PAD-ENM-0085/V2

ß

C-746-S&T Landfills Second Quarter Calendar Year 2013 (April–June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public relea	se per review by:
TIL	8-22-13
LATA Kentucky Classification Support	Date

PAD-ENM-0085/V2

C-746-S&T Landfills Second Quarter Calendar Year 2013 (April–June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—August 2013

Prepared for the U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC managing the Environmental Remediation Activities at the Paducah Gaseous Diffusion Plant under contract DE-AC30-10CC40020

FIGURES	iv
TABLES	iv
ACRONYMS	
1.1 BACK 1.2 MONI 1.2.1 1.2.2 1.2.3 1.2.4	TION1GROUND1FORING PERIOD ACTIVITIES1Groundwater Monitoring1Methane Monitoring2Surface Water Monitoring2Annual Leachate Monitoring5ESULTS5
2. DATA EVAL	UATION/STATISTICAL SYNOPSIS
3. DATA VALID	PATION9
4. PROFESSION	AL GEOLOGIST AUTHORIZATION
5. REFERENCES	5
APPENDIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORMA-1
APPENDIX B:	FACILITY INFORMATION SHEET
APPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS C-1
APPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENTD-1
APPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION E-1
APPENDIX F:	NOTIFICATIONS
APPENDIX G:	CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES
APPENDIX H:	METHANE MONITORING DATAH-1
APPENDIX I:	SURFACE WATER MONITORING DATAI-1
APPENDIX J:	ANNUAL LEACHATE MONITORING DATA

CONTENTS

FIGURES

1.	Groundwater Monitoring Well Network for the C-746-S&T Landfills
2.	C-746-S&T Landfill Surface Water Monitoring Locations

TABLES

1.	Summary of MCL Exceedances	. 5
	Summary of Statistically ly Significant Increases	
	Monitoring Wells Included Historically in Statistical Analysis	

ACRONYMS

CFR	Code of Federal Regulations
EPA	U.S. Environmental Protection Agency
KAR	Kentucky Administrative Regulations
KDWM	Kentucky Division of Waste Management
LEL	lower explosive limit
LRGA	Lower Regional Gravel Aquifer
MCL	maximum contaminant level
MW	monitoring well
PGDP	Paducah Gaseous Diffusion Plant
RGA	Regional Gravel Aquifer
UCRS	Upper Continental Recharge System
URGA	Upper Regional Gravel Aquifer

1. INTRODUCTION

This report, C-746-S&T Landfills Second Quarter Calendar Year 2013 (April–June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number 073-00014 for the C-746-S Residential Landfill and Permit Number 073-00015 for the C-746-T Inert Landfill.

The groundwater, surface water, leachate, and methane monitoring sample data reporting form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) groundwater reporting forms, which are presented in Appendix C. The total metals results reported in Appendix C are measured in an unfiltered sample, as required by Permit Condition GSTR0003, Standard Requirement 4. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determination are provided in Appendix E. Appendix F contains the notifications for parameters that exceed the maximum contaminant level (MCL) and for all parameters that had statistically significant increased concentrations relative to background concentrations, including those parameters listed in 40 *CFR* § 302.4, Appendix A. Appendix G provides a chart of MCL exceedances and statistically significant increases that have occurred, beginning in the fourth quarter calendar year 2002. Methane monitoring results are documented on the approved C-746-S&T Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 *KAR* 48:090 § 4. Appendix I contains the surface water monitoring data. Appendix J contains the annual leachate data, as required by landfill permit condition ACTV0004, Special Condition 3.

1.1 BACKGROUND

The C-746-S&T Landfills are closed solid waste landfills located north of the Paducah Gaseous Diffusion Plant (PGDP) and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a cover of compacted soil. The C-746-S Landfill was a sanitary landfill for PGDP. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from PGDP. The C-746-T Landfill is closed and has been inactive since June 1992.

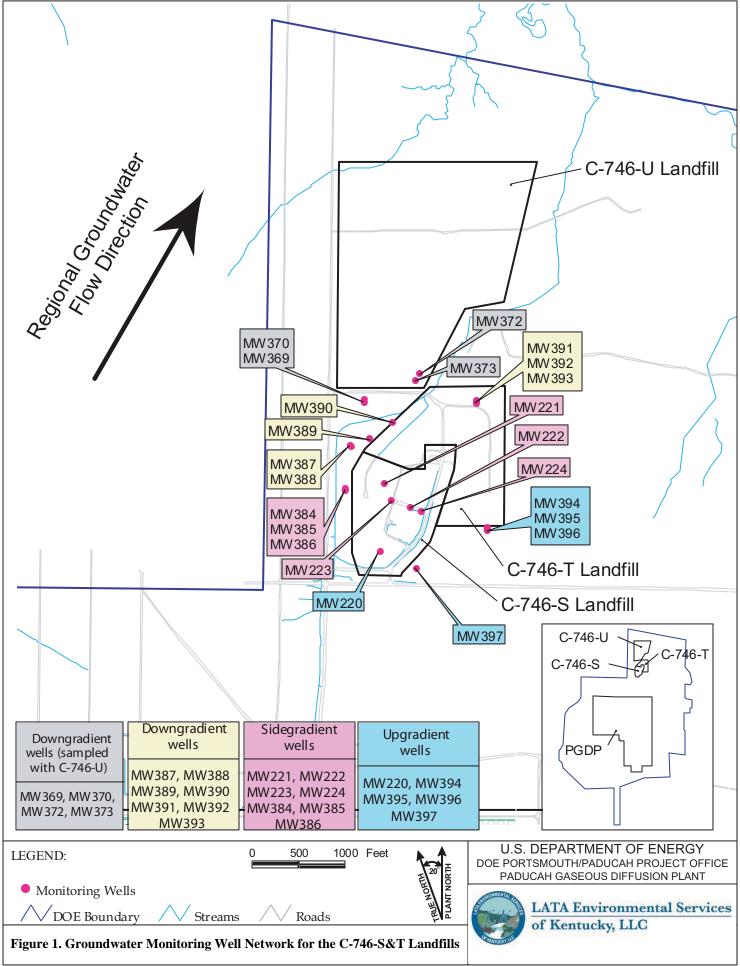
1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Groundwater sampling was conducted within the second quarter 2013 during April using LATA Environmental Services of Kentucky, LLC, procedure PAD-ENM-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratories that performed analysis used U.S. Environmental Protection Agency (EPA)-approved methods, as applicable.

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the monitoring well locations is presented in Figure 1. All MWs were sampled this quarter except 2. MW389 and MW390, screened in the UCRS, had an insufficient amount of water to obtain samples this quarter; therefore, there are no analytical results for these locations. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water measurements were collected on April 16, 2013, in MWs of the C-746-S&T Landfills (see Table E.1), in MWs of the C-746-U Landfill, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 35 vicinity wells define the potentiometric surface for the Regional Gravel Aquifer (RGA).¹ As in previous quarters, a groundwater mound under the C-746-S&T Landfills resulted in radial flow away from the landfill area. Normal regional flow in the RGA is northeastward, toward the Ohio River. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in April was 2.62×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 6.20×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 1.05 to 1.80 ft/day (see Table E.3). The mound is an area of high hydraulic potential in the RGA that approximately mirrors the land topography in the area of the landfill.


1.2.2 Methane Monitoring

Landfill operations staff monitored for the occurrence of methane on June 11, 2013, in 1 on-site building location, 4 locations along the landfill boundary, and 27 gas-passive vents located in Cells 1, 2, and 3 of the C-746-S Landfill. See Appendix H for a map of the monitoring locations. No potential gas problem areas (i.e., suspect or problem areas) were identified. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the approved C-746-S&T Landfill Methane Monitoring Report form provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was conducted on April 11 and May 21, 2013, using LATA Environmental Services of Kentucky, LLC, procedure PAD-ENM-2203, *Surface Water Sampling*. Appropriate sample containers and preservatives were utilized. The laboratories that performed analysis used EPA-approved methods, as applicable. The landfills have an upgradient location, L135; a downgradient location, L154; and a location capturing runoff from the landfill surface, L136. A map of the surface water monitoring locations is presented in Figure 2. Surface water was monitored as specified in 401 *KAR* 48:300 § 2, and the approved surface water monitoring plan. The parameters identified in the Solid Waste Landfill Permit were analyzed for the three locations sampled for reporting only, pursuant to Permit Condition GMNP0003, Standard Requirement 1.

¹ Although depth-to-water is measured in the UCRS wells, the UCRS has a strong vertical hydraulic gradient that varies locally. The UCRS wells are screened over different elevations; therefore, the UCRS well measurements are not sufficient for mapping the potentiometric surface.

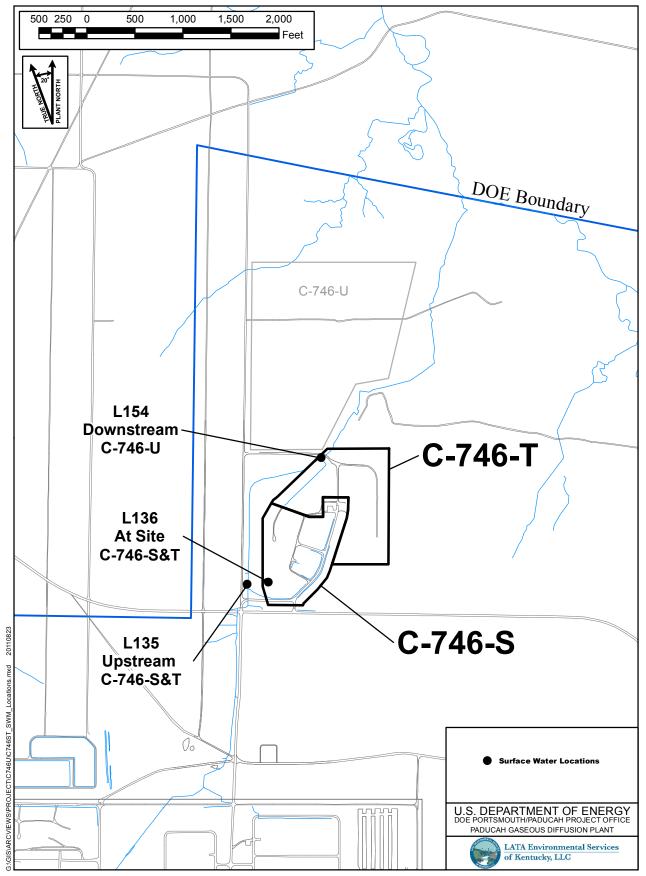


Figure 2. C-746-S&T Landfill Surface Water Monitoring Locations

1.2.4 Annual Leachate Monitoring

C-746-S Landfill leachate was tested on April 17, 2013, pursuant to Permit ACTV0004, Special Condition 3. The annual leachate sampling data for calendar year 2013 is presented in Appendix J. There are no release standards for this leachate because it is sampled prior to treatment in a Kentucky Pollutant Discharge Elimination Treatment System.

1.3 KEY RESULTS

The following parameters had concentrations that either exceeded the MCL (Table 1) or were shown to have statistically significant increases (Table 2) in concentrations² relative to background concentrations during the second quarter 2013.

UCRS	URGA	LRGA
None	MW372: trichloroethene	MW373: trichloroethene
	MW384: beta activity	MW385: beta activity
	MW387: beta activity	MW388: beta activity
	MW391: trichloroethene	MW392: trichloroethene

Table 1. Summary of MCL Exceedances

Table 2. Summary of Statistically Significant Increases

UCRS	URGA	LRGA
MW386: oxidation-reduction	MW222: oxidation-reduction potential	MW370: oxidation-reduction potential,
potential	MW224: oxidation-reduction potential	sulfate
MW393: oxidation-reduction	MW369: oxidation-reduction potential	MW373: calcium, conductivity,
potential	MW372: calcium, conductivity,	dissolved solids, magnesium,
	dissolved solids, magnesium	oxidation-reduction
	sodium, sulfate, technetium-99	potential, potassium,
	MW384: iodide, sulfate	sulfate, technetium-99
	technetium-99	MW385: sulfate, technetium-99,
	MW387: sulfate, technetium-99	oxidation-reduction
	MW391: oxidation-reduction potential,	potential
	sulfate	MW388: oxidation-reduction potential,
		sulfate, technetium-99
		MW392: oxidation-reduction potential

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393 Upgradient wells: MW220, MW394, MW395, MW396, MW397

There were no new MCL exceedances for this quarter. MCL exceedances for beta activity in MW384, MW385, MW387, and MW388 are related to sources of contamination that are upgradient of the C-746-S&T Landfills. The trichloroethene detected in MW372, MW373, MW391, and MW392 is derived from an alternate source in the vicinity of the C-746-S&T Landfills. The notification of parameters that exceeded the MCL has been submitted electronically to KDWM in accordance with 401 *KAR* 48:300 § 7 prior to the submittal of this report.

² The term "concentration" may refer to a field measurement result, such as pH, oxidation-reduction potential, or an analytical parameter such as trichloroethene or polychlorinated biphenyls.

There was one new statistically significant increase during this quarter. There was a statistically significant increase of iodide in MW384. The other 35 statistically significant increases have occurred previously at least once since fourth quarter calendar year 2002.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to background concentrations, as required by Permit Numbers 073-00014 and 073-00015, Condition GSTR0003, Standard Requirement 8, and 401 *KAR* 48:300 § 7.

In accordance with Permit Condition GSTR0003, Variance 2, of the Solid Waste Permit (Permit), the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the Permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the second quarter 2013 groundwater data collected from the C-746-S&T Residential/Inert Landfills MWs were performed in accordance with Permit Condition, GSTR0003, Standard Requirement 3, using EPA guidance (EPA 1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician. The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (D17–D72).

For chemicals with an established MCL, no statistical analysis was performed. Parameters that have an MCL can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistically significant increase in concentration with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistical significant deviations exist in concentrations with respect to upgradient (background) well data. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 3.

URGA	LRGA
MW220 (upgradient)**	MW370
MW221	MW373
MW222	MW385
MW223	MW388
MW224	MW392
MW369	MW395 (upgradient)**
MW372	MW397 (upgradient)**
MW384	
MW387	
MW391	
MW394 (upgradient)**	
	MW220 (upgradient)** MW221 MW222 MW223 MW224 MW369 MW372 MW384 MW387 MW381

Table 3. Monitoring Wells Included Historically in Statistical Analysis*
--

*A map showing the monitoring well loca

**Included as background only.

***MW390 had sufficient water to permit a water level measurement but insufficient water to provide water samples for laboratory analysis.

STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining statistically significant increases is provided in Appendix D under Statistical Analysis Process. Appendix G summarizes the occurrences (by well and by quarter) of statistically significant increases and MCL exceedances.

Upper Continental Recharge System

In this quarter, statistical analysis was performed on 15 parameters in the UCRS. The statistical analysis was conducted separately for each parameter in each well. During the second quarter, oxidation-reduction potential displayed an elevated concentration that was determined to qualify as a statistically significant increase.

Upper Regional Gravel Aquifer

In this quarter, statistical analysis was performed on 22 parameters in the URGA. The statistical analysis was conducted separately for each parameter in each well. During the second quarter, calcium, conductivity, dissolved solids, iodide, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99 displayed elevated concentrations that were determined to qualify as statistically significant increases.

Lower Regional Gravel Aquifer

In this quarter, statistical analysis was performed on 17 parameters in the LRGA. The statistical analysis was conducted separately for each parameter in each well. During the second quarter, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, potassium, sulfate, and technetium-99 displayed elevated concentrations that were determined to qualify as statistically significant increases.

3. DATA VALIDATION

Data validation was performed on the organic, inorganic, and radiochemical analytical data by an independent third-party validator. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected quarterly during each sampling event. Equipment blanks, field blanks, and trip blanks are obtained to ensure quality control and are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples such as matrix spikes, matrix spike duplicates, and method blanks are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data validation process.

Data validation results for this data set indicated that all data were considered acceptable.

4. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills Second Quarter Calendar Year 2013 (April–June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PAD-ENM-0085/V2)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

Jugust 22, 20/3

Kenneth R. Davis

11

5. REFERENCES

EPA (U.S. Environmental Protection Agency) 1989. EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance, office of Resource Conservation and recovery, U.S. Environmental Protection Agency, Washington, DC.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE	– Paducah G	laseous E	Diffusion Plant	Acti	vity:	C-746-S&T Landfills
	(As off	ficially shown or	n DWM Per	rmit Face)			
Permit No: 0	73-00014 & 0′	73-00015	Finds	/Unit No:	Quarter	& Year	2nd Qtr. CY 2013
Please check the	e following as	applicable:					
Characte	erization	X Quarte	erly	Semiannual	X	Annual	Assessment
Please check ap	plicable subm	ittal(s):	X	Groundwater		<u>x</u> s	burface Water
			Х	Leachate		X N	Aethane Monitoring

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 *KAR* 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that the document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Mark J. Duff, Paducah Project Manager LATA Environmental Services of Kentucky, LLC

Rachel H. Blumenfeld, Acting Paducah Site Lead U.S. Department of Energy

Date

Date

APPENDIX B

FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date:	Groundwater: April 2013 Surface Water: April and May 2013 Leachate: April 2013	County: McCracken	Permit Nos.	073-00014 & 073-00015
Facility Name:	U.S. DOE - Paducah Gaseous Diffusio	n Plant	_	
	(As officially shown on	DWM Permit Face)		
Site Address:	5600 Hobbs Road	Kevil, Kentucky		42053
	Street	City/State		Zip
Phone No:	(270) 441-6800 Latitude:	N 37° 07' 38.87"	Longitude:	W 88° 48' 13.42"
	OWN	ER INFORMATION		
Facility Owner:	U.S. DOE – W. E. Murphie, Manager		Phone No:	(859) 219-4001
Contact Person:	Mark J. Duff		-	(270) 441-5030
Contact Person Ti		nmental Services of Kentucky, LLC		
Mailing Address:	761 Veterans Avenue	Kevil, Kentucky		42053
0	Street	City/State		Zip
		PLING PERSONNEL N LANDFILL OR LABORATORY)		
Company:	LATA Environmental Services of Ke	entucky, LLC		
Contact Person:	Jeff Boulton		Phone No:	(270) 441-5444
Mailing Address:	761 Veterans Avenue	Kevil, Kentucky		42053
	Street	City/State		Zip
	LABOI	RATORY RECORD #1		
Laboratory:	USEC Analytical Laboratories – Pad	ucah Lab ID No: K	XY00906 (EPA	ID Number)
Contact Person:	John Price		Phone No:	(270) 441-5867
Mailing Address:	P.O. Box 1410	Paducah, Kentucky	4	2002-1410
	Street	City/State		Zip
	LABO	RATORY RECORD #2		
Laboratory:	TestAmerica Laboratories, Inc.	Lab ID No:	MO00054 (E	PA ID Number)
Contact Person:	Elaine Wild		· · · · ·	(314) 298-8566
Mailing Address:	13715 Rider Trail North	Earth City, MO		63045
-	Street	City/State		Zip
	LABO	RATORY RECORD #3		
Laboratory:		Lab ID No:		
Contact Person:			Phone No:	
Mailing Address:			1 11010 110.	
I Idd1000.	Street	City/State		Zip

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant 14 Reilly Road Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520 ⁻	1	8000-52	202	8000-52	242	8000-524	13
Facility's Loc	cal Well or Spring Number (e.g., M	W-1	., MW-2, etc	:.)	220		221		222		223	
Sample Sequenc	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minut	tes)		4/17/2013 14	4:06	4/18/2013	09:10	4/18/2013	08:30	4/18/2013 1	0:30
Duplicate ("Y"	'or "N") ²				N		N		N		Ν	
Split ("Y" or	"N") ³				N		N		N		Ν	
Facility Sampl	e ID Number (if applicable)				MW220SG3	-13	MW221S	G3-13	MW222S0	G3-13	MW223SG	3-13
Laboratory Sam	nple ID Number (if applicable)				C13107023	001	C1310800	08001	C1310800	04001	C13108008	3002
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	Or	ganics Anal	ysis	4/26/2013	3	5/1/20	13	4/26/20	13	5/1/2013	3
Gradient with	respect to Monitored Unit (UP, DO	WN,	SIDE, UNKN	IOWN)	UP		SIDE	-	SIDE	-	SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride (s)	т	mg/L	9056	22		37		35		35	
16984-48-8	Fluoride	т	mg/L	9214	0.19		0.18		0.25		0.2	
S0595	Nitrate & Nitrite	т	mg/L	9056	1.4		1.2	*J	<1	*J	<1	*J
14808-79-8	Sulfate	т	mg/L	9056	19		13		11		16	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.08		29.86		29.77		29.99	
S0145	Specific Conductance	т	µMH0/cm	Field	390		390		363		421	

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

0

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID
D = Concentration from analysis

of a secondary dilution

NOTE: The following parameters have updated method numbers: aluminum, 6010; arsenic, 6020; and tritium, EPA-906. The methods will be updated in an upcoming permit modification.

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

	AKGWA NUMBER ¹ , Facility Well/Spring Number						8000-5201		8000-5202		8000-5242		8000-5243	
	Facility's Lo	cility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.)					220		221		222		223	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	
ľ	S0906	Static Water Level Elevation	т	Ft. MSL	Field	322.95		323.29		323.26		323.29		
ľ	N238	Dissolved Oxygen	т	mg/L	Field	4.21		4.58		3.07		3.83		
ľ	S0266	Total Dissolved Solids	т	mg/L	160.1	218		202		203		206		
ſ	S0296	рн	т	Units	Field	6.36		6.42		6.34		6.06		
ſ	NS215	Eh	т	mV	Field	558		373		663		382		
ſ	S0907	Temperature	т	°C	Field	18		18.44		17.89		18.94		
	7429-90-5	Aluminum	т	mg/L	6020	<0.2		<0.2		0.27		<0.2		
ſ	7440-36-0	Antimony	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005		
	7440-38-2	Arsenic	т	mg/L	7060	<0.001		<0.001		0.00109		0.00102		
	7440-39-3	Barium	т	mg/L	6020	0.219		0.215		0.32		0.263		
ſ	7440-41-7	Beryllium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001		
	7440-42-8	Boron	т	mg/L	6010	<0.2	В	<0.2	В	<0.2	В	<0.2	В	
	7440-43-9	Cadmium	т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В	
ſ	7440-70-2	Calcium	т	mg/L	6010	23.7		17.9		18.6		20.2		
	7440-47-3	Chromium	т	mg/L	6020	<0.01		0.0171		0.0109		<0.01		
ſ	7440-48-4	Cobalt	т	mg/L	6020	<0.001	В	<0.001	В	0.00374	В	0.00305	В	
ſ	7440-50-8	Copper	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02		
	7439-89-6	Iron	т	mg/L	6010	<0.1		<0.1		0.55		<0.1		
	7439-92-1	Lead	т	mg/L	6020	<0.0013	В	<0.0013	В	<0.0013	В	<0.0013	В	
ſ	7439-95-4	Magnesium	т	mg/L	6010	9.73		8.32		7.83		8.83		
	7439-96-5	Manganese	т	mg/L	6020	0.00587		<0.005		0.0699		0.0499		
	7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002		

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-520	01	8000-52	02	8000-52	42	8000-52	43
Facility's I	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	0.00136	В	0.0038		<0.001	В	0.00222	
7440-02-0	Nickel	т	mg/L	6020	0.143		0.0697		0.181		0.332	
7440-09-7	Potassium	т	mg/L	6010	2.2	В	1.17	В	0.478	В	1.3	В
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		0.00513		<0.005		0.00535	
7440-22-4	Silver	т	mg/L	6020	<0.001	*	<0.001	*	<0.001	*	<0.001	*
7440-23-5	Sodium	т	mg/L	6010	41.4	В	35.7	В	41.5	В	39.4	В
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005	В	<0.005		<0.005	В
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
67-64-1	Acetone	т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
107-02-8	Acrolein	т	mg/L	8260	<0.01	*	<0.01	J	<0.01	*	<0.01	J
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01	*	<0.01	J	<0.01	*	<0.01	J
71-43-2	Benzene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
1330-20-7	Xylenes	т	mg/L	8260	<0.015	J	<0.015	J	<0.015	J	<0.015	J
100-42-5	Styrene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
108-88-3	Toluene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-520	1	8000-520	02	8000-52	242	8000-5	243
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	220		221		222		223	i
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
75-25-2	Tribromomethane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
74-83-9	Methyl bromide	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
75-00-3	Chloroethane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
67-66-3	Chloroform	т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J
74-87-3	Methyl chloride	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J
74-95-3	Methylene bromide	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
75-01-4	Vinyl chloride	т	mg/L	8260	<0.002	J	<0.002	J	<0.002	J	<0.002	J
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

Ĩ	AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-520	1	8000-520	2	8000-52	42	8000-52	43
ľ	Facility's Lo	cal Well or Spring Number (e.g., M	4W-1	L, MW-2, et	.c.)	220		221		222		223	
	CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
ľ	100-41-4	Ethylbenzene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
ľ	591-78-6	2-Hexanone	т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
ĺ	74-88-4	Iodomethane	т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
Ģ	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
7	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
	12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
	11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
	11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
	53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
ſ	12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-5201		8000-5202	2	8000-524	12	8000-524	43
Facility's L	ocal Well or Spring Number (e.g	., MW-1	, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.835	*	0.744	*	-0.328	*	-0.0195	*
12587-47-2	Gross Beta	т	pCi/L	9310	16.5	*	6.4	*	4.33	*	5.45	*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129	0.0543	*	0.129	*	-0.15	*	-0.00532	*
10098-97-2	Strontium-90	т	pCi/L	RL-7140	0.86	*	0.941	*В	-0.35	*В	-0.211	*В
14133-76-7	Technetium-99	т	pCi/L	RL-7100	6.61	*	10.3	*	0.611	*	1.39	*
14269-63-7	Thorium-230	т	pCi/L	RL-7128	0.0628	*	0.0365	*	-0.0108	*	0.0761	*
10028-17-8	Tritium	т	pCi/L	704R6	-72.8	*	63.1	*	-207	*	-147	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<25		<25		<25		<25	
57-12-5	Cyanide	т	mg/L	9010	<0.04		<0.04		<0.04		<0.04	
20461-54-5	Iodide	т	mg/L	345.1	<2		<2		<2		<2	
S0268	Total Organic Carbon	т	mg/L	9060	<1		<1		<1		<1	
S0586	Total Organic Halides	т	mg/L	9020	0.013		0.0094	в	0.012		0.016	

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant 14 Reilly Road Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	1	8004-48	320	8004-48	318	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g., M	ſ₩-1	., MW-2, etc	:.)	224		369		370		372	
Sample Sequence	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		4/17/2013 12	2:59	4/10/2013	08:22	4/10/2013	09:32	4/8/2013 08	8:12
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW224SG3	-13	MW369U	G3-13	MW370U0	G3-13	MW372UG	3-13
Laboratory Sam	mple ID Number (if applicable)				C131070230	002	C131000	18001	C1310001	18002	C13098018	3001
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ganics Anal	ysis	4/26/2013	3	4/15/20)13	4/12/20	13	4/12/201	3	
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	OWN)	SIDE		DOW	'N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride (s)	т	mg/L	9056	28		36		43		47	
16984-48-8	Fluoride	т	mg/L	9214	0.26		0.2		0.16		0.18	
S0595	Nitrate & Nitrite	т	mg/L	9056	<1		<1		1.2		<1	
14808-79-8	Sulfate	т	mg/L	9056	14		7.5		18		170	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.08		29.88		29.88		29.86	
S0145	Specific Conductance	т	µMH0/cm	Field	448		392		432		879	

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

0-0

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

- N = Presumptive IDD = Concentration from analysis
 - of a secondary dilution

NOTE: The following parameters have updated method numbers: aluminum, 6010; arsenic, 6020; and tritium, EPA-906. The methods will be updated in an upcoming permit modification.

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	5	8004-4808	
	Facility's Lo	ocal Well or Spring Number (e.g., M	N−1,	MW-2, BLANK-	F, etc.)	224		369		370		372	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
ľ	S0906	Static Water Level Elevation	т	Ft. MSL	Field	322.98		322.52		322.47		322.48	
ľ	N238	Dissolved Oxygen	т	mg/L	Field	2.14		1.19		3.25		0.76	
ľ	S0266	Total Dissolved Solids	т	mg/L	160.1	260		237		239		526	
ľ	S0296	рн	т	Units	Field	6.29		6.32		6.25		6.24	
ſ	NS215	Eh	т	mV	Field	483		580		505		28	
ſ	S0907	Temperature	т	°C	Field	18.72		18.72		17.83		16.67	
	7429-90-5	Aluminum	т	mg/L	6020	<0.2		0.201		<0.2		<0.2	
	7440-36-0	Antimony	т	mg/L	6020	<0.005		<0.005	В	<0.005		<0.005	
	7440-38-2	Arsenic	т	mg/L	7060	<0.001		0.00158		0.00151		0.00296	
	7440-39-3	Barium	т	mg/L	6020	0.268		0.388		0.199	*	0.0768	*
	7440-41-7	Beryllium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
	7440-42-8	Boron	т	mg/L	6010	<0.2	В	<0.2	В	<0.2	В	1.43	
	7440-43-9	Cadmium	т	mg/L	6020	<0.001	В	<0.001		<0.001		<0.001	
	7440-70-2	Calcium	т	mg/L	6010	23.1		16.4		28.2		65.9	
	7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
	7440-48-4	Cobalt	т	mg/L	6020	<0.001	В	0.0234	*В	<0.001		<0.001	
ſ	7440-50-8	Copper	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
Γ	7439-89-6	Iron	т	mg/L	6010	<0.1		0.725		<0.1		1.88	
Γ	7439-92-1	Lead	т	mg/L	6020	<0.0013	В	<0.0013	В	<0.0013		<0.0013	
	7439-95-4	Magnesium	т	mg/L	6010	9.61		6.38		11.5		26	
	7439-96-5	Manganese	т	mg/L	6020	0.0153		0.218	*	<0.005	*	0.0612	*
Γ	7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-524	44	8004-48	20	8004-48	18	8004-48	08
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-02-0	Nickel	т	mg/L	6020	0.0179		0.00706	*	<0.005		<0.005	
7440-09-7	Potassium	т	mg/L	6010	0.875	В	0.568		2.48		2.72	В
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		0.00623		0.00603	
7440-22-4	Silver	т	mg/L	6020	<0.001	*	<0.001		<0.001	*В	<0.001	*В
7440-23-5	Sodium	т	mg/L	6010	54.3	В	52.4		37.2		59.7	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02	В	<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.01	J	<0.01		<0.01		<0.01	
67-64-1	Acetone	т	mg/L	8260	<0.01	J	<0.01	J	<0.01		<0.01	
107-02-8	Acrolein	т	mg/L	8260	<0.01	J	<0.01		<0.01	J	<0.01	J
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01	J	<0.01		<0.01		<0.01	
71-43-2	Benzene	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
1330-20-7	Xylenes	т	mg/L	8260	<0.015	J	<0.015		<0.015		<0.015	
100-42-5	Styrene	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
108-88-3	Toluene	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-482	20	8004-4	818	8004-4	808
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	224		369		370		372	2
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
75-25-2	Tribromomethane	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
74-83-9	Methyl bromide	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01	J	<0.01	J	<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	*J	<0.005	*J
67-66-3	Chloroform	т	mg/L	8260	<0.001	J	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.005	J	<0.005		<0.005	J	<0.005	J
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001	J	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001	J	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001	J	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001	J	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001	J	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001	J	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.002	J	<0.002	J	<0.002	*	<0.002	*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001	J	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001	J	<0.001		0.0013		0.0062	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

Ī	AKGWA NUMBER ¹	,	Facility Well/Spring Number				8000-5244	4	8004-482	0	8004-48	18	8004-48	08
ľ	Facility's Lo	oca	l Well or Spring Number (e.g., M	W-1	, MW-2, et)	224		369		370		372	
	CAS RN ⁴		CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
ľ	100-41-4		Ethylbenzene	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
	591-78-6		2-Hexanone	т	mg/L	8260	<0.01	J	<0.01	J	<0.01		<0.01	
	74-88-4		Iodomethane	т	mg/L	8260	<0.01	J	<0.01		<0.01		<0.01	
	124-48-1		Methane, Dibromochloro-	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
	56-23-5		Carbon Tetrachloride	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
	75-09-2		Dichloromethane	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
Ģ	108-10-1		Methyl isobutyl ketone	т	mg/L	8260	<0.01	J	<0.01		<0.01		<0.01	
ω	96-12-8		Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
	78-87-5		Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
	10061-02-6		trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
	10061-01-5		cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
	156-60-5		trans-1,2-Dichloroethene	т	mg/L	8260	<0.001	J	<0.001		<0.001		<0.001	
	75-69-4		Trichlorofluoromethane	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
	96-18-4		1,2,3-Trichloropropane	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
	95-50-1		Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
	106-46-7		Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005	J	<0.005		<0.005		<0.005	
	1336-36-3		PCB,Total	т	ug/L	8082		*	<0.17		<0.17		<0.18	
	12674-11-2		PCB-1016	т	ug/L	8082		*	<0.16		<0.16		<0.17	
	11104-28-2		PCB-1221	т	ug/L	8082		*	<0.17		<0.17		<0.18	
	11141-16-5		PCB-1232	т	ug/L	8082		*	<0.14		<0.14		<0.14	
	53469-21-9		PCB-1242	т	ug/L	8082		*	<0.1		<0.1		<0.1	
	12672-29-6		PCB-1248	т	ug/L	8082		*	<0.12		<0.12		<0.12	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

ĺ	AKGWA NUMBER	¹ ,	Facility Well/Spring Number				8000-5244		8004-4820		8004-481	8	8004-480	8
	Facility's L	oCa	al Well or Spring Number (e.g., M	MW-1	, MW-2, et	.c.)	224		369		370		372	
	CAS RN ⁴		CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
	11097-69-1		PCB-1254	т	ug/L	8082		*	<0.07		<0.07		<0.07	
	11096-82-5		PCB-1260	т	ug/L	8082		*	<0.05		<0.05		<0.05	
	11100-14-4		PCB-1268	т	ug/L	8082		*	<0.09		<0.09		<0.09	
	12587-46-1		Gross Alpha	т	pCi/L	9310	0.82	*	3.19	*	2.82	*	-0.195	*
	12587-47-2		Gross Beta	т	pCi/L	9310	2.47	*	22	*	17.2	*	23.2	*
	10043-66-0		Iodine-131	т	pCi/L	RL-7124		*		*		*		*
Ģ	13982-63-3		Radium-226	т	pCi/L	RL-7129	0.193	*	0.214	*	0.162	*	0.152	*
14	10098-97-2		Strontium-90	т	pCi/L	RL-7140	0.627	*	0.0601	*	1.09	*	0.502	*
	14133-76-7		Technetium-99	т	pCi/L	RL-7100	3.89	*	25.5	*	12	*	42.9	*
	14269-63-7		Thorium-230	т	pCi/L	RL-7128	0.0374	*	0.0249	*	0.0331	*	0.0953	*
	10028-17-8		Tritium	т	pCi/L	704R6	214	*	-404	*	-633	*	-645	*
	s0130		Chemical Oxygen Demand	т	mg/L	410.4	<25	В	<25		<25		<25	
	57-12-5		Cyanide	т	mg/L	9010	<0.04		<0.04	J	<0.04	J	<0.04	
	20461-54-5		Iodide	т	mg/L	345.1	<2		<2		<2		<2	
	S0268		Total Organic Carbon	т	mg/L	9060	<1		1.7		<1		2.5	
	s0586		Total Organic Halides	т	mg/L	9020	0.014		0.048		0.015		0.025	

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant 14 Reilly Road Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-48	309	8004-48	310	8004-480)4
Facility's Loc	cal Well or Spring Number (e.g., M	ſ₩-1	., MW-2, etc	:.)	373		384		385		386	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		4/9/2013 12	:46	4/16/2013	08:27	4/16/2013	12:41	4/16/2013 0	9:24
Duplicate ("Y	' or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW373UG3	-13	MW384S0	G3-13	MW385S0	G3-13	MW386SG	3-13
Laboratory Sam	nple ID Number (if applicable)		C130990300	001	C1310600	05001	C1310601	16001	C13106005	5002		
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ysis	4/12/2013	3	4/25/20)13	4/25/20	13	4/25/201	3		
Gradient with	respect to Monitored Unit (UP, DC) WN ,	SIDE, UNKN	OWN)	DOWN		SIDE	Ξ	SIDE	1	SIDE	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride(s)	т	mg/L	9056	47		38		32		18	
16984-48-8	Fluoride	т	mg/L	9214	0.18		0.17		0.14		0.61	
S0595	Nitrate & Nitrite	т	mg/L	9056	<1		1		<1		<1	
14808-79-8	Sulfate	т	mg/L	9056	200		20		21		50	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.96		29.99		29.99		29.99	
S0145	Specific Conductance	т	µMH0/cm	Field	921		444		422		628	

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use ``*," then describe on ``Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID
D = Concentration from analysis

of a secondary dilution

NOTE: The following parameters have updated method numbers: aluminum, 6010; arsenic, 6020; and tritium, EPA-906. The methods will be updated in an upcoming permit modification.

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
ĺ	Facility's Lo	ocal Well or Spring Number (e.g., M	w-1,	MW-2, BLANK-	F, etc.)	373		384		385		386	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.39		322.56		322.52		345.41	
ľ	N238	Dissolved Oxygen	т	mg/L	Field	1.46		4.09		3.08		0.98	
ľ	s0266	Total Dissolved Solids	т	mg/L	160.1	585		225		219		386	
Ī	s0296	рн	т	Units	Field	6.21		6.28		6.18		7.03	
ľ	NS215	Eh	т	mV	Field	498		339		506		392	
ľ	s0907	Temperature	т	°C	Field	18.33		17.06		19.11		17.28	
2	7429-90-5	Aluminum	т	mg/L	6020	<0.2		<0.2		<0.2		<0.2	
7	7440-36-0	Antimony	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
ľ	7440-38-2	Arsenic	т	mg/L	7060	0.00168		0.00158		0.00116		0.00158	
ľ	7440-39-3	Barium	т	mg/L	6020	0.03	*	0.189		0.21		0.154	
	7440-41-7	Beryllium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
	7440-42-8	Boron	т	mg/L	6010	1.8		<0.2	В	<0.2	В	<0.2	В
	7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001	В	<0.001	В	<0.001	В
	7440-70-2	Calcium	т	mg/L	6010	76.1		24.9		26.7		22.2	
	7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
	7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001	В	<0.001	В	<0.001	В
	7440-50-8	Copper	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
ľ	7439-89-6	Iron	т	mg/L	6010	<0.1		0.628		<0.1		1.09	
ľ	7439-92-1	Lead	т	mg/L	6020	<0.0013		<0.0013	В	<0.0013	В	<0.0013	В
ľ	7439-95-4	Magnesium	т	mg/L	6010	29.4		9.47		9.13		9.26	
ľ	7439-96-5	Manganese	т	mg/L	6020	0.0558	*	0.0144		<0.005		0.0827	
	7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-47	92	8004-48	309	8004-48	10	8004-48	04
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, et	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-02-0	Nickel	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-09-7	Potassium	т	mg/L	6010	3.29		1.48		1.7	В	0.356	В
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	0.00747		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001	*В	<0.001	*	<0.001	*	<0.001	*
7440-23-5	Sodium	т	mg/L	6010	64.1		47.1		44.7	В	101	В
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.01		<0.01	*J	<0.01	J	<0.01	J
67-64-1	Acetone	т	mg/L	8260	<0.01		<0.01	*	<0.01		<0.01	
107-02-8	Acrolein	т	mg/L	8260	<0.01	J	<0.01		<0.01	*	<0.01	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01		<0.01		<0.01	*	<0.01	
71-43-2	Benzene	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
1330-20-7	Xylenes	т	mg/L	8260	<0.015		<0.015	*	<0.015		<0.015	
100-42-5	Styrene	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
108-88-3	Toluene	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-48	09	8004-48	310	8004-4	804
Facility's Loo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	373		384		385		386	i
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
75-25-2	Tribromomethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005		<0.005	
74-83-9	Methyl bromide	т	mg/L	8260	<0.005	J	<0.005	*	<0.005		<0.005	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01		<0.01	*	<0.01		<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.005	*J	<0.005	*J	<0.005	J	<0.005	J
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.005	J	<0.005	*	<0.005		<0.005	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005	*	<0.005		<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.002	*	<0.002	*	<0.002		<0.002	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0064		<0.001	*	<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	2	8004-480	9	8004-48	10	8004-48	04
	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		384		385		386	
	CAS RN ⁴	CONSTITUENT	Т Д 5		METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
	591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01	*	<0.01		<0.01	
	74-88-4	Iodomethane	т	mg/L	8260	<0.01		<0.01	*	<0.01		<0.01	
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005	*	<0.005	*	<0.005		<0.005	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005		<0.005	
<u>-</u>	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01	*	<0.01		<0.01	
6	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002	*	<0.0002	*	<0.0002	*
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005	*	<0.005	*	<0.005		<0.005	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
	1336-36-3	PCB,Total	т	ug/L	8082	<0.18			*		*		*
	12674-11-2	PCB-1016	т	ug/L	8082	<0.17			*		*		*
	11104-28-2	PCB-1221	т	ug/L	8082	<0.18			*		*		*
	11141-16-5	PCB-1232	т	ug/L	8082	<0.14			*		*		*
	53469-21-9	PCB-1242	т	ug/L	8082	<0.1			*		*		*
	12672-29-6	PCB-1248	т	ug/L	8082	<0.12			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

ĺ	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-4809)	8004-481	0	8004-480)4
	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	373		384		385		386	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
	11097-69-1	PCB-1254	т	ug/L	8082	<0.07			*		*		*
	11096-82-5	PCB-1260	т	ug/L	8082	<0.05			*		*		*
	11100-14-4	PCB-1268	т	ug/L	8082	<0.09			*		*		*
	12587-46-1	Gross Alpha	т	pCi/L	9310	4.14	*	6.13	*	2.7	*	1.95	*
	12587-47-2	Gross Beta	т	pCi/L	9310	40.3	*	157	*	111	*	0.689	*
	10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
C-20	13982-63-3	Radium-226	т	pCi/L	RL-7129	0.23	*	0.199	*	0.148	*	0.119	*
00	10098-97-2	Strontium-90	т	pCi/L	RL-7140	0.458	*	0.133	*В	0.134	*В	0.778	*В
	14133-76-7	Technetium-99	т	pCi/L	RL-7100	63.7	*	193	*	170	*	4.38	*
	14269-63-7	Thorium-230	т	pCi/L	RL-7128	0.0588	*	0.124	*	0.0563	*	0.0999	*
	10028-17-8	Tritium	т	pCi/L	704R6	-498	*	-336	*	-61	*	-18.2	*
	s0130	Chemical Oxygen Demand	т	mg/L	410.4	<25		<25	В	<25	В	<25	В
	57-12-5	Cyanide	т	mg/L	9010	<0.04	J	<0.04		<0.04		<0.04	
	20461-54-5	Iodide	т	mg/L	345.1	<2		2.6	*В	<2	*В	<2	*В
	S0268	Total Organic Carbon	т	mg/L	9060	1		<1		<1		10.4	D
	s0586	Total Organic Halides	т	mg/L	9020	0.04		0.015	В	0.021		0.28	

RESIDENTIAL/INERT-OUARTERLY Division of Waste Management Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road LAB ID: None

Frankfort, KY 40601 (502) 564-6716

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER¹, Facility Well/Spring Number 8004-4815 8004-4816 8004-4812 8004-4811 387 388 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 389 390 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F) ield, (T) rip, (M) ethod, or (E) quipment NA NA NA NA 4/11/2013 12:49 4/11/2013 13:46 Sample Date and Time (Month/Day/Year hour: minutes) NA NA Duplicate ("Y" or "N")² Ν Ν Ν Ν Split ("Y" or "N")³ Ν Ν Ν Ν MW387SG3-13 MW388SG3-13 Facility Sample ID Number (if applicable) NA NA C13101024001 C13101024002 Laboratory Sample ID Number (if applicable) NA NA 4/15/2013 4/15/2013 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis NA NA DOWN DOWN SIDE DOWN Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) CAS RN⁴ CONSTITUENT т Unit METHOD DETECTED F DETECTED F DETECTED F DETECTED F D 5 OF VALUE L VALUE L VALUE L VALUE L MEASURE OR OR Α Α OR Α OR Α PQL⁶ PQL⁶ PQL⁶ G G G POL⁶ G S^7 S s s <2 <2 * * т 24959-67-9 Bromide mg/L 9056 * * 40 33 т 16887-00-6 Chloride(s) 9056 mg/L * 0.7 0.28 * т 16984-48-8 Fluoride mg/L 9214 * * 1 т <1 S0595- -Nitrate & Nitrite 9056 mg/L * 28 * 23 14808-79-8 Sulfate т 9056 mq/L * 29.66 29.66 * NS1894 Barometric Pressure Reading т Inches/Hg Field * * 536 453 S0145- т Specific Conductance Field uMH0/cm

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID D = Concentration from analysis

of a secondary dilution

C-2

NOTE: The following parameters have updated method numbers: aluminum, 6010; arsenic, 6020; and tritium, EPA-906. The methods will be updated in an upcoming permit modification.

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

ľ	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
1	Facility's Lo	ocal Well or Spring Number (e.g., M	W-1,	MW-2, BLANK-	F, etc.)	387		388		389		390	
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
	s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.7		322.62	1		*		*
5	N238	Dissolved Oxygen	т	mg/L	Field	3.7		4.59			*		*
	s0266	Total Dissolved Solids	т	mg/L	160.1	291		243			*		*
	S0296	рн	т	Units	Field	6.4		6.3			*		*
1	NS215	Eh	т	mV	Field	381		393			*		*
:	s0907	Temperature	т	°C	Field	15.33		15.78			*		*
	7429-90-5	Aluminum	т	mg/L	6020	<0.2		<0.2			*		*
	7440-36-0	Antimony	т	mg/L	6020	<0.005		<0.005			*		*
	7440-38-2	Arsenic	т	mg/L	7060	0.00275		0.00165			*		*
	7440-39-3	Barium	т	mg/L	6020	0.127		0.181			*		*
	7440-41-7	Beryllium	т	mg/L	6020	<0.001		<0.001			*		*
	7440-42-8	Boron	т	mg/L	6010	<0.2	В	<0.2	В		*		*
	7440-43-9	Cadmium	т	mg/L	6020	<0.001	В	<0.001	В		*		*
	7440-70-2	Calcium	т	mg/L	6010	36.2		29.2			*		*
	7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01			*		*
	7440-48-4	Cobalt	т	mg/L	6020	<0.001	В	<0.001	В		*		*
	7440-50-8	Copper	т	mg/L	6020	<0.02		<0.02			*		*
	7439-89-6	Iron	т	mg/L	6010	<0.1		<0.1			*		*
	7439-92-1	Lead	т	mg/L	6020	<0.0013	В	<0.0013	В		*		*
	7439-95-4	Magnesium	т	mg/L	6010	14.4		11.8			*		*
	7439-96-5	Manganese	т	mg/L	6020	<0.005		<0.005			*		*
Γ	7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

For Official Use Only

LAB ID: None

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-48	15	8004-48	316	8004-4812	2	8004-481	1
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001	В	<0.001	В		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.005		<0.005			*		*
7440-09-7	Potassium	т	mg/L	6010	1.94		1.95			*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005			*		*
7782-49-2	Selenium	т	mg/L	6020	0.00596		<0.005			*		*
7440-22-4	Silver	т	mg/L	6020	<0.001	*	<0.001	*		*		*
7440-23-5	Sodium	т	mg/L	6010	50		45.4			*		*
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005			*		*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002			*		*
7440-61-1	Uranium	т	mg/L	6020	<0.001		<0.001			*		*
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02			*		*
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02			*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.01		<0.01			*		*
67-64-1	Acetone	т	mg/L	8260	<0.01	J	<0.01	J		*		*
107-02-8	Acrolein	т	mg/L	8260	<0.01		<0.01			*		*
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01		<0.01			*		*
71-43-2	Benzene	т	mg/L	8260	<0.005		<0.005			*		*
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005		<0.005			*		*
1330-20-7	Xylenes	т	mg/L	8260	<0.015		<0.015			*		*
100-42-5	Styrene	т	mg/L	8260	<0.005		<0.005			*		*
108-88-3	Toluene	т	mg/L	8260	<0.005		<0.005			*		*
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.005		<0.005			*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-48	16	8004-481	2	8004-481	1
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005			*		*
75-25-2	Tribromomethane	т	mg/L	8260	<0.005		<0.005			*		*
74-83-9	Methyl bromide	т	mg/L	8260	<0.005	J	<0.005	J		*		*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01	J	<0.01	J		*		*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005	J	<0.005	J		*		*
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*		*
75-00-3	Chloroethane	т	mg/L	8260	<0.005	J	<0.005	J		*		*
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001			*		*
74-87-3	Methyl chloride	т	mg/L	8260	<0.005		<0.005			*		*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*		*
74-95-3	Methylene bromide	т	mg/L	8260	<0.005		<0.005			*		*
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*		*
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001			*		*
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001			*		*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.005		<0.005			*		*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005	J		*		*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001			*		*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001			*		*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.005		<0.005			*		*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.002	J	<0.002	J		*		*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001			*		*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001			*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

Ī	AKGWA NUMBER1,	, Facility Well/Spring Number				8004-4815		8004-4816		8004-4812	2	8004-481	1
	Facility's Lo	cal Well or Spring Number (e.g., M	W-1	, MW-2, et	.c.)	387		388		389		390	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
ľ	100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005			*		*
ĺ	591-78-6	2-Hexanone	т	mg/L	8260	<0.01	J	<0.01	J		*		*
	74-88-4	Iodomethane	т	mg/L	8260	<0.01		<0.01			*		*
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005		<0.005			*		*
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005			*		*
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*		*
Ģ	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01			*		*
25	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002	*	<0.0002	*		*		*
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005			*		*
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005			*		*
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005			*		*
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*		*
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005		<0.005			*		*
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005			*		*
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005			*		*
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005		<0.005			*		*
	1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
	12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
	11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
	11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
	53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
ľ	12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815		8004-4816	6	8004-4812	2	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g.	, MW-1	, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	4.75	*	10	*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310	148	*	85.2	*		*		*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129	-0.0489	*	0.562	*		*		*
10098-97-2	Strontium-90	т	pCi/L	RL-7140	0.126	*В	0.785	*В		*		*
14133-76-7	Technetium-99	т	pCi/L	RL-7100	238	*	113	*		*		*
14269-63-7	Thorium-230	т	pCi/L	RL-7128	0.0343	*	0.0232	*		*		*
10028-17-8	Tritium	т	pCi/L	704R6	-311	*	78.2	*		*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<25	В	<25	В		*		*
57-12-5	Cyanide	т	mg/L	9010	<0.04		<0.04			*		*
20461-54-5	Iodide	т	mg/L	345.1	<2		<2			*		*
S0268	Total Organic Carbon	т	mg/L	9060	<1		<1			*		*
S0586	Total Organic Halides	т	mg/L	9020	0.02	В	0.02	В		*		*

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant 14 Reilly Road Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1,	, Facility Well/Spring Number				8004-480	5	8004-48	306	8004-48	307	8004-480)2
Facility's Loo	cal Well or Spring Number (e.g., M	w−1	, MW-2, etc	.)	391		392		393		394	
Sample Sequend	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/17/2013 09):22	4/17/2013	08:24	4/18/2013	13:32	4/22/2013 0	00:80
Duplicate ("Y	" or "N") ²				N		N		N		Ν	
Split ("Y" or	"N") ³				N		N		N		Ν	
Facility Samp	le ID Number (if applicable)				MW391SG3	-13	MW392S	G3-13	MW393S0	G3-13	MW394SG	3-13
Laboratory Sar	mple ID Number (if applicable)				C131070130	001	C131070	13002	C1310800	08003	C13112020	0001
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	4/25/2013	3	4/25/20)13	5/1/20	13	5/2/2013	3
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	OWN)	DOWN		DOW	'N	DOW	N	UP	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2		<2	
16887-00-6	Chloride (s)	т	mg/L	9056	38		47		17		54	
16984-48-8	Fluoride	т	mg/L	9214	0.16		0.2		0.21		0.14	
S0595	Nitrate & Nitrite	т	mg/L	9056	<1		<1		<1	*J	1.7	
14808-79-8	Sulfate	т	mg/L	9056	25		6.7		14		9.8	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.08		30.08		30		30.22	
S0145	Specific Conductance	т	µMH0/cm	Field	408		370		441		393	

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive IDD = Concentration from analysis

of a secondary dilution

NOTE: The following parameters have updated method numbers: aluminum, 6010; arsenic, 6020; and tritium, EPA-906. The methods will be updated in an upcoming permit modification.

C-27

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480)5	8004-480	6	8004-4807	7	8004-4802	
	Facility's Lo	ocal Well or Spring Number (e.g., M	w-1,	MW-2, BLANK-	F, etc.)	391		392		393		394	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
	s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.57		322.52		337.77		322.64	
	N238	Dissolved Oxygen	т	mg/L	Field	2.52		0.83		3.93		4.61	
	s0266	Total Dissolved Solids	т	mg/L	160.1	223		203		294		223	
	s0296	рн	т	Units	Field	6.36		6.44		6.08		6.28	
	NS215	Eh	т	mV	Field	602		757		142		823	
	s0907	Temperature	т	°C	Field	17.72		16.44		20.22		15.06	
	7429-90-5	Aluminum	т	mg/L	6020	<0.2		<0.2		<0.2		<0.2	
	7440-36-0	Antimony	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7440-38-2	Arsenic	т	mg/L	7060	0.00106		0.00153		0.00603		0.00103	
	7440-39-3	Barium	т	mg/L	6020	0.248		0.214		0.135		0.255	
	7440-41-7	Beryllium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
	7440-42-8	Boron	т	mg/L	6010	<0.2	В	<0.2	В	<0.2	В	<0.2	В
	7440-43-9	Cadmium	т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
	7440-70-2	Calcium	т	mg/L	6010	26.4		26.6		10.8		28	
	7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
	7440-48-4	Cobalt	т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
	7440-50-8	Copper	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
	7439-89-6	Iron	т	mg/L	6010	0.115		<0.1		3.98		<0.1	
	7439-92-1	Lead	т	mg/L	6020	<0.0013	В	<0.0013	В	<0.0013	В	<0.0013	В
	7439-95-4	Magnesium	т	mg/L	6010	10.3		9.52		3.08		10.9	
	7439-96-5	Manganese	т	mg/L	6020	<0.005		0.18		0.0492		<0.005	
Г	7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480	05	8004-48	306	8004-48	07	8004-48	02
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-02-0	Nickel	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-09-7	Potassium	т	mg/L	6010	1.53	В	1.89	В	0.47	В	1.29	В
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	0.00596		0.0054		<0.005		0.0054	
7440-22-4	Silver	т	mg/L	6020	<0.001	*	<0.001	*	<0.001	*	<0.001	*
7440-23-5	Sodium	т	mg/L	6010	37.9	В	33.3	В	76.3	В	28.2	В
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005	В	<0.005	В
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
67-64-1	Acetone	т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
107-02-8	Acrolein	т	mg/L	8260	<0.01		<0.01	J	<0.01	*J	<0.01	J
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01		<0.01	J	<0.01	*	<0.01	
71-43-2	Benzene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
1330-20-7	Xylenes	т	mg/L	8260	<0.015	J	<0.015	J	<0.015	J	<0.015	J
100-42-5	Styrene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
108-88-3	Toluene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	06	8004-48	807	8004-4	802
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	391		392		393		394	ł
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
75-25-2	Tribromomethane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
74-83-9	Methyl bromide	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
75-00-3	Chloroethane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
67-66-3	Chloroform	т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J
74-87-3	Methyl chloride	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J
74-95-3	Methylene bromide	Т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
75-01-4	Vinyl chloride	т	mg/L	8260	<0.002	J	<0.002	J	<0.002	J	<0.002	J
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.008	J	0.013	J	<0.001	J	0.0041	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

ĺ	AKGWA NUMBER1	, Facility Well/Spring Number				8004-480	5	8004-480	6	8004-48	07	8004-48	602
	Facility's Lo	ocal Well or Spring Number (e.g.,)	MW-1	L, MW-2, et	.c.)	391		392		393		394	
	CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	591-78-6	2-Hexanone	т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
	74-88-4	Iodomethane	т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
Ģ	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01	J	<0.01	J	<0.01	J	<0.01	J
T	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002	*	<0.0002	*	<0.0002		<0.0002	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001	J	<0.001	J	<0.001	J	<0.001	J
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	J
	1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
	12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
	11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
	11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
	53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
	12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

ſ	AKGWA NUMBER ¹ , Facility Well/Spring Number					8004-4805		8004-4806	;	8004-480	7	8004-480	02
ľ		ocal Well or Spring Number (e.g.,	MW-1	, MW-2, et	.c.)	391		392		393		394	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
Ī	11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
ľ	11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
Ī	11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
	12587-46-1	Gross Alpha	т	pCi/L	9310	1.7	*	1.88	*	1.75	*	0.766	*
	12587-47-2	Gross Beta	т	pCi/L	9310	6.02	*	3.78	*	4.42	*	9.39	*
	10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
C-3	13982-63-3	Radium-226	т	pCi/L	RL-7129	0.187	*	0.139	*	0.0109	*	0.125	*
32	10098-97-2	Strontium-90	т	pCi/L	RL-7140	0.555	*B	0.536	*В	0.437	*В	-0.509	*В
	14133-76-7	Technetium-99	т	pCi/L	RL-7100	5.89	*	-7	*	1.44	*	13.9	*
	14269-63-7	Thorium-230	т	pCi/L	RL-7128	0.11	*	0.0368	*	0.101	*	0.0744	*
	10028-17-8	Tritium	т	pCi/L	704R6	-85.6	*	-327	*	-262	*	-412	*
	s0130	Chemical Oxygen Demand	т	mg/L	410.4	<25	В	<25	В	<25		<25	
	57-12-5	Cyanide	т	mg/L	9010	<0.04		<0.04		<0.04		<0.04	
	20461-54-5	Iodide	т	mg/L	345.1	<2		<2		<2		<2	
	S0268	Total Organic Carbon	т	mg/L	9060	<1		1.1		4		<1	
	s0586	Total Organic Halides	т	mg/L	9020	0.022		0.043		0.035		0.021	

Division of Waste Management RESIDENTIAL/INERT-QUARTERLY Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant 14 Reilly Road Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480 ⁻	1	8004-48	303	8004-48	317	0000-000	0
Facility's Loc	cal Well or Spring Number (e.g., M	ſ₩-1	, MW-2, etc	.)	395		396		397		E. BLAN	к
Sample Sequence	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		E	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		4/22/2013 09	9:00	4/16/2013	13:41	4/18/2013	12:22	04/18/2013 ⁻	11:45
Duplicate ("Y"	' or "N") ²				Ν		N		N		Ν	
Split ("Y" or	"N") ³				N		N		N		Ν	
Facility Sampl	le ID Number (if applicable)				MW395SG3	-13	MW396S	G3-13	MW397S	G3-13	RI1SG3-	13
Laboratory Sam	nple ID Number (if applicable)		C13112020	002	C131060 ⁻	16002	C1310800	08004	C13108007	001		
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	5/2/2013		4/25/20)13	5/1/20	13	4/23/201	3
Gradient with	respect to Monitored Unit (UP, DC) WN ,	SIDE, UNKN	OWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	<2		<2		<2			*
16887-00-6	Chloride (s)	т	mg/L	9056	53		80		39			*
16984-48-8	Fluoride	т	mg/L	9214	0.12		0.58		0.14			*
S0595	Nitrate & Nitrite	т	mg/L	9056	1.7		<1		1.2	*J		*
14808-79-8	Sulfate	т	mg/L	9056	9.8		26		11			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.22		29.99		30			*
S0145	Specific Conductance	т	µMH0/cm	Field	394		848		362			*

 1 AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use ``*," then describe on ``Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive IDD = Concentration from analysis

of a secondary dilution

NOTE: The following parameters have updated method numbers: aluminum, 6010; arsenic, 6020; and tritium, EPA-906. The methods will be updated in an upcoming permit modification.

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

A	KGWA NUMBER	, Facility Well/Spring Number				8004-480)1	8004-480	3	8004-4817	7	0000-0000	
F	acility's Lo	ocal Well or Spring Number (e.g., M	w-1,	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
s	30906	Static Water Level Elevation	т	Ft. MSL	Field	323.03		369.75		322.8			*
N	1238	Dissolved Oxygen	т	mg/L	Field	3.52		1.04		5.2			*
s	30266	Total Dissolved Solids	т	mg/L	160.1	226		476		166			*
s	30296	рн	т	Units	Field	6.21		6.57		5.97			*
N	15215	Eh	т	mV	Field	635		251		383			*
s	30907	Temperature	т	°C	Field	16.22		18.5		18.28			*
7	7429-90-5	Aluminum	т	mg/L	6020	<0.2		<0.2		<0.2		<0.2	
7	7440-36-0	Antimony	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7	7440-38-2	Arsenic	т	mg/L	7060	0.00108		0.00183		<0.001		<0.001	
7	7440-39-3	Barium	т	mg/L	6020	0.262		0.411		0.15		<0.005	
7	7440-41-7	Beryllium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7	7440-42-8	Boron	т	mg/L	6010	<0.2	В	<0.2	В	<0.2	В	<0.2	В
7	7440-43-9	Cadmium	т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7	7440-70-2	Calcium	т	mg/L	6010	28.7		38		18.1		<1	
7	7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7	7440-48-4	Cobalt	т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7	7440-50-8	Copper	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7	7439-89-6	Iron	т	mg/L	6010	<0.1		0.64		0.108		<0.1	
7	7439-92-1	Lead	т	mg/L	6020	<0.0013	В	<0.0013	В	<0.0013	В	<0.0013	В
7	7439-95-4	Magnesium	т	mg/L	6010	11.1		16.7		7.4		<0.025	
7	7439-96-5	Manganese	т	mg/L	6020	<0.005		0.216		<0.005		<0.005	
7	7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480	01	8004-48	803	8004-48	17	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et)	395		396		397		E. BLAI	١K
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001	В	<0.001	В	<0.001	В	<0.001	В
7440-02-0	Nickel	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-09-7	Potassium	т	mg/L	6010	1.65	В	0.91	В	1.62	В	<0.2	В
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	0.00539		0.00798		0.0058		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001	*	<0.001	*	<0.001	*	<0.001	*
7440-23-5	Sodium	т	mg/L	6010	28.4	В	105	В	30.4	В	<1	В
7440-25-7	Tantalum	т	mg/L	6020	<0.005	В	<0.005		<0.005	В	<0.005	В
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-62-2	Vanadium	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.01	J	<0.01	J	<0.01	*J	<0.01	J
67-64-1	Acetone	т	mg/L	8260	<0.01	J	<0.01		<0.01	*	<0.01	
107-02-8	Acrolein	т	mg/L	8260	<0.01	J	<0.01		<0.01	*J	<0.01	J
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01		<0.01		<0.01	*	<0.01	
71-43-2	Benzene	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
1330-20-7	Xylenes	т	mg/L	8260	<0.015	J	<0.015		<0.015	*	<0.015	
100-42-5	Styrene	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
108-88-3	Toluene	т	mg/L	8260	<0.005	J	<0.005		<0.005	*J	<0.005	J
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480	03	8004-4	317	0000-0	000
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
75-25-2	Tribromomethane	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
74-83-9	Methyl bromide	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01	J	<0.01		<0.01	*	<0.01	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005	J	<0.005		<0.005	*J	<0.005	J
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	*J	<0.005	J
67-66-3	Chloroform	т	mg/L	8260	<0.001	J	<0.001		<0.001	*	<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001	J	<0.001		<0.001	*	<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001	J	<0.001		<0.001	*	<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001	J	<0.001		<0.001	*	<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001	J	<0.001		<0.001	*	<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001	J	<0.001		<0.001	*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001	J	<0.001		<0.001	*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.002	J	<0.002		<0.002	*J	<0.002	J
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001	J	<0.001		<0.001	*J	<0.001	J
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0035	J	<0.001		<0.001	*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

Ĩ	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480	3	8004-48	17	0000-00	00
ľ	Facility's Lo	cal Well or Spring Number (e.g., M	w-1	, MW-2, et	.c.)	395		396		397		E. BLAN	١K
	CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
ľ	100-41-4	Ethylbenzene	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
ľ	591-78-6	2-Hexanone	т	mg/L	8260	<0.01	J	<0.01		<0.01	*	<0.01	
ĺ	74-88-4	Iodomethane	т	mg/L	8260	<0.01	J	<0.01		<0.01	*J	<0.01	J
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
Ģ	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01	J	<0.01		<0.01	*	<0.01	
57	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002	*	<0.0002		<0.0002	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005	J	<0.005		<0.005	*J	<0.005	J
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001	J	<0.001		<0.001	*	<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005	J	<0.005		<0.005	*J	<0.005	J
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	
	1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
	12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
	11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
	11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
	53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
ſ	12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/<u>1</u> Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-4801		8004-4803	5	8004-481	7	0000-000	00
Facility's Lo	ocal Well or Spring Number (e.g	., MW-1	, MW-2, et	.c.)	395		396		397		E. BLAN	IK
CAS RN ⁴	CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	0.272	*	7.19	*	1.01	*	1.15	*
12587-47-2	Gross Beta	т	pCi/L	9310	6.42	*	1.61	*	14.4	*	0.307	*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129	0.222	*	0.00273	*	0.0654	*	0.218	*
10098-97-2	Strontium-90	т	pCi/L	RL-7140	0.0294	*В	0.348	*В	-0.208	*В	0.191	*B
14133-76-7	Technetium-99	т	pCi/L	RL-7100	3.11	*	-1.17	*	16.6	*	-6.17	*
14269-63-7	Thorium-230	т	pCi/L	RL-7128	0.0372	*	-0.0354	*	0.16	*	0.187	*
10028-17-8	Tritium	т	pCi/L	704R6	-269	*	-39.6	*	114	*	53.5	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<25		<25	В	<25			*
57-12-5	Cyanide	т	mg/L	9010	<0.04		<0.04		<0.04			*
20461-54-5	Iodide	т	mg/L	345.1	<2		<2	*В	<2		<2	
S0268	Total Organic Carbon	т	mg/L	9060	<1		9.1		<1			*
s0586	Total Organic Halides	т	mg/L	9020	0.021		0.24	В	0.012			*

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502) 564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1	, Facility Well/Spring Number				000-000	00	0000-00	00	0000-000	00	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g., M	ſ₩-1	, MW-2, etc	:.)	F. BLAN	К	T. BLAN	K 1	T. BLANI	< 2	T. BLANK	(3
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	F		т		Т		Т	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		4/17/2013 0	8:25	4/11/2013	11:56	4/16/2013 0)7:15	4/17/2013 0	7:20
Duplicate ("Y	" or "N") ²				N		N		N		Ν	
Split ("Y" or	"N") ³				N		N		N		Ν	
Facility Samp	le ID Number (if applicable)				FB1SG3-	13	TB1SG3	-13	TB2SG3-	·13	TB3SG3-	13
Laboratory Sa	mple ID Number (if applicable)				C13107012	2001	C1310102	8001	C13106049	9001	C13107025	6001
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	ysis	4/21/201	3	4/15/20	13	4/20/201	13	4/20/201	3		
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9214		*		*		*		*
S0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	µMH0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID D = Concentration from analysis

of a secondary dilution

NOTE: The following parameters have updated method numbers: aluminum, 6010; arsenic, 6020; and tritium, EPA-906. The methods will be updated in an upcoming permit modification.

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

F						(00110			_	_			
	AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	00	0000-000		0000-0000		0000-0000	
	Facility's Lo	ocal Well or Spring Number (e.g., M	v-1,	MW-2, BLANK-	F, etc.)	F. BLAN	K	T. BLANK	[1	T. BLANK	2	T. BLANK (3
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
ľ	s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
ľ	N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
ľ	S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
ľ	S0296	рн	т	Units	Field		*		*		*		*
	NS215	Eh	т	mV	Field		*		*		*		*
	S0907	Temperature	т	°C	Field		*		*		*		*
5	7429-90-5	Aluminum	т	mg/L	6020	<0.2			*		*		*
	7440-36-0	Antimony	т	mg/L	6020	<0.005			*		*		*
	7440-38-2	Arsenic	т	mg/L	7060	<0.001			*		*		*
	7440-39-3	Barium	т	mg/L	6020	<0.005			*		*		*
	7440-41-7	Beryllium	т	mg/L	6020	<0.001			*		*		*
	7440-42-8	Boron	т	mg/L	6010	<0.2	В		*		*		*
	7440-43-9	Cadmium	т	mg/L	6020	<0.001	В		*		*		*
	7440-70-2	Calcium	т	mg/L	6010	<1			*		*		*
	7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
	7440-48-4	Cobalt	т	mg/L	6020	<0.001	В		*		*		*
	7440-50-8	Copper	т	mg/L	6020	<0.02			*		*		*
	7439-89-6	Iron	т	mg/L	6010	<0.1			*		*		*
	7439-92-1	Lead	т	mg/L	6020	<0.0013	В		*		*		*
	7439-95-4	Magnesium	т	mg/L	6010	<0.025			*		*		*
	7439-96-5	Manganese	т	mg/L	6020	<0.005			*		*		*
	7439-97-6	Mercury	т	mg/L	7470	<0.0002			*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				0000-00	00	0000-00	000	0000-00	00	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.	, MW-	·1, MW-2, e	tc.)	F. BLAN	IK	T. BLAN	IK 1	T. BLAN	K 2	T. BLAN	К 3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001	В		*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.005			*		*		*
7440-09-7	Potassium	т	mg/L	6010	<0.2	В		*		*		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	т	mg/L	6020	<0.001	*		*		*		*
7440-23-5	Sodium	т	mg/L	6010	<1	В		*		*		*
7440-25-7	Tantalum	т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	т	mg/L	6020	<0.001			*		*		*
7440-62-2	Vanadium	т	mg/L	6020	<0.02			*		*		*
7440-66-6	Zinc	т	mg/L	6020	<0.02			*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.01	J	<0.01		<0.01	J	<0.01	*J
67-64-1	Acetone	т	mg/L	8260	<0.01		<0.01	J	<0.01		<0.01	*
107-02-8	Acrolein	т	mg/L	8260	<0.01	J	<0.01		<0.01		<0.01	*
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01	J	<0.01		<0.01		<0.01	*
71-43-2	Benzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
1330-20-7	Xylenes	т	mg/L	8260	<0.015		<0.015		<0.015		<0.015	*
100-42-5	Styrene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
108-88-3	Toluene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				O000-0000 F. BLANK DETECTED VALUE OR PQL ⁶ F L A G G S <0.005 - <0.005 - <0.005 - <0.005 - <0.005 - <0.005 - <0.005 - <0.005 - <0.005 - <0.005 - <0.005 J <0.005 J <0.005 J <0.005 J <0.001 - <0.001 - <0.001 - <0.001 - <0.005 - <0.001 - <0.005 - <0.001 - <0.005 - <0.005 - <0.005 - <0.005 - <0.005 - <0.005 - <0.005 - <0.005 - <tr tr=""></tr>		0000-0000 T. BLANK 1		0000-0	000	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	F. BLAN	<	T. BLANI	<1	T. BLAN	NK 2	T. BLAI	NK 3
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	VALUE OR	L A G	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
75-25-2	Tribromomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
74-83-9	Methyl bromide	т	mg/L	8260	<0.005		<0.005	J	<0.005		<0.005	*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01		<0.01	J	<0.01		<0.01	*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005	J	<0.005		<0.005	*
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
75-00-3	Chloroethane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	J	<0.005	*J
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
74-87-3	Methyl chloride	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
74-95-3	Methylene bromide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.005		<0.005	J	<0.005		<0.005	*J
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.002		<0.002	J	<0.002		<0.002	*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

ĺ	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-0000	0	0000-00	00	0000-00	00
	Facility's Lo	cal Well or Spring Number (e.g., M	4W-1	, MW-2, et	.c.)	F. BLANI	<	T. BLANK	1	T. BLAN	K 2	T. BLAN	K 3
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	591-78-6	2-Hexanone	т	mg/L	8260	<0.01		<0.01	J	<0.01		<0.01	*
	74-88-4	Iodomethane	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	*
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
<u>,</u>	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01		<0.01		<0.01		<0.01	*
43	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002	*	<0.0002	*	<0.0002	*	<0.0002	*
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
	12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
	11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
	11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
	53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
	12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000)	0000-0000		0000-000	0	0000-000	0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	F. BLANK	(T. BLANK 1		T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	0.0705	*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310	0.0728	*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129	-0.132	*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	RL-7140	0.493	*В		*		*		*
14133-76-7	Technetium-99	т	pCi/L	RL-7100	5.11	*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	RL-7128	0.0377	*		*		*		*
10028-17-8	Tritium	т	pCi/L	704R6	38.5	*		*		*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9010		*		*		*		*
20461-54-5	Iodide	т	mg/L	345.1	<2			*		*		*
s0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

RESIDENTIAL/INERT-QUARTERLY Division of Waste Management Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road Frankfort, KY 40601 (502) 564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				000-000	00	0000-00	00	0000-000	00	8000-524	2
Facility's Lo	cal Well or Spring Number (e.g., M	/w−1	, MW-2, etc	:.)	T. BLANK	ζ4	T. BLAN	K 5	T. BLANI	٢6	222	
Sample Sequend	ce #				1		1		1		2	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	Т		Т		Т		NA	
Sample Date a	mple Date and Time (Month/Day/Year hour: min)		4/18/2013 0	7:25	04/18/2013	07:30	4/22/2013 (07:00	4/18/2013 08	8:30
Duplicate ("Y	" or "N") ²				N		N		N		Y	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	acility Sample ID Number (if applicable)				TB4SG3-	13	TB5SG3	-13	TB6SG3-	TB6SG3-13 C13112019001		3-13
Laboratory Sar	mple ID Number (if applicable)				C13108009	001	C1310800	9002	C13112019	9001	C13108004	002
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	4/23/201	3	4/23/20	13	4/23/201	3	4/22/2013	3
Gradient with	respect to Monitored Unit (UP, DO)WN ,	SIDE, UNKN	IOWN)	NA		NA		NA		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*	<2	
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*	35	
16984-48-8	Fluoride	т	mg/L	9214		*		*		*	0.25	
S0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*	<1	*J
14808-79-8	Sulfate	т	mg/L	9056		*		*		*	11	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*	29.77	
S0145	Specific Conductance	т	µMH0/cm	Field		*		*		*	363	

¹AKGWA # is 0000-0000 for any type of blank.

 2 Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID D = Concentration from analysis

of a secondary dilution

NOTE: The following parameters have updated method numbers: aluminum, 6010; arsenic, 6020; and tritium, EPA-906. The methods will be updated in an upcoming permit modification.

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

-							-• /						
Ī	AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	00	0000-000	00	0000-0000)	8000-5242	
ľ	Facility's Lo	ocal Well or Spring Number (e.g., M	N−1,	MW-2, BLANK-	F, etc.)	T. BLANK	ζ4	T. BLANK	(5	T. BLANK	6	222	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
ľ	s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*	323.26	
Ī	N238	Dissolved Oxygen	т	mg/L	Field		*		*		*	3.07	
ľ	s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*	199	
Ì	s0296	рн	т	Units	Field		*		*		*	6.34	
Ī	NS215	Eh	т	mV	Field		*		*		*	663	
ľ	S0907	Temperature	т	°C	Field		*		*		*	17.89	
U 16	7429-90-5	Aluminum	т	mg/L	6020		*		*		*	0.366	
7	7440-36-0	Antimony	т	mg/L	6020		*		*		*	<0.005	
	7440-38-2	Arsenic	т	mg/L	7060		*		*		*	0.00108	
	7440-39-3	Barium	т	mg/L	6020		*		*		*	0.312	
	7440-41-7	Beryllium	т	mg/L	6020		*		*		*	<0.001	
	7440-42-8	Boron	т	mg/L	6010		*		*		*	<0.2	В
	7440-43-9	Cadmium	т	mg/L	6020		*		*		*	<0.001	В
	7440-70-2	Calcium	т	mg/L	6010		*		*		*	19.3	
	7440-47-3	Chromium	т	mg/L	6020		*		*		*	<0.01	
	7440-48-4	Cobalt	т	mg/L	6020		*		*		*	0.00242	В
	7440-50-8	Copper	т	mg/L	6020		*		*		*	<0.02	
	7439-89-6	Iron	т	mg/L	6010		*		*		*	0.559	
	7439-92-1	Lead	т	mg/L	6020		*		*		*	<0.0013	В
	7439-95-4	Magnesium	т	mg/L	6010		*		*		*	8.15	
	7439-96-5	Manganese	т	mg/L	6020		*		*		*	0.045	
ſ	7439-97-6	Mercury	т	mg/L	7470		*		*		*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				0000-00	00	0000-00	000	0000-00	00	8000-52	242
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	T. BLAN	K 4	T. BLAN	IK 5	T. BLAN	K 6	222	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7	Molybdenum	т	mg/L	6020		*		*		*	<0.001	В
7440-02-0	Nickel	т	mg/L	6020		*		*		*	0.142	
7440-09-7	Potassium	т	mg/L	6010		*		*		*	0.552	В
7440-16-6	Rhodium	т	mg/L	6020		*		*		*	<0.005	
7782-49-2	Selenium	т	mg/L	6020		*		*		*	<0.005	
7440-22-4	Silver	т	mg/L	6020		*		*		*	<0.001	*
7440-23-5	Sodium	т	mg/L	6010		*		*		*	43.5	В
7440-25-7	Tantalum	т	mg/L	6020		*		*		*	<0.005	В
7440-28-0	Thallium	т	mg/L	6020		*		*		*	<0.002	
7440-61-1	Uranium	т	mg/L	6020		*		*		*	<0.001	
7440-62-2	Vanadium	т	mg/L	6020		*		*		*	<0.02	
7440-66-6	Zinc	т	mg/L	6020		*		*		*	<0.02	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.01	J	<0.01	J	<0.01	*J	<0.01	*J
67-64-1	Acetone	т	mg/L	8260	<0.01	J	<0.01		<0.01	*	<0.01	*
107-02-8	Acrolein	т	mg/L	8260	<0.01	*J	<0.01	*J	<0.01	*J	<0.01	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.01	*	<0.01	*	<0.01	*	<0.01	
71-43-2	Benzene	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
108-90-7	Chlorobenzene	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
1330-20-7	Xylenes	т	mg/L	8260	<0.015	J	<0.015		<0.015	*	<0.015	*
100-42-5	Styrene	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
108-88-3	Toluene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	*J	<0.005	*
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				VALUE OR PQL ⁶ L A G G S <0.005 J <0.001 J <0.005 J <0.005 J		0000-000	00	0000-0000		8000-5242	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	T. BLANK	4	T. BLANI	<5	T. BLAN	NK 6	222	2
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	VALUE OR	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
75-25-2	Tribromomethane	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
74-83-9	Methyl bromide	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.01	J	<0.01		<0.01	*	<0.01	*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	*J	<0.005	*
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
75-00-3	Chloroethane	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	*J	<0.005	*J
67-66-3	Chloroform	т	mg/L	8260	<0.001	J	<0.001		<0.001	*	<0.001	*
74-87-3	Methyl chloride	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001	J	<0.001		<0.001	*	<0.001	*
74-95-3	Methylene bromide	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001	J	<0.001		<0.001	*	<0.001	*
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001	J	<0.001		<0.001	*	<0.001	*
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001	J	<0.001		<0.001	*	<0.001	*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*J
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001	J	<0.001		<0.001	*	<0.001	*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001	J	<0.001		<0.001	*	<0.001	*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.002	J	<0.002	J	<0.002	*J	<0.002	*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001	J	<0.001	J	<0.001	*J	<0.001	*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001	J	<0.001		<0.001	*	<0.001	*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

Ī	AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-0000)	0000-00	00	8000-52	42
İ	Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	, MW-2, et	.c.)	T. BLANK	4	T. BLANK	5	T. BLAN	K 6	222	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
ľ	100-41-4	Ethylbenzene	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
Î	591-78-6	2-Hexanone	т	mg/L	8260	<0.01	J	<0.01		<0.01	*	<0.01	*
Ĩ	74-88-4	Iodomethane	т	mg/L	8260	<0.01	J	<0.01	J	<0.01	*J	<0.01	*
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
Ч С	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.01	J	<0.01		<0.01	*	<0.01	*
49	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0002		<0.0002		<0.0002		<0.0002	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	*J	<0.005	*
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001	J	<0.001		<0.001	*	<0.001	*
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.005	J	<0.005	J	<0.005	*J	<0.005	*
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.005	J	<0.005		<0.005	*	<0.005	*
	1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
	12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
	11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
	11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
	53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
ſ	12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: <u>KY8-890-008-982</u>/1 Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

C-50

AKGWA NUMBER1	, Facility Well/Spring Number				0000-000	D	0000-0000		0000-0000	C	8004-480)5
Facility's Lo	cal Well or Spring Number (e.g.,	, MW-1	L, MW-2, et	.c.)	T. BLANK	4	T. BLANK 5		T. BLANK	6	391	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*		*	-0.378	*
12587-47-2	Gross Beta	т	pCi/L	9310		*		*		*	8.69	*
10043-66-0	Iodine-131	т	pCi/L	RL-7124		*		*		*		*
13982-63-3	Radium-226	т	pCi/L	RL-7129		*		*		*	0.052	*
10098-97-2	Strontium-90	т	pCi/L	RL-7140		*		*		*	0.605	*В
14133-76-7	Technetium-99	т	pCi/L	RL-7100		*		*		*	3.39	*
14269-63-7	Thorium-230	т	pCi/L	RL-7128		*		*		*	0.157	*
10028-17-8	Tritium	т	pCi/L	704R6		*		*		*	-274	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*	<25	
57-12-5	Cyanide	т	mg/L	9010		*		*		*	<0.04	
20461-54-5	Iodide	т	mg/L	345.1		*		*		*	<2	
s0268	Total Organic Carbon	т	mg/L	9060		*		*		*	<1	
s0586	Total Organic Halides	т	mg/L	9020		*		*		*	0.016	

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5201 MW22	0 MW220SG3-13	Silver	*N	Duplicate analysis not within control limits. Sample spik recovery not within control limits.
		Acrolein	Х	Other specific flags and footnotes may be required to properly define the results.
		Acrylonitrile	Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.566. Rad error is 0.528.
		Gross beta		TPU is 2.93. Rad error is 2.28.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.349. Rad error is 0.111.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.258. Rad error is 0.176.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.5. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0994. Rad error is 0.06.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 605. Rad error is 605.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3000-5202 MW22	21 MW221SG3-13	Nitrate & Nitrite	*	Duplicate analysis not within control limits.
		Silver	*N	Duplicate analysis not within control limits. Sample spik recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.484. Rad error is 0.448.
		Gross beta		TPU is 1.3. Rad error is 1.09.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.344. Rad error is 0.189.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.278. Rad error is 0.185.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.7. Rad error is 10.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0916. Rad error is 0.0468.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 600. Rad error is 600.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
		Nitrate & Nitrite	*	Duplicate analysis not within control limits.
		Silver	*N	Duplicate analysis not within control limits. Sample spik recovery not within control limits.
		Acrolein	Х	Other specific flags and footnotes may be required to properly define the results.
		Acrylonitrile	Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.245. Rad error is 0.232.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.92. Rad error is 0.784.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.312. Rad error is 0.122.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.112. Rad error is 0.0818.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.7. Rad error is 10.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0849. Rad error is 0.00338.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 593. Rad error is 592.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3000-5243 MW22	23 MW223SG3-13	Nitrate & Nitrite	*	Duplicate analysis not within control limits.
		Silver	*N	Duplicate analysis not within control limits. Sample spik recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0139. Rad error is 0.013.
		Gross beta		TPU is 1.13. Rad error is 0.957.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.335. Rad error is 0.00805.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0667. Rad error is 0.0478.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.2. Rad error is 10.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0991. Rad error is 0.059.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 588. Rad error is 588.

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Finds/Unit: KY8-890-008-982 / 1

Facility:US DOE - Paducah Gaseous Diffusion PlantLABPermit Numbers:073-00014 and 073-00015For

LAB ID:<u>None</u> For Official Use Only

Monitoring Fac Point Sam	ility nple ID	Constituent	Flag	Description
8000-5244 MW224 MW22	4SG3-13	Silver	*N	Duplicate analysis not within control limits. Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.556. Rad error is 0.519.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.549. Rad error is 0.475.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.35. Rad error is 0.199.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.189. Rad error is 0.129.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.4. Rad error is 10.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.095. Rad error is 0.0531.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 602. Rad error is 601.
8004-4820 MW369 MW36	9UG3-13	Cobalt	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	NX	Sample spike recovery not within control limits. Other specific flags and footnotes may be required to properly define the results.
		Nickel	Х	Other specific flags and footnotes may be required to properly define the results.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.53. Rad error is 1.39.
		Gross beta		TPU is 2.91. Rad error is 2.61.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.466. Rad error is 0.334.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0187. Rad error is 0.0131.
		Technetium-99		TPU is 11.4. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.106. Rad error is 0.0679.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 607. Rad error is 606.

RESIDENTIAL/INERT – QUARTERLY Facility US DOE - Paducah Gaseous Diffusio Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

ootnotes may be required to s.
ootnotes may be required to s.
ot within control limits.
r RPD failed acceptance crit
was analyzed for, but not Rad error is 1.3.
is 2.17.
ot required and not performe
was analyzed for, but not Rad error is 0.239.
was analyzed for, but not Rad error is 0.206.
was analyzed for, but not Rad error is 10.9.
was analyzed for, but not Rad error is 0.0609.
was analyzed for, but not ad error is 600.

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4808 MW372 MW372UG3-13		Barium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		Tribromomethane	Y	MS,MSD recovery and/or RPD failed acceptance crite
		Chloroethane	Y	MS,MSD recovery and/or RPD failed acceptance crite
		Vinyl chloride	Y	MS,MSD recovery and/or RPD failed acceptance crite
		Dibromochloromethane	Y	MS,MSD recovery and/or RPD failed acceptance crite
		Dichloromethane	Y	MS,MSD recovery and/or RPD failed acceptance crite
		cis-1,3-Dichloropropene	Y	MS,MSD recovery and/or RPD failed acceptance crite
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.119. Rad error is 0.113.
		Gross beta		TPU is 3.07. Rad error is 2.76.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.352. Rad error is 0.138.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.151. Rad error is 0.102.
		Technetium-99		TPU is 12.7. Rad error is 12.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.106. Rad error is 0.0694.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 598. Rad error is 594.

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusio Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4792 MW373 MW373UG3-13		Barium	Х	Other specific flags and footnotes may be required to properly define the results.
		Manganese	Х	Other specific flags and footnotes may be required to properly define the results.
		Silver	Ν	Sample spike recovery not within control limits.
		Tribromomethane	Y	MS,MSD recovery and/or RPD failed acceptance crite
		Chloroethane	Y	MS,MSD recovery and/or RPD failed acceptance crite
		Vinyl chloride	Y	MS,MSD recovery and/or RPD failed acceptance crite
		Dibromochloromethane	Y	MS,MSD recovery and/or RPD failed acceptance crite
		Dichloromethane	Y	MS,MSD recovery and/or RPD failed acceptance crite
		cis-1,3-Dichloropropene	Y	MS,MSD recovery and/or RPD failed acceptance crite
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.88. Rad error is 1.69.
		Gross beta		TPU is 4.65. Rad error is 4.02.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.454. Rad error is 0.318.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.137. Rad error is 0.0931.
		Technetium-99		TPU is 13.3. Rad error is 13.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0973. Rad error is 0.0565.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 605. Rad error is 603.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4809 MW38	4 MW384SG3-13	Silver	*N	Duplicate analysis not within control limits. Sample spik recovery not within control limits.
		Vinyl acetate	Х	Other specific flags and footnotes may be required to properly define the results.
		Acetone	Х	Other specific flags and footnotes may be required to properly define the results.
		Benzene	Х	Other specific flags and footnotes may be required to properly define the results.
		Chlorobenzene	Х	Other specific flags and footnotes may be required to properly define the results.
		Xylenes	Х	Other specific flags and footnotes may be required to properly define the results.
		Styrene	Х	Other specific flags and footnotes may be required to properly define the results.
		Toluene	Х	Other specific flags and footnotes may be required to properly define the results.
		Chlorobromomethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Bromodichloromethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Tribromomethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Methyl bromide	Х	Other specific flags and footnotes may be required to properly define the results.
		Methyl Ethyl Ketone	Х	Other specific flags and footnotes may be required to properly define the results.
		trans-1,4-Dichloro-2-butene	Х	Other specific flags and footnotes may be required to properly define the results.
		Carbon disulfide	Х	Other specific flags and footnotes may be required to properly define the results.
		Chloroethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Chloroform	Х	Other specific flags and footnotes may be required to properly define the results.
		Methyl chloride	Х	Other specific flags and footnotes may be required to properly define the results.
		cis-1,2-Dichloroethene	Х	Other specific flags and footnotes may be required to properly define the results.
		Methylene bromide	Х	Other specific flags and footnotes may be required to properly define the results.
		1,1-Dichloroethane	Х	Other specific flags and footnotes may be required to properly define the results.
		1,2-Dichloroethane	х	Other specific flags and footnotes may be required to properly define the results.
		1,1-Dichloroethylene	х	Other specific flags and footnotes may be required to properly define the results.
		1,2-Dibromoethane	х	Other specific flags and footnotes may be required to properly define the results.
		1,1,2,2-Tetrachloroethane	х	Other specific flags and footnotes may be required to properly define the results.
		1,1,1-Trichloroethane	х	Other specific flags and footnotes may be required to properly define the results.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4809 MW384	MW384SG3-13	1,1,2-Trichloroethane	Х	Other specific flags and footnotes may be required t properly define the results.
		1,1,1,2-Tetrachloroethane	х	Other specific flags and footnotes may be required t properly define the results.
		Vinyl chloride	х	Other specific flags and footnotes may be required t properly define the results.
		Tetrachloroethene	х	Other specific flags and footnotes may be required t properly define the results.
		Trichloroethene	х	Other specific flags and footnotes may be required to properly define the results.
		Ethylbenzene	х	Other specific flags and footnotes may be required properly define the results.
		2-Hexanone	х	Other specific flags and footnotes may be required properly define the results.
		lodomethane	х	Other specific flags and footnotes may be required properly define the results.
		Dibromochloromethane	х	Other specific flags and footnotes may be required properly define the results.
		Carbon tetrachloride	х	Other specific flags and footnotes may be required properly define the results.
		Dichloromethane	х	Other specific flags and footnotes may be required properly define the results.
		Methyl Isobutyl Ketone	х	Other specific flags and footnotes may be required properly define the results.
		1,2-Dibromo-3-chloropropane	х	Other specific flags and footnotes may be required properly define the results.
		1,2-Dichloropropane	х	Other specific flags and footnotes may be required properly define the results.
		trans-1,3-Dichloropropene	х	Other specific flags and footnotes may be required properly define the results.
		cis-1,3-Dichloropropene	х	Other specific flags and footnotes may be required properly define the results.
		trans-1,2-Dichloroethene	х	Other specific flags and footnotes may be required properly define the results.
		Trichlorofluoromethane	х	Other specific flags and footnotes may be required properly define the results.
		1,2,3-Trichloropropane	х	Other specific flags and footnotes may be required properly define the results.
		1,2-Dichlorobenzene	х	Other specific flags and footnotes may be required properly define the results.
		1,4-Dichlorobenzene	х	Other specific flags and footnotes may be required properly define the results.
		PCB, Total		Analysis of constituent not required and not perform
		PCB-1016		Analysis of constituent not required and not perforr
		PCB-1221		Analysis of constituent not required and not perform
		PCB-1232		Analysis of constituent not required and not perforr
		PCB-1242		Analysis of constituent not required and not perform
		PCB-1248		Analysis of constituent not required and not perform
		PCB-1254		Analysis of constituent not required and not perform

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4809 MW3	84 MW384SG3-13	PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 2.17. Rad error is 1.57.
		Gross beta		TPU is 19.6. Rad error is 8.97.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.377. Rad error is 0.244.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.041. Rad error is 0.0287.
		Technetium-99		TPU is 16.7. Rad error is 16.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.108. Rad error is 0.0704.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 580. Rad error is 579.
		lodide	*N	Duplicate analysis not within control limits. Sample spike recovery not within control limits.

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusio Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4810 MW385 MW385SG3-13		Silver	*N	Duplicate analysis not within control limits. Sample spik recovery not within control limits.
		Acrolein	Х	Other specific flags and footnotes may be required to properly define the results.
		Acrylonitrile	х	Other specific flags and footnotes may be required to properly define the results.
		1,2-Dibromo-3-chloropropane	х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.06. Rad error is 0.833.
		Gross beta		TPU is 14.4. Rad error is 7.42.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.346. Rad error is 0.193.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0415. Rad error is 0.0291.
		Technetium-99		TPU is 16. Rad error is 15.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.104. Rad error is 0.0669.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 580. Rad error is 580.
		lodide	*N	Duplicate analysis not within control limits. Sample spil recovery not within control limits.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4804 MW386 MW386SG3-13		Silver	*N	Duplicate analysis not within control limits. Sample spike recovery not within control limits.
		1,2-Dibromo-3-chloropropane	х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.27. Rad error is 1.18.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.161. Rad error is 0.141.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.343. Rad error is 0.187.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.232. Rad error is 0.156.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.106. Rad error is 0.0685.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 606. Rad error is 606.
		lodide	*N	Duplicate analysis not within control limits. Sample spike recovery not within control limits.

RESIDENTIAL/INERT – QUARTERLY Facility⁻ US DOE - Paducah Gaseous Diffusio Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4815 MW38	37 MW387SG3-13	Silver	*N	Duplicate analysis not within control limits. Sample spike recovery not within control limits.
		1,2-Dibromo-3-chloropropane	х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.74. Rad error is 1.29.
		Gross beta		TPU is 18.6. Rad error is 8.78.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.348. Rad error is 0.0952.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0391. Rad error is 0.0274.
		Technetium-99		TPU is 19. Rad error is 18.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.111. Rad error is 0.0785.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 583. Rad error is 582.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4816 MW388 MW388SG3-13		Silver	*N	Duplicate analysis not within control limits. Sample spik recovery not within control limits.
		1,2-Dibromo-3-chloropropane	х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		TPU is 3.72. Rad error is 2.8.
		Gross beta		TPU is 11.4. Rad error is 6.43.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.44. Rad error is 0.325.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.235. Rad error is 0.159.
		Technetium-99		TPU is 15.2. Rad error is 14.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.104. Rad error is 0.0646.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 592. Rad error is 592.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no samp was collected.
		Chloride		During sampling, the well was dry; therefore, no samp was collected.
		Fluoride		During sampling, the well was dry; therefore, no samp was collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no samp was collected.
		Sulfate		During sampling, the well was dry; therefore, no samp was collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no samp was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no samp was collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no samp was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no samp was collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no samp was collected.
		рН		During sampling, the well was dry; therefore, no samp was collected.
		Eh		During sampling, the well was dry; therefore, no samp was collected.
		Temperature		During sampling, the well was dry; therefore, no samp was collected.
		Aluminum		During sampling, the well was dry; therefore, no samp was collected.
		Antimony		During sampling, the well was dry; therefore, no samp was collected.
		Arsenic		During sampling, the well was dry; therefore, no samp was collected.
		Barium		During sampling, the well was dry; therefore, no samp was collected.
		Beryllium		During sampling, the well was dry; therefore, no samp was collected.
		Boron		During sampling, the well was dry; therefore, no samp was collected.
		Cadmium		During sampling, the well was dry; therefore, no samp was collected.
		Calcium		During sampling, the well was dry; therefore, no samp was collected.
		Chromium		During sampling, the well was dry; therefore, no samp was collected.
		Cobalt		During sampling, the well was dry; therefore, no samp was collected.
		Copper		During sampling, the well was dry; therefore, no samp was collected.
		Iron		During sampling, the well was dry; therefore, no samp was collected.
		Lead		During sampling, the well was dry; therefore, no samp was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		Magnesium		During sampling, the well was dry; therefore, no sampl was collected.
		Manganese		During sampling, the well was dry; therefore, no sampl was collected.
		Mercury		During sampling, the well was dry; therefore, no sampl was collected.
		Molybdenum		During sampling, the well was dry; therefore, no sampl was collected.
		Nickel		During sampling, the well was dry; therefore, no sampl was collected.
		Potassium		During sampling, the well was dry; therefore, no samp was collected.
		Rhodium		During sampling, the well was dry; therefore, no samp was collected.
		Selenium		During sampling, the well was dry; therefore, no samp was collected.
		Silver		During sampling, the well was dry; therefore, no sampl was collected.
		Sodium		During sampling, the well was dry; therefore, no sampl was collected.
		Tantalum		During sampling, the well was dry; therefore, no samp was collected.
		Thallium		During sampling, the well was dry; therefore, no samp was collected.
		Uranium		During sampling, the well was dry; therefore, no samp was collected.
		Vanadium		During sampling, the well was dry; therefore, no samp was collected.
		Zinc		During sampling, the well was dry; therefore, no samp was collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no samp was collected.
		Acetone		During sampling, the well was dry; therefore, no samp was collected.
		Acrolein		During sampling, the well was dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no samp was collected.
		Benzene		During sampling, the well was dry; therefore, no samp was collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no samp was collected.
		Xylenes		During sampling, the well was dry; therefore, no samp was collected.
		Styrene		During sampling, the well was dry; therefore, no samp was collected.
		Toluene		During sampling, the well was dry; therefore, no samp was collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no samp was collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sampl was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4812 MW389		Tribromomethane		During sampling, the well was dry; therefore, no sampl was collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sampl was collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no samplwas collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no samplwas collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no samplwas collected.
		Chloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		Chloroform		During sampling, the well was dry; therefore, no sampl was collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sampl was collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sampl was collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sampl was collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sampl was collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sampl was collected.
		lodomethane		During sampling, the well was dry; therefore, no sampli was collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sampli was collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sampl was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		Dichloromethane		During sampling, the well was dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample was collected.
		Gross beta		During sampling, the well was dry; therefore, no sample was collected.
		lodine-131		During sampling, the well was dry; therefore, no sample was collected.
		Radium-226		During sampling, the well was dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4812 MW389		Thorium-230		During sampling, the well was dry; therefore, no sample was collected.
		Tritium		During sampling, the well was dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample was collected.
		Cyanide		During sampling, the well was dry; therefore, no sample was collected.
		lodide		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4811 MW390		Bromide		During sampling, the well was dry; therefore, no samp was collected.
		Chloride		During sampling, the well was dry; therefore, no samp was collected.
		Fluoride		During sampling, the well was dry; therefore, no samp was collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no samp was collected.
		Sulfate		During sampling, the well was dry; therefore, no samp was collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no samp was collected.
		Specific Conductance		During sampling, the well was dry; therefore, no samp was collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no samp was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no samp was collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no samp was collected.
		рН		During sampling, the well was dry; therefore, no samp was collected.
		Eh		During sampling, the well was dry; therefore, no samp was collected.
		Temperature		During sampling, the well was dry; therefore, no samp was collected.
		Aluminum		During sampling, the well was dry; therefore, no samp was collected.
		Antimony		During sampling, the well was dry; therefore, no sam was collected.
		Arsenic		During sampling, the well was dry; therefore, no sam was collected.
		Barium		During sampling, the well was dry; therefore, no samp was collected.
		Beryllium		During sampling, the well was dry; therefore, no samp was collected.
		Boron		During sampling, the well was dry; therefore, no samp was collected.
		Cadmium		During sampling, the well was dry; therefore, no samp was collected.
		Calcium		During sampling, the well was dry; therefore, no samp was collected.
		Chromium		During sampling, the well was dry; therefore, no samp was collected.
		Cobalt		During sampling, the well was dry; therefore, no samp was collected.
		Copper		During sampling, the well was dry; therefore, no samp was collected.
		Iron		During sampling, the well was dry; therefore, no sampling was collected.
		Lead		During sampling, the well was dry; therefore, no sampling was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4811 MW390		Magnesium		During sampling, the well was dry; therefore, no sampl was collected.
		Manganese		During sampling, the well was dry; therefore, no sampl was collected.
		Mercury		During sampling, the well was dry; therefore, no sampl was collected.
		Molybdenum		During sampling, the well was dry; therefore, no sampl was collected.
		Nickel		During sampling, the well was dry; therefore, no sampl was collected.
		Potassium		During sampling, the well was dry; therefore, no sampl was collected.
		Rhodium		During sampling, the well was dry; therefore, no sampl was collected.
		Selenium		During sampling, the well was dry; therefore, no sampl was collected.
		Silver		During sampling, the well was dry; therefore, no sampl was collected.
		Sodium		During sampling, the well was dry; therefore, no sampl was collected.
		Tantalum		During sampling, the well was dry; therefore, no sampl was collected.
		Thallium		During sampling, the well was dry; therefore, no sampl was collected.
		Uranium		During sampling, the well was dry; therefore, no sampl was collected.
		Vanadium		During sampling, the well was dry; therefore, no sampl was collected.
		Zinc		During sampling, the well was dry; therefore, no sampl was collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no samp was collected.
		Acetone		During sampling, the well was dry; therefore, no samp was collected.
		Acrolein		During sampling, the well was dry; therefore, no samp was collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no samp was collected.
		Benzene		During sampling, the well was dry; therefore, no sampl was collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sampl was collected.
		Xylenes		During sampling, the well was dry; therefore, no sampl was collected.
		Styrene		During sampling, the well was dry; therefore, no sampl was collected.
		Toluene		During sampling, the well was dry; therefore, no sampl was collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sampling was collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sampl was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4811 MW390		Tribromomethane		During sampling, the well was dry; therefore, no sampl was collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sampl was collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sampl was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sampl was collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sampl was collected.
		Chloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		Chloroform		During sampling, the well was dry; therefore, no sampl was collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sampl was collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sampl was collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sampl was collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no samp was collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sampl was collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sampl was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no samp was collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no samp was collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no samp was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no samp was collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no samp was collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sampl was collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sampl was collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sampl was collected.
		2-Hexanone		During sampling, the well was dry; therefore, no samp was collected.
		lodomethane		During sampling, the well was dry; therefore, no sampl was collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sampl was collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no samp was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4811 MW390		Dichloromethane		During sampling, the well was dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample was collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample was collected.
		Gross beta		During sampling, the well was dry; therefore, no sample was collected.
		lodine-131		During sampling, the well was dry; therefore, no sample was collected.
		Radium-226		During sampling, the well was dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4811 MW390		Thorium-230		During sampling, the well was dry; therefore, no sample was collected.
		Tritium		During sampling, the well was dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample was collected.
		Cyanide		During sampling, the well was dry; therefore, no sample was collected.
		lodide		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample was collected.
3004-4805 MW391 N	MW391SG3-13	Silver	*N	Duplicate analysis not within control limits. Sample spik recovery not within control limits.
		1,2-Dibromo-3-chloropropane	Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.03. Rad error is 0.943.
		Gross beta		TPU is 1.24. Rad error is 1.04.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.347. Rad error is 0.193.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.167. Rad error is 0.114.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.5. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.117. Rad error is 0.0842.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 599. Rad error is 599.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4806 MW392 MW392SG3-13		Silver	*N	Duplicate analysis not within control limits. Sample spik recovery not within control limits.
		1,2-Dibromo-3-chloropropane	х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.14. Rad error is 1.04.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.814. Rad error is 0.697.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.361. Rad error is 0.219.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.162. Rad error is 0.111.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 9.92. Rad error is 9.92.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0946. Rad error is 0.0524.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 589. Rad error is 588.

RESIDENTIAL/INERT – QUARTERLY Facility: US DOF - Paducah Gaseous Diffusio Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4807 MW393 MW393SG3-13		Nitrate & Nitrite	*	Duplicate analysis not within control limits.
		Silver	*N	Duplicate analysis not within control limits. Sample spik recovery not within control limits.
		Acrolein	Х	Other specific flags and footnotes may be required to properly define the results.
		Acrylonitrile	Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.1. Rad error is 1.01.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.941. Rad error is 0.803.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.315. Rad error is 0.0243.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.132. Rad error is 0.0906.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.3. Rad error is 10.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.1. Rad error is 0.0596.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 585. Rad error is 584.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4802 MW394 MW394SG3-13		Silver	*N	Duplicate analysis not within control limits. Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.48. Rad error is 0.442.
		Gross beta		TPU is 1.81. Rad error is 1.48.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.341. Rad error is 0.183.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.166. Rad error is 0.122.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.103. Rad error is 0.066.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 579. Rad error is 577.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4801 MW395 MW395SG3-13		Silver	*N	Duplicate analysis not within control limits. Sample spike recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.184. Rad error is 0.172.
		Gross beta		TPU is 1.31. Rad error is 1.09.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.368. Rad error is 0.229.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.00914. Rad error is 0.00644.
	Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.3. Rad error is 10.3.	
	Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0928. Rad error is 0.0492.	
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 581. Rad error is 581.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4803 MW396 MW396SG3-13		Silver	*N	Duplicate analysis not within control limits. Sample spike recovery not within control limits.
		1,2-Dibromo-3-chloropropane	х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
	PCB-1260		Analysis of constituent not required and not performed.	
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.74. Rad error is 3.3.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.367. Rad error is 0.32.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.398. Rad error is 0.00804.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.106. Rad error is 0.0731.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.1. Rad error is 10.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.115. Rad error is 0.0527.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 586. Rad error is 586.
		lodide	*N	Duplicate analysis not within control limits. Sample spike recovery not within control limits.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4817 MW39	7 MW397SG3-13	Nitrate & Nitrite	*	Duplicate analysis not within control limits.
		Silver	*N	Duplicate analysis not within control limits. Sample spik recovery not within control limits.
		Vinyl acetate	Х	Other specific flags and footnotes may be required to properly define the results.
		Acetone	Х	Other specific flags and footnotes may be required to properly define the results.
		Acrolein	Х	Other specific flags and footnotes may be required to properly define the results.
		Acrylonitrile	Х	Other specific flags and footnotes may be required to properly define the results.
		Benzene	Х	Other specific flags and footnotes may be required to properly define the results.
		Chlorobenzene	Х	Other specific flags and footnotes may be required to properly define the results.
		Xylenes	Х	Other specific flags and footnotes may be required to properly define the results.
		Styrene	Х	Other specific flags and footnotes may be required to properly define the results.
		Toluene	Х	Other specific flags and footnotes may be required to properly define the results.
		Chlorobromomethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Bromodichloromethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Tribromomethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Methyl bromide	Х	Other specific flags and footnotes may be required to properly define the results.
		Methyl Ethyl Ketone	Х	Other specific flags and footnotes may be required to properly define the results.
		trans-1,4-Dichloro-2-butene	Х	Other specific flags and footnotes may be required to properly define the results.
		Carbon disulfide	Х	Other specific flags and footnotes may be required to properly define the results.
		Chloroethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Chloroform	Х	Other specific flags and footnotes may be required to properly define the results.
		Methyl chloride	Х	Other specific flags and footnotes may be required to properly define the results.
		cis-1,2-Dichloroethene	Х	Other specific flags and footnotes may be required to properly define the results.
		Methylene bromide	Х	Other specific flags and footnotes may be required to properly define the results.
		1,1-Dichloroethane	Х	Other specific flags and footnotes may be required to properly define the results.
		1,2-Dichloroethane	Х	Other specific flags and footnotes may be required to properly define the results.
		1,1-Dichloroethylene	Х	Other specific flags and footnotes may be required to properly define the results.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4817 MW397	7 MW397SG3-13	1,2-Dibromoethane	Х	Other specific flags and footnotes may be required to properly define the results.
		1,1,2,2-Tetrachloroethane	Х	Other specific flags and footnotes may be required to properly define the results.
		1,1,1-Trichloroethane	Х	Other specific flags and footnotes may be required to properly define the results.
		1,1,2-Trichloroethane	Х	Other specific flags and footnotes may be required to properly define the results.
		1,1,1,2-Tetrachloroethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Vinyl chloride	Х	Other specific flags and footnotes may be required to properly define the results.
		Tetrachloroethene	Х	Other specific flags and footnotes may be required to properly define the results.
		Trichloroethene	Х	Other specific flags and footnotes may be required to properly define the results.
		Ethylbenzene	Х	Other specific flags and footnotes may be required to properly define the results.
		2-Hexanone	Х	Other specific flags and footnotes may be required to properly define the results.
		lodomethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Dibromochloromethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Carbon tetrachloride	Х	Other specific flags and footnotes may be required to properly define the results.
		Dichloromethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Methyl Isobutyl Ketone	Х	Other specific flags and footnotes may be required to properly define the results.
		1,2-Dichloropropane	Х	Other specific flags and footnotes may be required to properly define the results.
		trans-1,3-Dichloropropene	Х	Other specific flags and footnotes may be required to properly define the results.
		cis-1,3-Dichloropropene	Х	Other specific flags and footnotes may be required to properly define the results.
		trans-1,2-Dichloroethene	Х	Other specific flags and footnotes may be required to properly define the results.
		Trichlorofluoromethane	Х	Other specific flags and footnotes may be required to properly define the results.
		1,2,3-Trichloropropane	Х	Other specific flags and footnotes may be required to properly define the results.
		1,2-Dichlorobenzene	Х	Other specific flags and footnotes may be required to properly define the results.
		1,4-Dichlorobenzene	Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4817 MW3	97 MW397SG3-13	PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.594. Rad error is 0.54.
		Gross beta		TPU is 2.61. Rad error is 2.05.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.326. Rad error is 0.133.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0658. Rad error is 0.0473.
		Technetium-99		TPU is 10.9. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.112. Rad error is 0.0748.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 596. Rad error is 596.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1SG3-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Silver	*N	Duplicate analysis not within control limits. Sample s recovery not within control limits.
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.696. Rad error is 0.637.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0722. Rad error is 0.0636.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.349. Rad error is 0.198.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0587. Rad error is 0.0409.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10. Rad error is 10.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.124. Rad error is 0.0905.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 598. Rad error is 598.
		Chemical Oxygen Demand		Analysis of constituent not required and not performe
		Cyanide		Analysis of constituent not required and not performe
		Total Organic Carbon		Analysis of constituent not required and not performe
		Total Organic Halides		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG3-13	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Silver	*N	Duplicate analysis not within control limits. Sample s recovery not within control limits.
		1,2-Dibromo-3-chloropropane	Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0527. Rad error is 0.0498.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.0173. Rad error is 0.0153.
		lodine-131		Analysis of constituent not required and not performe
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.332. Rad error is 0.167.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.149. Rad error is 0.102.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.5. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.103. Rad error is 0.0662.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 590. Rad error is 590.
		Chemical Oxygen Demand		Analysis of constituent not required and not performe
		Cyanide		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG3-13	Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG3-13	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG3-13	Vanadium		Analysis of constituent not required and not performe
		Zinc		Analysis of constituent not required and not performe
		1,2-Dibromo-3-chloropropane	Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha		Analysis of constituent not required and not performe
		Gross beta		Analysis of constituent not required and not performe
		lodine-131		Analysis of constituent not required and not performe
		Radium-226		Analysis of constituent not required and not performe
		Strontium-90		Analysis of constituent not required and not performe
		Technetium-99		Analysis of constituent not required and not performe
		Thorium-230		Analysis of constituent not required and not performe
		Tritium		Analysis of constituent not required and not performe
		Chemical Oxygen Demand		Analysis of constituent not required and not performe
		Cyanide		Analysis of constituent not required and not performe
		lodide		Analysis of constituent not required and not performe
		Total Organic Carbon		Analysis of constituent not required and not performe
		Total Organic Halides		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG3-13	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG3-13	Vanadium		Analysis of constituent not required and not performe
		Zinc		Analysis of constituent not required and not performe
		1,2-Dibromo-3-chloropropane	Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha		Analysis of constituent not required and not performe
		Gross beta		Analysis of constituent not required and not performe
		lodine-131		Analysis of constituent not required and not performe
		Radium-226		Analysis of constituent not required and not performe
		Strontium-90		Analysis of constituent not required and not performe
		Technetium-99		Analysis of constituent not required and not performe
		Thorium-230		Analysis of constituent not required and not performe
		Tritium		Analysis of constituent not required and not performe
		Chemical Oxygen Demand		Analysis of constituent not required and not performe
		Cyanide		Analysis of constituent not required and not performe
		lodide		Analysis of constituent not required and not performe
		Total Organic Carbon		Analysis of constituent not required and not performe
		Total Organic Halides		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG3-13	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

RESIDENTIAL/INERT – QUARTERLY Facility: US DOF - Paducah Gaseous Diffusio Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG3-13	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		Vinyl acetate	х	Other specific flags and footnotes may be required to properly define the results.
		Acetone	Х	Other specific flags and footnotes may be required to properly define the results.
		Acrolein	Х	Other specific flags and footnotes may be required to properly define the results.
		Acrylonitrile	х	Other specific flags and footnotes may be required to properly define the results.
		Benzene	Х	Other specific flags and footnotes may be required to properly define the results.
		Chlorobenzene	Х	Other specific flags and footnotes may be required to properly define the results.
		Xylenes	Х	Other specific flags and footnotes may be required to properly define the results.
		Styrene	Х	Other specific flags and footnotes may be required to properly define the results.
		Toluene	Х	Other specific flags and footnotes may be required to properly define the results.
		Chlorobromomethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Bromodichloromethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Tribromomethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Methyl bromide	Х	Other specific flags and footnotes may be required to properly define the results.
		Methyl Ethyl Ketone	Х	Other specific flags and footnotes may be required to properly define the results.
		trans-1,4-Dichloro-2-butene	Х	Other specific flags and footnotes may be required to properly define the results.
		Carbon disulfide	Х	Other specific flags and footnotes may be required to properly define the results.
		Chloroethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Chloroform	Х	Other specific flags and footnotes may be required to properly define the results.
		Methyl chloride	Х	Other specific flags and footnotes may be required to properly define the results.
		cis-1,2-Dichloroethene	х	Other specific flags and footnotes may be required to properly define the results.
		Methylene bromide	х	Other specific flags and footnotes may be required to properly define the results.
		1,1-Dichloroethane	х	Other specific flags and footnotes may be required to properly define the results.
		1,2-Dichloroethane	х	Other specific flags and footnotes may be required to properly define the results.
		1,1-Dichloroethylene	х	Other specific flags and footnotes may be required to properly define the results.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG3-13	1,2-Dibromoethane	Х	Other specific flags and footnotes may be required to properly define the results.
		1,1,2,2-Tetrachloroethane	Х	Other specific flags and footnotes may be required to properly define the results.
		1,1,1-Trichloroethane	х	Other specific flags and footnotes may be required to properly define the results.
		1,1,2-Trichloroethane	х	Other specific flags and footnotes may be required to properly define the results.
		1,1,1,2-Tetrachloroethane	х	Other specific flags and footnotes may be required to properly define the results.
		Vinyl chloride	х	Other specific flags and footnotes may be required t properly define the results.
		Tetrachloroethene	х	Other specific flags and footnotes may be required t properly define the results.
		Trichloroethene	х	Other specific flags and footnotes may be required t properly define the results.
		Ethylbenzene	х	Other specific flags and footnotes may be required t properly define the results.
		2-Hexanone	х	Other specific flags and footnotes may be required t properly define the results.
		lodomethane	х	Other specific flags and footnotes may be required t properly define the results.
		Dibromochloromethane	х	Other specific flags and footnotes may be required to properly define the results.
		Carbon tetrachloride	х	Other specific flags and footnotes may be required to properly define the results.
		Dichloromethane	х	Other specific flags and footnotes may be required t properly define the results.
		Methyl Isobutyl Ketone	х	Other specific flags and footnotes may be required t properly define the results.
		1,2-Dibromo-3-chloropropane	х	Other specific flags and footnotes may be required t properly define the results.
		1,2-Dichloropropane	х	Other specific flags and footnotes may be required t properly define the results.
		trans-1,3-Dichloropropene	х	Other specific flags and footnotes may be required t properly define the results.
		cis-1,3-Dichloropropene	х	Other specific flags and footnotes may be required t properly define the results.
		trans-1,2-Dichloroethene	х	Other specific flags and footnotes may be required t properly define the results.
		Trichlorofluoromethane	х	Other specific flags and footnotes may be required t properly define the results.
		1,2,3-Trichloropropane	Х	Other specific flags and footnotes may be required t properly define the results.
		1,2-Dichlorobenzene	х	Other specific flags and footnotes may be required t properly define the results.
		1,4-Dichlorobenzene	Х	Other specific flags and footnotes may be required t properly define the results.
		PCB, Total		Analysis of constituent not required and not perform
		PCB-1016		Analysis of constituent not required and not perform
		PCB-1221		Analysis of constituent not required and not perform

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG3-13	PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4SG3-13	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG3-13	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		Acrolein	х	Other specific flags and footnotes may be required to properly define the results.
		Acrylonitrile	Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha		Analysis of constituent not required and not performe
		Gross beta		Analysis of constituent not required and not performe
		lodine-131		Analysis of constituent not required and not performe
		Radium-226		Analysis of constituent not required and not performe
		Strontium-90		Analysis of constituent not required and not performe
		Technetium-99		Analysis of constituent not required and not performe
		Thorium-230		Analysis of constituent not required and not performe
		Tritium		Analysis of constituent not required and not performe
		Chemical Oxygen Demand		Analysis of constituent not required and not performe
		Cyanide		Analysis of constituent not required and not performe
		lodide		Analysis of constituent not required and not performe
		Total Organic Carbon		Analysis of constituent not required and not performe
		Total Organic Halides		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5SG3-13	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performe
		Fluoride		Analysis of constituent not required and not performe
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performe
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performe
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB5SG3-13	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		Acrolein	Х	Other specific flags and footnotes may be required to properly define the results.
		Acrylonitrile	Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe
		PCB-1242		Analysis of constituent not required and not performe
		PCB-1248		Analysis of constituent not required and not performe
		PCB-1254		Analysis of constituent not required and not performe
		PCB-1260		Analysis of constituent not required and not performe
		PCB-1268		Analysis of constituent not required and not performe
		Gross alpha		Analysis of constituent not required and not performe
		Gross beta		Analysis of constituent not required and not performe
		lodine-131		Analysis of constituent not required and not performe
		Radium-226		Analysis of constituent not required and not performe
		Strontium-90		Analysis of constituent not required and not performe
		Technetium-99		Analysis of constituent not required and not performe
		Thorium-230		Analysis of constituent not required and not performe
		Tritium		Analysis of constituent not required and not performe
		Chemical Oxygen Demand		Analysis of constituent not required and not performe
		Cyanide		Analysis of constituent not required and not performe
		lodide		Analysis of constituent not required and not performe
		Total Organic Carbon		Analysis of constituent not required and not performe
		Total Organic Halides		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB6SG3-13	Bromide		Analysis of constituent not required and not performe
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performe
		Sulfate		Analysis of constituent not required and not performe
		Barometric Pressure Reading		Analysis of constituent not required and not performe
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performe
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performe
		рН		Analysis of constituent not required and not performe
		Eh		Analysis of constituent not required and not performe
		Temperature		Analysis of constituent not required and not performe
		Aluminum		Analysis of constituent not required and not performe
		Antimony		Analysis of constituent not required and not performe
		Arsenic		Analysis of constituent not required and not performe
		Barium		Analysis of constituent not required and not performe
		Beryllium		Analysis of constituent not required and not performe
		Boron		Analysis of constituent not required and not performe
		Cadmium		Analysis of constituent not required and not performe
		Calcium		Analysis of constituent not required and not performe
		Chromium		Analysis of constituent not required and not performe
		Cobalt		Analysis of constituent not required and not performe
		Copper		Analysis of constituent not required and not performe
		Iron		Analysis of constituent not required and not performe
		Lead		Analysis of constituent not required and not performe
		Magnesium		Analysis of constituent not required and not performe
		Manganese		Analysis of constituent not required and not performe
		Mercury		Analysis of constituent not required and not performe
		Molybdenum		Analysis of constituent not required and not performe
		Nickel		Analysis of constituent not required and not performe
		Potassium		Analysis of constituent not required and not performe
		Rhodium		Analysis of constituent not required and not performe
		Selenium		Analysis of constituent not required and not performe
		Silver		Analysis of constituent not required and not performe
		Sodium		Analysis of constituent not required and not performe
		Tantalum		Analysis of constituent not required and not performe
		Thallium		Analysis of constituent not required and not performe
		Uranium		Analysis of constituent not required and not performe

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB6SG3-13	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		Vinyl acetate	х	Other specific flags and footnotes may be required to properly define the results.
		Acetone	Х	Other specific flags and footnotes may be required to properly define the results.
		Acrolein	Х	Other specific flags and footnotes may be required to properly define the results.
		Acrylonitrile	х	Other specific flags and footnotes may be required to properly define the results.
		Benzene	х	Other specific flags and footnotes may be required to properly define the results.
		Chlorobenzene	х	Other specific flags and footnotes may be required to properly define the results.
		Xylenes	Х	Other specific flags and footnotes may be required to properly define the results.
		Styrene	Х	Other specific flags and footnotes may be required to properly define the results.
		Toluene	Х	Other specific flags and footnotes may be required to properly define the results.
		Chlorobromomethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Bromodichloromethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Tribromomethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Methyl bromide	Х	Other specific flags and footnotes may be required to properly define the results.
		Methyl Ethyl Ketone	Х	Other specific flags and footnotes may be required to properly define the results.
		trans-1,4-Dichloro-2-butene	Х	Other specific flags and footnotes may be required to properly define the results.
		Carbon disulfide	Х	Other specific flags and footnotes may be required to properly define the results.
		Chloroethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Chloroform	Х	Other specific flags and footnotes may be required to properly define the results.
		Methyl chloride	х	Other specific flags and footnotes may be required to properly define the results.
		cis-1,2-Dichloroethene	х	Other specific flags and footnotes may be required to properly define the results.
		Methylene bromide	х	Other specific flags and footnotes may be required to properly define the results.
		1,1-Dichloroethane	х	Other specific flags and footnotes may be required to properly define the results.
		1,2-Dichloroethane	х	Other specific flags and footnotes may be required to properly define the results.
		1,1-Dichloroethylene	х	Other specific flags and footnotes may be required to properly define the results.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB6SG3-13	1,2-Dibromoethane	Х	Other specific flags and footnotes may be required to properly define the results.
		1,1,2,2-Tetrachloroethane	Х	Other specific flags and footnotes may be required to properly define the results.
		1,1,1-Trichloroethane	Х	Other specific flags and footnotes may be required to properly define the results.
		1,1,2-Trichloroethane	Х	Other specific flags and footnotes may be required to properly define the results.
		1,1,1,2-Tetrachloroethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Vinyl chloride	Х	Other specific flags and footnotes may be required to properly define the results.
		Tetrachloroethene	Х	Other specific flags and footnotes may be required to properly define the results.
		Trichloroethene	Х	Other specific flags and footnotes may be required to properly define the results.
		Ethylbenzene	Х	Other specific flags and footnotes may be required to properly define the results.
		2-Hexanone	Х	Other specific flags and footnotes may be required to properly define the results.
		lodomethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Dibromochloromethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Carbon tetrachloride	Х	Other specific flags and footnotes may be required to properly define the results.
		Dichloromethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Methyl Isobutyl Ketone	Х	Other specific flags and footnotes may be required to properly define the results.
		1,2-Dichloropropane	Х	Other specific flags and footnotes may be required to properly define the results.
		trans-1,3-Dichloropropene	Х	Other specific flags and footnotes may be required to properly define the results.
		cis-1,3-Dichloropropene	Х	Other specific flags and footnotes may be required to properly define the results.
		trans-1,2-Dichloroethene	Х	Other specific flags and footnotes may be required to properly define the results.
		Trichlorofluoromethane	Х	Other specific flags and footnotes may be required to properly define the results.
		1,2,3-Trichloropropane	Х	Other specific flags and footnotes may be required to properly define the results.
		1,2-Dichlorobenzene	Х	Other specific flags and footnotes may be required to properly define the results.
		1,4-Dichlorobenzene	Х	Other specific flags and footnotes may be required to properly define the results.
		PCB, Total		Analysis of constituent not required and not performe
		PCB-1016		Analysis of constituent not required and not performe
		PCB-1221		Analysis of constituent not required and not performe
		PCB-1232		Analysis of constituent not required and not performe

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB6SG3-13	PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3000-5242 MW222	2 MW222DSG3-13	Nitrate & Nitrite	*	Duplicate analysis not within control limits.
		Silver	*N	Duplicate analysis not within control limits. Sample spik recovery not within control limits.
		Vinyl acetate	х	Other specific flags and footnotes may be required to properly define the results.
		Acetone	Х	Other specific flags and footnotes may be required to properly define the results.
		Benzene	Х	Other specific flags and footnotes may be required to properly define the results.
		Chlorobenzene	Х	Other specific flags and footnotes may be required to properly define the results.
		Xylenes	Х	Other specific flags and footnotes may be required to properly define the results.
		Styrene	Х	Other specific flags and footnotes may be required to properly define the results.
		Toluene	Х	Other specific flags and footnotes may be required to properly define the results.
		Chlorobromomethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Bromodichloromethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Tribromomethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Methyl bromide	Х	Other specific flags and footnotes may be required to properly define the results.
		Methyl Ethyl Ketone	Х	Other specific flags and footnotes may be required to properly define the results.
		trans-1,4-Dichloro-2-butene	Х	Other specific flags and footnotes may be required to properly define the results.
		Carbon disulfide	Х	Other specific flags and footnotes may be required to properly define the results.
		Chloroethane	Х	Other specific flags and footnotes may be required to properly define the results.
		Chloroform	Х	Other specific flags and footnotes may be required to properly define the results.
		Methyl chloride	Х	Other specific flags and footnotes may be required to properly define the results.
		cis-1,2-Dichloroethene	Х	Other specific flags and footnotes may be required to properly define the results.
		Methylene bromide	х	Other specific flags and footnotes may be required to properly define the results.
		1,1-Dichloroethane	х	Other specific flags and footnotes may be required to properly define the results.
		1,2-Dichloroethane	х	Other specific flags and footnotes may be required to properly define the results.
		1,1-Dichloroethylene	х	Other specific flags and footnotes may be required to properly define the results.
		1,2-Dibromoethane	х	Other specific flags and footnotes may be required to properly define the results.
		1,1,2,2-Tetrachloroethane	х	Other specific flags and footnotes may be required to properly define the results.

Finds/Unit: KY8-890-008-982 / 1

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
	2 MW222DSG3-13	1,1,1-Trichloroethane	х	Other specific flags and footnotes may be required t properly define the results.
		1,1,2-Trichloroethane	Х	Other specific flags and footnotes may be required t properly define the results.
		1,1,1,2-Tetrachloroethane	Х	Other specific flags and footnotes may be required t properly define the results.
		Vinyl chloride	Х	Other specific flags and footnotes may be required t properly define the results.
		Tetrachloroethene	Х	Other specific flags and footnotes may be required properly define the results.
		Trichloroethene	Х	Other specific flags and footnotes may be required properly define the results.
		Ethylbenzene	Х	Other specific flags and footnotes may be required properly define the results.
		2-Hexanone	Х	Other specific flags and footnotes may be required properly define the results.
		lodomethane	Х	Other specific flags and footnotes may be required properly define the results.
		Dibromochloromethane	Х	Other specific flags and footnotes may be required properly define the results.
		Carbon tetrachloride	Х	Other specific flags and footnotes may be required properly define the results.
		Dichloromethane	Х	Other specific flags and footnotes may be required properly define the results.
		Methyl Isobutyl Ketone	Х	Other specific flags and footnotes may be required properly define the results.
		1,2-Dichloropropane	Х	Other specific flags and footnotes may be required properly define the results.
		trans-1,3-Dichloropropene	Х	Other specific flags and footnotes may be required properly define the results.
		cis-1,3-Dichloropropene	Х	Other specific flags and footnotes may be required properly define the results.
		trans-1,2-Dichloroethene	Х	Other specific flags and footnotes may be required properly define the results.
		Trichlorofluoromethane	Х	Other specific flags and footnotes may be required properly define the results.
		1,2,3-Trichloropropane	Х	Other specific flags and footnotes may be required properly define the results.
		1,2-Dichlorobenzene	Х	Other specific flags and footnotes may be required properly define the results.
		1,4-Dichlorobenzene	Х	Other specific flags and footnotes may be required properly define the results.
		PCB, Total		Analysis of constituent not required and not perform
		PCB-1016		Analysis of constituent not required and not perform
		PCB-1221		Analysis of constituent not required and not perform
		PCB-1232		Analysis of constituent not required and not perform
		PCB-1242		Analysis of constituent not required and not perform
		PCB-1248		Analysis of constituent not required and not perform
		PCB-1254		Analysis of constituent not required and not perform

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5242 MW22	22 MW222DSG3-13	PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.268. Rad error is 0.252.
		Gross beta		TPU is 1.7. Rad error is 1.4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.346. Rad error is 0.107.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.181. Rad error is 0.122.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 10.4. Rad error is 10.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.111. Rad error is 0.0735.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 591. Rad error is 590.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT – QUARTERLY, 2nd Quarter 2013 Facility: U.S. DOE – Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015 Finds/Unit: ______ Lab ID: __<u>None</u> For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the second quarter 2013 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit Condition GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician.

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data included a minimum of one background well for comparison with at least three test wells (Exhibit 1). The second quarter 2013 data used to conduct the statistical analyses were sampled in April 2013. The statistical analyses for this report utilize data from the first eight quarters that were collected for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

For chemicals with established maximum contaminant levels (MCLs), no statistical analysis was performed. Parameters that have MCLs can be found in 401 *KAR* 47:030, Section 6. For parameters with no established MCL, the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. Results of the one-sided tolerance interval statistical test conclude whether the data show a statistically significant increase of concentrations with respect to upgradient (background) well data. For the statistical analysis of pH, a two-sided tolerance interval statistical test was conducted. The test well results were compared to both an upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data. The tolerance interval statistical analysis was conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on historical background data, not on data from the current quarter. Once a statistical result is obtained using the background data, the data from the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant increase in concentration compared to the background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below: ¹

- 1. The tolerance limit (TL) was calculated for the background data.
 - For each parameter, the first eight sampling events results were used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) were computed.
 - The data set was checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be potentially normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper tolerance limit with 95% minimum coverage was determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper tolerance limit was calculated using the following equation: $TL = X + (K \times S)$
- 2. Each observation from downgradient wells was compared to the calculated one-sided upper tolerance limit in Step 1. If an observation value exceeds the tolerance limit, then there is statistically significant evidence that the well has increased concentration with respect to background data.

Type of Data Used

Exhibit 1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential/Inert Landfills. Exhibit 2 presents the parameters from the available data set and the statistical test performed using the one-sided tolerance interval.

Excluding parameters which have an MCL, Exhibits 3, 4, and 5 list the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), and missing observations by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits 3, 4, and 5 were collected during the current quarter, second quarter 2013. The observations that are listed are not background data. Background data are presented on pages D-17 through D-72. The sampling dates associated with background data are listed next to the result on pages D-17 through D-72. When field duplicate data are available, the higher of the two readings is retained for further evaluation.

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

Station	Туре	Aquifer
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389*	TW	UCRS
MW390*	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396	BG	UCRS
MW397	BG	LRGA

Exhibit 1. Station Identification for Monitoring Wells Analyzed

BG: upgradient or background wells TW: downgradient or test wells SG: sidegradient wells * Well was dry this quarter.

Analysis
Aluminum
Boron
Calcium
Chloride
Cobalt
Conductivity
Dissolved Oxygen
Dissolved Solids
Iodide
Iron
Magnesium
Manganese
Molybdenum
Nickel
Oxidation-Reduction Potential
pH
Potassium
Sodium
Sulfate
Technetium-99
Total Organic Carbon (TOC)
Total Organic Halides (TOX)

Exhibit 2. List of Parameters Tested Using the Tolerance Level Test

* For pH, the test well results were compared to both an upper and lower TL to determine if statistically significant deviations exist in concentrations with respect to upgradient well data.

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	3	0	3	0	no
1,1,2,2-Tetrachloroethane	3	0	3	0	no
1,1,2-Trichloroethane	3	0	3	0	no
1,1-Dichloroethane	3	0	3	0	no
1,2,3-Trichloropropane	3	0	3	0	no
1,2-Dibromo-3-chloropropane	3	0	3	0	no
1,2-Dibromoethane	3	0	3	0	no
1,2-Dichlorobenzene	3	0	3	0	no
1,2-Dichloropropane	3	0	3	0	no
2-Butanone	3	0	3	0	no
2-Hexanone	3	0	3	0	no
4-Methyl-2-pentanone	3	0	3	0	no
Acetone	3	0	3	0	no
Acrolein	3	0	3	0	no
Acrylonitrile	3	0	3	0	no
Aluminum	3	0	3	0	no
Antimony	3	0	3	0	no
Beryllium	3	0	3	0	no
Boron	3	0	3	0	no
Bromide	3	0	3	0	no
Bromochloromethane	3	0	3	0	no
Bromodichloromethane	3	0	3	0	no
Bromoform	3	0	3	0	no
Bromomethane	3	0	3	0	no
Calcium	3	0	0	3	YES
Carbon disulfide	3	0	3	0	no
Chemical Oxygen Demand (COD)	3	0	3	0	no
Chloride	3	0	0	3	YES
Chlorobenzene	3	0	3	0	no
Chloroethane	3	0	3	0	no
Chloroform	3	0	3	0	no
Chloromethane	3	0	3	0	no
cis-1,2-Dichloroethene	3	0	3	0	no
cis-1,3-Dichloropropene	3	0	3	0	no
Cobalt	3	0	3	0	no
Conductivity	3	0	0	3	YES
Copper	3	0	3	0	no
Cyanide	3	0	3	0	no
Dibromochloromethane	3	0	3	0	no
Dibromomethane	3	0	3	0	no
Dimethylbenzene, Total	3	0	3	0	no

Exhibit 3. Summary of Missing, Censored, and Uncensored Data–UCRS

Dissolved Oxygen	3	0	0	3	YES
Dissolved Solids	3	0	0	3	YES
Ethylbenzene	3	0	3	0	no
Iodide	3	0	3	0	no
Iodomethane	3	0	3	0	no
Iron	3	0	0	3	YES
Magnesium	3	0	0	3	YES
Manganese	3	0	0	3	YES
Methylene chloride	3	0	3	0	no
Molybdenum	3	0	3	0	no
Nickel	3	0	3	0	no
Oxidation-Reduction Potential	3	0	0	3	YES
PCB, Total	3	3	0	0	no
PCB-1016	3	3	0	0	no
PCB-1221	3	3	0	0	no
PCB-1232	3	3	0	0	no
PCB-1242	3	3	0	0	no
PCB-1248	3	3	0	0	no
PCB-1254	3	3	0	0	no
PCB-1260	3	3	0	0	no
PCB-1268	3	3	0	0	no
pH	3	0	0	3	YES
Potassium	3	0	0	3	YES
Radium-226	3	0	3	0	no
Rhodium	3	0	3	0	no
Sodium	3	0	0	3	YES
Styrene	3	0	3	0	no
Sulfate	3	0	0	3	YES
Tantalum	3	0	3	0	no
Technetium-99	3	0	3	0	no
Tetrachloroethene	3	0	3	0	no
Thallium	3	0	3	0	no
Thorium-230	3	0	3	0	no
Toluene	3	0	3	0	no
Total Organic Carbon (TOC)	3	0	0	3	YES
Total Organic Halides (TOX)	3	0	0	3	YES
trans-1,2-Dichloroethene	3	0	3	0	no
trans-1,3-Dichloropropene	3	0	3	0	no
Trans-1,4-Dichloro-2-butene	3	0	3	0	no
Trichlorofluoromethane	3	0	3	0	no
Uranium	3	0	3	0	no
Vanadium	3	0	3	0	
Vinyl acetate	3	0	3	0	no
v myi acciaic	3	0	3	0	no

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	0	11	0	no
1,1,2,2-Tetrachloroethane	11	0	11	0	no
1,1,2-Trichloroethane	11	0	11	0	no
1,1-Dichloroethane	11	0	11	0	no
1,2,3-Trichloropropane	11	0	11	0	no
1,2-Dibromo-3-chloropropane	11	0	11	0	no
1,2-Dibromoethane	11	0	11	0	no
1,2-Dichlorobenzene	11	0	11	0	no
1,2-Dichloropropane	11	0	11	0	no
2-Butanone	11	0	11	0	no
2-Hexanone	11	0	11	0	no
4-Methyl-2-pentanone	11	0	11	0	no
Acetone	11	0	11	0	no
Acrolein	11	0	11	0	no
Acrylonitrile	11	0	11	0	no
Aluminum	11	0	9	2	YES
Antimony	11	0	11	0	no
Beryllium	11	0	11	0	no
Boron	11	0	10	1	YES
Bromide	11	0	11	0	no
Bromochloromethane	11	0	11	0	no
Bromodichloromethane	11	0	11	0	no
Bromoform	11	0	11	0	no
Bromomethane	11	0	11	0	no
Calcium	11	0	0	11	YES
Carbon disulfide	11	0	11	0	no
Chemical Oxygen Demand	11	0	11	0	no
Chloride	11	0	0	11	YES
Chlorobenzene	11	0	11	0	no
Chloroethane	11	0	11	0	no
Chloroform	11	0	11	0	no
Chloromethane	11	0	11	0	no
cis-1,2-Dichloroethene	11	0	11	0	no
cis-1,3-Dichloropropene	11	0	11	0	no
Cobalt	11	0	8	3	YES
Conductivity	11	0	0	<u> </u>	YES
Copper	11	0	11	0	no
Cyanide	11	0	11	0	no
Dibromochloromethane	11	0	11	0	
Dibromomethane	11	0	11	0	no
Dimethylbenzene, Total	11	0	11	0	no
Dinethyldenzene, Total Dissolved Oxygen	11	0	0	11	no YES
Dissolved Oxygen Dissolved Solids	11	0	0	11	
Ethylbenzene	11	0	U 11	0	YES
Iodide	11	0	11 10	1	no
					YES
Iodomethane	11	0	11	0	no
Iron	11	0	6	5	YES

Exhibit 4. Summary of Missing, Censored, and Uncensored Data–URGA

Magnesium	11	0	0	11	YES
Manganese	11	0	4	7	YES
Methylene chloride	11	0	11	0	no
Molybdenum	11	0	8	3	YES
Nickel	11	0	5	6	YES
Oxidation-Reduction Potential	11	0	0	11	YES
PCB, Total	11	9	2	0	no
PCB-1016	11	9	2	0	no
PCB-1221	11	9	2	0	no
PCB-1232	11	9	2	0	no
PCB-1242	11	9	2	0	no
PCB-1248	11	9	2	0	no
PCB-1254	11	9	2	0	no
PCB-1260	11	9	2	0	no
PCB-1268	11	9	2	0	no
pH	11	0	0	11	YES
Potassium	11	0	0	11	YES
Radium-226	11	0	11	0	no
Rhodium	11	0	11	0	no
Sodium	11	0	0	11	YES
Styrene	11	0	11	0	no
Sulfate	11	0	0	11	YES
Tantalum	11	0	11	0	no
Technetium-99	11	0	7	4	YES
Tetrachloroethene	11	0	11	0	no
Thallium	11	0	11	0	no
Thorium-230	11	0	11	0	no
Toluene	11	0	11	0	no
Total Organic Carbon (TOC)	11	0	9	2	YES
Total Organic Halides (TOX)	11	0	0	11	YES
trans-1,2-Dichloroethene	11	0	11	0	no
trans-1,3-Dichloropropene	11	0	11	0	no
Trans-1,4-Dichloro-2-butene	11	0	11	0	no
Trichlorofluoromethane	11	0	11	0	no
Uranium	11	0	11	0	no
Vanadium	11	0	11	0	no
Vinyl acetate	11	0	11	0	no
Zinc	11	0	11	0	no

Exhibit 4. Summary of Missing, Censored, and Uncensored Data–URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Missing Observation	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	0	7	0	no
1,1,2,2-Tetrachloroethane	7	0	7	0	no
1,1,2-Trichloroethane	7	0	7	0	no
1,1-Dichloroethane	7	0	7	0	no
1,2,3-Trichloropropane	7	0	7	0	no
1,2-Dibromo-3-chloropropane	7	0	7	0	no
1,2-Dibromoethane	7	0	7	0	no
1,2-Dichlorobenzene	7	0	7	0	no
1,2-Dichloropropane	7	0	7	0	no
2-Butanone	7	0	7	0	no
2-Hexanone	7	0	7	0	no
4-Methyl-2-pentanone	7	0	7	0	no
Acetone	7	0	7	0	no
Acrolein	7	0	7	0	no
Acrylonitrile	7	0	7	0	no
Aluminum	7	0	7	0	no
Antimony	7	0	7	0	no
Beryllium	7	0	7	0	
Boron	7	0		-	no
Bromide	-		6 7	1	YES
	7 7	0	7	0	no
Bromochloromethane	•	0	•	0	no
Bromodichloromethane	7	0	7	0	no
Bromoform	7	0	7	0	no
Bromomethane	7	0	7	0	no
Calcium	7	0	0	7	YES
Carbon disulfide	7	0	7	0	no
Chemical Oxygen Demand	7	0	7	0	no
(COD)	7	0	0	7	-
Chloride	7	0	0	7	YES
Chlorobenzene	7	0	7	0	no
Chloroethane	7	0	7	0	no
Chloroform	7	0	7	0	no
Chloromethane	7	0	7	0	no
cis-1,2-Dichloroethene	7	0	7	0	no
cis-1,3-Dichloropropene	7	0	7	0	no
Cobalt	7	0	7	0	no
Conductivity	7	0	0	7	YES
Copper	7	0	7	0	no
Cyanide	7	0	7	0	no
Dibromochloromethane	7	0	7	0	no
Dibromomethane	7	0	7	0	no
Dimethylbenzene, Total	7	0	7	0	no
Dissolved Oxygen	7	0	0	7	YES
Dissolved Solids	7	0	0	7	YES
Ethylbenzene	7	0	7	0	no
Iodide	7	0	7	0	no
Iodomethane	7	0	7	0	no
Iron	7	0	6	1	YES
Magnesium	7	0	0	7	YES
	7		5	2	YES
Manganese	7	0			VLIN

Exhibit 5. Summary of Missing, Censored, and Uncensored Data-LRGA

Molybdenum	7	0	7	0	no
Nickel	7	0	7	0	no
Oxidation-Reduction	7	0	0	7	YES
Potential					
PCB, Total	7	5	2	0	no
PCB-1016	7	5	2	0	no
PCB-1221	7	5	2	0	no
PCB-1232	7	5	2	0	no
PCB-1242	7	5	2	0	no
PCB-1248	7	5	2	0	no
PCB-1254	7	5	2	0	no
PCB-1260	7	5	2	0	no
PCB-1268	7	5	2	0	no
рН	7	0	0	7	YES
Potassium	7	0	0	7	YES
Radium-226	7	0	7	0	no
Rhodium	7	0	7	0	no
Sodium	7	0	0	7	YES
Styrene	7	0	7	0	no
Sulfate	7	0	0	7	YES
Tantalum	7	0	7	0	no
Technetium-99	7	0	3	4	YES
Tetrachloroethene	7	0	7	0	no
Thallium	7	0	7	0	no
Thorium-230	7	0	7	0	no
Toluene	7	0	7	0	no
Total Organic Carbon (TOC)	7	0	5	2	YES
Total Organic Halides (TOX)	7	0	0	7	YES
trans-1,2-Dichloroethene	7	0	7	0	no
trans-1,3-Dichloropropene	7	0	7	0	no
Trans-1,4-Dichloro-2-butene	7	0	7	0	no
Trichlorofluoromethane	7	0	7	0	no
Uranium	7	0	7	0	no
Vanadium	7	0	7	0	no
Vinyl acetate	7	0	7	0	no
Zinc	7	0	7	0	no

Exhibit 5. Summary of Missing, Censored, and Uncensored Data–LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results

For the UCRS, URGA, and LRGA, the results of the tolerance interval tests are presented on pages D-17 through D-72 and the statistician qualification statement is presented on page D-73. For the UCRS, URGA, and LRGA, the test was applied to 15, 22, and 17 parameters, respectively, listed in Exhibits 3, 4, and 5. A summary of statistical exceedances by well number is shown in Exhibit 6.

<u>UCRS</u>

In this quarter, statistical test results indicated there were statistically significant increases for oxidationreduction potential.

<u>URGA</u>

In this quarter, statistical test results indicated there were statistically significant increases for calcium, conductivity, dissolved solids, iodide, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

<u>LRGA</u>

In this quarter, statistical test results indicated there were statistically significant increases for calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, potassium, sulfate, and technetium-99.

Conclusion

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit 7, Exhibit 8, and Exhibit 9, respectively.

UCRS	URGA	LRGA
MW386: oxidation-reduction	MW222: oxidation-reduction potential	MW370: oxidation-reduction potential,
potential	MW224: oxidation-reduction potential	sulfate
MW393: oxidation-reduction	MW369: oxidation-reduction potential	MW373: calcium, conductivity,
potential	MW372: calcium, conductivity,	dissolved solids, magnesium,
	dissolved solids, magnesium,	oxidation-reduction potential,
	sodium, sulfate, technetium-99	potassium, sulfate,
	MW384: iodide, sulfate,	technetium-99
	technetium-99	MW385: sulfate, technetium-99,
	MW387: sulfate, technetium-99	oxidation-reduction potential
	MW391: oxidation-reduction potential,	MW388: oxidation-reduction potential,
	sulfate	sulfate, technetium-99
		MW392: oxidation-reduction potential

Exhibit 6. Summary of Statistically Significant Increases

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.20	No statistically significant increases relative to background data
Chloride	Tolerance Interval	0.05	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.12	No statistically significant increases relative to background data
Dissolved Oxygen	Tolerance Interval	1.20	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.19	No statistically significant increases relative to background data
Iron	Tolerance Interval	0.48	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.20	No statistically significant increases relative to background data
Manganese	Tolerance Interval	0.46	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	4.77	Statistically significant increases relative to background data in MW386 and MW393
рН	Tolerance Interval	0.05	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	0.28	No statistically significant increases relative to background data
Sodium	Tolerance Interval	0.30	No statistically significant increases relative to background data
Sulfate	Tolerance Interval	0.40	No statistically significant increases relative to background data
Total Organic Carbon	Tolerance Interval	0.47	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	0.38	No statistically significant increases relative to background data

Exhibit 7. Summary of Parameters Identified for Statistical Analysis and the Test Results-UCRS

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.38	No statistically significant increases relative to background data
Boron	Tolerance Interval	1.45	No statistically significant increases relative to background data
Calcium	Tolerance Interval	0.17	Statistically significant increase relative to background data in MW372
Chloride	Tolerance Interval	0.23	No statistically significant increases relative to background data
Cobalt	Tolerance Interval	2.44	No statistically significant increases relative to background data
Conductivity	Tolerance Interval	0.28	Statistically significant increase relative to background data in MW372
Dissolved Oxygen	Tolerance Interval	0.50	No statistically significant increases relative to background data
Dissolved Solids	Tolerance Interval	0.12	Statistically significant increase relative to background data in MW372
Iodide	Tolerance Interval	0.00	Statistically significant increase relative to background data in MW384
Iron	Tolerance Interval	1.17	No statistically significant increases relative to background data
Magnesium	Tolerance Interval	0.16	Statistically significant increase relative to background data in MW372
Manganese	Tolerance Interval	2.16	No statistically significant increases relative to background data
Molybdenum	Tolerance Interval	1.26	No statistically significant increases relative to background data
Nickel	Tolerance Interval	1.79	No statistically significant increases relative to background data
Oxidation-Reduction Potential	Tolerance Interval	0.48	Statistically significant increases relative to background data in MW222, MW224, MW369, and MW391
рН	Tolerance Interval	0.05	No statistically significant deviations relative to background data
Potassium	Tolerance Interval	1.40	No statistically significant increases relative to background data

Exhibit 8. Summary of Parameters Identified for Statistical Analysis and the Test Results-URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Sodium	Tolerance Interval	0.24	Statistically significant increase relative to background data in MW372
Sulfate	Tolerance Interval	0.25	Statistically significant increases relative to background data in MW372, MW384, MW387, and MW391
Technetium-99	Tolerance Interval	0.99	Statistically significant increases relative to background data in MW372, MW384, and MW387
Total Organic Carbon	Tolerance Interval	0.49	No statistically significant increases relative to background data
Total Organic Halides	Tolerance Interval	0.59	No statistically significant increases relative to background data

CV: coefficient of variation

Calcium Tolera Chloride Tolera	ance Interval ance Interval ance Interval	1.24 0.50 0.23	No statistically significant increases relative to background data Statistically significant increase relative to background data in MW373
Chloride Tolera			
	ance Interval	0.23	
Conductivity Tolera			No statistically significant increases relativ to background data
	ance Interval	0.14	Statistically significant increase relative to background data in MW373
Dissolved Oxygen Tolera	ance Interval	0.52	No statistically significant increases relativ to background data
Dissolved Solids Tolera	ance Interval	0.16	Statistically significant increase relative to background data in MW373
Iron Tolera	ance Interval	1.29	No statistically significant increases relativ to background data
Magnesium Tolera	ance Interval	0.52	Statistically significant increase relative to background data in MW373
Manganese Tolera	ance Interval	1.49	No statistically significant increases relative to background data
Oxidation-Reduction Tolera Potential	ance Interval	0.33	Statistically significant increases relative to background data in MW370, MW373, MW385, MW388, and MW392
pH Tolera	ance Interval	0.04	No statistically significant deviations relati to background data
Potassium Tolera	ance Interval	0.40	Statistically significant increase relative to background data in MW373
Sodium Tolera	ance Interval	0.47	No statistically significant increases relative to background data
Sulfate Tolera	ance Interval	0.20	Statistically significant increases relative to background data in MW370, MW373, MW385, and MW388
Technetium-99 Tolera	ance Interval	0.81	Statistically significant increases relative to background data in MW373, MW385, and MW388
Total Organic Carbon Tolera	ance Interval	0.55	No statistically significant increases relativ to background data

Exhibit 9. Summary of Parameters	Identified for Statistical Analysis and the Test Results-LRGA
Exhibit 5. Summary of 1 drumeters	fuchatica for Statistical finarysis and the rest results - EROM

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Total Organic Halides	Tolerance Interval	0.59	No statistically significant increases relative to background data

CV: coefficient of variation

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis UCRS Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

ind Dat nt Well					1
ber: N	AW396				
cted	Result		~ ~ ~ ~		
02	38.400				
02	42.900				8
002	40.200		IL = 6	ð./4ð	
03	46.700				¥ ,
3	49.800				
				istical anav	ISIS
03	43.300		with stat	isticul ulluj	
03 003	43.300 49.700		with stat		
			with stat		
003 04	49.700	Collecte		Second	Quarter 2013 tially Dry Wells
003 04 Quarter 3	49.700 23.600			Second Dry/Par	Quarter 2013
003 04 Quarter 3 Result	49.700 23.600 2013 Data	Resul	d in	Second Dry/Par	Quarter 2013 tially Dry Wells
	ent Well ber: M cted 02 02 002 03	MW396 cted Result 02 38.400 02 42.900 002 40.200 03 46.700	MW396 cted Result 02 38.400 02 42.900 002 40.200 03 46.700	Int Wells Backgr ber: MW396 cted Result 02 38.400 02 42.900 002 40.200 03 46.700 Because assume r	Int Wells Background Data ber: MW396 $X = 41.825$ cted Result $S = 8.445$ 02 38.400 $K = 41.825$ 02 42.900 $K = 41.825$ 002 40.200 $K = 41.825$ 03 46.700 Because CV is less t

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis UCRS Chloride UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Upgradient			Statist Backg		on und Data	
Well Number	: MW396		X= 101.725			
Date Collecte	d Result		S=5.2	-		
8/13/2002	91.600)	CV = 0		52 ** = 3.188	
9/16/2002	98.300)	TL= 1			
10/16/2002	101.40	00	1L-1	10	••••• /	
1/13/2003	108.30	00				nan or equal to 1,
4/8/2003	100.50	00				bution and continu
7/16/2003	102.50	00	with stat	ISt	ical anayls	515.
10/14/2003	106.80	00				
1/14/2004	104.40	00				
Second Qua April 2013	rter 2013 D	ata Colle	cted in			Quarter 2013 ially Dry Wells
Well No. Re	esult Gradi	ent Re	sult > TL?		Well No.	Gradient
MW386 18	.000 Sideg	radient	NO		MW389	Downgradient
MW393 17	.000 Dowr	ngradient	NO			

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis UCRS Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I Upgradient V		~~ ***	tistic ckgro	s on ound Data	
Well Number:	MW396		X= 922.500		
Date Collected	Result		107.		
8/13/2002	784.000		= 0.1		9
9/30/2002	871.000			r** = 3.188 65.579	`
10/16/2002	868.000	11	- 12	03.379	
1/13/2003	912.000				han or equal to 1,
4/8/2003	942.000				bution and continu
7/16/2003	910.000	with	statis	tical anayl	515.
10/14/2003	935.000				
1/14/2004	1158.00				
Second Quar April 2013	ter 2013 Data	Collected in			Quarter 2013 tially Dry Wells
Well No. Res	sult Gradient	Result > T	L?	Well No.	Gradient
MW386 628	.00 Sidegradi	ent NO		MW389	Downgradient
MW393 441	.00 Downgrad	dient NO			

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis UCRS Dissolved Oxygen UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data		Transformed Data from Up	0
Well Number:	MW396	X= 1.395		Well Number:	MW396
Date Collected	Result	S = 1.677		Date Collected	LN(Result)
8/13/2002	5.450	CV= 1.202 K factor** = 3.188		8/13/2002	1.696
9/16/2002	0.400	TL= 6.743		9/16/2002	-0.916
10/16/2002	0.540			10/16/2002	-0.616
1/13/2003	0.720	Because CV greater than	,	1/13/2003	-0.329
4/8/2003	0.690	logarithm of background were calculated.	and test well results	4/8/2003	-0.371
7/16/2003	1.100	were calculated.		7/16/2003	0.095
10/14/2003	0.710	Statistics on		10/14/2003	-0.342
1/14/2004	1.550	Transformed Background Data		1/14/2004	0.438
		X= -0.043			
		S= 0.814			
		CV= -18.867			
		K factor** = 3.188			
		TL= 2.553			

Second Q April 201	econd Quarter 2013 Data Collected in pril 2013			Second O Dry/Par	Quarter 2013 tially Dry Wells	Transformed Data Collecte	-	
Well No.	Result	Gradient Res	ult > TL?	Well No.	Gradient	Well Number	LN(Result)	Result > TL?
MW386 MW393	0.980 3.930	Sidegradient Downgradient	N/A N/A	MW389	Downgradient	MW386 MW393	-0.020 1.369	NO NO

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis UCRS Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgrou Upgradie				Statist Backg		s on ound Data			
Well Num	ber: N	AW396	4	X= 55	0.	375			
Date Colle	cted	Result		S= 10					
8/13/200	02	502.000		CV=0					
9/16/200)2	506.000		TL= 8		** = 3.188 2 980	D		
10/16/20	002	543.000			-				
1/13/200)3	521.000						or equal to	
4/8/2003	3	504.000						on and cont	ın
7/16/200)3	532.000		with stat	15	tical anayl	\$15.		
10/14/20	003	490.000							
1/14/200)4	805.000							
Second Q April 201		2013 Data	Collect	ed in			-	rter 2013 y Dry Well	s
Well No.	Result	Gradient	Resu	lt > TL?		Well No.	Gra	adient	
MW386	386.00	Sidegradi	ent	NO		MW389	Do	wngradient	
MW393	294.00	Downgra	dient	NO					
					_				

Conclusion of Statistical Analysis on Data None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence

that these wells have no elevated concentrations with respect to background data.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis UCRS Iron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgrou Upgradie				Statisti Backgi	ics on round Data	
Well Num	iber:	MW396	1	X= 7.7		
Date Colle	ected	Result		S= 3.7	-	
8/13/20	02	1.800		CV=0		
9/16/20	02	9.530			$r^{**} = 3.18$	8
10/16/2	002	7.430		TL= 1	9.000	
1/13/20	03	9.930				han or equal to 1,
4/8/200	3	10.200				bution and contin
7/16/20	03	9.160		with stat	istical anayl	S1S.
10/14/2	003	11.900				
1/14/20	04	2.420				
Second (April 201	-	2013 Data	Collecte	ed in		Quarter 2013 tially Dry Wells
Well No.	Result	Gradient	Resu	lt > TL?	Well No.	Gradient
MW386	1.090	Sidegradi	ent	NO	MW389	Downgradient
MW393	3.980	Downgra	dient	NO		
MW386 MW393		U			MW389	Downgradient

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis UCRS Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells				Statist Backg	ics on round Data	
Well Num	ber:	MW396	4	X= 16		
Date Colle	ected	Result		S= 3.3	-	
8/13/20	02	15.500		CV= (
9/16/20	02	17.300		TL= 2	or** = 3.18	8
10/16/2	002	17.800		IL=2	./.438	
1/13/20	03	19.200				han or equal to 1,
1/15/20						
4/8/200	3	17.800				bution and contin
	-	17.800 17.800			formal distri-	
4/8/200	03					
4/8/200 7/16/20	03 003	17.800				
4/8/200 7/16/20 10/14/2 1/14/20	03 003 04 Quarter	17.800 20.200	Collect	with stat	istical anayl	
4/8/200 7/16/20 10/14/2 1/14/20	03 003 04 Quarter	17.800 20.200 9.410		with stat	istical anayl Second (Dry/Par	sis. Quarter 2013
4/8/200 7/16/20 10/14/2 1/14/20 Second Q April 201	03 003 04 Quarter	17.800 20.200 9.410	Resu	with stat	istical anayl Second (Dry/Par	sis. Quarter 2013 tially Dry Wells

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis UCRS Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

er: N	1W396			round Data	
			X= 0.774		
ed	Result		S = 0.3		
	0.570				0
	0.647				>
2	0.880		11-1	.700	
	1.132				· · ·
	0.965				
	0.983		with stat	istical allayi	515.
3	0.984				
	0.031				
arter	2013 Data (Collected	1 in		Quarter 2013 tially Dry Wells
Result	Gradient	Result	t > TL?	Well No.	Gradient
0.083	Sidegradie	nt	NO	MW389	Downgradient
0.049	Downgrad		NO		
	2 3 arter 2 Result	0.647 2 0.880 1.132 0.965 0.983 3 0.984 0.031 arter 2013 Data (Result Gradient	0.647 2 0.880 1.132 0.965 0.983 3 0.984 0.031 arter 2013 Data Collected Result Gradient Result	0.570 0.647 2 0.880 1.132 0.965 0.983 3 0.984 0.031 arter 2013 Data Collected in Result Gradient Result > TL?	$\begin{array}{c} \text{K factor}^{**} = 3.188\\ \text{TL} = 1.900\\ \text{K factor}^{**} = 3.188\\ \text{TL} = 1.900\\ \text{Because CV is less transmission assume normal distriministical analys}\\ 0.983\\ 3 0.984\\ 0.031\\ \text{arter 2013 Data Collected in}\\ \text{Result Gradient Result > TL?} \\ \hline \end{array}$

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis UCRS Oxidation-Reduction Potential UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells						
Well Number:	MW396					
Date Collected	Result					
8/13/2002	60.000					
4/8/2003	71.000					
7/16/2003	-56.000					
10/14/2003	-54.000					
1/14/2004	-22.000					
4/12/2004	-6.000					
7/20/2004	-3.000					
10/12/2004	114.000					

Statistics on Background Data
X= 13.000 S= 61.952 CV= 4.766 K factor** = 3.188
TL= 210.502

Because CV greater than 1, the natural logarithm of background and test well results were calculated.

Statistics on Transformed Background Data
X = error
S = error
CV = error
K factor** = 3.188
TL# = 4.736

Transformed Background Data from Upgradient Well							
Well Number:	MW396						
Date Collected	LN(Result)						
8/13/2002	4.094						
4/8/2003	4.263						
7/16/2003	#Func!						
10/14/2003	#Func!						
1/14/2004	#Func!						
4/12/2004	#Func!						
7/20/2004	#Func!						
10/12/2004	4.736						

Because the natural log was not possible for all background values, the TL was considered equal to the maximum background value.

	Second Quarter 2013 Data Collected in April 2013			Second (Dry/Par	Quarter 2013 tially Dry Wells	Transformed Second Quarter 2013 Data Collected in April 2013			
Well No.	Well No. Result Gradient Result > TL?		Well No. Gradient		- Well Number LN(Result) Result >TL?				
MW386 MW393				MW389	Downgradient	MW386 MW393	5.971 4.956	YES YES	
Conclusion	of Statisti	cal Analysis on Tra	ansform	ned Data					

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data. MW386

MW393

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis UCRS pH UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Backgr Upgrad		ata from ells			
Well Nu	mber:	MW396			
Date Col	lected	Result			
8/13/2	002	6.170			
9/16/2	002	6.400			
10/16/	2002	5.900			
1/13/2	003	6.400			
4/8/20	03	6.650			
7/16/2	003	6.400			
10/14/	2003	6.710			
1/14/2	004	7.050			
		d Quarter : il 2013	2013 Da	nta Col	llected
Well No.	Result	Gradient	Result	>TL?	Result <ll?< th=""></ll?<>
MW386	7.030	Sidegra	dient	NO	NO
MW393	6.080	Downgr	adient	NO	NO

Statistics on Background Data
X= 6.460
S= 0.350
CV= 0.054
K factor** = 3.736
TL= 7.766
LL= 5.154

Because CV is less than or equal to 1, assume normal distribution and continue with statistical anaylsis.

Second Quarter 2013
Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

X Mean, X = (sum of background results)/(count of background results)

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis UCRS Potassium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells				Statisti Backgi	ics on round Data	
Well Numl	ber: N	MW396		X= 1.4		
Date Colle	cted	Result		S= 0.3		
8/13/200)2	2.000		CV=0		
9/16/200)2	2.000		K factor** = 3.188 TL= 2.682		8
10/16/20	002	0.978		IL=2	.082	
1/13/200)3	1.080				han or equal to 1,
4/8/2003	3	1.120			bution and contin	
7/16/200)3	1.380		with stat	istical anayl	SIS.
10/14/20	003	1.240				
1/14/200)4	1.490				
Second Q April 201		2013 Data	Collecte	d in		Quarter 2013 tially Dry Wells
Well No.	Result	Gradient	Resul	t > TL?	Well No.	Gradient
MW386	0.356	Sidegradie	ent	NO	MW389	Downgradient
MW393	0.470	Downgrad	lient	NO		

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis UCRS Sodium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells				Statist Backg	ics on round Data	1
Well Num	ber: 1	AW396	4	X= 10		
Date Colle	cted	Result		S= 32		
8/13/200	02	115.000		CV=0		0
9/16/200	02	116.000			or** = 3.18 08.973	8
10/16/20	002	117.000		IL = 2	00.9/3	
1/13/200	03	122.000				han or equal to 1,
1/10/200						
4/8/2003	3	106.000				ibution and contin
		106.000 117.000			istical anayl	
4/8/2003	03					
4/8/2003 7/16/200	03 003	117.000				
4/8/2003 7/16/200 10/14/20 1/14/200	03 003 04 Quarter	117.000 132.000	Collect	with stat	istical anayl	
4/8/2003 7/16/200 10/14/20 1/14/200 Second Q	03 003 04 Quarter	117.000 132.000 29.600 2013 Data		with stat	istical anayl Second (Dry/Par	sis. Quarter 2013
4/8/2003 7/16/200 10/14/20 1/14/200 Second Q April 201	03 003 04 Quarter 3 Result	117.000 132.000 29.600 2013 Data	Resi	with stat	istical anayl Second (Dry/Par	sis. Quarter 2013 tially Dry Wells

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis UCRS Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgrou Upgradie			Statisti Backgi		on und Data	L			
Well Numb	ber: N	1W396	<u>-</u>		X= 22.463				
Date Colle	cted	Result			S= 8.876				
8/13/200)2	41.900			CV= 0.395 K factor** = 3.188 TL= 50.759 Because CV is less than				
9/16/200)2	26.300						ð	
10/16/20	002	20.600		Ļ					
1/13/200)3	16.600						1 2	
4/8/2003	;	23.900			assume normal distribution an with statistical analysis.				on and contin
7/16/200)3	18.800		W	viili sidi	151	icai anayi	515.	
10/14/20	003	12.900							
1/14/200)4	18.700							
Second Q April 201		2013 Data	Colle	cted	in	ſ		-	rter 2013 y Dry Wells
Well No.	Result	Gradient	Re	sult	>TL?		Well No.	Gra	adient
MW386	50.000	Sidegradi	ent		NO		MW389	Do	wngradient
MW393	14.000	Downgra	dient		NO				
			-		-				

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis UCRS Total Organic Carbon (TOC) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Upgradient			tics on ground Data
Well Number	: MW396	X= 9.	.988
Date Collecte 8/13/2002 9/16/2002	19.000 14.600		
10/16/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/14/2004	4.400 7.000 7.300	assume	e CV is less than or equal to 1, normal distribution and continue atistical anaylsis.
Second Qua April 2013	rter 2013 Data	Collected in	Second Quarter 2013 Dry/Partially Dry Wells
Well No. Re	esult Gradient	Result > TL?	Well No. Gradient
	0.400 Sidegradi 000 Downgra		MW389 Downgradient
~	A C		

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis UCRS Total Organic Halides (TOX) UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgrou Upgradiei			Statisti Backgr		on und Data		
Well Numb	ber: N	AW396	4	X= 142	2.6	50	
Date Collec		Result		S= 53. CV= 0.		-	
8/13/200 9/16/200	2	193.000 190.000		K facto TL= 3		** = 3.188 .314	3
10/16/20 1/13/200		221.000 106.000		Because CV is less than			1
4/8/2003 7/16/200		77.800 122.000				ical anayl	bution and continue sis.
10/14/20	03	86.400					
1/14/200	4	145.000					
Second Q April 2013		2013 Data	Collect	ed in			Quarter 2013 tially Dry Wells
Well No.	Result	Gradient	Resi	lt > TL?	1	Well No.	Gradient
MW386	280.00	Sidegradi	ient	NO]	MW389	Downgradient
MW393	35.000	Downgra	dient	NO			
~ 1 •	6.04			D (

Conclusion of Statistical Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data Upgradient Wells	n from	Statistics on Background Data	
Well Number: M	IW220	X= 0.221	
10/14/2002 1/15/2003	Result 0.200 0.200	S= 0.061 CV= 0.277 K factor** = 2.523 TL= 0.376	
7/14/2003 10/13/2003 1/13/2004 4/13/2004	0.200 0.427 ⁸	Because CV is less than assume normal distribut with statistical anaylsis.	ion and continue
Date Collected	IW394 Result		
9/16/2002	0.200 0.200 0.200		
4/10/2003	0.200 0.200 0.200		
10/14/2003	0.200 0.200		
Second Quarter 2 April 2013	2013 Data Collected	in	
Well No. Result	Gradient Result	> TL?	
MW221 0.200	Sidegradient	NO	
MW222 0.366 MW223 0.200	Sidegradient Sidegradient	NO NO	
MW223 0.200 MW224 0.200	Sidegradient	NO	
MW369 0.201	Downgradient	NO	
MW372 0.200	Downgradient	NO	
MW384 0.200	Sidegradient	NO	
MW387 0.200	Downgradient	NO	
MW391 0.200	Downgradient	NO	
Conclusion of Sta	tistical Analysis o	on Data	
None of the test y	valle avaaadad tha	Unner Telerance I	imit which is statist

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA Boron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I Upgradient W		Statistics on Background Data			Transformed Data from Upg	Background gradient Wells
Well Number:	MW220	X= 0.425			Well Number:	MW220
Date Collected	Result	S= 0.615 CV= 1.447			Date Collected	LN(Result)
10/14/2002	0.200	Cv = 1.447 K factor** = 2.523			10/14/2002	-1.609
1/15/2003	0.200	TL = 1.976			1/15/2003	-1.609
4/10/2003	0.200		1		4/10/2003	-1.609
7/14/2003	0.200	Because CV greater tha	n 1, the natural d and test well results		7/14/2003	-1.609
10/13/2003	0.200	were calculated.			10/13/2003	-1.609
1/13/2004	0.200	were calculated.	•		1/13/2004	-1.609
4/13/2004	0.200	Statistics on			4/13/2004	-1.609
7/21/2004	0.200	Transformed			7/21/2004	-1.609
Well Number:	MW394	Background Data	-		Well Number:	MW394
Date Collected	Result	X= -1.322			Date Collected	LN(Result)
8/13/2002	2.000	S= 0.786			8/13/2002	0.693
9/16/2002	2.000	CV= -0.595			9/16/2002	0.693
10/16/2002	0.200	K factor** = 2.523	K factor** = 2.523		10/16/2002	-1.609
1/13/2003	0.200	TL= 0.663			1/13/2003	-1.609
4/10/2003	0.200	TE- 0.005			4/10/2003	-1.609
7/16/2003	0.200				7/16/2003	-1.609
10/14/2003 0.200					10/14/2003	-1.609
1/13/2004	0.200				1/13/2004	-1.609
Second Quarter 2013 Data Collected in April 2013					ormed Second Q ollected in April	
Well No. Res		esult > TL?		Well Nu	mber LN(Resu	It) Result $>$ TL?
MW221 0.2	0	N/A		MW221	-1.609	NO
MW222 0.2	e	N/A		MW222	-1.609	NO
MW223 0.2	e	N/A		MW223	-1.609	NO
MW224 0.2	0	N/A		MW224	-1.609	NO
MW369 0.2	U	N/A		MW369	-1.609	NO
MW372 1.4	0	N/A		MW372	0.358	NO
MW384 0.2	0	N/A		MW384	-1.609	NO
MW387 0.2	U	N/A		MW387	-1.609	NO
MW391 0.2	00 Downgradient	N/A		MW391	-1.609	NO
Conclusion of	Statistical Analysis	s on Transformed Da	ta			

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA Calcium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		atistics on ckground Data
Well Number: MW220		= 27.638
Date Collected Result 10/14/2002 23.600	CV	4.743 V= 0.172 factor** = 2.523
1/15/2003 25.900		L= 39.604
4/10/2003 30.400	L	
7/14/2003 33.900		ause CV is less than or equal to 1, me normal distribution and continue
10/13/2003 21.300		statistical anaylsis.
1/13/2004 20.300	with	Statistical analyisis.
4/13/2004 23.800		
7/21/2004 19.000		
Well Number: MW394	_	
Date Collected Result		
8/13/2002 29.500		
9/16/2002 29.900		
10/16/2002 31.200		
1/13/2003 30.700		
4/10/2003 34.400		
7/16/2003 29.600		
10/14/2003 30.300		
1/13/2004 28.400		
Second Quarter 2013 Dat April 2013	a Collected in	
Well No. Result Gradien	t Result $>$ T	L?
MW221 17.900 Sidegra	dient NO)
MW222 19.300 Sidegra	dient NO)
MW223 20.200 Sidegra)
MW224 23.100 Sidegra	dient NO)
MW369 16.400 Downgi	adient NO)
MW372 65.900 Downgr	adient YES	S
MW384 24.900 Sidegra	dient NO)
MW387 36.200 Downgr)
MW391 26.400 Downgr		
Conclusion of Statistical	Analysis on E	Data
The following test well(s)	exceeded the	e Unner Tolerance Limit, whic

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis **URGA** Chloride **UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells	Statistics on Background Data
Well Number: MW220	X= 49.044
Date Collected Result 10/14/2002 44.600 1/15/2003 43.200 4/10/2003 31.500 7/14/2003 30.800 10/13/2003 40.900 1/13/2004 40.800 4/13/2004 37.500 7/21/2004 40.800 Well Number: MW394	$S = 11.278$ $CV = 0.230$ $K \text{ factor}^{**} = 2.523$ $TL = 77.499$ Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.
Date Collected Result 8/13/2002 60.400 9/16/2002 60.300 10/16/2002 58.000 1/13/2003 60.700 4/10/2003 62.900 7/16/2003 58.100 10/14/2003 58.200 1/13/2004 56.000	
Second Quarter 2013 Data April 2013	Collected in
Well No. Result Gradient	Result > TL?
MW221 37.000 Sidegrad	ient NO
MW222 35.000 Sidegrad	ient NO
MW223 35.000 Sidegrad	
MW224 28.000 Sidegrad	
MW369 36.000 Downgra	
MW372 47.000 Downgra	
MW384 38.000 Sidegrad	
MW387 40.000 Downgra	
MW391 38.000 Downgra	
Conclusion of Statistical	Analysis on Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S)TL

Mean, X = (sum of background results)/(count of background results) Х

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA mg/L **UNITS:** Cobalt

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data			Transformed Data from Upg	Background gradient Wells
Well Number:	MW220	X= 0.016			Well Number:	MW220
Date Collected	Result	S = 0.040			Date Collected	LN(Result)
10/14/2002	0.004	CV= 2.440 K factor** = 2.523			10/14/2002	-5.497
1/15/2003	0.005	TL = 0.116			1/15/2003	-5.306
4/10/2003	0.003		1		4/10/2003	-5.846
7/14/2003	0.161	Because CV greater that	n 1, the natural d and test well results		7/14/2003	-1.826
10/13/2003	0.023	were calculated.			10/13/2003	-3.790
1/13/2004	0.005		1		1/13/2004	-5.373
4/13/2004	0.001	Statistics on			4/13/2004	-6.908
7/21/2004	0.003	Transformed			7/21/2004	-5.937
Well Number:	MW394	Background Data	-		Well Number:	MW394
Date Collected	Result	X= -5.582			Date Collected	LN(Result)
8/13/2002	0.025	S= 1.573			8/13/2002	-3.689
9/16/2002	0.025	CV= -0.282			9/16/2002	-3.689
10/16/2002	0.001	K factor** = 2.523 TL= -1.613			10/16/2002	-6.908
1/13/2003	0.001				1/13/2003	-6.908
4/10/2003	0.001		J		4/10/2003	-6.908
7/16/2003	0.001				7/16/2003	-6.908
10/14/2003 0.001					10/14/2003	-6.908
1/13/2004	0.001				1/13/2004	-6.908
April 2013						
Well No. Res		esult > TL?		Well Nu	mber LN(Resu	It) Result > TL?
MW221 0.00	0	N/A		MW221	-6.908	NO
MW222 0.00	U	N/A		MW222	-5.589	NO
MW223 0.00	•	N/A		MW223	-5.793	NO
MW224 0.00	•	N/A		MW224	-6.908	NO
MW369 0.02	U	N/A		MW369	-3.755	NO
MW372 0.00	0	N/A		MW372	-6.908	NO
MW384 0.00	U	N/A		MW384	-6.908	NO
MW387 0.00	U	N/A		MW387	-6.908	NO
MW391 0.00	01 Downgradient	N/A		MW391	-6.908	NO
Conclusion of S	Statistical Analysis	s on Transformed Da	ta			

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S)TL

Mean, X = (sum of background results)/(count of background results) Х

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells	Statistics on Background Data
Well Number: MW220	X= 382.132
Date Collected Result 10/14/2002 368.000 1/15/2003 433.200 4/10/2002 400.000	S= 107.134 CV= 0.280 K factor** = 2.523 TL= 652.432
4/10/2003 489.000 7/14/2003 430.000 10/13/2003 346.000 1/13/2004 365.000 4/13/2004 416.000 7/21/2004 353.000	Because CV is less than or equal to 1, assume normal distribution and continue with statistical anaylsis.
Well Number: MW394	
Date Collected Result 8/13/2002 406.000 9/16/2002 418.000 10/16/2002 411.000 1/13/2003 422.000 4/10/2003 420.000 7/16/2003 438.000 10/14/2003 3.910 1/13/2004 395.000 Second Quarter 2013 Data April 2013	Collected in
Well No. Result Gradient	Result > TL?
MW221 390.00 Sidegradi MW222 363.00 Sidegradi MW223 421.00 Sidegradi MW224 448.00 Sidegradi MW369 392.00 Downgra MW372 879.00 Downgra MW384 444.00 Sidegradi MW387 536.00 Downgra MW391 408.00 Downgra	ient NO ient NO ient NO dient NO dient YES ient NO dient NO dient NO dient NO
Conclusion of Statistical A	Analysis on Data
The following test well(s)	exceeded the Upper Tolerance Limit, which is sta

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data. MW372

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA Dissolved Oxygen UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgroun Upgradient				Statist Backg	tics on round Data	
Well Numbe	er: M	IW220		X= 3.7		
Date Collect 10/14/200 1/15/2003	2	Result 6.790 7.250		S= 1.8 CV= (K fact TL= 8).499 or** = 2.523	
4/10/2003 7/14/2003		3.600 0.940	I	Because	CV is less than	or equal to 1,
10/13/200	13	1.650	8	assume		tion and continue
1/13/2004		3.480			-	
4/13/2004		1.050				
7/21/2004 Well Numbe		4.460 IW394				
Date Collect		Result				
8/13/2002		6.090				
9/16/2002		3.850				
10/16/200 1/13/2003		5.110				
4/10/2003		3.830 4.150				
7/16/2003		1.830				
10/14/200		3.330				
1/13/2004		3.140				
Second Qua April 2013 Well No.		2013 Data Gradient		in > TL?		
				/1L!		
	4.580	Sidegradi		NO		
	3.070	Sidegradi		NO		
	3.830	Sidegradi		NO		
	2.140	Sidegradi		NO		
	1.190	Downgra		NO NO		
).760 1.090	Downgrad Sidegradi		NO NO		
	4.090 3.700	Downgrad		NO		
	2.520	Downgra		NO		
Conclusion		×			a	

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Upgradient V			tics on ground Data	
Well Number:	MW220		32.688	
Date Collected 10/14/2002 1/15/2003 4/10/2003 7/14/2003	Result 208.000 257.000 288.000 262.000	TL= Because	0.118 tor** = 2.523 302.045 e CV is less than	
10/13/2003 1/13/2004 4/13/2004 7/21/2004 Well Number:	197.000 198.000 245.000 204.000 MW394		normal distribut tistical anaylsis.	ion and continue
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004			1	
Second Quar April 2013	ter 2013 Data	Collected in		
Well No. Res	sult Gradient	Result > TL?	1	
MW222 203	2.00 Sidegradi 3.00 Sidegradi	ent NO	-	
	5.00 Sidegradi 0.00 Sidegradi			
	7.00 Downgra			
MW372 526	5.00 Downgra 5.00 Sidegradi	dient YES		
	.00 Downgra 3.00 Downgra			
		analysis on Dat	a	
		·		ce Limit, which is sta

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA Iodide UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data	
Well Number: MW220		X= 2.000	
Date Collected Result 10/14/2002 2.000 1/15/2003 2.000		S= 0.000 CV= 0.000 K factor** = 2.523	
4/10/2003 2.000	L	TL= 2.000	
7/14/2003 2.000	В	ecause CV is less th	an or equal to 1,
10/13/2003 2.000		ssume normal distrib	
1/13/2004 2.000	W	vith statistical anayls	15.
4/13/2004 2.000			
7/21/2004 2.000			
Well Number: MW394			
Date Collected Result			
8/13/2002 2.000			
9/16/2002 2.000			
10/16/2002 2.000			
1/13/2003 2.000			
4/10/2003 2.000			
7/16/2003 2.000			
10/14/2003 2.000			
1/13/2004 2.000			
Second Quarter 2013 Da April 2013			
Well No. Result Gradie	nt Result	> TL?	
MW221 2.000 Sidegra	dient	NO	
MW222 2.000 Sidegra		NO	
MW223 2.000 Sidegra		NO	
MW224 2.000 Sidegra		NO	
MW369 2.000 Downg	radient	NO	
MW372 2.000 Downg		NO	
MW384 2.600 Sidegra		YES	
MW387 2.000 Downg		NO	
MW391 2.000 Downg		NO	
Conclusion of Statistical			
The following test well(s) exceeded	the Upper Tolera	nce Limit, which

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data. MW384

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA Iron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data			Transformed Data from Upg	Background gradient Wells
Well Number:	MW220	X= 0.897			Well Number:	MW220
Date Collected	Result	S= 1.050 CV= 1.170			Date Collected	LN(Result)
10/14/2002	0.200	Cv = 1.170 K factor** = 2.523			10/14/2002	-1.609
1/15/2003	0.200	TL = 3.545			1/15/2003	-1.609
4/10/2003	0.429		1		4/10/2003	-0.846
7/14/2003	4.330	Because CV greater tha			7/14/2003	1.466
10/13/2003	1.810	logarithm of backgroun were calculated.	a and test well res	suits	10/13/2003	0.593
1/13/2004	0.793	were calculated.	1		1/13/2004	-0.232
4/13/2004	0.130	Statistics on			4/13/2004	-2.040
7/21/2004	0.382	Transformed			7/21/2004	-0.962
Well Number:	MW394	Background Data	-		Well Number:	MW394
Date Collected	Result	X= -0.565			Date Collected	LN(Result)
8/13/2002	1.340	S= 0.951			8/13/2002	0.293
9/16/2002	0.328	CV= -1.683			9/16/2002	-1.115
10/16/2002	1.380	K factor** = 2.523			10/16/2002	0.322
1/13/2003	1.300	TL= 1.834			1/13/2003	0.262
4/10/2003	0.494	11- 1.004			4/10/2003	-0.705
7/16/2003	0.620				7/16/2003	-0.478
10/14/2003	0.370				10/14/2003	-0.994
1/13/2004	0.251				1/13/2004	-1.382
April 2013	ter 2013 Data Collect				ormed Second Q ollected in April	
Well No. Res		esult > TL?		Well Nu	mber LN(Resu	It) Result $>$ TL?
MW221 0.10	0	N/A		MW221	-2.303	NO
MW222 0.53	0	N/A		MW222	-0.582	NO
MW223 0.10	U	N/A		MW223	-2.303	NO
MW224 0.10	U	N/A		MW224	-2.303	NO
MW369 0.72	U	N/A		MW369	-0.322	NO
MW372 1.88	U	N/A		MW372	0.631	NO
MW384 0.62	U	N/A		MW384	-0.465	NO
MW387 0.10	U	N/A		MW387	-2.303	NO
MW391 0.1	15 Downgradient	N/A		MW391	-2.163	NO
Conclusion of	Statistical Analysis	s on Transformed Da	ta			

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

	Backgrou Upgradie					tics on ground Data	
	Well Num	ber: N	1W220	-	X= 10		
	Date Colle 10/14/20 1/15/200	002	Result 9.160 10.000			0.158 for** = 2.523	
	4/10/200	03	10.800			15.092	
	7/14/200	03	14.700			CV is less than	· ·
	10/13/20	003	9.030			normal distribut tistical anaylsis.	tion and continue
	1/13/200	04	8.490		with sta	ustical allayisis.	
	4/13/200	04	9.700				
	7/21/200	04	8.060				
	Well Num	ber: N	1W394				
	Date Colle	ected	Result				
	8/13/200	02	11.800				
	9/16/200	02	12.100				
	10/16/20	002	11.300				
	1/13/200	03	10.300				
	4/10/200	03	11.700				
	7/16/200	03	12.000				
	10/14/20	003	12.200				
	1/13/200	04	11.400				
	Second Q April 201		2013 Data	Collected	d in		
	Well No.	Result	Gradient	Resul	t > TL?		
	MW221	8.320	Sidegradi	ent	NO		
	MW222	8.150	Sidegradi	ent	NO		
	MW223	8.830	Sidegradi	ent	NO		
	MW224	9.610	Sidegradi	ent	NO		
	MW369	6.380	Downgrae	dient	NO		
	MW372	26.000	Downgrae	dient	YES		
	MW384	9.470	Sidegradi		NO		
	MW387		Downgra		NO		
_	MW391		Downgra		NO		
(Conclusio	n of Sta	atistical A	nalysis	on Dat	a	
٦	The follow	ving tes	t well(s)	exceeded	the U	nner Toleran	e Limit, which

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		Statistics on Background Data			Transformed I Data from Upg	
Well Number: MW22		X= 0.287		I	Well Number:	MW220
Date Collected Resu	1lt	S = 0.619			Date Collected	LN(Result)
10/14/2002 0.03	1	CV= 2.156 K factor** = 2.523			10/14/2002	-3.487
1/15/2003 0.029	0	$\Gamma L = 1.848$			1/15/2003	-3.537
4/10/2003 0.014	4				4/10/2003	-4.290
7/14/2003 2.540		ecause CV greater that			7/14/2003	0.932
10/13/2003 0.378	x	garithm of background ere calculated.	a and test well res	sults	10/13/2003	-0.973
1/13/2004 0.159	9	ere calculated.			1/13/2004	-1.839
4/13/2004 0.007	7 5	Statistics on			4/13/2004	-4.952
7/21/2004 0.084		Fransformed			7/21/2004	-2.476
Well Number: MW39	94	Background Data			Well Number:	MW394
Date Collected Resu	ult 2	X= -2.455			Date Collected	LN(Result)
8/13/2002 0.542	2 8	8= 1.619			8/13/2002	-0.612
9/16/2002 0.15	5	CV= -0.659			9/16/2002	-1.864
10/16/2002 0.103	3	K factor** = 2.523			10/16/2002	-2.273
1/13/2003 0.128	.8	ΓL= 1.630			1/13/2003	-2.056
4/10/2003 0.003	5	TL- 1.000			4/10/2003	-5.298
7/16/2003 0.272	2				7/16/2003	-1.302
10/14/2003 0.080	0				10/14/2003	-2.532
1/13/2004 0.066	6				1/13/2004	-2.721
Second Quarter 2013 April 2013					ormed Second Q ollected in April	
		t > TL?		Well Nu	mber LN(Resu	It) Result $>$ TL?
	sidegradient	N/A		MW221	-5.298	NO
	sidegradient	N/A		MW222	-2.661	NO
	sidegradient	N/A		MW223	-2.998	NO
	bidegradient	N/A		MW224	-4.180	NO
	Downgradient	N/A		MW369	-1.523	NO
	Downgradient	N/A		MW372	-2.794	NO
	idegradient	N/A		MW384	-4.241	NO
	Downgradient	N/A		MW387	-5.298	NO
MW391 0.005 D	Downgradient	N/A		MW391	-5.298	NO
Conclusion of Statisti	ical Analysis on	n Transformed Dat	ta			

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA **UNITS:** Molybdenum mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data			Transformed I Data from Upg	Background gradient Wells
Well Number:	MW220	X= 0.006			Well Number:	MW220
Date Collected	Result	S = 0.008			Date Collected	LN(Result)
10/14/2002	0.006	CV= 1.261 K factor** = 2.523			10/14/2002	-5.189
1/15/2003	0.010	TL = 0.026			1/15/2003	-4.622
4/10/2003	0.011		1		4/10/2003	-4.519
7/14/2003	0.002	Because CV greater tha		1.	7/14/2003	-6.012
10/13/2003	0.006	logarithm of backgroun were calculated.	d and test well res	sults	10/13/2003	-5.174
1/13/2004	0.006		•		1/13/2004	-5.164
4/13/2004	0.001	Statistics on			4/13/2004	-6.908
7/21/2004	0.004	Transformed			7/21/2004	-5.542
Well Number:	MW394	Background Data			Well Number:	MW394
Date Collected	Result	X= -5.747			Date Collected	LN(Result)
8/13/2002	0.025	S= 1.205			8/13/2002	-3.689
9/16/2002	0.025	CV= -0.210			9/16/2002	-3.689
10/16/2002	0.001	K factor** = 2.523			10/16/2002	-6.908
1/13/2003	0.001	TL= -2.708			1/13/2003	-6.908
4/10/2003	0.001	TL2.700]		4/10/2003	-6.908
7/16/2003	0.001				7/16/2003	-6.908
10/14/2003	0.001				10/14/2003	-6.908
1/13/2004	0.001				1/13/2004	-6.908
April 2013	ter 2013 Data Collect				ormed Second Q ollected in April	
Well No. Res		esult > TL?		Well Nu	mber LN(Resu	It) Result > TL?
MW221 0.00	U	N/A		MW221	-5.573	NO
MW222 0.00	U	N/A		MW222	-6.908	NO
MW223 0.00	0	N/A		MW223	-6.110	NO
MW224 0.00	U	N/A		MW224	-6.908	NO
MW369 0.00	U	N/A		MW369	-6.908	NO
MW372 0.00	U	N/A		MW372	-6.908	NO
MW384 0.00	U	N/A		MW384	-6.908	NO
MW387 0.00	U	N/A		MW387	-6.908	NO
MW391 0.00	01 Downgradient	N/A		MW391	-6.908	NO
Conclusion of	Statistical Analysis	on Transformed Da	ta			

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

Upper Tolerance Limit, TL = X + (K * S)TL

Mean, X = (sum of background results)/(count of background results) Х

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA Nickel UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I Upgradient W		Statistics on Background Data			Transformed Data from Up	Background gradient Wells
Well Number:	MW220	X= 0.127			Well Number:	MW220
Date Collected	Result	S = 0.228			Date Collected	LN(Result)
10/14/2002	0.418	CV= 1.790 K factor** = 2.523			10/14/2002	-0.872
1/15/2003	0.738	TL = 0.701			1/15/2003	-0.304
4/10/2003	0.544	<u> </u>	1		4/10/2003	-0.609
7/14/2003	0.106	Because CV greater tha		14.5	7/14/2003	-2.244
10/13/2003	0.053	logarithm of backgroun were calculated.	a and test well res	sults	10/13/2003	-2.939
1/13/2004	0.021	were calculated.	1		1/13/2004	-3.868
4/13/2004	0.005	Statistics on			4/13/2004	-5.298
7/21/2004	0.019	Transformed			7/21/2004	-3.953
Well Number:	MW394	Background Data			Well Number:	MW394
Date Collected	Result	X= -3.617			Date Collected	LN(Result)
8/13/2002	0.050	S= 1.837			8/13/2002	-2.996
9/16/2002	0.050	CV= -0.508			9/16/2002	-2.996
10/16/2002	0.005	K factor** = 2.523			10/16/2002	-5.298
1/13/2003	0.005	TL= 1.019			1/13/2003	-5.298
4/10/2003	0.005		J		4/10/2003	-5.298
7/16/2003	0.005				7/16/2003	-5.298
10/14/2003	0.005				10/14/2003	-5.298
1/13/2004	0.005				1/13/2004	-5.298
April 2013	•				ormed Second Q ollected in Apri	
Well No. Res		esult > TL?		Well Nu	mber LN(Resu	alt) Result $>$ TL?
MW221 0.0	e e	N/A		MW221	-2.664	NO
MW222 0.1	U	N/A		MW222	-1.709	NO
MW223 0.3	U	N/A		MW223	-1.103	NO
MW224 0.0	C	N/A		MW224	-4.023	NO
MW369 0.0	U	N/A		MW369	-4.953	NO
MW372 0.0	0	N/A		MW372	-5.298	NO
MW384 0.0	-	N/A		MW384	-5.298	NO
MW387 0.0	e	N/A		MW387	-5.298	NO
MW391 0.0	05 Downgradient	N/A		MW391	-5.298	NO
Conclusion of	Statistical Analysis	s on Transformed Da	ta			

Conclusion of Statistical Analysis on Transformed Data

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA Oxidation-Reduction Potential UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Da	ta from	1	Statie	tics on	
Upgradient Wel				ground Data	
Well Number:	MW220		X= 17	79.872	
Date Collected 10/14/2002 1/15/2003	Result 205.000 1.950			0.480 tor** = 2.523	
4/10/2003	203.000		TL=	397.652	
7/14/2003	30.000		Because	e CV is less than	or equal to 1,
10/13/2003	107.000		assume	normal distribut	tion and continue
1/13/2004	295.000		with sta	tistical anaylsis.	
4/13/2004	190.000				
7/21/2004	319.000				
Well Number:	MW394				
Date Collected	Result				
8/13/2002	90.000				
9/16/2002	240.000				
10/16/2002	185.000				
1/13/2003	220.000				
4/10/2003	196.000				
7/16/2003	172.000				
10/14/2003	175.000				
1/13/2004	249.000				
Second Quarter	2013 Data	Collecte	d in		
April 2013					
Well No. Result	Gradient	Resul	t > TL?		
MW221 373.00) Sidegradi	ent	NO		
MW222 663.00) Sidegradi	ent	YES		
MW223 382.00) Sidegradi	ent	NO		
MW224 483.00) Sidegradi	ent	YES		
MW369 580.00) Downgra	dient	YES		
MW372 28.000) Downgra	dient	NO		
MW384 339.00) Sidegradi	ent	NO		
MW387 381.00) Downgra	dient	NO		
) Downgra		YES		
Conclusion of St	atistical A	Analysis	on Dat	a	
The following te	st well(s)	exceede	d the U	pper Toleran	ce Limit, which

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.
MW222
MW224
MW369

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical	Analysis	URGA
Oxidation-Reduction Potential (Continued)	UNITS:	mV

MW391

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Background I Upgradient W					Statistics on Background Data	
Well Number:	MW220	-			X= 6.138	
Date Collected	Result				S= 0.282	
10/14/2002	6.040				CV= 0.046	
1/15/2003	6.310				K factor** = 2.904	
4/10/2003	6.500				TL= 6.957	
7/14/2003	6.300				LL= 5.318	
10/13/2003	6.340				Because CV is less than	or equal to 1,
1/13/2004	6.330				assume normal distribut	
4/13/2004	6.300				with statistical anaylsis.	
7/21/2004	5.900					
Well Number:	MW394					
Date Collected	Result					
8/13/2002	5.800					
9/30/2002	5.930					
10/16/2002	5.420					
1/13/2003	6.000					
4/10/2003	6.040					
7/16/2003	6.200					
10/14/2003	6.400					
1/13/2004	6.390					
	nd Quarter 20 oril 2013)13 Data Col	llected			
Well No. Resul	t Gradient	Result >TL?	Result <ll< td=""><td>?</td><td></td><td></td></ll<>	?		
MW221 6.420	Sidegrad	ient NO	NO	_		
MW222 6.340	Sidegrad	ient NO	NO			
MW223 6.060	Sidegrad	ient NO	NO			
MW224 6.290	Sidegrad	ient NO	NO			

Conclusion of Statistical Analysis on Data

Downgradient

Downgradient

Sidegradient

Downgradient

Downgradient

MW369 6.320

MW391 6.360

6.240

6.280

6.400

MW372

MW384

MW387

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

NO

NO

NO

NO

NO

X Mean, X = (sum of background results)/(count of background results)

NO

NO

NO

NO

NO

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA Potassium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells	Statistics on Background Data			Transformed Data from Up	Background gradient Wells
Well Number: MW220	X= 6.654		-	Well Number:	MW220
Date Collected Result	S = 9.310			Date Collected	LN(Result)
10/14/2002 6.700	CV= 1.399 K factor** = 2.523			10/14/2002	1.902
1/15/2003 29.700	TL = 30.144			1/15/2003	3.391
4/10/2003 24.900	I	1		4/10/2003	3.215
7/14/2003 1.130	Because CV greater tha		14	7/14/2003	0.122
10/13/2003 3.430	logarithm of backgroun were calculated.	a and test well res	ults	10/13/2003	1.233
1/13/2004 6.710		1		1/13/2004	1.904
4/13/2004 19.300	Statistics on			4/13/2004	2.960
7/21/2004 3.970	Transformed			7/21/2004	1.379
Well Number: MW394	Background Data			Well Number:	MW394
Date Collected Result	X= 1.130			Date Collected	LN(Result)
8/13/2002 2.000	S= 1.208			8/13/2002	0.693
9/16/2002 2.000	CV= 1.069			9/16/2002	0.693
10/16/2002 1.030	K factor** = 2.523			10/16/2002	0.030
1/13/2003 1.100	TL= 4.178			1/13/2003	0.095
4/10/2003 1.240	1L- 4.170]		4/10/2003	0.215
7/16/2003 1.140				7/16/2003	0.131
10/14/2003 1.050				10/14/2003	0.049
1/13/2004 1.070				1/13/2004	0.068
Second Quarter 2013 Data Collect April 2013 Well No. Result Gradient Re	ed in			rmed Second Q ollected in Apri	
		-	Well Nu	nber LN(Resu	It) Result > TL?
MW221 1.170 Sidegradient	N/A		MW221	0.157	NO
MW222 0.552 Sidegradient	N/A		MW222	-0.594	NO
MW223 1.300 Sidegradient	N/A		MW223	0.262	NO
MW224 0.875 Sidegradient	N/A		MW224	-0.134	NO
MW369 0.568 Downgradient	N/A		MW369	-0.566	NO
MW372 2.720 Downgradient	N/A		MW372	1.001	NO
MW384 1.480 Sidegradient	N/A		MW384	0.392	NO
MW387 1.940 Downgradient	N/A		MW387	0.663	NO
MW391 1.530 Downgradient	N/A		MW391	0.425	NO
Conclusion of Statistical Analysis	on Transformed Da	ta			

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis **URGA** Sodium **UNITS:** mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

continue

Backgrov Upgradie					tics on ground Data]
Well Num	iber: N	4W220	-	X= 36		
Date Colle 10/14/2 1/15/20	002	Result 35.400 40.600			0.238 tor** = 2.523	
4/10/20		51.000		TL=	58.227	
7/14/20		58.200		Because	e CV is less that	n or equal to 1,
10/13/2		38.100			normal distribu	
1/13/20		37.000		with sta	tistical anaylsis	
4/13/20	04	43.200				
7/21/20	04	33.800				
Well Num	ber: N	4W394				
Date Colle	ected	Result				
8/13/20	02	32.900				
9/16/20	02	29.900				
10/16/2	002	29.000				
1/13/20	03	27.100				
4/10/20	03	24.800				
7/16/20	03	35.600				
10/14/2	003	33.900				
1/13/20	04	31.300				
Second (April 201		2013 Data	Collecte	d in		
Well No.	Result	Gradient	Resul	t > TL?	1	
MW221	35.700	Sidegradi	ent	NO	-	
MW222	43.500	Sidegradi	ent	NO		
MW223	39.400	Sidegradi	ent	NO		
MW224	54.300	Sidegradi	ent	NO		
MW369	52.400	Downgra	dient	NO		
MW372		Downgra		YES		
MW384		Sidegradi		NO		
MW387		Downgra		NO		
MW391		Downgra		NO		
Conclusio						
The follow	ving tes	t woll(c)	venda	the II	nner Toleran	co Limit whi

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.

MW372

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S)

Mean, X = (sum of background results)/(count of background results) Х

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells		tics on ground Data	
Well Number: MW220	X= 10		
Date Collected Result 10/14/2002 10.400 1/15/2003 0.800	S= 2. CV= 0 K fact		
1/15/2003 9.800 4/10/2003 15.400	TL=	17.161	
7/14/2003 14.900	Because	e CV is less than	or equal to 1,
10/13/2003 13.500			ion and continue
1/13/2004 10.300	with sta	tistical anaylsis.	
4/13/2004 14.300			
7/21/2004 10.500			
Well Number: MW394			
Date Collected Result	-		
8/13/2002 11.200			
9/16/2002 8.300			
10/16/2002 8.000			
1/13/2003 8.500			
4/10/2003 7.900			
7/16/2003 8.400			
10/14/2003 8.200			
1/13/2004 8.100			
Second Quarter 2013 Dat April 2013	a Collected in		
Well No. Result Gradien	t Result > TL ?		
MW221 13.000 Sidegrad	lient NO		
MW222 11.000 Sidegrad	lient NO		
MW223 16.000 Sidegrad	lient NO		
MW224 14.000 Sidegrad	lient NO		
MW369 7.500 Downgr	adient NO		
MW372 170.00 Downgr	adient YES		
MW384 20.000 Sidegrad	dient YES		
MW387 28.000 Downgr	adient YES		
MW391 25.000 Downgr	adient YES		
Conclusion of Statistical	Analysis on Dat	a	

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.
MW372
MW384
MW387

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis	URGA
Sulfate (Continued)UNITS:	mg/L

MW391

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA Technetium-99 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgrou Upgradie					tics on ground Data	
Well Num	ber: N	1W220		X= 9.		
Date Colle 10/14/20 1/15/200	002	Result 19.700			0.992 tor** = 2.523	
4/10/200		26.100 3.560		TL= 3	32.768	
7/14/200		0.000		Because	CV is less than	or equal to 1.
10/13/20		21.000		assume	normal distribut	tion and continue
1/13/20		6.320		with sta	tistical anaylsis.	
4/13/200		3.000				
7/21/200		14.600				
Well Num		1W394				
Date Colle	cted	Result				
8/13/200	02	14.000				
9/16/200	02	5.450				
10/16/20	002	2.490				
1/13/200	03	18.300				
4/10/200	03	-1.450				
7/16/200	03	-1.710				
10/14/20	003	18.300				
1/13/200	04	0.000				
Second Q April 201		2013 Data	Collecte	d in		
Well No.	Result	Gradient	Resul	t > TL?		
MW221	10.300	Sidegradi	ent	NO		
MW222	0.611	Sidegradi		NO		
MW223	1.390	Sidegradi		NO		
MW224	3.890	Sidegradi		NO		
MW369		Downgra		NO		
MW372		Downgra		YES		
MW384		Sidegradi		YES		
MW387		Downgra		YES		
MW391	5.890	Downgra		NO		
Conclusio			•			
The follow	ving tes	t well(s)	exceede	d the U	pper Toleran	ce Limit, which

The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.
MW372
MW384
MW387

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA Total Organic Carbon (TOC) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Backgrou Upgradier					tics on ground Data		
Well Numb	er: N	MW220	-	X= 1.			
Date Collect 10/14/20 1/15/200	02 3	Result 1.000 1.100		S= 0. CV= 0 K fact TL= 3	0.493 tor** = 2.523		
4/10/200 7/14/200 10/13/20 1/13/200 4/13/200	3 03 4	1.000 3.300 1.800 1.000 2.000		assume	e CV is less that normal distribu tistical anaylsis	tion an	
7/21/200 Well Numb	4	3.100 MW394					
April 2013	2 2 02 3 3 3 03 4 uarter 3	Result 1.300 1.000 1.000 1.600 1.000 1.400 1.300 1.000 2013 Data					
Well No.	Result	Gradient	Resul	t > TL?			
MW221	1.000	Sidegradi		NO			
MW222	1.000	Sidegradi		NO			
MW223	1.000	Sidegradi		NO			
MW224	1.000	Sidegradi		NO			
MW369	1.700	Downgra		NO			
MW372	2.500	Downgra		NO			
MW384	1.000	Sidegradi		NO			
MW387	1.000	Downgra		NO			
MW391	1.000	Downgra		NO	•		
Conclusion	i or St	atistical A	manysis	on Dat	a 		

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis URGA Total Organic Halides (TOX) UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background Data from Upgradient Wells	Statistics on Background Data					ckground dient Wells
Well Number: MW220	X= 63.475		-	Well Num	ber: M	IW220
Date Collected Result	S= 163.135			Date Colle	ected L	N(Result)
10/14/2002 50.000	CV= 2.570 K factor** = 2.523			10/14/20	02 3.	912
1/15/2003 10.000	TL = 475.063			1/15/2003	3 2.	.303
4/10/2003 10.000		1		4/10/2002	3 2.	303
7/14/2003 10.000	Because CV greater tha		14	7/14/2003	3 2.	303
10/13/2003 10.000	logarithm of backgroun were calculated.	a and test well res	ults	10/13/20	03 2.	303
1/13/2004 10.000	were calculated.	7		1/13/2004	4 2.	303
4/13/2004 10.000	Statistics on			4/13/2004	4 2.	303
7/21/2004 10.000	Transformed			7/21/2004	4 2.	303
Well Number: MW394	Background Data	-		Well Num	ber: M	IW394
Date Collected Result	X= 3.103			Date Colle	ected L	N(Result)
8/13/2002 50.000	S= 1.145			8/13/2002	2 3.	912
9/16/2002 672.000	CV= 0.369			9/16/2002	2 6.	510
10/16/2002 50.000	K factor** = 2.523			10/16/20	02 3.	912
1/13/2003 36.100	TL= 5.992			1/13/200	3 3.	586
4/10/2003 10.000		J		4/10/200	3 2.	303
7/16/2003 42.700				7/16/2003		754
10/14/2003 22.000				10/14/20		.091
1/13/2004 12.800				1/13/2004	4 2.	549
Second Quarter 2013 Data Collec April 2013 Well No. Result Gradient R	ted in esult > TL?			ormed Sec ollected in		rter 2013 013
			Well Nu	nber LN	N(Result)	Result > TL?
MW221 9.400 Sidegradient	N/A		MW221	2.2	241	NO
MW222 16.000 Sidegradient	N/A		MW222	2.7	773	NO
MW223 16.000 Sidegradient	N/A		MW223	2.7	773	NO
MW224 14.000 Sidegradient	N/A		MW224	2.6	539	NO
MW369 48.000 Downgradient	N/A		MW369	3.8	371	NO
MW372 25.000 Downgradient	N/A		MW372	3.2	219	NO
MW384 15.000 Sidegradient	N/A		MW384	2.7	708	NO
MW387 20.000 Downgradient	N/A		MW387	2.9	996	NO
MW391 22.000 Downgradient	N/A		MW391	3.0)91	NO
Conclusion of Statistical Analysi	s on Transformed Da	ta				

None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis LRGA Boron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Data			nsformed Bac from Upgra	
Well Number:	MW395	X= 0.650		Well	Number: M	IW395
Date Collected	Result	S= 0.805 CV= 1.238		Date	Collected L	N(Result)
8/13/2002	2.000	$C_{V} = 1.258$ K factor** = 2.523		8/13/	/2002 0.	693
9/16/2002	2.000	TL= 2.681		9/16/	/2002 0.	693
10/16/2002	0.200		1	10/1	6/2002 -1	.609
1/13/2003	0.200	Because CV greater tha		1/13/	/2003 -1	.609
4/10/2003	0.200	logarithm of backgroun were calculated.	a and test well resul	us 4/10/	/2003 -1	.609
7/16/2003	0.200	were carculated.	1	7/16/	/2003 -1	.609
10/14/2003	0.200	Statistics on		10/14	4/2003 -1	.609
1/13/2004	0.200	Transformed		1/13/	/2004 -1	.609
Well Number:	MW397	Background Data		Well	Number: M	IW397
Date Collected	Result	X= -1.034		Date	Collected L	N(Result)
8/13/2002	2.000	S= 1.030		8/13/	/2002 0.	693
9/16/2002	2.000	CV= -0.996		9/16/	/2002 0.	693
10/17/2002	0.200	K factor** = 2.523		10/17	7/2002 -1	.609
1/13/2003	0.200	TL= 1.564		1/13/	/2003 -1	.609
4/8/2003	0.200		J	4/8/2	-1	.609
7/16/2003	0.200			7/16/	/2003 -1	.609
10/14/2003	0.200			10/14	4/2003 -1	.609
1/13/2004	0.200			1/13/	/2004 -1	.609
April 2013	er 2013 Data C				Second Qua ed in April 20	
Well No. Res	ult Gradient	Result $>$ TL?	W	ell Number	LN(Result)	Result > TL?
MW370 0.20	U		M	W370	-1.609	NO
MW373 1.80	0		М	W373	0.588	NO
MW385 0.20	U		М	W385	-1.609	NO
MW388 0.20	U		М	W388	-1.609	NO
MW392 0.20	00 Downgrad	dient N/A	М	W392	-1.609	NO
Conclusion of S	Statistical An	alysis on Transformed Da	ta			
None of the tes	t wells exceed	led the Upper Tolerance L	imit, which is sta	tistically si	gnificant ev	idence

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

that these wells have no elevated concentrations with respect to background data.

** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis LRGA Calcium UNITS: mg/L

Background D Upgradient W		Statistics on Background Data	
Well Number:	MW395	X= 23.103	
Date Collected	Result	S= 11.538 CV= 0.499	
8/13/2002	32.200	Cv = 0.499 K factor** = 2.523	
9/16/2002	33.000	TL = 52.213	
10/16/2002	0.030		1
1/13/2003	32.100	Because CV is less that	
4/10/2003	40.200	assume normal distribution with statistical analysis	
7/16/2003	32.400	with statistical analysis	
10/14/2003	33.900		
1/13/2004	31.200		
Well Number:	MW397		
Date Collected	Result		
8/13/2002	19.400		
9/16/2002	19.000		
10/17/2002	0.018		
1/13/2003	17.800		
4/8/2003	20.300		
7/16/2003	19.400		
10/14/2003	19.900		
1/13/2004	18.800		
Second Quart April 2013	er 2013 Data	Collected in	
Well No. Rest	ult Gradient	Result $>$ TL?	
	00 Downgrad		
	00 Downgrad		
	00 Sidegradie		
	00 Downgrad		
MW392 26.6	00 Downgrad	lient NO	
Conclusion of	Statistical A	nalysis on Data	
		xceeded the Upper Toleran ntration with respect to bac	ce Limit, which is statistically significant kground data.
/W373			0

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis LRGA Chloride UNITS: mg/L

Background D Upgradient We		Statist Backg	ics on round Data		
Well Number:	MW395	X= 51			
Well Number: Date Collected 8/13/2002 9/16/2002 1/0/16/2002 1/13/2003 4/10/2003 7/16/2003 1/0/14/2003 1/13/2004 Well Number: Date Collected 8/13/2002	MW395 Result 62.200 64.700 62.200 63.500 64.100 64.000 63.200 60.600 MW397 Result 38.900	S= 11 CV= 0 K fact TL= 8 Because assume	.652 0.225 or** = 2.523 31.242 CV is less than	or equal to 1, ion and continue	
9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/13/2004	39.800 39.800 39.300 40.500 42.100 42.000 40.800 41.600				
Second Quarte April 2013	er 2013 Data	Collected in			
Well No. Resu	lt Gradient	Result > TL?			
MW373 47.00 MW385 32.00 MW388 33.00	00 Downgrad 00 Downgrad 00 Sidegradi 00 Downgrad 00 Downgrad	lient NO ent NO lient NO			
Conclusion of S None of the tes that these wells	t wells exce	eded the Upper	· Tolerance L		ificant evidence

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis LRGA Conductivity UNITS: umho/cm

Background D Upgradient W		Statistics on Background Data	
Well Number:	MW395	X= 377.875	
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 405.000 401.000 392.000	S= 52.101 CV= 0.138 K factor** = 2.523 TL= 509.326	
1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004 Well Number:	404.000 488.000 450.000 410.000 413.000 MW397	Because CV is less that assume normal distribu with statistical anaylsis	tion and continue
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/13/2004 Second Quarte April 2013	Result 322.000 315.000 317.000 320.000 390.000 354.000 331.000 334.000	Collected in	
Well No. Resu	lt Gradient	Result > TL?	
MW373 921.	00 Downgrad 00 Downgrad	lient YES	
MW388 453.	00 Sidegradie 00 Downgrad	lient NO	
	00 Downgrad Statistical A	lient NO nalysis on Data	
The following t	est well(s) e	· ·	ce Limit, which is statistically significant kground data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis LRGA Dissolved Oxygen UNITS: mg/L

Background D Upgradient W			tics on round Data		
Well Number:	MW395	X= 4.			
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003	Result 7.290 4.030 3.850 2.360 1.140 1.760	TL= 1 Because assume	0.520 for** = 2.523 10.812 c CV is less than	or equal to 1, ion and continue	
10/14/2003	4.050				
1/13/2004 Well Number:	4.260 MW397				
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/13/2004 Second Quarter April 2013					
Well No. Resu	ılt Gradient	Result > TL?			
MW3703.25MW3731.46MW3853.08MW3884.59MW3920.83	0 Downgrad 0 Sidegradi 0 Downgrad	dient NO ent NO dient NO			
None of the tes	st wells exce		r Tolerance L	imit, which is st espect to backg	ificant evidence

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis LRGA Dissolved Solids UNITS: mg/L

Background Data from Upgradient Wells	Statistics on Background Data
Well Number: MW395	X= 219.250
Date Collected Result 8/13/2002 249.000 9/16/2002 272.000 10/16/2002 255.000 1/13/2003 211.000 4/10/2003 289.000 7/16/2002 235.000	$S= 34.107$ $CV= 0.156$ $K \text{ factor}^{**} = 2.523$ $TL= 305.301$ Because CV is less than or equal to 1, assume normal distribution and continue with statistical analysis.
7/16/2003 236.000 10/14/2003 224.000	
1/13/2004 235.000 Well Number: MW397	
Date Collected Result 8/13/2002 187.000 9/16/2002 197.000 10/17/2002 183.000 1/13/2003 182.000 4/8/2003 217.000 7/16/2003 196.000 10/14/2003 198.000 1/13/2004 177.000	Collected in
Well No. Result Gradient	Result > TL?
MW370 239.00 Downgra MW373 585.00 Downgra MW385 219.00 Sidegradi MW388 243.00 Downgra MW392 203.00 Downgra	lient NO lient YES ent NO lient NO
Conclusion of Statistical A	
The following test well(s)	exceeded the Upper Tolerance Limit, which is statistically significant ntration with respect to background data.
MW373	netation with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis LRGA Iron UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W			stics on ground Data				sformed Ba from Upgra	ckground adient Wells
Well Number:	MW395	X= 0				Well N	lumber: N	AW395
Date Collected	Result	S=0	0.514 1.286			Date C	collected L	N(Result)
8/13/2002	0.294		1.280 ctor** = 2.523			8/13/2	- 2002 -	1.224
9/16/2002	0.200		1.698			9/16/2	- 2002 -	1.609
10/16/2002	0.000					10/16	/2002 -	8.517
1/13/2003	1.330		Because CV greater than 1, the natural logarithm of background and test well results				2003 0	.285
4/10/2003	1.310		alculated.	a and test well res	suits	4/10/2	2003 0	.270
7/16/2003	0.200	were e	alculated.			7/16/2	- 2003 -	1.609
10/14/2003	0.100	Stati	stics on			10/14	/2003 -2	2.303
1/13/2004	0.100		sformed			1/13/2	2004 -2	2.303
Well Number:	MW397	Back	ground Data			Well Number:		AW397
Date Collected	Result	X= -	2.197			Date C	collected L	N(Result)
8/13/2002	1.580	S= 2	.634			8/13/2	2002 0	.457
9/16/2002	0.232	CV=	-1.199			9/16/2	- 2002 -	1.461
10/17/2002	0.000	K fa	ctor** = 2.523			10/17	/2002 -	8.517
1/13/2003	0.453		4.449			1/13/2	2003 -	0.792
4/8/2003	0.200	11-	4.442			4/8/20	- 003	1.609
7/16/2003	0.200					7/16/2	- 2003 -	1.609
10/14/2003	0.100					10/14	/2003 -2	2.303
1/13/2004	0.100					1/13/2	2004 -2	2.303
April 2013	Second Quarter 2013 Data Collected in April 2013Transformed Second Quarter 2013Data Collected in April 2013							
Well No. Res	ult Gradier	nt Result $>$ T	Ľ?		Well Nu	nber	LN(Result)	Result > TL?
MW370 0.10	U				MW370		-2.303	NO
MW373 0.10	U				MW373		-2.303	NO
MW385 0.10	0				MW385		-2.303	NO
MW388 0.10	U				MW388		-2.303	NO
MW392 0.10	00 Downg	radient N/A	Δ		MW392		-2.303	NO
Conclusion of	Statistical A	alysis on Tr	ansformed Dat	ta				
None of the test wells exceeded the Upper Tolerance Limit, which is statistically significant evidence								

that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis LRGA Magnesium UNITS: mg/L

Background D Upgradient W		Statist Backg	ics on round Data				
Well Number:	MW395	X= 9.1					
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 12.500 13.000 0.013 11.200 17.500	TL= 2 Because assume r	.515 or** = 2.523 0.922 CV is less than	ition and continue			
7/16/2003 10/14/2003	12.900 13.400	with Stat	istical anayisis.				
1/13/2004 Well Number:	12.400 MW397						
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/13/2004 Second Quarte April 2013	Result 7.830 7.640 0.007 6.690 7.280 7.820 7.820 7.940 7.510 er 2013 Data	Collected in					
•	ılt Gradient	Result > TL?					
MW373 29.4 MW385 9.13	U	dient YES ent NO					
MW388 11.8 MW392 9.52	00 Downgrad 0 Downgrad						
		analysis on Data	1				
The following	The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.						
MW373							

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis LRGA Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background D Upgradient W		Statistics on Background Dat	a			rmed Bac m Upgrae	kground dient Wells		
Well Number:	MW395	X= 0.131			Well Nun	nber: M	W395		
Date Collected	Result	S= 0.195 CV= 1.487			Date Coll	ected L1	N(Result)		
8/13/2002	0.361	Cv = 1.487 K factor** = 2.52	2		8/13/200	2 -1	.019		
9/16/2002	0.028	TL = 0.624	.5		9/16/200	2 -3	.576		
10/16/2002	0.026				10/16/20	02 -3	.650		
1/13/2003	0.071	Because CV greater		. 1	1/13/200	3 -2	.641		
4/10/2003	0.629	were calculated.	ound and test well re	suits	4/10/200	3 -0	.464		
7/16/2003	0.297	were calculated.			7/16/200	3 -1	.214		
10/14/2003	0.020	Statistics on			10/14/20	03 -3	.922		
1/13/2004	0.013	Transformed			1/13/200	4 -4	.374		
Well Number:	MW397	Background Data	a		Well Nun	nber: M	W397		
Date Collected	Result	X= -3.104			Date Coll	ected L1	N(Result)		
8/13/2002	0.466	S= 1.529			8/13/200	2 -0	.764		
9/16/2002	0.077	CV= -0.493			9/16/200	2 -2	.564		
10/17/2002	0.028	K factor** = 2.52	23		10/17/20	02 -3	.576		
1/13/2003	0.016	TL = 0.755			1/13/200	3 -4	.110		
4/8/2003	0.041				4/8/2003	-3	.202		
7/16/2003	0.017				7/16/200	3 -4	.092		
10/14/2003	0.006				10/14/20	03 -5	.194		
1/13/2004	0.005				1/13/200	4 -5	.298		
Second Quart April 2013					ormed Sec ollected in	-			
Well No. Res	ult Gradier	nt Result $>$ TL?		Well Nu	mber Ll	N(Result)	Result > TL?		
MW370 0.00				MW370	-5	.298	NO		
MW373 0.05	0			MW373		.886	NO		
MW385 0.00	U			MW385		.298	NO		
MW388 0.00	U			MW388		.298	NO		
MW392 0.18	30 Downgi	radient N/A		MW392	-1	.715	NO		
Conclusion of S	Conclusion of Statistical Analysis on Transformed Data								
None of the tes	t wells exce	eded the Upper Tolerand	e Limit, which is	statistica	ally signif	ficant ev	idence		

that these wells have no elevated concentrations with respect to background data.

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis LRGA Oxidation-Reduction Potential UNITS: mV

Well Number: MW395 Date Collected Result \$\% 13/2002 80.000 9/16/2002 145.000 10/16/2002 125.000 11/13/2003 85.000 4/10/2003 159.000 7/16/2003 98.000 10/14/2003 138.000 11/13/2004 233.000 Well Number: MW397 Date Collected Result \$\% 13/2002 145.000 10/14/2003 138.000 11/13/2004 233.000 Well Number: MW397 Date Collected Result \$\% 13/2002 145.000 10/14/2003 155.000 7/16/2003 188.000 10/14/2003 187.000 11/13/2004 253.000 Second Quarter 2013 Data Collected in April 2013 Will No. Result Gradient YES MW373 498.00 Nowardient YES MW388 393.00 MW373 000 MW382 570.00 Downgradie	Background Data from Upgradient Wells	Statistics on Background Data	
Date Collected Result CV= 0.333 8/13/2002 80.000 IL- 289.395 10/16/2002 125.000 Because CV is less than or equal to 1, assume normal distribution and continue with statistical anaylsis. 7/16/2003 98.000 ID/14/2003 138.000 10/14/2003 138.000 assume normal distribution and continue with statistical anaylsis. Well Number: MW397 Date Collected Result 8/13/2002 115.000 9/30/2002 140.000 10/14/2003 185.000 10/14/2003 185.000 10/13/2004 253.000 V/1/13/2004 253.000 V/1/13/2004 253.000 Second Quarter 2013 Data Collected in April 2013 MW370 505.00 MW373 498.00 MW385 506.00 MW388 93.00 Downgradient YES Conclusion of Statistical Analysis on Data The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data. MW370 Summarisin with respect to background data.	Well Number: MW395	X= 157.250	
8/13/2002 80.000 CV = 0.333 9/16/2002 145.000 K factor** = 2.5.23 1/13/2003 85.000 Because CV is less than or equal to 1, assume normal distribution and continue with statistical anaylsis. 1/13/2003 135.000 assume normal distribution and continue with statistical anaylsis. 1/13/2004 233.000 with statistical anaylsis. Well Number: MW397 Date Collected Result 8/13/2002 115.000 9/30/2002 145.000 1/1/17/2004 233.000 Vell Number: MW397 Date Collected Result 8/13/2002 115.000 1/13/2003 230.000 4/10/2003 155.000 1/13/2004 253.000 1/13/2004 253.000 1/13/2004 253.000 1/13/2004 253.000 1/13/2004 253.000 1/13/2004 253.000 1/13/2004 253.000 WW373 MW370 MW385 506.00 Sidegradient WW388 YES Conclusion of Statistical Anal	Date Collected Result		
9/16/2002 145.000 IL = 289.395 10/16/2002 125.000 IL = 289.395 11/13/2003 85.000 assume normal distribution and continue with statistical anaylsis. 7/16/2003 98.000 int statistical anaylsis. 10/14/2003 138.000 assume normal distribution and continue with statistical anaylsis. Well Number: MW397 Date Collected Result 8/13/2002 115.000 9/30/2002 140.000 10/11/2003 230.000 4/8/2003 155.000 7/16/2003 188.000 10/14/2004 253.000 Vi/13/2004 253.000 Second Quarter 2013 Data Collected in April 2013 MW370 505.00 Nowngradient YES MW373 498.00 Downgradient YES YES MW388 393.00 Downgradient YES YES MW388 Statistical Analysis on Data The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data. MW370 <t< th=""><th></th><th></th></t<>			
10/16/2002 125.000 Because CV is less than or equal to 1, 1/13/2003 85.000 assume normal distribution and continue 1/16/2003 159.000 assume normal distribution and continue 1/16/2003 159.000 assume normal distribution and continue 1/11/2003 159.000 assume normal distribution and continue 1/11/2004 233.000 with statistical anaylsis. Well Number: MW397 Date Collected Result 8/13/2002 115.000 9/30/2002 140.000 10/14/2003 155.000 1/13/2004 253.000 Vell No. Result Second Quarter 2013 Data Collected in April 2013 MW370 505.00 MW373 498.00 MW388 393.00 Vell No. Result YES MW373 YES MW388 393.00 Downgradient YES MW370 Statistical Analysis on Data The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.			
1/13/2003 85.000 Because CV is less than or equal to 1, assume normal distribution and continue with statistical anaylsis. 7/16/2003 159.000 with statistical anaylsis. 10/14/2004 233.000 with statistical anaylsis. Well Number: MW397 Date Collected Result 8/13/2002 115.000 9/30/2002 140.000 10/11/2003 233.000 Vell Number: MW397 Date Collected Result 8/13/2002 115.000 9/30/2002 140.000 10/11/2003 230.000 4/8/2003 155.000 1/13/2004 253.000 Second Quarter 2013 Data Collected in April 2013 MW370 505.00 Nowngradient YES MW373 498.00 MW385 506.00 Sidegradient YES MW385 506.00 Sidegradient YES MW382 757.00 Downgradient YES Conclusion of Statistical Analysis on Data The following test well(s) exceeded the Upper Tolerance Limi		TL= 289.395	
4/10/2003 159.000 assume normal distribution and continue 7/16/2003 98.000 with statistical anaylsis. 10/14/2003 138.000 with statistical anaylsis. Well Number: MW397 Date Collected Result 8/13/2002 115.000 9/30/2002 140.000 10/17/2003 230.000 4/8/2003 155.000 1/13/2004 253.000 1/13/2004 253.000 1/13/2004 253.000 1/13/2004 253.000 1/13/2004 253.000 Well No. Result Mw370 505.00 MW373 498.00 Downgradient YES MW388 393.00 Downgradient YES YES Conclusion of Statistical Analysis or Data Tespect to background data. MW373 Hollowing test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data. MW370 Statistical Analysis or Data Conclusion of Statistical Analysis or Data Statistical Statistical Statisticaly significant evi			
7/16/2003 98.000 10/14/2003 138.000 1/13/2004 233.000 Well Number: MW397 Date Collected Result 8/13/2002 115.000 9/30/2002 140.000 10/17/2002 185.000 1/13/2003 230.000 4/8/2003 155.000 7/16/2003 188.000 10/14/2003 187.000 1/13/2004 253.000 Scond Quarter 2013 Data Collected in April 2013 Well No. Result Gradient Result > TL? MW370 505.00 Downgradient YES MW388 393.00 Downgradient YES MW388 393.00 Downgradient YES MW388 393.00 Downgradient YES MW388 393.00 Downgradient YES MW382 757.00 Downgradient YES Conclusion of Statistical Analysis or Data The following test well(s) excceded the Upper Tolerance Limit, which is st			
1/13/2004 233.000 Well Number: MW397 Date Collected Result 8/13/2002 115.000 9/30/2002 140.000 10/17/2002 185.000 1/13/2003 230.000 4/8/2003 155.000 7/16/2003 187.000 1/13/2004 253.000 1/13/2004 253.000 Second Quarter 2013 Data Collected in April 2013 Well No. Result Gradient Result > TL? MW370 505.00 Downgradient YES MW373 498.00 Downgradient YES MW388 393.00 Downgradient YES MW388 393.00 Downgradient YES Conclusion of Statistical Analysis on Data MW375 MW375 MW375 MW375 Weil No. Result Gradient YES MW380 J99.00 Downgradient YES MW383 M93.00 Downgradient YES MW385 Sof.00 Sidegradient YES MW38	7/16/2003 98.000	with statistical analysis.	
Well Number: MW397 Date Collected Result 8/13/2002 115.000 9/30/2002 140.000 10/17/2002 185.000 1/13/2003 230.000 4/8/2003 155.000 7/16/2003 188.000 10/14/2003 187.000 1/13/2004 253.000 Second Quarter 2013 Data Collected in April 2013 Well No. Result Gradient Result > TL? MW370 505.00 Downgradient YES YES MW373 498.00 Downgradient YES YES MW383 93.00 Downgradient YES YES Conclusion of Statistical Analysis on Data Test MW370 Secceded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data. MW370 MW370 Image: Second Mig Image: Second Mig MW370 Image: Second Mig Image: Second Mig MW370 Ima	10/14/2003 138.000		
Date Collected Result 8/13/2002 115 000 9/30/2002 140.000 10/17/2002 185.000 1/13/2003 230.000 4/8/2003 155.000 7/16/2003 188.000 10/14/2003 187.000 1/13/2004 253.000 Second Quarter 2013 Data Collected in April 2013 Well No. Result Gradient Result > TL? MW370 505.00 Downgradient YES MW385 506.00 Sidegradient YES MW382 757.00 Downgradient YES MW392 757.00 Downgradient YES MW392 757.00 Downgradient YES Conclusion of Statistical Analysis on Data MW370 Superimentation with respect to background data. MW370 MW373 MW373 MW373 MW373 MW374 MW375 <th co<="" th=""><th>1/13/2004 233.000</th><th></th></th>	<th>1/13/2004 233.000</th> <th></th>	1/13/2004 233.000	
8/13/2002 115.000 $9/30/2002$ 140.000 $10/17/2002$ 185.000 $1/13/2003$ 230.000 $4/8/2003$ 155.000 $7/16/2003$ 188.000 $10/1/2004$ 253.000 $1/13/2004$ 253.000 Second Quarter 2013 Data Collected in April 2013 Well No. Result Gradient Result Gradient Result > TL? MW370 505.00 Downgradient YES MW385 506.00 Sidegradient YES MW388 393.00 Downgradient YES MW382 757.00 Downgradient YES MW383 93.00 Downgradient YES MW382 Result concentration YES MW370 For Output type Tolerance Limit, which is statistically significant widence of elevated concentration with respect to background data. MW373 HW385 HW388 HW388	Well Number: MW397		
8/13/2002 115.000 $9/30/2002$ 140.000 $10/17/2002$ 185.000 $1/13/2003$ 230.000 $4/8/2003$ 155.000 $7/16/2003$ 188.000 $10/14/2003$ 188.000 $10/14/2003$ 188.000 $10/14/2003$ 188.000 $11/13/2004$ 253.000 Second Quarter 2013 Data Collected in April 2013 MW370 505.00 Downgradient YES YES MW373 498.00 Downgradient YES YES MW385 506.00 Sidegradient YES YES Conclusion of Statistical Analysis on Data MW370 Soconentration YES YES MW382 MW373 Well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data. MW370 W370	Date Collected Result		
9/30/2002 140.000 10/17/2002 185.000 1/13/2003 230.000 4/8/2003 155.000 7/16/2003 188.000 10/14/2003 187.000 1/13/2004 253.000 Second Quarter 2013 Data Collected in April 2013 Well No. Result Gradient Result > TL? MW370 505.00 Downgradient YES MW373 498.00 Downgradient YES MW385 506.00 Sidegradient YES MW388 393.00 Downgradient YES Conclusion of Statistical Analysis on Data Met Holowing test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data. MW370 MW370 MW385 MW370			
1/13/2003 230.000 $4/8/2003$ 155.000 $7/16/2003$ 188.000 $10/14/2003$ 187.000 $1/13/2004$ 253.000 Second Quarter 2013 Data Collected in April 2013 Well No. Resul Gradient Result > TL? MW370 505.00 Downgradient YES MW373 498.00 Downgradient YES MW385 506.00 Sidegradient YES MW388 393.00 Downgradient YES MW392 757.00 Downgradient YES Conclusion of Statistical Analysis on Data MW370			
4/8/2003 155.000 $7/16/2003$ 188.000 $10/14/2003$ 187.000 $1/13/2004$ 253.000 Second Quarter J13 Data Collected in April 2013 Mell No. Result Gradient Result > TL? MW370 505.00 Downgradient YES MW373 498.00 Downgradient YES MW373 506.00 Sidegradient YES MW388 393.00 Downgradient YES The following result is tradication to the tradication of the t	10/17/2002 185.000		
7/16/2003 188.000 $10/14/2003$ 187.000 $1/13/2004$ 253.000 Second Quarter: 2013 Data Collected in April 2013 Well No. Result Gradient Result > TL? MW370 505.00 Downgradient YES MW373 498.00 Downgradient YES MW385 506.00 Sidegradient YES MW388 393.00 Downgradient YES Tonclusion VES Tonclusion VES The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data. MW373 MW373 MW385	1/13/2003 230.000		
10'14'2003 187.000 $1/13'2004$ 253.000 Second Quarter 2013 Data Collected in April 2013Well No.ResultGradientResult > TL?MW370 505.00 DowngradientYESMW373498.00DowngradientYESMW385 506.00 SidegradientYESMW388393.00DowngradientYESMW382 757.00 DowngradientYESConclusion of Statistical Analysis on DataThe following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant with respect to background data.MW370MW373MW373MW385Image: With With With With With With With With	4/8/2003 155.000		
1/13/2004 253.000 Second Quarter 2013 Data Collected in April 2013Well No.ResultGradientResult > TL?MW370505.00DowngradientYESMW373498.00DowngradientYESMW385506.00SidegradientYESMW385506.00SidegradientYESMW382757.00DowngradientYESConclusion of Statistical Analysis on DataThe following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.MW370MW373MW385MW385MW388	7/16/2003 188.000		
Second Quarter 2013 Data Collected in April 2013Well No.ResultGradientResult > TL?MW370505.00DowngradientYESMW373498.00DowngradientYESMW385506.00SidegradientYESMW385506.00SidegradientYESMW388393.00DowngradientYESMW382757.00DowngradientYESConclusion of Statistical Analysis on DataThe following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.MW370MW370MW385June 1000000000000000000000000000000000000	10/14/2003 187.000		
April 2013 Well No. Result Gradient Result > TL? MW370 505.00 Downgradient YES MW373 498.00 Downgradient YES MW385 506.00 Sidegradient YES MW388 393.00 Downgradient YES MW392 757.00 Downgradient YES Conclusion of Statistical Analysis on Data Tes The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data. MW373 MW373 MW373 MW385	1/13/2004 253.000		
MW370 505.00 Downgradient YES MW373 498.00 Downgradient YES MW385 506.00 Sidegradient YES MW388 393.00 Downgradient YES MW392 757.00 Downgradient YES Conclusion of Statistical Analysis on Data The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data. MW370 MW373 MW370 MW385 June Statistical Statis Statistical Statistica		Collected in	
MW373 498.00 Downgradient YES MW385 506.00 Sidegradient YES MW388 393.00 Downgradient YES MW392 757.00 Downgradient YES Conclusion of Statistical Analysis on Data The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data. MW370 Image: Statistical Analysis Image: Statistical Analysis MW373 Image: Statistical Analysis Image: Statistical Analysis MW370 Image: Statistical Analysis Image: Statistical Analysis MW385 Image: Statistical Analysis Image: Statistical Analysis MW370 Image: Statistical Analysis Image: Statistical Analysis MW385 Image: Statistical Analysis Image: Statistical Analysis MW370 Image: Statistical Analysis Image: Statistical Analysis MW385 Image: Statistical Analysis Image: Statistical Analysis MW388 Image: Statistical Analysis Image: Statistical Analysis	Well No. Result Gradient	Result $>$ TL?	
MW385 506.00 Sidegradient YES MW388 393.00 Downgradient YES MW392 757.00 Downgradient YES Conclusion of Statistical Analysis on Data The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data. MW370 MW373 MW385 MW385 MW388 Image: Mussion Image: Muss	MW370 505.00 Downgrad	dient YES	
MW388 393.00 Downgradient YES MW392 757.00 Downgradient YES Conclusion of Statistical Analysis on Data The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data. MW370 MW373 MW385 MW385 MW388 Image: Mussion of Mussi	MW373 498.00 Downgrad	dient YES	
MW392 757.00 Downgradient YES Conclusion of Statistical Analysis on Data The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data. MW370 MW373 MW385 MW388	MW385 506.00 Sidegradi	ent YES	
Conclusion of Statistical Analysis on Data The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data. MW370 MW373 MW385 MW388	MW388 393.00 Downgrad	dient YES	
The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data. MW370 MW373 MW385 MW388	MW392 757.00 Downgrad	dient YES	
evidence of elevated concentration with respect to background data. MW370 MW373 MW385 MW388	Conclusion of Statistical A	Analysis on Data	
MW373 MW385 MW388			
MW385 MW388	MW370		
MW388	MW373		
	MW385		
MW397	MW388		
ILTIO22	MW392		

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis LRGA pH UNITS: Std Unit

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL and LL. If the test well result exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Backgro Upgrad		ata from ells				Statistics on Background Data	
Well Nu	mber:	MW395				X= 6.048	
Date Col	lected	Result				S= 0.248	
8/13/2	002	5.800				CV= 0.041	
9/16/2	002	6.000				K factor** = 2.904	
10/16/	2002	5.470				TL= 6.767	
1/13/2	003	6.000				LL= 5.329	
4/10/2	003	6.180				Because CV is less than	
7/16/2	003	6.000				assume normal distribut	
10/14/	2003	6.310			,	with statistical anaylsis.	
1/13/2	004	6.240					
Well Nu	mber:	MW397					
Date Col	lected	Result					
8/13/2	002	5.840					
9/30/2	002	6.000					
10/17/	2002	5.750					
1/13/2	003	6.000					
4/8/20	03	6.300					
7/16/2		6.200					
10/14/		6.360					
1/13/2	004	6.320					
		d Quarter 20 ·il 2013	13 Data Co	llected			
Well No.	Result	Gradient I	Result >TL?	Result <ll?< th=""><th>-</th><th></th><th></th></ll?<>	-		
MW370	6.250	Downgrad	lient NO	NO			
MW373	6.210	Downgrad	lient NO	NO			
MW385	6.180	Sidegradi	ient NO	NO			
MW388	6.300	Downgrad	lient NO	NO			
MW392	6.440	Downgrad	lient NO	NO			
Conclus	ion of S	Statistical A	Analysis on	Data			

None of the test wells exceeded the Upper Tolerance Limit or were less than the Lower Tolerance Limit, which is statistically significant evidence that these wells have no deviated concentrations with respect to background data.

X Mean, X = (sum of background results)/(count of background results)

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

^{**} The K-factor was adjusted for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K- factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 2009.

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis LRGA Potassium UNITS: mg/L

Background Data Upgradient Wells	L. L	Statistics on Background Data						
Well Number: MV		X= 1.590						
8/13/2002 2	2.000	S= 0.642 CV= 0.404 K factor** = 2.523						
	.001	TL= 3.208						
1/13/2003 1		ecause CV is less than						
4/10/2003 1		sume normal distribut						
7/16/2003 1	.730 WI	ith statistical anaylsis.						
10/14/2003 1	.700							
1/13/2004 1	.580							
Well Number: MV	W397							
Date Collected R	Result							
8/13/2002 2	.030							
9/16/2002 2	.000							
10/17/2002 0	.001							
1/13/2003 1	.690							
4/8/2003 1	.730							
7/16/2003 2	.000							
10/14/2003 1	.920							
1/13/2004 1	.870							
Second Quarter 20 April 2013	013 Data Collected i	n						
Well No. Result	Gradient Result >	TL?						
MW370 2.480 I	Downgradient N	NO						
MW373 3.290 I	Downgradient Y	YES						
	0	NO						
	U	NO						
	0	NO						
Conclusion of Statistical Analysis on Data								
	The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.							
MW373		*	<u> </u>					

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis LRGA Sodium UNITS: mg/L

Background Da Upgradient We		Statist Backg	tics on round Data			
Well Number:	MW395	X= 29				
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003	Result 27.000 27.200 0.025 22.600 53.900 30.000 29.100	TL= 6 Because assume	0.470 or** = 2.523 54.616 CV is less than	ion and continue	e	
1/13/2004 Well Number:	26.400 MW397					
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/13/2004 Second Quarter April 2013	Result 35.200 34.300 0.034 31.300 46.100 38.400 37.100 34.300 r 2013 Data	Collected in				
Well No. Resul	t Gradient	Result > TL?				
MW373 64.10 MW385 44.70 MW388 45.40 MW392 33.30	0 Downgrad 0 Downgrad 0 Sidegradi 0 Downgrad 0 Downgrad	lient NO ent NO lient NO lient NO				
Conclusion of S None of the test that these wells	wells exce	eded the Upper	Tolerance L			gnificant evidence

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis LRGA Sulfate UNITS: mg/L

Background Data Upgradient Wells	from	Statistics on Background Data	
Well Number: MV	W395	X= 10.756	
Date Collected R 8/13/2002 10 9/16/2002 9 10/16/2002 8 1/13/2003 9 4/10/2003 8 7/16/2003 8 10/14/2003 8 1/13/2004 8 Well Number: MW Date Collected R 8/13/2002 14 9/16/2002 12 10/17/2002 12 1/13/2003 12	tesult 0.300 .100 .800 .000 E 300 a		tion and continue
	2.800 3.100		
	2.100		
1/13/2004 12	2.100		
Second Quarter 20 April 2013)13 Data Collected	in	
Well No. Result (Gradient Result	> TL?	
	-	YES	
	-	YES	
	e e	YES	
		YES NO	
Conclusion of Stat			
The following test evidence of elevate	well(s) exceeded		ce Limit, which is statistically significant kground data.
MW370			
MW373			
MW385			
MW388			

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis LRGA Technetium-99 UNITS: pCi/L

Background Data from Upgradient Wells	Statistics on Background Data						
Well Number: MW39	X= 11.359						
Date Collected Result 8/13/2002 20.80 9/16/2002 16.20 10/16/2002 8.280 1/13/2003 13.00 4/10/2003 -9.37 7/16/2003 0.826 10/14/2003 14.10 1/13/2004 0.000	$S = 9.138$ $CV = 0.805$ $K \text{ factor}^{**} = 2.523$ $TL = 34.414$ Because CV is less than or assume normal distribution with statistical analysis.	1					
Well Number: MW39							
Date Collected Result 8/13/2002 6.060 9/16/2002 17.30 10/17/2002 25.70 1/13/2003 20.90 4/8/2003 20.10 7/16/2003 9.200 10/14/2003 10.10 1/13/2004 8.540 Second Quarter 2013 I April 2013	a Collected in						
Well No. Result Grad	t Result > TL?						
MW370 12.000 Dow MW373 63.700 Dow MW385 170.00 Side, MW388 113.00 Dow MW392 -7.000 Dow Conclusion of Statistic Muse	radient NO radient YES dient YES radient YES radient NO						
The following test well(s) exceeded the Upper Tolerance Limit, which is statistically significant evidence of elevated concentration with respect to background data.							
MW373							
MW385							
MW388							

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis LRGA Total Organic Carbon (TOC) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well.

Background I Upgradient W		Statist Backg	ics on round Data		
Well Number:	MW395	X= 1.5			
Date Collected	Result	S=0.8			
8/13/2002	1.600	CV= (K fact	or** = 2.523		
9/16/2002	1.100	TL= 3			
10/16/2002	1.000				
1/13/2003	2.000		CV is less than		
4/10/2003	3.400		tistical anaylsis.	on and continue	
7/16/2003	2.000	with Star	listical allayisis.		
10/14/2003	1.000				
1/13/2004	1.000				
Well Number:	MW397				
Date Collected	Result				
8/13/2002	1.000				
9/16/2002	1.000				
10/17/2002	1.000				
1/13/2003	3.600				
4/8/2003	1.900				
7/16/2003	1.100				
10/14/2003	1.000				
1/13/2004	1.000				
Second Quart April 2013	ter 2013 Data	Collected in			
Well No. Res	ult Gradient	Result > TL?			
MW370 1.00	00 Downgrad	lient NO			
MW373 1.00	00 Downgrad	lient NO			
MW385 1.00	00 Sidegradi	ent NO			
MW388 1.00	00 Downgrad	lient NO			
MW392 1.10					
Conclusion of	Statistical A	nalysis on Data	a		
				mit, which is st espect to backg	ificant evidence

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities*, Interim Guidance, EPA, 1989, based on total number of background results

C-746-S and C-746-T Second Quarter 2013 Statistical Analysis LRGA Total Organic Halides (TOX) UNITS: ug/L

Background Da Upgradient We		Statist Backg	ics on round Data			
Well Number:	MW395	X= 31.				
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003 7/16/2003 10/14/2003 1/13/2004	Result 50.000 50.000 18.300 51.200 42.600 12.300 10.000	TL= 7 Because assume r	.591 pr** = 2.523 8.462 CV is less than	or equal to 1, ion and continue	9	
Well Number:	MW397					
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003 7/16/2003 10/14/2003 1/13/2004 Second Quarte April 2013						
Well No. Resu	lt Gradient	Result > TL?				
MW373 40.00 MW385 21.00 MW388 20.00	 Downgrad Downgrad Downgrad Sidegradid Downgrad Downgrad Downgrad 	lient NO ent NO lient NO				
Conclusion of S None of the test that these wells	t wells exce	eded the Upper	Tolerance L			ignificant evidence

CV Coefficient of Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$

TL Upper Tolerance Limit, TL = X + (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,* Interim Guidance, EPA, 1989, based on total number of background results

August 2, 2013

Mr. Craig Jones LATA Environmental Services of Kentucky, LLC 761 Veterans Avenue Kevil, Kentucky 42053

Dear Mr. Jones:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As a Geologist, with a Bachelor of Science degree, I have over eight years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities.

For this project, the statistical analyses conducted on the second quarter 2013 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989). For pH, an additional lower tolerance interval was established. For pH only, the test well data was compared to both the upper and lower tolerance intervals to determine if statistically significant deviations in concentration with respect to upgradient well exist.

Sincerely,

C. Travis Debnam LATA Project Geologist

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E

GROUNDWATER FLOW RATE AND DIRECTION

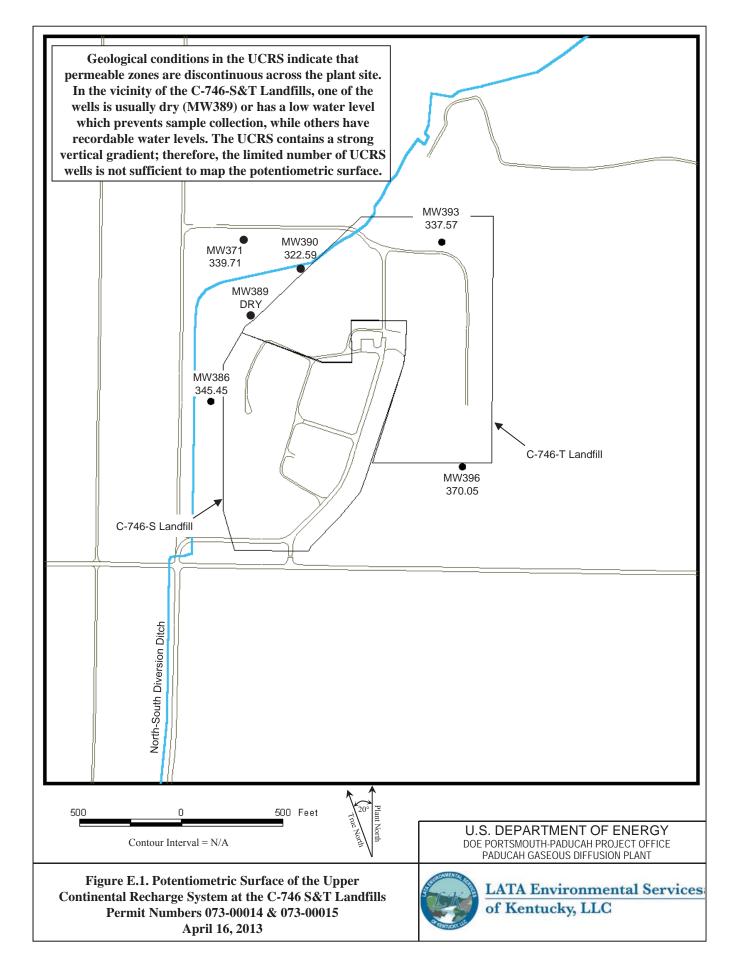
THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/INERT - QUARTERLY, 2nd CY 2013 Facility: U.S. DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982/1</u> LAB ID: <u>None</u>

GROUNDWATER FLOW RATE AND DIRECTION

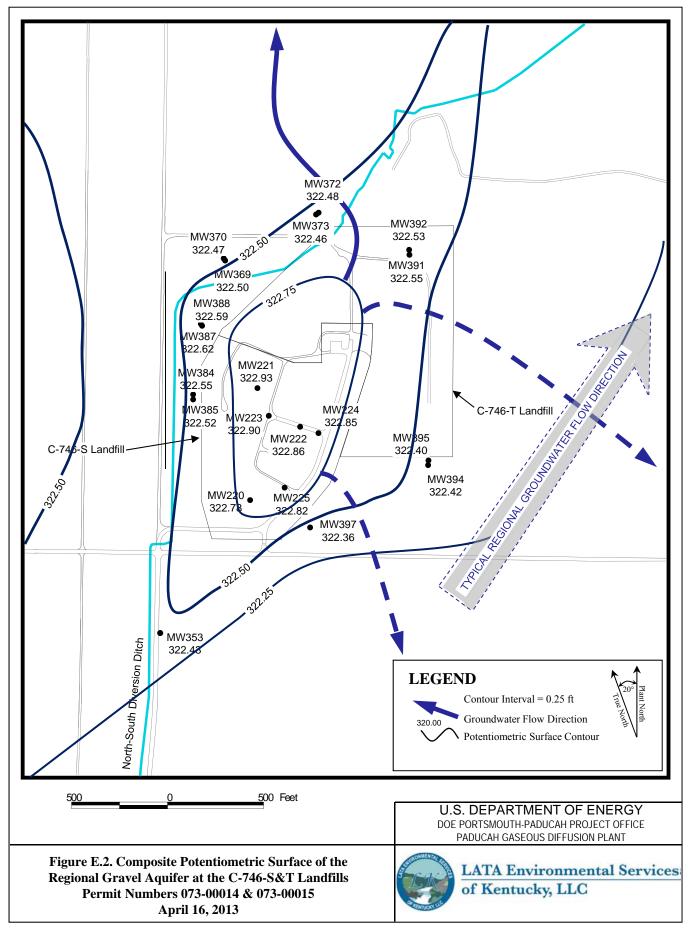
Whenever monitoring wells (MWs) are sampled, 401 *KAR* 48:300 § 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below C-746-S&T is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the second quarter 2013 and to determine the groundwater flow rate and direction.

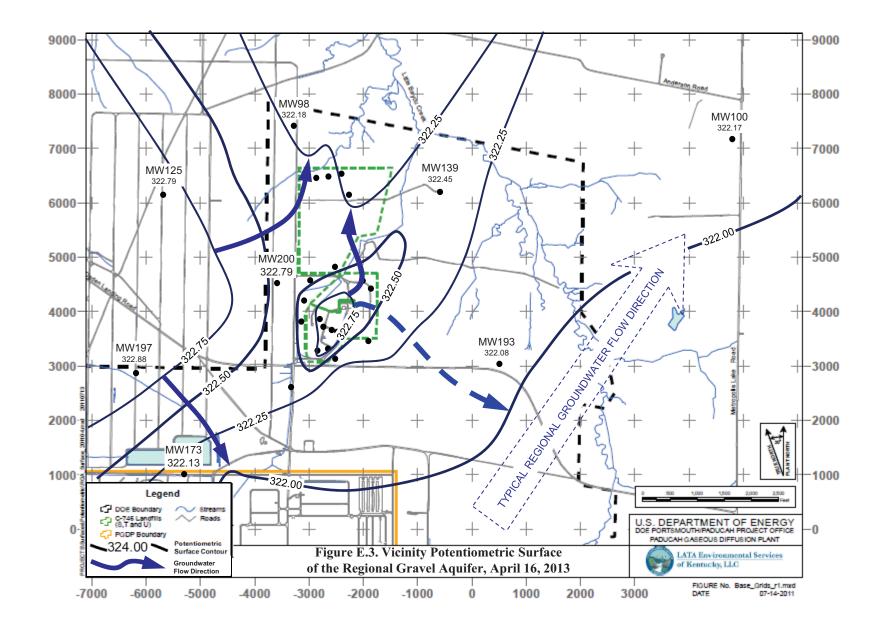

Water levels during this reporting period were measured on April 16, 2013. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water to permit water level measurement. UCRS wells MW389 and MW390 had insufficient water to sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters.¹ Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill is 6.20×10^{-4} ft/ft. Additional water level measurements in April (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 2.62×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near C-746-S&T typically trends northeastward toward the Ohio River. However, during the period of April 9 through May 2, 2013, the Ohio River stage rose dramatically resulting in unusual groundwater flow trends on April 16, 2013. Groundwater flow directions were north, east, and south from the C-746-S&T Landfill on April 16, 2013.


¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.



							Ra	w Data	*Corr	ected Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H ₂ 0)	(ft)	(ft amsl)	(ft)	(ft amsl)
4/16/2013	07:56	MW220	URGA	381.65	30.03	0.01	58.86	322.79	58.87	322.78
4/16/2013	08:30	MW221	URGA	391.14	30.04	0.00	68.21	322.93	68.21	322.93
4/16/2013	08:37	MW222	URGA	395.20	30.04	0.00	72.34	322.86	72.34	322.86
4/16/2013	08:34	MW223	URGA	394.34	30.04	0.00	71.44	322.90	71.44	322.90
4/16/2013	08:40	MW224	URGA	395.70	30.04	0.00	72.85	322.85	72.85	322.85
4/16/2013	07:59	MW225	URGA	385.86	30.03	0.01	63.03	322.83	63.04	322.82
4/16/2013	10:14	MW353	LRGA	374.97	30.04	0.00	52.54	322.43	52.54	322.43
4/16/2013	08:44	MW369	URGA	364.28	30.04	0.00	41.78	322.50	41.78	322.50
4/16/2013	08:47	MW370	LRGA	365.15	30.04	0.00	42.68	322.47	42.68	322.47
4/16/2013	08:45	MW371	UCRS	364.71	30.04	0.00	25.00	339.71	25.00	339.71
4/16/2013	08:56	MW372	URGA	359.49	30.04	0.00	37.01	322.48	37.01	322.48
4/16/2013	08:51	MW373	LRGA	359.79	30.04	0.00	37.33	322.46	37.33	322.46
4/16/2013	07:48	MW384	URGA	365.00	30.03	0.01	42.44	322.56	42.45	322.55
4/16/2013	07:51	MW385	LRGA	365.42	30.03	0.01	42.89	322.53	42.90	322.52
4/16/2013	07:49	MW386	UCRS	365.17	30.03	0.01	19.71	345.46	19.72	345.45
4/16/2013	07:44	MW387	URGA	363.21	30.03	0.01	40.58	322.63	40.59	322.62
4/16/2013	07:42	MW388	LRGA	363.18	30.03	0.01	40.58	322.60	40.59	322.59
4/16/2013	07:39	MW389	UCRS	363.81	30.03		DRY			
4/16/2013	07:36	MW390	UCRS	360.31	30.03	0.01	37.71	322.60	37.72	322.59
4/16/2013	08:23	MW391	URGA	366.51	30.04	0.00	43.96	322.55	43.96	322.55
4/16/2013	08:26	MW392	LRGA	365.63	30.04	0.00	43.10	322.53	43.10	322.53
4/16/2013	08:25	MW393	UCRS	366.64	30.04	0.00	29.07	337.57	29.07	337.57
4/16/2013	08:07	MW394	URGA	378.23	30.04	0.00	55.81	322.42	55.81	322.42
4/16/2013	08:10	MW395	LRGA	378.87	30.04	0.00	56.47	322.40	56.47	322.40
4/16/2013	08:09	MW396	UCRS	378.62	30.04	0.00	8.57	370.05	8.57	370.05
4/16/2013	08:03	MW397	LRGA	386.84	30.04	0.00	64.48	322.36	64.48	322.36
Initial Baror	netric Pre	ssure	30.04							
Elev = eleva	tion									
amsl = abov		ea level								
BP = barom										
DTW = dep	-		ow datum							
URGA = Up										
LRGA = Lo			-							
	-		arge System							

Table E.1. C-746-S&T Landfills (April 2013) Water Levels

UCRS = Upper Continental Recharge System *Assumes a barometric efficiency of 1.0

Table E.2. C-746-S&T Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	6.20 x 10 ⁻⁴
Vicinity	2.62 x 10 ⁻⁴

Table E.3. C-746-S&T Groundwater Flow Rate

Hydraulic Co	onductivity (K)	Specific l	Discharge (q)	Average	e Linear Velocity (v)
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s
Beneath Landfill	Mound				
725	0.256	0.45	1.59 x 10 ⁻⁴	1.80	6.35 x 10 ⁻⁴
425	0.150	0.26	9.30 x 10 ⁻⁵	1.05	3.72 x 10 ⁻⁴
<u>Vicinity</u>					
725	0.256	0.19	6.71 x 10 ⁻⁵	0.76	2.68 x 10 ⁻⁴
425	0.150	0.11	3.93 x 10 ⁻⁵	0.45	1.57 x 10 ⁻⁴

APPENDIX F

NOTIFICATIONS

THIS PAGE INTENTIONALLY LEFT BLANK

NOTIFICATIONS

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The notification for parameters that had statistically significant increased concentrations relative to background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the second quarter 2013 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit Condition, GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989), with the exception of pH. The method for conducting the statistical analysis of pH was selected by the project statistician.

The following are the parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant increased concentrations relative to background concentrations.

Parameter	Monitoring Well
Upper Continental Recharge System	
None	
Upper Regional Gravel Aquifer	
Technetium-99	MW372, MW384, MW387
Lower Regional Gravel Aquifer	
Technetium-99	MW373, MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, these radionuclides are being reported along with the parameters of this regulation.

MCL NOTIFICATION

A notification was submitted for parameters that exceeded the MCL. The parameters submitted are listed on the following page.

5/28/2013

LATA Environmental Services of Kentucky PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S and -T LANDFILLS PERMIT NUMBERS 073-00014 and 073-00015 MAXIMUM CONTAMINANT LIMIT (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method		Results	Units	MCL
8004-4808	MW372	Trichloroethene	8260B/OA7302E		6.2	ug/L	5
8004-4792	MW373	Trichloroethene	8260B/OA7302E		6.4	ug/L	5
8004-4809	MW384	Beta activity	9310/RL7111		157	pCi/L	50
8004-4810	MW385	Beta activity	9310/RL7111		111	pCi/L	50
8004-4815	MW387	Beta activity	9310/RL7111		148	pCi/L	50
8004-4816	MW388	Beta activity	9310/RL7111		85.2	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B/OA7302E	J	8	ug/L	5
8004-4806	MW392	Trichloroethene	8260B/OA7302E	J	13	ug/L	5

NOTE 1: These limits are defined in 401 KAR 47:030.

NOTE 2: MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G

CHART OF MCL EXCEEDANCES AND STATISTICALLY SIGNIFICANT INCREASES

THIS PAGE INTENTIONALLY LEFT BLANK

Groundwater Flow System		1	UCR	S						U	RG	4							Ι	.RG/	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	5389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
1,2,3-TRICHLOROPROPAN	E																						
Quarter 2, 2009			*																				
ACETONE																	-						
Quarter 3, 2003							*					*											
Quarter 4, 2003											*								*				
Quarter 1, 2005									*														
ALPHA ACTIVITY																							
Quarter 4, 2002																							
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM																							
Quarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003			*				*						*	*									
Quarter 3, 2003			*				*	*					*	*									
Quarter 4, 2003							*	*			*			*									
Quarter 1, 2004			*				*	*			*												
Quarter 2, 2004							*							*									
Quarter 3, 2004							*							*									
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*				*																
Quarter 3, 2005			*				*			*											*		
Quarter 4, 2005			*				*				*												
Quarter 1, 2006							*						*										
Quarter 2, 2006			*				*																
Quarter 3, 2006							*																
Quarter 4, 2006			*				*																
Quarter 1, 2007							*										*						
Quarter 2, 2007							*										*						
Quarter 3, 2007							*																
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008							*																
Quarter 1, 2009			*				*				*												
Quarter 1, 2010			*				*				*												
Quarter 2, 2010			*								*												
Quarter 3, 2010			*								*			*			*			*			
Quarter 1, 2011							*				*												
Quarter 2, 2011			*								*												
Quarter 2, 2012			*																				

Groundwater Flow System		Ţ	JCR	S						U	RG	4							Ι	RGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2012							*																
Quarter 1, 2013							*				*												
BARIUM					1					1		1	1		1	1				1			
Quarter 3, 2003																							
Quarter 4, 2003																							
BETA ACTIVITY																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003	Í																						
Quarter 1, 2004						1																	
Quarter 2, 2004	L					L												L			_		
Quarter 3, 2004	L					L												L			_		
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 3, 2006																							
Quarter 4, 2006																							
Quarter 1, 2007																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																						_	
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							

Groundwater Flow System		J	JCR	S						U	RGA	4							Ι	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
BROMIDE																							
Quarter 1, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 3, 2006			*																				
CALCIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											
Quarter 3, 2003			*																				
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008	L											*							*				

Siuditiit	S									U	RGA	1							1	LRG	7		
Monitoring Well 3		D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Quarter 4, 2008	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
CARBON DISULFIDE													1	1				1	1	1			
Quarter 4, 2010											*												
Quarter 1, 2011												*									*		
CHEMICAL OXYGEN DEMAN	ND												I	I				I	I	1			
Quarter 1, 2003				*																			
Quarter 2, 2003				*																			
Quarter 3, 2003				*			*			*													
Quarter 4, 2003				*																			
Quarter 1, 2004	*			*																			
Quarter 4, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*									*		*									*		
Quarter 4, 2005	*									*													
Quarter 1, 2006	*																						
	*																						
	*																						
Quarter 4, 2006																	*						
	*									*												-	
č ,	*																						

Groundwater Flow System		J	JCR	S						U	RGA	٩							Ι	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2007	*																						
Quarter 4, 2007	*																						
Quarter 1, 2008	*																						
Quarter 2, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																			*			
Quarter 3, 2009	*																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 3, 2011	*																						
Quarter 4, 2011	*																						
Quarter 1, 2012	*																						
Quarter 1, 2013	*																						
CHLORIDE				1			1			1									1				
Quarter 1, 2003			*																				
Quarter 2, 2003			*																				
Quarter 3, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*																				ļ
Quarter 3, 2005			*																				ļ
Quarter 4, 2005			*																				ļ
Quarter 1, 2006		<u> </u>																*					
Quarter 2, 2006	<u> </u>	<u> </u>	*																				
Quarter 3, 2006		<u> </u>	*																				
Quarter 4, 2006	<u> </u>	<u> </u>	*																				
Quarter 1, 2007		<u> </u>	*																				
Quarter 2, 2007			*																				
Quarter 3, 2007			*																				

Groundwater Flow System	UCRS URGA S D D U S S S D D D U 386 389 390 393 396 221 222 223 224 384 369 372 387 391 220																		Ι	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2007			*																				
Quarter 1, 2008			*																				
Quarter 2, 2008			*																				
Quarter 3, 2008			*																				
Quarter 4, 2008			*																				
Quarter 1, 2009			*																				
Quarter 2, 2009			*																				
Quarter 3, 2009			*																				
Quarter 4, 2009			*																				
Quarter 1, 2010	1		*																				<u> </u>
Quarter 2, 2010	1		*																				<u> </u>
Quarter 3, 2010	1		*																				<u> </u>
Quarter 4, 2010	1		*																				
Quarter 2, 2011	1		*						-														
Quarter 3, 2011	1		*																				
Quarter 4, 2011			*																				
Quarter 3, 2012			*																				
CHROMIUM																							<u> </u>
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2009																							
COBALT																							
Quarter 3, 2003							*																
CONDUCTIVITY		1		1				1						1									
Quarter 4, 2002										*									*				<u> </u>
Quarter 1, 2003	-		*							*									*				
Quarter 2, 2003 Quarter 3, 2003	-		*					*		*									*				-
Quarter 4, 2003			*					<u>т</u>		* *									* *				
Quarter 1, 2003	-																		*				
Quarter 2, 2004										*									*				
Quarter 3, 2004										*									*				
Quarter 4, 2004			*							*									*				
Quarter 1, 2005										*		*							*				<u> </u>
Quarter 2, 2005	-											*							*				<u> </u>
Quarter 3, 2005 Quarter 4, 2005	-									*		*							*			1	<u> </u>
Quarter 4, 2005 Quarter 1, 2006	┢									不		*							* *				<u> </u>
Quarter 2, 2006	┢											*							*			1	<u> </u>
Quarter 3, 2006	1											*							*				<u> </u>

Groundwater Flow System		J	JCR	S						U	RGA	ł							Ι	RG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2006																	*		*				
Quarter 1, 2007												*							*				
Quarter 2, 2007																	*		*				
Quarter 3, 2007																	*		*				
Quarter 4, 2007												*					*		*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*							*				
Quarter 4, 2009												*					*		*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011										*		*							*				<u> </u>
Quarter 2, 2011												*							*				
Quarter 3, 2011												*							*				<u> </u>
Quarter 4, 2011											*	*							*				<u> </u>
Quarter 1, 2012											不	*							*				
Quarter 2, 2012 Quarter 3, 2012												*							*				<u> </u>
Quarter 4, 2012												*							* *				
Quarter 1, 2012 Quarter 1, 2013												*							* *				<u> </u>
Quarter 2, 2013												*							*				<u> </u>
DISSOLVED OXYGEN												4							4				<u> </u>
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS								40															
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003			*				*	*	*	*		*							* *				
Quarter 1, 2003			*				т		*	т		*							* *				<u> </u>
			<u>т</u>							*		*							*				
Quarter 2, 2004																							
Quarter 3, 2004										*		*							*				<u> </u>
Quarter 4, 2004	<u> </u>		<u> </u>							*		*		<u> </u>	<u> </u>				*	<u> </u>			
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		

Groundwater Flow System		Ţ	JCR	S						U	RGA	4							Ι	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006																	*	*	*	*	*		
Quarter 4, 2006										*		*					*		*				
Quarter 1, 2007																			*				
Quarter 2, 2007										*		*							*				
Quarter 3, 2007										*		*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008										*		*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*	*						*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	*						*				
Quarter 1, 2010												*	*						*				
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010										*		*							*				
Quarter 4, 2010										*		*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*	*						*				
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*							*				
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003						*																	
Quarter 3, 2003													*										
Quarter 1, 2004				*																			
Quarter 3, 2010																					*		
Quarter 2, 2013										*													
IRON																							
Quarter 1, 2003							*			*	*			*									

Groundwater Flow System		Ţ	JCR	S						U	RG	A							Ι	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007											*												
Quarter 2, 2008												*											
Quarter 3, 2008												*											
MAGNESIUM								-		-	-			-	-				-	-			
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*							*				<u> </u>
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006	 											*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006	[*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007	<u> </u>											*							*				
Quarter 1, 2008												*							*				

Groundwater Flow System		J	JCR	S						U	RGA	4							Ι	LRG	4		
Gradient	S	D	1	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*							*				
Quarter 1, 2010												*							*				
Quarter 2, 2010												*	*						*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
MANGANESE					1				1					1				I	1	I		1	
Quarter 4, 2002																					*		
Quarter 3, 2003							*	*															
Quarter 4, 2003							*	*															
Quarter 1, 2004							*																
Quarter 2, 2004							*																
Quarter 4, 2004							*	*															
Quarter 1, 2005							*																
Quarter 3, 2005																					*		
Quarter 3, 2009	*																						
OXIDATION-REDUCTION	ЮТ	ENT	TAI						1					1				1	r			1	
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				

Groundwater Flow System	Γ	ι	JCR	S						U	RG	A							Ι	.RG/	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				
Quarter 2, 2006			*																				
Quarter 3, 2006			*															*					
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*				*																
Quarter 3, 2007			*				*																
Quarter 4, 2007			*																				
Quarter 1, 2008			*			*			*														
Quarter 2, 2008	*		*	*		*							*				*		*	*			
Quarter 3, 2008			*	*		*							*				*		*	*			
Quarter 4, 2008			*	*		*	*	*	*				*				*	*		*			
Quarter 1, 2009			*				*	*	*				*	*				*		*			
Quarter 3, 2009			*	*		*											*	*	*	*			
Quarter 4, 2009			*			*			*									*		*			
Quarter 1, 2010	*		*																	*			
Quarter 2, 2010	*		*	*					*				*				*	*		*			
Quarter 3, 2010	*		*	*		*											*	*	*	*			
Quarter 4, 2010			*					*			*			*			*	*	*	*			
Quarter 1, 2011	*			*		*	*	*	*		*		*	*			*	*		*	*		
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 3, 2011	*		*	*			*		*		*		*				*	*	*	*			
Quarter 4, 2011	*		*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2013				*		*		*	*		*		*	*				*		*	*		
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		
PCB, 1016																							
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004											*												
Quarter 3, 2005							*				*												
Quarter 1, 2006											*												
Quarter 2, 2006											*												
Quarter 4, 2006											*												
Quarter 1, 2007											*	*											

Groundwater Flow System		τ	JCR	S						U	RG	4							Ι	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2007												*											
Quarter 3, 2007											*												
Quarter 2, 2008											*	*											
Quarter 3, 2008											*												
Quarter 4, 2008											*												
Quarter 1, 2009											*												
Quarter 2, 2009											*												
Quarter 3, 2009											*												
Quarter 4, 2009											*												
Quarter 1, 2010											*												
Quarter 2, 2010											*												
Quarter 3, 2010											*												
Quarter 4, 2010											*												
PCB-1232		-				-		-				-											
Quarter 1, 2011											*												
PCB-1248	-																						
Quarter 2, 2008												*											
PCB-1260							1		1	1	1							1		1			
Quarter 2, 2006																		*					
рН							1		1	1	1							1		1			
Quarter 4, 2002																	*						
Quarter 2, 2003																	*						
Quarter 3, 2003																	*						
Quarter 4, 2003							*										*						
Quarter 1, 2004							*										*						
Quarter 2, 2004																	*						
Quarter 3, 2004																	*						
Quarter 4, 2004																	*						
Quarter 3, 2005										*							*				*		
Quarter 4, 2005										*							*						
Quarter 1, 2006	<u> </u>	<u> </u>															*						
Quarter 2, 2006																	*						
Quarter 3, 2006	<u> </u>	<u> </u>															*						
Quarter 3, 2007	<u> </u>	<u> </u>															*						
Quarter 4, 2007																	*						
Quarter 4, 2008																	*						
Quarter 1, 2009		<u> </u>															*						
Quarter 1, 2011																	*						

Groundwater Flow System		Ţ	JCR	S						U	RG	A							Ι	RG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2011											*												
Quarter 3, 2011											*												
Quarter 1, 2012														*									
Quarter 1, 2013										*			*				*						
POTASSIUM																							
Quarter 4, 2002																		*	*				
Quarter 3, 2004																			*				
Quarter 2, 2005																			*				
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				
Quarter 3, 2006																			*				
Quarter 4, 2006																			*				
Quarter 4, 2008																			*				
Quarter 3, 2012																			*				
Quarter 1, 2013																			*				
Quarter 2, 2013																			*				
RADIUM-226																							
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004																			*				
Quarter 2, 2005									*														
Quarter 1, 2009											*												
RADIUM-228		1					1	1	r –		r –	1	1	r –	1			1	T	1	1		r –
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
SELENIUM		1	r – –		1		1	1	r –	r –	r –	1	r	r –	T	r – –		r	r	1	1	r	r
Quarter 4, 2002																							ļ
Quarter 1, 2003																							└──
Quarter 2, 2003																						<u> </u>	<u> </u>
Quarter 3, 2003	<u> </u>	<u> </u>																				<u> </u>	<u> </u>
Quarter 4, 2003																							Ĺ
SODIUM			<u> </u>							1		1	1			<u> </u>	1	1	-	1	_		
Quarter 4, 2002	 	<u> </u>																	*		*	<u> </u>	└──
Quarter 1, 2003				*					*	*	*											<u> </u>	
Quarter 2, 2003	<u> </u>	<u> </u>		*						*	*		*									┣	<u> </u>
Quarter 3, 2003							*	*		*													

Groundwater Flow System	ſ	Ţ	JCR	S						U	RG	4							Ι	RG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 4, 2003							*		*	*													
Quarter 1, 2004									*	*				*									
Quarter 2, 2004										*													
Quarter 3, 2004										*													
Quarter 4, 2004									*	*													
Quarter 1, 2005										*									*				
Quarter 2, 2005										*									*				
Quarter 3, 2005									*	*									*				
Quarter 4, 2005									*	*													
Quarter 1, 2006									*	*													
Quarter 2, 2006									*														
Quarter 3, 2006									*	*		*							*				
Quarter 4, 2006									*	*							*						
Quarter 1, 2007									*			*											
Quarter 2, 2007									*	*													
Quarter 3, 2007									*														
Quarter 4, 2007									*														
Quarter 1, 2008									*														
Quarter 3, 2008												*											
Quarter 4, 2008									*	*													
Quarter 1, 2009									*			*							*				
Quarter 3, 2009												*											
Quarter 4, 2009									*			*											
Quarter 1, 2010												*											
Quarter 2, 2010										*		*											
Quarter 3, 2010										*													
Quarter 4, 2010									*	*													
Quarter 1, 2011										*													
Quarter 2, 2011									*														
Quarter 4, 2011																			*				
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*											
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*											
STRONTIUM-90		I			r		I				I		1	1	I			I	I				
Quarter 2, 2003																							
Quarter 1, 2004																							

Groundwater Flow System		Ţ	JCR	S						U	RG	4							Ι	LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	5389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SULFATE																							
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004	_								_	*		*	*				*	*	*	*			!
Quarter 3, 2004	_								*	*		*	*					*	*				!
Quarter 4, 2004	_									*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005										*		*	*					*	*				
Quarter 3, 2005										*		*	*				*	*	*				
Quarter 4, 2005										*		*	*					*	*	*			
Quarter 1, 2006										*		*	*				*	*	*	*			
Quarter 2, 2006									*	*		*	*				*	*	*	*			
Quarter 3, 2006									*	*		*	*				*		*	*			
Quarter 4, 2006									*	*		*	*				*		*				
Quarter 1, 2007									*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*				*		*	*			
Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009						-			*	*		*	*				*	*	*	*			
Quarter 4, 2009	*									*		*	*				*	*	*				
Quarter 1, 2010	*								*	*		*	*				*		*				
Quarter 2, 2010	-								*	*		*	*				*	*	*	*			
Quarter 3, 2010	-								_	*		*	*				*	*	*	*			
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011	*	+					-			*		*	*				*	*	*				
Quarter 2, 2011	*	-								*		*	*	*			*	*	*	*			
Quarter 3, 2011	*	+					<u> </u>			*		*	*	*		1	*	*	*	*			
Quarter 4, 2011	*	+					-			*		*	*				*	*	*	*			
Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 2, 2012	*	+					-			*		*	*				*	*	*	*			\vdash
Quarter 3, 2012	*	+								* *		*	*			1	*	*	*	*			
Quarter 4, 2012	-						-			* *		*	* *				*	* *	*	*			
Quarter 4, 2012		1					I			ጥ		ጥ	ሻ				不	ጥ	不	Ŧ			

Groundwater Flow System		τ	JCR	S						U	RG	A							Ι	LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2013										*		*	*				*	*	*	*			
Quarter 2, 2013										*		*	*	*			*	*	*	*			
TECHNETIUM-99																						4	
Quarter 4, 2002																			*				
Quarter 1, 2003													*				*		*				
Quarter 2, 2003	*		*							*			*				*						
Quarter 3, 2003			*										*				*			*			
Quarter 4, 2003			*							*		*	*				*		*	*			
Quarter 1, 2004			*									*	*				*		*				L
Quarter 2, 2004			*									*	*				*		*	*			L
Quarter 3, 2004	_		*									*					*		*				<u> </u>
Quarter 4, 2004			*							*		*	*				*	*	*				
Quarter 1, 2005			*							*		*	*				*			*			
Quarter 2, 2005			*							*			*				*	*	*	*			
Quarter 3, 2005			*							*			*				*	*	*	*			
Quarter 4, 2005			*							*		*	*				*		*	*			
Quarter 1, 2006										*		*	*						*	*			
Quarter 2, 2006			*							*			*				*	*	*	*			
Quarter 3, 2006			*							*			*				*	*	*	*			
Quarter 4, 2006	*									*		*	*						*	*			
Quarter 1, 2007			*							*			*				*		*	*			
Quarter 2, 2007			*							*		*	*				*	*		*			
Quarter 3, 2007			*							*	*	*	*				*		*	*			
Quarter 4, 2007			*							*		*	*				*		*	*			
Quarter 1, 2008			*							*		*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2009			*							*		*	*				*						
Quarter 2, 2009			*							*		*	*				*	*		*			
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*							*		*	*				*						
Quarter 1, 2010			*			-				*		*	*				*					1	
Quarter 2, 2010			*							*			*				*	*		*		1	
Quarter 3, 2010			*			-				*	*	*	*				*					1	
Quarter 4, 2010			*							*	-	*	*				*						
Quarter 1, 2011										*		-	*				*					+	
Quarter 2, 2011			*							*			*				*			*		+	
Quarter 3, 2011			*							*			*				*			*		+	+
Quarter 4, 2011			*							*	*	*	*				*			-" `		+	
	-		*							*	ጥ	*	*				*			*		\vdash	┣──
Quarter 1, 2012]	不							ボ			木				ホ			木		L	L

Groundwater Flow System	T	I	JCR	S						U	RG	A							Ι	RG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	5389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 2, 2012			*							*			*				*		*	*			
Quarter 3, 2012			*							*		*	*				*						
Quarter 4, 2012										*		*	*				*		*	*			
Quarter 1, 2013										*			*				*		*	*			
Quarter 2, 2013										*		*	*				*		*	*			
THORIUM-230																	-						
Quarter 1, 2012	*								*					*									
THORIUM-234																							
Quarter 2, 2003						*			*					*									
Quarter 4, 2007									*														
TOTAL ORGANIC CARBO	N			1					1						1								
Quarter 4, 2002																					*		
Quarter 1, 2003				*						*	*							*	*		*		
Quarter 2, 2003										*	*		*								*		
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003							*		*	*													
Quarter 1, 2004										*													
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005										*													
Quarter 2, 2005										*											*		
Quarter 3, 2005										*		*									*		
Quarter 4, 2005										*											*		
Quarter 1, 2006										*													
Quarter 2, 2006										*		*											
Quarter 4, 2006		1	1				1	İ		İ							*						
Quarter 1, 2007	*		1							*													
Quarter 3, 2007	*		1			*	*	*	*	*			*	*			*						
Quarter 2, 2011			1								*												
Quarter 3, 2012	*	1						1		1													
TOTAL ORGANIC HALIDE	ES	<u> </u>	ı				1	1	1	1	1	1	1	ı	1			ı	1				
Quarter 4, 2002																		*	*		*		
Quarter 1, 2003				*														*			*		
Quarter 3, 2003				*																	*		
Quarter 2, 2004																					*		
Quarter 3, 2004	*	<u> </u>					<u> </u>																
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						

Groundwater Flow System		Ţ	JCR	S						U	RG	4							Ι	.RG/	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 3, 2005	*																						
Quarter 4, 2005	*																						
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*																						
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																				*		
Quarter 1, 2008	*																						
Quarter 1, 2008	*																						
Quarter 3, 2008	*																						
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																				*		
Quarter 3, 2009	*																						
Quarter 4, 2009	*																						
Quarter 1, 2010	*																						
Quarter 2, 2010	*																						
Quarter 3, 2010	*																						
Quarter 4, 2010	*																						
Quarter 1, 2011	*																						
TRICHLOROETHENE																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							

Groundwater Flow System	I	Ţ	JCR	S						U	RG	4							Ι	.RG/	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	5389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008																							
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
TURBIDITY														•									
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														
* Statistical test	resul	ts inc	dicat	e an	elev	ated	cond	centr	atio	n (i.e	e., a s	statis	stica	lly s	igni	fican	t inc	reas	e)				
MCL Exceeda	nce																						
UCRS Upper Contine	ntal l	Rech	arge	Sys	tem																		
URGA Upper Regiona	al Gra	avel	Aqu	ifer																			
LRGA Lower Region	al Gr	avel	Aqu	ifer																			

Groundwater Flow System			UCRS				URGA								LRGA									
Gradient		S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring V	Monitoring Well		389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
S	Sidegradient;			D		D	own	grad	ient;			Ţ	J		Upgi	radie	ent							

APPENDIX H

METHANE MONITORING DATA

THIS PAGE INTENTIONALLY LEFT BLANK

C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	06/11/2013	Time:	13:12	Monitor:	Tar	nmy Smith			
Weather Condition Sunny and Dry 90		1							
Monitoring Equipn Innova LS	nent:		*******************						
	-	Reading (% LEL)							
Ogden Landing Road Entrance		0							
North Landfill Gate		0							
West Side of Landfill:									
North 37° 07.652' West 88° 48.029'		0							
East Side of Landfill: North 37° 07.628' West 88° 47.798'	Checked @ Ground	Level				0			
Cell 1 Gas Vent (17)	1 2 3 4 5 0 0 0 0 0	6 7 8 0 0 0		13 14 15 10 0 0 0 0		N/A			
Cell 2 Gas Vent (3)	1 2 3 0 0 0					N/A			
Cell 3 Gas Vent (7)	1 2 3 4 5 0 0 0 0 0		N/A						
Landfill Office	Checked @ Floor Le	evel				N/A			
Suspect or Problem Areas	No Areas Noted					N/A			
Remarks:	C			_ · · · · · · · · · · · · · · · · · · ·					
ALL VENTS C	HECKED 1' FRO	DM MOU	TH OF VENT						
Performed by:	Performed by: Janumy Smith 6/11/13 Signature								

Review the Identified Source Document for This Form Prior to Attempting Completion

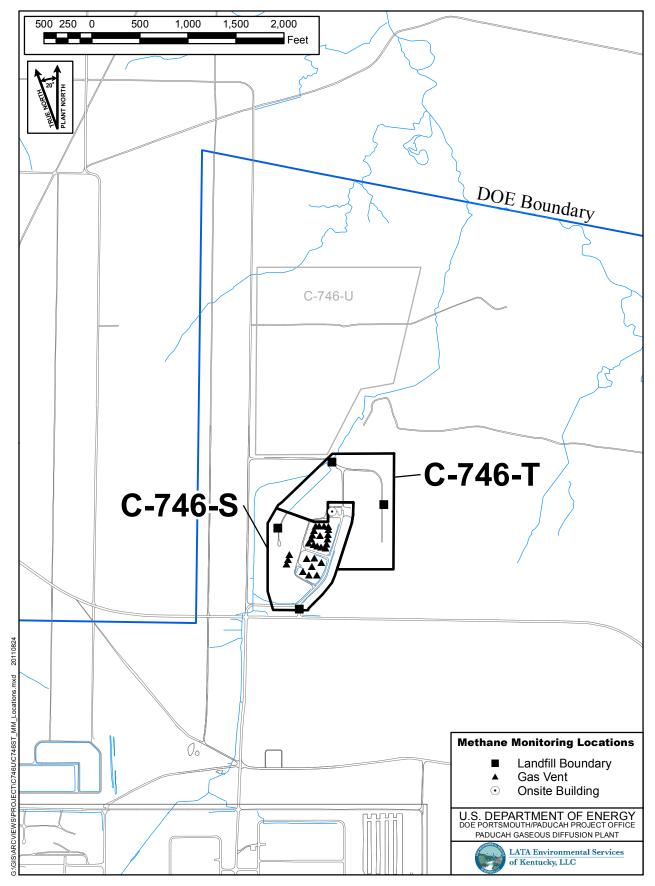


Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I

SURFACE WATER MONITORING DATA

THIS PAGE INTENTIONALLY LEFT BLANK

Division of Waste Management **RESIDENTIAL/INERT-OUARTERLY** Facility: US DOE - Paducah Gaseous Diffusion Plant Solid Waste Branch Permit Number:073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1 14 Reilly Road LAB ID: None

Frankfort, KY 40601 (502)564-6716

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "D	OWNSTREAM")	L135 UPSTRE	AM	L136 AT SIT	ΓE	L154 DOWNST	REAM		
Sample Sequer	nce	#				1		1		1		$\langle \rangle$	
If sample is a	a Bl	ank, specify Type: (F)ield, (T)r:	ip, (M)ethod	, or (E)quipment	NA		NA		NA		\square	
Sample Date a	nd	Time (Month/Day/Year hour:m	inu	tes)		4/11/2013 08	:49	5/21/2013 18	:44	4/11/2013 08	8:35		
Duplicate ("Y	с " с	or "N") ¹				N		N		N			7
Split ('Y' or	- "N	(") ²				Ν		N		N			7
Facility Samp	lity Sample ID Number (if applicable)				L135SS3-1	3	L136SS3-1	3	L154US3-	13		1	
Laboratory Sa	oratory Sample ID Number (if applicable)					C131010200	01	C131420060	01	C13101018	003		/
Date of Analy	rsis	(Month/Day/Year)				5/7/2013		6/6/2013		5/1/2013			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷
A200-00-0	0	Flow	т	MGD	Field	1.62		2.5		1.43			
16887-00-6	2	Chloride(s)	т	MG/L	300.0	<2		<2		<2			$\overline{\mathbf{N}}$
14808-79-8	0	Sulfate	т	MG/L	300.0	4.4		11		4			X
7439-89-6	0	Iron	т	MG/L	200.7 R3.3	3.19		0.671		2.97			
7440-23-5	0	Sodium	т	MG/L	200.7 R3.3	2.03		1.06		1.94			
S0268	0	Organic Carbon ⁶	т	MG/L	9060	24.8	D	15.1	D	22.5	D*		
S0097	0	BOD ⁶	т	MG/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	т	MG/L	410.4	<25	В	39		47		/	

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

Page 2 of 2

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	oint	: (KPDES Discharge Number, or	<u>r "T</u>	JPSTREAM" or	"DOWNSTREAM")	L135 UPSTR	EAM	L136 AT SI	ITE	L154 DOWNSTREAM			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷	DETECTED VALUE OR PQL ⁵	F A G S ⁷
S0145	1	Specific Conductance	т	µнмs/см	Field	102		108		95			
S0270	0	Total Suspended Solids	т	MG/L	160.1	<50		<20		23			
S0266	0	Total Dissolved Solids	т	MG/L	160.2	96	*	86		187	*		
S0269	0	Total Solids	т	MG/L	160.3	166		118		231		()	
S0296	0	рН	т	Units	Field	7.44		6.79		7.5			
7440-61-1		Uranium	т	MG/L	IN7105	0.00229		<0.001		0.00168		$\langle \rangle$	
12587-46-1		Gross Alpha (α)	т	pCi/L	900.0	3.17	*	0.322	*	2.32	*	\backslash	
12587-47-2		Gross Beta (β)	т	pCi/L	900.0	9.13	*	7.94	*	6.46	*	X	
													\
													\bot
													\square
												/	

RESIDENTIAL/INERT – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Numbers: 073-00014 & 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: _____ None

For Official Use Only

SURFACE WATER WRITTEN COMMENTS

Monitorin Point	g Facility Sample ID	Constituent	Flag	Description
L135	L135SS3-13	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.81. Rad error is 1.64.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.91. Rad error is 1.61.
L136	L136SS3-13	Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.186. Rad error is 0.179.
		Beta activity		TPU is 1.22. Rad error is 1.15.
L154	L154US3-13	Total Organic Carbon (TOC)	Е	Concentration exceeds calibration range of the instrument.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.41. Rad error is 1.29.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.39. Rad error is 1.2.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX J

ANNUAL LEACHATE MONITORING DATA

THIS PAGE INTENTIONALLY LEFT BLANK

SLS13-01-01		from: C-7	46-S	on 4	/17/20	13 Media: V	NW	SmpMethod: GR	
Comments:									
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
ANION									
Bromide	2		mg/L	U		2		SW846-9056	/ X /
Chloride	35		mg/L			2		SW846-9056	/ X /
Fluoride	0.64		mg/L			0.1		9214	/ X /
Nitrate as Nitrogen	2.7		mg/L			1		SW846-9056	/ X /
Sulfate	130		mg/L			10		SW846-9056	/ X /
FS									
Conductivity	0.927		umho/cm					FS	11
Dissolved Oxygen	16.8		mg/L					FS	11
рН	7.33		Std Unit					FS	11
Redox	267		mV					FS	11
Temperature	63.3		deg F					FS	11
METAL									
Aluminum	0.2		mg/L	U		0.2		SW846-6010B	/ X /
Antimony	0.005		mg/L	UB		0.005		SW846-6020	/ X /
Arsenic	0.001		mg/L	U		0.001		SW846-6020	/ X /
Barium	0.109		mg/L			0.005		SW846-6020	/ X /
Beryllium	0.001		mg/L	U		0.001		SW846-6020	/ X /
Boron	0.2		mg/L	UB		0.2		SW846-6010B	/ X /
Cadmium	0.001		mg/L	U		0.001		SW846-6020	/ X /
Calcium	149		mg/L	-		1		SW846-6010B	/ X /
Chromium	0.01		mg/L	U		0.01		SW846-6020	/ X /
Cobalt	0.001		mg/L	UBX		0.001		SW846-6020	/ X /
Copper	0.019		mg/L	OBA		0.0052		SW846-6020	/ X /
Iron	0.396		mg/L			0.1		SW846-6010B	/ X /
Lead	0.0013		mg/L	UB		0.0013		SW846-6020	/ X /
Magnesium	21.7		mg/L	N		0.025		SW846-6010B	/ X /
•	0.265		-	NX		0.025		SW846-6020	/ X /
Manganese	0.203		mg/L			0.005			/ X /
Mercury			mg/L	U				SW846-7470A	
Molybdenum	0.001		mg/L	UB		0.001		SW846-6020	/ X /
Nickel	0.00642		mg/L	Х		0.005		SW846-6020	/ X /
Phosphorous	0.06		mg/L			0.04		EPA-365.3	/ X /
Potassium	0.647		mg/L			0.2		SW846-6010B	S/X/
Rhodium	0.005		mg/L	U		0.005		SW846-6020	/ X /
Selenium	0.005		mg/L	U		0.005		SW846-6020	/ X /
Silver	0.001		mg/L	U		0.001		SW846-6020	/ X /
Sodium	19.8		mg/L			1		SW846-6010B	/ X /
Tantalum	0.005		mg/L	U		0.005		SW846-6020	/ X /
Thallium	0.002		mg/L	U		0.002		SW846-6020	/ X /
Tin	0.005		mg/L	UB		0.005		SW846-6020	/ X /
Titanium	0.005		mg/L	U		0.005		SW846-6020	/ X /
Uranium	0.0131		mg/L			0.001		SW846-6020	/ X /
Vanadium	0.02		mg/L	U		0.02		SW846-6020	/ X /
Zinc	0.0262		mg/L	В		0.02		SW846-6020	/ X /
METAL-D									
Antimony, Dissolved	0.005		mg/L	U		0.005		SW846-6020	/ X /
Arsenic, Dissolved	0.001		mg/L	U		0.001		SW846-6020	/ X /
Barium, Dissolved	0.107		mg/L			0.005		SW846-6020	/ X /
Cadmium, Dissolved	0.001		mg/L	U		0.001		SW846-6020	/ X /
Chromium, Dissolved	0.01		mg/L	U		0.01		SW846-6020	/ X /
Cobalt, Dissolved	0.001		mg/L	UBX		0.001		SW846-6020	/ X /

*Verification/Validation/Assessment

7/31/2013 Page 1 of 12

		Paducal	I UKEIS	Report	lor 51513-	01		
Copper, Dissolved	0.0052		mg/L	UN	0.0052		SW846-6020	/ X /
Lead, Dissolved	0.0013		mg/L	U	0.0013		SW846-6020	/ X /
Manganese, Dissolved	0.265		mg/L		0.005		SW846-6020	/ X /
Nickel, Dissolved	0.00585		mg/L		0.005		SW846-6020	/ X /
Selenium, Dissolved	0.005		mg/L	U	0.005		SW846-6020	/ X /
Silver, Dissolved	0.001		mg/L	UNB	0.001		SW846-6020	/ X /
Tin, Dissolved	0.005		mg/L	U	0.005		SW846-6020	/ X /
Titanium, Dissolved	0.005		mg/L	U	0.005		SW846-6020	/ X /
Uranium, Dissolved	0.0131		mg/L		0.001		SW846-6020	/ X /
Vanadium, Dissolved	0.02		mg/L	U	0.02		SW846-6020	/ X /
Zinc, Dissolved	0.02		mg/L	U	0.02		SW846-6020	/ X /
OTHOR								
Oil and Grease	7		mg/L	U	7		EPA-1664	/ X /
PPCB								
PCB-1016	0.17		ug/L	U	0.17		SW846-8082	/ X /
PCB-1221	0.18		ug/L	U	0.18		SW846-8082	/ X /
PCB-1232	0.14		ug/L	U	0.14		SW846-8082	/ X /
PCB-1242	0.1		ug/L	U	0.1		SW846-8082	/ X /
PCB-1248	0.12		ug/L	U	0.12		SW846-8082	/ X /
PCB-1254	0.07		ug/L	U	0.07		SW846-8082	/ X /
PCB-1260	0.05		ug/L	U	0.05		SW846-8082	/ X /
PCB-1268	0.09		ug/L	U	0.09		SW846-8082	/ X /
Polychlorinated biphenyl	0.18		ug/L	U	0.18		SW846-8082	/ X /
RADS								
Alpha activity	11.8	5.16	pCi/L	U	12	5.91	SW846-9310	/ X /
Americium-241	-0.00163	0.0187	pCi/L	U	0.218	0.0878	RL-7128	/ X /
Beta activity	2.95	0.587	pCi/L	U	10.5	0.672	SW846-9310	/ X /
Cesium-137	-0.52	1.04	pCi/L	U	2.06	1.21	RL-7124	/ X /
Cobalt-60	-0.08	0.16	pCi/L	U	2.32	1.42	RL-7124	/ X /
Dissolved Alpha	5.47	2.83	pCi/L	U	11.7	3.12	RL-7111	/ X /
Dissolved Beta	9.28	1.67	pCi/L	U	10.5	1.96	RL-7111	/ X /
Neptunium-237	-0.0158	0.0234	, pCi/L	U	0.162	0.0559	RL-7128	/ X /
Plutonium-239/240	-0.00658	0.00292	pCi/L	U	0.231	0.0951	RL-7128	/ X /
Radium-226	0.0129	0.0284	pCi/L	U	0.805	0.324	RL-7129	/ X /
Strontium-90	0.916	0.177	pCi/L	U	2.27	0.269	RL-7140	/ X /
Technetium-99	-1.32	8.93	pCi/L	U	14.7	8.93	RL-7100	/ X /
Thorium-230	0.0353	0.0475	pCi/L	U	0.254	0.0966	RL-7128	/ X /
Thorium-234	-14.2	28.4	pCi/L pCi/L	U	0.234 50	28.5	RL-7124	/ X /
Tritium	4.17				240	28.5 568		/ X /
		568	pCi/L	U			RL-7155	
Uranium	8.77	3.67	pCi/L		0.701	4.79	RL-7128	S/X/
Uranium-234	4.25	0.327	pCi/L		0.412	0.799	RL-7128	/ X /
Uranium-235	0.199	0.0843	pCi/L		0.132	0.0999	RL-7128	/ X /
Uranium-238	4.33	0.328	pCi/L		0.157	0.791	RL-7128	/ X /
RADS-D Americium-241	0 0262	0 0335	nCi/l	11	0.219	0.0924	PI -7129	/ X /
Cesium-137	0.0262	0.0335	pCi/L	U	0.218		RL-7128	
	-1.32	2.65	pCi/L	U	1.82	2.65	RL-7124	/ X /
Cobalt-60	-0.884	1.77	pCi/L	U	2.4	1.77	RL-7124	/ X /
Neptunium-237	-0.0199	0.0318	pCi/L	U	0.147	0.0613	RL-7128	/ X /
Plutonium-239/240	-0.0017	0.0127	pCi/L	U	0.232	0.0949	RL-7128	/ X /
Technetium-99	-3.77	8.98	pCi/L	U	14.7	8.98	RL-7100	/ X /
Thorium-230	0.0747	0.055	pCi/L	U	0.278	0.101	RL-7128	/ X /
Thorium-234	-30	59.9	pCi/L	U	50	59.9	RL-7124	/ X /
Uranium, Dissolved	9.59	3.99	pCi/L		0.672	5.3	RL-7128	S/X/
Uranium-234	5.07	0.324	pCi/L		0.403	0.906	RL-7128	/ X /
Uranium-235	0.171	0.0729	pCi/L		0.119	0.0887	RL-7128	/ X /
			•					,

*Verification/Validation/Assessment

7/31/2013 Page 2 of 12

	v	aucan OKEIS			VI		
Uranium-238	4.34 0.3	pCi/L	_	0.15	0.768	RL-7128	/ X /
VOA							
1,1,1,2-Tetrachloroethane	5	ug/L	U	5		SW846-8260B	/ X /
1,1,1-Trichloroethane	1	ug/L	U	1		SW846-8260B	/ X /
	5	ug/L	UJ	5		SW846-8260B	/ X /
1,1,2-Trichloroethane	1	ug/L	U	1		SW846-8260B	/ X /
1,1-Dichloroethane	1	ug/L	U	1		SW846-8260B	/ X /
1,1-Dichloroethene	1	ug/L	U	1		SW846-8260B	/ X /
	5		U	5		SW846-8260B	/ X /
• •	0.2	ug/L		0.2		SW846-8011	/ X /
		ug/L	U				
·	5	ug/L	U	5		SW846-8260B	/ X /
·	5	ug/L	U	5		SW846-8260B	/ X /
1,2-Dichloroethane	1	ug/L	U	1		SW846-8260B	/ X /
1,2-Dichloropropane	5	ug/L	U	5		SW846-8260B	/ X /
	5	ug/L	U	5		SW846-8260B	/ X /
·	5	ug/L	U	5		SW846-8260B	/ X /
2-Butanone	10	ug/L	U	10		SW846-8260B	/ X /
2-Hexanone	10	ug/L	U	10		SW846-8260B	/ X /
4-Methyl-2-pentanone	10	ug/L	U	10		SW846-8260B	/ X /
Acetone	10	ug/L	U	10		SW846-8260B	/ X /
Acrolein	10	ug/L	U	10		SW846-8260B	/ X /
Acrylonitrile	10	ug/L	U	10		SW846-8260B	/ X /
Benzene	5	ug/L	U	5		SW846-8260B	/ X /
Bromochloromethane	5	ug/L	U	5		SW846-8260B	/ X /
Bromodichloromethane	5	ug/L	U	5		SW846-8260B	/ X /
	5	ug/L	U	5		SW846-8260B	/ X /
Bromomethane	5	ug/L	U	5		SW846-8260B	/ X /
Carbon disulfide	5	ug/L	U	5		SW846-8260B	/ X /
Carbon tetrachloride	5	ug/L	U	5		SW846-8260B	/ X /
	5		U	5		SW846-8260B	/ X /
		ug/L		5			
Chloroethane	5	ug/L	JU			SW846-8260B	/ X /
Chloroform	1	ug/L	U	1		SW846-8260B	/ X /
Chloromethane	5	ug/L	U	5		SW846-8260B	/ X /
cis-1,2-Dichloroethene	1	ug/L	U	1		SW846-8260B	/ X /
	5	ug/L	U	5		SW846-8260B	/ X /
Dibromochloromethane	5	ug/L	U	5		SW846-8260B	/ X /
Dibromomethane	5	ug/L	U	5		SW846-8260B	/ X /
Ethylbenzene	5	ug/L	U	5		SW846-8260B	/ X /
	10	ug/L	U	10		SW846-8260B	/ X /
m,p-Xylene	10	ug/L	U	10		SW846-8260B	/ X /
Methylene chloride	5	ug/L	U	5		SW846-8260B	/ X /
Styrene	5	ug/L	U	5		SW846-8260B	/ X /
Tetrachloroethene	1	ug/L	U	1		SW846-8260B	/ X /
Toluene	5	ug/L	U	5		SW846-8260B	/ X /
Total Xylene	15	ug/L	U	15		SW846-8260B	/ X /
trans-1,2-Dichloroethene	1	ug/L	U	1		SW846-8260B	/ X /
trans-1,3-Dichloropropene	5	ug/L	U	5		SW846-8260B	/ X /
	5	ug/L	U	5		SW846-8260B	/ X /
Trichloroethene	1	ug/L	U	1		SW846-8260B	/ X /
Trichlorofluoromethane	5	ug/L	U	5		SW846-8260B	/ X /
Vinyl acetate	10	ug/L	UJ	10		SW846-8260B	/ X /
•	2	ug/L	U	2		SW846-8260B	/ X /
WETCHEM							
Carbonaceous Biochemical Oxygen Demand (CBOD)	5	mg/L	U	5		SM-5210 B	/ X /
	25	mg/L	U	25		EPA-410.4	/ X /

*Verification/Validation/Assessment

7/31/2013 Page 3 of 12

			-			
Cyanide	0.04	mg/L	U	0.04	SW846-9010C	/ X /
Dissolved Solids	566	mg/L		35	EPA-160.1	/ X /
Hardness - Total as CaCO3	470	mg/L		20	EPA-130.2	/ X /
lodide	2	mg/L	U	2	EPA-345.1	/ X /
Suspended Solids	10	mg/L	U	10	EPA-160.2	/ X /
Total Organic Carbon (TOC)	2.7	mg/L		1	SW846-9060	/ X /
Total Organic Halides (TOX)	16	ug/L		5	SW846-9020B	/ X /

SLS13-01-02		from: C-7	46-S	on 4	/17/20	13 Media: \	NW	SmpMethod: GR	
Comments:									
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
ANION									
Bromide	2		mg/L	U		2		SW846-9056	/ X /
Chloride	28		mg/L			2		SW846-9056	/ X /
Fluoride	0.25		mg/L			0.1		9214	S/X/
Nitrate as Nitrogen	1		mg/L	U		1		SW846-9056	/ X /
Sulfate	450		mg/L			20		SW846-9056	S / X /
FS									
Conductivity	1276		umho/cm					FS	11
Dissolved Oxygen	5.31		mg/L					FS	11
рН	6.61		Std Unit					FS	11
Redox	153		mV					FS	11
Temperature	62		deg F					FS	11
METAL									
Aluminum	0.2		mg/L	U		0.2		SW846-6010B	/ X /
Antimony	0.005		mg/L	UB		0.005		SW846-6020	/ X /
Arsenic	0.0041		mg/L			0.001		SW846-6020	S/X/
Barium	0.155		mg/L			0.005		SW846-6020	/ X /
Beryllium	0.001		mg/L	U		0.000		SW846-6020	/ X /
Boron	0.2		-	UB		0.001		SW846-6010B	/ X /
			mg/L						
Cadmium	0.001		mg/L	U		0.001		SW846-6020	/ X /
Calcium	189		mg/L			1		SW846-6010B	/ X /
Chromium	0.01		mg/L	U		0.01		SW846-6020	/ X /
Cobalt	0.0121		mg/L	ВX		0.001		SW846-6020	/ X /
Copper	0.0052		mg/L	U		0.0052		SW846-6020	/ X /
Iron	57.2		mg/L			0.1		SW846-6010B	/ X /
Lead	0.0013		mg/L	UB		0.0013		SW846-6020	/ X /
Magnesium	51.5		mg/L	Ν		0.025		SW846-6010B	S/X/
Manganese	3.39		mg/L	NX		0.05		SW846-6020	/ X /
Mercury	0.0002		mg/L	U		0.0002		SW846-7470A	/ X /
Molybdenum	0.001		mg/L	UB		0.001		SW846-6020	/ X /
Nickel	0.00882		mg/L	Х		0.005		SW846-6020	/ X /
Phosphorous	0.11		mg/L			0.04		EPA-365.3	/ X /
Potassium	3.4		mg/L			0.2		SW846-6010B	/ X /
Rhodium	0.005		mg/L	U		0.005		SW846-6020	/ X /
Selenium	0.005		mg/L	U		0.005		SW846-6020	/ X /
Silver	0.001		mg/L	U		0.000		SW846-6020	/ X /
			•	0					
Sodium	35.8		mg/L			1		SW846-6010B	/ X /
Tantalum	0.005		mg/L	U		0.005		SW846-6020	/ X /
Thallium	0.002		mg/L	U		0.002		SW846-6020	/ X /
Tin	0.005		mg/L	UB		0.005		SW846-6020	/ X /
Titanium	0.005		mg/L	U		0.005		SW846-6020	/ X /
Uranium	0.00381		mg/L			0.001		SW846-6020	/ X /
Vanadium	0.02		mg/L	U		0.02		SW846-6020	/ X /
Zinc	0.068		mg/L	В		0.02		SW846-6020	/ X /
METAL-D									
Antimony, Dissolved	0.005		mg/L	U		0.005		SW846-6020	/ X /
Arsenic, Dissolved	0.00172		mg/L			0.001		SW846-6020	S/X/
Barium, Dissolved	0.127		mg/L			0.005		SW846-6020	/ X /
Cadmium, Dissolved	0.001		mg/L	U		0.001		SW846-6020	/ X /
Chromium, Dissolved	0.01		mg/L	U		0.01		SW846-6020	/ X /
Cobalt, Dissolved	0.0116		mg/L	BX		0.001		SW846-6020	S/X/
				200			= /0 /	/2013 Page 5 of 12	27.07

*Verification/Validation/Assessment

7/31/2013 Page 5 of 12

		Paduca	II OKEIS	Report	or 51515-0)1		
Copper, Dissolved	0.0052		mg/L	UN	0.0052		SW846-6020	/ X /
Lead, Dissolved	0.0013		mg/L	U	0.0013		SW846-6020	/ X /
Manganese, Dissolved	3.61		mg/L		0.05		SW846-6020	S/X/
Nickel, Dissolved	0.00836		mg/L		0.005		SW846-6020	S/X/
Selenium, Dissolved	0.005		mg/L	U	0.005		SW846-6020	/ X /
Silver, Dissolved	0.001		mg/L	UNB	0.001		SW846-6020	/ X /
Tin, Dissolved	0.005		mg/L	U	0.005		SW846-6020	/ X /
Titanium, Dissolved	0.005		mg/L	U	0.005		SW846-6020	/ X /
Uranium, Dissolved	0.00333		mg/L		0.001		SW846-6020	/ X /
Vanadium, Dissolved	0.02		mg/L	U	0.02		SW846-6020	/ X /
Zinc, Dissolved	0.0274		mg/L		0.02		SW846-6020	/ X /
OTHOR								
Oil and Grease	7		mg/L	U	7		EPA-1664	/ X /
PPCB								
PCB-1016	0.17		ug/L	U	0.17		SW846-8082	/ X /
PCB-1221	0.18		ug/L	U	0.18		SW846-8082	/ X /
PCB-1232	0.14		ug/L	U	0.14		SW846-8082	/ X /
PCB-1242	0.1		ug/L	U	0.1		SW846-8082	/ X /
PCB-1248	0.12		ug/L	U	0.12		SW846-8082	/ X /
PCB-1254	0.07		ug/L	U	0.07		SW846-8082	/ X /
PCB-1260	0.05		ug/L	U	0.05		SW846-8082	/ X /
PCB-1268	0.09		ug/L	U	0.09		SW846-8082	/ X /
Polychlorinated biphenyl	0.18		ug/L	U	0.18		SW846-8082	/ X /
RADS								
Alpha activity	2.01	0.899	pCi/L	U	11.9	1.02	SW846-9310	/ X /
Americium-241	0.044	0.0416	, pCi/L	U	0.221	0.0959	RL-7128	/ X /
Beta activity	8.9	1.15	, pCi/L		8.59	1.52	SW846-9310	/ X /
Cesium-137	-0.172	0.344	, pCi/L	U	2.14	1.22	RL-7124	/ X /
Cobalt-60	-1.15	2.31	pCi/L	U	2.15	2.31	RL-7124	/ X /
Dissolved Alpha	2.51	1.51	pCi/L	U	15.8	1.63	RL-7111	/ X /
Dissolved Beta	10.6	1.88	pCi/L	U	11.2	2.22	RL-7111	/ X /
Neptunium-237	-0.0267	0.035	pCi/L	U	0.146	0.0614	RL-7128	/ X /
Plutonium-239/240	-0.00218	0.0117	pCi/L	U	0.239	0.0939	RL-7128	/ X /
Radium-226	0.167	0.17	pCi/L	U	0.779	0.334	RL-7129	/ X /
Strontium-90	0.253	0.054	pCi/L	U	2.73	0.0777	RL-7140	/ X /
Technetium-99	-1.22	9.35	pCi/L	U	14.7	9.35	RL-7100	/ X /
Thorium-230	0.0268	0.0661	pCi/L	U	0.234	0.109	RL-7128	/ X /
Thorium-234	-17.2	34.4	pCi/L	U	50	34.4	RL-7124	/ X /
Tritium	-99.1	610	pCi/L	U	240	610	RL-7155	/ X /
Uranium	2.53	1.86	pCi/L	U	0.676	2.69	RL-7128	/ X /
Uranium-234	1.14	0.171	pCi/L	U	0.405	0.307	RL-7128	/ X /
Uranium-235	0.0498	0.0418	pCi/L	U	0.122	0.0594	RL-7128	/ X /
Uranium-238	1.34	0.181	pCi/L	U	0.15	0.291	RL-7128	/ X /
			1.0.0					
RADS-D Americium-241	0.00867	0.0272	pCi/L	U	0.222	0.0901	RL-7128	/ X /
Cesium-137	0.45	0.9	pCi/L	U	2.11	1.16	RL-7124	/ X /
Cobalt-60	-1.1	2.2	pCi/L	U	2.18	2.2	RL-7124	/ X /
Neptunium-237	-0.0523	0.0542	pCi/L pCi/L	U	0.218	0.0746	RL-7124	/ X /
•	0.00358		pCi/L pCi/L			0.0740	RL-7128	/ X /
Plutonium-239/240		0.0232 9.07		U	0.251 14.7	0.098 9.07	RL-7120 RL-7100	/ X /
Technetium-99	-3.28		pCi/L	U				
Thorium-230	0.081	0.111	pCi/L	U	0.305	0.14	RL-7128	/ X /
Thorium-234	4.38	8.75	pCi/L	U	49.9	28.5	RL-7124	/ X /
Uranium, Dissolved	2.04	1.3	pCi/L		0.701	1.91	RL-7128	/ X /
Uranium-234	0.913 0.0594	0.141 0.0415	pCi/L pCi/L	U	0.423 0.122	0.266 0.0594	RL-7128 RL-7128	/ X / / X /
Uranium-235								

*Verification/Validation/Assessment

7/31/2013 Page 6 of 12

		Paduca	n OKEIS	Keport	tor SLS13-	-01		
Uranium-238	1.07	0.148	pCi/L	_	0.156	0.234	RL-7128	/ X /
VOA								
1,1,1,2-Tetrachloroethane	5		ug/L	UX	5		SW846-8260B	/ X /
1,1,1-Trichloroethane	1		ug/L	UX	1		SW846-8260B	/ X /
1,1,2,2-Tetrachloroethane	5		ug/L	UJX	5		SW846-8260B	/ X /
1,1,2-Trichloroethane	1		ug/L	UX	1		SW846-8260B	/ X /
1,1-Dichloroethane	1		ug/L	UX	1		SW846-8260B	/ X /
1,1-Dichloroethene	1		ug/L	UX	1		SW846-8260B	/ X /
1,2,3-Trichloropropane	5		ug/L	UX	5		SW846-8260B	/ X /
1,2-Dibromo-3-chloropropane	0.2		ug/L	U	0.2		SW846-8011	/ X /
1,2-Dibromoethane	5		ug/L	UX	5		SW846-8260B	/ X /
1,2-Dichlorobenzene	5		ug/L	UX	5		SW846-8260B	/ X /
1,2-Dichloroethane	1		ug/L	UX	1		SW846-8260B	/ X /
1,2-Dichloropropane	5		ug/L	UX	5		SW846-8260B	/ X /
1,2-Dimethylbenzene	5		ug/L	UX	5		SW846-8260B	/ X /
1,4-Dichlorobenzene	5		•	UX	5		SW846-8260B	/ X /
•			ug/L					
2-Butanone	10		ug/L	UX	10		SW846-8260B	/ X /
2-Hexanone	10		ug/L	UX	10		SW846-8260B	/ X /
4-Methyl-2-pentanone	10		ug/L	UX	10		SW846-8260B	/ X /
Acetone	13		ug/L	X	10		SW846-8260B	/ X /
Acrolein	10		ug/L	UX	10		SW846-8260B	/ X /
Acrylonitrile	10		ug/L	UX	10		SW846-8260B	/ X /
Benzene	5		ug/L	UX	5		SW846-8260B	/ X /
Bromochloromethane	5		ug/L	UX	5		SW846-8260B	/ X /
Bromodichloromethane	5		ug/L	UX	5		SW846-8260B	/ X /
Bromoform	5		ug/L	UX	5		SW846-8260B	/ X /
Bromomethane	5		ug/L	UX	5		SW846-8260B	/ X /
Carbon disulfide	5		ug/L	UX	5		SW846-8260B	/ X /
Carbon tetrachloride	5		ug/L	UX	5		SW846-8260B	/ X /
Chlorobenzene	5		ug/L	UX	5		SW846-8260B	/ X /
Chloroethane	5		ug/L	JUX	5		SW846-8260B	/ X /
Chloroform	1		ug/L	UX	1		SW846-8260B	/ X /
Chloromethane	5		ug/L	UX	5		SW846-8260B	/ X /
cis-1,2-Dichloroethene	1		ug/L	UX	1		SW846-8260B	/ X /
cis-1,3-Dichloropropene	5		ug/L	UX	5		SW846-8260B	/ X /
Dibromochloromethane	5		ug/L	UX	5		SW846-8260B	/ X /
Dibromomethane	5		ug/L	UX	5		SW846-8260B	/ X /
Ethylbenzene	5		ug/L	UX	5		SW846-8260B	/ X /
lodomethane	10		ug/L	UX	10		SW846-8260B	/ X /
m,p-Xylene	10		ug/L	UX	10		SW846-8260B	/ X /
Methylene chloride	5		ug/L	UX	5		SW846-8260B	/ X /
Styrene	5		ug/L	UX	5		SW846-8260B	/ X /
Tetrachloroethene	1		ug/L	UX	1		SW846-8260B	/ X /
Toluene	5		ug/L	UX	5		SW846-8260B	/ X /
Total Xylene	15		ug/L	UX	15		SW846-8260B	/ X /
trans-1,2-Dichloroethene	1		ug/L	UX	1		SW846-8260B	/ X /
trans-1,3-Dichloropropene	5		ug/L	UX	5		SW846-8260B	/ X /
Trans-1,4-Dichloro-2-butene	5		ug/L	UX	5		SW846-8260B	/ X /
Trichloroethene	1		ug/L	UX	1		SW846-8260B	/ X /
Trichlorofluoromethane	5		ug/L	UX	5		SW846-8260B	/ X /
Vinyl acetate	10		ug/L	UXJ	10		SW846-8260B	/ X /
Vinyl chloride	2		ug/L	UX	2		SW846-8260B	/ X /
WETCHEM								
Carbonaceous Biochemical Oxygen Demand (CBOD)	5		mg/L	U	5		SM-5210 B	/ X /
Chemical Oxygen Demand (COD)	33		mg/L		25		EPA-410.4	/ X /

*Verification/Validation/Assessment

7/31/2013 Page 7 of 12

0.04	mg/L	U	0.04	SW846-9010C	/ X /
995	mg/L		35	EPA-160.1	/ X /
690	mg/L		20	EPA-130.2	/ X /
2	mg/L	U	2	EPA-345.1	/ X /
64	mg/L		20	EPA-160.2	/ X /
9.7	mg/L		1	SW846-9060	/ X /
330	ug/L		5	SW846-9020B	S/X/
	995 690 2 64 9.7	995 mg/L 690 mg/L 2 mg/L 64 mg/L 9.7 mg/L	995 mg/L 690 mg/L 2 mg/L 04 mg/L 9.7 mg/L	995 mg/L 35 690 mg/L 20 2 mg/L U 2 64 mg/L 20 9.7 mg/L 1	995 mg/L 35 EPA-160.1 690 mg/L 20 EPA-130.2 2 mg/L U 2 64 mg/L 20 EPA-345.1 64 mg/L 20 EPA-160.2 9.7 mg/L 1 SW846-9060

*Verification/Validation/Assessment

FBSLS13-01		from: QC		on 4/17	/2013 Media:	WQ	SmpMethod:	
Comments:								
Analysis	Results	Counting Error	Units		oot Reporting ote Limit	TPU	Method	V/V/A*
ANION						_		
Bromide	2		mg/L	U	2		SW846-9056	/ X /
Chloride	2		mg/L	U	2		SW846-9056	/ X /
Fluoride	0.1		mg/L	U	0.1		9214	/ X /
Nitrate as Nitrogen	1		mg/L	U	1		SW846-9056	/ X /
Sulfate	2		mg/L	U	2		SW846-9056	/ X /
METAL								
Aluminum	0.2		mg/L	U	0.2		SW846-6010B	/ X /
Antimony	0.005		mg/L	UB	0.005		SW846-6020	/ X /
Arsenic	0.001		mg/L	U	0.001		SW846-6020	/ X /
Barium	0.005		mg/L	U	0.005		SW846-6020	/ X /
Beryllium	0.001		mg/L	U	0.001		SW846-6020	/ X /
Boron	0.2		mg/L	UB	0.2		SW846-6010B	/ X /
Cadmium	0.001		mg/L	U	0.001		SW846-6020	/ X /
Calcium	1		mg/L	U	1		SW846-6010B	/ X /
Chromium	0.01		mg/L	U	0.01		SW846-6020	/ X /
Cobalt	0.001		mg/L	UBX	0.001		SW846-6020	/ X /
Copper	0.0052		mg/L	U	0.0052		SW846-6020	/ X /
Iron	0.1		mg/L	U	0.1		SW846-6010B	/ X /
Lead	0.0013		mg/L	UB	0.0013		SW846-6020	/ X /
Magnesium	0.025		mg/L	UN	0.025		SW846-6010B	/ X /
Manganese	0.005		mg/L	UNX	0.005		SW846-6020	/ X /
Mercury	0.0002		mg/L	U	0.0002		SW846-7470A	/ X /
Molybdenum	0.001		mg/L	UB	0.001		SW846-6020	/ X /
Nickel	0.005		mg/L	UX	0.005		SW846-6020	/ X /
Phosphorous	0.04		mg/L	U	0.04		EPA-365.3	/ X /
Potassium	0.2		mg/L	UB	0.2		SW846-6010B	/ X /
Rhodium	0.005		mg/L	U	0.005		SW846-6020	/ X /
Selenium	0.005		mg/L	U	0.005		SW846-6020	/ X /
Silver	0.000		mg/L	U	0.003		SW846-6020	/ X /
Sodium	1		mg/L	U	1		SW846-6010B	/ X /
	0.005		-	U	0.005		SW846-6020	/ X /
Tantalum Thallium	0.005		mg/L	U			SW846-6020	/ X /
			mg/L		0.002		SW846-6020	
Tin Titanium	0.005 0.005		mg/L	UB U	0.005		SW846-6020 SW846-6020	/ X /
			mg/L		0.005			/ X /
Uranium	0.001		mg/L	U	0.001		SW846-6020	/ X /
Vanadium Zinc	0.02 0.02		mg/L mg/L	U UB	0.02 0.02		SW846-6020 SW846-6020	/ X / / X /
OTHOR	5.02		····; -					,,,,,
Oil and Grease	7		mg/L	U	7		EPA-1664	/ X /
PPCB			-					
PCB-1016	0.16		ug/L	U	0.16		SW846-8082	/ X /
PCB-1221	0.17		ug/L	U	0.17		SW846-8082	/ X /
PCB-1232	0.13		ug/L	U	0.13		SW846-8082	/ X /
PCB-1242	0.1		ug/L	U	0.1		SW846-8082	/ X /
PCB-1248	0.11		ug/L	U	0.11		SW846-8082	/ X /
PCB-1240	0.07		ug/L ug/L	U	0.07		SW846-8082	/ X /
PCB-1254 PCB-1260	0.07		ug/∟ ug/L	U	0.07		SW846-8082	/ X /
	0.05			U			SW846-8082 SW846-8082	
PCB-1268			ug/L		0.09			/ X /
Polychlorinated biphenyl	0.17		ug/L	U	0.17		SW846-8082	/ X /

*Verification/Validation/Assessment

7/31/2013 Page 9 of 12

		1 auuta		Report	101 51515-	01		
RADS	0.050	0.040			0.00	0.004	C) N/0.4C, 004.0	
Alpha activity	0.352	0.249	pCi/L	U	6.33	0.264	SW846-9310	/ X /
Americium-241	-0.00217	0.018	pCi/L	U	0.217	0.0877	RL-7128	/ X /
Beta activity	-2.96	0.67	pCi/L	U	9.08	0.746	SW846-9310	/ X /
Cesium-137	-1.17	2.34	pCi/L	U	2.05	2.34	RL-7124	/ X /
Cobalt-60	-0.092	0.184	pCi/L	U	2.27	1.39	RL-7124	/ X /
Neptunium-237	0.00337	0.0149	pCi/L	U	0.145	0.0559	RL-7128	/ X /
Plutonium-239/240	0.0109	0.0293	pCi/L	U	0.233	0.0977	RL-7128	/ X /
Radium-226	-0.0318	0.0611	pCi/L	U	0.8	0.293	RL-7129	/ X /
Strontium-90	-0.282	0.0652	pCi/L	U	2.39	0.0902	RL-7140	/ X /
Technetium-99	-2.99	9.14	pCi/L	U	14.7	9.14	RL-7100	/ X /
Thorium-230	0.0523	0.0508	pCi/L	U	0.223	0.0984	RL-7128	/ X /
Thorium-234	-0.999	2	pCi/L	U	49.9	28.1	RL-7124	/ X /
Tritium	-93.9	578	pCi/L	U	240	578	RL-7155	/ X /
Uranium	0.467	0.529	pCi/L	U	0.688	0.873	RL-7128	/ X / / X /
Uranium-234	0.332 0.0221	0.0963	pCi/L	U	0.409 0.124	0.201 0.052	RL-7128 RL-7128	/ X /
Uranium-235		0.0315	pCi/L	U				
Uranium-238	0.113	0.0554	pCi/L	U	0.155	0.0764	RL-7128	/ X /
VOA								
1,1,1,2-Tetrachloroethane	5		ug/L	U	5		SW846-8260B	/ X /
1,1,1-Trichloroethane	1		ug/L	U	1		SW846-8260B	/ X /
1,1,2,2-Tetrachloroethane	5		ug/L	UJ	5		SW846-8260B	/ X /
1,1,2-Trichloroethane	1		ug/L	U	1		SW846-8260B	/ X /
1,1-Dichloroethane	1		ug/L	U	1		SW846-8260B	/ X /
1,1-Dichloroethene	1		ug/L	U	1		SW846-8260B	/ X /
1,2,3-Trichloropropane	5		ug/L	U	5		SW846-8260B	/ X /
1,2-Dibromo-3-chloropropane	0.2		ug/L	U	0.2		SW846-8011	/ X /
1,2-Dibromoethane	5		ug/L	U	5		SW846-8260B	/ X /
1,2-Dichlorobenzene	5		ug/L	U	5		SW846-8260B	/ X /
1,2-Dichloroethane	1		ug/L	U	1		SW846-8260B	/ X /
1,2-Dichloropropane	5		ug/L	U	5		SW846-8260B	/ X /
1,2-Dimethylbenzene	5		ug/L	U	5		SW846-8260B	/ X /
1,4-Dichlorobenzene	5		ug/L	U	5		SW846-8260B	/ X /
2-Butanone	10		ug/L	U	10		SW846-8260B	/ X /
2-Hexanone	10		ug/L	U	10		SW846-8260B	/ X /
4-Methyl-2-pentanone	10		ug/L	U	10		SW846-8260B	/ X /
Acetone	10		ug/L	U	10		SW846-8260B	/ X /
Acrolein	10		ug/L	U	10		SW846-8260B	/ X /
Acrylonitrile	10		ug/L	U	10		SW846-8260B	/ X /
Benzene	5		ug/L	U	5		SW846-8260B	/ X /
Bromochloromethane	5		ug/L	U	5		SW846-8260B	/ X /
Bromodichloromethane	5		ug/L	U	5		SW846-8260B	/ X /
Bromoform	5		ug/L	U	5		SW846-8260B	/ X /
Bromomethane	5		ug/L	U	5		SW846-8260B	/ X /
Carbon disulfide	5		ug/L	U	5		SW846-8260B	/ X /
Carbon tetrachloride	5		ug/L	U	5		SW846-8260B	/ X /
Chlorobenzene	5		ug/L	U	5		SW846-8260B	/ X /
Chloroethane	5		ug/L	JU	5		SW846-8260B	/ X /
Chloroform	1		ug/L	U	1		SW846-8260B	/ X /
Chloromethane	5		ug/L	U	5		SW846-8260B	/ X /
cis-1,2-Dichloroethene	1		ug/L	U	1		SW846-8260B	/ X /
cis-1,3-Dichloropropene	5		ug/L	U	5		SW846-8260B	/ X /
Dibromochloromethane	5		ug/L	U	5		SW846-8260B	/ X /
Dibromomethane	5		ug/L	U	5		SW846-8260B	/ X /
Ethylbenzene	5		ug/L	U	5		SW846-8260B	/ X /
lodomethane	10		ug/L	U	10		SW846-8260B	/ X /

*Verification/Validation/Assessment

7/31/2013 Page 10 of 12

			1			
m,p-Xylene	10	ug/L	U	10	SW846-8260B	/ X /
Methylene chloride	5	ug/L	U	5	SW846-8260B	/ X /
Styrene	5	ug/L	U	5	SW846-8260B	/ X /
Tetrachloroethene	1	ug/L	U	1	SW846-8260B	/ X /
Toluene	5	ug/L	U	5	SW846-8260B	/ X /
Total Xylene	15	ug/L	U	15	SW846-8260B	/ X /
trans-1,2-Dichloroethene	1	ug/L	U	1	SW846-8260B	/ X /
trans-1,3-Dichloropropene	5	ug/L	U	5	SW846-8260B	/ X /
Trans-1,4-Dichloro-2-butene	5	ug/L	U	5	SW846-8260B	/ X /
Trichloroethene	1	ug/L	U	1	SW846-8260B	/ X /
Trichlorofluoromethane	5	ug/L	U	5	SW846-8260B	/ X /
Vinyl acetate	10	ug/L	UJ	10	SW846-8260B	/ X /
Vinyl chloride	2	ug/L	U	2	SW846-8260B	/ X /
WETCHEM						
Chemical Oxygen Demand (COD)	25	mg/L	U	25	EPA-410.4	/ X /
Hardness - Total as CaCO3	10	mg/L	U	10	EPA-130.2	/ X /
lodide	2	mg/L	U	2	EPA-345.1	/ X /
Total Organic Carbon (TOC)	1	mg/L	U	1	SW846-9060	/ X /

TBSLS13-01		from: QC		on 4	/17/2013	Media:	WQ	SmpMethod:	
Comments:									
Analysis	Results	Counting Error	Units	Result Qual	Foot R Note	eporting Limit	TPU	Method	V/V/A*
VOA									
1,1,1,2-Tetrachloroethane	5		ug/L	UX	5			SW846-8260B	/ X /
1,1,1-Trichloroethane	1		ug/L	UX	1			SW846-8260B	/ X /
1,1,2,2-Tetrachloroethane	5		ug/L	UXJ	5			SW846-8260B	/ X /
1,1,2-Trichloroethane	1		ug/L	UX	1			SW846-8260B	/ X /
1,1-Dichloroethane	1		ug/L	UX	1			SW846-8260B	/ X /
1,1-Dichloroethene	1		ug/L	UX	1			SW846-8260B	/ X /
1,2,3-Trichloropropane	5		ug/L	UX	5			SW846-8260B	/ X /
1,2-Dibromo-3-chloropropane	0.2		ug/L	UX	0	.2		SW846-8011	/ X /
1,2-Dibromoethane	5		ug/L	UX	5			SW846-8260B	/ X /
1,2-Dichlorobenzene	5		ug/L	UX	5			SW846-8260B	/ X /
1,2-Dichloroethane	1		ug/L	UX	1			SW846-8260B	/ X /
1,2-Dichloropropane	5		ug/L	UX	5			SW846-8260B	/ X /
1,2-Dimethylbenzene	5		ug/L	UX	5			SW846-8260B	/ X /
1,4-Dichlorobenzene	5		ug/L	UX	5			SW846-8260B	/ X /
2-Butanone	10		ug/L	UX	1	0		SW846-8260B	/ X /
2-Hexanone	10		ug/L	UX	1	0		SW846-8260B	/ X /
4-Methyl-2-pentanone	10		ug/L	UX	1	0		SW846-8260B	/ X /
Acetone	10		ug/L	UX	1	0		SW846-8260B	/ X /
Acrolein	10		ug/L	UX	1			SW846-8260B	/ X /
Acrylonitrile	10		ug/L	UX	1			SW846-8260B	/ X /
Benzene	5		ug/L	UX	5			SW846-8260B	/ X /
Bromochloromethane	5		ug/L	UX	5			SW846-8260B	/ X /
Bromodichloromethane	5		ug/L	UX	5			SW846-8260B	/ X /
Bromoform	5		ug/L	UX	5			SW846-8260B	/ X /
Bromomethane	5		ug/L	UX	5			SW846-8260B	/ X /
Carbon disulfide	5		ug/L	UX	5			SW846-8260B	/ X /
Carbon tetrachloride	5		ug/L	UX	5			SW846-8260B	/ X /
Chlorobenzene	5		ug/L	UX	5			SW846-8260B	/ X /
Chloroethane	5		ug/L	JUX	5			SW846-8260B	/ X /
Chloroform	3 1		ug/L	UX	1			SW846-8260B	/ X /
Chloromethane	5		ug/L	UX	5			SW846-8260B	/ X /
cis-1,2-Dichloroethene	5 1		ug/L	UX	1			SW846-8260B	/ X /
cis-1,3-Dichloropropene	5		ug/L	UX	5			SW846-8260B	/ X /
Dibromochloromethane	5		ug/L	UX	5			SW846-8260B	/ X /
Dibromomethane	5		ug/L	UX	5			SW846-8260B	/ X /
	5		-	UX	5			SW846-8260B	/ X /
Ethylbenzene lodomethane	5 10		ug/L	UX	5 1			SW846-8260B	/ X /
			ug/L						
m,p-Xylene	10 5		ug/L	UX	1			SW846-8260B	/ X /
Methylene chloride	5 5		ug/L	UX	5			SW846-8260B	/ X /
Styrene	5		ug/L	UX	5			SW846-8260B	/ X /
Tetrachloroethene	1		ug/L	UX	1			SW846-8260B	/ X /
Toluene	5		ug/L	UX	5			SW846-8260B	/ X /
Total Xylene	15		ug/L	UX	1			SW846-8260B	/ X /
trans-1,2-Dichloroethene	1		ug/L	UX	1			SW846-8260B	/ X /
trans-1,3-Dichloropropene	5		ug/L	UX	5			SW846-8260B	/ X /
Trans-1,4-Dichloro-2-butene	5		ug/L	UX	5			SW846-8260B	/ X /
Trichloroethene	1		ug/L	UX	1			SW846-8260B	/ X /
Trichlorofluoromethane	5		ug/L	UX	5			SW846-8260B	/ X /
Vinyl acetate	10		ug/L	UXJ	1			SW846-8260B	/ X /
Vinyl chloride	2		ug/L	UX	2			SW846-8260B	/ X /

*Verification/Validation/Assessment

PEMS/OREIS CODES

Media (Codes
AG	Soil Gas
AQ	Air Quality Control Matrix
DĈ	Drill Cuttings
FR	Filter Residue
FT	Filter
GR	Grout
LD	Drilling Fluid
LF	Floating/Free Product on Groundwater Table
LO	Oil, All Types (Transformer, Waste, Motor, Mineral)
LT	Liquid from tank
LZ	Liquid Waste
MD	Meteorological
MS	Metal Shavings
NA	Not Available
NW	Non-Water Liquid
QA	Aquatic Animal
QB	Aquatic Bird
QC	Aquatic (Some combination of at least 2) of bird,
	plant, animal; Excludes benthic organism
QN	Benthic Organism
QP	Aquatic Plant
SC	Cement
DIL	Laboratory dilution
SE	Sediment (associated with surface water)
SF	Filter Sandpack
SL	Sludge
SO	Soil
SP	Floor Sweepings
SQ	Soil/Solid Quality Control Matrix
SS	Scrapings
SW	Swab or Wipe
SZ	Solid Waste
TB	Terrestrial Bird
TC	Terrestrial (Some combination at least 2) of bird,
	plant, or animal.
TW	Treated Water
WC	Wall corings
WG	Groundwater
WL	Water that has leached through waste
WQ	Water Quality Control Matrix
WS	Surface Water
WW WZ	Waste Water
WZ	Special Water Control Matrix

Smp Method Codes

?	Other, defined in COMMENTS column
CSF	Continuous Sample Flow
ES	Estimate
FPC	Flow Proportional Composite
GR	Grab
NA	Not Applicable
SC	Spatial Composite
SPLT	Split
TC	Temporal Composite

Sample Type Codes

?	Other, defined in COMMENTS column
DI	Deionized Water used for preparing blanks, etc.
FB	Field Blank
FR	Field Replicate (Code used for Field Duplicate)
FTB	Filter Blank
PRBL	Preservative blank
RB	Refrigerator blank
REG	Regular
REG2	Regular sample, secondary analysis
DED	Derlieste

REP Replicate

- REP1 Replicate 1
- RI QC Equipment Rinseate/Decon
- TB Trip Blank
- TLC Toxicity Laboratory Control Sample

Verification Codes

?	Other, defined in COMMENTS column
В	Result exceeds background criteria

- I Result exceeds established criteria
- S Result exceeds statistical controls based on historical data
- T Holding time exceeded for this analysis
- X Result exceeds permit limits

Validation Codes

=	Validat	ed	result,	which	is	detected	and	unqualified
	0.1		~	~ ~ ~ ~			•	

- ? Other, defined in COMMENTS column
- D Analyte, compound or nuclide detected above the reported detection limit, and the reported detection limit is approximated due to quality deficiency.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification."
- R Result rejected by validator.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- X Not validated; Refer to the RSLTQUAL field for more information

Assessment Codes

?	Other, defined in COMMENTS column.
BH-CONT	Result may be biased high due to
	contamination of the sample from the field
	or laboratory.
BH-CONT, NOVA	L Result may be biased high due to
	contamination of the sample from the field
	or laboratory; Validation requested but
	qualifier not provided due to missing Form
	I.
BH-ER	Result may be biased high; chemical
	detected in associated equipment rinseate.
BH-FB	Result may be biased high; chemical
	detected in associated field blank.
BH-FB BH-RI	Result may be biased high; chemical
	detected in associated field blank and Result
	may be biased high, chemical detected in
	associated equipment rinseate.
BH-FB BH-TB	Result may be biased high; chemical
	detected in associated field blank and result
	may be biased high; chemical detected in
	associated trip blank.
BH-FB, ?	Result may be biased high; chemical
	detected in associated field blank & Other,
	defined in COMMENTS column.
BH-FB,&	Result may be biased high; chemical
	detected in associate field blank. See
	comments for additional assessment
	qualifiers.
	-

PEMS/OREIS CODES

Assessment Codes	s (cont.)
BH-LAB	Result may be biased high; compound is a
	known or probable lab contaminant.
BH-LABPR	Result biased high due to laboratory
	process.
BH-PURGE	Result may be biased high; sample may be
	diluted with drilling fluid due to
BH-QC	insufficient purging prior to sampling. Result may be biased high based upon lab
DII-QC	QC (i.e. surrogate, MS/MSD, etc.).
BH-RB	Result may be biased high; chemical
	detected in associated refrigerator blank.
BH-RI	Result may be biased high, chemical
	detected in associated equipment rinseate.
BH-SOLID	Result biased high due to sampling
BH-SS	containing a large amount of solids. Results may be biased high; sample may
БП-55	contain particles of the acetate sampling
	sleeve.
BH-TB	Result may be biased high, chemical
	detected in associated trip blank.
BH-TB, BL-TEMP	Result may be biased high, chemical
	detected in associated trip blank, result
	biased high due to a temperature
DILTEMD	exceedance.
BH-TEMP	Result biased high due to a temperature exceedance.
BL-AIR	Biased low due to air rotary drilling
DL THIC	method.
BL-AIR,&	Biased low due to air rotary drilling
	method. See comments for additional
	assessment qualifiers.
BL-HS	Biased low due to headspace in sample
	container.
BL-HS, BL-TEMP	Biased low due to headspace in sample container & result biased low due to a
	temperature exceedance.
BL-LAB	Result may be biased low; compound is a
	known or probable lab contaminant.
BL-LABPR	Result may be biased low due to
	laboratory process.
BL-PRES	Result may be biased low due to improper
DI DDEC 9	preservative added.
BL-PRES, ?	Result may be biased low due to improper preservative added., Other defined in
	COMMENTS column.
BL-PURGE	Result may be biased low; sample may be
	diluted with drilling fluid due to the
	insufficient purging prior to sampling.
BL-PURGE,&	Result may be biased low; sample may be
	diluted with drilling fluid due to
	insufficient purging prior to sampling. See comments for additional assessment
	qualifiers.
BL-QC	Result may be biased low based upon lab
	QC (i.e. surrogate, MS/MSD, etc.)
BL-T	Result may be biased low; sample holding
	time exceeded.
BL-T, BL-QC	Result may be biased low; sample holding
	time exceeded and result may be biased
	low based upon lab QC (i.e. surrogate, MS/MSD, etc.)
BL-T,J	Result may be biased low; sample holding
	time exceeded, estimated.
BL-TEMP	Result may be biased low due to
	temperature exceedance.

BL-TEMP, BL-PRI	ES Result biased low due to a temperature exceedance, Result may be biased low due
BL-TEMP, J	to improper preservative added. Result biased low due to a temperature
DI TEMD NOVAI	exceedance, estimated. Result biased low due to a temperature
DL-IEMP, NOVAI	exceedance, Validation requested but
	qualifier not provided due to missing Form
	I.
BL-TEMP, U	Result biased low due to a temperature
BL-TEMP II BH-(exceedance, not detected. QC Result biased high due to a temperature
	exceedance, Not detected, may be biased high based upon lab QC.
CCCSEXP	Continuous Calibration Check Standard Expired
DIL	Result is obtained from dilution
DIS-EDDF1	Discrepancies between the EDD and the
	Form 1. Form 1s are generated by
	instrument software that automatically
	reports all detected compounds. It is the lab's policy to not report quantities below
	LCRs within their EDD format. Both sets of
	data are correct. However, the EDD format
	data, which feeds OREIS, will be used for
	reporting.
DR	Discrepancy between summary data report
FDUP-OUT	and raw data. Field duplicate exceeds the RPD criterion.
ICPTIMS-ER	ICP-MS and TIMS error for the
	concentration of Uranium-235 is less than
	the 285 pCi/g level at one standard
	deviation.
ICSEXP	Initial Calibration Standard Expired.
IN-LAB	Result should be considered information only. Compound is a known or probable lab contaminant.
IN-LAB,&	Result should be considered information
,	only. Compound is a known or probable lab
	contaminant. See comments for additional
DITIDOG	assessment qualifiers
IN-LABQC	Result should be considered information
	only. Quality control requirements of the laboratory method were not met.
IN-METH	Result should be considered information
	only. Lab utilized a modified method.
J	Result estimated
KYRHTAB-50	Kentucky Radiation Health and Toxic
	Agents Branch (KYRHTAB) has performed an independent data evaluation (not to be
	confused with data verification and
	validation) and the rad error accounts for
	greater than 50% of the results.
KYRHTAB-ER	Kentucky Radiation Health and Toxic
	Agents Branch (KYRHTAB) has performed an independent data evaluation (not to be
	confused with data verification and
	validation) and the data presents error
	problems (ie., no counting uncertainty or
	zero counting uncertainty).
KYRHTAB-LT	Kentucky Radiation Health and Toxic Agents Branch (KYRHTAB) has performed
	an independent data evaluation (not to be
	confused with data verification and
	validation) and the results are less than (LT)
	the maximum detectable activity (MDA) or
	detection limit and should not be plotted.

PEMS/OREIS CODES

		R-NTRS	Result rejected; not a true representative
Assessment Codes KYRHTAB-NE	s (cont.) Kentucky Radiation Health and Toxic	R-NTRSFW	sample. Result rejected; not a true representative
KIKHIAD-NE	Agents Branch (KYRHTAB) has	R-PRES	sample of formation water.
	performed an independent data evaluation (not to be confused with data verification	K-PKES	Result rejected due to improper preservative added.
	and validation) and the rad error exhibits a negative value, which is a statistical	R-RERUN	Result unusable; results for re-analysis should be used.
	outlier.	R-T	Result rejected due to missing holding time.
KYRHTAB-OK	Kentucky Radiation Health and Toxic Agents Branch (KYRHTAB) has performed an independent data evaluation (not to be confused with data verification	REM	Location sampled has been remediated due to a CERCLA or RCRA action and should not be considered representative of current site conditions.
	and validation) and the data is acceptable	U	Not detected.
	for use.	U,J	Not detected and result estimated.
LAB-PREP	Prep method used by the lab valid but not	U-RAD	Result considered a non-detect; instrument
LCSEXP	proceduralized. LCS Expired		measurement error is equal to or greater than the reported result.
LCSNA	Laboratory control sample not analyzed.	U-RAD,&	Result considered a non-detect; instrument
LCSNI	LCS Not Independent	o laib,a	measurement error is equal to or greater than
MDA-METHOD	The recalculated MDA is considered a		the reported result, see comments for
	method-wide MDA. Batch specific MDAs		additional assessment qualifiers.
MDA-RECALC	were not calculated. The original MDA of 21.4 pCi/L was	USECNITRIC-CF	During the period from May 2004 to September 2009, the USEC-PGDP lab used
MDA-RECALC	calculated incorrectly and was		method RL-7128-NITRIC for isotopic
	recalculated during the Field Laboratory		uranium analysis by alpha spec. Method RL-
	evaluation. The recalculated MDA is 24.7 pCi/L.		7128-NITRIC utilizes only nitric acid for dissolution rather than hydrofluoric/nitric
MSMSDEXP	Matrix Spike/Matrix Spike Duplicate		acid. The use of nitric acid only is a less
	Standard Expired.		aggressive dissolution for isotopic uranium
N/A	Not Applicable.		analysis by alpha spec. It has been
NOVAL	Validation requested but qualifier not provided due to missing Form I.		demonstrated that Method RL-7128-
NOVAL-FLAB	Validation targeted for this project but not		NITRIC can only be utilized for isotopic uranium analysis of soil with activity greater
	required for field laboratory data.		than 10 pCi/g due to low recoveries below
NR	Assessment question not resolved.		that level. Therefore, if the data from
PENP QUAL	PE Sample Not Performed. This data should be considered qualitative		Method RL-7128-NITRIC will be screened against the background values reported in
QUAL	due to the sampling process, the variability		Background Levels of Selected
	in the medium sampled or issues with the		Radionuclides and Metals in Soils and
	analytical process.		Geologic Media at the PGDP (1997), the
R	Result unusable.		following adjusted background values must
R-C R-C, ?	Result questionable, credibility at issue. Result questionable, credibility at issue,		be used: U-234: 1.73 pCi/g surface and 1.63 pCi/g subsurface, U-235: 0.10 pCi/g, and U-
K-C, :	other defined in COMMENTS column.		238: 0.40 pCi/g (Methods for Conducting
R-C, BH-RI	Result questionable, credibility at issue.		Risk Assessments and Risk Evaluations at
	Result may be biased high, chemical		the Paducah Gaseous Diffusion Plant,
R-C, &	detected in associated equipment rinseate. Result questionable, credibility at issue.		Appendix E (2009)). Risk assessors may use data from this time period for comparison
K-C, &	See comments for additional assessment		against other thresholds below 10 pCi/g
	qualifiers.		without adjusting the values as long as the
R-DUPVAR	Result questionable, measured variability		level of uncertainty and its impact on the
	of the field duplicate is outside PARCC		risk assessment/evaluation are adequately
	parameter expectations, therefore population estimates of variability may be		discussed. No additional action is required for comparisons to thresholds above 10
	off by several orders of magnitude.		pCi/g.
R-H	Result unusable due to historical trending		
D HOO	(i.e., other).		
R-HSS	Rejected due to high suspended solids content.		
R-MTRX	Result rejected due to matrix interference.		
R-NORAD	Result unusable; Uranium-235 portion of		
	calculation is below reliable detection		
	limits.		
R-NORAD,&	Result unusable; Uranium-235 portion of calculation is below reliable detection		
	limits. See comments for additional		
	assessment qualifiers		

assessment qualifiers.

Laboratory Footnotes and Qualifiers

Footnote

- A. Insufficient uranium present in the sample to determine an assay.
- B. Maximum assay was used to calculate the MDA for total uranium activities.
- C. Normal assay was used to calculate the MDA for total uranium activities.
- D. The relative bias for the LCS is greater than 25%.
- E. Gross activities are a calculated value. Gamma activity is converted to the corresponding gross alpha/beta measurement.
- F. Insufficient sample available/provided for gross beta analysis.
- G. TIMS assay used to calculate total uranium activity.
- H. No nuclide meet criteria for gross gamma.
- I. The MDA of all principle nuclide not identified and nuclide identified were summed to provide max, reportable activity
- J. No analysis result available. Sample signal too weak.
- K. No analysis result available. Total U below reporting limit.
- L. No minor isotope determination available. Signal strength insufficient.
- M. Result is biased high and MDA is biased low due to interfering lines and/or increases in BKG due to sample activity.
- N. Measured U-235 act/mass was below MDA therefore all other cal. U isotopes & U-total will be rpt as below their resp. MDAs.
- O. Gross Gamma has no output error.
- P. The max plant assay was assumed since the calculated assay was not within the range of the plant cascade assays.
- Q. Mass of U-235 is < or = MDM, thus mass of total U/U isotopes won't be reported. Total U/U isotopes will be < their MDAs Asbestos Not Detected
- R. Cs-134 activity will be understated due to the short half-life and will exclude any previous site induced Cs-134.
- S. Gross gamma is a Cs-137 equivalence. Activity assumes branch yield and det eff of Cs-137 for all line in spectrum.
- T. Analyte is a common volatile laboratory contaminant
- T1. Sample analysis is below LCR for concent., however above report. limit for assay.
- T1Z1. Samp analysis below LCR concent, above report.limit assay/.05wt% = or >2 sigma?
- V. Method 5030A (Purge & Trap)
- W. Analyte is present at the LCR.
- X. See comments for explanation
- Y. U/U-234 act are estimated. Assay used was determined by gamma. U/U-234 results can't be used for any NCS/NMC&A purposes. Uranium
- Z. Std Dev is calculated based on controls (SRM) prepared and analyzed with each sample batch. SRM is ~0.711 wt% U-235.
- Z1. This 0.05 wt% value equal to or > 2 sigma for controls associated w/data.

Inorganic Qualifiers

- * Duplicate analysis not within control limits.
- + Method of standard additions (MSA) correlation coefficient less than 0.995.
- A Indicates that a TIC is suspected aldol-condensation product.
- B Applies when the analyte is found in the associated blank
- D All compounds identified in the analysis at the secondary dilution factor.
- E Result estimated due to interferences.
- J Indicates an estimated value
- M Duplicate injection precision not met.
- N Sample spike recovery not within control limits.
- Q No analytical result available or not required because total analyses< PQL.
- R QC indicates that data are not usable. Resampling and re-analysis are necessary for verification.
- S Result determined by method of standard additions (MSA).
- U Analyte analyzed for but not detected at or below the lowest concentration reported.
- W Post-digestion spike recovery out of control limits.
- X Other specific flags and footnotes may be required to properly define the results.

Organic Qualifiers

- A Tentatively identified compound (TIC) is suspected aldol-condensation product.
- B Compound found in blank as well as sample.
- C Compound presence confirmed by GC/MS (GC/MS flag).
- D Compounds identified in an analysis at a secondary dilution filter.
- E Result exceeds calibration range (GC/MS flag).
- J Indicates an estimated value.
- N Presumption evidence of a compound GC/MS flag).
- P Difference between results from two GC columns unacceptable.
- U Compound analyzed for but not detected at or below the lowest concentration reported.
- X Other specific flags and footnotes may be required to properly define the results.
- Y MS, MSD recovery and/or RPD failed acceptance criteria.
- Z (Reserved by CLP for a laboratory-defined organic date qualifier.)

Rad Qualifiers

- A Analyzed but not detected at the analyte quantitation limit.
- B Method blank not statistically different from sample at 95% level of confidence.
- D Sample is statistically different from duplicate at 95% level of confidence.

- J Indicates an estimated value.
- L Expected and measured value for LCS is statistically different at 95% level of confidence.
- M Expected and measured value for MS is statistically different at 95% level of confidence.
- R QC indicates that data are not usable. Resampling and reanalysis are necessary for verification.
- T Tracer recovery is < or equal to 30% or > or equal to 105%.
- U Value reported is < the MDA and/or < 2 sigma TPE.
- X Other specific flags and footnotes may be required to properly define the results.

THIS PAGE INTENTIONALLY LEFT BLANK