30.06	0.00	34.73	325.58	34.73	325.58
8/5/2013	10:02	MW391	URGA	366.51	30.06	0.00	40.91	325.60	40.91	325.60
8/5/2013	10:00	MW392	LRGA	365.63	30.06	0.00	40.05	325.58	40.05	325.58
8/5/2013	10:04	MW393	UCRS	366.64	30.06	0.00	27.82	338.82	27.82	338.82
8/5/2013	10:18	MW394	URGA	378.23	30.06	0.00	52.42	325.81	52.42	325.81
8/5/2013	10:13	MW395	LRGA	378.87	30.06	0.00	53.06	325.81	53.06	325.81
8/5/2013	10:16	MW396	UCRS	378.62	30.06	0.00	11.53	367.09	11.53	367.09
8/5/2013	10:21	MW397	LRGA	386.84	30.06	0.00	61.18	325.66	61.18	325.66

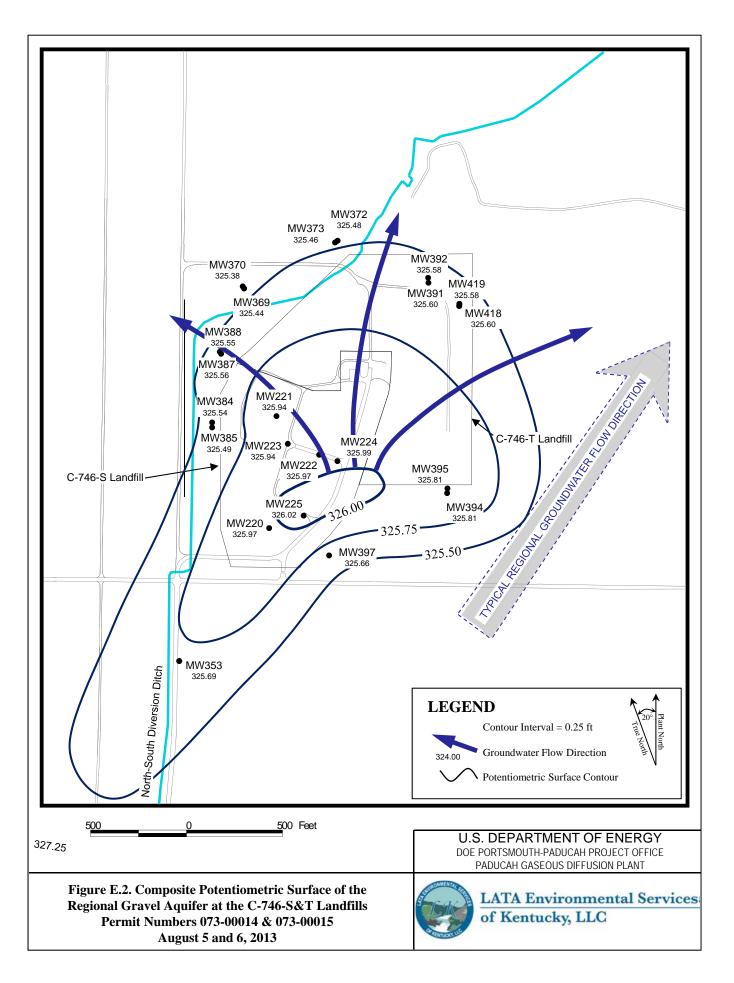
Initial Barometric Pressure

30.06

Elev = elevation

amsl = above mean sea level

BP = barometric pressure


DTW = depth to water in feet below datum

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

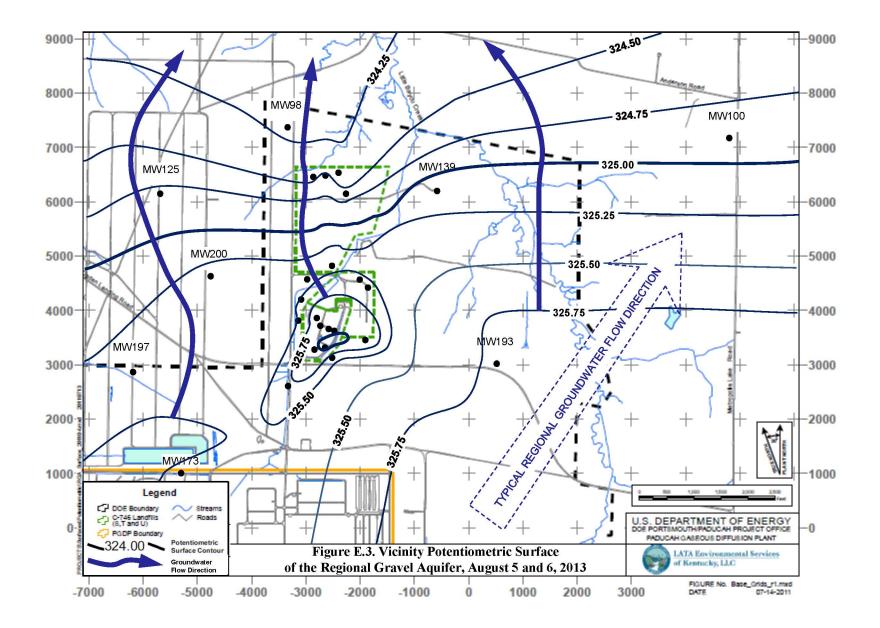


Table E2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	5.00×10^{-4}
Vicinity	3.41×10^{-4}

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific 1	Discharge (q)	Average	e Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Beneath Landfill	Mound				
725	0.256	0.36	1.28×10^{-4}	1.45	5.12×10^{-4}
425	0.150	0.21	7.49×10^{-5}	0.85	3.00×10^{-4}
<u>Vicinity</u>					
725	0.256	0.25	8.72 × 10 ⁻⁵	0.99	3.49×10^{-4}
425	0.150	0.14	5.11 × 10 ⁻⁵	0.58	2.04×10^{-4}

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The notification for parameters that had statistically significant increased concentrations relative to background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the third quarter 2013 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit Condition, GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician.

The following are the parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to background concentrations.

Parameter	Monitoring Well
Upper Continental Recharge System	
Technetium-99	MW390
Upper Regional Gravel Aquifer	
Technetium-99	MW372, MW384, MW387
Lower Regional Gravel Aquifer	
Technetium-99	MW373, MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, these radionuclides are being reported along with the parameters of this regulation.

MCL NOTIFICATION

A notification was submitted for parameters that exceeded the MCL. The parameters submitted are listed on the following page.

8/28/2013

LATA Environmental Services of Kentucky PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S and -T LANDFILLS PERMIT NUMBERS 073-00014 and 073-00015 MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4808	MW372	Beta activity	9310/RL7111	115	pCi/L	50
		Trichloroethene	8260B/OA7302E	7.3	ug/L	5
8004-4792	MW373	Beta activity	9310/RL7111	52.2	pCi/L	50
		Trichloroethene	8260B/OA7302E	7.6	ug/L	5
8004-4809	MW384	Beta activity	9310/RL7111	164	pCi/L	50
8004-4810	MW385	Beta activity	9310/RL7111	122	pCi/L	50
8004-4815	MW387	Data activity	9310/RL7111	249	nC:/l	50
6004-4615	IVIVV307	Beta activity	9310/RL/111	249	pCi/L	50
8004-4816	MW388	Beta activity	9310/RL7111	95.7	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B/OA7302E	9.1	ug/L	5
8004-4806	MW392	Trichloroethene	8260B/OA7302E	16	ug/L	5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES

Groundwater Flow System		UC	RS						U	RG	A							I	RG	A		
Gradient	S	D D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389 39	0 393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
1,2,3-TRICHLOROPROPAN	E																					
Quarter 2, 2009		*																				
ACETONE			•					•														
Quarter 3, 2003						*					*											
Quarter 4, 2003										*								*				
Quarter 1, 2005								*														
ALPHA ACTIVITY			•					•														
Quarter 4, 2002																						
Quarter 4, 2008																						
Quarter 4, 2010																						
ALUMINUM			•													_						-
Quarter 1, 2003		*				*					*	*	*									
Quarter 2, 2003		*				*						*	*									
Quarter 3, 2003		*				*	*					*	*									
Quarter 4, 2003						*	*			*			*									
Quarter 1, 2004		*				*	*			*												
Quarter 2, 2004						*							*									
Quarter 3, 2004						*							*									
Quarter 4, 2004		*																				
Quarter 1, 2005		*																				
Quarter 2, 2005		*				*																
Quarter 3, 2005		*				*			*											*		
Quarter 4, 2005		*				*				*												
Quarter 1, 2006						*						*										
Quarter 2, 2006		*				*																
Quarter 3, 2006						*																
Quarter 4, 2006		*				*																
Quarter 1, 2007						*										*						
Quarter 2, 2007						*										*						
Quarter 3, 2007						*																
Quarter 4, 2007						*																
Quarter 1, 2008						*							*									
Quarter 2, 2008										*												
Quarter 4, 2008						*																
Quarter 1, 2009		*				*				*												
Quarter 1, 2010		*				*				*												
Quarter 2, 2010		*								*												
Quarter 3, 2010		*								*			*			*			*			
Quarter 1, 2011						*				*												
Quarter 2, 2011		*								*												
Quarter 2, 2012		*																				
				1				1		l							1			l	l	

Groundwater Flow System		Ţ	JCR	S						U	RGA	4							I	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2012							*																
Quarter 1, 2013							*				*												
Quarter 3, 2013			*																				
BARIUM															<u> </u>								
Quarter 3, 2003																							
Quarter 4, 2003																							
BETA ACTIVITY				•																			
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 3, 2006																							
Quarter 4, 2006																							
Quarter 1, 2007																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							

Groundwater Flow System	I	Į	JCR	S						U	RGA	4							I	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
BROMIDE							ı		ı														
Quarter 1, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004	ĺ		*			Ī																	
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 3, 2006			*																				
CALCIUM						•				u u												u u	
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											
Quarter 3, 2003			*																				
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				

Groundwater Flow System		J	JCR	S						U	RG/	4							I	RGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*	\bigsqcup			
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
CARBON DISULFIDE																							
Quarter 4, 2010											*												
Quarter 1, 2011												*									*		
CHEMICAL OXYGEN DEMA	ND																						
Quarter 1, 2003				*																			
Quarter 2, 2003				*																			
Quarter 3, 2003				*			*			*													
Quarter 4, 2003				*																			
Quarter 1, 2004	*			*																			
Quarter 4, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*									*		*									*		
Quarter 4, 2005	*									*													
Quarter 1, 2006	*																			\vdash			
Quarter 2, 2006	*																			\vdash			
Quarter 3, 2006	*																			$\vdash \vdash$			
Quarter 3, 2000	**	<u> </u>																					<u> </u>

Groundwater Flow System		Ţ	JCR	S						U	RGA	A							I	RG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D		D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																						
Quarter 1, 2008	*																						
Quarter 2, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																			*			
Quarter 3, 2009	*																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																					<u></u>	
Quarter 2, 2010	*																						
Quarter 3, 2010	*																					<u></u>	
Quarter 4, 2010	*																					<u></u>	
Quarter 3, 2011	*																						
Quarter 4, 2011	*																					<u></u>	
Quarter 1, 2012	*																					<u></u>	
Quarter 1, 2013	*																					<u></u>	
Quarter 3, 2013	*																						
CHLORIDE							•					•	•							•			
Quarter 1, 2003			*																			<u></u>	
Quarter 2, 2003			*																				
Quarter 3, 2003			*																			<u></u>	
Quarter 4, 2003			*																			<u></u>	
Quarter 1, 2004			*																			<u></u>	
Quarter 2, 2004			*																			<u> </u>	
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*																				
Quarter 3, 2005			*																				
Quarter 4, 2005			*																				
Quarter 1, 2006																		*					
Quarter 2, 2006			*																				
Quarter 3, 2006			*																			<u></u>	

Groundwater Flow System		J	JCR	S						U	RGA	4							Ι	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*																				
Quarter 3, 2007			*																				
Quarter 4, 2007			*																				
Quarter 1, 2008			*																				
Quarter 2, 2008			*																				
Quarter 3, 2008	1		*																				
Quarter 4, 2008			*																				
Quarter 1, 2009			*																				
Quarter 2, 2009	1		*																				
Quarter 3, 2009	1		*																				
Quarter 4, 2009	1		*																				
Quarter 1, 2010	1		*																				
Quarter 2, 2010	1		*																				
	1		*																				
Quarter 3, 2010			*																				-
Quarter 4, 2010	1																						
Quarter 2, 2011			*																				
Quarter 3, 2011	-		*																				
Quarter 4, 2011			*																				
Quarter 3, 2012			*																				
Quarter 3, 2013			*																				
CHROMIUM	I	l		1			l										I						
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2009																							
COBALT	1	l		1			l <u>.</u>										1						
Quarter 3, 2003							*																
CONDUCTIVITY	1									*									*				
Quarter 4, 2002 Quarter 1, 2003			*							*									*				-
Quarter 2, 2003	1		*							*									*				\vdash
Quarter 3, 2003	f		*					*		*									*				
Quarter 4, 2003	t		*							*									*				
Quarter 1, 2004																			*				
Quarter 2, 2004										*									*				
Quarter 3, 2004	_									*									*				
Quarter 4, 2004	_		*							*		AP:							*				
Quarter 1, 2005										*		*							*				<u> </u>

Groundwater Flow System		Į	JCR	S						U	RGA	A							I	RGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2005												*							*				
Quarter 3, 2005																			*				
Quarter 4, 2005										*		*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006																	*		*				
Quarter 1, 2007												*							*				
Quarter 2, 2007																	*		*				
Quarter 3, 2007																	*		*				
Quarter 4, 2007												*					*		*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*					*		*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*							*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*	${igspace}$			
Quarter 1, 2013												*							*	${igspace}$			<u> </u>
Quarter 2, 2013						_						*							*				
Quarter 3, 2013												*							*	Ш			<u> </u>
DISSOLVED OXYGEN			*				1	*	1														
Quarter 3, 2006 DISSOLVED SOLIDS			不					不												ш			
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*	$\mid \rightarrow \mid$			
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				
Quarter 1, 2004			*									*							*				
Quarter 2, 2004										*		*							*				
~ /							I	1	ı											ш		l	L

Groundwater Flow System		J	JCR	S						U	RGA	A							L	RGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2004										*		*							*				
Quarter 4, 2004										*		*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006																	*	*	*	*	*		
Quarter 4, 2006										*		*					*		*				
Quarter 1, 2007																			*				
Quarter 2, 2007										*		*							*				
Quarter 3, 2007										*		*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008										*		*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*	*						*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	*						*				
Quarter 1, 2010												*	*						*				
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010										*		*							*				
Quarter 4, 2010										*		*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*	*						*				
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013										*		*							*			L	
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
IODIDE																							
Quarter 4, 2002																					*		

Groundwater Flow System		J	JCR	S						U	RGA	4							L	RGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2003						*																	
Quarter 3, 2003													*										
Quarter 1, 2004				*																			
Quarter 3, 2010																					*		
Quarter 2, 2013										*													
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007											*												
Quarter 2, 2008												*											
Quarter 3, 2008												*											
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				

Groundwater Flow System		J	JCR	S						U	RGA	A							L	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*	*						*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
MANGANESE			1				1	1	1														
Quarter 4, 2002																					*		
Quarter 3, 2003							*	*															
Quarter 4, 2003							*	*															
Quarter 1, 2004							*																
Quarter 2, 2004							*																
Quarter 4, 2004							*	*															
Quarter 1, 2005							*																
Quarter 3, 2005																					*		
Quarter 3, 2009	*																						

Groundwater Flow System		Ţ	JCR	S						U	RG	A							L	RG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
OXIDATION-REDUCTION	POT	ENT	IAI	L																			
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				
Quarter 2, 2006			*																				
Quarter 3, 2006			*															*					
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*				*																
Quarter 3, 2007			*				*																
Quarter 4, 2007			*																				
Quarter 1, 2008			*			*			*														
Quarter 2, 2008	*		*	*		*							*				*		*	*			
Quarter 3, 2008			*	*		*							*				*		*	*			
Quarter 4, 2008			*	*		*	*	*	*				*				*	*		*			
Quarter 1, 2009			*				*	*	*				*	*				*		*			
Quarter 3, 2009			*	*		*											*	*	*	*			
Quarter 4, 2009			*			*			*									*		*			
Quarter 1, 2010	*		*																	*			
Quarter 2, 2010	*		*	*					*				*				*	*		*			
Quarter 3, 2010	*		*	*		*											*	*	*	*			
Quarter 4, 2010			*					*			*			*			*	*	*	*			
Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 3, 2011	*		*	*			*		*		*		*				*	*	*	*			
Quarter 4, 2011	*		*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2013				*		*		*	*		*		*	*				*		*	*		
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			

Groundwater Flow System		Ţ	JCR	.S						U	RG	4							Ι	RG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
PCB, 1016																							
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004											*												
Quarter 3, 2005							*				*												
Quarter 1, 2006											*												
Quarter 2, 2006											*												
Quarter 4, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007												*											
Quarter 3, 2007											*												
Quarter 2, 2008											*	*											
Quarter 3, 2008											*												
Quarter 4, 2008											*												
Quarter 1, 2009											*												
Quarter 2, 2009											*												
Quarter 3, 2009											*												
Quarter 4, 2009											*												
Quarter 1, 2010											*												
Quarter 2, 2010											*												
Quarter 3, 2010											*												
Quarter 4, 2010											*												
PCB-1232			•									•			•							•	
Quarter 1, 2011											*												
PCB-1248				1								1			1			1	1			1	1
Quarter 2, 2008												*											
PCB-1260		1		1								1			1			1	1			1	1
Quarter 2, 2006																		*					
pН				1					ı									ı	1	1			1
Quarter 4, 2002																	*						
Quarter 2, 2003																	*						
Quarter 3, 2003																	*						
Quarter 4, 2003							*										*						
Quarter 1, 2004							*										*						
Quarter 2, 2004																	*						
Quarter 3, 2004																	*						
Quarter 4, 2004																	*						
Quarter 3, 2005										*							*				*		

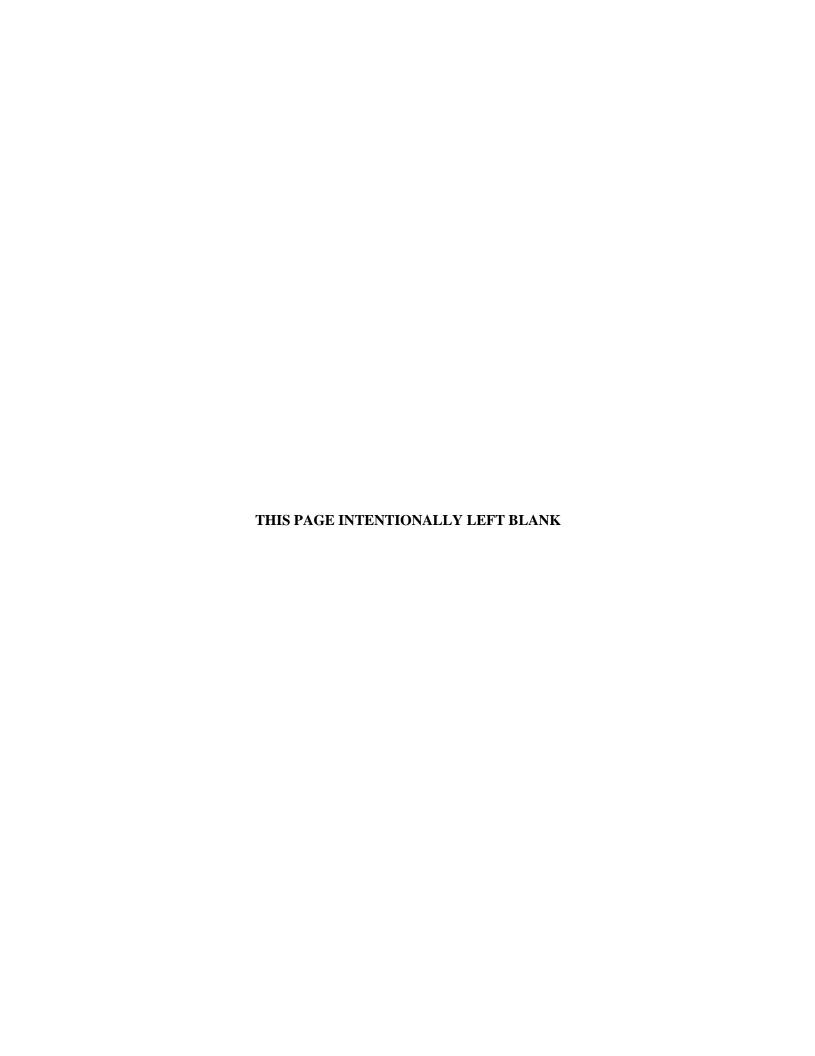
Groundwater Flow System		J	JCR	S						U	RGA	4							I	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2005										*							*						
Quarter 1, 2006																	*						
Quarter 2, 2006																	*						
Quarter 3, 2006																	*						
Quarter 3, 2007																	*						
Quarter 4, 2007																	*						
Quarter 4, 2008																	*						
Quarter 1, 2009																	*						
Quarter 1, 2011																	*						
Quarter 2, 2011											*												
Quarter 3, 2011											*												
Quarter 1, 2012														*									
Quarter 1, 2013										*			*				*						
POTASSIUM							1			1									1				
Quarter 4, 2002																		*	*				
Quarter 3, 2004																			*				
Quarter 2, 2005																			*				
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				
Quarter 3, 2006																			*				
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				
Quarter 1, 2013																			*				
Quarter 2, 2013																			*				
Quarter 3, 2013																			*				
RADIUM-226																							
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004																			*				
Quarter 2, 2005									*														
Quarter 1, 2009											*												
RADIUM-228							•												•	•			
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							

Grantient Mountoring Well 386 389 390 393 396 221 222 223 224 384 369 372 387 391 203 394 385 370 388 392 395	Groundwater Flow System		Ţ	JCR	S						U	RG	A							L	RG	A		
SELENIUM Quarter 4, 2002	Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 3, 2004 Quarter 4, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 5, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 5, 2006 Quarter 5, 2006 Quarter 6, 2006 Quarter 1, 2006 Quarter 7, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010	SELENIUM																							
Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2009 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2010	Quarter 4, 2002																							
Quarter 3, 2003 Quarter 4, 2003 SODIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 2, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2009 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010	Quarter 1, 2003																							
Quarter 4, 2003	Quarter 2, 2003																							
SODIUM Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010	Quarter 3, 2003																							
Quarter 4, 2002	Quarter 4, 2003																							
Quarter 1, 2003	SODIUM																							
Quarter 2, 2003 *	Quarter 4, 2002																			*		*		
Quarter 3, 2003 * * * * * <td>Quarter 1, 2003</td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td>*</td> <td></td>	Quarter 1, 2003				*					*	*	*												
Quarter 4, 2003 * * * * * * * * * * * *	Quarter 2, 2003				*						*	*		*										
Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010	Quarter 3, 2003							*	*		*													
Quarter 2, 2004	Quarter 4, 2003							*		*	*													
Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010	Quarter 1, 2004									*	*				*									
Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010	Quarter 2, 2004										*													
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010	Quarter 3, 2004										*													
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010	Quarter 4, 2004									*	*													
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 ** ** ** ** ** ** ** ** **	Quarter 1, 2005										*									*				
Quarter 4, 2005 * * * Quarter 1, 2006 * * * Quarter 2, 2006 * * * Quarter 3, 2006 * * * Quarter 4, 2006 * * * Quarter 1, 2007 * * * Quarter 2, 2007 * * * Quarter 3, 2007 * * Quarter 4, 2007 * * Quarter 1, 2008 * * Quarter 3, 2008 * * * Quarter 4, 2009 * * * Quarter 3, 2009 * * * Quarter 4, 2009 * * * Quarter 1, 2010 * * * Quarter 2, 2010 * * * Quarter 3, 2010 * * *	Quarter 2, 2005										*									*				
Quarter 1, 2006 ** ** * ** * ** <td>Quarter 3, 2005</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td>	Quarter 3, 2005									*	*									*				
Quarter 2, 2006 *	Quarter 4, 2005									*	*													
Quarter 3, 2006 * * * * * * * * * * * * * * * * * * *	Quarter 1, 2006									*	*													
Quarter 4, 2006 * * * * * * * * * * * * * * * * * * * * * * * * * * * *	Quarter 2, 2006									*														
Quarter 1, 2007 * * * * * * * *	Quarter 3, 2006									*	*		*							*				
Quarter 2, 2007 * * *	Quarter 4, 2006									*	*							*						
Quarter 3, 2007 * *	Quarter 1, 2007									*			*											
Quarter 4, 2007 * *	Quarter 2, 2007									*	*													
Quarter 1, 2008 * *	Quarter 3, 2007									*														
Quarter 3, 2008 * * *	Quarter 4, 2007									*														
Quarter 4, 2008 * * *	Quarter 1, 2008									*														
Quarter 1, 2009 * * * * Quarter 3, 2009 * * * * Quarter 4, 2009 * * * * Quarter 1, 2010 * * * * Quarter 2, 2010 * * * * Quarter 3, 2010 * * * *	Quarter 3, 2008												*											
Quarter 3, 2009 * * * Quarter 4, 2009 * * * Quarter 1, 2010 * * * Quarter 2, 2010 * * * Quarter 3, 2010 * * *	Quarter 4, 2008	Ī								*	*													
Quarter 4, 2009 * * * Quarter 1, 2010 * * * Quarter 2, 2010 * * * Quarter 3, 2010 * * *	Quarter 1, 2009									*			*							*				
Quarter 1, 2010 * Quarter 2, 2010 * Quarter 3, 2010 *		Ī											*											
Quarter 2, 2010 * * * Quarter 3, 2010 * * *	Quarter 4, 2009	Ī								*			*											
Quarter 2, 2010 * * * Quarter 3, 2010 * * *	Quarter 1, 2010	Ī											*											
		Ī									*		*											
Ouarter 4, 2010	Quarter 3, 2010	Ī									*													
	Quarter 4, 2010	Ī								*	*													

Groundwater Flow System		Ţ	JCR	S						U	RGA	Α							Ι	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2011										*													
Quarter 2, 2011									*														
Quarter 4, 2011																			*				
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*											
Quarter 1, 2013										*		*							*				
Quarter 2, 2013										-		*											
Quarter 3, 2013												*							*				
STRONTIUM-90												Т							Т				
							l		l				l	l									
Quarter 2, 2003										_													
Quarter 1, 2004																							
SULFATE		1					ı		1				1	ı				ı					
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*					ale.	*				
Quarter 1, 2004										*		*	*				4	*	*	4			
Quarter 2, 2004									*	*		*	*				*	*	*	*			
Quarter 3, 2004 Quarter 4, 2004									不	*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 1, 2005 Quarter 2, 2005										*		*	*				<u> </u>	*	*				
Quarter 3, 2005										*		*	*				*	*	*				
Quarter 4, 2005										*		*	*				*	*	*	*			
Quarter 1, 2006										*		*	*				*	*	*	*			
Quarter 2, 2006									*	*		*	*				*	*	*	*			
Quarter 3, 2006									*	*		*	*				*	<u>~</u>	*	*			
Quarter 4, 2006									*	*		*	*				*		*	т-			
Quarter 1, 2007									*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*				*		*	*			
Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 4, 2007									*	*		*	*				*	*	*	*			
Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*	·••	*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009									*	*		*	*				*	*	*	*			
Quarter 5, 2007		<u> </u>					<u> </u>		٠٣	717		**	*P	<u> </u>			٠r	٠,٢	٠٣	70			

Chart of MCL Exceedances and Statistical Increases for C-746-S&T Landfills

Groundwater Flow System		J	JCR	S						U	RGA	A							L	RG	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2009	*									*		*	*				*	*	*				
Quarter 1, 2010	*								*	*		*	*				*		*				
Quarter 2, 2010									*	*		*	*				*	*	*	*			
Quarter 3, 2010										*		*	*				*	*	*	*			
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011	*									*		*	*				*	*	*				
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			
Quarter 4, 2011	*									*		*	*				*	*	*	*			
Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 2, 2012	*									*		*	*				*	*	*	*			
Quarter 3, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012										*		*	*				*	*	*	*			
Quarter 1, 2013										*		*	*				*	*	*	*			
Quarter 2, 2013										*		*	*	*			*	*	*	*			
Quarter 3, 2013										*		*	*	*			*	*	*	*			
TECHNETIUM-99								1											ı				
Quarter 4, 2002																			*				
Quarter 1, 2003													*				*		*				
Quarter 2, 2003	*		*							*			*				*						
Quarter 3, 2003			*										*				*			*			
Quarter 4, 2003			*							*		*	*				*		*	*			
Quarter 1, 2004			*									*	*				*		*				
Quarter 2, 2004			*									*	*				*		*	*			
Quarter 3, 2004			*							Ala.		*	Ala.				*	Ala.	*				
Quarter 4, 2004			*							*		*	*				*	*	*	414			
Quarter 1, 2005			*							*		*	*				*	414		*			
Quarter 2, 2005			*							*			*				*	*	*	*			
Quarter 3, 2005	-		*							*			*				*	*	*	*			
Quarter 4, 2005	-		*							*		*	*				*		*	*			
Quarter 1, 2006			_							*		*	*					_	*	*			
Quarter 2, 2006			*							*			*				*	*	*	*			
Quarter 3, 2006	!		*							*		_	*				*	*	*	*			
Quarter 4, 2006	*		_							*		*	*						*	*			
Quarter 1, 2007			*							*		_	*				*		*	*			
Quarter 2, 2007	1		*							*		*	*				*	*		*			
Quarter 3, 2007	1		*							*	*	*	*				*		*	*			
Quarter 4, 2007	_		*							*		*	*				*		*	*			
Quarter 1, 2008	_		*							*		*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*	_	-	


Groundwater Flow System		J	JCR	.S_						U	RGA	4							L	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2009			*							*		*	*				*						
Quarter 2, 2009			*							*		*	*				*	*		*			
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*							*		*	*				*						
Quarter 1, 2010			*							*		*	*				*						
Quarter 2, 2010			*							*			*				*	*		*			
Quarter 3, 2010			*							*	*	*	*				*						
Quarter 4, 2010			*							*		*	*				*						
Quarter 1, 2011										*			*				*						
Quarter 2, 2011			*							*			*				*			*			
Quarter 3, 2011			*							*			*				*			*			
Quarter 4, 2011			*							*	*	*	*				*						
Quarter 1, 2012			*							*			*				*			*			
Quarter 2, 2012			*							*			*				*		*	*			
Quarter 3, 2012			*							*		*	*				*						
Quarter 4, 2012										*		*	*				*		*	*			
Quarter 1, 2013										*			*				*		*	*			
Quarter 2, 2013										*		*	*				*		*	*			
Quarter 3, 2013			*							*		*	*				*		*	*			
THORIUM-230																							
Quarter 1, 2012	*								*					*									
THORIUM-234																							
Quarter 2, 2003						*			*					*									
Quarter 4, 2007									*														
TOTAL ORGANIC CARBON																							
Quarter 4, 2002																					*		
Quarter 1, 2003				*						*	*							*	*		*		
Quarter 2, 2003										*	*		*								*		
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003							*		*	*													
Quarter 1, 2004										*													
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005										*													
Quarter 2, 2005										*											*		
Quarter 3, 2005										*		*									*		
Quarter 4, 2005										*											*		

Groundwater Flow System		J	JCR	.S						U	RGA	4							L	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2006										*													
Quarter 2, 2006										*		*											
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 3, 2007	*					*	*	*	*	*			*	*			*						
Quarter 2, 2011											*												
Quarter 3, 2012	*																						
TOTAL ORGANIC HALIDES			l																				
Quarter 4, 2002																		*	*		*		
Quarter 1, 2003				*														*			*		
Quarter 3, 2003	l			*																	*		
Quarter 2, 2004																					*		
Quarter 3, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*																						
Quarter 4, 2005	*																						
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*																						
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																				*		
Quarter 1, 2008	*																						
Quarter 1, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																				*		
Quarter 3, 2009	*																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																					<u> </u>	
Quarter 2, 2010	*																					<u> </u>	
Quarter 3, 2010	*																					<u> </u>	
Quarter 4, 2010	*																					<u> </u>	<u> </u>
Quarter 1, 2011	*																					<u> </u>	<u> </u>
Quarter 3, 2013																					*		<u></u>
TRICHLOROETHENE		1					ı					,	1	1 0				1		,			
Quarter 4, 2002																							

Groundwater Flow System		Į	JCR	S						U.	RGA	4							I	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006	Ĺ																						
Quarter 2, 2006																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
TURBIDITY																							
Quarter 4, 2002																					*		

Groundwater Flow System		1	JCR	.S						U	RG	A							Ι	.RG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														
* Statistical test	result	ts inc	licat	e an	elev	ated	conc	entr	atio	ı (i.e	., a s	statis	stical	ly si	ignif	ican	t inc	rease	e)				
■ MCL Exceeda	nce																						
UCRS Upper Contine	CRS Upper Continental Recharge System																						
URGA Upper Regional Gravel Aquifer																							
LRGA Lower Region	al Gra	avel	Aqu	ifer																			
S Sidegradient;			D)	D	own	grad	ient;			Ţ	IJ	Ţ	Upgı	radie	ent							

APPENDIX H METHANE MONITORING DATA

C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	09/18/2013					7	Γime	ime: 13:45 Monitor							:	Tammy Smith				
Weather Conditions: Partly sunny and very dry at 86 degrees																				
Monitoring Equipment: Innova LS																				
Monitoring Location Reading (% LEL)																				
Ogden Landir Road Entrand	ng :e	Cho	Checked at ground level												0					
North Landfill	Gate	Che	Checked at ground level												0					
West Side of Landfill: North 37° (West 88° 4		Checked at ground level											0							
East Side of Landfill: North 37° 0 West 88° 4	7.628		Checked at ground level											0						
Cell 1 Gas Ve	nt (17)	1	2 0	3 0	4 0	5 0	6 0	7 0	8 0	9	10 0	11 0	12 0	13 0	14 0	15 0	16		17 0	0
Cell 2 Gas Ve	ent (3)	1	2 0	3 0								•								0
Cell 3 Gas Ve	ent (7)	1 0												0						
Landfill		Che	Checked at floor level												18 9-18-13					
Suspect or Pro	oblem Areas	No a	areas	s note	ed															18 9-18-13
Remarks: ALL VENTS	CHEC	KEC) 1'	FRC	OM N	/OU	ITH	OF	VEI	٧T									10	
Performed by	Performed by: Samuel Sumth 918-13																			
					Sig	nati				JM	wi,	<u> </u>							<i>F1</i>	<i>18-/3</i> Date

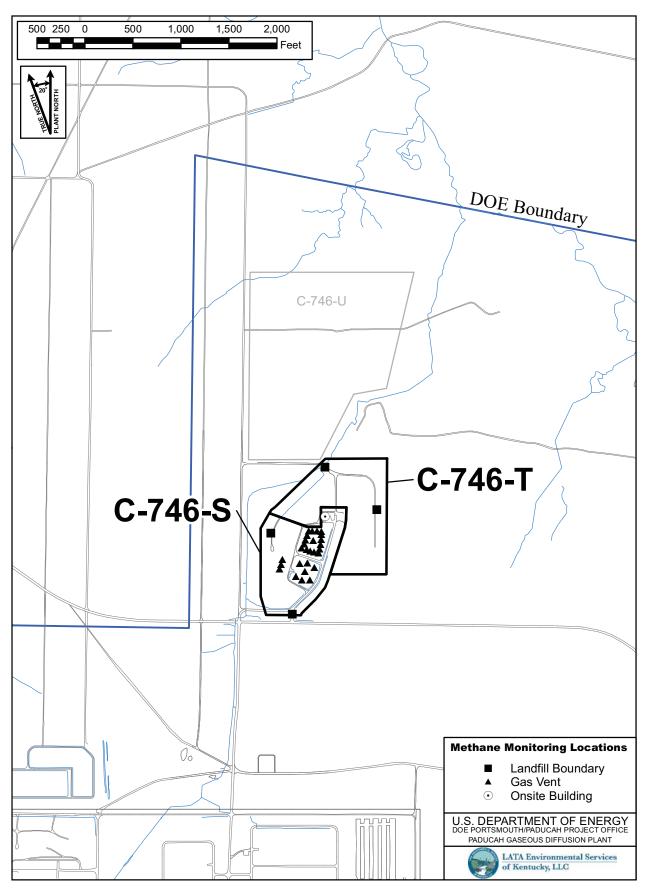
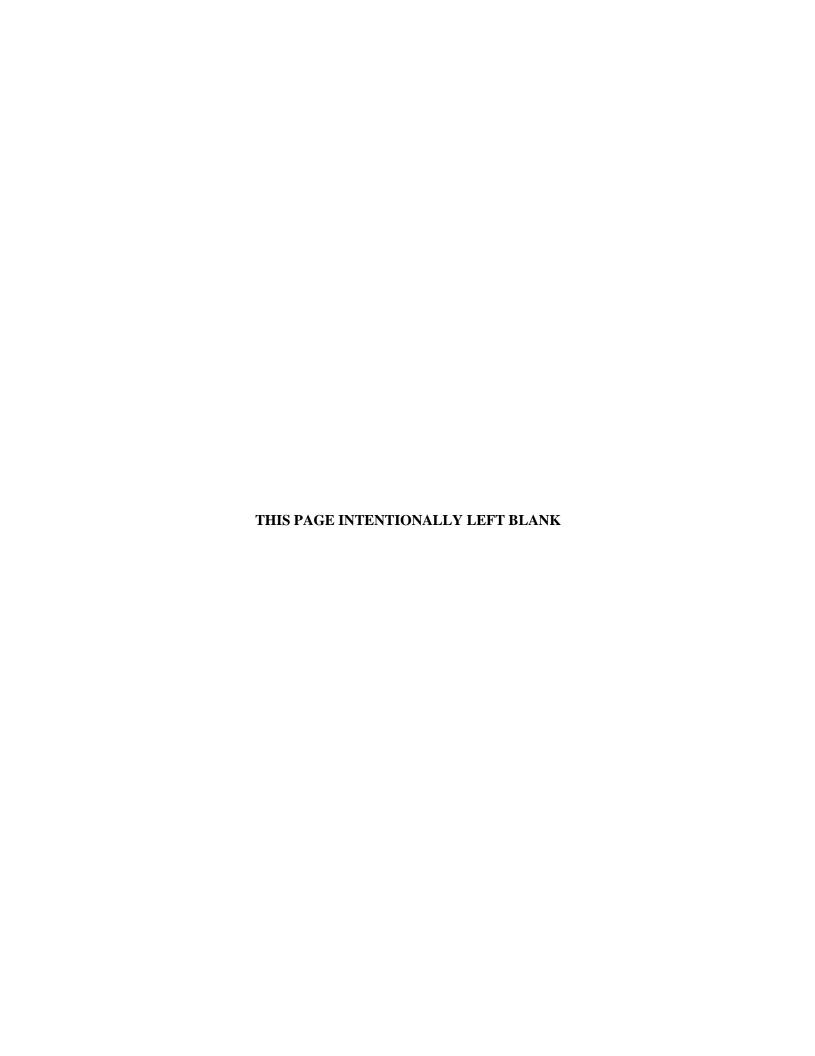



Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I SURFACE WATER MONITORING DATA

Division of Waste Management RE

RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

Frankfort, KY 40601 (502)564-6716

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Po	int	(KPDES Discharge Number, or "U	REAM", or "D	L135 UPSTREAM		L154 DOWNSTI	REAM	L136 AT SIT	E	٨			
Sample Seque	nce	#		1		1		1					
If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment								NA		NA			
Sample Date a	and	Time (Month/Day/Year hour: m	8/7/2013 09:	45	8/7/2013 09:	25	NA			-			
Duplicate ("	Y" (or "N")1	N		N		N			T			
Split ('Y' o	r "1	N") ²				N		N		N			
Facility Sam	ple	ID Number (if applicable)		L135SS4-1	3	L154US4-1	3	NA					
Laboratory Sa	amp.	le ID Number (if applicable)		C132190190	03	C132240250	01	NA		\ /			
Date of Analy	Date of Analysis (Month/Day/Year)							9/3/2013		NA			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DET ECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL	F L A G
A200-00-0	0	Flow	Т	MGD	Field	0.08		0.21			*		
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	2.3		2.3			*		
14808-79-8	0	Sulfate	Т	MG/L	300.0	5.1		4			*		
7439-89-6	0	Iron	Т	MG/L	200.7 R3.3	1.17		0.997			*		\setminus
7440-23-5	0	Sodium	Т	MG/L	200.7 R3.3	1.65		1.26			*		$ \cdot $
s0268	0	Organic Carbon ⁶	Т	MG/L	9060	14.7	*D	14.4	*D		*		
s0097	0	BOD ⁶	Т	MG/L	not applicable		*		*		*		
s0130	0 Chemical Oxygen Demand T MG/L 410.4				38		<36			*			

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{4&}quot;T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015

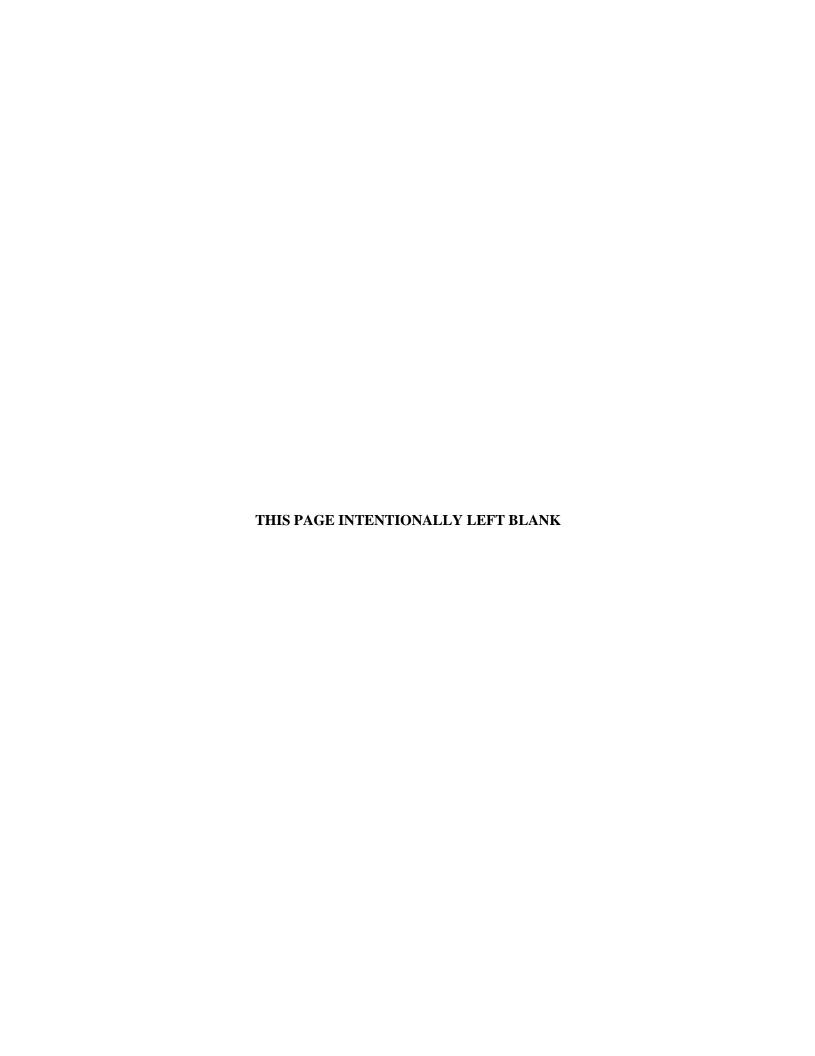
FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	: (KPDES Discharge Number, or	L135 UPSTRE	EAM	L154 DOWNSTRE	AM	L136 AT S	ITE	\				
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED F VALUE L OR A PQL ⁵ G S ⁷
s0145	1	Specific Conductance	Т	µнмѕ/см	Field	138		113			*	
s0270	0	Total Suspended Solids	т	MG/L	160.1	35	*	<20	*		*	/ /
s0266	0	Total Dissolved Solids	т	MG/L	160.2	119		98			*	\ /
s0269	0	Total Solids	Т	MG/L	160.3	140		110			*	
s0296	0	рН	Т	Units	Field	8.36		8.23			*	\ /
7440-61-1		Uranium	т	MG/L	IN7105	0.00218		0.00101			*	\ /
12587-46-1		Gross Alpha (α)	т	pCi/L	900.0	3.51	*	2.34	*		*	V
12587-47-2		Gross Beta (β)	Т	pCi/L	900.0	16	*	10.9	*		*	\setminus
												/\
												/
												/
												1

RESIDENTIAL/INERT – QUARTERLY


Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 & 073-00015

Finds/Un	it: <u>KY8-890-008-982 / 1</u>	_						
LAB ID:_	None							
For Official Use Only								

SURFACE WATER WRITTEN COMMENTS

Monitorino Point	g Facility Sample ID	Constituent	Flag	Description
L135	L135SS4-13	Total Organic Carbon (TOC)	Υ	MS,MSD recovery and/or RPD failed acceptance criteria.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.54. Rad error is 1.41.
		Beta activity		TPU is 2.74. Rad error is 2.15.
L154	L154US4-13	Total Organic Carbon (TOC)	Υ	MS,MSD recovery and/or RPD failed acceptance criteria.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.939. Rad error is 0.816.
		Beta activity		TPU is 1.77. Rad error is 1.31.

