

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

JAN 10 2017

Mr. Brian Begley Federal Facility Agreement Manager Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Ms. Julie Corkran Federal Facility Agreement Manager U.S. Environmental Protection Agency, Region 4 61 Forsyth Street Atlanta, Georgia 30303

Dear Mr. Begley and Ms. Corkran:

TRANSMITTAL OF ERRATA PAGES FOR THE REMOVAL ACTION REPORT FOR THE C-410 COMPLEX INFRASTRUCTURE DECONTAMINATION AND DECOMMISSIONING PROJECT AT THE PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, DOE/LX/07-2182&D1

Reference: Letter from T. Duncan to B. Begley and J. Corkran, "Removal Action Report for the C-410 Complex Infrastructure Decontamination and Decommissioning Project at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-2182&D1," (PPPO-02-3370234-16C), dated April 11, 2016

Enclosed are errata pages for the *Removal Action Report for the C-410 Complex Infrastructure Decontamination and Decommissioning Project at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, DOE/LX/07-2182&D1 (D1 RAR). The enclosed errata pages have been prepared to correct an error associated with the designation of Solid Waste Management Unit (SWMU) 41 in Table 1 of the subject document. Specifically, during development of the D1 RAR, SWMU 41 inadvertently was listed in Table 1 (removed SWMUs) rather than in Table 2 (SWMUs filled with flowable fill) of the report. SWMU 41 will be investigated as part of the Soils and Slabs Operable Unit. The error was discovered during development of the revised SWMU Assessment Report for SWMU 478. An errata sheet that summarizes the conforming changes and clean and redline versions of the changed pages are enclosed.

PPPO-02-3963902-17B

If you have any questions or require additional information, please contact me at (270) 441-6862.

Sincerely,

Tracey Duncan Federal Facility Agreement Manager Portsmouth/Paducah Project Office

Enclosures:

- 1. Errata sheet
- 2. Errata pages for Removal Action Report for the C-410 Complex Infrastructure Decontamination and Decommissioning Project at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-2182&D1—Clean
- 3. Errata pages for *Removal Action Report for the C-410 Complex Infrastructure* Decontamination and Decommissioning Project at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-2182&D1—Redline

e-copy w/enclosures:

april.webb@ky.gov, KDEP/Frankfort brian.begley@ky.gov, KDEP/Frankfort bwhatton@tva.gov, TVA/Paducah christopher.jung@ky.gov, KDEP/Frankfort corkran.julie@epa.gov, EPA/Atlanta ffscorrespondence@ffspaducah.com, FFS/Kevil gaye.brewer@ky.gov, KDEP/PAD hjlawrence@tva.gov, TVA/Paducah jennifer.woodard@lex.doe.gov, PPPO/PAD kelly.layne@ffspaducah.com, FFS/Kevil karen.walker@ffspaducah.com, FFS/Kevil leo.williamson@ky.gov, KDEP/Frankfort mike.guffey@ky.gov, KDEP/Frankfort mpowers@techlawinc.com, EPA/Chicago myrna.redfield@ffspaducah.com, FFS/Kevil nathan.garner@ky.gov, KYRHB/Frankfort pad.rmc@swifstaley.com, SSI/Kevil richards.jon@epamail.epa.gov, EPA/Atlanta rkdehart@tva.gov, TVA/Paducah stephaniec.brock@ky.gov, KYRHB/Frankfort tracey.duncan@lex.doe.gov, PPPO/PAD

ERRATA SHEET

Removal Action Report for the C-410 Complex Infrastructure Decontamination and Decommissioning Project at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky DOE/LX/07-2182&D1, issued April 2016

The following 7 corrections should be incorporated into the document.

- 1. Solid Waste Management Units Associated with C-410 Section, page 3, 2nd paragraph, 1st line, deleted text "41,"
- 2. Solid Waste Management Units Associated with C-410 Section, page 3, 2nd paragraph, 5th line, changed text from "are" to "will be."
- 3. Solid Waste Management Units Associated with C-410 Section, page 3, 2nd paragraph, 6th line, deleted text "41,"
- 4. Solid Waste Management Units Associated with C-410 Section, page 3, Table 1, deleted row "41, C-410-C Neutralization Tank"
- 5. Solid Waste Management Units Associated with C-410 Section, page 4, 2nd paragraph, 1st line, changed text from "16" to "17"
- 6. Solid Waste Management Units Associated with C-410 Section, page 4, 2nd paragraph, 5th line, changed text from "16 to 17" and then deleted the second "16"
- 7. Solid Waste Management Units Associated with C-410 Section, page 4, Table 2, added row 1 with text "41, C-410-C Neutralization Tank"

REMOVAL ACTION REPORT FOR THE C-410 COMPLEX INFRASTRUCTURE DECONTAMINATION AND DECOMMISSIONING PROJECT AT THE PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY

Description of the Removal Action Implemented

Deactivation, decontamination, decommissioning, and demolition of the C-410 Complex at the Paducah Gaseous Diffusion Plant (PGDP) was warranted based on relevant process knowledge and the nature, concentrations, and potential for release of the identified contaminants of concern (COCs), as documented in the following documents:

- Engineering Evaluation/Cost Analysis for the C-410 Complex Infrastructure at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/07-1952&D2/R1, (EE/CA) (DOE 2001)
- Action Memorandum for the C-410 Infrastructure Removal at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/07-2002&D1/R1, (Action Memorandum) (DOE 2002)
- Removal Action Work Plan for the C-410 Complex Infrastructure D&D Project at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/07-2012&D2, (RAWP) (DOE 2002)
- Action Memorandum Addendum for the C-410 Infrastructure Removal at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0273&D2, (Action Memorandum Addendum) (DOE 2009)
- Removal Action Work Plan Addendum for the C-410 Complex Infrastructure D&D Project at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0304&D2/R1, (RAWP Addendum) (DOE 2010)
- *Removal Action Work Plan Addendum for the C-410 Complex Infrastructure D&D Project at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, DOE/LX/07-0304&D2/R2 (DOE 2015)

These documents describe the processes and operations that occurred in the C-410 Complex and document the COCs, applicable or relevant and appropriate requirements (ARARs) and to be considered (TBC) criteria, and performance standards for this removal action. Deactivation, decontamination, decommissioning, and demolition of the C-410 Complex was conducted as a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) non-time-critical removal action (NTCRA) pursuant to DOE's authority under Executive Order 12580 and in accordance with the Federal Facility Agreement (FFA) for PGDP, Section X.E., Non-Time-Critical Removal Actions, and the National Contingency Plan (NCP), 40 *CFR* Part 300.

The first three referenced documents describe the original approach to deactivation, decontamination, decommissioning, and demolition of the C-410 Complex, which entailed removal of all hazardous materials and infrastructure (i.e., piping, equipment, material, platforms, and non-load-bearing interior

walls) from the Complex. At that time, demolition of the Complex superstructures to their respective slabs was intended to be part of a subsequent CERCLA response action to be conducted after the infrastructure removal activities were complete.

The subsequent development of safer and more efficient methods of completing the work led to changes in the scope of the original project, resulting in the preparation and approval of the last two documents. These addenda served to do the following:

- 1. To expand the scope of the existing NTCRA to include facility structure demolition to the slabs and disposition of demolition debris, and
- 2. To allow non-process systems to remain in place and to remove these systems at the same time the building is demolished using heavy equipment such as excavators with shears.

The ongoing infrastructure removal activities that were part of the original scope continued during (and ahead of) implementation of the demolition activities.

The revised NTCRA met the removal action objectives agreed upon among U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA), and the Kentucky Department for Environmental Protection (KDEP), as defined in the Action Memorandum and Action Memorandum Addendum.

The removal action objectives in the 2002 Action Memorandum were the following:

- Remove the materials causing the highest potential risks (e.g., transferable radioactive materials, asbestos, and other hazardous materials such as PCBs); thereby, significantly reducing the risk to current employees and potential off-site receptors in the event of building failure or further degradation to levels within the CERCLA risk range and in compliance with ARARs;
- Reduce the potential for public, worker, and environmental exposure to radioactive and hazardous substances caused by potential uncontrolled releases from the buildings; and
- Remove the infrastructure from the C-410 Complex buildings in preparation for future final cleanup decision making for the remediation of the building structure and environmental media.

In 2009, DOE, in conjunction with EPA and KDEP, issued an addendum to the original C-410 Action Memorandum. This 2009 Action Memorandum Addendum documented the following decisions:

- To expand the scope of the existing NTCRA to include facility structure demolition to the slabs and disposition of the demolition debris; and
- To allow the non-process systems to remain in place and to remove these systems at the same time the building is demolished using heavy equipment such as excavators with shears.

Buildings and facilities located within the C-410 Complex that were included in the NTCRA were the following:

- C-410, Original Feed Plant, including the East and West Expansion
- C-410-A, Second East Expansion of the C-410 Feed Plant (consistent with DOE/OR/07-2012&D2)
- C-410-C, Hydrogen Fluoride (HF) Neutralization Building

- C-410-F, HF Storage Building (North)
- C-410-G, HF Storage Building (Center)
- C-410-H, HF Storage Building (South)
- C-410-I, Ash Receiver Shelter
- C-410-J, HF Storage Building (East)
- C-411, Cell Maintenance Building
- C-420, Green Salt Building

The original RAWP, DOE/OR/07-2012&D2, did not include the C-410-K facility because the facility was constructed later. The RAWP Addendum, DOE/LX/07-0304&D2/R1, included a reference to the C-410-K facility, noting it was not a part of the project scope. The four HF tank structures, specifically C-410-F, C-410-G, C-410-H, and C-410-J were removed as a part of the NTRCA prior to development of DOE/LX/07-0304&D2/R1. As such, these four facilities are maintained in the Removal Action Report (RAR) text.

This NTCRA excludes C-410-B and C-410-E because they are scheduled to be addressed under the Soils and Slabs Operable Unit. The C-410-D and C-410-K Buildings were leased to the United States Enrichment Corporation at the time the project was scoped and currently are in use by the DOE Paducah Deactivation Contractor. The locations of these facilities are shown in Figure 2.

To facilitate planning and implementing the work, the affected buildings were divided into a total of 64 zones. A CD-ROM provided with the RAWP includes IPIX images of each zone. Subdividing the Complex further afforded the flexibility to perform the work on either a zone-specific, multi-zone-specific, or a system-specific basis, as appropriate. Each of the zones is described in Appendix A of the RAWP (DOE 2002).

Solid Waste Management Units Associated with C-410

C-410 Complex consisted of 21 discrete solid waste management unit areas (SWMUs) that were located within and around the C-410 Building structure, as well as one broad SWMU designation (SWMU 478) intended to encompass the overall footprint of the C-410 Complex (for a total of 22 SWMUs).

As part of the C-410 deactivation, decontamination, decommissioning, and demolition activities, SWMUs 494, 495 496, and 497 (see Table 1) have been removed and only the slabs underneath these SWMUs remain. No evidence of releases was identified during deactivation, decontamination, decommissioning, and demolition of the C-410 facility from these areas or that additional action would be necessary. The slabs have been double washed and rinsed, and two contrasting colors of epoxy paint have been applied. These slabs will be included within SWMU 478, which encompasses the entire footprint of the C-410 Complex. SWMUs 494, 495, 496, and 497 will be designated "No Further Action" status as a result of completion of deactivation, decontamination, decommissioning, and demolition activities at the C-410 Feed Plant.

SWMU Number	Description
494	Ash Receiver Area in C-410/420
495	C-410-I Ash Receiver Shed
496	C-410 Fluorine/Hydrogen Filters (Northeast Mezzanine)
497	C-410/420 F ₂ Cell Neutralization Room Vats

Table 1. C-410 Complex SWMUs (Removed)

SWMU 478 was the C-410/420 Feed Plant building that now has been removed. DOE will submit a revised SWMU Assessment Report (SAR) for SWMU 478. The revised SAR will state that SWMU 478 will be evaluated for a final action under the Soils and Slabs OU.

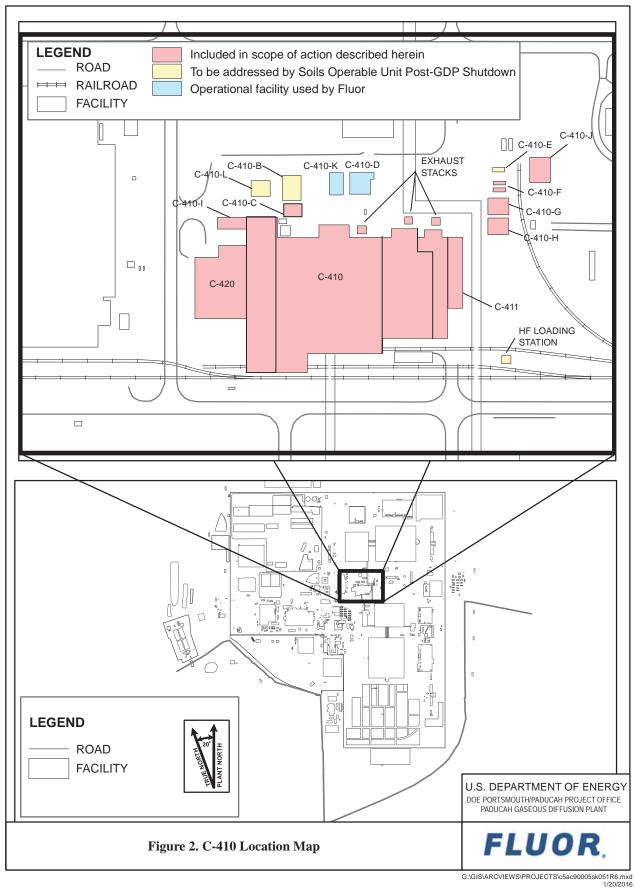
The remaining 17 C-410 SWMUs listed in Table 2 were subsurface features (pits and sumps) that were cleaned of all debris, water, and sludge and then backfilled with flowable fill with a 6-inch concrete cap. Consistent with the RAWP, the building slabs were inspected visually, surveyed, decontaminated, and sealed with two coats of epoxy paint and a radiological survey was completed after epoxy application. The revised SAR for SWMU 478 will include references to these 17 C-410 SWMUs. These SWMUs are within the footprint of SWMU 478 and also will be investigated as part of the Soils and Slabs OU.

SWMU Number	Description
41	C-410-C Neutralization Tank
498	C-410/420 Sump at Column D&E-1&2
499	C-410/420 Sump at Column H-9&10
500	C-410/420 Sump at Column U-10&11
501	C-410/420 UF6 Scale Pit Sumps A&B
502	C-410/420 Sump at Column U-9
503	C-410/420 Sump at Column G-1
504	C-410/420 Sump at Column L-10
505	C-410/420 Sump at Column A-3N
506	C-410/420 Sump at Column Wa-9
507	C-410/420 Condensate Tank Pit
508	C-410/420 Settling Basin
509	C-410/420 Drain pit
510	C-410/420 Sump at Column P&Q-2
511	C-410/420 Sump at Column Q&R-2
512	C-410/420 Sump at Column R-2
513	C-411 Cell Maintenance Room Sump Pit

Table 2. C-410 Complex SWMUs (Filled with Flowable Fill)

<u>C-410 Complex Overview</u>

Figure 1 is a photo of the C-410 Building prior to demolition. Figure 2 shows the location of the buildings and other structures located within the C-410 Complex.


Summary of Results

Implementation of the C-410 Non-Time-Critical Removal Action was completed successfully, and without any accidents that jeopardized worker safety and in compliance with ARARs. The project involved removing the hazardous substances, such as asbestos, polychlorinated biphenyls (PCBs), and radioactive materials, and disposing of them properly. Further, the structure of the building was demolished to slab. The demolition did not involve removal of the slab, subslab penetrations, and/or foundations. The slab was surveyed for radioactive materials, visually inspected for residual materials or staining, and sealed with two coats of epoxy. Pits were filled with flowable fill and covered with a concrete cap.

Waste was segregated, packaged, and dispositioned to a combination of facilities in accordance with ARARs: the on-site C-746-U Landfill; the Nevada National Security Site (NNSS) (formerly known as the Nevada Test Site); and Energy*Solutions*.

Figure 1. C-410 Building Prior to Demolition

Seventy fluorine generating cells that had originated in the C-410 Complex were decontaminated by removing PCB-contaminated paint and turned over to private industry for reuse. Additionally, copper buswork and equipment that had supported the fluorine cell operations were shipped for reuse.

Infrastructure Removal¹

The infrastructure removal at the C-410 Complex began on February 26, 2003. Initial activities included the stabilization and removal of the HF Tank Farm located east of the main C-410 Building. HF piping, pumps, and valves were drained and removed. Protective structures over the tanks were removed to allow access to the tanks, and the tanks were cleaned out and removed. The tanks, piping, and equipment were packaged for off-site disposal.

Initial activities inside the C-410 Complex involved establishing boundary control stations (BCSs) to ensure that radiological and other contamination was not carried out of the complex. BCSs provided locations for workers to don the appropriate personnel protective equipment (PPE) prior to entering the facility and a location to remove the PPE safely upon exiting the facility. Monitoring equipment was established at these locations for verifying workers exiting the facility did not have radiological contamination on their clothing or skin upon leaving the facility. Used PPE was collected at the BCS for either for laundering for reuse or disposal. Later in the project, automated "1/2 body monitors" were installed to monitor personnel exiting the facility automatically, improving effectiveness and efficiency of the monitoring process.

During the time frame that the C-410 Complex was not in operations, substantial quantities of used equipment and surplus materials from throughout the plant were stored inside the building. In order for workers to have access to the installed systems and equipment for stabilization and/or removal, packaging and disposal of this material was required. Characterization, packaging, and disposal of these "loose materials" was initiated at the beginning of the infrastructure removal project and continued throughout the project as work progressed through the different areas of the building. Additionally, one of the early infrastructure removal activities included the decontamination of 70 fluorine generation cells that had been used in the C-410 Complex. The cells underwent a sponge blasting process to remove paint that supported the fluorine generating process, including copper buswork, switches, fluorine cell movers, etc., were decontaminated and transferred for reuse.

As the removal and transfer of the fluorine generating equipment was moving toward completion, removal of asbestos from equipment and piping began. In many areas of the C-410 Complex, piping was layered due to the complex nature of the processes that occurred. As such, initial abatement of asbestos piping and equipment, in many cases, was the "accessible" or the "outer layer" of piping. In some areas, following abatement of the asbestos on the first layer of piping, the abated piping could be accessed to perform stabilization or removal, as required. This then allowed access to the "next layer" of piping, which, in some cases, required asbestos abatement. This layering of piping resulted in abating, then stabilizing and removing piping, then abating the next layer of asbestos pipe, throughout the removal action.

In 2009, the C-410 Project was selected as an American Recovery and Reinvestment Act (ARRA) project, resulting in an opportunity to apply additional resources and accelerate the project. To take advantage of the opportunity provided by the increased ARRA funding, an Action Memorandum Addendum and RAWP Addendum were developed, expanding the scope of the removal action to include structural demolition of the C-410 Complex and to allow non-process piping and systems to remain in

¹ This section addresses the provisions of Section 3.4.6 of the RAWP.

place and be demolished with the building using heavy equipment. Using ARRA funding, the completion of infrastructure removal and demolition of the eastern portion of the C-410 Complex was accelerated. Demolition of C-411 and the Second East Expansion of C-410, consisting of approximately 30,000 ft², was completed in 2011.

During the piping stabilization and removal, it was expected the process systems would be empty; however, in many of the systems, such as the glycol, alcohol, and UF_6 systems, it was identified that substantial quantities of the original chemical contents (i.e., holdup material) remained in the systems. For systems such as the glycol and alcohol systems, the impact of the presence of holdup material was limited to additional time to drain and collect the material and then to characterize, manage, and dispose of the recovered material. The impact of holdup present for systems, such as UF_6 or fluorine systems, were more significant due to the hazard presented and effort required to remove the holdup material.

A chemical trap was designed and constructed to evacuate the UF_6 or fluorine systems, and "hot taps" were fabricated to allow safely gaining access to closed systems to implement the evacuation process. In some cases, the UF_6 piping was found to contain deposits that could not be removed effectively with the traps. For these pipes and components, stabilization was performed using the chemical traps; this stabilization allowed the pipe or component to be cut and removed safely from the system. The component then could be "dipped" in a solution to neutralize and remove the larger UF_6 deposits. The components and solutions were characterized and disposed of in accordance with ARARS.

Due to the potential for recoverable quantities of UF_6 , the 20 UF_6 cold traps located in the C-410 Complex were placed into storage for future asset recovery. Bolted and/or welded caps were installed on the openings to the traps; they were placed in to Sealand containers prior to relocation to the C-746-Q facility for storage.

The C-410 infrastructure removal required stabilization and removal of multiple systems in the C-410 Complex. These systems required identification, characterization, and removal of residual material from equipment and piping [except when the waste acceptance criteria (WAC) for the receiving facility allowed for disposition of the equipment or piping with the residual material intact] and transportation and disposition of equipment, piping, and residual materials. This included removal and abatement of asbestos-containing materials (ACM), mercury-containing switches and manometers, and PCB-containing electrical equipment (e.g., capacitors). All of the work was performed in accordance with ARARs and TBC criteria of federal and state environmental laws and regulations.

The following are the process systems or process components that were addressed during the infrastructure decontamination and decommissioning portion of the project.

- C-410 HF Reactors
- C-410 Hydrogen Reactors
- C-410 Fluorine (F₂) Reactors
- C-410 Cold Traps/Refrigeration
- C-410 Vacuum Cleaning
- Ash Grinding
- C-420 F₂ Reactors
- C-420 HF
- C-420 Uranium Hexafluoride
- C-420 Vacuum Cleaning
- C-420 HF Recovery
- Alumina Traps
- Fluorine Generation

- Freon System
- Glycol System
- Alcohol System
- HVAC System
- Electrical Distribution Systems

Additionally, the Action Memorandum Addendum included non-process systems (i.e., steam, air, nitrogen, plant air, etc.) in the demolition portion of the project. In some cases, however, the non-process system piping or components were removed to allow access to process systems that required stabilization or removal.

Building Demolition²

Prior to demolition, a storm water/run-off plan was developed consistent with identified ARARs. Controls installed to control storm water pollutants and sediments included covering all storm drains with filter fabric, apatite media, and dense grade aggregate; placing sandbags at openings to provide a 4-inch curb around foundation; and using the basements in Zone 22 and Zone 26 to hold storm water collected on the foundation. In addition, fixatives were used where feasible to eliminate fugitive dust emissions in lieu of misting to minimize the volume of water generated.

Exterior transite paneling was removed (deconstructed) using manlifts prior to demolition of the superstructures. The demolition of the facility was accomplished using standard construction equipment, excavator-mounted shears, and excavator-mounted grapples. Demolition of the structure included removal of the non-process infrastructure that remained after the process infrastructure was removed during the first phase of the project.

Dust suppression methods were utilized before, during, and after building demolition and during waste packaging activities. Suppression methods included water misting with a DustBoss[®], hand-held hoses for spot suppression, and the use of fixative.

C-410 demolition did not involve removal of the slab, sub-slab penetrations, and/or foundations; however, subsurface features (e.g., pits and sumps) were filled with flowable fill and covered with a concrete cap.

Photos of the demolition of the C-410 Complex are included in Appendix A.

After demolition was complete, the slab was inspected visually, decontaminated, as appropriate, and sealed to minimize the possibility of spreading contamination. Successful removal of paint chips was verified by visual inspection of the slab and soils immediately adjacent to the slab. Radiological characterization was completed in accordance with the RAWP (DOE 2002). The slab was sealed with two coats of epoxy paint. After epoxy paint application, then another radiological survey was completed.

Demolition activities were completed in accordance with PAD-PLA-QM-001, *Quality Assurance Program Implementation Plan for the Paducah Environmental Remediation Project*; the approved RAWP (DOE 2002); and the approved RAWP Addendum (DOE 2010).

In general, demolition of the C-410 complex was completed in accordance with the steps outlined below; with exception to C-410 (Second West Expansion) in which Zones 22 and 26 remained open to collect runoff for better storm water management; subsequently, these Zones were filled with flowable fill after

² This section addresses the provisions of Section 2.3.5 of the RAWP Addendum.

demolition of the building. In C-420 (Green Salt Plant), the elevator pits were not filled with flowable fill until after demolition of the building.

- Perform gross decontamination.
- Spray all surfaces with fixative following deactivation.
- Remove remaining equipment/mezzanines/platforms.
- Clean pits/basements.
- RADCON/environmental survey and release pits/basements for flowable fill with a concrete cap.
- Install flowable fill with a concrete cap in pits/basements.
- Remove transite corrugated siding.
- Sever roof and roof sheathing.
- Demolish structure and roof simultaneously.
- Sort, size, and package debris.

<u>Finish Work</u>

- 1. Demolished all remaining exterior walls.
- 2. Cut all anchor bolts and steel flushed with concrete surface.
- 3. Demolished vent stacks and towers.
- 4. Sorted, sized, and packaged debris as directed by waste generation technicians.
- 5. Used flowable fill as a backfill material placed in all subgrade pits and subbasements. All flowable fill installations to subgrade pits and subbasements received a six-inch concrete cap to provide a stable surface to support operation of demolition equipment. Removable contamination on the building slab, "existing and replaced," was decontaminated using normal decontamination techniques (washing, scrubbing, wiping, vacuuming, etc.) in such a manner to minimize the generation of waste.
- 6. Installed radiological signs and postings, as appropriate.
- 7. Decontaminated rental equipment.
- 8. Repaired or removed access roads.
- 9. Graded and seeded, as needed.

Slab Verification Survey and Epoxy Coated Surface³

All anchor bolts, piping, and metal framing were removed from the slabs using cold cutting and hot work methods, such as metal cutting saws, reciprocating saws, and torches. Samples were collected from the bottom of the basements/sumps. Sumps and pits were cleaned and backfilled with flowable fill with a concrete cap.

The slabs were inspected visually to identify any residual materials or staining in accordance with the C-410 Complex Demolition Verification Removal Action Plan to determine if residual hazardous substances were in or present on the slab. Flowable fill was used as a backfill material placed in all subgrade pits and subbasements. All flowable fill installations to subgrade pits and subbasements

³ This section addresses the provisions of Section 2.3.5 of the RAWP Addendum.

received a six-inch concrete cap to provide a stable surface to support operation of demolition equipment. Removable contamination on the building slab, "existing and replaced," was decontaminated using normal decontamination techniques (washing, scrubbing, wiping, vacuuming, etc.) in such a manner as to minimize the generation of waste. Radiological characterization was performed on the concrete building pad following demolition of the building and debris removal (dated August 10, 2015, see Appendix B). A final survey of entire slab was performed after application of two coats of epoxy paint to determine the appropriate radiological postings required for the slab.

Over 100 data points were measured during performance of the final survey. As expected based on historical operations, fixed radiological contamination was found on the slab, with alpha contamination identified at levels up to 19,789 disintegrations per one hundred square centimeters (dpm/100 cm²), and beta/gamma contamination was identified at levels up to 136,267 dpm/100 cm² during survey performed after epoxy coating application on the slab.

The post-epoxy coating survey indicated no removable contamination above transuranic limits, which are 20 dpm/100 cm² removable alpha contamination and 1,000 dpm/100 cm² removable beta contamination. Based on post-epoxy coating application surveys, the slab was posted as a Radioactive Material Area, Fixed-Contamination, Underground Radioactive Material, and Contamination Area.

The radiological surveys are provided in Appendix B. Radiological surveys were performed in accordance with *Environmental Radiological Protection Program*, CP2-ES-0103.

Sump Verification Survey and Water Disposal⁴

Figure 3 depicts the design and construction of the C-410 Complex slabs. Prior to sampling, all material and debris was removed from the basements/sumps, and core samples of the concrete from the pit walls were collected. Sampling results are summarized in Table 3, and the data are provided in Appendix C. Data collection was performed in accordance with *Paducah Gaseous Diffusion Plant Programmatic Quality Assurance Project Plan*, DOE/LX/07-1269&D2/R2 (available online).

A total of 16,630 gal of contaminated water was pumped from Zone 22 basement on June 18, 2014, prior to building demolition. This water was shipped off-site on September 16, 2014; September 26, 2014; and September 30, 2014, in tanker trucks. This water event was a result of the degrading condition of the building and roof system.

⁴ This section addresses the provisions of Sections 2.3.4 and 2.3.6 of the RAWP Addendum.

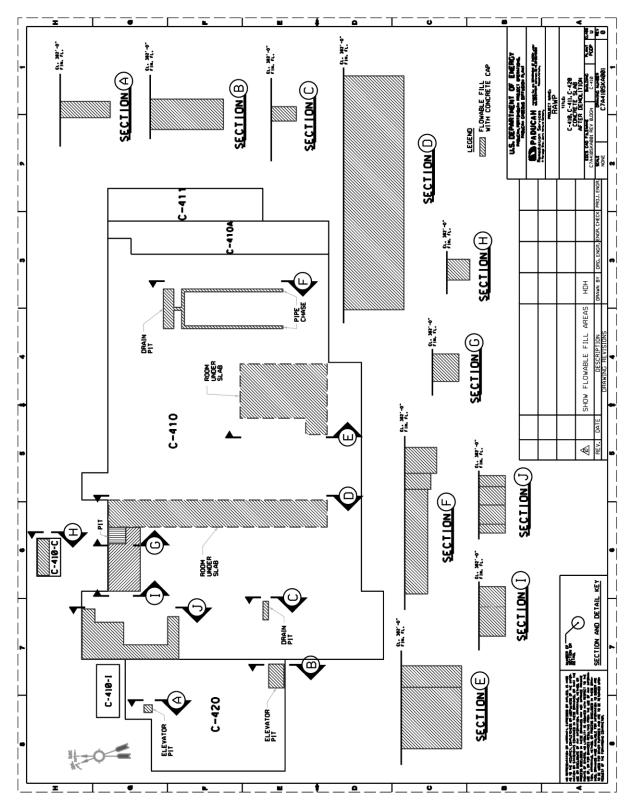


Figure 3. C-410 Map

Sample Number	Location	Aroclor 1248 (mg/kg)	Total PCB (mg/kg)
410-BSMTZ22-CONC	C-410 Zone 22 Basement	0.009	0.92
410-BSMTZ26-CONC	C-410 Zone 26 Basement	0.036	1.900
410-BSMTZ28-CONC	C-410 Zone 28 Basement	0.0088	0.63
410-BSMTZ53-1-CONC	C-410 Zone 53 Basement	0.08	0.1
410-BSMTZ53-2-CONC	C-410 Zone 53 Basement	0.08	0.2
410-BSMTZ53-2-CONCD	C-410 Zone 53 Basement	0.08	0.12
410-BSMTZ54-1-CONC	C-410 Zone 54 Basement	0.08	0.1
410-BSMTZ54-2-CONC	C-410 Zone 54 Basement	0.08	0.1

Table 3. PCB Sump Samples

In addition to water removed from Zone 22, approximately 68,000 gal of contaminated water was generated during this project and removed from Zone 26 prior to backfill with flowable fill with a concrete cap. The water was sampled and analyzed for Tc-99 and uranium, consistent with the Memorandum of Agreement (MOA) (Appendix D). Based on these results, treatment of this water was completed by ion exchange and filtering to remove suspended radionuclides. Following treatment, the water was sampled, analyzed, and discharged in accordance with the MOA (results found in Appendix C). The water was treated and discharged with completion date of October 7, 2015. The carbon media and ion exchange resin used for water treatment is suitable for reuse; therefore, it remains in-tact. The water treatment system has been stored for future projects.

Waste Segregation, Packaging, and Disposal⁵

Implementation of the NTCRA generated 774,518.7 ft³ of demolition debris, not including contaminated water. The demolition material was segregated into two primary waste streams. The demolition generated 74,212.1 ft³ of debris that met the waste acceptance criteria and was disposed of in the on-site C-746-U Landfill. Disposal of this waste stream, which included the transite removed from the building exterior, was completed December 31, 2015. The remaining debris was disposed of at NNSS, Perma-Fix, and Energy*Solutions*, and the final shipment was completed on January 12, 2016.

A total of 16,630 gal of contaminated water was pumped from Zone 22 basement on June 18, 2014, prior to building demolition. This water was shipped off-site on September 16, 2014; September 26, 2014; and September 30, 2014, in tanker trucks. This water event was a result of the deteriorating condition of the building and roof system.

The project resulted in the generation of 4,111.4 ft³ of PCB remediation low-level waste (LLW) waste at levels of PCBs above 50 ppm. This PCB waste was disposed of at Energy*Solutions*. The final shipment of this material was on June 18, 2014.

⁵ This section addresses the provisions of Sections 2.3.4 and 2.3.6 of the RAWP Addendum.

The project also generated 37,542 ft^3 of LLW that required disposition at the NNSS, based on levels of depleted uranium. The final shipment of this material occurred December 2013.

Approximately 6,746 ft³ of mixed waste or hazardous waste was generated during the removal action. This material was dispositioned at Energy*Solutions*, M&EC, DSSI, Perma-Fix, or Toxco. The final shipment of this material occurred on November 12, 2015.

During the planning phase of the C-410 Removal Action, DOE assumed the cold traps contained only a thin film of UF_6 material. During the C-410 decommissioning activities, however, DOE discovered that the cold traps contained significantly more UF_6 than had been anticipated. During the May 2012 and August 2012 meetings of the Federal Facility Agreement (FFA) managers, DOE discussed its intent to place the C-410 cold traps into storage for future recovery of UF_6 material during PGDP decommissioning when systems are in place to remove the UF_6 material safely and economically. EPA and KDEP concurred that this approach is consistent with the referenced RAWP.

Additional decontamination of government furnished equipment was required to enable the use of the equipment on other projects in January and February 2016. The waste generated by this activity was tracked separately. A total of 2,050 gal of water was shipped April 8, 2016, for off-site disposal, and 450 ft^3 of PPE has been disposed of in the on-site landfill.

Approximately 1,995 ft³ of waste was generated at EDI in Oak Ridge, Tennessee, during decontamination of the three excavators and one grapple used in building demolition. This waste was shipped April 7, 2016, to Clive, Utah, for disposal.

The approved RAWP for the C-410 Complex allows for the recycle/reuse of materials from the decommissioning of the C-410 Complex. Fluorine cells and copper bus bars were removed for off-site reuse and shipped to Toxco.

Contamination Control

During the performance of the C-410 demolition, activities that had the potential to involve radioactive materials or radioactive contamination were conducted in accordance with the *LATA Environmental Services of Kentucky, LLC, Radiation Protection Program*, PAD-PLA-HS-002/R2. Routine radiological surveys were performed on predetermined schedules by the radiation protection staff. Additional samples were obtained before, during, and following the completion of work that could affect radiation/contamination levels.

Radiological surveys included exposure rate measurements from the following locations within each structure: (1) from the general area; (2) at 30 cm from a source or surface of interest; and (3) on contact with potential sources of radiation where hands-on work was occurring. Radiological surveys also were performed in and adjacent to potentially contaminated areas to evaluate contamination levels and identify any spread of contamination beyond established boundaries.

Implementation of the C-410 NTCRA was a very labor intensive activity, requiring workers to work in and near radiological contaminated equipment and facilities throughout the duration of the project. Engineering controls, administrative controls, and personnel protective equipment were utilized to protect workers throughout the project. Examples of these controls included use of fixatives to control contamination; handling materials with equipment rather than manually; negative air machines to capture and reduce airborne contamination; radiological work permits; workforce training, monitoring of personnel and equipment before exiting the facility, and PPE.

Throughout the project, 22 personnel contamination events occurred. A personnel contamination event is defined as contamination of worker's skin, company issued clothing, or shoes. Of these 22 events, a total six of involved radiological contamination present on a worker's skin, while the remainder involved contamination on scrubs, coveralls, or boots. Contamination on skin was removed by washing with mild soap and water. Company-issued clothing that became contaminated generally was disposed of as a part of project waste.

Contamination events were evaluated on an ongoing basis to determine if improvements to controls or processes could be implemented to reduce likelihood or extent of future occurrences. Changes and modifications to controls were implemented, as appropriate. In consideration of the number of hours worked and potential for contamination presented by work activities, the radiological control program was effective at protecting the work force from radiological contamination and in preventing contamination from leaving the facility.

Material and equipment released from radiological areas to controlled areas, or for unrestricted release, were monitored by radiological control personnel. No vehicles, heavy equipment, tools, or equipment were removed from the C-410 area without written certification that the equipment had undergone a radiological survey and had met the appropriate release criteria.

Area Air Monitoring

Over 25,173 discrete air samples were collected for radiological contamination, asbestos, and metals in all phases of the project, during and prior to demolition. These samples comprised of breathing zone personnel monitoring samples for workers, area monitors, perimeter monitors, and clearance samples.

A total of 17,804 breathing zone samples was collected. Of these samples, a total of 285 breathing zone samples exceeded the DOE occupational limit for radiological contamination that triggers use of respiratory protection. The workers for which these samples were collected were using the appropriate protection.

Additionally, 7,369 perimeter or area monitoring samples were collected for radiological contamination. None of the area or perimeter monitors indicated presence of airborne radioactive materials at the DOE occupational limit. The perimeter samples were collected using solar powered samplers, running continuously, with samples nominally collected twice weekly. None of the 121 area samples representing 1,786 results and only 33 out of 4,294 results from 415 personnel samples collected and analyzed for airborne metals exceeded the Occupational Safety and Health Administration permissible exposure limits or the American Conference of Governmental Industrial Hygienists threshold limit values. The workers for which these samples were collected were using the appropriate protection.

A total of 186 perimeter samples was collected for asbestos during building demolition and transite removal. These were compared to an administrative control level for asbestos perimeter sampling of 0.01 fibers per cm³.

A total of 1,400 breathing zone asbestos samples was collected during the transite removal and asbestos abatement activities.

Required clearance samples were performed in accordance with ARARs, including 401 *KAR* 58:040 4(2)(c). All clearance monitoring results met the applicable standards for successful abatement as defined in the ARARs.

Summary of Problems Encountered, including Deviations from the Work Plan

The expected condition of piping and equipment in the C-410 Complex was that most systems would be drained or purged and materials removed during the shut down of the building. Records indicated equipment had been "run till empty." Residual levels of liquids were expected in systems such as the glycol or alcohol systems, and the UF₆ systems were expected to contain only residual levels of material. Solid material handling systems were not expected to contain substantial quantities of solid material. However, during the stabilization and removal of most process systems, substantial quantities of hold up material remained in the systems. For systems such as the glycol and alcohol systems, the impact of the presence of material was limited to additional time to drain and collect the material, and then the efforts to characterize, manage, and dispose of the recovered material. The impacts to systems such as the UF₆ system or the fluorine systems, however, were more significant. Trapping equipment was designed and constructed to remove hazardous gases from the UF₆ and fluorine containing systems. For solid containing systems, such as UF₄ or uranium powder systems, the solid material was removed via shoveling, vacuuming, etc.

For the UF_6 cold traps, the holdup material quantities were such that the traps were placed into storage for later asset recovery, as opposed to stabilizing the traps and disposing of them.

During implementation of the removal action, UF_6 releases occurred in the C-410 Building on four occasions. No significant injuries or illnesses occurred from these releases; however, work activities were paused following each of these to allow for investigation and corrective action implementation. A description of the releases and cause is provided below:

- March 1, 2006—A release occurred when a small diameter UF₆ line was broken inadvertently during other work activities. Corrective actions included detailed inspections of the building and flagging or painting small diameter UF₆ lines. Work activities were controlled or prohibited in immediate area of these lines until they could be stabilized and removed. Release did not extend outside of the building.
- August 11, 2008—A UF₆ line was damaged during asbestos abatement of the line, resulting in a small release of UF₆ inside the asbestos enclosure. The personnel left the area, as required by work controls. A hazmat team entered and determined the release had stopped on its own. Release did not extend outside of the building. Work resumed following monitoring of the area.
- July 2010—A release occurred while a UF₆ line was being purged through a hot tap. Leak stopped following hazmat entries, and the release appeared not to have escaped the C-410 Building. Hot taps were redesigned to a more robust design, and more rigorous work controls were implemented, including design and deployment of chemical traps rather than an HF-capable negative air machine (NAM) to purge the UF₆ lines.
- May 2011—A release occurred when a work crew using a saw "nicked" a line, and the resulting UF₆ overwhelmed the HF capable NAM. This approach was inconsistent with the work and hazard controls established for this work, which called for implementing hot tapping and use of chemical traps for purging unknown lines. More robust work controls were implemented with hold points to ensure work control steps were followed and hazard controls implemented.

On February 14, 2012, work was suspended on UF_6 piping and equipment removal due to presence of elevated levels of plutonium contamination in UF_6 process lines in the C-410 Complex. The contamination levels required implementation of more robust work controls than currently were in place and those had been based on expected plutonium concentrations. Work controls were revised, additional

PPE implemented, and additional training was provided to the workforce performing this activity, as well as to support staff. Additionally, no other work was permitted in the immediate area of the UF_6 piping removal. Finally, plans were put into place to decontaminate the area following completion of removal of the UF_6 piping. Work resumed on the piping on March 13, 2012.

In December, 2009, a PCB transformer located in the basement of the First East Expansion of the C-410 Complex, located at the intersection of Building Column Line O and Column Line 10, had a small leak, impacting an area approximately 12 inches by 26 inches on the basement floor. Residual material was cleaned from the slab at the time of the event. The area was marked with paint and covered with plastic to demarcate the area of the spill when flowable fill was installed in this basement.

The C-410 Complex roofs and roof drains were in deteriorated condition due to the age of the buildings. A sealant was applied to the roof to control leaks during the project. Additionally, efforts to "patch" roof drains and divert water from roof leaks or damaged/nonfunctioning roof drains were required. Surveillance and maintenance costs were increased as a result. Routine engineering evaluations of the structural integrity of the building roofs were performed to confirm the safety of workers making entry.

The C-411 Building and the C-410 Second East Expansion were demolished approximately 3 years before demolition of the balance of the building. Following the demolition of C-411 and the Second East Expansion, a water leak resulted in accumulating approximately 75,000 gal of water in the basement area under the First East Expansion (Zone 54 Basement). This water was characterized, determined to have low levels of PCB contamination, treated via carbon filtration, and discharged. Repairs were made to the roof and wall interface to prevent recurrence.

Prior to demolishing the balance of the C-410 Complex, approximately 16,000 gal of water accumulated in Zone 22 due to deterioration of the roof and the drain pipe systems that had managed the water from the roof surface. On-site treatment capacity for this water was not available at that point. The water collected from this event was shipped off-site for disposal.

The Demolition Plan for the C-410 Complex anticipated that all free liquids would be removed from all basements, pits, trenches, and sumps in zones scheduled for immediate demolition, and that these areas would be filled with flowable fill with a concrete cap (see Demolition Plan, Pre-Demolition Conditions, Paragraph 18 and Main Tasks, Paragraph L). In the case of Zones 22 and 26, the subsurface areas remained open to collect run-off for better storm water management. On September 26, 2014, DOE proposed to EPA and KDEP its plan for discharge of the collected storm waters to an adjacent ditch and eventually to Outfall 001. This proposal was disapproved by the regulators, and EPA issued "Stop Work Order on the Discharge of Wastewater from Building C-410 Removal Action, Paducah Gaseous Diffusion Plant," on November 26, 2014. In late December 2014, a separation wall was built between Zones 22 and 26 using precast concrete blocks and concrete. The storm water was consolidated into Zone 26 in early January 2015, and Zone 22 was filled with flowable fill with a concrete cap to allow building demolition to proceed.

On July 31, 2015, the FFA parties finalized the Memorandum Of Agreement for Disposition of Contaminated Water Collected from the Basement of the C-410 Complex at the Paducah Gaseous Diffusion Plant, in which DOE agreed to remove the water from Zone 26 basement and treat using *ex situ* at Zone 26 using proven ion exchange technology with resins capable of treating radionuclides detected in the water. The ion exchange treatment system achieved 93%–98% reduction in the radionuclides, results in Appendix C. Treatment and discharge of the water was completed on October 7, 2015.

The elevator pits in C-420 remained open due to the safety issues involved in locking out and blocking up the elevator cars and counterweights. The pits were filled with flowable fill with a concrete cap after the

building structure was demolished. This differs from the RAWP because the pits were filled with flowable fill with a concrete cap after building demolition, as opposed to prior to building demolition.

On May 29, 2015, the project requested a deviation (DOE 2015) from the RAWP to allow transportation of four excavators to an off-site vendor for decontamination prior to returning the equipment to the vendors. The equipment required partial disassembly with aggressive methods for effective decontamination. The complexity of this decontamination effort prevents the effective and timely completion of the activities on-site with currently available facilities and equipment. Large, high bay equipment decontamination and disassembly areas with material handling equipment and the tooling required to disassemble large equipment were needed for disassembly and reassembly. Abrasive blasting equipment with necessary environmental controls (dust collectors, recycling equipment, etc.) was needed to perform the decontamination effort. Completing the disassembly, decontamination, and reassembly could be completed more efficiently and in a timelier manner by sending the equipment to an existing off-site facility at this time.

Prior to shipment for decontamination, the determination was made that one of the four excavators would be purchased for potential future use. As a result, three excavators and one grapple were shipped off-site for decontamination. All three of the excavators and the grapple attachment have been decontaminated and have been returned successfully to the rental company.

Summary of Accomplishments and/or Effectiveness of the Removal Action

Deactivation and demolition of the C-410 Facility was accomplished in accordance with the RAWP and RAWP Addendum. Waste handling, segregation, packaging, shipping, and disposal were accomplished in accordance with ARARs.

Timeline for Completion

Table 4 illustrates the timeline for the deactivation, decontamination, decommissioning and demolition phase of the C-410 demolition program. The demolition was initiated March 23, 2011.

Date	Activity
2/26/2003	Initiated Removal Action by beginning removal of Hydrofluoric Acid (HF) Tank Farm.
10/2003	Completed isolation of external sources of steam, air, nitrogen, and condensate system from the C-410 Complex.
5/2004	Completed modifications on the C-410-C Limehouse to support fluorine cell decontamination for off-site shipment for reuse.
5/2004	Completed implementation of DOE required Nuclear Facility Safety Basis for C-410 Complex for activities inside the C-410 Complex.
7/2004	Completed demolition of HF tank farm.
9/2004	Completed disposition of 11 HF Tanks at NTS.
10/2004	Completed decontamination (PCB containing paint removal) & off-site shipment of the 57 fluorine cells from the C-410 complex for reuse.
7/2005	Initiated the removal of PCB contaminated paint from fluorine cells that had breaches in water jackets. These 13 cells were returned to C-410 from waste storage for decontamination.
9/2005	Completed conversion of C-420 Administrative area into a Boundary Control station.
1/2006	Completed infrastructure removal in C-411 Cell maintenance area (eastern end) of C-410 Complex.
2/2006	Transferred first Sealand container of copper bus work from C-410 Complex to an off-site contractor for reuse.

Date	Activity
3/2006	UF_6 release inside C-410 when small diameter instrument line was inadvertently broken. Work paused inside building while investigating cause and implementing corrective actions.
4/2006	Initiated building walkdowns and demarcating lines with potential for generating releases such a
4/2000	March 2006 UF ₆ release.
4/2006	Completed PCB containing paint removal from 13 breached fluorine cells and shipped off-site for
7/2000	reuse. These cells originated in C-410 and were stored in other facilities. They were returned from
	storage outside the C-410 Complex for decontamination.
8/2006	Initiated asbestos abatement in C-410 Complex, using glovebags.
9/2006	Removed an exterior ventilation stack that collapsed during severe weather.
9/2006	Completed installation of construction power and temporary lighting in Sectors 2 and 3 to support
9/2000	removal of asbestos, piping, and equipment.
3/2007	Completed first asbestos containment construction and initiated abatement using containments.
4/2007-	Continued removal of asbestos insulation, as well as removing utility piping and/or equipment t
12/2008	allow access to asbestos insulated piping. Also continued characterization and packaging loos
12/2008	materials for disposal.
12/2007	A secondary benefit of asbestos abatement and fixative application in the fluorine cell rooms o
12/2007	the eastern portion of the C-410 Complex (C-410 East Expansion) resulted in significant
	radiological decontamination. The area was downposted, allowing tours and inspections an
	nonintrusive work without respiratory protection.
1/2009	Initiated small diameter instrument line removal and stabilization of F2, HF, and H2 lines i
1/2007	Sector 4 (C-410 East Expansion).
2/2009	Completed accessible asbestos abatement; note that additional abatement would be required a
_,,	UF_6 and other hazardous systems removed, making additional equipment and piping accessible
	Approximately 43,600 linear ft of asbestos pipe abated to date, plus 6,500 ft ² on tanks and larg
	vessels.
4/2009	Shipped 3,200 gal of waste water from C-410 elevator pit to Clive, UT, for disposal.
4/2009	Paducah Site selected to receive ARRA funding to accelerate activity at C-410 Complex
	Planning began to utilize funding from the ARRA to accelerate C-410 Removal Action and other
	projects at Paducah.
5/2009	Initiated revision of AM and RAWP to incorporate building demolition into current non-time
	critical removal action.
5/2009	Initiated additional staff hiring and training to accelerate C-410 Removal Action using ARR.
	funding.
8/2009	Initiated prohibited item removal (mercury switches, capacitors, etc.) from components an
	equipment.
9/2009	Initiated HF Electrolyte System removal.
11/2009	EPA and KY approved AM Addendum to expand scope of action to include building demolition.
11/2009	Completed removal of HF electrolyte system.
1/2010	Initiated removal of vacuum system piping.
7/2010	UF_6 release occurs inside C-410 as the result of a failed "hot tap" installed to support purging
	UF_6 process line.
10/2010	Completed placing flowable fill in C-411 and C-410 East Expansion in preparation for
	accelerated demolition.
11/2010	Expanded scope of action to include building demolition as result of KY and EPA approval of
	D2/R1 RAWP Addendum.
11/2010	Completed stabilization of HF and fluorine tanks on roof of C-411.
3/2011	Completed removal, packaging, and disposal of loose materials.
4/2011	Initiated demolition of C-411 (Cell Maintenance Building and C-410 Second East Expansion).
4/2011	Completed stabilization and removal of alcohol and ammonia systems.
5/2011	Experienced UF ₆ release inside C-410 when personnel "nicked" a UF ₆ process line with a saw;
5/2011	overwhelmed the NAM.
	Completed demolition of C-411 and C-410 Second East Expansion.
6/2011	-100 mpleted demonthon of 0.411 and 0.410 Second East Expansion

Table 4. Timeline of NTCRA for the C-410 Complex (Continued)

Date	Activity
8/2011	Completed slab decontamination and fixative application on Sector 4 and C-411 slabs.
9/2011	Completed deactivation and demolition of C-310-C-410 Tie line.
2/2012	Work suspended for removal of UF ₆ piping put in place due to elevated plutonium contamination
	levels in the UF_6 piping near the UF_6 reactor towers.
3/2012	Lifted suspension on UF ₆ piping removal following completion of additional training and work
	control changes to mitigate hazards for plutonium.
6/2012	Completed removal of UF_6 piping from C-410 Complex, including piping contaminated with plutonium.
8/2012	Completed UF ₆ ash system stabilization.
9/2012	Initiated cutting and capping of cold traps in preparation for storage for asset recover.
11/2012	Completed HVAC system stabilization or removal.
2/2013	Completed installation of welded caps on all UF ₆ Cold traps in preparation for storage.
5/2013	Completed placing all UF ₆ cold traps in storage in C-746-Q Facility.
7/2013	Work paused when worker removing conduit with ACM containing wire mistakenly cut into energized line. Worker was not injured. Work paused on conduit removal to complete investigation and corrective actions.
8/2013	Resumed removal of electrical conduit following investigation and implementation of corrective actions.
12/2013	Completed systems removal in C-410 Complex.
12/2013	Continued performing paint chip removal, fixative application, temporary power removal, and rad surveys.
5/2014	Initiated C-410 First East Expansion demolition.
8/2014	Completed demolition of C-410 First East Expansion and C-410 Feed Plant.
9/2014	Determined large components (screw reactors) in C-420 containing internal asbestos should be abated prior to demo with the building. Construction of containment began. Transite removal paused to allow containment to be completed and abatement performed.
11/2014	Completed asbestos abatement of screw reactors.
11/2014	Initiated construction of a separation wall between pits in Zones 22 and 26 to allow storage of water in Zone 26 pit, and installation of flowable fill in Zone 22 pit.
1/2015	Completed installation of separation wall between Zones 22 and 26; pumped water to Zone 26 pit and cleaned Zone 22 Pit for flowable fill.
1/2015	Resumed transite removal.
3/2015	Completed demolition of the C-410 vent stacks.
5/2015	Completed demolition of the C-410 West Expansion (including C-410-I), C-410-C Limehouse, and C-420 Green Salt Plant.
5/2015	Completed demolition of C-420 (Green Salt Plant).
5/2015	Developed agreement for off-site decontamination of large equipment.
7/2015	Disposition of contaminated water collected from the basement of C-410 Complex at PGDP (Memorandum of Agreement).
10/2015	Treated and discharged contaminated water.
12/2015	Completed field work at the site of C-410 Complex.
1/2016	Completed shipment of building demolition debris.
3/2016	Decontaminated and returned large equipment to vendor.
4/2016	Final shipment of waste.

Table 4. Timeline of NTCRA for the C-410 Complex (Continued)

Summary of Any Operation and Maintenance Required

No further operation will be required; however, routine inspections and maintenance of the slab will be undertaken as necessary.

Summary of the Project Cost

The cost of implementing this removal action project, including packaging, transportation, and disposal of demolition debris, was \$235,274,000. Table 5 summarizes the cost elements.

Table 5.	Summary	of Cost	Elements
----------	---------	---------	----------

Activity	Cost, \$M
Deactivation and Decommissioning, Demolition of Structure, Project	\$222,264,000
Management, Slab Preparation and Sealing, Site Restoration, and	
Decontamination of Equipment On-site and Off-site	
Structural Waste Packaging, Transportation, and Disposal	\$13,010,000
Total	\$235,274,000

References

- DOE (U.S. Department of Energy) 2001. Engineering Evaluation/Cost Analysis for the C-410 Complex Infrastructure at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/07-1952&D2, Rev 1.
- DOE 2002a. Action Memorandum for the C-410 Infrastructure Removal at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/07-2002&D1, Rev 1.
- DOE 2002b. Removal Action Work Plan for the C-410 Complex Infrastructure D&D Project at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/07-2012&D2.
- DOE 2009. Action Memorandum Addendum for the C-410 Infrastructure Removal at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0273&D2.
- DOE 2010. Removal Action Work Plan Addendum for the C-410 Complex Infrastructure D&D Project at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0304&D2/R1.
- DOE 2015. Removal Action Work Plan Addendum for the C-410 Complex Infrastructure D&D Project at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0304&D2/R2.

Appendices

- Appendix A—C-410 Demolition Photographs
- Appendix B—Radiation Survey Results

Appendix C—Sump Water and Pit Sampling Analytical Results

Appendix D—Memorandum of Agreement for Disposition of C-410 Basement Water at the Paducah Site

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX A

C-410 DEMOLITION PHOTOGRAPHS

THIS PAGE INTENTIONALLY LEFT BLANK

Figure A.1. C-410 Complex Prior to Demolition (view toward southeast)

Figure A.2. C-410 Complex before Demolition (view toward northeast)

Figure A.3. Demolition of C-410 Original Feed Plant (view toward east)

Figure A.4. Transite Removal from the West Side of C-420 Complex

Figure A.5. Transite Removal from C-410 Building (view toward west)

Figure A.6. Transite Removal from East Wall of C-420 Building (view toward southwest)

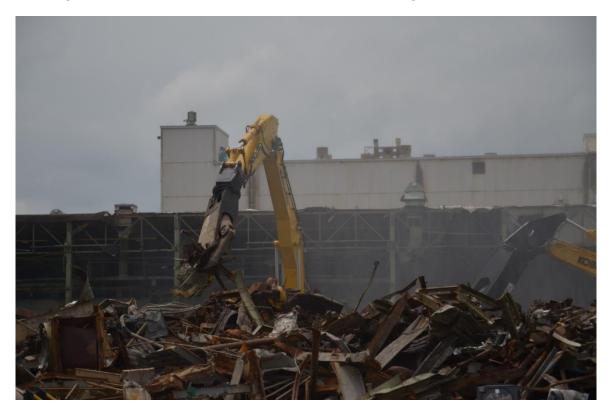


Figure A.7. Downsizing Debris from C-410 Demolition

Figure A.8. C-410 Original Feed Plant Demolition (view toward northwest)

Figure A.9. Demolition of the C-420 Building (view toward northwest)

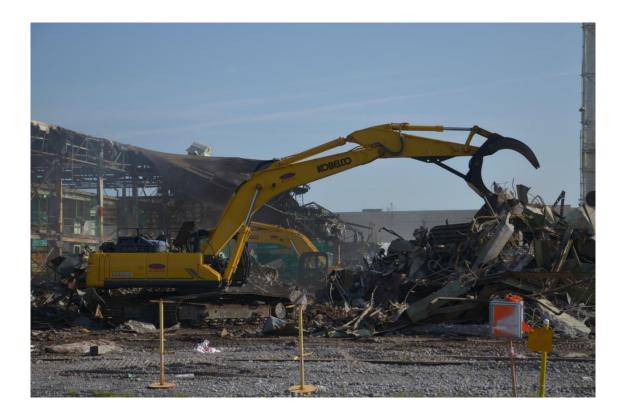


Figure A.10. Downsizing and Segregation of Demolition Debris

Figure A.11. Downsizing Demolition Debris (view toward north)

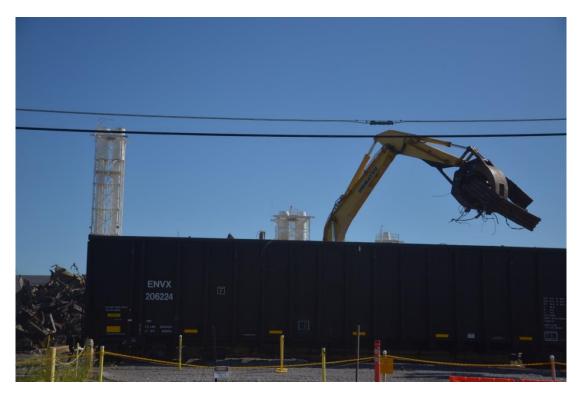


Figure A.12. C-410 Demolition Debris Loading into Gondolas (view toward north)

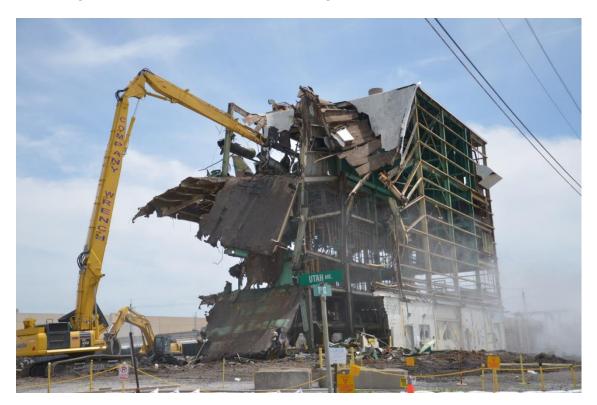
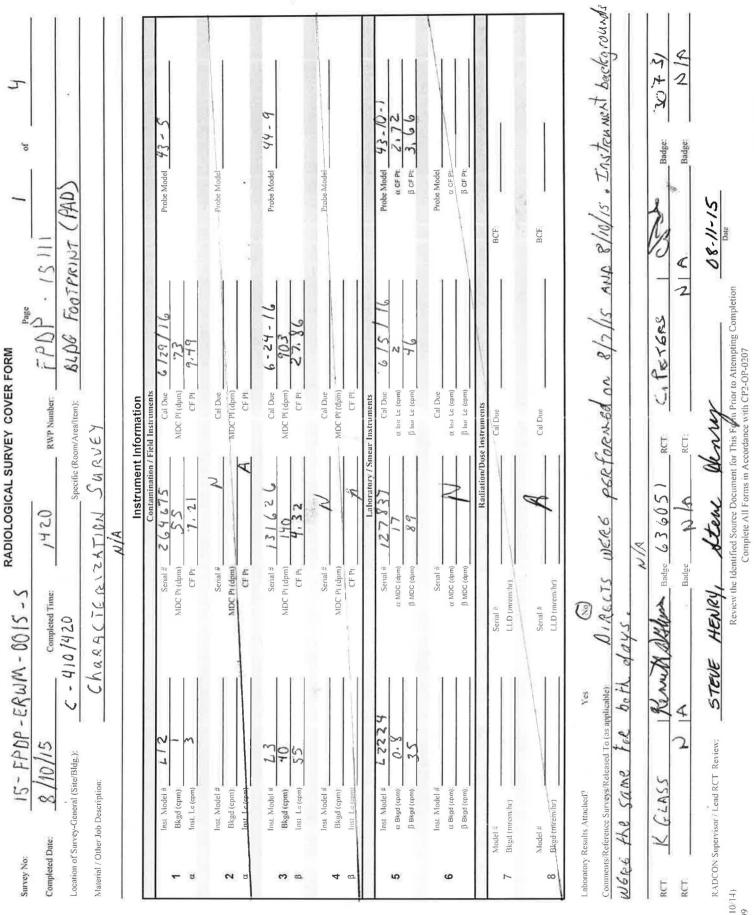


Figure A.13. High Reach Excavator Demolishing Northern End of C-420 Building (view toward southeast)

Figure A.14. High Reach Excavator Demolishing Northern End of C-420 Building (view toward southwest)

Figure A.15. Water Treatment System Used to Treat Water for Discharge from Zone 26 Basement


Figure A.16. C-410 Slab in Final State with Epoxy Coating Applied (view toward plant east)

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B

RADIATION SURVEY RESULTS

THIS PAGE INTENTIONALLY LEFT BLANK

B-3

RP-F-0002 (10/14) CP3-RP-1109

IS-FPDP-ERMW-0015-5 Survey Number

4 of 2 Page

Issueron O. R. Issueron Holder CF 2 , 72 CF 2 , 3 gross dom gross dom gross for 2 3 gross 3 3 3 gross 10 5 3 gross 4 7 2 1 -1 2 3 1 -1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 2 3 3 3 1 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3	bkercom Lee Lee gross gros gro	3.5 bkg(cpm) μ/h 3.5 b Lc= μ/h 4 Lc= μ/h LAW α 100cm2 cpm/LAW cpm/LAW 150 cpm/LAW ct/f	bkg(cpm) N/A		
Imp gross 20 \$481 20 \$481 21 \$16 33 \$33 33 \$33 33 \$33 33 \$33 33 \$33 33 \$33 33 \$33 33 \$33 33 \$33 33 \$33 33 \$33 33 \$33 34 \$33 35 \$33 36 \$15 37 \$55 44 \$55 11 \$55 12 \$16 37 \$55 37 \$55 37 \$55 37 \$55 37 \$55 37 \$55 37 \$55 37 \$55 37 \$55 37 \$55	доова срана 43 76 43 76 43 76 13 26 32 33 33 32 90 90 90 90 51 55	ΓC	1 21.1.2		
20 8481 <12 220 3 330 3 359 3 350 3 359 3 350 3 359 3 350 3 350	76 43 26 32 33 33 33 33 32 16 176 176 176 176 176 176 176 176 176		LAW BY com LAW	Sample Location and/or remarks	RCT Initials
 <1/2 <1/2<td>43 26 32 33 33 33 33 35 1 76 90 90 90 90 90 90 90 90 90 90 90 90 90</td><td>1,</td><td>/</td><td>No PAD Surface, SEE MAD</td><td>KG/CF</td>	43 26 32 33 33 33 33 35 1 76 90 90 90 90 90 90 90 90 90 90 90 90 90	1,	/	No PAD Surface, SEE MAD	KG/CF
330 37 39 39 39 39 39 39 39 39 39 30 31 32 39 39 39 39 39 39 39 39 39 30 31 35 30 31 31 32 37 <td>26 32 33 33 33 32 48 48 48 48 48 48 48 48 48 48 48 48 48</td> <td>2</td> <td>/</td> <td></td> <td></td>	26 32 33 33 33 32 48 48 48 48 48 48 48 48 48 48 48 48 48	2	/		
39 548 7 275 7 275 5 275 50 359 50 359 50 359 61 260 11 355 11 355 11 355 11 355 11 355 11 355 11 355 11 355 11 355 12 163 13 762 70 1263 255 2685	78 32 32 48 48 48 48 48 48 48 48 48 48 48 48 48	<1C			
1 275 <lc< td=""> 175 359 359 30 359 30 359 41 260 11 355 11 355 11 355 11 355 11 355 11 355 11 355 11 355 11 355 11 355 12 43 14 260 15 355 16 163 17 25 25 2685 25 2685</lc<>	33 32 48 48 76 90 90 51 51	157	/		-
 <lc 175<="" li=""> 50 359 50 359 50 359 50 359 610 41 260 41 260 11 355 11 355 12 37 12 390 12 390 12 13 </lc>	32 - 52 - 52 - 52 - 52 - 52 - 52 - 52 -	<10	/		
50 359 58 610 41 260 11 355 11 355 11 355 11 355 11 355 11 355 12 376 12 376 25 12 25 2685	48 97 09 51	< 2 C	/		
58 610 41 260 11 355 163 163 93 762 93 762 253 2685	92 12 12	6			
41 63 90 25 25	06	150	/		
11 63 90 90 25 25	15	201	/		
63 63 25 25	5	59	/		
93 25 25	00	55 1			
% 25	136 139 381	SI N	~ /		
25	402 811 850 H	1 1	H H		
	690 39	< ل (
2 3 87 1309	9 36	<pre>/ 27></pre>			
0 < Le 255 5990	36	< L c /			
6 14 184 4012	40	< 60 /			
47 126 330 8	154	436 /			
18 47 450 11,423	76	150 /			
5 11 250	5851 55 7	73 /			
6 237	-	<1 / ×10			
25 66 858 22,789	72	/ ;<;/			
8 20 S25 1	54	10/			
22 326	7968 60 9	92 /			
3 6 526 1	13,540 42 ~1	< 20 V		~	>
NAA16					

Review the Identified Source Document for This Form Prior to Attempting Completion Complete All Forms in Accordance with CP2-0P-0207

NOTE: Any response of the instrument that is > Lc is considered to be above background.

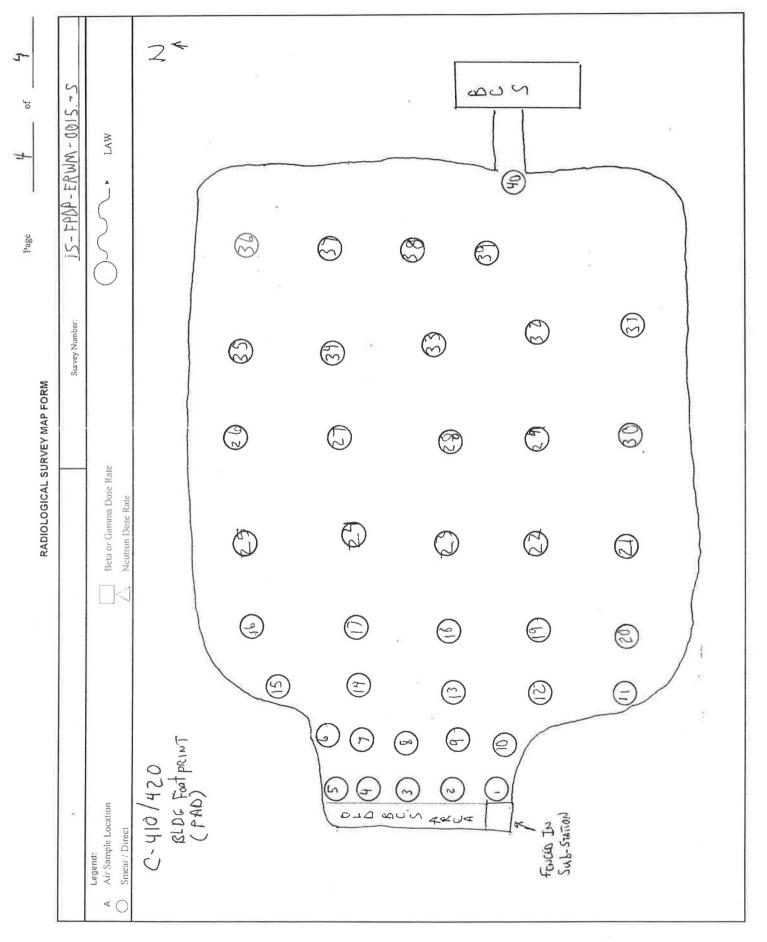
,

RM
FO
NOI.
NAT
LAM
CONT
RVEY
L SUI
LOGICA
RADIOL

4

of

 \sim


Page

15 - FPDP - ERWM - DO15 - S Survey Number

	HE SALE	N Shrach 1			RCT Initigls	K6 / CF															<i>⇒</i>							
				*	Sample Location and/or remarks	ON PAD Surface SEG MAP															À							ANTE. An second of the lockermonities is a 1 p is an objected in the above shows and
1 1 1 1	Removable B/v	cpm/LAW	bkg(cpm) N/A	Lc= N/A	LAW B/Y cpm-LAW	/	/	/	/	/	/	/		V	M								1	V	1/			
8114	Removable a	cpm/LAW	bkg(cpm) DJA	Lc= N/A	LAW α cpm/LAW							N.	1 V	/	/	/	/	/	/	/			N					TOTAL AND
1	2	dpm/100cm2	(cpm) 35	LC= 4 6	ross	(35 066	31 351	451 LL	63 /02	32 626	56 77	HH CH	42 660	37 <60	76 150	39 26	52 62		594 1314	32 260			1				
~	Total B/v	dpm/100cm2	bkg(cpm) 40 b	Le 55	gross dpm g cpm 100cm2 c	395 9890	872 23,150	Z11 4764 1	389 9723	845 22427	439 11,116	240 5572	173 3705	319 7773	NA NA	AN AN	WN 4/2	104 1783	100 1672	3417 247146	N/A N/A				1			
ŀ	Removable a		-0	2 2	gross dpm g cpm 100cm2 c	\sim	2 3 8	8 47 2	13 33 3	17	2 3 4	0 25 2	3 6 1	S	2 2 2	5 11 2	~	4 9 1	~	165 447 80								A
	Total a	n2	4	2, 7.1	-	579	804	29 266 1	574 12	103 968	b6 617	256	171 171	14 123	N/A N/4	N/A NA.	w/A NHA 3	6 47	95	5							Nove	NA
Instantant			pka	1-	Item <u>g</u> No c	26 (27 4	_		30 10			33		10			38	39	40 39						$\left \right $	Comments:	

NOTE: Any response of the instrument that is \geq Lc is considered to be above background.

Review the Identified Source Document for This Form Prior to Attempting Completion Complete All Forms in Accordance with CP2-OP-0207

RP-F-0007 (09/14) CP3-RP-1109

Survey No	15-FPD	R 15-FPDP-ERWM- 0502 -S	ADIOLOGICAL	RADIOLOGICAL SURVEY COVER FORM	Page	میں ۲۵ ۱۹	P
Completed Date	12/11/2015	Completed Time	1330	RWP Number		FPDP-15111 R1	
Location of Survey-General (Site/Bldg.):	al (Site/Bldg):	C-410/420	Specifi	Specific (Room/Area/Item):	1	Inside CA (Post Painting of Concretc)	

Inside CA (Post Painting of Concrete)	
Specific (Room/Area/Item):	
-410/420	

Directs and Transferable Survey of Inside CA

Material / Other Job Description:

			and the state of the	Contactingtion Field Instrument	Contamination / Field Instruments		A DESCRIPTION OF THE PARTY OF T	たいという見たいない	TANK AN AND
	Inst Model #	L12	Serial #	135033	Cal Due	8/29/2016	Probe Model	43-5	
-	Bkgd (cpm).	-	MDC Pt (dpm)	56	MDC PI (dpm)	74			
8	Inst. Lc (cpm)	в	CF Pt.	7.36	CF PI:	9.69	denie ocho ingen o		
	Inst. Model #	N/A	Serial #	N/A	Cal Due	N/A	Probe Model	NIA	
2	Bkgd (cpm):	NIA	MDC Pt (dpm)	N/A	MDC PI (dpm)	N/A			
ъ	Inst Lc (cpm)	V/A	CF Pt	N/A	CF PI:	N/A			
	Inst Model #	L12	Serial #	207173	Cal Due	6/15/2016	Probe Model	6-řt	
3	Bkgd (cpm)	32	MDC Pt (dpm)	127	MDC Pl (dpm)	819			
β	Inst Lc (cpm)	45	CF Pt:	4	CF PI:	28			
							" A MARKAGE		
	Inst Model #	NIA	Serial #	N/A	Cal Due	N/A	Probe Model	N/A	-
-	Bkgd (cpm):	N/A	MDC Pt (dpm)	N/A	MDC Pl (dpm)	N/A			
β	Inst Lc (cpm)	N/A	CFPt	N/A	CF PI:	N/A			
	ないですできまいでき	States a states	States of the Manuel	Laboratory / S	Smear Instruments	Notes and a second second		S. Contraction	
	Inst Model #	N/A	Serial #	N/A	Cal Due	N/A	Probe Model	NIA	
ŝ	a. Bkgd (cpm)	N/A	ct MDC (dpm)	N/A	a Inst. Lc (cpm)	N/A	a CF Pt	N/A	
	β Bkgd (cpm)	N/A	B MDC (dpm)	N/A	β Inst Lc (cpm)	N/A	β CF PI:	N/A	1
	Inst Model #	NIA	Serial #	MIA	Cal Due	N/A	Probe Model	N/A	
9	a Bkgd (cpm):	N/A	α MDC (dpm)	N/A	α Jinst Lc (cpm)	N/A	a CF Pt	N/A	
	ß Bkgd (cpm)	N/A	B MDC (dpm)	NIA	B Inst Lc (cpm)	N/A	B CF Pt.	N/A	
	ALL AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL			Radiation/D	Radiation/Dose Instruments	STORE TOTAL	A CARLON AND AND AND AND AND AND AND AND AND AN	Contraction of the second s	
	Model #	NIA	Serial #	N/A	Cal Due	N/A	BCF:	N/A	
~	Bkgd (mrem/hr)	N/A	LLD (mrem/hr):	NIA	State of the state of the	A Statistics - Statistics	Constraint of the second	A Lange and	
	Model #	NIA	Serial #	N/A	Cal Due	N/A	BCF	NIA	
	Bkgd (mrem/hr)	N/A	LLD (mrem/hr):	N/A	1			ĺ	
ator	Laboratory Results Attached?	Yes	No						

Review the Identified Source Document for This Form Prior to Attempting Completion Complete All Forms in Accordance with CP2-OP-0207

N/A N/A

Badge Badge

N/A <

N/A z

RCT RCT.

636051 N/A

Badge Badge

Knuett ablass

K. Glass

RCT: RCT

z

 \triangleleft

Survey Points 41,47,48,53,54,69,70, and 75 to be Surveyed at a later date (Directs and smears)

12-15-15

man

S

Terre

HENRU

STEVE

RADCON Supervisor / Lead RCT Review

Date

RCT Initials Q ğ ŝ Q â Š Ŷ ŝ 9 2 Ŷ ğ Ŷ Ŷ Ŷ Ŷ Ŷ Ŷ Ŷ â ð ğ â ŝ ŝ ð Concrete Pad/ Directs to be done on a later date Concrete Pad/ Directs to be done on a later date Concrete Pad/ Directs to be done on a later date Concrete Pad/ Directs to be done on a later date Concrete Pad/ Directs to be done on a later date Concrete Pad/ Directs to be done on a later date Concrete Pad/ Directs to be done on a later date Concrete Pad/ Directs to be done on a later date Concrete Pad/ Directs to be done on a later date Concrete Pad/ Directs to be done on a later date Concrete Pad/ Directs to be done on a later date Concrete Pad/ Directs to be done on a later date Concrete Pad/ Directs to be done on a later date 9 Sample Location Gravel of 2 Page N/A cpm/LAW bkg(cpm) N/A Removable B/y LAW B/Y cpm/LAW N/A NIA **N/A** NIA MA N/A NIA AN ¥ MA NIA **N/A** N/A NIA AN MA NIA N/A ¥ ¥ NIA ¥ MA NIA NIA **N/A** Lc= N/A bkg(cpm) N/A Removable a cpm/LAW Lc= N/ LAW α cpm/LAW MA M NIA N/A NIA N/A N/A **N/A** NA NIA NIA AN NIA MA MA AN NIA NIA N/A **N/A N/A** NIA N/A M NIA NIA dpm 100cm2 Removable B/y dpm/100cm2 • * • • . • • . • + + • . . . • + . . • -. * . • bkg(cpm) Bross L0= срт CF + . ٠ 4 • . + . . * • • • . * . * • . • • • • + • ş dpm 100cm2 13975 32478 18978 5-FPDP-ERWM- 0502 1733 6680 5478 25966 27.95 6848 2096 1481 2404 45 669 AN dpm/100cm2 32 NIA NIA N/A **N/A** NA NIA AN **N/A N/A** MN **N/A** NA Total B/y bkg(cpm) gross 1194 LC= cpm N/A N/A 271 532 228 711 N/A NIA N/A NIA 118 57 94 N/A **N/A N/A N/A N/A** N/A **N** 961 277 Ë 85 107 dpm 100cm2 Removable or dpm/100cm2 . . . • • . * • . . . • • • bkg(cpm) gross LCH CE • + * . . • . • ٠ . . 4 • . • . • ٠ * . dpm 100cm2 69.69 1.0 232 475 378 NA MA NA N/A 29 58 97 39 NA **N/A** M AN NA **N/A** M **N/A A/A** 242 39 dpm/100cm2 39 48 67 Survey Number: Total a bkg(cpm) gross cpm NIA LC= 25 \$ **N/A A**N N/A NA AN **N N/A** N/A NIA NIA Ŧ 20 N/A N/A CH-40 4 ~ ŝ 9 Ŧ 28 5 strumon Item No. N 3 S 9 9 1 3 13 14 13 16 17 18 19 20 25 ~ œ 6 22 33 24 21

RP-F-0008 (10/14) CP3-RP-1109

NOTE: Any response of the instrument that is ≥ Lc is considered to be above background. Review the Identified Source Document for This Form Prior to Attempting Completion Complete All Forms in Accordance with CP2-OP-0207

N/A

* For Transferable contamination and Tenelec instrument information, see attached Tenelec sheets

Comments:

nstrument	Tech		4	11.1	T	3	d	-11- D.4-	N/A	N/A Btlo 0.6-	「「「「「「「「」」」」「「「「」」」」」」」」」」」」」」」」」」」」」	
	alŏ	a Jem2	dpm/1	kemovable α dpm/100cm2	10tal dpin/10	000	dpm/1	able 00cr	E l9	L l g	ため、ためです。このでは、1000mmのでので、1000mmので、1000mmので、1000mmので、1000mmので、1000mmので、1000mmので、1000mmので、1000mmので、1000mmので、1000mm	のないないの
-1	bkg(cpm) CF:	1.0 9.69	bkg(cpm) CF:	• *	bkg(cpm) CF:	32 27,95	bkg(cpm) CF:	• *	bkg(cpm) N/A	bkg(cpm) N/A		市の市内
-	Lc- eross	3 dnin	LC= PLOSS	* mab	Lc= eross	45 dom	LC= eross	* dom	Lc= N/A LAW α	Lc= N/A LAW B/y		RCT
_	-	100cm2	cpm	100cm2	cpm	100cm2	cpin	100cm2	cpm/LAW	cpm/LAW	Sample Location	Initials
	18	165	•	•	396	10174			N/A	N/A	Oravel	9 N
_	4	29			42	<۲c	•	•	N/A	N/A	Gravel	В М
_		۲c	•	-	48	447		×	N/A	N/A	Gravel	В
-	7	58	•	•	171	3885		•	N/A	N/A	Gravel	КG
-	N/A	N/A			N/A	N/A	8		N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	ЮУ
	N/A	N/A	•	•	N/A	N/A	•		NIA	N/A	Concrete Pad/ Directs to be taken on a later date.	Ю Х
_	N/A	A/A	•	•	N/A	N/A		•	N/A	NIA	Concrete Pad/ Directs to be taken on a later dute.	KG
	N/A	N/A	•	•	N/A	N/A	9		N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	9 X
	N/A	N/A		•	N/A	N/A	•		N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	9 X
	N/A	N/A	•	•	N/A	N/A	•	•	N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	9 X
_	N/A	N/A		•	N/A	N/A			N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	9 Y
_	N/A	N/A		380	N/A	N/A		•	N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	9 Y
_	N/A	N/A	•	•	N/A	N/A	•	•	N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	КG
-	N/A	N/A		×	N/A	N/A			N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	КG
-	N/A	N/A	*	•	N/A	N/A			N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	g
	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Gravel-Directs/Smears to be taken on a later date.	КG
-	N/A	N/A		,	N/A	N/A	•		N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	КG
_	N/A	N/A		•	N/A	N/A	•		N/A	A/A	Concrete Pad/ Directs to be taken on a later date.	ß
	N/A	N/A		٠	N/A	N/A	•	•	N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	КG
	N/A	N/A	•		N/A	N/A	•	•	N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	КG
	N/A	N/A	•	•	N/A	N/A		*	N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	g
-	N/A	N/A	N/A	A/A	N/A	N/A	N/A	N/A	N/A	N/A	Gravel-Directs/Smears to be taken on a later date.	В
	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Gravel-Directs/Smears to be taken on a later date,	KG
	N/A	N/A			N/A	N/A			N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	В
	ALLA	NILA			NIA	VIIV			NIA	NIA	Converta Dad/ Diracts to ha taban on a later date	2

RP-F-0008 (10/14) CP3-RP-1109

N/A NOTE: Any response of the instrument that is ≥ Lc is considered to be above background. Review the Identified Source Document for This Form Prior to Attempting Completion Complete All Forms in Accordance with CP2-OP-0207

5

Instrument	-		*					-	N/A	N/A		
185	Total α dpm/100cm2	12	Removable or dpm/100cm2	ble a 0cm2	Tota dpm/1	Total B/y dpm/100cm2	dpm/	Removable B/y dpm/100cm2	Removable α cpm/LAW	Removable β/γ cpm/LAW		
7	î		bkg(cpm) CF:		bkg(cpm) CF:	32 27.95	bkg(cpm) CF:	•	bkg(cpm) N/A	bkg(cpm) N/A		
	gross dr cpm 100	dpm 100cm2	gross cpm	dpm 100cm2	gross	dpm 100cm2	gross cpm	dpm 100cm2	LAW α cpm/LAW	LAW β/γ cpm/LAW	Sample Location	RCT Initials
	NA	N/A	*	*	N/A	N/A	*		N/A	NIA	Concrete Pad/ Directs to be taken on a later date.	ВХ
_	NA	NA	•	•	N/A	N/A	•	•	NIA	NIA	Concrete Pad/ Directs to be taken on a later date.	8G KG
	NIA	NA	N/A	N/A	N/A	N/A	N/A	NIA	NIA	NIA	Gravel-Directs/Smears to be taken on a later date.	g
_	NA	N/A	NIA	N/A	N/A	N/A	N/A	N/A	N/A	NIA	Gravel-Directs/Smears to be taken on a later date.	В Ю
_	NA	NIA	*		NIA	N/A	•	•	N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	В Ю
_	N/A N/	NIA	•	×	NIA	N/A	*		N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	8G KG
	NA	N/A	•	•	AVA	N/A	*		N/A	NA	Concrete Pad/ Directs to be taken on a later date.	9 9
_	NA	N/A			N/A	N/A	•	•	N/A	AIA	Concrete Pad/ Directs to be taken on a later date.	9 S
	NA	N/A			NIA	N/A		*	N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	В К
	N/A N/	NIA	•		AVA	N/A	•	•	N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	9y
	N/A N	N/A		•	N/A	N/A	•	•	N/A	A/A	Concrete Pad/ Directs to be taken on a later date.	ð
	N/A N	N/A	•		N/A	N/A	•	•	N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	В В
	N/A N/	NA			N/A	NIA	•	•	N/A	N/A	Concrete Pad/Directs to be taken on a later date.	А Ю
	N/A N	NIA	*		N/A	N/A	*	*	N/A	NIA	Concrete Pad/ Directs to be taken on a later date.	В В
	N/A N	N/A			NA	N/A	•	•	N/A	NIA	Concrete Pad/ Directs to be taken on a later date.	ð
	NA	N/A	•	•	N/A	N/A	•	•	N/A	N/A	Concrete Pad/ Directs to be taken on a later date.	Ω Ω
_	6	19	•	•	217	5171	•	•	NIA	NIA	Concrete Pad	ð
	1	۲c	•		235	5674	*	•	NIA	N/A	Concrete Pad	Υ Υ
	N/A N	NA	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	Gravel-Directa/Smears to be taken on a later date.	Ŋ
	N/A N	N/A	N/A	NA	N/A	N/A	N/A	NIA	NIA	N/A	Gravel-Directs/Smears to be taken on a later date.	g
	⊽ 0	٦C			71	1090	•	*	N/A	N/A	Concrete Pad	Q
	0	۲c	•	•	102	1957	•	۲	N/A	N/A	Concrete Pad	ð
_	17	۲c	•		69	1034	•	•	N/A	N/A	Concrete Pad	Ϋ́
	10	۲c		*	241	5842	•	•	NIA	N/A	Concrete Pad	â
	NI/A NI	N/A			N/A	NIA		•	NIA	NIA	Central Directo(Smeans to he tolone on a later data	

RP-F-0008 (10/14) CP3-RP-1109

N/ANOTE: Any response of the instrument that is \geq Lc is considered to be above background. Review the Identified Source Document for This Form Prior to Attempting Completion Complete All Forms in Accordance with CP2-0P-0207

Remova	B/Y Removable B/Y 32 bkg(cpm) * 37.95 Cf: * 37.95 Cf: * 3865 Loc * 3805 * 100cm2 3805 * * 3805 * * 2488 * * 2498 * * 2408 * * 31382 * * 8 N N N N A	βty Removable βty Removable βty Removable βty 32 bkg(cpm) * bkg(cpm) NA 37.95 Cr: * Lc= NA 45 Lc= * Lc= NA 386. e e NA 386. e e NA 2488 e e NA 2488 e e NA 2486 e e NA 21382 e e NA 31382 e e NA Acc e NA NA 31382 e e NA N N N NA Acc e NA NA Acc e NA NA 31382 e e NA N N N NA N N A NA <tr tr=""> N N<th>Bity Removable Bity 06m2 dpm/100cm2 33 bits(cm) 2135 bits(cm) 2135 bits(cm) 2135 bits(cm) 3865 cm 3885 cm 3885 cm 2132 cm 31382 cm Alt cm Alt cm 31382 cm N N N A A A</th><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th></tr> <tr><td>Remova</td><td>Removable B/Y dpm/100cm2 E8(cpm) + CE: + CE: + Bross dpm l00cm2 A A A A</td><td>Removable B/Y Removable a dpm/100cm2 cpm/LAW cg(cpm) N/A cg(cpm) N/A cgrav locm2 cpm/LAW gross dpm LAW a process dpm LAW a process dpm LAW a process dpm LAW a process dpm N/A Process N/A N/A N/A N/A A A A A A A A A A A A A A</td><td>Removable B/y Removable 0/1 Removabl</td><td>Removable Byy Removable Byy Referention:</td></tr> <tr><td></td><td></td><td>Removable α cpm/LAW bkg(cpm) LG= LAW α N/A N/A</td><td>Removable α Removable α 1 bkg(cpm) N/A bkg LC⁼ N/A 1 LAW α N/A N/A N/A N/A N/A</td><td>Removable of opm/LAW Removable bit opm/LAW Removable bit opm/LAW Lo= N/A Lo= N/A Lo= N/A Lo= N/A N/A N/A N/A N/A</td></tr>	Bity Removable Bity 06m2 dpm/100cm2 33 bits(cm) 2135 bits(cm) 2135 bits(cm) 2135 bits(cm) 3865 cm 3885 cm 3885 cm 2132 cm 31382 cm Alt cm Alt cm 31382 cm N N N A A A	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Remova	Removable B/Y dpm/100cm2 E8(cpm) + CE: + CE: + Bross dpm l00cm2 A A A A	Removable B/Y Removable a dpm/100cm2 cpm/LAW cg(cpm) N/A cg(cpm) N/A cgrav locm2 cpm/LAW gross dpm LAW a process dpm LAW a process dpm LAW a process dpm LAW a process dpm N/A Process N/A N/A N/A N/A A A A A A A A A A A A A A	Removable B/y Removable 0/1 Removabl	Removable Byy Removable Byy Referention:			Removable α cpm/LAW bkg(cpm) LG= LAW α N/A N/A	Removable α Removable α 1 bkg(cpm) N/A bkg LC ⁼ N/A 1 LAW α N/A N/A N/A N/A N/A	Removable of opm/LAW Removable bit opm/LAW Removable bit opm/LAW Lo= N/A Lo= N/A Lo= N/A Lo= N/A N/A N/A N/A N/A
Bity Removable Bity 06m2 dpm/100cm2 33 bits(cm) 2135 bits(cm) 2135 bits(cm) 2135 bits(cm) 3865 cm 3885 cm 3885 cm 2132 cm 31382 cm Alt cm Alt cm 31382 cm N N N A A A	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
Remova	Removable B/Y dpm/100cm2 E8(cpm) + CE: + CE: + Bross dpm l00cm2 A A A A	Removable B/Y Removable a dpm/100cm2 cpm/LAW cg(cpm) N/A cg(cpm) N/A cgrav locm2 cpm/LAW gross dpm LAW a process dpm LAW a process dpm LAW a process dpm LAW a process dpm N/A Process N/A N/A N/A N/A A A A A A A A A A A A A A	Removable B/y Removable 0/1 Removabl	Removable Byy Removable Byy Referention:										
		Removable α cpm/LAW bkg(cpm) LG= LAW α N/A	Removable α Removable α 1 bkg(cpm) N/A bkg LC ⁼ N/A 1 LAW α N/A N/A N/A N/A N/A	Removable of opm/LAW Removable bit opm/LAW Removable bit opm/LAW Lo= N/A Lo= N/A Lo= N/A Lo= N/A N/A N/A N/A N/A										

38 (10/14) 1109

N/A NOTE: Any response of the instrument that is ≥ Lc is considered to be above background. Review the Identified Source Document for This Form Prior to Attempting Completion Complete All Forms in Accordance with CP2-OP-0207 Survey Number 15-FPDP-ERWM-0502-S 1-80

<u>Cal Due:</u> 4/8/16

Batch Number 14415

Batch ID:	Smear Alpha Beta S5-XLB 1	- 201512150821		
Group:	В		Count Minutes:	1.0
Device:	S5XLB_1	Device Serial Number: 4665	Count Mode:	Simultaneous
Selected Geometry:	5/16" Stainless Steel		Operating Volts:	1380

Efficiency (%)		Weekly	y 24 Hour	Background	(cpm)	Batch Critic	al Level	CPM	MDC (DPM	<u>(I)</u>
Alpha Efficiency33.81Beta Efficiency26.46			Backgrou ackgroun	· · ·	0.10 1.23	Alpha Inst Beta Inst I		1 4	Alpha Beta	12 26
<u>Sample ID</u>	<u>Alpha</u> <u>Total</u> <u>Counts</u>	<u>Gross</u> <u>Alpha</u> <u>CPM</u>	<u>Net</u> <u>Alpha</u> <u>CPM</u>	<u>Alpha DPM</u> <u>Activity</u>	<u>2</u> <u></u>	<u>Beta</u> <u>Total</u> <u>Counts</u>	<u>Gross</u> <u>Beta</u> <u>CPM</u>	<u>Net</u> <u>Beta</u> <u>CPM</u>	<u>Beta DPM</u> <u>Activity</u>	<u>2σ</u>
20151215082142-B1	0	0.00	-0.10	-0.29	0.05	1	1.00	-0.23	-0.88	7.56
20151215082533-B2	0	0.00	-0.10	-0.29	0.05	2	2.00	0.77	2.90	10.69
20151215082643-B3	1	1.00	0.90	2.67	5.92	4	4.00	2.77	10	15.12
20151215082803-B4	0	0.00	-0.10	-0.29	0.05	3	3.00	1.77	6.68	13.09
20151215082913-B5	1	1.00	0.90	2.67	5.92	11	11.00	9.77	37	25.07
20151215083023-B6	(3)	3.00	2.90	8.58	10.25	2	2.00	0.77	2.90	10.69
20151215083133-B7	1	1.00	0.90	2.67	5.92	8	8.00	6.77	26	21.38
20151215083253-B8	0	0.00	-0.10	-0.29	0.05	2	2.00	0.77	2.90	10.69
20151215083403-B9	0	0.00	-0.10	-0.29	0.05	57	57.00	55.77	211	57.07
20151215083513-B10	0	0.00	-0.10	-0.29	0.05	0	0.00	-1.23	-4.66	0.22
20151215083623-B11	0	0.00	-0.10	-0.29	0.05	0	0.00	-1.23	-4.66	0.22
20151215083743-B12	0	0.00	-0.10	-0.29	0.05	3	3.00	1.77	6.68	13.09
20151215083853-B13	0	0.00	-0.10	-0.29	0.05	2	2.00	0.77	2.90	10.69
20151215084003-B14	0	0.00	-0.10	-0.29	0.05	1	1.00	-0.23	-0.88	7.56
20151215084113-B15	1	1.00	0.90	2.67	5.92	3	3.00	1.77	6.68	13.09
20151215084234-B16	0	0.00	-0.10	-0.29	0.05	4	4.00	2.77	10	15.12
20151215084344-B17	0	0.00	-0.10	-0.29	0.05	0	0.00	-1.23	-4.66	0.22
20151215084454-B18	0	0.00	-0.10	-0.29	0.05	3	3.00	1.77	6.68	13.09
20151215084614-B19	1	1.00	0.90	2.67	5.92	2	2.00	0.77	2.90	10.69
20151215084724-B20	0	0.00	-0.10	-0.29	0.05	3	3.00	1.77	6.68	13.09
20151215084834-B21	1	1.00	0.90	2.67	5.92	4	4.00	2.77	10	15.12
20151215084944-B22	0	0.00	-0.10	-0.29	0.05	1	1.00	-0.23	-0.88	7.56
20151215085104-B23	3	3.00	2.90	8.58	10.25	7	7.00	5.77	22	20.00
20151215085214-B24	1	1.00	0.90	2.67	5.92	5	5.00	3.77	14	16.90
20151215085324-B25	0	0.00	-0.10	-0.29	0.05	2	2.00	0.77	2.90	10.69
20151215085434-B26	0	0.00	-0.10	-0.29	0.05	3	3.00	1.77	6.68	13.09
20151215085554-B27	0	0.00	-0.10	-0.29	0.05	1	1.00	-0.23	-0.88	7.56

Page <u>6</u> of <u>9</u>

12/15/15

Survey Number 15-FPDP-ERWM-0502-S 1-80

<u>Cal Due:</u> 4/8/16

Batch Number 14415

Efficiency (%)				r Background		3	tical Level	<u>CPM</u>	MDC (DP	
Alpha Efficiency33.81Beta Efficiency26.46	$ \pm 0.31 $ $ 5 \pm 0.34 $	-	Backgrou Backgroun	and (CPM) ad (CPM)	0.10 1.23	Alpha In Beta Inst		1	Alpha Beta	12 26
Sample ID	<u>Alpha</u> <u>Total</u> <u>Counts</u>	<u>Gross</u> <u>Alpha</u> <u>CPM</u>	<u>Net</u> <u>Alpha</u> <u>CPM</u>	<u>Alpha DPN</u> <u>Activity</u>	<u>1</u> <u>2σ</u>	<u>Beta</u> <u>Total</u> <u>Counts</u>	<u>Gross</u> <u>Beta</u> <u>CPM</u>	<u>Net</u> <u>Beta</u> <u>CPM</u>	<u>Beta DPM</u> <u>Activity</u>	2σ
20151215085704-B28	0	0.00	-0.10	-0.29	0.05	5	5.00	3.77	14	16.90
20151215085814-B29	0	0.00	-0.10	-0.29	0.05	3	3.00	1.77	6.68	13.09
20151215085924-B30	2	2.00	1.90	5.62	8.37	0	0.00	-1.23	-4.66	0.22
20151215090045-B31	0	0.00	-0.10	-0.29	0.05	7	7.00	5.77	22	20.00
20151215090155-B32	1	1.00	0.90	2.67	5.92	3	3.00	1.77	6.68	13.09
20151215090305-B33	0	0.00	-0.10	-0.29	0.05	2	2.00	0.77	2.90	10.69
20151215090415-B34	1	1.00	0.90	2.67	5.92	1	1.00	-0.23	-0.88	7.56
20151215090535-B35	1	1.00	0.90	2.67	5.92	9	9.00	7.77	29	22.68
20151215090645-B36	0	0.00	-0.10	-0.29	0.05	3	3.00	1.77	6.68	13.09
20151215090755-B37	1	1.00	0.90	2.67	5.92	0	0.00	-1.23	-4.66	0.22
20151215090905-B38	1	1.00	0.90	2.67	5.92	4	4.00	2.77	10	15.12
20151215091025-B39	0	0.00	-0.10	-0.29	0.05	1	1.00	-0.23	-0.88	7.50
20151215091135-B40	0	0.00	-0.10	-0.29	0.05	0	0.00	-1.23	-4.66	0.22
20151215091245-B41	0	0.00	-0.10	-0.29	0.05	3	3.00	1.77	6.68	13.09
20151215091355-B42	0	0.00	-0.10	-0.29	0.05	3	3.00	1.77	6.68	13.09
20151215091515-B43	0	0.00	-0.10	-0.29	0.05	3	3.00	1.77	6.68	13.09
20151215091625-B44	1	1.00	0.90	2.67	5.92	7	7.00	5.77	22	20.00
20151215091735-B45	1	1.00	0.90	2.67	5.92	2	2.00	0.77	2.90	10.69
20151215091845-B46	0	0.00	-0.10	-0.29	0.05	0	0.00	-1.23	-4.66	0.22
20151215092005-B47	0	0.00	-0.10	-0.29	0.05	2	2.00	0.77	2.90	10.69
20151215092116-B48	0	0.00	-0.10	-0.29	0.05	0	0.00	-1.23	-4.66	0.22
20151215092226-B49	0	0.00	-0.10	-0.29	0.05	1	1.00	-0.23	-0.88	7.50
20151215092346-B50	0	0.00	-0.10	-0.29	0.05	1	1.00	-0.23	-0.88	7.50
20151215092456-B51	0	0.00	-0.10	-0.29	0.05	3	3.00	1.77	6.68	13.09
20151215092606-B52	0	0.00	-0.10	-0.29	0.05	2	2.00	0.77	2.90	10.69
20151215092716-B53	0	0.00	-0.10	-0.29	0.05	1	1.00	-0.23		7.50
20151215092836-B54	2	2.00	1.90	5.62	8.37	0	0.00	-1.23	0.00	0.22
20151215092946-B55	0	0.00	-0.10	-0.29	0.05	3	3.00	1.77	6.68	13.09
20151215093056-B56	1	1.00	0.90	2.67	5.92	2	2.00	0.77	2.90	10.69
20151215093206-B57	0	0.00	-0.10	-0.29	0.05	3	3.00	1.77	6.68	13.09
20151215093326-B58	0	0.00	-0.10	-0.29	0.05	6	6.00	4.77		18.52

Page 7 of 9

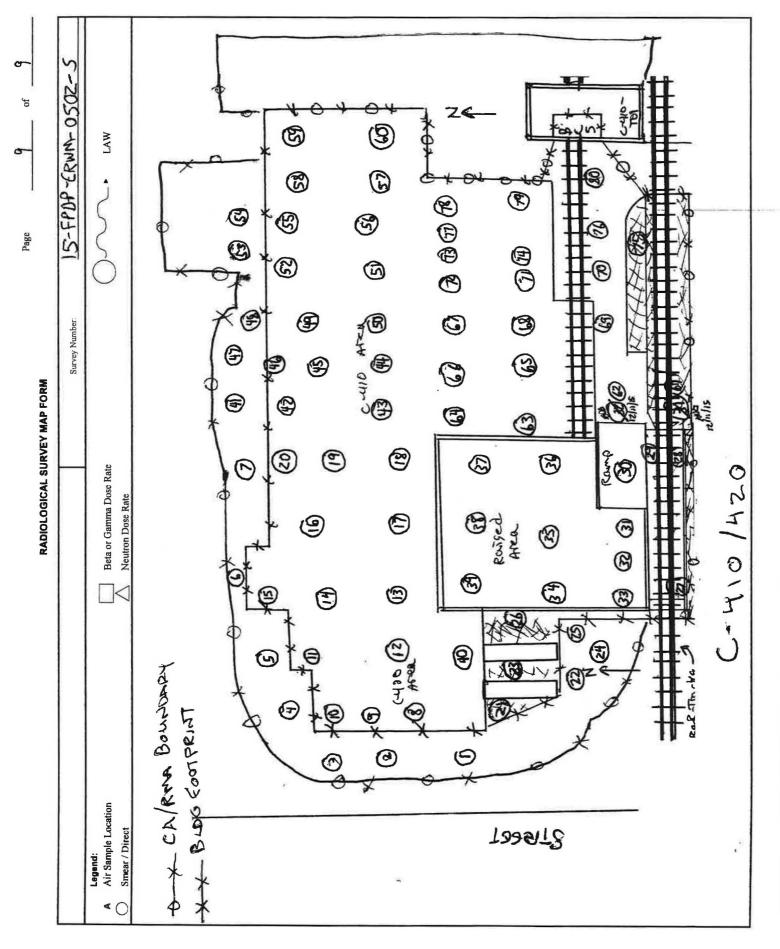
8:21

12/15/15

Survey Number 15-FPDP-ERWM-0502-S 1-80

<u>Cal Due:</u> 4/8/16

Batch Number 14415


Efficiency (%)		Weekly	<u>y 24 Houi</u>	Background	<u>(cpm)</u>	Batch Critical Level CPM			MDC (DPM)		
Alpha Efficiency33.81Beta Efficiency26.46	$ \pm 0.31 \pm 0.34 $		Backgrou Backgroun	·····).10 1.23	Alpha In Beta Inst		1 4	Alpha Beta	12 26	
Sample 1D	<u>Alpha</u> <u>Total</u> <u>Counts</u>	<u>Gross</u> <u>Alpha</u> <u>CPM</u>	<u>Net</u> <u>Alpha</u> <u>CPM</u>	<u>Alpha DPM</u> <u>Activity</u>	<u>2σ</u>	<u>Beta</u> <u>Total</u> <u>Counts</u>	<u>Gross</u> <u>Beta</u> <u>CPM</u>	<u>Net</u> <u>Beta</u> <u>CPM</u>	<u>Beta DPM</u> <u>Activity</u>	<u>2σ</u>	
20151215093436-B59	0	0.00	-0.10	-0.29	0.05	2	2.00	0.77	2.90	10.69	
20151215093546-B60	0	0.00	-0.10	-0.29	0.05	0	0.00	-1.23	-4.66	0.22	
20151215093656-B61	0	0.00	-0.10	-0.29	0.05	4	4.00	2.77	10	15.12	
20151215093816-B62	0	0.00	-0.10	-0.29	0.05	3	3.00	1.77	6.68	13.09	
20151215093927-B63	0	0.00	-0.10	-0.29	0.05	3	3.00	1.77	6.68	13.09	
20151215094036-B64	0	0.00	-0.10	-0.29	0.05	2	2.00	0.77	2.90	10.69	
20151215094147-B65	1	1.00	0.90	2.67	5.92	1	1.00	-0.23	-0.88	7.56	
20151215094307-B66	0	0.00	-0.10	-0.29	0.05	2	2.00	0.77	2.90	10.69	
20151215094417-B67	0	0.00	-0.10	-0.29	0.05	3	3.00	1.77	6.68	13.09	
20151215094527-B68	0	0.00	-0.10	-0.29	0.05	1	1.00	-0.23	-0.88	7.56	
20151215094637-B69	0	0.00	-0.10	-0.29	0.05	2	2.00	0.77	2.90	10.69	
20151215094757-B70	0	0.00	-0.10	-0.29	0.05	2	2.00	0.77	2.90	10.69	
20151215094907-B71	0	0.00	-0.10	-0.29	0.05	0	0.00	-1.23	-4.66	0.22	
20151215095017-B72	0	0.00	-0.10	-0.29	0.05	2	2.00	0.77	2.90	10.69	
20151215095127-B73	0	0.00	-0.10	-0.29	0.05	2	2.00	0.77	2.90	10.69	
20151215095247-B74	0	0.00	-0.10	-0.29	0.05	7	7.00	5.77	22	20.00	
20151215095357-B75	0	0.00	-0.10	-0.29	0.05	0	0.00	-1.23	-4.66	0.22	
20151215095507-B76	0	0.00	-0.10	-0.29	0.05	3	3.00	1.77	6.68	13.09	
20151215095617-B77	0	0.00	-0.10	-0.29	0.05	3	3.00	1.77	6.68	13.09	
20151215095737-B78	1	1.00	0.90	2.67	5.92	5	5.00	3.77	14	16.90	
20151215095847-B79	0	0.00	-0.10	-0.29	0.05	1	1.00	-0.23	-0.88	7.56	
20151215095957-B80	1	1.00	0.90	2.67	5.92	5	5.00	3.77	14	16.90	

Bullies and Sampling Tech Review: Kennethed, Blass B-14 Count Room Review: (

Page_8_ of _9

12/15/15

8:21

Review the identified Gource Reference for This Form Prior to Attempting Completion Complete All Portria in Accordance with CP2-OP-0207

RP-F-0007 (09/14) CP3-RP-1108 THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C

SUMP WATER AND PIT SAMPLING ANALYTICAL RESULTS

THIS PAGE INTENTIONALLY LEFT BLANK

410-BSMTZ53-1	-CONC	from: C4	10-Z053	on 3	8/12/20	14 Media:	SC	SmpMethod: GR	
Comments: Cor	ncrete borings from	floor, Zone 53 -	Survey Unit	1					
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL									
Arsenic	18.9		mg/kg	U		18.9		SW846-6010B	/ X
Barium	42.1		mg/kg			2.36		SW846-6010B	/ X /
Cadmium	1.95		mg/kg			1.89		SW846-6010B	/ X /
Chromium	8.08		mg/kg			2.36		SW846-6010B	/ X /
Lead	18.9		mg/kg	U		18.9		SW846-6010B	/ X /
Mercury	0.016		mg/kg	U		0.016		SW846-7471A	/ X /
Selenium	18.9		mg/kg	U		18.9		SW846-6010B	/ X /
Silver	2.36		mg/kg	UB		2.36		SW846-6010B	/ X /
РРСВ									
PCB-1016	0.08		mg/kg	U		0.08		SW846-8082	/ X /
PCB-1221	0.1		mg/kg	U		0.1		SW846-8082	/ X /
PCB-1232	0.08		mg/kg	U		0.08		SW846-8082	/ X /
PCB-1242	0.05		mg/kg	U		0.05		SW846-8082	/ X /
PCB-1248	0.08		mg/kg	U		0.08		SW846-8082	/ X /
PCB-1254	0.07		mg/kg	U		0.07		SW846-8082	/ X /
PCB-1260	0.1		mg/kg			0.08		SW846-8082	/ X /
PCB-1268	0.06		mg/kg	U		0.06		SW846-8082	/ X /
Polychlorinated biphen	yl 0.1		mg/kg	U		0.1		SW846-8082	/ X .
410-BSMTZ53-1-	-WIPE1	from: C4	10-Z053	on 3	8/7/201	4 Media:	SW	SmpMethod: GR	
Comments: Rad	d Wipe of Zone 53 S	Survey Unit 1							
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
RADS									
Americium-241	1.09	0.215	pCi/sam	ple		0.245	0.294	RL-7128	/ X /
Cesium-137	0.0643	0.129	pCi/sam	ple U		1.94	1.07	RL-7124	/ X .

pCi/sample

pCi/sample

pCi/sample

pCi/sample

pCi/sample

pCi/sample U

pCi/sample T

pCi/sample T

pCi/sample T

pCi/sample BU

0.374

0.138

0.137

5.31

3.98

1.13

0.433

1.37

0.385

0.587

0.278

0.112

0.294

1.47

5.74

4.48

0.2

221

11.5

230

RL-7128

RL-7128

RL-7128

RL-7140

RL-7100

RL-7128

RL-7128

RL-7128

RL-7128

RL-7128

/ X /

/X/

/ X /

/X/

/ X /

/X/

/ X /

/X/

/ X /

/ X /

0.202

0.098

0.562

0.185

4.21

1.18

0.126

13.7

3.39

13.9

0.739

0.151

6.87

0.902

75.8

25.4

0.156

1050

52.2

1090

Paducah OREIS Report for DD14-410-BSMT

*Verification/Validation/Assessment

Neptunium-237

Plutonium-238

Strontium-90

Thorium-230

Thorium-232

Uranium-234

Uranium-235

Uranium-238

Technetium-99

Plutonium-239/240

410-BSMTZ53	3-1-WIPE2	from: C47	10-Z053	on 3	8/7/2014	4 Media	SW	SmpMethod: GR	
Comments:	Rad Wipe of Zone 53	Survey Unit 1							
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
RADS	Results	201	Onito	Quan			110	Method	•/ •//(
Americium-241	9.75	0.647	pCi/sam	nle		0.246	1.73	RL-7128	/ X .
Cesium-137	3.72	1.36	pCi/sam	•		1.86	1.44	RL-7124	/ X
Neptunium-237	6.15	0.547	pCi/sam	•		0.342	1.28	RL-7128	/ X
Plutonium-238	1.42	0.259	pCi/sam	•		0.136	0.374	RL-7128	/ X
Plutonium-239/240	43.2	1.43	pCi/sam	•		0.142	8.19	RL-7128	/ X
Strontium-90	1.3	0.258	pCi/sam	•		4.81	0.419	RL-7140	/ X
Technetium-99	231	6.35	pCi/sam	•		3.98	13.5	RL-7100	/ X
Thorium-230	513	4.94	pCi/sam	•		1.11	84.3	RL-7128	/ X
Thorium-232	2.52	0.346	pCi/sam	•		0.401	0.562	RL-7128	/ X
Uranium-234	612	8.97	pCi/sam	•		1.14	121	RL-7128	/ X
Uranium-235	30.2	2.21	pCi/sam	•		0.348	6.36	RL-7128	/ X /
Uranium-238	640	9.15	pCi/sam	•		0.533	127	RL-7128	/ X .
410-BSMTZ53 Comments:	3-2-CONC Concrete borings from	from: C4' floor, Zone 53 -			8/12/20 ⁻	14 Media		SmpMethod: GR	
Comments:	Concrete borings from	floor, Zone 53 - Counting	Survey Unit 2		Foot	Reporting			
Comments: Analysis		floor, Zone 53 -		2			TPU	Method	V/V/A*
Comments: Analysis METAL	Concrete borings from Results	floor, Zone 53 - Counting	Survey Unit : Units	2 Result Qual	Foot	Reporting Limit	TPU	Method	
Comments: Analysis METAL Arsenic	Concrete borings from Results 19.4	floor, Zone 53 - Counting	Survey Unit : Units mg/kg	2 Result	Foot	Reporting Limit	TPU	Method SW846-6010B	/ X
Comments: Analysis METAL Arsenic Barium	Concrete borings from Results 19.4 62.6	floor, Zone 53 - Counting	Survey Unit : Units mg/kg mg/kg	2 Result Qual	Foot	Reporting Limit 19.4 2.42	TPU	Method SW846-6010B SW846-6010B	/ X . / X .
Comments: Analysis METAL Arsenic Barium Cadmium	Concrete borings from Results 19.4 62.6 1.94	floor, Zone 53 - Counting	Survey Unit : Units mg/kg mg/kg mg/kg	2 Result Qual	Foot	Reporting Limit 19.4 2.42 1.94	TPU	Method SW846-6010B SW846-6010B SW846-6010B	/ X . / X . / X .
Comments: Analysis METAL Arsenic Barium Cadmium Chromium	Concrete borings from Results 19.4 62.6 1.94 7.66	floor, Zone 53 - Counting	Survey Unit : Units mg/kg mg/kg mg/kg mg/kg	2 Result Qual U U	Foot	Reporting Limit 19.4 2.42 1.94 2.42	TPU	Method SW846-6010B SW846-6010B SW846-6010B SW846-6010B	/ X / X / X / X
Comments: Analysis METAL Arsenic Barium Cadmium Chromium Lead	Concrete borings from Results 19.4 62.6 1.94 7.66 19.4	floor, Zone 53 - Counting	Survey Unit : Units mg/kg mg/kg mg/kg mg/kg mg/kg	2 Result Qual	Foot	Reporting Limit 19.4 2.42 1.94 2.42 19.4	TPU	Method SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B	/ X . / X . / X . / X . / X .
Comments: Analysis METAL Arsenic Barium Cadmium Cadmium Chromium Lead Mercury	Concrete borings from Results 19.4 62.6 1.94 7.66 19.4 0.02	floor, Zone 53 - Counting	Survey Unit : Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 Result Qual U U U	Foot	Reporting Limit 19.4 2.42 1.94 2.42 19.4 0.016	TPU	Method SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-7471A	/ X . / X . / X . / X . / X .
Comments: Analysis METAL Arsenic Barium Cadmium Chromium Lead	Concrete borings from Results 19.4 62.6 1.94 7.66 19.4	floor, Zone 53 - Counting	Survey Unit : Units mg/kg mg/kg mg/kg mg/kg mg/kg	2 Result Qual U U	Foot	Reporting Limit 19.4 2.42 1.94 2.42 19.4	TPU	Method SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B	V/V/A* / X / / X / / X / / X / / X / / X / / X /
Comments: Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver	Concrete borings from Results 19.4 62.6 1.94 7.66 19.4 0.02 19.4	floor, Zone 53 - Counting	Survey Unit : Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 Result Qual U U U U U	Foot	Reporting Limit 19.4 2.42 1.94 2.42 19.4 0.016 19.4	TPU	Method SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-7471A SW846-6010B	/ X , / X , / X , / X , / X , / X , / X ,
Comments: Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver PPCB	Concrete borings from Results 19.4 62.6 1.94 7.66 19.4 0.02 19.4	floor, Zone 53 - Counting	Survey Unit : Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 Result Qual U U U U U	Foot	Reporting Limit 19.4 2.42 1.94 2.42 19.4 0.016 19.4	TPU	Method SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-7471A SW846-6010B	/ X / X / X / X / X / X / X / X
Comments: Analysis METAL Arsenic Barium Cadmium Cadmium Chromium Lead Mercury Selenium Silver PPCB PCB-1016	Concrete borings from Results 19.4 62.6 1.94 7.66 19.4 0.02 19.4 2.42	floor, Zone 53 - Counting	Survey Unit : Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 Result Qual U U U U U U U U U B	Foot	Reporting Limit 19.4 2.42 1.94 2.42 19.4 0.016 19.4 2.42	TPU	Method SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-7471A SW846-6010B SW846-6010B SW846-6010B	/ X / X / X / X / X / X / X / X
Comments: Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver PPCB PCB-1016 PCB-1221	Concrete borings from Results 19.4 62.6 1.94 7.66 19.4 0.02 19.4 2.42 0.08	floor, Zone 53 - Counting	Survey Unit : Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 Result Qual U U U U U U U U U U	Foot	Reporting Limit 19.4 2.42 1.94 2.42 19.4 0.016 19.4 2.42 0.08	TPU	Method SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-7471A SW846-6010B SW846-6010B SW846-6010B SW846-6010B	/ X / X / X / X / X / X / X / X / X / X
Comments: Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver	Concrete borings from Results 19.4 62.6 1.94 7.66 19.4 0.02 19.4 2.42 0.08 0.1	floor, Zone 53 - Counting	Survey Unit : Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 Result Qual U U U U U U U U U U U U	Foot	Reporting Limit 19.4 2.42 1.94 2.42 19.4 0.016 19.4 2.42 0.08 0.1	TPU	Method SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-7471A SW846-6010B SW846-6010B SW846-6010B SW846-8082 SW846-8082	/ X / X / X / X / X / X / X / X / X / X
Comments: Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver PPCB PCB-1016 PCB-1221 PCB-1232 PCB-1242	Concrete borings from Results 19.4 62.6 1.94 7.66 19.4 0.02 19.4 2.42 0.08 0.1 0.08	floor, Zone 53 - Counting	Survey Unit : Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 Result Qual U U U U U U U U U U U U U	Foot	Reporting Limit 19.4 2.42 1.94 2.42 19.4 0.016 19.4 2.42 0.08 0.1 0.08	TPU	Method SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-7471A SW846-6010B SW846-6010B SW846-6010B SW846-8010B SW846-8082 SW846-8082 SW846-8082	/ X / X / X / X / X / X / X / X / X / X
Comments: Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver PCB PCB-1016 PCB-1221 PCB-1232	Concrete borings from Results 19.4 62.6 1.94 7.66 19.4 0.02 19.4 2.42 0.08 0.1 0.08 0.1 0.08 0.05	floor, Zone 53 - Counting	Survey Unit : Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 Result Qual U U U U U U U U U U U U U U U	Foot	Reporting Limit 19.4 2.42 1.94 2.42 19.4 0.016 19.4 2.42 0.08 0.1 0.08 0.1 0.08 0.05	TPU	Method SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-7471A SW846-6010B SW846-6010B SW846-8082 SW846-8082 SW846-8082 SW846-8082	/ X / X / X / X / X / X / X / X / X / X
Comments: Analysis METAL Arsenic Barium Cadmium Cadmium Chromium Lead Mercury Selenium Silver PPCB PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254	Concrete borings from Results 19.4 62.6 1.94 7.66 19.4 0.02 19.4 2.42 0.08 0.1 0.08 0.05 0.08	floor, Zone 53 - Counting	Survey Unit : Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 Result Qual U U U U U U U U U U U U U U U U U	Foot	Reporting Limit 19.4 2.42 1.94 2.42 19.4 0.016 19.4 2.42 0.08 0.1 0.08 0.05 0.08	TPU	Method SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-8082 SW846-8082 SW846-8082 SW846-8082 SW846-8082 SW846-8082	/ X / X / X / X / X / X / X / X / X / X
Comments: Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver PPCB PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248	Concrete borings from Results 19.4 62.6 1.94 7.66 19.4 0.02 19.4 2.42 0.08 0.1 0.08 0.1 0.08 0.05 0.08 0.07	floor, Zone 53 - Counting	Survey Unit : Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	2 Result Qual U U U U U U U U U U U U U U U U U	Foot	Reporting Limit 19.4 2.42 1.94 2.42 19.4 0.016 19.4 2.42 0.08 0.1 0.08 0.05 0.08 0.05 0.08 0.07	TPU	Method SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-8082 SW846-8082 SW846-8082 SW846-8082 SW846-8082 SW846-8082 SW846-8082	/ X , / X , / X , / X , / X , / X , / X ,

410-BSMTZ	53-2-CONCD	from: C47	10-Z053	on 3	/12/20	14 Media	SC	SmpMethod: GR	
Comments:	Concrete borings from	floor, Zone 53 -	Survey Unit	2, Duplic	ate				
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL									
Arsenic	19.2		mg/kg	U		19.2		SW846-6010B	/ X /
Barium	55.5		mg/kg			2.4		SW846-6010B	/ X /
Cadmium	1.92		mg/kg	U		1.92		SW846-6010B	/ X .
Chromium	8.06		mg/kg			2.4		SW846-6010B	/ X .
_ead	19.2		mg/kg	U		19.2		SW846-6010B	/ X .
Vercury	0.016		mg/kg	U		0.016		SW846-7471A	/ X /
Selenium	19.2		mg/kg	U		19.2		SW846-6010B	/ X /
Silver	2.4		mg/kg	UB		2.4		SW846-6010B	/ X /
РРСВ									
PCB-1016	0.08		mg/kg	U		0.08		SW846-8082	/ X /
PCB-1221	0.1		mg/kg	U		0.1		SW846-8082	/ X /
PCB-1232	0.08		mg/kg	U		0.08		SW846-8082	/ X /
PCB-1242	0.05		mg/kg	U		0.05		SW846-8082	/ X /
PCB-1248	0.08		mg/kg	U		0.08		SW846-8082	/ X /
PCB-1254	0.07		mg/kg	U		0.07		SW846-8082	/ X /
PCB-1260	0.12		mg/kg			0.08		SW846-8082	/ X /
PCB-1268	0.06		mg/kg	U		0.06		SW846-8082	/ X /
Polychlorinated b	iphenyl 0.12		mg/kg			0.1		SW846-8082	/ X /
410-BSMTZ	53-2-WIPE1	from: C4	10-7053	on 3	/7/2014	4 Media	SW	SmpMethod: GR	
Comments:	Rad Wipe of Zone 53 S		2000	0110	11201	+ Modia		ompiniou. Or	
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
RADS	Results	End	Units	Quai	Note	Linin	IFU	Method	V/V/A
Americium-241	0.143	0.0934	pCi/sam			0.253	0.134	RL-7128	/ X /
Cesium-137	0.506	1.01	pCi/sam	•		2.01	1.21	RL-7124	/ X /
	0.500	0.12	pCi/sam	•		0.354	0.175	RL-7124	/ X /
Neptunium-237			•	•					/ X /
Plutonium-238 Plutonium-239/24	0.0212 40 0.773	0.0342 0.193	pCi/sam pCi/sam	•		0.138 0.138	0.0561 0.245	RL-7128 RL-7128	/ X /
			•	•				-	
Strontium-90	0.786	0.162	pCi/sam			5.2	0.257	RL-7140	/ X /
Technetium-99	50.9	3.76	pCi/sam	•		3.98	4.58	RL-7100	/ X /
Thorium-230	3.14	0.412	pCi/sam	•		1.11	0.832	RL-7128	/ X /
Thorium-232	-0.00373	0.00364	pCi/sam	•		0.4	0.157	RL-7128	/ X /
Jranium-234	729	10.8	pCi/sam			1.21	152	RL-7128	/ X /
Uranium-235	36.6	2.68	pCi/sam	•		0.345	8.09	RL-7128	/ X /
Uranium-238	764	11	pCi/sam	ple T		0.597	160	RL-7128	/ X /

410-BSMTZ53	-2-WIPE2	from: C4	10-Z053	on 3	8/7/2014	4 Media	: SW	SmpMethod: GR	
Comments:	Rad Wipe of Zone 53 S	Survey Unit 2							
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
RADS	rtoouno		Onito					Motriou	•,•,•,
Americium-241	0.415	0.144	pCi/sam	ple		0.25	0.185	RL-7128	/ X
Cesium-137	1.05	2.1	pCi/sam			2.14	2.1	RL-7124	/ X
Neptunium-237	0.596	0.171	pCi/sam	•		0.331	0.237	RL-7128	/ X
Plutonium-238	0.0504	0.0477	pCi/sam	•		0.133	0.0659	RL-7128	/ X
Plutonium-239/240	1.73	0.272	pCi/sam	•		0.131	0.419	RL-7128	/ X
Strontium-90			pCi/sam		Х			RL-7140	/ X
Technetium-99	67.5	4.07	pCi/sam			3.98	5.35	RL-7100	/ X
Thorium-230	13.8	0.834	pCi/sam			1.12	2.6	RL-7128	/ X
Thorium-232	0.0815	0.0794	pCi/sam			0.409	0.168	RL-7128	/ X
Uranium-234	224	3.85	pCi/sam	•		1.03	39.6	RL-7128	/ X .
Uranium-235	11.5	0.968	pCi/sam			0.218	2.24	RL-7128	/ X .
Uranium-238	233	3.92	pCi/sam			0.457	41.3	RL-7128	/ X .
410-BSMTZ54	1.0010		_						
410-BSM1754	-1-CONC	from: C4	10-Z054	on 3	3/11/20 ⁻	14 Media	: SC	SmpMethod: GR	
	Concrete borings from	floor, Zone 54 -	Survey Unit	1					
	Concrete borings from Results	floor, Zone 54 - Counting Error	Survey Unit	1 Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
Comments:		Counting	-	Result			TPU	Method	V/V/A*
Comments: Analysis		Counting	-	Result			TPU	Method SW846-6010B	V/V/A* / X /
Comments: Analysis METAL Arsenic	Results	Counting	Units	Result Qual		Limit	TPU		/ X /
Comments: Analysis METAL Arsenic Barium	Results	Counting	Units mg/kg	Result Qual		Limit 19.7	TPU	SW846-6010B	/ X . / X .
Comments: Analysis METAL Arsenic Barium Cadmium	Results 19.7 34.9	Counting	Units mg/kg mg/kg	Result Qual U		Limit 19.7 2.46	TPU	SW846-6010B SW846-6010B	/ X . / X . / X .
Comments: Analysis METAL Arsenic Barium Cadmium Chromium	Results 19.7 34.9 1.97	Counting	Units mg/kg mg/kg mg/kg	Result Qual U		Limit 19.7 2.46 1.97	TPU	SW846-6010B SW846-6010B SW846-6010B	
Comments: Analysis METAL Arsenic Barium Cadmium Chromium Lead	Results 19.7 34.9 1.97 8.49	Counting	Units mg/kg mg/kg mg/kg mg/kg	Result Qual U U		Limit 19.7 2.46 1.97 2.46	TPU	SW846-6010B SW846-6010B SW846-6010B SW846-6010B	/ X / / X / / X /
Comments:	Results 19.7 34.9 1.97 8.49 19.7	Counting	Units mg/kg mg/kg mg/kg mg/kg mg/kg	Result Qual U U		Limit 19.7 2.46 1.97 2.46 19.7	TPU	SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B	/ X . / X . / X . / X .
Comments: Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury	Results 19.7 34.9 1.97 8.49 19.7 0.016	Counting	Units mg/kg mg/kg mg/kg mg/kg mg/kg	Result Qual U U U U		Limit 19.7 2.46 1.97 2.46 19.7 0.016	TPU	SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-7471A	/ X ; / X ; / X ; / X ; / X ;
Comments: Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium	Results 19.7 34.9 1.97 8.49 19.7 0.016 19.7	Counting	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result Qual U U U U U U		Limit 19.7 2.46 1.97 2.46 19.7 0.016 19.7	TPU	SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-7471A SW846-6010B	/ X , / X , / X , / X , / X , / X , / X ,
Comments: Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver PPCB	Results 19.7 34.9 1.97 8.49 19.7 0.016 19.7	Counting	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result Qual U U U U U U		Limit 19.7 2.46 1.97 2.46 19.7 0.016 19.7	TPU	SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-7471A SW846-6010B	/ X / X / X / X / X / X / X / X
Comments: Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver PPCB PCB-1016	Results 19.7 34.9 1.97 8.49 19.7 0.016 19.7 2.46	Counting	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result Qual U U U U U U U U U B		Limit 19.7 2.46 1.97 2.46 19.7 0.016 19.7 2.46	TPU	SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-7471A SW846-6010B SW846-6010B SW846-6010B	/ X / X / X / X / X / X / X / X
Comments: Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver PPCB PCB-1016 PCB-1221	Results 19.7 34.9 1.97 8.49 19.7 0.016 19.7 2.46 0.08	Counting	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result Qual U U U U U U U U U B		Limit 19.7 2.46 1.97 2.46 19.7 0.016 19.7 2.46 0.08	TPU	SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-7471A SW846-6010B SW846-6010B SW846-6010B SW846-8082	/ X / X / X / X / X / X / X / X / X
Comments: Analysis METAL Arsenic Barium Cadmium Cadmium Chromium Lead Mercury Selenium Silver PPCB PCB-1016 PCB-1221 PCB-1232	Results 19.7 34.9 1.97 8.49 19.7 0.016 19.7 2.46 0.08 0.1	Counting	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result Qual U U U U U U U U U U U U U		Limit 19.7 2.46 1.97 2.46 19.7 0.016 19.7 2.46 0.08 0.1	TPU	SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-7471A SW846-6010B SW846-6010B SW846-6010B SW846-8082 SW846-8082	/ X / X / X / X / X / X / X / X / X / X
Comments: Analysis METAL Arsenic Barium Cadmium Cadmium Chromium Lead Mercury Selenium Silver PPCB PCB-1016 PCB-1021 PCB-1222 PCB-1242	Results 19.7 34.9 1.97 8.49 19.7 0.016 19.7 2.46 0.08 0.1 0.08	Counting	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result Qual U U U U U U U U U U U U U U		Limit 19.7 2.46 1.97 2.46 19.7 0.016 19.7 2.46 0.08 0.1 0.08	TPU	SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-7471A SW846-6010B SW846-6010B SW846-6010B SW846-8082 SW846-8082 SW846-8082	/ X / X / X / X / X / X / X / X / X / X
Comments: Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver	Results 19.7 34.9 1.97 8.49 19.7 0.016 19.7 2.46 0.08 0.1 0.08 0.05	Counting	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result Qual U U U U U U U U U U U U U U		Limit 19.7 2.46 1.97 2.46 19.7 0.016 19.7 2.46 0.016 0.08 0.1 0.08 0.05	TPU	SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-8082 SW846-8082 SW846-8082 SW846-8082	/ X / X / X / X / X / X / X / X / X / X
Comments: Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver PPCB PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254	Results 19.7 34.9 1.97 8.49 19.7 0.016 19.7 2.46 0.08 0.1 0.08 0.05 0.08	Counting	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result Qual U U U U U U U U U U U U U U U U		Limit 19.7 2.46 1.97 2.46 19.7 0.016 19.7 2.46 0.08 0.1 0.08 0.05 0.08	TPU	SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-8082 SW846-8082 SW846-8082 SW846-8082 SW846-8082	/ X / X / X / X / X / X / X / X / X / X
Comments: Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver PPCB PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248	Results 19.7 34.9 1.97 8.49 19.7 0.016 19.7 2.46 0.08 0.1 0.08 0.1 0.08 0.05 0.08 0.07	Counting	Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Result Qual U U U U U U U U U U U U U U U U U U U		Limit 19.7 2.46 1.97 2.46 19.7 0.016 19.7 2.46 0.08 0.1 0.08 0.05 0.08 0.05 0.08 0.07	TPU	SW846-6010B SW846-6010B SW846-6010B SW846-6010B SW846-7471A SW846-6010B SW846-6010B SW846-6010B SW846-8082 SW846-8082 SW846-8082 SW846-8082 SW846-8082 SW846-8082 SW846-8082	/ X / X / X / X / X / X / X

410-BSIM1254	-1-WIPE1	from: C47	10-Z054	on 3	/7/2014	4 Media	SW	SmpMethod: G	R
Comments: F	Rad Wipe of Zone 54 S	Survey Unit 1							
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
RADS									
Americium-241	0.297	0.123	pCi/samp			0.249	0.163	RL-7128	/ X
Cesium-137	-0.473	0.945	pCi/samp			1.57	0.945	RL-7124	/ X
Neptunium-237	0.515	0.2	pCi/samp			0.369	0.255	RL-7128	/ X
Plutonium-238	0.0122	0.0305	pCi/samp			0.154	0.0626	RL-7128	/ X
Plutonium-239/240	1.08	0.243	pCi/samp	ole		0.158	0.322	RL-7128	/ X
Strontium-90			pCi/samp	le BX	Х			RL-7140	/ X
Technetium-99	44.7	3.64	pCi/samp	le		3.98	4.3	RL-7100	/ X
Thorium-230	12.9	0.845	pCi/samp	le		1.12	2.48	RL-7128	/ X
Thorium-232	0.069	0.0877	pCi/samp	ole U		0.402	0.177	RL-7128	/ X
Uranium-234	183	3.48	pCi/samp	ole		1.02	33.1	RL-7128	/ X
Uranium-235	9.67	0.888	pCi/samp	ole		0.205	1.96	RL-7128	/ X
								DI 7400	
Uranium-238 410-BSMTZ54-	200 -1-WIPE2	3.62 from: C41	pCi/samp 10-Z054		/7/2014	0.438 4 Media	36.2 : SW	RL-7128 SmpMethod: G	;R
410-BSMTZ54		from: C47			/7/2014				
	-1-WIPE2	from: C47			/7/2014 Foot Note				R
410-BSMTZ54- Comments: F	-1-WIPE2 Rad Wipe of Zone 54 S	from: C4 Survey Unit 1 Counting	10-Z054 Units	on 3 Result Qual	Foot	4 Media	: SW	SmpMethod: G	R
410-BSMTZ54- Comments: F Analysis	-1-WIPE2 Rad Wipe of Zone 54 S	from: C4 Survey Unit 1 Counting	10-Z054	on 3 Result Qual	Foot	4 Media	: SW	SmpMethod: G	;R V/V/A* / X
410-BSMTZ54- Comments: F Analysis RADS	-1-WIPE2 Rad Wipe of Zone 54 S Results	from: C4 Survey Unit 1 Counting Error	10-Z054 Units	on 3. Result Qual	Foot	4 Media Reporting Limit	: SW TPU	SmpMethod: G Method	;R V/V/A* / X
410-BSMTZ54 Comments: F Analysis RADS Americium-241 Cesium-137	-1-WIPE2 Rad Wipe of Zone 54 S Results 0.18	from: C4 Survey Unit 1 Counting Error 0.0984	10-Z054 Units pCi/samp	on 3, Result Qual ole U	Foot	4 Media Reporting Limit 0.255	: SW TPU 0.139	SmpMethod: G Method RL-7128	;R
410-BSMTZ54 Comments: F Analysis RADS Americium-241 Cesium-137 Neptunium-237	-1-WIPE2 Rad Wipe of Zone 54 S Results 0.18 1.2	from: C4 Survey Unit 1 Counting Error 0.0984 2.41	Units DCi/samp pCi/samp	on 3. Result Qual ole U ole U ole U	Foot	4 Media Reporting Limit 0.255 2.22	: SW TPU 0.139 2.41	SmpMethod: G Method RL-7128 RL-7124	;R /X _/ X _/ X _/ X
410-BSMTZ54 Comments: F Analysis RADS Americium-241 Cesium-137 Neptunium-237 Plutonium-238	-1-WIPE2 Rad Wipe of Zone 54 S Results 0.18 1.2 0.413	from: C4 Survey Unit 1 Counting Error 0.0984 2.41 0.134	Units DCi/samp pCi/samp pCi/samp pCi/samp	on 3, Result Qual ole U ole U ole U ole U	Foot	4 Media Reporting Limit 0.255 2.22 0.351	: SW TPU 0.139 2.41 0.197	SmpMethod: G Method RL-7128 RL-7124 RL-7128	SR V/V/A* / X / X / X / X
410-BSMTZ54- Comments: F Analysis RADS Americium-241	-1-WIPE2 Rad Wipe of Zone 54 S Results 0.18 1.2 0.413 0.0295	from: C4 Survey Unit 1 Counting Error 0.0984 2.41 0.134 0.0376	Units DCi/samp pCi/samp pCi/samp pCi/samp pCi/samp	on 3, Result Qual ble U ble U ble U ble U ble U ble	Foot	4 Media Reporting Limit 0.255 2.22 0.351 0.134	: SW TPU 0.139 2.41 0.197 0.0584	SmpMethod: G Method RL-7128 RL-7124 RL-7128 RL-7128 RL-7128 RL-7128	SR V/V/A* / X / X / X / X / X / X
410-BSMTZ54- Comments: F Analysis RADS Americium-241 Cesium-137 Neptunium-237 Plutonium-238 Plutonium-239/240 Strontium-90	-1-WIPE2 Rad Wipe of Zone 54 S Results 0.18 1.2 0.413 0.0295	from: C4 Survey Unit 1 Counting Error 0.0984 2.41 0.134 0.0376	Units DCi/samp pCi/samp pCi/samp pCi/samp pCi/samp pCi/samp	on 3, Qual Die U Die U Die U Die U Die U Die BX	Foot Note	4 Media Reporting Limit 0.255 2.22 0.351 0.134	: SW TPU 0.139 2.41 0.197 0.0584	SmpMethod: G Method RL-7128 RL-7124 RL-7128 RL-7128 RL-7128 RL-7128	GR V/V/A* / X / X / X / X / X / X / X
410-BSMTZ54 Comments: F Analysis RADS Americium-241 Cesium-137 Neptunium-237 Plutonium-238 Plutonium-239/240 Strontium-90 Technetium-99	-1-WIPE2 Rad Wipe of Zone 54 S Results 0.18 1.2 0.413 0.0295 1.05	from: C4 Survey Unit 1 Counting Error 0.0984 2.41 0.134 0.0376 0.216	Units DCi/samp pCi/samp pCi/samp pCi/samp pCi/samp pCi/samp pCi/samp	on 3, Qual De U De U De U De U De U De BX De BX	Foot Note	4 Media Reporting Limit 0.255 2.22 0.351 0.134 0.128	: SW TPU 0.139 2.41 0.197 0.0584 0.292	SmpMethod: G Method / RL-7128 RL-7124 RL-7128 RL-7128 RL-7128 RL-7128 RL-7128	SR V/V/A* / X / X / X / X / X / X / X / X
410-BSMTZ54- Comments: F Analysis RADS Americium-241 Cesium-137 Neptunium-237 Plutonium-238 Plutonium-239/240	-1-WIPE2 Rad Wipe of Zone 54 S Results 0.18 1.2 0.413 0.0295 1.05 46.8	from: C4 Survey Unit 1 Counting Error 0.0984 2.41 0.134 0.0376 0.216 3.68	Units DCi/samp pCi/samp pCi/samp pCi/samp pCi/samp pCi/samp pCi/samp pCi/samp	on 3, Result Qual ole U ole U ole U ole U ole BX ole BX ole	Foot Note	4 Media Reporting Limit 0.255 2.22 0.351 0.134 0.128 3.98	: SW TPU 0.139 2.41 0.197 0.0584 0.292 4.39	SmpMethod: G Method // Compared for the second seco	R //V/A* / X / X / X / X / X / X / X / X
410-BSMTZ54 Comments: F Analysis RADS Americium-241 Cesium-137 Neptunium-237 Plutonium-238 Plutonium-239/240 Strontium-90 Technetium-99 Thorium-230 Thorium-232	-1-WIPE2 Rad Wipe of Zone 54 S Results 0.18 1.2 0.413 0.0295 1.05 46.8 7.35	from: C4 Survey Unit 1 Counting Error 0.0984 2.41 0.134 0.0376 0.216 3.68 0.591	Units DCi/samp pCi/samp pCi/samp pCi/samp pCi/samp pCi/samp pCi/samp pCi/samp pCi/samp	on 3. Result Qual ole U ole U ole U ole BX ole BX ole Ole ole U	Foot Note	4 Media Reporting Limit 0.255 2.22 0.351 0.134 0.128 3.98 1.15	: SW TPU 0.139 2.41 0.197 0.0584 0.292 4.39 1.49	SmpMethod: G Method RL-7128 RL-7124 RL-7128 RL-7128 RL-7128 RL-7128 RL-7140 RL-7100 RL-7128	R /X /X /X /X /X /X /X /X /X /X /X
410-BSMTZ54 Comments: F Analysis RADS Americium-241 Cesium-137 Neptunium-237 Plutonium-238 Plutonium-239/240 Strontium-90 Technetium-99 Thorium-230	-1-WIPE2 Rad Wipe of Zone 54 S Results 0.18 1.2 0.413 0.0295 1.05 46.8 7.35 0.0389	from: C4 Survey Unit 1 Counting Error 0.0984 2.41 0.134 0.0376 0.216 3.68 0.591 0.0844	Units DCi/samp pCi/samp pCi/samp pCi/samp pCi/samp pCi/samp pCi/samp pCi/samp pCi/samp pCi/samp pCi/samp	on 3, Result Qual ole U ole U ole U ole BX ole BX ole U ole U ole U	Foot Note	4 Media Reporting Limit 0.255 2.22 0.351 0.134 0.128 3.98 1.15 0.402	: SW TPU 0.139 2.41 0.197 0.0584 0.292 4.39 1.49 0.176	SmpMethod: G Method RL-7128 RL-7124 RL-7128 RL-7128 RL-7128 RL-7128 RL-7128 RL-7140 RL-7100 RL-7128 RL-7128 RL-7128	/ X SR V/V/A* / X / X / X / X / X / X / X / X

METAL Arsenic 19.7 mg/kg U 19.7 SW846-6010B />) Barium 50.4 mg/kg 2.46 SW846-6010B />) Chromium 1.97 mg/kg U 1.97 SW846-6010B />) Lead 19.7 mg/kg U 19.7 SW846-6010B />) Lead 19.7 mg/kg U 19.7 SW846-6010B />) Mercury 0.026 mg/kg U 19.7 SW846-6010B />) Selenium 19.7 mg/kg U 19.7 SW846-6010B />) Selenium 19.7 mg/kg U 19.7 SW846-6010B />) PCB - 2.46 SW846-8082 />) />>	410-BSMTZ54-2-0	CONC	from: C4	10-Z054	on 3	8/11/20	14 Media:	SC	SmpMethod: GR	
Analysis Results Error Units Qual Note Limit TPU Method V/V/A METAL Marsenic 19.7 SW846-6010B //>/ Analysis SW846-6010B //>/ Analysis SW846-6010B //>/ Analysis SW846-6010B //>/ Analysis SW846-6010B // Analysis SW846-6010B //	Comments: Con	crete borings from	floor, Zone 54 -	Survey Unit	2					
Arsenic 19.7 mg/kg U 19.7 SW846-6010B / / / / / / / / / / / / / / / / / / /	Analysis	Results		Units				TPU	Method	V/V/A*
Barium 50.4 mg/kg 2.46 SW846-6010B /> Cadmium 1.97 mg/kg 2.46 SW846-6010B /> Chromium 6.97 mg/kg 2.46 SW846-6010B /> Lead 19.7 mg/kg 0.017 SW846-6010B /> Vercury 0.026 mg/kg 0.017 SW846-6010B /> Selenium 19.7 mg/kg U 19.7 SW846-6010B /> PCB 2.46 mg/kg U 19.7 SW846-6010B /> PCB-121 0.1 mg/kg U 19.7 SW846-6010B /> PCB-1221 0.1 mg/kg U 0.08 SW846-8082 /> PCB-1232 0.08 mg/kg U 0.05 SW846-8082 /> PCB-1244 0.05 mg/kg U 0.06 SW846-8082 /> PCB-1254 0.07 mg/kg U 0.06 SW846-8082 /> </td <td>METAL</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	METAL									
Cadmium 1.97 mg/kg U 1.97 SW846-6010B / >> Chromium 6.97 mg/kg 2.46 SW846-6010B / >> Lead 19.7 mg/kg U 19.7 SW846-6010B / >> Mercury 0.026 mg/kg U 19.7 SW846-6010B / >> Selenium 19.7 mg/kg U 19.7 SW846-6010B / >> Silver 2.46 mg/kg U 19.7 SW846-6010B / >> PCB 2.46 SW846-6010B / >> >	Arsenic	19.7		mg/kg	U		19.7		SW846-6010B	/ X
Chromium 6.97 mg/kg 2.46 SW846-6010B / >> Lead 19.7 mg/kg U 19.7 SW846-6010B / >> Mercury 0.026 mg/kg U 19.7 SW846-6010B / >> Selenium 19.7 mg/kg U 19.7 SW846-6010B / >> Silver 2.46 mg/kg U 19.7 SW846-6010B / >> PPCB . 2.46 SW846-6010B / >> . <t< td=""><td>Barium</td><td>50.4</td><td></td><td>mg/kg</td><td></td><td></td><td>2.46</td><td></td><td>SW846-6010B</td><td>/ X</td></t<>	Barium	50.4		mg/kg			2.46		SW846-6010B	/ X
Lead 19.7 mg/kg U 19.7 SW846-6010B / > Mercury 0.026 mg/kg 0.017 SW846-6010B / > Selenium 19.7 mg/kg U 19.7 SW846-6010B / > Silver 2.46 mg/kg UB 2.46 SW846-6010B / > PPCB P P P P SW846-6010B / > PCB-121 0.1 mg/kg U 0.08 SW846-8082 / > PCB-1232 0.08 mg/kg U 0.08 SW846-8082 / > PCB-1242 0.05 mg/kg U 0.08 SW846-8082 / > PCB-1242 0.05 mg/kg U 0.08 SW846-8082 / > PCB-1248 0.08 mg/kg U 0.08 SW846-8082 / > PCB-1246 0.07 mg/kg U 0.08 SW846-8082 / > PCB-1268 0.06 mg/kg U	Cadmium	1.97		mg/kg	U		1.97		SW846-6010B	/ X
Mercury 0.026 mg/kg 0.017 SW846-7471A / > Selenium 19.7 mg/kg U 19.7 SW846-6010B / > Silver 2.46 mg/kg UB 2.46 SW846-6010B / > PCB	Chromium	6.97		mg/kg			2.46		SW846-6010B	/ X
Selenium 19.7 mg/kg U 19.7 SW846-6010B / >> Silver 2.46 mg/kg UB 2.46 SW846-6010B / >> PPCB P P SW846-6010B / >> >> PCB-1016 0.08 mg/kg U 0.08 SW846-8082 / >> PCB-1221 0.1 mg/kg U 0.1 SW846-8082 / >> PCB-1322 0.08 mg/kg U 0.08 SW846-8082 / >> PCB-1242 0.05 mg/kg U 0.08 SW846-8082 / >> PCB-1248 0.08 mg/kg U 0.08 SW846-8082 / >> PCB-1254 0.07 mg/kg U 0.08 SW846-8082 / >> PCB-1260 0.08 mg/kg U 0.06 SW846-8082 / >> PCB-1268 0.06 mg/kg U 0.1 SW846-8082 / >> Polychlorinated biphenyl 0.1 mg	Lead	19.7		mg/kg	U		19.7		SW846-6010B	/ X
Silver 2.46 mg/kg UB 2.46 SW846-6010B / > PPCB PCB-1016 0.08 mg/kg U 0.08 SW846-8082 / > PCB-1221 0.1 mg/kg U 0.11 SW846-8082 / > PCB-1232 0.08 mg/kg U 0.08 SW846-8082 / > PCB-1242 0.05 mg/kg U 0.05 SW846-8082 / > PCB-1242 0.05 mg/kg U 0.05 SW846-8082 / > PCB-1244 0.08 mg/kg U 0.08 SW846-8082 / > PCB-1254 0.07 mg/kg U 0.08 SW846-8082 / > PCB-1268 0.06 mg/kg U 0.06 SW846-8082 / > Polychlorinated biphenyl 0.1 mg/kg U 0.1 SmpMethod: GR Comments: Rad Wipe of Zone 54 Survey Unit 2 Note Reporting TPU Method V/V/A <	Mercury	0.026		mg/kg			0.017		SW846-7471A	/ X
PPCB mg/kg U 0.08 SW846-8082 />> PCB-1221 0.1 mg/kg U 0.08 SW846-8082 />> PCB-1232 0.08 mg/kg U 0.08 SW846-8082 />> PCB-1232 0.05 mg/kg U 0.08 SW846-8082 />> PCB-1242 0.05 mg/kg U 0.08 SW846-8082 />> PCB-1242 0.05 mg/kg U 0.08 SW846-8082 />> PCB-1244 0.07 mg/kg U 0.07 SW846-8082 />> PCB-1254 0.07 mg/kg U 0.07 SW846-8082 />> PCB-1268 0.06 mg/kg U 0.06 SW846-8082 />> Polychlorinated biphenyl 0.1 mg/kg U 0.1 SW846-8082 />> 410-BSMTZ54-2-WIPE1 from: C410-Z054 on 3/7/2014 Media: SW SmpMethod: GR Comments: Rad Wipe of Zone 54 Survey Unit 2	Selenium	19.7		mg/kg	U		19.7		SW846-6010B	/ X
PCB-1016 0.08 mg/kg U 0.08 SW846-8082 / > PCB-1221 0.1 mg/kg U 0.1 SW846-8082 / > PCB-1232 0.08 mg/kg U 0.08 SW846-8082 / > PCB-1242 0.05 mg/kg U 0.08 SW846-8082 / > PCB-1248 0.08 mg/kg U 0.08 SW846-8082 / > PCB-1248 0.07 mg/kg U 0.08 SW846-8082 / > PCB-1254 0.07 mg/kg U 0.08 SW846-8082 / > PCB-1260 0.08 mg/kg U 0.06 SW846-8082 / > PCB-1268 0.06 mg/kg U 0.06 SW846-8082 / > PCB-1268 0.06 mg/kg U 0.06 SW846-8082 / > PCB-1268 0.06 mg/kg U 0.1 SW846-8082 / > PCB-1268 0.06 mg/kg U 0.1 SW846-8082 / > Comments: Ra	Silver	2.46		mg/kg	UB		2.46		SW846-6010B	/ X
PCB-1221 0.1 mg/kg U 0.1 SW846-8082 /> PCB-1232 0.08 mg/kg U 0.08 SW846-8082 /> PCB-1242 0.05 mg/kg U 0.05 SW846-8082 /> PCB-1248 0.08 mg/kg U 0.05 SW846-8082 /> PCB-1254 0.07 mg/kg U 0.08 SW846-8082 /> PCB-1260 0.08 mg/kg U 0.06 SW846-8082 /> PCB-1268 0.06 mg/kg U 0.06 SW846-8082 /> PCB-1268 0.06 mg/kg U 0.06 SW846-8082 /> Polychlorinated biphenyl 0.1 mg/kg U 0.1 SW846-8082 /> Analysis Results from: C410-Z054 on 3/7/2014 Media: SW SmpMethod: GR Analysis Results Counting Error Units Fost Reporting Quai TPU Method V/V/A	РРСВ									
PCB-1232 0.08 mg/kg U 0.08 SW846-8082 / > PCB-1242 0.05 mg/kg U 0.05 SW846-8082 / > PCB-1248 0.08 mg/kg U 0.08 SW846-8082 / > PCB-1248 0.07 mg/kg U 0.07 SW846-8082 / > PCB-1254 0.07 mg/kg U 0.07 SW846-8082 / > PCB-1260 0.08 mg/kg U 0.06 SW846-8082 / > PCB-1268 0.06 mg/kg U 0.06 SW846-8082 / > Polychlorinated biphenyl 0.1 mg/kg U 0.06 SW846-8082 / > Polychlorinated biphenyl 0.1 mg/kg U 0.1 SW846-8082 / > Analysis Results from: C410-Z054 on 3/7/2014 Media: SW SmpMethod: GR Analysis Results Counting Error Units Result Foot Reporting Limit TPU Method V/V/A RADS Mericium-241 0.347	PCB-1016	0.08		mg/kg	U		0.08		SW846-8082	/ X
PCB-1242 0.05 mg/kg U 0.05 SW846-8082 / > PCB-1248 0.08 mg/kg U 0.08 SW846-8082 / > PCB-1254 0.07 mg/kg U 0.07 SW846-8082 / > PCB-1260 0.08 mg/kg U 0.08 SW846-8082 / > PCB-1268 0.06 mg/kg U 0.06 SW846-8082 / > POLychlorinated biphenyl 0.1 mg/kg U 0.06 SW846-8082 / > Polychlorinated biphenyl 0.1 mg/kg U 0.06 SW846-8082 / > Polychlorinated biphenyl 0.1 mg/kg U 0.1 SW846-8082 / > Polychlorinated biphenyl 0.1 mg/kg U 0.1 SW846-8082 / > At10-BSMTZ54-2-WIPE1 from: C410-Z054 on 3/7/2014 Media: SW SmpMethod: GR Comments: Rad Wipe of Zone 54 Survey Unit 2 maint TPU Method V/V/A RADS Results Counting Error Units Result Fot<	PCB-1221	0.1		mg/kg	U		0.1		SW846-8082	/ X
PCB-1248 0.08 mg/kg U 0.08 SW846-8082 /> PCB-1254 0.07 mg/kg U 0.07 SW846-8082 /> PCB-1260 0.08 mg/kg U 0.08 SW846-8082 /> PCB-1268 0.06 mg/kg U 0.06 SW846-8082 /> Polychlorinated biphenyl 0.1 mg/kg U 0.06 SW846-8082 /> 410-BSMTZ54-2-WIPE1 from: C410-Z054 on 3/7/2014 Media: SW SmpMethod: GR Comments: Rad Wipe of Zone 54 Survey Unit 2 Analysis Results Counting Error Foot Reporting Qual TPU Method V/V/A RADS Americium-241 0.347 0.133 pCi/sample 0.252 0.173 RL-7128 /> Cesium-137 0.261 0.522 pCi/sample 0.344 0.451 RL-7128 /> /> Neptunium-237 1.64 0.301 pCi/sample 0.34 0.451 RL-7128 /<>	PCB-1232	0.08		mg/kg	U		0.08		SW846-8082	/ X
PCB-1254 0.07 mg/kg U 0.07 SW846-8082 / > PCB-1260 0.08 mg/kg U 0.08 SW846-8082 / > PCB-1268 0.06 mg/kg U 0.06 SW846-8082 / > Polychlorinated biphenyl 0.1 mg/kg U 0.06 SW846-8082 / > 410-BSMTZ54-2-WIPE1 from: C410-Z054 on 3/7/2014 Media: SW SmpMethod: GR Comments: Rad Wipe of Zone 54 Survey Unit 2 Analysis Results Counting Error Foot Reporting Quait TPU Method V/V/A RADS Americium-241 0.347 0.133 pCi/sample 0.252 0.173 RL-7128 / > Cesium-137 0.261 0.522 pCi/sample 0.34 0.451 RL-7128 / > Neptunium-237 1.64 0.301 pCi/sample 0.34 0.451 RL-7128 / >	PCB-1242	0.05		mg/kg	U		0.05		SW846-8082	/ X
PCB-1260 0.08 mg/kg U 0.08 SW846-8082 / > PCB-1268 0.06 mg/kg U 0.06 SW846-8082 / > Polychlorinated biphenyl 0.1 mg/kg U 0.06 SW846-8082 / > 410-BSMTZ54-2-WIPE1 from: C410-Z054 on 3/7/2014 Media: SW SmpMethod: GR Comments: Rad Wipe of Zone 54 Survey Unit 2 Units Result Foot Reporting TPU Method V/V/A RADS Merricium-241 0.347 0.133 pCi/sample 0.252 0.173 RL-7128 / > Neptunium-237 1.64 0.301 pCi/sample 0.34 0.451 RL-7128 / >	PCB-1248	0.08		mg/kg	U		0.08		SW846-8082	/ X
PCB-1268 0.06 mg/kg U 0.06 SW846-8082 / > Polychlorinated biphenyl 0.1 mg/kg U 0.1 SW846-8082 / > 410-BSMTZ54-2-WIPE1 from: C410-Z054 on 3/7/2014 Media: SW SmpMethod: GR Comments: Rad Wipe of Zone 54 Survey Unit 2 Units Result Foot Reporting TPU Method V/V/A RADS Merricium-241 0.347 0.133 pCi/sample 0.252 0.173 RL-7128 / > Cesium-137 0.261 0.522 pCi/sample 0.344 0.451 RL-7128 / > Neptunium-237 1.64 0.301 pCi/sample 0.34 0.451 RL-7128 / >	PCB-1254	0.07		mg/kg	U		0.07		SW846-8082	/ X
Polychlorinated biphenyl 0.1 mg/kg U 0.1 SW846-8082 / > 410-BSMTZ54-2-WIPE1 from: C410-Z054 on 3/7/2014 Media: SW SmpMethod: GR Comments: Rad Wipe of Zone 54 Survey Unit 2 Media: SW SmpMethod: GR Analysis Results Counting Error Units Result Qual Foot Note Reporting Limit TPU Method V/V/A RADS Americium-241 0.347 0.133 pCi/sample 0.252 0.173 RL-7128 / > Cesium-137 0.261 0.522 pCi/sample 0.34 0.451 RL-7128 / > Neptunium-237 1.64 0.301 pCi/sample 0.34 0.451 RL-7128 / >	PCB-1260	0.08		mg/kg	U		0.08		SW846-8082	/ X
410-BSMTZ54-2-WIPE1 from: C410-Z054 on 3/7/2014 Media: SW SmpMethod: GR Comments: Rad Wipe of Zone 54 Survey Unit 2 Media: SW SmpMethod: GR Analysis Results Counting Error Units Result Qual Foot Note Reporting Limit TPU Method V/V/A Analysis Results Counting Error Units Result Qual Foot Note Reporting Limit TPU Method V/V/A RADS Americium-241 0.347 0.133 pCi/sample 0.252 0.173 RL-7128 / > Cesium-137 0.261 0.522 pCi/sample 0.34 0.451 RL-7128 / > Neptunium-237 1.64 0.301 pCi/sample 0.34 0.451 RL-7128 / >	PCB-1268	0.06		mg/kg	U		0.06		SW846-8082	/ X
Comments: Rad Wipe of Zone 54 Survey Unit 2AnalysisResultsCounting ErrorResult UnitsFoot QualReporting NoteTPUMethodV/V/ARADSAmericium-2410.3470.133pCi/sample0.2520.173RL-7128/ >Cesium-1370.2610.522pCi/sample0.340.451RL-7128/ >	Polychlorinated bipheny	0.1		mg/kg	U		0.1		SW846-8082	/ X
AnalysisResultsCounting ErrorResult UnitsFoot QualReporting LimitTPUMethodV/V/ARADSAmericium-2410.3470.133pCi/sample0.2520.173RL-7128/ >Cesium-1370.2610.522pCi/sample U21.08RL-7124/ >Neptunium-2371.640.301pCi/sample0.340.451RL-7128/ >	410-BSMTZ54-2-	WIPE1	from: C4	10-Z054	on 3	8/7/201	4 Media:	SW	SmpMethod: GR	
Analysis Results Error Units Qual Note Limit TPU Method V/V/A RADS Americium-241 0.347 0.133 pCi/sample 0.252 0.173 RL-7128 / > Cesium-137 0.261 0.522 pCi/sample 2 1.08 RL-7124 / > Neptunium-237 1.64 0.301 pCi/sample 0.34 0.451 RL-7128 / >	Comments: Rad	Wipe of Zone 54 S	Survey Unit 2							
RADS Americium-241 0.347 0.133 pCi/sample 0.252 0.173 RL-7128 / > Cesium-137 0.261 0.522 pCi/sample U 2 1.08 RL-7124 / > Neptunium-237 1.64 0.301 pCi/sample 0.34 0.451 RL-7128 / >	Analysis	Results		Units				TPU	Method	V/V/A'
Americium-241 0.347 0.133 pCi/sample 0.252 0.173 RL-7128 / > Cesium-137 0.261 0.522 pCi/sample U 2 1.08 RL-7124 / > Neptunium-237 1.64 0.301 pCi/sample 0.34 0.451 RL-7128 / >		1000010	-	01110			-		Motilou	.,.,,
Cesium-137 0.261 0.522 pCi/sample U 2 1.08 RL-7124 / > Neptunium-237 1.64 0.301 pCi/sample 0.34 0.451 RL-7128 / >	-	0.347	0.133	nCi/sam	ole		0.252	0.173	RI -7128	/ X
Neptunium-237 1.64 0.301 pCi/sample 0.34 0.451 RL-7128 / >				•	•				-	/ X
				•	•					/ X / X
	Plutonium-238	0.0369	0.0552				0.34	0.431	RL-7128	/ X

pCi/sample

pCi/sample

pCi/sample

pCi/sample

pCi/sample

pCi/sample

pCi/sample U

pCi/sample BU

0.144

4.85

3.98

1.13

0.43

1.02

0.204

0.433

0.453

0.0271

3.97

1.74

0.178

26.4

1.6

31.3

RL-7128

RL-7140

RL-7100

RL-7128

RL-7128

RL-7128

RL-7128

RL-7128

/ X /

/X/

/ X /

/ X /

/ X /

/X/

/ X /

/ X /

Paducah OREIS Report for DD14-410-BSMT

Plutonium-239/240

Strontium-90

Thorium-230

Thorium-232

Uranium-234

Uranium-235

Uranium-238

Technetium-99

1.78

37

8.64

150

7.98

178

-0.0412

0.0815

0.3

0.0176

3.48

0.687

0.0714

2.99

0.765

3.24

410-BSMTZ54-2-	WIPE2	from: C41	0-Z054	on 3	/7/201	4 Media:	SW	SmpMethod: GR	
Comments: Rad	Wipe of Zone 54 S	Survey Unit 2							
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
RADS									
Americium-241	0.559	0.16	pCi/sam	ple		0.246	0.209	RL-7128	/ X /
Cesium-137	2.84	2.18	pCi/sam	ple		1.78	2.21	RL-7124	/ X /
Neptunium-237	1.16	0.226	pCi/sam	ple		0.348	0.332	RL-7128	/ X /
Plutonium-238	0.0985	0.0642	pCi/sam	nple U		0.136	0.0801	RL-7128	/ X /
Plutonium-239/240	2.24	0.303	pCi/sam	ple		0.136	0.509	RL-7128	/ X /
Strontium-90	0.707	0.146	pCi/sam	ple BU		4.81	0.231	RL-7140	/ X /
Technetium-99	100	4.61	pCi/sam	ple		3.98	6.91	RL-7100	/ X /
Thorium-230	22.4	1.01	pCi/sam	ple		1.11	4.08	RL-7128	/ X /
Thorium-232	0.138	0.0991	pCi/sam	ple U		0.391	0.185	RL-7128	/ X /
Uranium-234	295	5.03	pCi/sam	ple		1.06	54	RL-7128	/ X /
Uranium-235	15.2	1.27	pCi/sam	ple		0.256	3.04	RL-7128	/ X /
Uranium-238	319	5.21	pCi/sam	ple		0.464	58.3	RL-7128	/ X /

410-BSMTZ2	22-CONC	from: C4	10-Z022	on 6	6/20/20	14 Media:	SC	SmpMethod: GR	
Comments:	Concrete borings from	floor, Zone 22							
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL									
Arsenic	2.6		mg/kg	J		5		SW846-6010C	/ X /
Barium	59		mg/kg			25		SW846-6010C	/ X /
Cadmium	0.45		mg/kg	J		2.5		SW846-6010C	/ X /
Chromium	20		mg/kg			5		SW846-6010C	/ X /
Lead	8.8		mg/kg	В		5		SW846-6010C	/ X /
Mercury	0.52		mg/kg			0.031		SW846-7471	/ X /
Selenium	7.4		mg/kg	U		7.4		SW846-6010C	/ X /
Silver	5		mg/kg	U		5		SW846-6010C	/ X /
PPCB									
PCB-1016	9		ug/kg	U		34		SW846-8082A	/ X /
PCB-1221	9		ug/kg	U		34		SW846-8082A	/ X /
PCB-1232	9		ug/kg	U		34		SW846-8082A	/ X /
PCB-1242	9		ug/kg	U		34		SW846-8082A	/ X /
PCB-1248	9		ug/kg	U		34		SW846-8082A	/ X /
PCB-1254	420		ug/kg	Х		34		SW846-8082A	/ X /
PCB-1260	500		ug/kg			34		SW846-8082A	/ X /
PCB-1268	5.7		ug/kg	U		34		SW846-8082A	/ X /
Polychlorinated bi	phenyl 920		ug/kg			34		SW846-8082A	/ X /

410-BSMTZ22-WIPE1 from: C410-Z022 on 6/23/2014 Media: SW SmpMethod: GR Zone 22 Location 8 Rad Wipe Comments: Counting Error Result Qual Foot Note Reporting Limit TPU Analysis Results Units Method V/V/A* RADS Americium-241 2.21 0.423 pCi/Sampl 0.488 A-01-R / X / 0.152 Cesium-137 0 4.27 pCi/Sampl U 8.03 4.27 GA-01-R /X/ / X / Neptunium-237 2.5 0.468 pCi/Sampl 0.513 A-01-R 0.314 Plutonium-238 0.492 0.196 pCi/Sampl 0.139 0.201 A-01-R /X/ Plutonium-239/240 pCi/Sampl 13.2 0.986 0.175 1.49 A-01-R /X/ Strontium-90 0.913 1.33 pCi/Sampl U 2.22 1.33 DOE SR-03-RC MOD /X/ Technetium-99 30.9 HASL 300, TC-02-RC 299 11.3 pCi/Sampl 9.21 / X / Thorium-230 35.1 1.63 pCi/Sampl 0.182 3.37 A-01-R /X/ Thorium-232 pCi/Sampl 0.174 A-01-R 0.244 0.173 0.233 /X/ Uranium-234 232 5.49 pCi/Sampl 0.248 20.3 A-01-R /X/ Uranium-235 14.2 1.52 pCi/Sampl 0.309 1.93 A-01-R / X / Uranium-238 239 5.56 pCi/Sampl 0.398 20.8 A-01-R /X/

410-BSMTZ22-V	VIPE2	from: C4	10-Z022	on 6	6/23/201	4 Medi	a: SW	SmpMethod: GR	
Comments: Zor	ne 22 Location 11 Ra	ad Wipe							
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
RADS									
Americium-241	86.7	2.48	pCi/Samp	bl		0.136	9.85	A-01-R	/ X .
Cesium-137	2.79	6.66	pCi/Samp	ol U		11.5	6.67	GA-01-R	/ X .
Neptunium-237	64.8	2.02	pCi/Samp	bl		0.151	5.81	A-01-R	/ X .
Plutonium-238	20	1.27	pCi/Samp	bl		0.266	2.11	A-01-R	/ X
Plutonium-239/240	840	8.17	pCi/Samp	bl		0.0596	71	A-01-R	/ X
Strontium-90	1.49	1.25	pCi/Samp	ol U		2.01	1.25	DOE SR-03-RC MOD	/ X
Technetium-99	13000	195	pCi/Samp	bl		22.4	1260	HASL 300, TC-02-RC	/ X
Thorium-230	818	7.99	pCi/Samp	bl		0.345	69.2	A-01-R	/ X
Thorium-232	6.52	0.715	pCi/Samp	bl		0.167	0.901	A-01-R	/ X
Jranium-234	9430	401	pCi/Samp	bl		12.8	888	A-01-R	/ X
Jranium-235	557	111	pCi/Samp	bl		50.8	120	A-01-R	/ X
Jranium-238	9310	399	pCi/Samp			52.3	878	A-01-R	/ X
			•						
410-BSMTZ22-V	VIPE2D	from: C4	10-Z022	on 6	/23/201	4 Medi	a: SW	SmpMethod: GR	
Comments: Zor	ne 22 Location 11 R	ad Wipe - Duplic	cate						
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
RADS									
Americium-241	203	3.82	pCi/Samp	bl		0.173	22.6	A-01-R	/ X
Cesium-137	5.13	7.75	pCi/Samp	ol U		12.9	7.77	GA-01-R	/ X
Neptunium-237	107	2.38	pCi/Samp	bl		0.177	9.31	A-01-R	/ X
Plutonium-238	39.6	1.74	pCi/Samp	bl		0.29	3.75	A-01-R	/ X
Plutonium-239/240	1600	11	pCi/Samp			0.182	135	A-01-R	/ X
Strontium-90	11.6	1.67	pCi/Samp			1.82	1.92	DOE SR-03-RC MOD	/ X
Fechnetium-99	26200	394	pCi/Sam			31.6	2550	HASL 300, TC-02-RC	/ X
Thorium-230	1250	10.1	pCi/Samp			0.157	105	A-01-R	/ X
Thorium-232	8.6	0.839	pCi/Samp			0.0614	1.11	A-01-R	/ X
Jranium-234	19000	574	pCi/Samp			53.3	1690	A-01-R	/ X
Jranium-235	10800	154	pCi/Samp			51.6	179	A-01-R	/ X
Jranium-238	19800	586	pCi/Samp			53.2	1770	A-01-R	/ X
	10000	000	powound			00.2	1110		17
410-BSMTZ26/2	8-WIPE1	from: C4	10-Z026	on 5	5/8/2014	Medi	a: SW	SmpMethod: GR	
Comments: Zor	ne 26 Location 14 Ra	ad Wipe							
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
RADS			-				-		
Americium-241	17.9	1.18	pCi/Samp	bl		0.148	2.3	A-01-R	/ X
Cesium-137	42.1	12	pCi/Sam			9.92	12.7	GA-01-R	/ X
Neptunium-237	22.1	1.24	pCi/Samp			0.166	2.23	A-01-R	/ X
Plutonium-238	2.62	0.461	pCi/Samp			0.253	0.511	A-01-R	/ X
Plutonium-239/240	109	2.87	pCi/Samp			0.235	9.57	A-01-R	/ X
Strontium-90	22.2	2.07	pCi/Samp			2.12	9.37 2.87	DOE SR-03-RC MOD	
Fechnetium-99	4570	69.4	pCi/Samp			13.9	2.07 444	HASL 300, TC-02-RC	
			• •						
Thorium-230	97.3	2.78	pCi/Samp			0.267	8.63	A-01-R	/ X
Thorium-232	0.622	0.242	pCi/Samp			0.219	0.248	A-01-R	/ X
Jranium-234	8350	368	pCi/Samp			30.9	792	A-01-R	/ X
Jranium-235	543 8940	107	pCi/Samp pCi/Samp			48.2	116	A-01-R A-01-R	/ X
Jranium-238		380				38.7	841		/ X

*Verification/Validation/Assessment

1/8/2016 Page 2 of 4

410-BSMTZ26/28-V	VIPE2	from: C4	10-Z026	on 5	/8/201	4 Media:	SW	SmpMethod: GR	
Comments: Zone 2	6 Location 27 Ra	ad Wipe							
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
RADS	Results	2	Offico	Qua			110	Wethod	•,•,,,
Americium-241	71.7	2.35	pCi/Sam	pl		0.236	8.22	A-01-R	/ X /
Cesium-137	56.6	11.5	pCi/Sam			4.3	12.9	GA-01-R	/ X .
Neptunium-237	49.7	1.75	pCi/Sam	•		0.188	4.52	A-01-R	/ X .
Plutonium-238	11.8	0.957	pCi/Sam	•		0.273	1.38	A-01-R	/ X
Plutonium-239/240	506	6.2	pCi/Sam	•		0.21	42.9	A-01-R	/ X
Strontium-90	40.3	2.74	pCi/Sam	•		1.97	4.3	DOE SR-03-RC MOD	/ X
echnetium-99	6340	95.7	pCi/Sam	•		15.8	616	HASL 300, TC-02-RC	/ X
Thorium-230	738	7.55	pCi/Sam	•		0.185	62.4	A-01-R	/ X
Thorium-232	3.95	0.551	pCi/Sam	•		0.0577	0.643	A-01-R	/ X
Jranium-234	7320	351	pCi/Sam	•		55.9	708	A-01-R	/ X
Jranium-235	405	95.2	pCi/Sam			57.4	101	A-01-R	/ X
Jranium-238	7690	358	pCi/Sam	•		46	738	A-01-R	/ X
Comments: Concre	ete borings from	floor, Zone 26							
	-	Counting		Result	Foot	Reporting			
Analysis	ete borings from Results		Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
Analysis METAL	Results	Counting		Qual		Limit	TPU		
Analysis METAL Arsenic	Results 4	Counting	mg/kg			Limit 4.5	TPU	SW846-6010C	/ X
Analysis METAL Arsenic Barium	Results 4 39	Counting	mg/kg mg/kg	Qual J		Limit 4.5 22	TPU	SW846-6010C SW846-6010C	/ X / X
Analysis METAL Arsenic Barium Cadmium	Results 4 39 1.9	Counting	mg/kg mg/kg mg/kg	Qual		Limit 4.5 22 2.2	TPU	SW846-6010C SW846-6010C SW846-6010C	/ X / X / X
Analysis METAL Arsenic Barium Cadmium Chromium	Results 4 39 1.9 14	Counting	mg/kg mg/kg mg/kg mg/kg	Qual J J		Limit 4.5 22 2.2 4.5	TPU	SW846-6010C SW846-6010C SW846-6010C SW846-6010C	/ X / X / X / X
Analysis METAL Arsenic Barium Cadmium Chromium Lead	Results 4 39 1.9 14 26	Counting	mg/kg mg/kg mg/kg mg/kg mg/kg	Qual J		Limit 4.5 22 2.2 4.5 4.5	TPU	SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C	/ X / X / X / X / X
Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury	Results 4 39 1.9 14 26 0.33	Counting	mg/kg mg/kg mg/kg mg/kg mg/kg	Qual J J B		4.5 22 2.2 4.5 4.5 0.032	TPU	SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-7471	/ X / X / X / X / X T / X
Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium	Results 4 39 1.9 14 26	Counting	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Qual J J		Limit 4.5 22 2.2 4.5 4.5	TPU	SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C	V/V/A* /X, /X, /X, /X, /X, /X, /X, /X,
Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver	Results 4 39 1.9 14 26 0.33 6.7	Counting	mg/kg mg/kg mg/kg mg/kg mg/kg	Qual J J B U		4.5 22 2.2 4.5 4.5 0.032 6.7	TPU	SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-7471 SW846-6010C	/ X / X / X / X / X T / X / X
Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver PPCB	Results 4 39 1.9 14 26 0.33 6.7 4.5	Counting	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Qual J J U U		Limit 4.5 22 2.2 4.5 4.5 0.032 6.7 4.5	TPU	SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-7471 SW846-6010C SW846-6010C	/X /X /X /X /X T/X /X /X
Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver PPCB PCB-1016	Results 4 39 1.9 14 26 0.33 6.7 4.5 36	Counting	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Qual J J U U U		Limit 4.5 22 2.2 4.5 4.5 0.032 6.7 4.5 130	TPU	SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-7471 SW846-6010C SW846-6010C SW846-8082A	/ X / X / X / X / X / X / X / X
Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver PPCB PCB-1016 PCB-1221	Results 4 39 1.9 14 26 0.33 6.7 4.5 36 36	Counting	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg ug/kg	Qual J J U U U U		Limit 4.5 22 2.2 4.5 4.5 0.032 6.7 4.5 130 130	TPU	SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-8082A SW846-8082A	/ X / X / X / X / X / X / X / X
Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver PPCB PCB-1016 PCB-1221 PCB-1232	Results 4 39 1.9 14 26 0.33 6.7 4.5 36 36 36 36	Counting	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg ug/kg ug/kg	Qual J J U U U U U		Limit 4.5 22 2.2 4.5 4.5 0.032 6.7 4.5 130 130 130	TPU	SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-8082A SW846-8082A SW846-8082A	/X /X /X /X /X /X /X /X /X
Analysis METAL Arsenic Barium Cadmium Cadmium Chromium Lead Mercury Selenium Silver PPCB PCB-1016 PCB-1221 PCB-1232 PCB-1242	Results 4 39 1.9 14 26 0.33 6.7 4.5 36 36 36 36 36 36	Counting	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg ug/kg ug/kg ug/kg	Qual J J U U U U U U U U		Limit 4.5 22 2.2 4.5 4.5 0.032 6.7 4.5 130 130 130 130	TPU	SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-8082A SW846-8082A SW846-8082A SW846-8082A	/ X / X / X / X / X / X / X / X / X / X
Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver PPCB PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248	Results 4 39 1.9 14 26 0.33 6.7 4.5 36 36 36 36 36 36 36 36 36 36	Counting	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg ug/kg ug/kg ug/kg ug/kg	Qual J J U U U U U U U U U U U		Limit 4.5 22 2.2 4.5 4.5 0.032 6.7 4.5 130 130 130 130 130 130	TPU	SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-8082A SW846-8082A SW846-8082A SW846-8082A	/ X / X / X / X / X / X / X / X / X / X
Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver PPCB PCB-1016 PCB-1221 PCB-1222 PCB-1242 PCB-1248 PCB-1254	Results 4 39 1.9 14 26 0.33 6.7 4.5 36 <td>Counting</td> <td>mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg</td> <td>Qual J J U U U U U U U U</td> <td></td> <td>Limit 4.5 22 2.2 4.5 4.5 0.032 6.7 4.5 130 130 130 130 130 130 130</td> <td>TPU</td> <td>SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-7471 SW846-6010C SW846-6010C SW846-6010C SW846-8082A SW846-8082A SW846-8082A SW846-8082A SW846-8082A</td> <td>/ X / X / X / X / X / X / X / X / X / X</td>	Counting	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	Qual J J U U U U U U U U		Limit 4.5 22 2.2 4.5 4.5 0.032 6.7 4.5 130 130 130 130 130 130 130	TPU	SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-7471 SW846-6010C SW846-6010C SW846-6010C SW846-8082A SW846-8082A SW846-8082A SW846-8082A SW846-8082A	/ X / X / X / X / X / X / X / X / X / X
Analysis METAL Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver PPCB PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1242 PCB-1248	Results 4 39 1.9 14 26 0.33 6.7 4.5 36 36 36 36 36 36 36 36 36 36	Counting	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg ug/kg ug/kg ug/kg ug/kg ug/kg	Qual J J U U U U U U U U U U U		Limit 4.5 22 2.2 4.5 4.5 0.032 6.7 4.5 130 130 130 130 130 130	TPU	SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-6010C SW846-8082A SW846-8082A SW846-8082A SW846-8082A	/ X / X / X / X / X / X / X / X / X / X

410-BSMTZ2	8-CONC	from: C4	10-Z028	on 5	/12/20	14 Media:	SC	SmpMethod: GR	
Comments:	Concrete borings from	floor, Zone 28							
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL									
Arsenic	3.3		mg/kg	J		4.6		SW846-6010C	/ X /
Barium	92		mg/kg			23		SW846-6010C	/ X /
Cadmium	0.59		mg/kg	J		2.3		SW846-6010C	/ X /
Chromium	11		mg/kg			4.6		SW846-6010C	/ X /
Lead	5.2		mg/kg	В		4.6		SW846-6010C	/ X /
Mercury	3.3		mg/kg			0.31		SW846-7471	Т/Х/
Selenium	6.8		mg/kg	U		6.8		SW846-6010C	/ X /
Silver	4.6		mg/kg	U		4.6		SW846-6010C	/ X /
РРСВ									
PCB-1016	8.8		ug/kg	U		33		SW846-8082A	/ X /
PCB-1221	8.8		ug/kg	U		33		SW846-8082A	/ X /
PCB-1232	8.8		ug/kg	U		33		SW846-8082A	/ X /
PCB-1242	8.8		ug/kg	U		33		SW846-8082A	/ X /
PCB-1248	8.8		ug/kg	U		33		SW846-8082A	/ X /
PCB-1254	340		ug/kg			33		SW846-8082A	/ X /
PCB-1260	290		ug/kg			33		SW846-8082A	/ X /
PCB-1268	5.6		ug/kg	U		33		SW846-8082A	/ X /
Polychlorinated bip	ohenyl 630		ug/kg			33		SW846-8082A	/ X /

410-BSMTZ22-01		from: C4	10-Z022	on 9	/10/20	14 Media:	WS	SmpMethod: GR	
Comments: C-410 Z	Zone 22 Baseme	nt stormwater p	H 6-7 range	. JS 9-10	-14				
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL									
Lead	0.00475		mg/L			0.002		EPA-200.8	/ = .
Uranium	1.35		mg/L			0.0002		EPA-200.8	/ = /
METAL-D									
Uranium, Dissolved	0.0978		mg/L			0.0002		EPA-200.8	/ = 1
РРСВ									
PCB-1016	0.0943		ug/L	U		0.0943		SW846-8082	/ = /
PCB-1221	0.0943		ug/L	U		0.0943		SW846-8082	/ = /
PCB-1232	0.0943		ug/L	U		0.0943		SW846-8082	/ = /
PCB-1242	0.0943		ug/L	U		0.0943		SW846-8082	/ = /
PCB-1248	0.0943		ug/L	U		0.0943		SW846-8082	/ = /
PCB-1254	0.0943		ug/L	U		0.0943		SW846-8082	/ = /
PCB-1260	0.0943		ug/L	U		0.0943		SW846-8082	/ = .
PCB-1268	0.0943		ug/L	U		0.0943		SW846-8082	/ = .
Polychlorinated biphenyl	0.0943		ug/L	U		0.0943		SW846-8082	/ = 1
RADS									
Americium-241	-0.233	1.03	pCi/L	U		2.69	1.03	HASL 300, Am-05-RC	/ = /
Cesium-137	12.7	6.49	pCi/L			11.1	6.58	EPA-901.1	/ = /
Dissolved Alpha	-42.6	22.8	pCi/L	U		9.34	34.4	EPA-900.0	/ = /
Dissolved Beta	24300	166	pCi/L			7.04	3920	EPA-900.0	/ = /
Neptunium-237	1.29	1.76	pCi/L	U		2.4	1.77	Alpha Spectroscopy	/ = /
Plutonium-238	-0.271	1.2	pCi/L	U		3.13	1.2	HASL 300, Pu-11-RC	/ = /
Plutonium-239/240	0.724	1.99	pCi/L	U		3.45	1.99	HASL 300, Pu-11-RC	/ = /
Suspended Alpha	644	40	pCi/L			6.9	114	EPA-900.0	/ = /
Suspended Beta	607	31.9	pCi/L			9.02	118	EPA-900.0	/ = /
Technetium-99	36800	724	pCi/L			90.1	4130	HASL 300, Tc-02-RC	/ = .
Thorium-230	3.38	2.77	pCi/L	U		3.63	2.85	HASL 300, Th-01-RC	/ = /
Thorium-232	0.51	1.35	pCi/L	U		2.23	1.35	HASL 300, Th-01-RC	/ = /
Total Uranium	362	24.1	pCi/L			4.6	47.7	HASL 300, U-02-RC N	/ = /
Uranium-234	180	16.9	pCi/L			2.52	34	HASL 300, U-02-RC N	/ = /
Uranium-235	7.27	4.02	pCi/L			3.11	4.19	HASL 300, U-02-RC N	/ = /
Uranium-238	175	16.7	pCi/L			2.28	33.1	HASL 300, U-02-RC N	/ = /

410-BSMTZ22-02		from: C4	10-Z022	on 9	/10/20	14 Media:	WS	SmpMethod: GR	
Comments: C-410 Z	Zone 22 Baseme	nt stormwater p	H 6-7 Range	e. JS 9-10	0-14				
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL									
Lead	0.00499		mg/L			0.002		EPA-200.8	/ = /
Uranium	0.567		mg/L			0.0002		EPA-200.8	/ = /
METAL-D									
Uranium, Dissolved	0.0872		mg/L			0.0002		EPA-200.8	/ = /
РРСВ									
PCB-1016	0.0971		ug/L	U		0.0971		SW846-8082	/ = 1
PCB-1221	0.0971		ug/L	U		0.0971		SW846-8082	/ = 1
PCB-1232	0.0971		ug/L	U		0.0971		SW846-8082	/ = 1
PCB-1242	0.0971		ug/L	U		0.0971		SW846-8082	/ = 1
PCB-1248	0.0971		ug/L	U		0.0971		SW846-8082	/ = /
PCB-1254	0.0971		ug/L	U		0.0971		SW846-8082	/ = /
PCB-1260	0.0971		ug/L	U		0.0971		SW846-8082	/ = 1
PCB-1268	0.0971		ug/L	U		0.0971		SW846-8082	/ = .
Polychlorinated biphenyl	0.0971		ug/L	U		0.0971		SW846-8082	/ = /
RADS									
Americium-241	-0.123	1.06	pCi/L	U		2.46	1.06	HASL 300, Am-05-RC	/ = 1
Cesium-137	14.2	7.44	pCi/L	U		15.6	9.9	EPA-901.1	/ = .
Dissolved Alpha	20.5	8.21	pCi/L			6.88	9.47	EPA-900.0	/ = 1
Dissolved Beta	20500	123	pCi/L			8.23	3390	EPA-900.0	/ = 1
Neptunium-237	-0.294	1.33	pCi/L	U		3.35	1.33	Alpha Spectroscopy	/ = 1
Plutonium-238	0.254	1.41	pCi/L	U		2.71	1.41	HASL 300, Pu-11-RC	/ = 1
Plutonium-239/240	1.49	2.2	pCi/L	U		3.22	2.21	HASL 300, Pu-11-RC	/ = 1
Suspended Alpha	633	38.6	pCi/L			7.49	110	EPA-900.0	/ = 1
Suspended Beta	651	29.8	pCi/L			6.29	113	EPA-900.0	/ = .
Technetium-99	38200	745	pCi/L			81	4290	HASL 300, Tc-02-RC	/ = /
Thorium-230	7.44	3.87	pCi/L			4.06	4.08	HASL 300, Th-01-RC	/ = /
Thorium-232	0.55	1.45	pCi/L	U		2.38	1.45	HASL 300, Th-01-RC	/ = /
Total Uranium	863	37	pCi/L			4.6	105	HASL 300, U-02-RC N	/ = /
Uranium-234	442	26.4	pCi/L			3.18	76.9	HASL 300, U-02-RC N	/ = /
Uranium-235	16.6	5.81	pCi/L			2.43	6.41	HASL 300, U-02-RC N	/ = /
Uranium-238	404	25.3	pCi/L			2.27	70.7	HASL 300, U-02-RC N	/ = /

410-BSMTZ22-03		from: C4	10-Z022	on 9	/10/20	14 Media:	WS	SmpMethod: GR	
Comments: C-410 Z	Zone 22 Baseme	nt stormwater p	H 6-7 Range	e. JS 9-10	0-14				
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL									
Lead	0.00663		mg/L			0.002		EPA-200.8	/ J /
Uranium	0.436		mg/L			0.0002		EPA-200.8	/ J /
METAL-D									
Uranium, Dissolved	0.0576		mg/L			0.0002		EPA-200.8	/ J /
РРСВ									
PCB-1016	0.0943		ug/L	U		0.0943		SW846-8082	/ = /
PCB-1221	0.0943		ug/L	U		0.0943		SW846-8082	/ = /
PCB-1232	0.0943		ug/L	U		0.0943		SW846-8082	/ = /
PCB-1242	0.0943		ug/L	U		0.0943		SW846-8082	/ = /
PCB-1248	0.0943		ug/L	U		0.0943		SW846-8082	/ = /
PCB-1254	0.0943		ug/L	U		0.0943		SW846-8082	/ = /
PCB-1260	0.0943		ug/L	U		0.0943		SW846-8082	/ = /
PCB-1268	0.0943		ug/L	U		0.0943		SW846-8082	/ = /
Polychlorinated biphenyl	0.0943		ug/L	U		0.0943		SW846-8082	/ = /
RADS									
Americium-241	0.727	1.43	pCi/L	U		1.98	1.43	HASL 300, Am-05-RC	/ = /
Cesium-137	6.27	6.68	pCi/L	U		13.2	7.28	EPA-901.1	/ UJ /
Dissolved Alpha	17.7	9.72	pCi/L			9.41	11	EPA-900.0	/ = /
Dissolved Beta	21700	137	pCi/L			9.79	3530	EPA-900.0	/ = /
Neptunium-237	0.278	1.96	pCi/L	U		4.02	1.96	Alpha Spectroscopy	/ = /
Plutonium-238	0.901	1.3	pCi/L	U		1.57	1.3	HASL 300, Pu-11-RC	/ = /
Plutonium-239/240	2.22	1.96	pCi/L	U		2.29	1.98	HASL 300, Pu-11-RC	/ = /
Suspended Alpha	115	15.8	pCi/L			8.03	24.8	EPA-900.0	/ = /
Suspended Beta	282	18.7	pCi/L			9.91	51.6	EPA-900.0	/ = /
Technetium-99	37100	727	pCi/L			80.4	4160	HASL 300, Tc-02-RC	/ = /
Thorium-230	4.47	3.45	pCi/L	U		4.56	3.6	HASL 300, Th-01-RC	/ = /
Thorium-232	-0.0194	2.44	pCi/L	U		5.13	2.44	HASL 300, Th-01-RC	/ = /
Total Uranium	256	19.7	pCi/L			3.57	34.1	HASL 300, U-02-RC N	/ J /
Uranium-234	118	13.4	pCi/L			2.39	23.3	HASL 300, U-02-RC N	/ J /
Uranium-235	12.4	4.42	pCi/L			1.88	4.85	HASL 300, U-02-RC N	/ J /
Uranium-238	125	13.7	pCi/L			1.87	24.4	HASL 300, U-02-RC N	/ J /

410-BSMTZ22-03D		from: C4	on 9/10/2014 Media: WS				SmpMethod: GR		
Comments: C-410 Z	Ione 22 Baseme	nt stormwater,	Duplicate pH	Range (6-7. JS	9-10-14			
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL									
Lead	0.00387		mg/L			0.002		EPA-200.8	/ J /
Uranium	0.317		mg/L			0.0002		EPA-200.8	/ J /
METAL-D									
Uranium, Dissolved	0.0756		mg/L			0.0002		EPA-200.8	/ J /
РРСВ									
PCB-1016	0.0962		ug/L	U		0.0962		SW846-8082	/ = /
PCB-1221	0.0962		ug/L	U		0.0962		SW846-8082	/ = /
PCB-1232	0.0962		ug/L	U		0.0962		SW846-8082	/ = /
PCB-1242	0.0962		ug/L	U		0.0962		SW846-8082	/ = /
PCB-1248	0.0962		ug/L	U		0.0962		SW846-8082	/ = /
PCB-1254	0.0962		ug/L	U		0.0962		SW846-8082	/ = /
PCB-1260	0.0962		ug/L	U		0.0962		SW846-8082	/ = /
PCB-1268	0.0962		ug/L	U		0.0962		SW846-8082	/ = /
Polychlorinated biphenyl	0.0962		ug/L	U		0.0962		SW846-8082	/ = /
RADS									
Americium-241	0.643	1.69	pCi/L	U		3.05	1.7	HASL 300, Am-05-RC	/ = /
Cesium-137	17.4	9.62	pCi/L			11.4	9.74	EPA-901.1	/ J /
Dissolved Alpha	20.3	10.4	pCi/L			9.47	11.6	EPA-900.0	/ = /
Dissolved Beta	24900	157	pCi/L			7.15	4140	EPA-900.0	/ = /
Neptunium-237	-0.489	0.926	pCi/L	U		2.86	0.927	Alpha Spectroscopy	/ = /
Plutonium-238	0.665	1.83	pCi/L	U		3.17	1.83	HASL 300, Pu-11-RC	/ = /
Plutonium-239/240	1.18	2.09	pCi/L	U		3.17	2.1	HASL 300, Pu-11-RC	/ = /
Suspended Alpha	116	14.7	pCi/L			7.22	24.5	EPA-900.0	/ = /
Suspended Beta	243	15.9	pCi/L			9.88	45.8	EPA-900.0	/ = /
Technetium-99	36300	709	pCi/L			78.1	4070	HASL 300, Tc-02-RC	/ = /
Thorium-230	3.67	2.51	pCi/L			2.87	2.63	HASL 300, Th-01-RC	/ = /
Thorium-232	-0.176	0.693	pCi/L	U		1.85	0.695	HASL 300, Th-01-RC	/ = /
Total Uranium	166	14.7	pCi/L			4.39	22.9	HASL 300, U-02-RC N	/ J /
Uranium-234	83.1	10.4	, pCi/L			2.79	16.6	HASL 300, U-02-RC N	/ J /
Uranium-235	5.86	2.95	, pCi/L			2.47	3.09	HASL 300, U-02-RC N	/ J /
Uranium-238	76.7	9.95	pCi/L			2.33	15.5	HASL 300, U-02-RC N	/ J /

410-BSMTZ26-01	410-BSMTZ26-01		from: C410-Z026			14 Media:	WS	SmpMethod: GR		
Comments: C-410 Z	Zone 26 Basemer	nt stormwater p	H 6-7 Range	e. Brad B	rown 9	-10-14				
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*	
METAL										
Lead	0.00585		mg/L			0.002		EPA-200.8	/ = /	
Uranium	0.948		mg/L			0.0002		EPA-200.8	/ = /	
METAL-D										
Uranium, Dissolved	0.0676		mg/L			0.0002		EPA-200.8	/ = /	
РРСВ										
PCB-1016	0.0962		ug/L	U		0.0962		SW846-8082	/ = /	
PCB-1221	0.0962		ug/L	U		0.0962		SW846-8082	/ = /	
PCB-1232	0.0962		ug/L	U		0.0962		SW846-8082	/ = /	
PCB-1242	0.0962		ug/L	U		0.0962		SW846-8082	/ = /	
PCB-1248	0.0962		ug/L	U		0.0962		SW846-8082	/ = /	
PCB-1254	0.0962		ug/L	U		0.0962		SW846-8082	/ = /	
PCB-1260	0.0962		ug/L	U		0.0962		SW846-8082	/ = /	
PCB-1268	0.0962		ug/L	U		0.0962		SW846-8082	/ = /	
Polychlorinated biphenyl	0.0962		ug/L	U		0.0962		SW846-8082	/ = /	
RADS										
Americium-241	-0.252	1.14	pCi/L	U		2.88	1.14	HASL 300, Am-05-RC	/ = /	
Cesium-137	12.6	7.22	pCi/L			9.14	7.3	EPA-901.1	/ = /	
Dissolved Alpha	107	19.2	pCi/L			9.53	27.8	EPA-900.0	/ = /	
Dissolved Beta	25400	160	pCi/L			7.7	4160	EPA-900.0	/ = /	
Neptunium-237	-0.073	1.1	pCi/L	U		2.56	1.1	Alpha Spectroscopy	/ = /	
Plutonium-238	-0.163	0.723	pCi/L	U		1.89	0.724	HASL 300, Pu-11-RC	/ = /	
Plutonium-239/240	0.708	1.57	pCi/L	U		2.75	1.57	HASL 300, Pu-11-RC	/ = /	
Suspended Alpha	161	17.9	pCi/L			7.45	32.1	EPA-900.0	/ = /	
Suspended Beta	293	17.9	pCi/L			9.97	53.5	EPA-900.0	/ = /	
Technetium-99	37500	727	pCi/L			78.7	4200	HASL 300, Tc-02-RC	/ = /	
Thorium-230	5.36	2.72	pCi/L			2.54	2.91	HASL 300, Th-01-RC	/ = /	
Thorium-232	-0.16	0.621	pCi/L	U		1.66	0.623	HASL 300, Th-01-RC	/ = /	
Total Uranium	511	25	pCi/L			3.33	59.2	HASL 300, U-02-RC N	/ = /	
Uranium-234	233	16.9	pCi/L			2.09	39.6	HASL 300, U-02-RC N	/ = /	
Uranium-235	18.2	4.81	pCi/L			2.1	5.56	HASL 300, U-02-RC N	/ = /	
Uranium-238	260	17.8	, pCi/L			1.52	43.7	HASL 300, U-02-RC N	/ = /	

410-BSMTZ26-02		from: C4	10-Z026	on 9	/10/20	14 Media:	WS	SmpMethod: GR	
Comments: C-410 Z	Zone 26 Baseme	nt stormwater p	H Range 6-7	' Range.	BB 9-′	10-14			
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL	rtoodito		C into						., .,, .
Lead	0.00574		mg/L			0.002		EPA-200.8	/ = /
Uranium	0.943		mg/L			0.0002		EPA-200.8	/ = /
METAL-D									
Uranium, Dissolved	0.079		mg/L			0.0002		EPA-200.8	/ = /
РРСВ									
PCB-1016	0.0971		ug/L	U		0.0971		SW846-8082	/ = /
PCB-1221	0.0971		ug/L	U		0.0971		SW846-8082	/ = /
PCB-1232	0.0971		ug/L	U		0.0971		SW846-8082	/ = /
PCB-1242	0.0971		ug/L	U		0.0971		SW846-8082	/ = /
PCB-1248	0.0971		ug/L	U		0.0971		SW846-8082	/ = /
PCB-1254	0.0971		ug/L	U		0.0971		SW846-8082	/ = /
PCB-1260	0.0971		ug/L	U		0.0971		SW846-8082	/ = /
PCB-1268	0.0971		ug/L	U		0.0971		SW846-8082	/ = /
Polychlorinated biphenyl	0.0971		ug/L	U		0.0971		SW846-8082	/ = /
RADS									
Americium-241	-0.53	0.855	pCi/L	U		2.72	0.857	HASL 300, Am-05-RC	/ = /
Cesium-137	8.78	9.01	pCi/L	U		17.9	9.87	EPA-901.1	/ = /
Dissolved Alpha	28.5	11.3	pCi/L			9.46	13	EPA-900.0	/ = /
Dissolved Beta	19300	134	pCi/L			9.92	3140	EPA-900.0	/ = /
Neptunium-237	0.205	1.32	pCi/L	U		2.71	1.32	Alpha Spectroscopy	/ = /
Plutonium-238	0.764	2.42	pCi/L	U		3.65	2.43	HASL 300, Pu-11-RC	/ = /
Plutonium-239/240	3.23	4.59	pCi/L	U		7.17	4.63	HASL 300, Pu-11-RC	/ = /
Suspended Alpha	436	34.8	pCi/L			8.04	79.8	EPA-900.0	/ = /
Suspended Beta	494	28.8	pCi/L			7.19	96.1	EPA-900.0	/ = /
Technetium-99	37500	729	pCi/L			80.7	4200	HASL 300, Tc-02-RC	/ = /
Thorium-230	8.25	3.41	pCi/L			2.79	3.76	HASL 300, Th-01-RC	/ = /
Thorium-232	-0.17	0.668	pCi/L	U		1.78	0.67	HASL 300, Th-01-RC	/ = /
Total Uranium	666	28.6	pCi/L			3.52	75.9	HASL 300, U-02-RC N	/ = /
Uranium-234	305	19.4	pCi/L			2.11	50.7	HASL 300, U-02-RC N	/ = /
Uranium-235	20.8	5.11	pCi/L			1.54	6.03	HASL 300, U-02-RC N	/ = /
Uranium-238	340	20.5	pCi/L			2.37	56.2	HASL 300, U-02-RC N	/ = /

410-BSMTZ26-03		from: C4	10-Z026	on 9	/10/20	14 Media:	WS	SmpMethod: GR	
Comments: C-410 2	Zone 26 Baseme	nt stormwater p	H Range 6-7	. Brad B	rown 9	-10-14			
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL	rtoodito		C into						., .,, .
Lead	0.00741		mg/L			0.002		EPA-200.8	/ =
Uranium	0.926		mg/L			0.0002		EPA-200.8	/ =
METAL-D									
Uranium, Dissolved	0.087		mg/L			0.0002		EPA-200.8	/ =
РРСВ									
PCB-1016	0.0962		ug/L	U		0.0962		SW846-8082	/ =
PCB-1221	0.0962		ug/L	U		0.0962		SW846-8082	/ =
PCB-1232	0.0962		ug/L	U		0.0962		SW846-8082	/ =
PCB-1242	0.0962		ug/L	U		0.0962		SW846-8082	/ =
PCB-1248	0.0962		ug/L	U		0.0962		SW846-8082	/ =
PCB-1254	0.0962		ug/L	U		0.0962		SW846-8082	/ =
PCB-1260	0.0962		ug/L	U		0.0962		SW846-8082	/ =
PCB-1268	0.0962		ug/L	U		0.0962		SW846-8082	/ =
Polychlorinated biphenyl	0.0962		ug/L	U		0.0962		SW846-8082	/ =
RADS									
Americium-241	0.342	1.9	pCi/L	U		3.64	1.9	HASL 300, Am-05-RC	/ =
Cesium-137	17.1	6.03	pCi/L			7.93	6.2	EPA-901.1	/ =
Cobalt-60	34.1	9.79	pCi/L			8.54	10.2	EPA-901.1	/ =
Dissolved Alpha	17.6	8.85	pCi/L			8.47	9.88	EPA-900.0	/ =
Dissolved Beta	19200	123	pCi/L			9.74	3110	EPA-900.0	/ =
Neptunium-237	0.296	1.33	pCi/L	U		2.59	1.33	Alpha Spectroscopy	/ =
Plutonium-238	-0.111	0.96	pCi/L	U		2.22	0.963	HASL 300, Pu-11-RC	/ =
Plutonium-239/240	2.04	2.86	pCi/L	U		4.62	2.88	HASL 300, Pu-11-RC	/ =
Suspended Alpha	446	32.7	pCi/L			6.93	80.7	EPA-900.0	/ =
Suspended Beta	616	28.6	pCi/L			7.85	105	EPA-900.0	/ =
Technetium-99	33900	664	pCi/L			74.4	3800	HASL 300, Tc-02-RC	/ =
Thorium-230	15.2	5.45	pCi/L			4.74	6.01	HASL 300, Th-01-RC	/ =
Thorium-232	-0.0431	1.37	pCi/L	U		3.02	1.37	HASL 300, Th-01-RC	/ =
Total Uranium	550	29.9	pCi/L			3.95	69	HASL 300, U-02-RC N	/ =
Uranium-234	255	20.3	pCi/L			2.32	46.7	HASL 300, U-02-RC N	/ =
Uranium-235	17	5.94	pCi/L			2.49	6.57	HASL 300, U-02-RC N	/ =
Uranium-238	277	21.2	pCi/L			2.01	50.3	HASL 300, U-02-RC N	/ =

410BSMT-01		from: C-41	0	on 1	0/6/2014	Media: W	S	SmpMethod: GR	
Comments: C-410 Ba	sement - EPA	A Request pH 6-7	range. TC	10-6-14					
Analysis	Results	Counting Error	Units	Result Qual	Foot R Note	Reporting Limit	TPU	Method	V/V/A*
SVOA						_			
1,1-biphenyl	10		ug/L	U		10		SW846-8270C	/ = /
1,2,4,5-Tetrachlorobenzene	10		ug/L	U		10		SW846-8270C	/ = /
2,3,4,6-Tetrachlorophenol	10		ug/L	U		10		SW846-8270C	/ = /
2,4,5-Trichlorophenol	10		ug/L	U		10		SW846-8270C	/ = /
2,4,6-Trichlorophenol	10		ug/L	U		10		SW846-8270C	/ = /
2,4-Dichlorophenol	10		ug/L	U		10		SW846-8270C	/ = /
2,4-Dimethylphenol	10		ug/L	U		10		SW846-8270C	/ = /
2,4-Dinitrophenol	20		ug/L	U		20		SW846-8270C	/ = /
2,4-Dinitrotoluene	10		ug/L	U		10		SW846-8270C	/ = /
2,6-Dinitrotoluene	10		ug/L	U		10		SW846-8270C	/ = /
2-Chloronaphthalene	1		ug/L	U	1			SW846-8270C	/ = /
2-Chlorophenol	10		ug/L	U		10		SW846-8270C	/ = /
2-Methyl-4,6-dinitrophenol	10		ug/L	U		10		SW846-8270C	/ = /
2-Methylnaphthalene	3.12		ug/L		1			SW846-8270C	/ = /
2-Methylphenol	10		ug/L	U		10		SW846-8270C	/ = /
2-Nitrobenzenamine	10		ug/L	U	1			SW846-8270C	/ = /
2-Nitrophenol	10		ug/L	U	1			SW846-8270C	/ = /
3,3'-Dichlorobenzidine	10		ug/L	U	1			SW846-8270C	/ = /
3-Nitrobenzenamine	10		ug/L	U	1			SW846-8270C	/ = /
4-Bromophenyl phenyl ether	10		ug/L	U	1			SW846-8270C	/ = /
4-Chloro-3-methylphenol	10		ug/L	U	1			SW846-8270C	/ = /
4-Chlorobenzenamine	10		ug/L	U	1			SW846-8270C	/ = /
4-Chlorophenyl phenyl ether	10		ug/L	U	1			SW846-8270C	/ = /
4-Nitrophenol	10		ug/L	U	1	0		SW846-8270C	/ = /
Acenaphthene	4.34		ug/L		1			SW846-8270C	/ = /
Acenaphthylene	1		ug/L	U	1			SW846-8270C	/ = /
Acetophenone	10		ug/L	U	1	0		SW846-8270C	/ = /
Anthracene	1		ug/L	U	1			SW846-8270C	/ = /
Atrazine	10		ug/L	U	1	0		SW846-8270C	/ = /
Benz(a)anthracene	0.63		ug/L	J	1			SW846-8270C	/ = /
Benzaldehyde	10		ug/L	U	1	10		SW846-8270C	/ R /
Benzo(a)pyrene	1		ug/L	U	1			SW846-8270C	/ = /
Benzo(b)fluoranthene	0.82		ug/L	J	1			SW846-8270C	/ = /
Benzo(ghi)perylene	1		ug/L	U	1			SW846-8270C	/ = /
Benzo(k)fluoranthene	0.35		ug/L	J	1			SW846-8270C	/ = /
Bis(2-chloroethoxy)methane	10		ug/L	U	1	10		SW846-8270C	/ = /
Bis(2-chloroethyl) ether	10		ug/L	U		10		SW846-8270C	/ = /
Bis(2-ethylhexyl)phthalate	10		ug/L	U		10		SW846-8270C	/ = /
Butyl benzyl phthalate	10		ug/L	U		10		SW846-8270C	/ = /
Caprolactam	10		ug/L	U		10		SW846-8270C	/ = /
Carbazole	0.32		ug/L	J	1			SW846-8270C	/ = /
Chrysene	1.14		ug/L		1			SW846-8270C	/ = /
Dibenz(a,h)anthracene	1		ug/L	U	1			SW846-8270C	/ = /
Dibenzofuran	5.61		ug/L	J		10		SW846-8270C	/ = /
Diethyl phthalate	10		ug/L	U		10		SW846-8270C	/ = /
Dimethyl phthalate	10		ug/L	U		10		SW846-8270C	/ = /
Di-n-butyl phthalate	10		ug/L	U		10		SW846-8270C	/ = /
Di-n-octylphthalate	10		ug/L	U		10		SW846-8270C	/ = /
Diphenylamine	10		ug/L	U		10		SW846-8270C	/ = /
Fluoranthene	4.42		ug/L	-	1			SW846-8270C	/ = /
Fluorene	4.42		ug/L ug/L		1			SW846-8270C	/ = /
								511010 02100	/ = /

*Verification/Validation/Assessment

1/8/2016 Page 1 of 2

	i uuuuun oite	is nepor				
Hexachlorobenzene	10	ug/L	U	10	SW846-8270C	/ = /
Hexachlorobutadiene	10	ug/L	U	10	SW846-8270C	/ = /
Hexachlorocyclopentadiene	10	ug/L	U	10	SW846-8270C	/ = /
Hexachloroethane	10	ug/L	U	10	SW846-8270C	/ = /
Indeno(1,2,3-cd)pyrene	0.35	ug/L	J	1	SW846-8270C	/ = /
Isophorone	3.93	ug/L	J	10	SW846-8270C	/ = /
m,p-Cresol	10	ug/L	U	10	SW846-8270C	/ = /
Naphthalene	0.96	ug/L	J	1	SW846-8270C	/ = /
Nitrobenzene	10	ug/L	U	10	SW846-8270C	/ = /
N-Nitroso-di-n-propylamine	10	ug/L	U	10	SW846-8270C	/ = /
Pentachlorophenol	10	ug/L	U	10	SW846-8270C	/ = /
Phenanthrene	19	ug/L		1	SW846-8270C	/ = /
Phenol	10	ug/L	U	10	SW846-8270C	/ R /
p-Nitroaniline	10	ug/L	U	10	SW846-8270C	/ = /
Pyrene	3.18	ug/L		1	SW846-8270C	/ = /
VOA						
1,1-Dichloroethene	1	ug/L	U	1	SW846-8260B	/ = /
1,2-Dichloroethene	2	ug/L	U	2	SW846-8260B	/ = /
1,2-Dimethylbenzene	1	ug/L	U	1	SW846-8260B	/ UJ /
Acrylonitrile	5	ug/L	U	5	SW846-8260B	/ = /
Benzene	1	ug/L	U	1	SW846-8260B	/ = /
Carbon tetrachloride	1	ug/L	U	1	SW846-8260B	/ = /
Chloroform	1	ug/L	U	1	SW846-8260B	/ = /
cis-1,2-Dichloroethene	1	ug/L	U	1	SW846-8260B	/ = /
Ethylbenzene	1	ug/L	U	1	SW846-8260B	/ = /
m,p-Xylene	2	ug/L	U	2	SW846-8260B	/ = /
Tetrachloroethene	1	ug/L	U	1	SW846-8260B	/ = /
Total Xylene	3	ug/L	U	3	SW846-8260B	/ = /
trans-1,2-Dichloroethene	1	ug/L	U	1	SW846-8260B	/ = /
Trichloroethene	1	ug/L	U	1	SW846-8260B	/ = /
Vinyl chloride	1	ug/L	U	1	SW846-8260B	/ = /

410BSMT-02	2	from: C-4	10	on 1	0/10/20	014 Me	edia: WS	SmpMethod:	GR	
Comments:	C-410 Basement - EPA	A Request Tc-99	PH range 6	-7. TC 10	-10-14					
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method		V/V/A*
RADS										
Technetium-99	4540	91.3	pCi/L			28	512	HASL 300, 1	Tc-02-RC	/ X /
Technetium-99	4130	72.6	pCi/L			26.7	462	HASL 300, 1	Tc-02-RC	/ X /

410-BSMTZ	22-04	from: C4	10-Z022	on 1	0/24/2	014	Media	WS	SmpMethod: G	GR	
Comments:	C-410 Zone 22 Basem	ent stormwater p	H 6-7 range	. TC 10-2	24-14						
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Report Lim		TPU	Method		V/V/A*
RADS											
Fechnetium-99	1640	39.6	pCi/L			17.5		186	HASL 300, Tc-		/=
Fechnetium-99	1640	39.6	pCi/L			17.5		186	HASL 300, Tc-		/ =
Fotal Uranium	4740	406	pCi/L			95.3		681	HASL 300, U-0		/ =
Fotal Uranium	4740	406	pCi/L			95.3		681	HASL 300, U-0		/ =
Jranium-234	2160	272	pCi/L			49.3		452	HASL 300, U-0		/ =
Jranium-234	2160	272	pCi/L			49.3		452	HASL 300, U-0	02-RC N	/ =
Jranium-235	138	81.1	pCi/L			60.9		84.3	HASL 300, U-0	02-RC N	/ =
Jranium-235	138	81.1	pCi/L			60.9		84.3	HASL 300, U-0	02-RC N	/ =
Uranium-238	2450	290	pCi/L			54.3		502	HASL 300, U-0	02-RC N	/ =
Jranium-238	2450	290	pCi/L			54.3		502	HASL 300, U-0	02-RC N	/ =
410-BSMTZ	22-05	from: C4	10 7022	on 1	0/24/2	014	Media	- W/S	SmpMethod: G	BR	
Comments:	C-410 Zone 22 Basem					014	ivieuia.		Sinpiwetriou. C		
		Counting		Result	Foot	Report	ting				
Analysis	Results	Error	Units	Qual	Note	Lim	it	TPU	Method		V/V/A
RADS											
Fechnetium-99	1850	42.5	pCi/L			18.5		209	HASL 300, Tc-		/ =
echnetium-99	1850	42.5	pCi/L			18.5		209	HASL 300, Tc-	-02-RC	/ =
Fotal Uranium	4980	422	pCi/L			100		714	HASL 300, U-0	02-RC N	/ =
Fotal Uranium	4980	422	pCi/L			100		714	HASL 300, U-0	02-RC N	/ =
Jranium-234	2500	297	pCi/L			50.4		515	HASL 300, U-0	02-RC N	/ =
Jranium-234	2500	297	pCi/L			50.4		515	HASL 300, U-0	02-RC N	/ =
Jranium-235	152	86	pCi/L			62.4		89.7	HASL 300, U-0	02-RC N	/ =
Jranium-235	152	86	pCi/L			62.4		89.7	HASL 300, U-0	02-RC N	/ =
Jranium-238	2330	287	pCi/L			60		487	HASL 300, U-0	02-RC N	/ =
Jranium-238	2330	287	pCi/L			60		487	HASL 300, U-0	02-RC N	/ =
410-BSMTZ	22-06	from: C4	10-Z022	on 1	0/24/2	014	Media	WS	SmpMethod: G	GR	
Comments:	C-410 Zone 22 Basem	ent stormwater p	H range 6-7	. TC 10-2	24-14						
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Report Lim	ting it	TPU	Method		V/V/A
RADS											
echnetium-99	1610	36.1	pCi/L			17		182	HASL 300, Tc-	-02-RC	/.
echnetium-99	1610	36.1	pCi/L			17		182	HASL 300, Tc-	02-RC	/.
otal Uranium	5550	415	, pCi/L			102		745	HASL 300, U-0		
Fotal Uranium	5550	415	pCi/L			102		745	HASL 300, U-0		
Jranium-234	2630	284	pCi/L			66.3		512	HASL 300, U-0		
Januun 204	2630	284	pCi/L			66.3		512	HASL 300, U-0		
								85.8	HASL 300, U-0		
Jranium-234	159	81.8	pCi/l			59.7		0:0.0)2-RC N	
Jranium-234 Jranium-235	159 159	81.8 81.8	pCi/L pCi/l			59.7 59.7					
Jranium-234 Jranium-234 Jranium-235 Jranium-238	159 159 2760	81.8 81.8 291	pCi/L pCi/L pCi/L			59.7 59.7 48.3		85.8 534	HASE 300, U-0 HASE 300, U-0 HASE 300, U-0	02-RC N	/ =

410-BSMTZ	22-06D	from: C4	10-Z022	on 1	0/24/2	014 Mec	lia: WS	SmpMethod: GR	
Comments:	C-410 Zone 22 Basem	nent stormwater,	Duplicate pH	I range 6	-7. TC	10-24-14			
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
RADS									., .,
Technetium-99	2020	43.2	pCi/L			18.2	228	HASL 300, Tc-02-RC	/ .
Fechnetium-99	2020	43.2	pCi/L			18.2	228	HASL 300, Tc-02-RC	/ J
Fotal Uranium	6480	433	pCi/L			74.8	831	HASL 300, U-02-RC N	
Total Uranium	6480	433	pCi/L			74.8	831	HASL 300, U-02-RC N	
Jranium-234	3110	299	pCi/L			44	579	HASL 300, U-02-RC N	
Jranium-234	3110	299	pCi/L			44	579	HASL 300, U-02-RC N	
Uranium-235	189	84.8	pCi/L pCi/L			49.4	90	HASE 300, U-02-RC N HASE 300, U-02-RC N	
Jranium-235	189	84.8	pCi/L pCi/L			49.4 49.4	90 90	HASL 300, U-02-RC N HASL 300, U-02-RC N	
			•					HASE 300, U-02-RC N HASE 300, U-02-RC N	
Uranium-238	3180	302	pCi/L			34.8	589		
Jranium-238	3180	302	pCi/L			34.8	589	HASL 300, U-02-RC N	/ =
410-BSMTZ	26-04	from: C4	10-Z026	on 1	0/24/2	014 Mec	lia: WS	SmpMethod: GR	
Comments:	C-410 Zone 26 Basem	nent stormwater p	oH range 6-7	. TC 10-2	24-14				
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A
RADS									
Technetium-99	2160	46.2	pCi/L			19.9	243	HASL 300, Tc-02-RC	/ =
Technetium-99	2160	46.2	pCi/L			19.9	243	HASL 300, Tc-02-RC	/ =
Fotal Uranium	4770	364	pCi/L			65	632	HASL 300, U-02-RC N	
Fotal Uranium	4770	364	pCi/L			65	632	HASL 300, U-02-RC N	
Jranium-234	2340	254	pCi/L			45.4	449	HASL 300, U-02-RC N	
Jranium-234	2340	254	pCi/L pCi/L			45.4	449	HASE 300, U-02-RC N HASE 300, U-02-RC N	
Jranium-235	157	75.5	pCi/L pCi/L			41.3	79.5	HASE 300, U-02-RC N HASE 300, U-02-RC N	
			•						
Jranium-235	157	75.5	pCi/L			41.3	79.5	HASL 300, U-02-RC N	
Jranium-238	2270	250	pCi/L			21.4	437	HASL 300, U-02-RC N	
Jranium-238	2270	250	pCi/L			21.4	437	HASL 300, U-02-RC N	/ =
410-BSMTZ	26-05	from: C4	10-Z026	on 1	0/24/2	014 Mec	lia: WS	SmpMethod: GR	
Comments:	C-410 Zone 26 Basem	nent stormwater p	oH range 6-7	. TC 10-2	24-14				
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A
RADS									
Technetium-99	1630	34.9	pCi/L			16.3	184	HASL 300, Tc-02-RC	/ =
Fechnetium-99	1630	34.9	pCi/L			16.3	184	HASL 300, Tc-02-RC	
Fotal Uranium	4920	381	pCi/L			64	663	HASL 300, U-02-RC N	
Fotal Uranium	4920	381	pCi/L			64	663	HASL 300, U-02-RC N	
Jranium-234	2330	261	pCi/L pCi/L			40.7	455	HASL 300, U-02-RC N HASL 300, U-02-RC N	
Jranium-234 Jranium-234	2330	261	pCi/L pCi/L			40.7 40.7	455 455	HASL 300, U-02-RC N HASL 300, U-02-RC N	
								,	
Jranium-235	140	73.4	pCi/L			28	76.8	HASL 300, U-02-RC N	
Jranium-235	140	73.4	pCi/L			28	76.8	HASL 300, U-02-RC N	
Jranium-238	2450	268	pCi/L			40.7	476	HASL 300, U-02-RC N	
Jranium-238	2450	268	pCi/L			40.7	476	HASL 300, U-02-RC N	/ :

410-BSMTZ	26-06	from: C4	10-Z026	on 1	0/24/2	014 Media	: WS	SmpMethod: GR	
Comments:	C-410 Zone 26 Baseme	ent stormwater p	H range 6-7.	. TC 10-2	24-14				
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
RADS									
Technetium-99	1820	38.4	pCi/L			17.4	205	HASL 300, Tc-02-RC	/ = /
Technetium-99	1820	38.4	pCi/L			17.4	205	HASL 300, Tc-02-RC	/ = /
Total Uranium	5950	399	pCi/L			95.1	749	HASL 300, U-02-RC N	/ = /
Total Uranium	5950	399	pCi/L			95.1	749	HASL 300, U-02-RC N	/ = /
Uranium-234	2790	272	pCi/L			58.6	514	HASL 300, U-02-RC N	/ = /
Uranium-234	2790	272	pCi/L			58.6	514	HASL 300, U-02-RC N	/ = /
Uranium-235	236	91	pCi/L			57.1	98.2	HASL 300, U-02-RC N	/ = /
Uranium-235	236	91	pCi/L			57.1	98.2	HASL 300, U-02-RC N	/ = /
Uranium-238	2930	278	pCi/L			48.6	535	HASL 300, U-02-RC N	/ = /
Uranium-238	2930	278	pCi/L			48.6	535	HASL 300, U-02-RC N	/ = /

410-BSMTZ	22-07	from: C4	10-Z022	on 1	2/3/20	14 Media	a: WS	SmpMethod: GR	
Comments:	pH was taken w/paper strip	os. No other read	ings were need	ed. pH ra	nge wa	s 6-7. BB 12-3	-14C-410 Zone 2	2 Basement stormwater (top, n	n
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL Total Uranium	11100	222	pCi/L			12.1	1770	HASL 300, U-02-RC N	/ X
OTHIN									
Asbestos	200000		fibers/L	U		1		EPA-100.2	/ X
RADS			Q. #						
Technetium-99	5180	70.1	pCi/L			24.1	577	HASL 300, Tc-02-RC	/ X
Uranium-234	5110	151	pCi/L			7.06	1190	HASL 300, U-02-RC N	
Uranium-235 Uranium-238	461 5560	45.4 157	pCi/L pCi/L			8.13 5.54	116 1300	HASL 300, U-02-RC N HASL 300, U-02-RC N	
410-BSMTZ	22-08	from: C4	10-Z022	on 1	2/3/20	14 Media	a: WS	SmpMethod: GR	
Comments:	pH was taken w/paper strip	os. No other read	ings were need	ed. pH ra	nge wa	s 6-7. BB 12-3	-14C-410 Zone 23	2 Basement stormwater (top, n	n
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL	10500	004	0.1			10 5	4700		
Total Uranium	10500	231	pCi/L			16.5	1780	HASL 300, U-02-RC N	/ X
OTHIN Asbestos	200000		fibers/L	U		1		EPA-100.2	/ X
	200000		HBCIG/E	U		•		217(100.2	17
RADS Technetium-99	5010	68.1	pCi/L			23.5	558	HASL 300, Tc-02-RC	/ X
Uranium-234	4920	159	pCi/L			12.3	1230	HASL 300, U-02-RC N	
Uranium-235	419	46.5	pCi/L			8.15	114	HASL 300, U-02-RC N	
Uranium-238	5110	162	pCi/L			7.36	1280	HASL 300, U-02-RC N	
410-BSMTZ	22-09	from: C4	10-Z022	on 1	2/3/20	14 Media	a: WS	SmpMethod: GR	
Comments:	pH was taken w/paper strip	os. No other read	ings were need	ed. pH ra	nge wa	s 6-7. BB 12-3	-14C-410 Zone 2	2 Basement stormwater (top, n	n
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL Total Uranium	8590	175	pCi/L			5.93	1260	HASL 300, U-02-RC N	/ X
OTHIN									
Asbestos	200000		fibers/L	U		1		EPA-100.2	/ X
RADS			<u> </u>						
Technetium-99	5140	67.4	pCi/L			22.5	572	HASL 300, Tc-02-RC	/ X
Uranium-234	3880	118	pCi/L			2.78	836	HASL 300, U-02-RC N	
Uranium-235 Uranium-238	341	34.9	pCi/L			2.78	80.7	HASL 300, U-02-RC N	
	4370	125	pCi/L			4.44	938	HASL 300, U-02-RC N	/ X

410-BSMTZ	22SL-07	from: C4	10-Z022	on 1	2/3/20	14	Media:	SL	SmpMethod: GR	
Comments:	C-410 Zone 22 Basement	t Sludge								
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Report Lim		TPU	Method	V/V/A*
RADS	Results	LIIO	Units	Quai	NOLE	LIIII	it.	IFU	Method	v/ v/A
Technetium-99	1870	119	pCi/g			107		246	HASL 300, Tc-02-RC	/ X
Fechnetium-99	893	82.9	pCi/g pCi/g			94.1		132	HASL 300, Tc-02-RC	/ X
Total Uranium	2540	72.5	pCi/g pCi/g			4.99		609	HASL 300, U-02-RC N	/ X
Jranium-234	1200	49.7	pCi/g pCi/g			4.55 3.16		420	HASL 300, U-02-RC N	/ X
Jranium-235	81.1	49.7 14.4	pCi/g pCi/g			2.77		31.6	HASE 300, U-02-RC N HASE 300, U-02-RC N	/ X
Jranium-238	1260	50.8	pCi/g pCi/g			2.77		439	HASE 300, 0-02-RC N HASL 300, U-02-RC N	/ X
410-BSMTZ	2251 -08	from: C4	10 7000	on 1	2/2/20	1 4	Madia	21	SmpMathadi CD	
Comments:	C-410 Zone 22 Basement	from: C4	10-2022	on 1	2/3/20	14	Media:	SL	SmpMethod: GR	
Comments.	0-410 Zone Zz Dasemen	Counting		Result	Foot	Report	ina			
Analysis	Results	Error	Units	Qual	Note	Lim		TPU	Method	V/V/A*
RADS										
Fechnetium-99	1140	61.6	pCi/g			50.7		145	HASL 300, Tc-02-RC	/ X
echnetium-99	1680	76	pCi/g			59		208	HASL 300, Tc-02-RC	/ X
otal Uranium	3190	116	pCi/g			8.54		1070	HASL 300, U-02-RC N	/ X
Jranium-234	1510	79.4	pCi/g			6.04		747	HASL 300, U-02-RC N	/ X
Jranium-235	126	25.6	pCi/g			4.02		66.8	HASL 300, U-02-RC N	/ X
Inc. a	1550	80.2	pCi/g			4.5		762	HASL 300, U-02-RC N	/ X
Jranium-238	1000									
Uranium-238 410-BSMTZ		from: C4	10-Z022	on 1	2/3/20	14	Media:	SL	SmpMethod: GR	
			10-Z022	on 1	2/3/20	14	Media:	SL	SmpMethod: GR	
410-BSMTZ	22SL-09 C-410 Zone 22 Basemen	t Sludge Counting		Result	Foot	Report	ing	-		\/\//Δ*
410-BSMTZ Comments: Analysis	22SL-09	t Sludge	10-Z022 Units	-			ing	SL TPU	SmpMethod: GR Method	V/V/A*
410-BSMTZ Comments: Analysis RADS	22SL-09 C-410 Zone 22 Basemen Results	t Sludge Counting Error	Units	Result	Foot	Report Lim	ing	TPU	Method	
410-BSMTZ Comments: Analysis RADS Fechnetium-99	22SL-09 C-410 Zone 22 Basement Results 1770	t Sludge Counting Error 182	Units pCi/g	Result	Foot	Report Lim	ing	TPU 273	Method HASL 300, Tc-02-RC ∣	/ X
410-BSMTZ Comments: Analysis RADS Fechnetium-99 Fechnetium-99	22SL-09 C-410 Zone 22 Basement Results 1770 1060	t Sludge Counting Error 182 154	Units pCi/g pCi/g	Result	Foot	Report Lim 214 199	ing	TPU 273 197	Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC	/ X / X
410-BSMTZ Comments: Analysis RADS Fechnetium-99 Fechnetium-99 Fotal Uranium	22SL-09 C-410 Zone 22 Basement Results 1770 1060 641	t Sludge Counting Error 182 154 23.5	Units pCi/g pCi/g pCi/g	Result	Foot	Report Lim 214 199 2.44	ing	TPU 273 197 105	Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC M	/ X / X / X
410-BSMTZ Comments: Analysis RADS Fechnetium-99 Fechnetium-99 Fotal Uranium Jranium-234	22SL-09 C-410 Zone 22 Basement Results 1770 1060 641 295	t Sludge Counting Error 182 154 23.5 15.9	Units pCi/g pCi/g pCi/g pCi/g	Result	Foot	Report Lim 214 199 2.44 1.37	ing	TPU 273 197 105 70.5	Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC M HASL 300, U-02-RC M	/ X / X / X / X
410-BSMTZ Comments: Analysis RADS Technetium-99 Technetium-99 Total Uranium Jranium-234 Jranium-235	22SL-09 C-410 Zone 22 Basement Results 1770 1060 641	t Sludge Counting Error 182 154 23.5	Units pCi/g pCi/g pCi/g	Result	Foot	Report Lim 214 199 2.44	ing	TPU 273 197 105	Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC M	/ X / X / X / X / X
410-BSMTZ Comments: Analysis RADS Technetium-99 Total Uranium Uranium-234 Uranium-235 Uranium-238	22SL-09 C-410 Zone 22 Basement Results 1770 1060 641 295 19.3 327	t Sludge Counting Error 182 154 23.5 15.9 4.58 16.7	Units pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	Result Qual	Foot Note	Report Lim 214 199 2.44 1.37 1.63 1.2	ing t	TPU 273 197 105 70.5 6.42 77.9	Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC M HASL 300, U-02-RC M HASL 300, U-02-RC M	/ X / X / X / X
410-BSMTZ Comments: Analysis RADS Technetium-99 Total Uranium Uranium-234 Uranium-235 Uranium-238	22SL-09 C-410 Zone 22 Basement Results 1770 1060 641 295 19.3 327 26-07	t Sludge Counting Error 182 154 23.5 15.9 4.58 16.7 from: C4	Units pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g 10-Z026	Result Qual	Foot Note	Report Lim 214 199 2.44 1.37 1.63 1.2 14	ing t Media: 1	TPU 273 197 105 70.5 6.42 77.9	Method HASL 300, Tc-02-RC I HASL 300, Tc-02-RC I HASL 300, U-02-RC N HASL 300, U-02-RC N HASL 300, U-02-RC N HASL 300, U-02-RC N SmpMethod: GR	/ X . / X . / X . / X . / X .
410-BSMTZ Comments: Analysis RADS Technetium-99 Total Uranium Uranium-234 Uranium-235 Uranium-238 410-BSMTZ Comments:	22SL-09 C-410 Zone 22 Basement Results 1770 1060 641 295 19.3 327 26-07 pH was taken w/paper str	t Sludge Counting Error 182 154 23.5 15.9 4.58 16.7 from: C4	Units pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g 10-Z026	Result Qual	Foot Note	Report Lim 214 199 2.44 1.37 1.63 1.2 14 s 6-7. B Report	Media: 1 B 12-3-140	TPU 273 197 105 70.5 6.42 77.9 WS C-410 Zone 26	Method HASL 300, Tc-02-RC I HASL 300, Tc-02-RC I HASL 300, U-02-RC N HASL 300, U-02-RC N HASL 300, U-02-RC N HASL 300, U-02-RC N SmpMethod: GR 6 Basement stormwater (top, r	/ X / X / X / X / X
410-BSMTZ Comments: Analysis RADS Technetium-99 Total Uranium Uranium-234 Uranium-235 Uranium-238 410-BSMTZ Comments: Analysis	22SL-09 C-410 Zone 22 Basement Results 1770 1060 641 295 19.3 327 26-07	t Sludge Counting Error 182 154 23.5 15.9 4.58 16.7 from: C4 ips. No other readi	Units pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g 10-Z026	Result Qual on 1 ed. pH ra	Foot Note	Report Lim 214 199 2.44 1.37 1.63 1.2 14 s 6-7. B	Media: 1 B 12-3-140	TPU 273 197 105 70.5 6.42 77.9	Method HASL 300, Tc-02-RC I HASL 300, Tc-02-RC I HASL 300, U-02-RC N HASL 300, U-02-RC N HASL 300, U-02-RC N HASL 300, U-02-RC N SmpMethod: GR	/ X / X / X / X / X
410-BSMTZ Comments: Analysis RADS Fechnetium-99 Fotal Uranium Jranium-234 Jranium-235 Jranium-238 410-BSMTZ Comments: Analysis METAL	22SL-09 C-410 Zone 22 Basement Results 1770 1060 641 295 19.3 327 26-07 pH was taken w/paper str	t Sludge Counting Error 182 154 23.5 15.9 4.58 16.7 from: C4 ips. No other readi	Units pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	Result Qual on 1 ed. pH ra	Foot Note 2/3/20 nge wa Foot	Report Lim 214 199 2.44 1.37 1.63 1.2 14 s 6-7. B Report	Media: 1 B 12-3-140	TPU 273 197 105 70.5 6.42 77.9 WS C-410 Zone 26	Method HASL 300, Tc-02-RC I HASL 300, Tc-02-RC I HASL 300, U-02-RC N HASL 300, U-02-RC N HASL 300, U-02-RC N HASL 300, U-02-RC N SmpMethod: GR 6 Basement stormwater (top, r	/ X / X / X / X / X
410-BSMTZ Comments: Analysis RADS Technetium-99 Fotal Uranium Jranium-234 Jranium-235 Jranium-238 410-BSMTZ Comments: Analysis METAL	22SL-09 C-410 Zone 22 Basement Results 1770 1060 641 295 19.3 327 26-07 pH was taken w/paper str Results	t Sludge Counting Error 182 154 23.5 15.9 4.58 16.7 from: C4 ips. No other readi Counting Error	Units pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g 10-Z026 ings were need	Result Qual on 1 ed. pH ra	Foot Note 2/3/20 nge wa Foot	Report Lim 214 199 2.44 1.37 1.63 1.2 14 s 6-7. B Report Lim	Media: 1 B 12-3-140	TPU 273 197 105 70.5 6.42 77.9 WS C-410 Zone 26 TPU	Method HASL 300, Tc-02-RC I HASL 300, Tc-02-RC I HASL 300, U-02-RC N HASL 300, U-02-RC N HASL 300, U-02-RC N HASL 300, U-02-RC N SmpMethod: GR 6 Basement stormwater (top, r Method	/ X / X / X / X / X / X
410-BSMTZ Comments: Analysis RADS Fechnetium-99 Fochnetium-99 Fotal Uranium Jranium-234 Jranium-235 Jranium-238 410-BSMTZ Comments: Analysis METAL Fotal Uranium OTHIN	22SL-09 C-410 Zone 22 Basement Results 1770 1060 641 295 19.3 327 26-07 pH was taken w/paper str Results	t Sludge Counting Error 182 154 23.5 15.9 4.58 16.7 from: C4 ips. No other readi Counting Error	Units pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g 10-Z026 ings were need	Result Qual on 1 ed. pH ra	Foot Note 2/3/20 nge wa Foot	Report Lim 214 199 2.44 1.37 1.63 1.2 14 s 6-7. B Report Lim	Media: 1 B 12-3-140	TPU 273 197 105 70.5 6.42 77.9 WS C-410 Zone 26 TPU	Method HASL 300, Tc-02-RC I HASL 300, Tc-02-RC I HASL 300, U-02-RC N HASL 300, U-02-RC N HASL 300, U-02-RC N HASL 300, U-02-RC N SmpMethod: GR 6 Basement stormwater (top, r Method	/ X / X / X / X / X
410-BSMTZ Comments: Analysis RADS Technetium-99 Total Uranium Jranium-234 Jranium-235 Jranium-235 Jranium-238 410-BSMTZ Comments: Analysis METAL Total Uranium OTHIN Asbestos RADS	22SL-09 C-410 Zone 22 Basement Results 1770 1060 641 295 19.3 327 26-07 pH was taken w/paper str Results 8950 200000	t Sludge Counting Error 182 154 23.5 15.9 4.58 16.7 from: C4 ips. No other readi Counting Error 196	Units pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g 10-Z026 ings were need Units pCi/L fibers/L	Result Qual on 1 ed. pH ra Result Qual	Foot Note 2/3/20 nge wa Foot	Report Lim 214 199 2.44 1.37 1.63 1.2 14 s 6-7. B Report Lim 10.6	Media: 1 B 12-3-140	TPU 273 197 105 70.5 6.42 77.9 WS C-410 Zone 26 TPU 1420	Method HASL 300, Tc-02-RC I HASL 300, Tc-02-RC I HASL 300, U-02-RC N HASL 300, U-02-RC N HASL 300, U-02-RC N SmpMethod: GR 6 Basement stormwater (top, r Method HASL 300, U-02-RC N EPA-100.2	/ X / X / X / X / X
410-BSMTZ Comments: Analysis RADS Fechnetium-99 Fechnetium-99 Fotal Uranium Jranium-234 Jranium-235 Jranium-238 410-BSMTZ Comments: Analysis METAL Fotal Uranium OTHIN Asbestos RADS Fechnetium-99	22SL-09 C-410 Zone 22 Basement Results 1770 1060 641 295 19.3 327 26-07 pH was taken w/paper str Results 8950 200000 5290	t Sludge Counting Error 182 154 23.5 15.9 4.58 16.7 from: C4 ips. No other readi Counting Error 196 68.8	Units pCi/g pCi/g pCi/g pCi/g pCi/g 10-Z026 ings were need Units pCi/L fibers/L	Result Qual on 1 ed. pH ra Result Qual	Foot Note 2/3/20 nge wa Foot	Report Lim 214 199 2.44 1.37 1.63 1.2 14 s 6-7. B Report Lim 10.6 1 22.7	Media: 1 B 12-3-140	TPU 273 197 105 70.5 6.42 77.9 WS C-410 Zone 26 TPU 1420	Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC N HASL 300, U-02-RC N HASL 300, U-02-RC N HASL 300, U-02-RC N SmpMethod: GR 6 Basement stormwater (top, r Method HASL 300, U-02-RC N HASL 300, U-02-RC N	/ X / X / X / X / X / X
410-BSMTZ Comments: Analysis RADS Technetium-99 Total Uranium Jranium-234 Jranium-235 Jranium-238 410-BSMTZ Comments: Analysis METAL Total Uranium OTHIN Asbestos	22SL-09 C-410 Zone 22 Basement Results 1770 1060 641 295 19.3 327 26-07 pH was taken w/paper str Results 8950 200000	t Sludge Counting Error 182 154 23.5 15.9 4.58 16.7 from: C4 ips. No other readi Counting Error 196	Units pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g 10-Z026 ings were need Units pCi/L fibers/L	Result Qual on 1 ed. pH ra Result Qual	Foot Note 2/3/20 nge wa Foot	Report Lim 214 199 2.44 1.37 1.63 1.2 14 s 6-7. B Report Lim 10.6	Media: 1 B 12-3-140	TPU 273 197 105 70.5 6.42 77.9 WS C-410 Zone 26 TPU 1420	Method HASL 300, Tc-02-RC I HASL 300, Tc-02-RC I HASL 300, U-02-RC N HASL 300, U-02-RC N HASL 300, U-02-RC N SmpMethod: GR 6 Basement stormwater (top, r Method HASL 300, U-02-RC N EPA-100.2	/ X / X / X / X / X / X
410-BSMTZ Comments: Analysis RADS Fechnetium-99 Fechnetium-99 Fotal Uranium Jranium-234 Jranium-235 Jranium-238 410-BSMTZ Comments: Analysis METAL Fotal Uranium OTHIN Asbestos RADS Fechnetium-99	22SL-09 C-410 Zone 22 Basement Results 1770 1060 641 295 19.3 327 26-07 pH was taken w/paper str Results 8950 200000 5290	t Sludge Counting Error 182 154 23.5 15.9 4.58 16.7 from: C4 ips. No other readi Counting Error 196 68.8	Units pCi/g pCi/g pCi/g pCi/g pCi/g 10-Z026 ings were need Units pCi/L fibers/L	Result Qual on 1 ed. pH ra Result Qual	Foot Note 2/3/20 nge wa Foot	Report Lim 214 199 2.44 1.37 1.63 1.2 14 s 6-7. B Report Lim 10.6 1 22.7	Media: 1 B 12-3-140	TPU 273 197 105 70.5 6.42 77.9 WS C-410 Zone 26 TPU 1420	Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC N HASL 300, U-02-RC N HASL 300, U-02-RC N HASL 300, U-02-RC N SmpMethod: GR 6 Basement stormwater (top, r Method HASL 300, U-02-RC N HASL 300, U-02-RC N	/ X / X / X / X / X n V/V/A* / X / X

METAL Total Uranium 12900 262 pC/L 12.2 210 HASL 300, U-02-RC h OTHIN Asbestos 200000 fibers/L U 1 EPA-100.2 RADS Techneitum-99 5530 72.3 pC/L 24.1 615 HASL 300, U-02-RC h Unanium-234 6020 179 pC/L 8.46 1520 HASL 300, U-02-RC h Unanium-235 516 52.6 pC/L 7.7 139 HASL 300, U-02-RC h Unanium-238 6360 184 pC/L 4.16 1600 HASL 300, U-02-RC h 410-BSMTZ26-08D from: C410-Z026 on 12/3/2014 Media: WS SmpMethod: GR Comments: PH was taken w/paper strips. No other readings were needed. pH range was 6-7. BB 12-3-14C-410 Zone 26 Basement stormwater (top, m Analysis Results Counting Encoding Units Result Food Method V/V METAL Unanium-234 7600 fbers/L U 1 EPA-100.2 EPA-100.2 RADS 5250 565 <	410-BSMTZ	26-08	from: C4	10-Z026	on 1	2/3/20	14 Media	a: WS	SmpMethod: GR	
Analysis Results Error Units Oue Note Linit TPU Method V/V Total Uranium 12900 262 pCi/L 12.2 2210 HASL 300, U-02-RC A A OTHIN Asbestos 2000000 fibers/L U 1 EPA-100.2 A Varaium-234 6020 179 pCi/L 8.46 1520 HASL 300, U-02-RC A Uranium-238 6360 184 pCi/L 4.16 1600 HASL 300, U-02-RC A 410-BSMTZ26-08D from: C410-Z026 on 12/3/2014 Media: WS SmpMethod: GR Comments: pH was taken w/paper strips. No other readings were needed. pH range was 67.BB 12-3-142C-410 Zone 26 Basement stormwater (top, m Analysis Analysis Result Foo	Comments:	pH was taken w/paper strip	os. No other read	ings were need	ed. pH ra	nge wa	s 6-7. BB 12-3	-14C-410 Zone 2	6 Basement stormwater (top, n	n
Total Uranium 1290 262 pCi/L 12.2 2210 HASL 300, U-02-RC h Asbestos 200000 fibers/L U 1 EPA-100.2 Asbestos Asbestos 200000 fibers/L U 1 EPA-100.2 Asbestos Asbestos 200000 fibers/L U 1 EPA-100.2 Asbestos Technetium-99 5530 72.3 pCi/L 8.46 1520 HASL 300, U-02-RC h Asbestos Uranium-234 6020 179 pCi/L 8.46 1520 HASL 300, U-02-RC h Asbestos Uranium-238 6360 184 pCi/L 4.16 1600 HASL 300, U-02-RC h Asbestos SmpMethod: GR Comments: pH was taken wipaper strips. No other readings were needed. pH range was 67.8B 12-3-14C-410 Zone 26 Basement stormwater (top, m Method V/V METAL Total Uranium 10400 220 pCi/L 12 1700 HASL 300, U-02-RC h Total Uranium-234 4760 148 pCi/L <t< th=""><th>•</th><th>Results</th><th></th><th>Units</th><th></th><th></th><th></th><th>TPU</th><th>Method</th><th>V/V/A*</th></t<>	•	Results		Units				TPU	Method	V/V/A*
Asbestos 200000 fibers/L U 1 EPA-100.2 RADS Technelium-99 5530 72.3 pCi/L 24.1 615 HASL 300, Uro2-RC h Uranium-234 6020 179 pCi/L 8.46 1520 HASL 300, Uro2-RC h Uranium-235 516 52.6 pCi/L 7.7 139 HASL 300, Uro2-RC h Uranium-238 6360 184 pCi/L 4.16 1600 HASL 300, Uro2-RC h 410-BSMTZ26-08D from: C410-Z026 on 12/3/2014 Media: WS SmpMethod: GR Comments: pH was taken w/paper strips. No other readings were needed. pH range was 6-7. BB 12-3-14C-410 Zone 26 Basement stormwater (top, m Malysis Results Counting Inits Result Foot Reporting TPU Method V/V METAL Total Uranium-320 200000 fibers/L U 1 EPA-100.2 EPA		12900	262	pCi/L			12.2	2210	HASL 300, U-02-RC N	/ X
RADS Technetium-99 5530 72.3 pCi/L 24.1 615 HASL 300, To-02-RC I Uranium-234 6020 179 pCi/L 8.46 1520 HASL 300, U-02-RC I Uranium-235 516 52.6 pCi/L 7.7 139 HASL 300, U-02-RC I Uranium-238 6360 184 pCi/L 4.16 1600 HASL 300, U-02-RC I 410-BSMTZ26-08D from: C410-Z026 on 12/3/2014 Media: WS SmpMethod: GR Comments: pH was taken wipaper strips. No other readings were needed. pH range was 6-7. BB 12:3-14C-410 Zone 26 Basement stormwater (top. m Analysis Results Counting Counting Food Reporting TPU Method V/V METAL Total Uranium 10400 220 pCi/L 12 1700 HASL 300, U-02-RC N I CHIN Asbestos 200000 fibers/L U 1 EPA-100.2 RADS Technetium-99 5020 66.6 pCi/L 7.34 1140 HASL 300, U-02-RC N	OTHIN									
Technetium-99 5530 72.3 pCi/L 24.1 615 HASL 300, Tc-02-RC I Uranium-234 6020 179 pCi/L 8.46 1520 HASL 300, U-02-RC A Uranium-235 516 52.6 pCi/L 7.7 139 HASL 300, U-02-RC A Uranium-238 6360 184 pCi/L 4.16 1600 HASL 300, U-02-RC A I/anium-238 6360 184 pCi/L 4.16 1600 HASL 300, U-02-RC A I/anium-238 6360 184 pCi/L 4.16 1600 HASL 300, U-02-RC A I/anium-238 Result Counting Error Units Result SmpMethod: GR Analysis Results Counting Error Units Result TPU Method V/V METAL 10400 220 pCi/L 12 1700 HASL 300, U-02-RC A A OTHIN Asbestos 200000 fibers/L U 1 EPA-100.2 A I/anium-234	Asbestos	200000		fibers/L	U		1		EPA-100.2	/ X
Uranium-234 6020 179 pCi/L 8.46 1520 HASL 300, U-02-RC h Uranium-235 516 52.6 pCi/L 7.7 139 HASL 300, U-02-RC h 410-BSMTZ26-08D from: C410-Z026 on 12/3/2014 Media: WS SmpMethod: GR Comments: pH was taken w/paper strips. No other readings were needed. pH range was 6-7. BB 12-3-14C-410 Zone 26 Basement stormwater (top, m Analysis Results Counting Error Units Result Foot Reporting Lumit TPU Method V/V METAL Total Uranium 10400 220 pCi/L 12 1700 HASL 300, U-02-RC h V/V Asbestos 200000 fibers/L U 1 EPA-100.2 RAS Technetium-39 5020 66.6 pCi/L 7.34 1140 HASL 300, U-02-RC h Uranium-234 4760 148 pCi/L 7.34 1140 HASL 300, U-02-RC h Uranium-235 425 44.5 pCi/L 6.66 110 HASL 300, U-02-RC h Uranium-										
Uranium-235 516 52.6 pCi/L 7.7 139 HASL 300, U-02-RC h 410-BSMTZ26-08D from: C410-Z026 on 12/3/2014 Media: WS SmpMethod: GR Comments: pH was taken w/paper strips. No other readings were needed. pH range was 6-7. BB 12-314C-410 Zone 26 Basement stormwater (top, m Analysis Results Counting Units Reparting TPU Method: V/V METAL Total Uranium 10400 220 pCi/L 12 1700 HASL 300, U-02-RC h V/V RADS 200000 fibers/L U 1 EPA-100.2 Rescut for the tas and				•						/ X .
Uranium-238 6360 184 pCi/L 4.16 1600 HASL 300, U-02-RC N 410-BSMTZ26-08D from: C410-Z026 on 12/3/2014 Media: WS SmpMethod: GR Comments: pH was taken w/paper strips. No other readings were needed. pH range was 6-7. BB 12-3-14C-410 Zone 26 Basement stormwater (top, m Analysis Results Counting Error Units Result Foot Reporting Limit TPU Method V/V METAL Total Uranium 10400 220 pCi/L 12 1700 HASL 300, U-02-RC N 1 Asbestos 200000 fibers/L U 1 EPA-100.2 1 RADS Technetium-99 5020 66.6 pCi/L 22.5 559 HASL 300, U-02-RC N 1 Uranium-234 4760 148 pCi/L 7.34 1140 HASL 300, U-02-RC N 1 Uranium-238 5250 156 pCi/L 6.66 1250 HASL 300, U-02-RC N 1 Marium-238 Results Counting Error Units Result				•						
Comments: pH was taken w/paper strips. No other readings were needed. pH range was 6-7. BB 12-3-14C-410 Zone 26 Basement stormwater (top, m Analysis Results Counting Error Units Result Foot Result PU Limit Method V/V METAL Total Uranium 10400 220 pC/L 12 1700 HASL 300, U-02-RC N 1 Asbestos 200000 fibers/L U 1 EPA-100.2 1 RADS 7 BL 300, U-02-RC N 1 EPA-100.2 1 1 Asbestos 200000 fibers/L U 1 EPA-100.2 1 Asbestos 200000 fibers/L U 1 EPA-100.2 1 Asbestos 200000 fibers/L U 1 EPA-100.2 1 Varaium-234 4760 148 pC/L 7.34 1140 HASL 300, U-02-RC N 1 410-BSMTZ26-09 from: C410-Z026 on 12/3/2014 Media: WS SmpMethod: GR Comments: pH was taken w/paper strips. No other readings were ne				•						
Analysis Results Counting Error Units Result Foot Qual Reporting Limit TPU Method V/V METAL Total Uranium 10400 220 pCi/L 12 1700 HASL 300, U-02-RC N 1 OTHIN Asbestos 200000 fibers/L U 1 EPA-100.2 1 RADS Technetium-99 5020 66.6 pCi/L 22.5 559 HASL 300, U-02-RC N 1 Uranium-234 4760 148 pCi/L 7.34 1140 HASL 300, U-02-RC N 1 Uranium-236 5250 156 pCi/L 6.68 110 HASL 300, U-02-RC N 1 Uranium-238 5250 156 pCi/L 6.66 1250 HASL 300, U-02-RC N 1 410-BSMTZ26-09 from: C410-Z026 on 12/3/2014 Media: WS SmpMethod: GR Comments: pH was taken w/paper strips. No other readings were needed. pH range was 6-7. BB 12-3-14C-410 Zone 26 Basement stormwater (top. m Analysis Results Counting Error Foot	410-BSMTZ	26-08D	from: C4	10-Z026	on 1	2/3/20	14 Media	a: WS	SmpMethod: GR	
Analysis Results Error Units Qual Note Limit TPU Method V/V METAL Total Uranium 10400 220 pCi/L 12 1700 HASL 300, U-02-RC N 1 OTHIN Asbestos 200000 fibers/L U 1 EPA-100.2 1 RADS Technetium-99 5020 66.6 pCi/L 22.5 559 HASL 300, U-02-RC N 1 Uranium-234 4760 148 pCi/L 7.34 1140 HASL 300, U-02-RC N 1 Uranium-238 5250 156 pCi/L 6.66 1250 HASL 300, U-02-RC N 1 410-BSMTZ26-09 from: C410-Z026 on 12/3/2014 Media: WS SmpMethod: GR 1 Comments: pH was taken w/paper strips. No other readings were needed. pH range was 6-7. BB 12-3-14C-410 Zone 26 Basement stormwater (top, m 1 Analysis Results Counting Foot Reporting TPU Method V/V METAL Total Uranium	Comments:	pH was taken w/paper strip	os. No other read	ings were need	ed. pH ra	nge wa	s 6-7. BB 12-3	-14C-410 Zone 20	6 Basement stormwater (top, n	n
Total Uranium 10400 220 pCi/L 12 1700 HASL 300, U-02-RC N OTHIN Asbestos 200000 fibers/L U 1 EPA-100.2 Image: Constraint of the state of the	Analysis	Results		Units				TPU	Method	V/V/A*
OTHIN Asbestos 200000 fibers/L U 1 EPA-100.2 RADS Technetium-99 5020 66.6 pCi/L 22.5 559 HASL 300, Tc-02-RC I Uranium-234 4760 148 pCi/L 7.34 1140 HASL 300, U-02-RC N Uranium-235 425 44.5 pCi/L 6.68 110 HASL 300, U-02-RC N Uranium-238 5250 156 pCi/L 6.66 1250 HASL 300, U-02-RC N 410-BSMTZ26-09 from: C410-Z026 on 12/3/2014 Media: WS SmpMethod: GR Comments: pH was taken w/paper strips. No other readings were needed. pH range was 6-7. BB 12-3-14C-410 Zone 26 Basement stormwater (top, m Analysis Result Counting Error Inits Result Foot Qual Reporting Limit TPU Method V/V METAL Total Uranium 10100 211 pCi/L 11.7 1600 HASL 300, U-02-RC N OTHIN Asbestos 200000 fibers/L U 1 EPA-100.2 RADS				Q. #				(====		
Asbestos 200000 fibers/L U 1 EPA-100.2 RADS Technetium-99 5020 66.6 pCi/L 22.5 559 HASL 300, Tc-02-RC I Uranium-234 4760 148 pCi/L 7.34 1140 HASL 300, U-02-RC N Uranium-235 425 44.5 pCi/L 6.68 110 HASL 300, U-02-RC N Uranium-238 5250 156 pCi/L 6.66 1250 HASL 300, U-02-RC N Vanium-238 5250 156 pCi/L 6.66 1250 HASL 300, U-02-RC N Vanium-238 5250 156 pCi/L 6.66 1250 HASL 300, U-02-RC N Vanium-238 5250 156 pCi/L 8.666 1250 HASL 300, U-02-RC N Comments: pH was taken w/paper strips. No other readings were needed. pH range was 6-7. BB 12-3-14C-410 Zone 26 Basement stormwater (top, m Analysis Results Counting Units Result Foot Reporting TPU Method V/V METAL<	I otal Uranium	10400	220	pCi/L			12	1700	HASL 300, U-02-RC N	/ X .
Technetium-99 5020 66.6 pCi/L 22.5 559 HASL 300, Tc-02-RC I Uranium-234 4760 148 pCi/L 7.34 1140 HASL 300, U-02-RC N Uranium-235 425 44.5 pCi/L 6.68 110 HASL 300, U-02-RC N Uranium-238 5250 156 pCi/L 6.66 1250 HASL 300, U-02-RC N 410-BSMTZ26-09 from: C410-Z026 on 12/3/2014 Media: WS SmpMethod: GR Comments: pH was taken w/paper strips. No other readings were needed. pH range was 6-7. BB 12-3-14C-410 Zone 26 Basement stormwater (top, m Analysis Results Counting Error Units Result Qual Foot Note Reporting Limit TPU Method V/V METAL Total Uranium 10100 211 pCi/L 11.7 1600 HASL 300, U-02-RC N Asbestos 200000 fibers/L U 1 EPA-100.2 Total Uranium-234 4720 144 pCi/L 7.02 1100 HASL 300, U-02-RC N Total Uranium-235 417 43.1 pCi/L 7.59 106 HASL 300, U-02-RC N Total Uranium-235	-	200000		fibers/L	U		1		EPA-100.2	/ X
Uranium-234 4760 148 pCi/L 7.34 1140 HASL 300, U-02-RC N Uranium-235 425 44.5 pCi/L 6.68 110 HASL 300, U-02-RC N Uranium-238 5250 156 pCi/L 6.66 1250 HASL 300, U-02-RC N 410-BSMTZ26-09 from: C410-Z026 on 12/3/2014 Media: WS SmpMethod: GR Comments: pH was taken w/paper strips. No other readings were needed. pH range was 6-7. BB 12-3-14C-410 Zone 26 Basement stormwater (top, m Analysis Results Counting Error Units Result Foot Quait Reporting Limit TPU Method V/V METAL Total Uranium 10100 211 pCi/L 11.7 1600 HASL 300, U-02-RC N 1 Asbestos 200000 fibers/L U 1 EPA-100.2 1 RADS Technetium-99 4680 63 pCi/L 21.5 521 HASL 300, U-02-RC N 1 Uranium-234 4720 144 pCi/L 7.02 1100 HASL 300, U-02-RC N 1	RADS									
Uranium-235 425 44.5 pCi/L 6.68 110 HASL 300, U-02-RC N Uranium-238 5250 156 pCi/L 6.66 1250 HASL 300, U-02-RC N 410-BSMTZ26-09 from: C410-Z026 on 12/3/2014 Media: WS SmpMethod: GR Comments: pH was taken w/paper strips. No other readings were needed. pH range was 6-7. BB 12-3-14C-410 Zone 26 Basement stormwater (top, m Analysis Results Counting Error Units Result Foot Qual Reporting Note TPU Method V/V METAL Total Uranium 10100 211 pCi/L 11.7 1600 HASL 300, U-02-RC N Asbestos 200000 fibers/L U 1 EPA-100.2 Asbestos Asbestos 21.5 521 HASL 300, Tc-02-RC I Asbestos Attributer Asbestos Attributer Asbestos Attri Attributer Asbestosi A	Technetium-99	5020	66.6	pCi/L			22.5	559	HASL 300, Tc-02-RC	/ X .
Uranium-238 5250 156 pCi/L 6.66 1250 HASL 300, U-02-RC N 410-BSMTZ26-09 from: C410-Z026 on 12/3/2014 Media: WS SmpMethod: GR Comments: pH was taken w/paper strips. No other readings were needed. pH range was 6-7. BB 12-3-14C-410 Zone 26 Basement stormwater (top, m Analysis Results Counting Error Units Result Qual Foot Note Reporting Limit TPU Method V/V METAL Total Uranium 10100 211 pCi/L 11.7 1600 HASL 300, U-02-RC N Asbestos 200000 fibers/L U 1 EPA-100.2 Counting RADS Technetium-99 4680 63 pCi/L 21.5 521 HASL 300, Tc-02-RC I Uranium-234 4720 144 pCi/L 7.02 1100 HASL 300, U-02-RC N Uranium-235 417 43.1 pCi/L 7.59 106 HASL 300, U-02-RC N	Uranium-234	4760	148	pCi/L			7.34	1140		
410-BSMTZ26-09 from: C410-Z026 on 12/3/2014 Media: WS SmpMethod: GR Comments: pH was taken w/paper strips. No other readings were needed. pH range was 6-7. BB 12-3-14C-410 Zone 26 Basement stormwater (top, m Analysis Results Counting Error Units Result Foot Quail Reporting Limit TPU Method V/V METAL Total Uranium 10100 211 pCi/L 11.7 1600 HASL 300, U-02-RC N TOTHIN Asbestos 200000 fibers/L U 1 EPA-100.2 Technetium-99 4680 63 pCi/L 21.5 521 HASL 300, Tc-02-RC N Total Uranium-234 4720 144 pCi/L 7.02 1100 HASL 300, U-02-RC N Total Uranium-235 417 43.1 pCi/L 7.59 106 HASL 300, U-02-RC N Total Uranium-236 Total Uranium-236 Total Uranium-235 Total Uranium-236 Tot	Uranium-235	425	44.5	pCi/L			6.68	110		
Comments:pH was taken w/paper strips. No other readings were needed. pH range was 6-7. BB 12-3-14C-410 Zone 26 Basement stormwater (top, mAnalysisResultsCounting ErrorUnitsResult QualFoot NoteReporting LimitTPUMethodV/VMETALTotal Uranium10100211pCi/L11.71600HASL 300, U-02-RC NOTHINAsbestos200000fibers/LU1EPA-100.2RADSTechnetium-99468063pCi/L21.5521HASL 300, Tc-02-RC IUranium-2344720144pCi/L7.021100HASL 300, U-02-RC NUranium-23541743.1pCi/L7.59106HASL 300, U-02-RC N	Uranium-238	5250	156	pCi/L			6.66	1250	HASL 300, U-02-RC N	/ X
Analysis Results Counting Error Units Result Qual Foot Note Reporting Limit TPU Method V/V METAL Total Uranium 10100 211 pCi/L 11.7 1600 HASL 300, U-02-RC N 1 OTHIN Asbestos 200000 fibers/L U 1 EPA-100.2 1 RADS Technetium-99 4680 63 pCi/L 21.5 521 HASL 300, Tc-02-RC I 1 Uranium-234 4720 144 pCi/L 7.02 1100 HASL 300, U-02-RC N 1 Uranium-235 417 43.1 pCi/L 7.59 106 HASL 300, U-02-RC N 1	410-BSMTZ	26-09	from: C4	10-Z026	on 1	2/3/20	14 Media	a: WS	SmpMethod: GR	
Analysis Results Error Units Qual Note Limit TPU Method V/V METAL Total Uranium 10100 211 pCi/L 11.7 1600 HASL 300, U-02-RC N Image: Note Image:	Comments:	pH was taken w/paper strip	os. No other read	ings were need	ed. pH ra	nge wa	s 6-7. BB 12-3	-14C-410 Zone 20	6 Basement stormwater (top, n	n
Total Uranium 10100 211 pCi/L 11.7 1600 HASL 300, U-02-RC N OTHIN Asbestos 200000 fibers/L U 1 EPA-100.2 RADS Echnetium-99 4680 63 pCi/L 21.5 521 HASL 300, U-02-RC I Uranium-234 4720 144 pCi/L 7.02 1100 HASL 300, U-02-RC N Uranium-235 417 43.1 pCi/L 7.59 106 HASL 300, U-02-RC N	-	Results		Units				TPU	Method	V/V/A*
Asbestos 200000 fibers/L U 1 EPA-100.2 RADS Technetium-99 4680 63 pCi/L 21.5 521 HASL 300, Tc-02-RC I 1 Uranium-234 4720 144 pCi/L 7.02 1100 HASL 300, U-02-RC N 1 Uranium-235 417 43.1 pCi/L 7.59 106 HASL 300, U-02-RC N 1		10100	211	pCi/L			11.7	1600	HASL 300, U-02-RC N	/ X
RADS Technetium-99 4680 63 pCi/L 21.5 521 HASL 300, Tc-02-RC 140 Uranium-234 4720 144 pCi/L 7.02 1100 HASL 300, U-02-RC N 141 Uranium-235 417 43.1 pCi/L 7.59 106 HASL 300, U-02-RC N 141										
Technetium-99 4680 63 pCi/L 21.5 521 HASL 300, Tc-02-RC Uranium-234 4720 144 pCi/L 7.02 1100 HASL 300, U-02-RC N 100 Uranium-235 417 43.1 pCi/L 7.59 106 HASL 300, U-02-RC N	Asbestos	200000		fibers/L	U		1		EPA-100.2	/ X .
Uranium-234 4720 144 pCi/L 7.02 1100 HASL 300, U-02-RC N Uranium-235 417 43.1 pCi/L 7.59 106 HASL 300, U-02-RC N				<u> </u>			04 F			
Uranium-235 417 43.1 pCi/L 7.59 106 HASL 300, U-02-RC N										/ X .
Uranium-238 4980 148 pCi/L 5.51 1160 HASL 300, U-02-RC N										

410-BSMTZ	26SL-07	from: C4	10-Z026	on 1	2/3/20	14	Media:	SL	SmpMethod: GR	
Comments:	C-410 Zone 26 Basement	Sludge								
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Repor Lim		TPU	Method	V/V/A*
RADS	Results	End	Onits	Quai	Note	LIII	inc.	110	Method	V/ V/A
Technetium-99	1420	175	pCi/g			220		239	HASL 300, Tc-02-RC	; /x/
Technetium-99	2360	154	pCi/g			143		312	HASL 300, Tc-02-RC	
Total Uranium	403	16.2	pCi/g			1.81		60.2	HASL 300, U-02-RC	
Uranium-234	193	11.2	pCi/g pCi/g			1.14		42.1	HASL 300, U-02-RC	
Uranium-235	13.8	3.36	pCi/g pCi/g			1.12		4.45	HASL 300, U-02-RC	
Uranium-238	196	11.3	pCi/g			0.852	2	42.7	HASL 300, U-02-RC	
410-BSMTZ	26SL-08	from: C4	10-Z026	on 1	2/3/20	14	Media:	SL	SmpMethod: GR	
Comments:	C-410 Zone 26 Basement									
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Repor Lim		TPU	Method	V/V/A*
Analysis	Results	EIIUI	Units	Qual	NULE	LIN	in .	IPU	WELTIOU	v/v/A
RADS Technetium-99	2270	191	nCi/a			208		324	HASL 300, Tc-02-RC	; /x/
Technetium-99	31000	472	pCi/g			208 138		324 3600	HASL 300, TC-02-RC HASL 300, Tc-02-RC	
			pCi/g						HASL 300, TC-02-RC HASL 300, U-02-RC	
Total Uranium	778 375	26.7	pCi/g			2.09		130	HASL 300, U-02-RC HASL 300, U-02-RC	
Uranium-234		18.5 5 1 9	pCi/g			1.19		91.5 7.65	,	
Uranium-235	23.6	5.18	pCi/g			1.22 1.19		7.65	HASL 300, U-02-RC	
Uranium 000	070					1 1 0		92.4	HASL 300, U-02-RC	N /X/
Uranium-238	379	18.5	pCi/g			1.15			,	
Uranium-238 410-BSMTZ		18.5 from: C4		on 1	2/3/20		Media:		SmpMethod: GR	
		from: C4	10-Z026	on 1	2/3/20		Media:			
410-BSMTZ Comments: Analysis	26SL-08D	from: C4	10-Z026	on 1 Result Qual	2/3/20 Foot Note		ting			V/V/A*
410-BSMTZ Comments: Analysis RADS	26SL-08D C-410 Zone 26 Basement Results	from: C4 Sludge, Duplicate Counting Error	10-Z026 Units	Result	Foot	14 Repor	ting	SL TPU	SmpMethod: GR Method	V/V/A*
410-BSMTZ Comments: Analysis RADS Technetium-99	26SL-08D C-410 Zone 26 Basement Results 2140	from: C4 Sludge, Duplicate Counting Error 158	10-Z026 Units pCi/g	Result	Foot	14 Repor Lim	ting	SL TPU 292	SmpMethod: GR Method HASL 300, Tc-02-RC	V/V/A* ; / X /
410-BSMTZ Comments: Analysis RADS Technetium-99 Technetium-99	26SL-08D C-410 Zone 26 Basement Results 2140 2080	from: C4 Sludge, Duplicate Counting Error 158 172	Units pCi/g pCi/g	Result	Foot	14 Repor Lim 156 186	ting	SL TPU 292 294	SmpMethod: GR Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC	V/V/A* : / X / : / X /
410-BSMTZ Comments: Analysis RADS Technetium-99 Technetium-99 Total Uranium	26SL-08D C-410 Zone 26 Basement Results 2140 2080 327	from: C4 Sludge, Duplicate Counting Error 158	Units pCi/g pCi/g pCi/g	Result	Foot	14 Repor Lim 156 186 1.57	ting	SL TPU 292 294 51.4	SmpMethod: GR Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC	V/V/A* : / X / : / X / N / X /
410-BSMTZ Comments: Analysis RADS Technetium-99 Technetium-99	26SL-08D C-410 Zone 26 Basement Results 2140 2080 327 162	from: C4 Sludge, Duplicate Counting Error 158 172 15.5 10.9	Units DCi/g pCi/g pCi/g pCi/g pCi/g	Result	Foot	Repor Lim 156 186 1.57 1.08	ting it	SL TPU 292 294 51.4 36.8	SmpMethod: GR Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC HASL 300, U-02-RC	V/V/A*
410-BSMTZ Comments: Analysis RADS Technetium-99 Technetium-99 Total Uranium Uranium-234 Uranium-235	26SL-08D C-410 Zone 26 Basement Results 2140 2080 327 162 8.9	from: C4 Sludge, Duplicate Counting Error 158 172 15.5 10.9 2.88	Units pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	Result	Foot	Repor Lim 156 186 1.57 1.08 0.986	ting it	SL TPU 292 294 51.4 36.8 3.47	SmpMethod: GR Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC HASL 300, U-02-RC HASL 300, U-02-RC	V/V/A* / X / / X / N / X / N / X / N / X /
410-BSMTZ Comments: Analysis RADS Technetium-99 Technetium-99 Total Uranium Uranium-234	26SL-08D C-410 Zone 26 Basement Results 2140 2080 327 162	from: C4 Sludge, Duplicate Counting Error 158 172 15.5 10.9	Units DCi/g pCi/g pCi/g pCi/g pCi/g	Result	Foot	Repor Lim 156 186 1.57 1.08	ting it	SL TPU 292 294 51.4 36.8	SmpMethod: GR Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC HASL 300, U-02-RC	V/V/A* / X / / X / N / X / N / X / N / X /
410-BSMTZ Comments: Analysis RADS Technetium-99 Technetium-99 Total Uranium Uranium-234 Uranium-235	26SL-08D C-410 Zone 26 Basement Results 2140 2080 327 162 8.9 157	from: C4 Sludge, Duplicate Counting Error 158 172 15.5 10.9 2.88	Units pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	Result Qual	Foot	Repor Lim 156 186 1.57 1.08 0.986 0.57	ting it	SL TPU 292 294 51.4 36.8 3.47 35.7	SmpMethod: GR Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC HASL 300, U-02-RC HASL 300, U-02-RC	V/V/A* / X / / X / N / X / N / X / N / X /
410-BSMTZ Comments: Analysis RADS Technetium-99 Total Uranium Uranium-234 Uranium-235 Uranium-238	26SL-08D C-410 Zone 26 Basement Results 2140 2080 327 162 8.9 157	from: C4 Sludge, Duplicate Counting Error 158 172 15.5 10.9 2.88 10.7 from: C4	Units pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	Result Qual	Foot Note	Repor Lim 156 186 1.57 1.08 0.986 0.57	ting it	SL TPU 292 294 51.4 36.8 3.47 35.7	SmpMethod: GR Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC HASL 300, U-02-RC HASL 300, U-02-RC HASL 300, U-02-RC	V/V/A* / X / / X / N / X / N / X / N / X /
410-BSMTZ Comments: Analysis RADS Technetium-99 Total Uranium Uranium-234 Uranium-235 Uranium-238 410-BSMTZ	26SL-08D C-410 Zone 26 Basement Results 2140 2080 327 162 8.9 157 26SL-09	from: C4 Sludge, Duplicate Counting Error 158 172 15.5 10.9 2.88 10.7 from: C4	Units pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	Result Qual	Foot Note	Repor Lim 156 186 1.57 1.08 0.986 0.57	ting it Media:	SL TPU 292 294 51.4 36.8 3.47 35.7	SmpMethod: GR Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC HASL 300, U-02-RC HASL 300, U-02-RC HASL 300, U-02-RC	V/V/A* / X / / X / N / X / N / X / N / X /
410-BSMTZ Comments: Analysis RADS Technetium-99 Total Uranium Uranium-234 Uranium-235 Uranium-238 410-BSMTZ Comments:	26SL-08D C-410 Zone 26 Basement Results 2140 2080 327 162 8.9 157 26SL-09 C-410 Zone 26 Basement	from: C4 Sludge, Duplicate Counting Error 158 172 15.5 10.9 2.88 10.7 from: C4 Sludge Counting	Units pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	Result Qual on 1	Foot Note	Repor Lim 156 186 1.57 1.08 0.986 0.57 14	ting it Media:	SL TPU 292 294 51.4 36.8 3.47 35.7 SL	SmpMethod: GR Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC HASL 300, U-02-RC HASL 300, U-02-RC HASL 300, U-02-RC SmpMethod: GR	V/V/A* / X / / X / N / X / N / X / N / X /
410-BSMTZ Comments: Analysis RADS Technetium-99 Total Uranium Uranium-234 Uranium-235 Uranium-238 410-BSMTZ Comments: Analysis	26SL-08D C-410 Zone 26 Basement Results 2140 2080 327 162 8.9 157 26SL-09 C-410 Zone 26 Basement	from: C4 Sludge, Duplicate Counting Error 158 172 15.5 10.9 2.88 10.7 from: C4 Sludge Counting	Units pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	Result Qual on 1	Foot Note	Repor Lim 156 186 1.57 1.08 0.986 0.57 14	ting it Media:	SL TPU 292 294 51.4 36.8 3.47 35.7 SL	SmpMethod: GR Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC HASL 300, U-02-RC HASL 300, U-02-RC HASL 300, U-02-RC SmpMethod: GR	V/V/A*
410-BSMTZ Comments: Analysis RADS Technetium-99 Total Uranium Uranium-234 Uranium-235 Uranium-238 410-BSMTZ Comments: Analysis RADS	26SL-08D C-410 Zone 26 Basement Results 2140 2080 327 162 8.9 157 26SL-09 C-410 Zone 26 Basement Results	from: C4 Sludge, Duplicate Counting Error 158 172 15.5 10.9 2.88 10.7 from: C4 Sludge Counting Error	Units PCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g 10-Z026	Result Qual on 1	Foot Note	14 Repor Lim 156 186 1.57 1.08 0.986 0.57 14 Repor Lim	ting it Media:	SL TPU 292 294 51.4 36.8 3.47 35.7 SL TPU	SmpMethod: GR Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC HASL 300, U-02-RC HASL 300, U-02-RC SmpMethod: GR	V/V/A*
410-BSMTZ Comments: Analysis RADS Technetium-99 Total Uranium Uranium-234 Uranium-235 Uranium-238 410-BSMTZ Comments: Analysis RADS Technetium-99	26SL-08D C-410 Zone 26 Basement Results 2140 2080 327 162 8.9 157 26SL-09 C-410 Zone 26 Basement Results 2230	from: C4 Sludge, Duplicate Counting Error 158 172 15.5 10.9 2.88 10.7 from: C4 Sludge Counting Error 170	Units PCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g	Result Qual on 1	Foot Note	14 Repor Lim 156 186 1.57 1.08 0.986 0.57 14 Repor Lim 176	ting it Media:	SL TPU 292 294 51.4 36.8 3.47 35.7 SL TPU 307	SmpMethod: GR Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC HASL 300, U-02-RC HASL 300, U-02-RC SmpMethod: GR Method HASL 300, Tc-02-RC	V/V/A* / X / / X / N / X / N / X / N / X / N / X / V/V/A* / X / / X /
410-BSMTZ Comments: Analysis RADS Technetium-99 Total Uranium Uranium-234 Uranium-235 Uranium-238 410-BSMTZ Comments: Analysis RADS Technetium-99 Technetium-99 Total Uranium	26SL-08D C-410 Zone 26 Basement Results 2140 2080 327 162 8.9 157 26SL-09 C-410 Zone 26 Basement Results 2230 2440	from: C4 Sludge, Duplicate Counting Error 158 172 15.5 10.9 2.88 10.7 from: C4 Sludge Counting Error 170 160	10-Z026 Units pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g 10-Z026 Units pCi/g pCi/g pCi/g	Result Qual on 1	Foot Note	14 Repor Lim 156 186 1.57 1.08 0.986 0.57 14 Repor Lim 176 148	ting it Media:	SL TPU 292 294 51.4 36.8 3.47 35.7 SL TPU 307 324 101	SmpMethod: GR Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC HASL 300, U-02-RC HASL 300, U-02-RC HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC	V/V/A* V/V/A* V/V/A* V/V/A* V/V/A* V/V/A*
410-BSMTZ Comments: Analysis RADS Technetium-99 Total Uranium Uranium-234 Uranium-235 Uranium-238 410-BSMTZ Comments: Analysis RADS Technetium-99 Technetium-99	26SL-08D C-410 Zone 26 Basement Results 2140 2080 327 162 8.9 157 26SL-09 C-410 Zone 26 Basement Results 2230 2440 632	from: C4 Sludge, Duplicate Counting Error 158 172 15.5 10.9 2.88 10.7 from: C4 Sludge Counting Error 170 160 22.5	Units PCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g pCi/g DOCI/g DOCI/g DOCI/g	Result Qual on 1	Foot Note	14 Repor Lim 156 186 1.57 1.08 0.986 0.57 14 Repor Lim 176 148 1.73	ting it Media:	SL TPU 292 294 51.4 36.8 3.47 35.7 SL TPU 307 324	SmpMethod: GR Method Method HASL 300, Tc-02-RC HASL 300, Tc-02-RC HASL 300, U-02-RC HASL 300, U-02-RC	V/V/A*

410-BSMTZ	26-10	from: C4	10-Z026	on 3	/10/2015	5 Media	a: WS	SmpMethod: GR	
Comments:	C-410 Zone 26 Basement	stormwater (top, r	niddle, bottom	composite	e) pH of 8.	. CB 3-10-15			
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
ANION									
Chloride	11.1		mg/L			1		EPA-300.0	/ X /
Nitrate	0.218		mg/L		(D.1		EPA-300.0	/ X /
Sulfate	58.1		mg/L		2	2		EPA-300.0	/ X /
METAL									
Cadmium	0.00434		mg/L		(0.001		EPA-200.8	/ X /
Calcium	78.2		mg/L		4	4		EPA-200.8	/ X /
Magnesium	3.11		mg/L		(0.03		EPA-200.8	/ X /
Potassium	30.6		mg/L		(0.3		EPA-200.8	/ X /
Selenium	0.00304		mg/L	J	(0.005		EPA-200.8	/ X /
Sodium	24		mg/L	•		0.25		EPA-200.8	/ X /
RADS									
Technetium-99	7710	170	pCi/L		7	74.3	873	HASL 300, Tc-02-RC	/ X /
Total Uranium	5250	125	pCi/L		6	6.66	737	HASL 300, U-02-RC N	/ X /
Uranium-234	2480	85.8	pCi/L		2	4.73	506	HASL 300, U-02-RC N	/ X /
Uranium-235	148	23.4	pCi/L		2	2.87	37.9	HASL 300, U-02-RC N	
Uranium-238	2620	88.3	pCi/L			3.71	535	HASL 300, U-02-RC N	
WETCHEM									
Ammonia	0.326		mg/L		(0.05		EPA-350.1	/ X /
Ammuna									
	67	from: C4	mg/L	on 3	/10/2015	2 5 Media	a: WS	EPA-310.1 SmpMethod: GR	/ X /
Bicarbonate	67		mg/L 10-Z026		/10/2015 e) - Field [5 Media	of 8. CB 3-10-15		/ X /
Bicarbonate 410-BSMTZ Comments: Analysis	67 26-10D	stormwater (top, r	mg/L 10-Z026	composite	/10/2015 e) - Field [5 Media Duplicate pH			/ X / V/V/A*
Bicarbonate 410-BSMTZ Comments: Analysis ANION	67 C-410 Zone 26 Basement Results	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units	composite Result	/10/2015 e) - Field I Foot	5 Media Duplicate pH Reporting Limit	of 8. CB 3-10-15	SmpMethod: GR Method	V/V/A*
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride	67 C-410 Zone 26 Basement Results 11.6	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L	composite Result Qual	/10/2015 e) - Field I Foot Note	5 Media Duplicate pH Reporting Limit	of 8. CB 3-10-15	SmpMethod: GR Method EPA-300.0	V/V/A* / X /
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate	67 C-410 Zone 26 Basement Results 11.6 0.218	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L mg/L	composite Result	/10/2015 e) - Field I Foot Note	5 Media Duplicate pH Reporting Limit 1 D.1	of 8. CB 3-10-15	SmpMethod: GR Method EPA-300.0 EPA-300.0	V/V/A* / X / T / X /
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate	67 C-410 Zone 26 Basement Results 11.6	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L	composite Result Qual	/10/2015 e) - Field I Foot Note	5 Media Duplicate pH Reporting Limit	of 8. CB 3-10-15	SmpMethod: GR Method EPA-300.0	V/V/A* / X /
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL	67 226-10D C-410 Zone 26 Basement Results 11.6 0.218 61.5	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L	composite Result Qual	/10/2015) - Field D Foot Note (5 Media Duplicate pH Reporting Limit 1 D.1 2	of 8. CB 3-10-15	SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0	V/V/A* / X / T / X / / X /
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium	67 C-410 Zone 26 Basement Results 11.6 0.218 61.5 0.00412	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L	composite Result Qual	/10/2015 Foot Note (5 Media Duplicate pH Reporting Limit 1 0.1 2	of 8. CB 3-10-15	SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0	V/V/A* / X / T / X / / X / / X /
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium	67 C-410 Zone 26 Basement Results 11.6 0.218 61.5 0.00412 76.1	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L	composite Result Qual	/10/2015 Foot Note	5 Media Duplicate pH Reporting Limit 1 0.1 2 0.001 4	of 8. CB 3-10-15	SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0	V/V/A* / X / T / X / / X / / X / / X /
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium	67 C-410 Zone 26 Basement Results 11.6 0.218 61.5 0.00412 76.1 2.9	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L	composite Result Qual	/10/2015 Foot Note (((((((((((((((((((5 Media Duplicate pH Reporting Limit 1 0.1 2 0.001 4 0.03	of 8. CB 3-10-15	SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0	V/V/A* / X / / X / / X / / X / / X / / X /
Bicarbonate 410-BSMTZ Comments: Analysis Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium	67 226-10D C-410 Zone 26 Basement Results 11.6 0.218 61.5 0.00412 76.1 2.9 30.1	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result Qual	/10/2015 Foot Note (((((((((((((5 Media Duplicate pH Reporting Limit 1 0.1 2 0.001 4 0.03 0.3	of 8. CB 3-10-15	SmpMethod: GR Method	V/V/A* / X / T / X / / X / / X / / X / / X /
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium	67 C-410 Zone 26 Basement Results 11.6 0.218 61.5 0.00412 76.1 2.9 30.1 0.003	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	composite Result Qual	/10/2015) - Field D Foot (2 (((((((((((((5 Media Duplicate pH Reporting Limit 1 0.1 2 0.001 4 0.03 0.3 0.005	of 8. CB 3-10-15	SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-200.8	V/V/A* /X/ T/X/ /X/ /X/ /X/ /X/ /X/ /X/
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium	67 226-10D C-410 Zone 26 Basement Results 11.6 0.218 61.5 0.00412 76.1 2.9 30.1	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result Qual	/10/2015) - Field D Foot (2 (((((((((((((5 Media Duplicate pH Reporting Limit 1 0.1 2 0.001 4 0.03 0.3	of 8. CB 3-10-15	SmpMethod: GR Method	V/V/A* /X/ T/X/ /X/ /X/ /X/ /X/ /X/ /X/
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium Sodium RADS	67 C-410 Zone 26 Basement C-410 Zone 26 Basement 11.6 0.218 61.5 0.00412 76.1 2.9 30.1 0.003 23.8	stormwater (top, r	mg/L mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result Qual	/10/2015 Foot Note (((((((((((((((((((5 Media Duplicate pH Reporting Limit 1 0.1 2 0.001 4 0.03 0.03 0.005 0.25	of 8. CB 3-10-15	SmpMethod: GR Method	V/V/A* / X/ / X/ / X/ / X/ / X/ / X/ / X/ / X
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium Sodium RADS Technetium-99	67 C-410 Zone 26 Basement C-410 Zone 26 Basement 11.6 0.218 61.5 0.00412 76.1 2.9 30.1 0.003 23.8 7190	stormwater (top, r Counting Error 146	mg/L mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result Qual	/10/2015 Foot Note (((((((((((((5 Media Duplicate pH Reporting Limit 1 0.1 2 0.001 4 0.03 0.03 0.005 0.25 51.7	of 8. CB 3-10-15 TPU 811	SmpMethod: GR Method	V/V/A* / X/ / X/ / X/ / X/ / X/ / X/ / X/ / X
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium Sodium RADS Technetium-99 Total Uranium	67 C-410 Zone 26 Basement C-410 Zone 26 Basement 11.6 0.218 61.5 0.00412 76.1 2.9 30.1 0.003 23.8 7190 4240	stormwater (top, r Counting Error 146 108	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result Qual	/10/2015 =) - Field I Foot (2 (((((((((((((5 Media Duplicate pH Reporting Limit 1 0.1 2 0.001 4 0.03 0.005 0.25 51.7 8.34	of 8. CB 3-10-15 TPU 811 582	SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-200.8 EPA-200.8 EPA-200.8	V/V/A* / X/ T / X/ / X/ / X/ / X/ / X/ / X/ / X/
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium Sodium RADS Technetium-99 Total Uranium Uranium-234	67 C-410 Zone 26 Basement C-410 Zone 26 Basement 11.6 0.218 61.5 0.00412 76.1 2.9 30.1 0.003 23.8 7190 4240 2010	stormwater (top, r Counting Error 146 108 73.9	mg/L mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result Qual	/10/2015 Foot Note (2 (((((((((((((5 Media Duplicate pH Reporting Limit 1 0.1 2 0.001 4 0.03 0.3 0.005 0.25 51.7 8.34 5.88	of 8. CB 3-10-15 TPU 811 582 398	SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-200.8 EPA-200.8 EPA-200.8	V/V/A* /X/ T/X/ /X/ /X/ /X/ /X/ /X/ /X/ /X/ /X
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium Sodium RADS Technetium-99 Total Uranium Uranium-234 Uranium-235	67 C-410 Zone 26 Basement C-410 Zone 26 Basement 11.6 0.218 61.5 0.00412 76.1 2.9 30.1 0.003 23.8 7190 4240 2010 106	stormwater (top, r Counting Error 146 108 73.9 18.9	mg/L mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result Qual	/10/2015 Foot Note ((((((((((((((((((5 Media Duplicate pH Reporting Limit 1 0.1 2 0.001 4 0.03 0.3 0.005 0.25 51.7 8.34 6.88 2.63	of 8. CB 3-10-15 TPU 811 582 398 28	SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-200.8 EPA-200.8 EPA-200.8	V/V/A* /X/ T/X/ /X/ /X/ /X/ /X/ /X/ /X/ /X/ /X
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium Sodium RADS Technetium-99 Total Uranium Uranium-234 Uranium-235 Uranium-238	67 C-410 Zone 26 Basement C-410 Zone 26 Basement 11.6 0.218 61.5 0.00412 76.1 2.9 30.1 0.003 23.8 7190 4240 2010	stormwater (top, r Counting Error 146 108 73.9	mg/L mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result Qual	/10/2015 Foot Note ((((((((((((((((((5 Media Duplicate pH Reporting Limit 1 0.1 2 0.001 4 0.03 0.3 0.005 0.25 51.7 8.34 5.88	of 8. CB 3-10-15 TPU 811 582 398	SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-200.8 EPA-200.8 EPA-200.8	V/V/A* /X/ T/X/ /X/ /X/ /X/ /X/ /X/ /X/ /X/ /X
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium Sodium RADS Technetium-99 Total Uranium	67 C-410 Zone 26 Basement C-410 Zone 26 Basement 11.6 0.218 61.5 0.00412 76.1 2.9 30.1 0.003 23.8 7190 4240 2010 106	stormwater (top, r Counting Error 146 108 73.9 18.9	mg/L mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result Qual	/10/2015 Foot Note () () () () () () () () () ()	5 Media Duplicate pH Reporting Limit 1 0.1 2 0.001 4 0.03 0.3 0.005 0.25 51.7 8.34 6.88 2.63	of 8. CB 3-10-15 TPU 811 582 398 28	SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-200.8 EPA-200.8 EPA-200.8	V/V/A* /X/ T/X/ /X/ /X/ /X/ /X/ /X/ /X/ /X/ /X

410-BSMTZ	26-11	from: C4	10-Z026	on 3	/10/201	15 Media	a: WS	SmpMethod: GR	
Comments:	C-410 Zone 26 Basement	stormwater (top, r	niddle, bottom	composite	e) pH of	8. CB 3-10-15			
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
ANION									
Chloride	14.5		mg/L			1		EPA-300.0	/ X /
Nitrate	0.254		mg/L	Н		0.1		EPA-300.0	Т/Х/
Sulfate	74.1		mg/L			2		EPA-300.0	/ X /
METAL									
Cadmium	0.00131		mg/L			0.001		EPA-200.8	/ X /
Calcium	27.8		mg/L			0.2		EPA-200.8	/ X /
Magnesium	1.5		mg/L			0.03		EPA-200.8	/ X
Potassium	35.6		mg/L			0.3		EPA-200.8	/ X /
Selenium	0.00232		mg/L	J		0.005		EPA-200.8	/ X /
Sodium	29.7		mg/L			0.25		EPA-200.8	/ X /
RADS									
Technetium-99	8020	156	pCi/L			21.9	904	HASL 300, Tc-02-RC	/ X
Total Uranium	2640	69.5	pCi/L			5.49	321	HASL 300, U-02-RC N	/ X
Jranium-234	1250	47.7	pCi/L			3.5	220	HASL 300, U-02-RC N	/ X
Uranium-235	62.7	12	pCi/L			3.57	16.1	HASL 300, U-02-RC N	/ X
Jranium-238	1330	49.1	pCi/L			2.27	233	HASL 300, U-02-RC N	/ X /
WETCHEM									
Ammonia	0.307		mg/L			0.05		EPA-350.1	/ X .
Ammonia									
Bicarbonate 410-BSMTZ	9 2 26-12	from: C4	mg/L 10-Z026		/10/201		a: WS	EPA-310.1 SmpMethod: GR	/ X /
Bicarbonate 410-BSMTZ Comments:	9 226-12 C-410 Zone 26 Basement	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom	composite Result	e) pH of Foot	I5 Media 8. CB 3-10-15 Reporting		SmpMethod: GR	
Bicarbonate 410-BSMTZ Comments: Analysis	9 2 26-12	stormwater (top, r	mg/L 10-Z026	composite	e) pH of	15 Media 8. CB 3-10-15	a: WS TPU		/ X . V/V/A*
Bicarbonate 410-BSMTZ Comments: Analysis ANION	9 C-410 Zone 26 Basement Results	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units	composite Result	e) pH of Foot	I5 Media 8. CB 3-10-15 Reporting Limit		SmpMethod: GR Method	V/V/A*
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride	9 C-410 Zone 26 Basement Results 14.5	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L	composite Result Qual	e) pH of Foot	I5 Media 8. CB 3-10-15 Reporting Limit		SmpMethod: GR Method EPA-300.0	V/V/A* / X /
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate	9 C-410 Zone 26 Basement Results 14.5 0.263	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L mg/L	composite Result	e) pH of Foot	I5 Media 8. CB 3-10-15 Reporting Limit 1 0.1		SmpMethod: GR Method EPA-300.0 EPA-300.0	V/V/A* / X T / X
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate	9 C-410 Zone 26 Basement Results 14.5	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L	composite Result Qual	e) pH of Foot	I5 Media 8. CB 3-10-15 Reporting Limit		SmpMethod: GR Method EPA-300.0	V/V/A* / X . T / X .
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL	9 226-12 C-410 Zone 26 Basement Results 14.5 0.263 74.2	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L	composite Result Qual	e) pH of Foot	I5 Media 8. CB 3-10-15 Reporting Limit 1 0.1 2		SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0	V/V/A* /X T/X /X
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium	9 226-12 C-410 Zone 26 Basement Results 14.5 0.263 74.2 0.00132	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L	composite Result Qual	e) pH of Foot	15 Media 8. CB 3-10-15 Reporting Limit 1 0.1 2 0.001		SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0	V/V/A* /X T/X /X
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium	9 226-12 C-410 Zone 26 Basement Results 14.5 0.263 74.2 0.00132 25.8	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L	composite Result Qual	e) pH of Foot	15 Media 8. CB 3-10-15 Reporting Limit 0.1 2 0.001 0.2		SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0	V/V/A* /X T/X /X /X /X
Bicarbonate 410-BSMTZ Comments: Analysis Anion Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium	9 226-12 C-410 Zone 26 Basement Results 14.5 0.263 74.2 0.00132 25.8 1.35	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L	composite Result Qual	e) pH of Foot	15 Media 8. CB 3-10-15 Reporting Limit 0.1 2 0.001 0.2 0.03		SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0	V/V/A* /X T/X /X /X /X /X
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium	9 226-12 C-410 Zone 26 Basement Results 14.5 0.263 74.2 0.00132 25.8 1.35 35	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result Qual	e) pH of Foot	15 Media 8. CB 3-10-15 Reporting Limit 1 0.1 2 0.001 0.2 0.03 0.3		SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-200.8 EPA-200.8 EPA-200.8 EPA-200.8	V/V/A* /X /X /X /X /X /X /X
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium	9 226-12 C-410 Zone 26 Basement Results 14.5 0.263 74.2 0.00132 25.8 1.35 35 0.00211	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	composite Result Qual	e) pH of Foot	15 Media 8. CB 3-10-15 Reporting Limit 1 0.1 2 0.001 0.2 0.03 0.3 0.3 0.005		SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-200.8	V/V/A* /X T/X /X /X /X /X /X /X
Analysis Analysis Analysis Analysis Anion Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium	9 226-12 C-410 Zone 26 Basement Results 14.5 0.263 74.2 0.00132 25.8 1.35 35	stormwater (top, r Counting	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result Qual	e) pH of Foot	15 Media 8. CB 3-10-15 Reporting Limit 1 0.1 2 0.001 0.2 0.03 0.3		SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-200.8 EPA-200.8 EPA-200.8 EPA-200.8	V/V/A* /X T/X /X /X /X /X /X /X
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium Sodium RADS	9 226-12 C-410 Zone 26 Basement Results 14.5 0.263 74.2 0.00132 25.8 1.35 35 0.00211 31	stormwater (top, r	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result Qual	e) pH of Foot	I5 Media 8. CB 3-10-15 Reporting Limit 1 0.1 2 0.001 0.2 0.03 0.3 0.005 0.25	TPU	SmpMethod: GR Method	V/V/A* /X, /X, /X, /X, /X, /X, /X, /X, /X,
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium Sodium RADS Technetium-99	9 226-12 C-410 Zone 26 Basement Results 14.5 0.263 74.2 0.00132 25.8 1.35 35 0.00211 31 8010	stormwater (top, r Counting Error 156	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result Qual	e) pH of Foot	I5 Media 8. CB 3-10-15 Reporting Limit 1 0.1 2 0.001 0.2 0.03 0.25 20.3	TPU 903	SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-200.8	V/V/A* /X, /X, /X, /X, /X, /X, /X, /X, /X,
Analysis Analysis Analysis Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium Sodium RADS Technetium-99 Total Uranium	9 C-410 Zone 26 Basement Results 14.5 0.263 74.2 0.00132 25.8 1.35 35 0.00211 31 8010 2600	stormwater (top, r Counting Error 156 67.8	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result Qual	e) pH of Foot	I5 Media 8. CB 3-10-15 Reporting Limit 1 0.1 2 0.001 0.2 0.03 0.3 0.005 0.25 20.3 9	TPU 903 310	SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-200.8 EPA-200.8 EPA-200.8	V/V/A* /X /X /X /X /X /X /X /X /X
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium Solenium Solenium Technetium-99 Total Uranium Uranium-234	9 226-12 C-410 Zone 26 Basement Results 14.5 0.263 74.2 0.00132 25.8 1.35 35 0.00211 31 8010 2600 1210	stormwater (top, r Counting Error 156 67.8 46.1	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result Qual	e) pH of Foot	I5 Media 8. CB 3-10-15 Reporting Limit 1 0.1 2 0.001 0.2 0.03 0.3 0.005 0.25 20.3 9 5.53	TPU 903 310 211	SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-200.8 EPA-200.8 EPA-200.8	V/V/A* /X /X /X /X /X /X /X /X /X /X
Analysis Analysis Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium Sodium RADS Technetium-99 Total Uranium Jranium-234 Jranium-235	9 226-12 C-410 Zone 26 Basement Results 14.5 0.263 74.2 0.00132 25.8 1.35 35 0.00211 31 8010 2600 1210 87.9	stormwater (top, r Counting Error 156 67.8 46.1 14	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result Qual	e) pH of Foot	I5 Media 8. CB 3-10-15 Reporting Limit 1 0.1 2 0.001 0.2 0.03 0.25 20.3 9 5.53 5.19	TPU 903 310 211 20.5	SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-200.8 EPA-200.8 EPA-200.8	V/V/A* /X, T/X, /X, /X, /X, /X, /X, /X, /X, /X, /X,
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium Sodium	9 226-12 C-410 Zone 26 Basement Results 14.5 0.263 74.2 0.00132 25.8 1.35 35 0.00211 31 8010 2600 1210	stormwater (top, r Counting Error 156 67.8 46.1	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result Qual	e) pH of Foot	I5 Media 8. CB 3-10-15 Reporting Limit 1 0.1 2 0.001 0.2 0.03 0.3 0.005 0.25 20.3 9 5.53	TPU 903 310 211	SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-200.8 EPA-200.8 EPA-200.8	V/V/A* /X, T/X, /X, /X, /X, /X, /X, /X, /X, /X, /X,
Analysis Analysis Analysis Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium Sodium RADS Technetium-99 Total Uranium Jranium-234 Jranium-238 WETCHEM	9 226-12 C-410 Zone 26 Basement Results 14.5 0.263 74.2 0.00132 25.8 1.35 35 0.00211 31 8010 2600 1210 87.9 1300	stormwater (top, r Counting Error 156 67.8 46.1 14	mg/L 10-Z026 niddle, bottom Units mg/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L pCi/L	Result Qual	e) pH of Foot	15 Media 8. CB 3-10-15 Reporting Limit 1 0.1 2 0.001 0.2 0.03 0.3 0.005 0.25 20.3 9 5.53 5.19 4.83	TPU 903 310 211 20.5	SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-200.8 EPA-200.8 EPA-200.8	V/V/A* /X/ T/X/ /X/ /X/ /X/ /X/ /X/ /X/ /X/ /X
Bicarbonate 410-BSMTZ Comments: Analysis ANION Chloride Nitrate Sulfate METAL Cadmium Calcium Magnesium Potassium Selenium Sodium RADS Technetium-99 Total Uranium Uranium-234 Uranium-238	9 226-12 C-410 Zone 26 Basement Results 14.5 0.263 74.2 0.00132 25.8 1.35 35 0.00211 31 8010 2600 1210 87.9	stormwater (top, r Counting Error 156 67.8 46.1 14	mg/L 10-Z026 niddle, bottom Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Result Qual	e) pH of Foot	I5 Media 8. CB 3-10-15 Reporting Limit 1 0.1 2 0.001 0.2 0.03 0.25 20.3 9 5.53 5.19	TPU 903 310 211 20.5	SmpMethod: GR Method EPA-300.0 EPA-300.0 EPA-300.0 EPA-300.0 EPA-200.8 EPA-200.8 EPA-200.8	/ X / T / X / / X /

Paducah OREIS Report for DD15-410-CNCRT

410-CNCRT-01

from: C410-Z026

on 10/7/2015 Media: SL SmpMethod: GR

C-410 Zone 26 Basement concrete. 261g total between both jars. C-410 basement concrete. See additional sampling notes. 1/2 inch of standing water over sample location. JS 10-7-15 Comments:

Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL									
Arsenic	6.5		mg/kg	J,B		9.4		SW846-6010C	/ X /
Barium	75		mg/kg			47		SW846-6010C	/ X /
Cadmium	1.7		mg/kg	J		4.7		SW846-6010C	/ X /
Chromium	30		mg/kg	В		9.4		SW846-6010C	/ X /
Lead	56		mg/kg			9.4		SW846-6010C	/ X /
Mercury	0.14		mg/kg			0.031		SW846-7471B	/ X / J
Selenium	14		mg/kg	U		14		SW846-6010C	/ X /
Silver	0.75		mg/kg	J		9.4		SW846-6010C	/ X /
RADS									
Americium-241	2.13	0.242	pCi/g			0.0205	0.337	A-01-R	/ X /
Neptunium-237	1.92	0.254	pCi/g			0.0559	0.301	A-01-R	/ X /
Plutonium-238	0.387	0.0602	pCi/g			0.0164	0.0684	A-01-R	/ X /
Plutonium-239/240	12.2	0.337	pCi/g			0.0203	1.08	A-01-R	/ X /
Plutonium-241	10.7	1.77	pCi/g			1.96	2.01	ST-RC-0245	/ X /
Uranium-234	505	13.1	pCi/g			0.742	44.4	A-01-R	/ X /
Uranium-235	33.7	3.74	pCi/g			0.31	4.69	A-01-R	/ X /
Uranium-238	521	13.3	pCi/g			0.535	45.7	A-01-R	/ X /

410-CNCRT-02

from: C410-Z026

on 10/7/2015 Media: SL SmpMethod: GR

C-410 Zone 26 Basement concrete. 150g total for one jar. C-410 basement concrete. See additional sampling notes. 1/2 inch of standing water over sampling location. JS 10-7-15 Comments:

Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL									
Arsenic	4.8		mg/kg	J,B		9		SW846-6010C	/ X /
Barium	67		mg/kg			45		SW846-6010C	/ X /
Cadmium	1.2		mg/kg	J		4.5		SW846-6010C	/ X /
Chromium	22		mg/kg	В		9		SW846-6010C	/ X /
Lead	33		mg/kg			9		SW846-6010C	/ X /
Mercury	0.1		mg/kg			0.032		SW846-7471B	/ X / J
Selenium	14		mg/kg	U		14		SW846-6010C	/ X /
Silver	9		mg/kg	U		9		SW846-6010C	/ X /
RADS									
Americium-241	1.37	0.197	pCi/g			0.0212	0.248	A-01-R	/ X /
Neptunium-237	1.2	0.187	pCi/g			0.0451	0.213	A-01-R	/ X /
Plutonium-238	0.198	0.0431	pCi/g			0.0198	0.0462	A-01-R	/ X /
Plutonium-239/240	6.94	0.251	pCi/g			0.016	0.635	A-01-R	/ X /
Plutonium-241	5.19	1.39	pCi/g			1.83	1.46	ST-RC-0245	/ X /
Uranium-234	344	12.3	pCi/g			0.814	31.4	A-01-R	/ X /
Uranium-235	23.7	3.49	pCi/g			0.841	4.02	A-01-R	/ X /
Uranium-238	344	12.3	pCi/g			0.887	31.4	A-01-R	/ X /

Paducah OREIS Report for DD15-410-CNCRT

410-CNCRT-03

from: C410-Z026

on 10/7/2015 Media: SL SmpMethod: GR

C-410 Zone 26 Basement concrete. 230g total between two jars. C-410 basement concrete. See additional sampling notes. 1/2 inch of standing water over sample location. JS 10-7-15 Comments:

Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL									
Arsenic	3.8		mg/kg	J,B		8.7		SW846-6010C	/ X /
Barium	73		mg/kg			44		SW846-6010C	/ X /
Cadmium	0.61		mg/kg	J		4.4		SW846-6010C	/ X /
Chromium	14		mg/kg	В		8.7		SW846-6010C	/ X /
Lead	1.9		mg/kg	J		8.7		SW846-6010C	/ X /
Mercury	0.02		mg/kg	J		0.033		SW846-7471B	/ X / J
Selenium	13		mg/kg	U		13		SW846-6010C	/ X /
Silver	8.7		mg/kg	U		8.7		SW846-6010C	/ X /
RADS									
Americium-241	0.0516	0.039	pCi/g			0.0221	0.0395	A-01-R	/ X /
Neptunium-237	0.0296	0.0343	pCi/g	U		0.0474	0.0344	A-01-R	/ X /
Plutonium-238	0.0218	0.0165	pCi/g			0.0205	0.0166	A-01-R	/ X /
Plutonium-239/240	0.188	0.0423	pCi/g			0.0165	0.0452	A-01-R	/ X /
Plutonium-241	1.93	1.21	pCi/g			1.89	1.22	ST-RC-0245	/ X /
Uranium-234	15.8	1.7	pCi/g			0.391	2.16	A-01-R	/ X /
Uranium-235	0.955	0.463	pCi/g			0.169	0.47	A-01-R	/ X /
Uranium-238	14.9	1.65	pCi/g			0.436	2.07	A-01-R	/ X /

410-CNCRT-04

from: C410-Z026

on 10/7/2015 Media: SL SmpMethod: GR

C-410 Zone 26 Basement concrete. 260g total between two jars. C-410 basement concrete. See additional sampling notes. Sample location was not submerged under water. JS 10-7-15 Comments:

Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL									
Arsenic	5.6		mg/kg	J,B		9.1		SW846-6010C	/ X /
Barium	76		mg/kg			45		SW846-6010C	/ X /
Cadmium	4.5		mg/kg	U		4.5		SW846-6010C	/ X /
Chromium	18		mg/kg	В		9.1		SW846-6010C	/ X /
Lead	5.7		mg/kg	J		9.1		SW846-6010C	/ X /
Mercury	0.031		mg/kg	U		0.031		SW846-7471B	/ X / UJ
Selenium	14		mg/kg	U		14		SW846-6010C	/ X /
Silver	9.1		mg/kg	U		9.1		SW846-6010C	/ X /
RADS									
Americium-241	0.136	0.0626	pCi/g			0.0215	0.0643	A-01-R	/ X /
Neptunium-237	0.0854	0.0517	pCi/g			0.0416	0.0522	A-01-R	/ X /
Plutonium-238	0.0293	0.0201	pCi/g			0.0258	0.0202	A-01-R	/ X /
Plutonium-239/240	0.889	0.0912	pCi/g			0.0203	0.118	A-01-R	/ X /
Plutonium-241	1.5	1.15	pCi/g	U		1.82	1.16	ST-RC-0245	/ X /
Uranium-234	52.7	3.18	pCi/g			0.353	5.45	A-01-R	/ X /
Uranium-235	3.69	0.938	pCi/g			0.179	0.988	A-01-R	/ X /
Uranium-238	55.3	3.25	pCi/g			0.143	5.67	A-01-R	/ X /

Paducah OREIS Report for DD15-410-CNCRT

410-CNCRT-05

on 10/7/2015 Media: SL

SmpMethod: GR

Comments: C-410 Zone 26 Basement concrete. 330g total between two jars. C-410 basement concrete. See additional sampling notes. Sample location was not submerged under water. JS 10-7-15

from: C410-Z026

Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL									
Arsenic	5.6		mg/kg	J,B		8.7		SW846-6010C	/ X /
Barium	47		mg/kg			44		SW846-6010C	/ X /
Cadmium	0.35		mg/kg	J		4.4		SW846-6010C	/ X /
Chromium	17		mg/kg	В		8.7		SW846-6010C	/ X /
Lead	8		mg/kg	J		8.7		SW846-6010C	/ X /
Mercury	0.022		mg/kg	J		0.031		SW846-7471B	/ X / J
Selenium	13		mg/kg	U		13		SW846-6010C	/ X /
Silver	8.7		mg/kg	U		8.7		SW846-6010C	/ X /
RADS									
Americium-241	0.921	0.167	pCi/g			0.0227	0.195	A-01-R	/ X /
Neptunium-237	0.64	0.144	pCi/g			0.0534	0.154	A-01-R	/ X /
Plutonium-238	0.131	0.0372	pCi/g			0.0181	0.0388	A-01-R	/ X /
Plutonium-239/240	5.38	0.235	pCi/g			0.0286	0.509	A-01-R	/ X /
Plutonium-241	5.45	1.57	pCi/g			2.11	1.64	ST-RC-0245	/ X /
Uranium-234	81.7	5.87	pCi/g			0.846	9.03	A-01-R	/ X /
Uranium-235	5.23	1.65	pCi/g			0.392	1.71	A-01-R	/ X /
Uranium-238	92	6.21	pCi/g			0.579	9.91	A-01-R	/ X /

410-INLET-	01	from: C4	10-Z026	on 8	/31/20	15 Media	: WS	SmpMethod: GR	
Comments:	C-410 Zone 26 Basement s 1318. Collected sample from			n inlet (5m	iin after	treatment begi	ns). C-410 Zone 2	26 Basement. Started system	n at
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL Jranium	2360		ug/L			10		EPA-200.8	/ X
RADS Technetium-99	2300	67.4	pCi/L			19.2	264	HASL 300, Tc-02-RC M	/ X
410-INLET-	02	from: C4	10-Z026	on 8	/31/20	15 Media	: WS	SmpMethod: GR	
Comments:	C-410 Zone 26 Basement s 1318. Collected sample from			n inlet (hal	lfway thi	ru treatment rui	n). C-410 Zone 2	6 Basement. Started system	at
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL Uranium	2330		ug/L			10		EPA-200.8	/ X
RADS Technetium-99	2320	67.1	pCi/L			18.9	266	HASL 300, Tc-02-RC M	/ X
410-INLET- Comments:			eatment systen	n inlet (w/i	/31/20 n 5min (t: WS d of treatment run	SmpMethod: GR). C-410 Zone 26 Basement	i.
Analysis METAL	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
Jranium	2300		ug/L			10		EPA-200.8	/ X
RADS Technetium-99	2240	64.5	pCi/L			17.3	257	HASL 300, Tc-02-RC M	/ X
410-OUTLE	T-01	from: C4	10-Z026	on 8	/31/20	15 Media	: WS	SmpMethod: GR	
Comments:	C-410 Zone 26 Basement s 1318. Collected sample from			n outlet (5	min afte	r treatment beç	gins). C-410 Zone	e 26 Basement. Started syste	em at
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL Jranium	13		ug/L			0.2		EPA-200.8	/ X
RADS Technetium-99	63.3	15.1	pCi/L			18.8	16.6	HASL 300, Tc-02-RC M	/ X
410-OUTLE Comments:			eatment systen		/31/20 alfway ti		u: WS un). C-410 Zone	SmpMethod: GR 26 Basement. Started syster	n at
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL Jranium	31.6		ug/L			0.2		EPA-200.8	/ X
RADS									

410-OUTLE	T-02D	from: C4	10-7026	on 8	/31/20	15 Media:	WS	SmpMethod: GR	
Comments:		stormwater from tre	atment syster				-	-410 Zone 26 Basement. Sta	rted
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL Uranium	32.1		ug/L			0.2		EPA-200.8	/ X
RADS Technetium-99	115	17.7	pCi/L			18.1	21.8	HASL 300, Tc-02-RC M	/ X /
410-OUTLE	ET-03	from: C4	10-Z026	on 8	/31/20 ⁻	15 Media:	WS	SmpMethod: GR	
Comments:	C-410 Zone 26 Basement Started system at 1318. C				/in 5mir	n of predicted end	d of treatment r	un). C-410 Zone 26 Basemer	nt.
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL Jranium	35.4		ug/L			0.2		EPA-200.8	/ X /
RADS	130	17.8	pCi/L			17	22.8	HASL 300, Tc-02-RC M	/ X

410-INLET-	04	from: C4	10-Z026	on 9	/18/20	15 Media	: WS	SmpMethod: GR	
Comments:	C-410 Zone 26 Basement s Clear water. JS 9-21-15	tormwater from tre	eatment syster	n inlet (5m	in after	treatment begir	ns). C-410 baser	nent. System started up at 08	319.
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL Iranium	1460		ug/L			4		EPA-200.8	/ X
RADS echnetium-99	1560	35.8	pCi/L			20.1	177	HASL 300, Tc-02-RC M	/ X
410-INLET-	05	from: C4	10-Z026	on 9	/18/20 ⁻	15 Media	: WS	SmpMethod: GR	
Comments:	C-410 Zone 26 basement s basement. System started u				rox. at t	he 58,500 gallo	n mark (halfway t	hrough treatment). C-410	
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL Jranium	1480		ug/L			4		EPA-200.8	/ X
RADS Fechnetium-99	1770	37.3	pCi/L			19.4	200	HASL 300, Tc-02-RC M	/ X
410-INLET- Comments:					/18/20 ⁻ n 5min (SmpMethod: GR). C-410 basement. System	
Analysis METAL	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
Jranium	1480		ug/L			4		EPA-200.8	/ X
RADS Technetium-99	1730	38.1	pCi/L			20.7	195	HASL 300, Tc-02-RC M	/ X
410-OUTLE	ET-04	from: C4	10-Z026	on 9	/18/20 ⁻	15 Media	: WS	SmpMethod: GR	
Comments:	C-410 Zone 26 Basement s Clear water. JS 9-21-15	tormwater from tre	eatment syster	n outlet (5	min afte	r treatment beg	jins). C-410 base	ement. System started up at (0819.
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL Jranium	28.5		ug/L			0.2		EPA-200.8	/ X
RADS echnetium-99	22.9	12.2	pCi/L			19.9	12.5	HASL 300, Tc-02-RC M	/ X
410-OUTLE	C-410 Zone 26 basement s basement. System started u		atment system	n outlet ap	/18/20 ⁻ prox. at			SmpMethod: GR through treatment). C-410	
Comments:				Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
Analysis	Results	Counting Error	Units	Quai				moniou	., .,, .
	Results 38.6		Units ug/L	Quai		0.2		EPA-200.8	/ X

	Pad	lucah ORE	IS Repor	t for	DD1	5-410-W	WTRMT2		
410-OUTLE	ET-06	from: C4	10-Z026	on 9	/18/20	15 Medi	a: WS	SmpMethod: GR	
Comments:	C-410 Zone 26 Basement s started up at 0819. Clear wa		eatment syster	n outlet (w	/in 5mir	n of predicted	end of treatment ru	un). C-410 basement. Syster	n
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
METAL Uranium	40		ug/L			0.2		EPA-200.8	/ X /
RADS Technetium-99	17.9	11.4	pCi/L	U		18.8	11.6	HASL 300, Tc-02-RC M	/ X /

^{*}Verification/Validation/Assessment

Result Qualifier Codes

- U ALL ANALYSIS TYPES EXCEPT RADS: Not detected; RADS: Value reported is < MDA and/or TPU.
- J Estimated Quantitation
- B Compound found in blank as well as sample.
- T Tracer recovery is less than or equal to 30% or greater than or equal to 105%
- X Other specific flags or footnotes may be required to properly define the results.
- H Analysis performed outside holding time requirement.

Verification Codes

T Holding time exceeded for this analysis

Validation Codes

- = Validated result, which is detected and unqualified
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ Analyte, compound or nuclide not detected above the reported detection limit, and the reported detection limit is approximated due to quality deficiency.
- R Result rejected by validator.
- X Not validated; Refer to the RSLTQUAL field for more information

Assessment Codes

- R-C Result questionable, credibility at issue.
- J Result estimated.
- UJ Not detected and result estimated.

APPENDIX D

MEMORANDUM OF AGREEMENT FOR DISPOSITION OF C-410 BASEMENT WATER AT THE PADUCAH SITE

THIS PAGE INTENTIONALLY LEFT BLANK

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

AUG 0 4 2015

PPPO-02-2932877-15

Mr. Jon Richards Remedial Project Manager U.S. Environmental Protection Agency, Region 4 61 Forsyth Street Atlanta, Georgia 30303

Ms. April Webb Acting Interim Federal Facility Agreement Manager Division of Waste Management Kentucky Department for Environmental Protection 200 Fair Oaks Lane, 2nd Floor Frankfort, Kentucky 40601

Dear Mr. Richards and Ms. Webb:

DISPOSITION OF CONTAMINATED WATER COLLECTED FROM THE BASEMENT OF THE C-410 COMPLEX AT THE PADUCAH GASEOUS DIFFUSION PLANT

Reference: Letter from J. Corkran to J. Woodard, "EPA Revised Memorandum of Agreement Proposal-Disposition of Contaminated Water Collected from the Basement of the C-410 Complex at the Paducah Gaseous Diffusion Plant," dated July 8, 2015

The purpose of this letter is to document the U.S. Department of Energy (DOE) agreement with the U.S. Environmental Protection Agency (EPA) and the Commonwealth of Kentucky regarding the disposition of contaminated water collected in a basement of the C-410 Complex at the Paducah Site. DOE has agreed to treat the water prior to discharge and has elected to discharge the water directly to the internal plant ditches. DOE has attached the signed Memorandum of Agreement (MOA) to reflect this agreement and a map depicting the route the treated C-410 water will follow.

In an effort to bring the C-410 project to completion, DOE has agreed with the attached MOA even though it does not contain key elements that are important to DOE. First, the MOA does not recognize that DOE is taking this action voluntarily. Based on the DOE's calculations, discharge of the C-410 water without treatment does not present an imminent and substantial endangerment to public health or welfare or the environment. The proposed discharge is below the applicable or relevant and appropriate requirement approved for this project [10 *CFR* § 20.130(a)(1); 902 *KAR* 100.019 §10(1)]. In addition, discharge of the C-410 water without treatment would be within the acceptable Comprehensive Environmental Response, Compensation, and Liability Act risk range and would not exceed any other activity or dose-

based regulations or guidance for radionuclide releases.¹ As such, it is DOE's position that this action is being done voluntarily as a Best Management Practice.

2

Secondly, the MOA omits the FFA parties' understanding that no additional actions related to the removal, treatment, and disposition of the contaminated C-410 water will be required beyond activities addressed in the agreement. In the reference letter, EPA acknowledged that once the C-410 water is dispositioned, no scenario could be identified that would require additional action; as such, it is acceptable not to include the clause.

Lastly, EPA's revised proposal removed, from the draft MOA, the clause that requires EPA to provide the technical analysis (including calculations) that supports EPA's claim that DOE's original plan to discharge the collected water directly "...may present an imminent and substantial endangerment to public health or welfare or the environment." DOE has requested multiple times that EPA provide the basis for its determination that discharge of the C-410 water may present an imminent and substantial endangerment to human health or the environment. To date, EPA has not provided such information. In the reference letter, EPA stated that "the EPA Region 4 Paducah team is prepared to support an FFA Stop Work Order retrospective, outside of the C-410 MOA if requested/directed by EPA Region 4 Senior Managers, including a discussion of the FFA stop work language and a discussion of imminent and substantial endangerment technical analysis/calculations, to enhance three-party understanding." Given EPA's affirmative, written representation that such data/calculations exist, DOE will be sending a letter to EPA Region 4 Senior Managers. This letter will request EPA provide this information in writing and facilitate a meeting between the three parties.

If you have any questions or require additional information, please contact me at (270) 441-6820.

Sincerely,

sing Wordard

ennifer/Woodard aducal Site Lead Portsmouth/Paducah Project Office

Enclosures:

- 1. Signed Memorandum of Agreement (MOA)
- 2. Map C-410 Treated Water Discharge Route

¹ These standards include the 60,000 pCi/L effluent limit for technetium-99 (Tc-99) that EPA approved in the Paducah Gaseous Diffusion Plant Southwest Plume MOA and at the Maxey Flats Superfund Site in Kentucky, 902 KAR 100:019 (44) Table II; 10 CFR Part 20 Appendix B; the 12 mrem guidance that EPA recently issued, Radiation Risk Assessment at CERCLA Sites: Q&A OSWER No. 9200.4-40, May 2014; and DOE's Derived Concentration Standards for Tc-99 and uranium isotopes. In addition, the proposed discharge presents no threat to on-site workers.

e-copy w/enclosures: april.webb@ky.gov, KDEP/Frankfort brian.begley@ky.gov, KDEP/Frankfort corkran.julie@epa.gov, EPA/Atlanta ffscorrespondence@ffspaducah.com, FFS/Kevil gaye.brewer@ky.gov, KDEP/PAD jennifer.woodard@lex.doe.gov, PPPO/PAD john.kelly@ffspaducah.com, FFS/Kevil jon.maybriar@ky.gov, KDEP/Frankfort leo.williamson@ky.gov, KDEP/Frankfort mark.duff@ffspaducah.com, FFS/Kevil mike.guffey@ky.gov, KDEP/Frankfort myrna.redfield@ffspaducah.com, FFS/Kevil pad.dmc@swiftstaley.com, SSI/Kevil reinhard.knerr@lex.doe.gov, PPPO/PAD richards.jon@epamail.epa.gov, EPA/Atlanta stephaniec.brock@ky.gov, KYRHB/Frankfort

Memorandum of Agreement for Disposition of C-410 Basement Water at the Paducah Site

- The contaminated water in the C-410 Building basement (Zone 26) at the Paducah Gaseous Diffusion Plant (PGDP) will be removed by the U.S. Department of Encrgy (DOE) (i.e., pumped out) and treated *ex situ* at Zone 26 using proven ion exchange technology with resins capable of treating the radionuclides [i.e., technetium-99 (Tc-99) and uranium] detected in the water. The ion exchange technology will use standard industry design (off the shelf), but the system may include more than one unit that will be stacked (or run in sequence) to treat radionuclides.
- The ion exchange treatment system will be designed (based on manufacturer specifications) to achieve between 93%-98% reduction in the radionuclides detected in the contaminated water. Verification of treatment efficiency will occur at each interval in the process as explained below.
- Verification of treatment efficiency requires definition of constituent-specific baseline values. The constituent-specific baseline value for Tc-99 and uranium will be calculated as follows:
 - An in-line sampling port will be utilized to pull three samples from the first 3,000 gallons (gal) of contaminated water as it enters into the ion exchange treatment system. The three samples will be averaged to provide the constituent-specific baseline value. Radiological samples will be 3 liters of water. Samples will be collected at five minutes after treatment begins, approximately half-way through the treatment run, and within five minutes of the predicted end of the treatment run. This process will be repeated at the beginning of each interval (i.e., 0 gal, 60,000 gal, and 120,000 gal). Samples will be analyzed for Tc-99 (pCi/L) and uranium (mg/L). The data will be provided two weeks after sample collection, and the results will be shared with the Federal Facility Agreement (FFA) parties, with a follow-up meeting scheduled to discuss the results and agree on the constituent-specific baseline values (Record of Conversation, March 9, 2015). The FFA parties will make themselves readily available within 3-5 days of data receipt for the follow-up meeting.
- The first 3,000 gals of contaminated water will be treated and collected in an aboveground temporary storage tank. The treated water will be sampled at the discharge port after treatment (n=3 samples) for Tc-99 (pCi/L) and uranium (mg/L). Three samples will be averaged to create the post-treatment value for each interval (e.g., 3,000 gal, 60,000 gal, and 120,000 gal). Each sample will be 3 liters of water. DOE will receive the sampling results within two weeks of sample collection and immediately share the results with the U.S. Environmental Protection Agency (EPA) and the Kentucky Department for Environmental Protection (KDEP). No water will be discharged during that time. The FFA parties will evaluate the contaminant concentrations in the treated water and verify that treatment efficiencies are in the range of 93%–98% reduction, relative to the constituent-specific baseline.

1

D-6

- This verification process (through sampling a batch of treated water to verify treatment efficiencies) will be repeated after approximately 60,000 gal of the water (one-third of the water) has been treated and dispositioned and again after 120,000 gal of water (two-thirds of the water) has been treated and dispositioned. At each batch sampling interval, if constituent-specific treatment efficiency has been met for Tc-99 and uranium, DOE will disposition the treated water as explained below. The FFA parties fully expect that treatment of the contaminated waters using Best Available Technology and new ion exchange units will yield the targeted contaminant reduction efficiencies. If the constituent-specific treatment efficiencies are not met at any verification interval, then treatment and dispositioning of the C-410 basement water will stop, and the FFA parties will reconvene and decide what additional actions may be necessary to achieve the targeted treatment efficiency.
- Each batch of treated water will be discharged directly from the treatment system into the internal plant ditch system, provided that fresh Apatite material is placed in the unlined portions of the ditch system (as currently in the field-"checkdams" along the ditch) between the treatment system and the first lift station (C-400-L) to further capture and remove residual uranium and ultimately will be discharged from the C-616-F Lagoon through Outfall 001. Outfall 001 discharges to Bayou Creck.
- DOE will characterize the nature and extent of soil/sediment and surface water contamination in the future, as part of another Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) operable unit (e.g., the Surface Water Operable Unit or the Soils Operable Unit), in view of EPA and DOE selecting a final remedy for the unit (including the ditches) as summarized in the Site Management Plan.
- Once the contaminated water is removed from the C-410 basement and successfully treated, any residual solids (e.g., supernatant or sludge) in the bottom of Zone 26 will be characterized, managed, and disposed of in accordance with the action-specific applicable or relevant and appropriate regulation/requirements and TBC included in Appendix C, Table C.3, of the approved Engineering Evaluation/Cost Analysis for C-410 Complex Infrastructure at the Paducah Gaseous Diffusion Plant, DOE/OR/07-1952&D2/R1. This waste shall be disposed on-site at the permitted C-746-U Landfill or transported and disposed at an approved off-site waste disposal facility.
- DOE is moving forward with the action presented herein as part of the CERCLA Non-Time Critical Removal Action (Action Memorandum Addendum for C-410 Infrastructure Removal at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0273&D2, November 2009) recognizing that it addresses the concerns EPA raised in their November 26, 2014, letter.
- The conduct of this action does not establish or imply an effluent limit for radionuclide(s) discharge into the surface water at Outfall 001, nor does it establish any precedent, level, or

2

threshold that requires treatment for other discharges of radionuclides into surface water at PGDP as part of a CERCLA response action.

- The approved CERCLA documents for this project (e.g., Action Memorandum, Removal Action Work Plan) do not require modification to implement the aforementioned actions. A copy of the signed Memorandum of Agreement that incorporates this proposal, including the Attachments, will be incorporated into the C-410 Decontamination and Decommissioning Removal Action Report.
- The treatment system, aboveground storage tank, and associated connections/fittings will be
 inaintained and monitored throughout the period of operation to ensure that there are no
 releases that could present risk to human health and/or the environment.
- DOE will notify EPA and KDEP once the field work begins (such as mobilization of treatment unit) and prior to initiating the pumping of the contaminated water from Zone 26 of the C-410 Basement. DOE will initiate the field work within 120 calendar days from date of the effective date of the signed Agreement.

Attachment 1: Map of C-410 treated water disposition route (including relevant description of details).

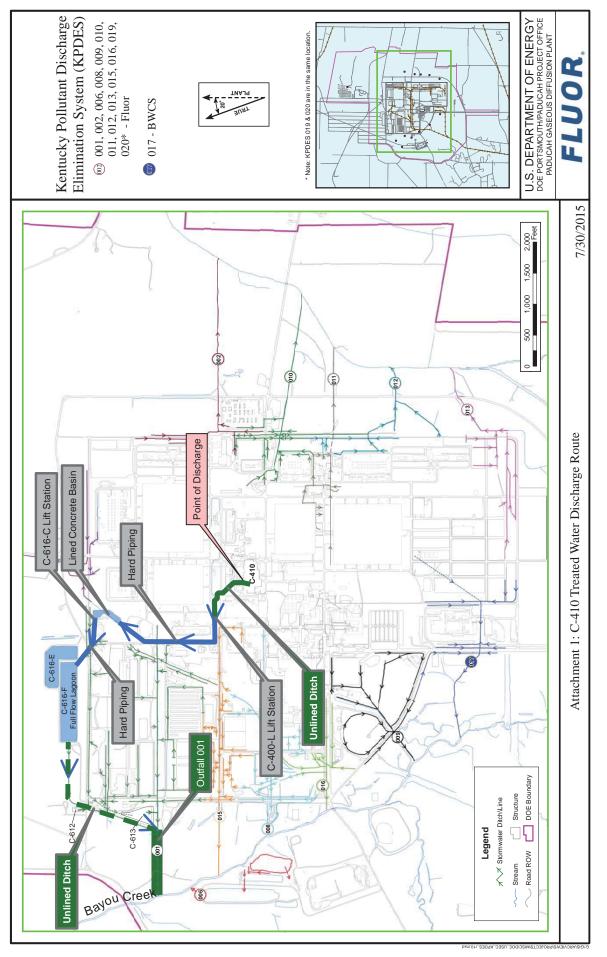
Concurrence:

DOE, EPA, and KDEP, as parties to the Paducah Federal Facility Agreement, hereby agree with the proposed action. EPA and KDEP authorize DOE to proceed with treatment and disposition of the contaminated C-410 water, as proposed.

Wordar

Jennifer Woodard U.S. Department of Energy

dlie Corkran


Kentucky Department for Environmental Protection

7/30/15

7-31-2015

Date

2/31/15

D-9

THIS PAGE INTENTIONALLY LEFT BLANK