

# **Department of Energy**

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

May 28, 2025

Ms. Lauren Linehan Division of Waste Management Kentucky Department for Environmental Protection 625 Hospital Drive Madisonville, Kentucky 42431

Ms. April Webb Hazardous Waste Branch Manager Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Ms. Linehan and Ms. Webb:

## C-404 HAZARDOUS WASTE LANDFILL MAY 2025 SEMIANNUAL GROUNDWATER REPORT (OCTOBER 2024–MARCH 2025), PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0382/V1, HAZARDOUS WASTE MANAGEMENT FACILITY PERMIT NO. KY8-890-008-982, AGENCY INTEREST ID NO. 3059

Enclosed is the subject report for the first reporting period, fiscal year 2025. This report is required in accordance with Part II, Specific Condition II.K.6.d, of Hazardous Waste Management Facility Permit No. KY8-890-008-982 (Permit).

Results of the statistical analyses indicate that compliance well concentrations of permit-required parameters are not statistically different from those in background wells, with the exception of trichloroethene (TCE) in compliance well MW84A and technetium-99 (Tc-99) in compliance wells MW84A and MW90A.

TCE in compliance well MW84A and Tc-99 concentrations in compliance well MW90A showed statistically significant concentrations compared to concentrations observed in the background wells. Mann-Kendall analysis of TCE in MW84A and Tc-99 in MW90A did not show increasing trends, confirming no exceedances of these parameters are attributable to the C-404 landfill.

Mann-Kendall analysis of Tc-99 in MW84A showed an increasing trend, indicating a confirmed statistical exceedance. Resampling of all C-404 monitoring wells for radionuclide constituents is planned per Part E, Section 6(2) of the Permit.

PPPO-02-10033008-25

Notification of the statistically significant exceedance for Tc-99 in MW84A was submitted, pursuant to Part II, Specific Condition II.K.6.a, to the Kentucky Department for Environmental Protection under separate correspondence.

If you have any questions or require additional information, please contact Angus MacKelvey at (270) 349-7526.

Sincerely,

Digitally signed by APRIL APRIL LADD LADD Date: 2025.05.28 16:23:19 -05'00

April Ladd Paducah Site Lead Portsmouth/Paducah Project Office

Enclosures:

- 1. Certification Page
- C-404 Hazardous Waste Landfill May 2025 Semiannual Groundwater Report (October 2024–March 2025), Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0382/V1

cc w/enclosures:

abigail.parish@pppo.gov, PPPO angus.mackelvey@pppo.gov, PPPO april.ladd@pppo.gov, PPPO april.webb@ky.gov, KDEP begley.brian@epa.gov, EPA bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov, FRNP dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov, FRNP jaime.morrow@pad.pppo.gov, FRNP ken.davis@pad.pppo.gov, FRNP lauren.linehan@ky.gov, KDEP leo.williamson@ky.gov, KDEP myrna.redfield@pad.pppo.gov, FRNP ryan.callihan@pppo.gov, PPPO stephaniec.brock@ky.gov, KYRHB

#### CERTIFICATION

#### **Document Identification:**

C-404 Hazardous Waste Landfill May 2025 Semiannual Groundwater Report (October 2024–March 2025), Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0382/V1, Permit No. KY8-890-008-982, Agency Interest ID No. 3059

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Four Rivers Nuclear Partnership, LLC

MYRNA REDFIELD (Affiliate) (Affiliate) Date: 2025.05.27 12:16:06 -05'00'

Myrna E. Redfield, Program Manager/Date Signed Four Rivers Nuclear Partnership, LLC

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

U.S. Department of Energy

APRIL LADD Date: 2025.05.28 16:23:49 -05'00'

April Ladd, Paducah Site Lead/Date Signed Portsmouth/Paducah Project Office U.S. Department of Energy

## FRNP-RPT-0382/V1

C-404 Hazardous Waste Landfill May 2025 Semiannual Groundwater Report (October 2024–March 2025), Paducah Gaseous Diffusion Plant, Paducah, Kentucky



# **CLEARED FOR PUBLIC RELEASE**

#### FRNP-RPT-0382/V1

C-404 Hazardous Waste Landfill May 2025 Semiannual Groundwater Report (October 2024–March 2025), Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—May 2025

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FOUR RIVERS NUCLEAR PARTNERSHIP, LLC, managing the Deactivation and Remediation Project at the Paducah Gaseous Diffusion Plant under Contract DE-EM0004895

# **CLEARED FOR PUBLIC RELEASE**

THIS PAGE INTENTIONALLY LEFT BLANK

| TABLES                                        | iv                                                                 |
|-----------------------------------------------|--------------------------------------------------------------------|
| FIGURES                                       | iv                                                                 |
| ACRONYMS.                                     |                                                                    |
| EXECUTIVE                                     | SUMMARYvii                                                         |
| 1. INTROD<br>1.1 BA<br>1.2 MC<br>1.2.<br>1.2. | UCTION                                                             |
| 2. STATIST                                    | ICAL SYNOPSIS                                                      |
| 3. DATA V.<br>SUMMA                           | ALIDATION AND QUALITY ASSURANCE/QUALITY CONTROL<br>RY              |
| 4. PROFESS                                    | SIONAL GEOLOGIST AUTHORIZATION                                     |
| 5. REFERE                                     | NCES                                                               |
| APPENDIX A                                    | : C-404 HAZARDOUS WASTE LANDFILL GROUNDWATER<br>ANALYTICAL RESULTS |
| APPENDIX B                                    | C-404 HAZARDOUS WASTE LANDFILL STATISTICAL ANALYSES                |
| APPENDIX C                                    | C-404 LEACHATE SUMP SAMPLING ANALYSIS RESULTS                      |

# CONTENTS

# TABLES

| 1. | Monitoring Well Locations              | . 2 |
|----|----------------------------------------|-----|
| 2. | Assembled Kentucky Groundwater Numbers | . 4 |

# FIGURE

| 1. | Monitoring Wells | . 3 |
|----|------------------|-----|
|----|------------------|-----|

# ACRONYMS

- Assembled Kentucky Groundwater AKGWA
- M-K Mann-Kendall
- MW monitoring well
- Resource Conservation and Recovery Act RCRA
- Regional Gravel Aquifer RGA
- upper continental recharge system Upper Regional Gravel Aquifer UCRS
- URGA

THIS PAGE INTENTIONALLY LEFT BLANK

## **EXECUTIVE SUMMARY**

This report, C-404 Hazardous Waste Landfill May 2025 Semiannual Groundwater Report (October 2024– March 2025), Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0382/V1, is being submitted by the U.S. Department of Energy in accordance with requirements in Kentucky Division of Waste Management Hazardous Waste Management Facility Permit, KY8-890-008-982 (Permit). The period covered by this report is October 2024 through March 2025; and the report includes analytical data from the January 2025 semiannual sampling for all parameters of monitoring wells (MWs) located in the vicinity of the closed C-404 Hazardous Waste Landfill (C-404 Landfill).

The groundwater monitoring analytical data were subjected to statistical analyses. The statistical analyses were conducted in accordance with the Hazardous Waste Management Facility Permit. With the exception of trichloroethene (TCE) in compliance well MW84A and technetium-99 (Tc-99) observed in compliance wells MW84A and MW90A, the statistical tests on all other parameters showed no statistically significant differences above concentrations observed in background wells. Concentrations of TCE in compliance well MW84A and Tc-99 in compliance well MW90A showed statistically significant concentrations compared to concentrations observed in the background wells; however, the concentrations did not show increasing trends, so there are no confirmed exceedances for TCE from MW84A or Tc-99 from MW90A attributable to C-404; however, Tc-99 concentrations in MW84A showed an increasing Mann-Kendall (M-K) trend, indicating a confirmed statistical exceedance.

The leachate in the C-404 Landfill leachate collection system is monitored at least monthly and, at a minimum, is removed and sampled when the level exceeds 3 ft in depth. During this reporting period of October 2024 through March 2025, the depth of the leachate did not exceed 36 inches. The maximum leachate depth in this reporting period was 34 inches, which was recorded on January 14, 2025. On February 5, 2025, 1,125 gal of leachate were removed from the sump and subsequently sampled.

THIS PAGE INTENTIONALLY LEFT BLANK

## **1. INTRODUCTION**

This report contains the statistical evaluation of data from groundwater sampling and analysis for the closed C-404 Hazardous Waste Landfill (C-404 Landfill) at the U.S. Department of Energy Paducah Site (Paducah Site), Paducah, Kentucky. This semiannual report is required by the Kentucky Division of Waste Management Hazardous Waste Management Facility Permit, KY8-890-008-982 (Permit), Specific Condition II.K.6.d—Recordkeeping, Reporting, and Response (KDWM 2020). The period covered by this report is October 2024 through March 2025.

Groundwater analytical results are provided in Appendix A. The statistical analyses and qualification statement are provided in Appendix B. Leachate sump sampling results are provided in Appendix C.

#### 1.1 BACKGROUND

The closed C-404 Landfill is located in the west-central portion of the Paducah Site secured area. The 1.2-acre facility operated as a surface impoundment from approximately 1952 until early 1957. During this time, influents to the impoundment originated from the C-400 Cleaning Building. In 1957, the impoundment was converted to a solid waste disposal facility for uranium-contaminated solid waste. When the impoundment was converted into a disposal facility, a sump was installed at the former weir to collect the leachate from the facility. Leachate is pumped from the sump, as needed, into a mobile tank. The leachate then is transferred to a permitted hazardous waste storage facility on-site prior to characterization; once characterized, the leachate is transferred off-site for treatment.

In 1986, the disposal of waste at the C-404 Landfill was halted, and a portion of the disposed-of waste was found to be Resource Conservation and Recovery Act (RCRA)-hazardous. The landfill was covered with a RCRA multilayered cap and certified closed in 1987. It currently is regulated under RCRA as a land disposal unit and compliance is monitored under the current Hazardous Waste Management Facility Permit (KDWM 2020).

Previous groundwater monitoring documented that concentrations of trichloroethene (TCE) found in compliance wells were statistically different from those found in background wells. The *C-404 Landfill Source Demonstration, Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PRS-ENM-0031/R2, demonstrated that the source of TCE in compliance wells is not from the C-404 Landfill, but rather, the source is located upgradient/crossgradient of the C-404 Landfill (PRS 2007a).

Regional Gravel Aquifer (RGA) compliance monitoring well (MW) MW90 was abandoned and replaced by MW90A in 2001. RGA compliance well MW420 was installed in 2007 to better assess groundwater quality at the C-404 Landfill (PRS 2007b).

Previous groundwater monitoring of RGA compliance well MW87 documented that concentrations in the compliance well were statistically different from background wells for lead and uranium (FRNP 2018). The *C-404 Hazardous Waste Landfill Alternate Source Demonstration—Source of Lead and Uranium in MW87 at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, concluded that the statistical differences were a result of infiltration of upper continental recharge system (UCRS) groundwater into the RGA well due to compromised integrity of the well (FRNP 2019). The integrity of the well had deteriorated to a point that it no longer was suitable for its intended purpose. RGA compliance wells MW84, MW87, and background well MW93 were abandoned and replaced because they were the same age (installed in 1988) as MW87. MW84A and MW87A were placed 10 ft north of MW84 and MW87, respectively, and screened at the same depth intervals. MW93A was placed 6 ft west of MW93 and screened at the same depth interval.

In the first semiannual reporting period for 2021 (October 2020–March 2021), statistical analysis of technetium-99 (Tc-99) detections in downgradient compliance well MW84A indicated a statistically significant exceedance over background concentrations. Notification of the statistically significant difference for Tc-99 in MW84A was submitted, pursuant to Part II, Specific Condition II.K.6.a, to the Kentucky Department of Waste Management.

An alternate source demonstration investigation for Tc-99 in MW84A was performed in June 2021. The *C-404 Hazardous Waste Landfill Alternate Source Demonstration—Source of Technetium-99 in MW84A at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, FRNP-RPT-0206, consisted of redevelopment and over pumping of MW84A, and review of the lines of evidence relating redevelopment of MW84A and the associated Tc-99 levels (FRNP 2021). The lines of evidence concluded that the observed trend of increasing Tc-99 in MW84A is not a result of contamination introduced into the well boring during drilling and well installation, but it is indicative of dissolved Tc-99 contamination in the RGA. Quarterly compliance monitoring for Tc-99 and other radionuclides was conducted at the C-404 Landfill through November 2022. The radionuclide statistics of the current semiannual report contain results from additional quarterly compliance sampling for radiological constituents conducted in November 2022, in addition to the routine semiannual groundwater sampling.

In accordance with Permit Specific Condition II.K.6.j, development and submittal of an engineering feasibility plan for a corrective action program is not required when a statistically significant exceedance has been confirmed for radionuclides (i.e., Tc-99).

### **1.2 MONITORING PERIOD ACTIVITIES**

#### **1.2.1 Groundwater Monitoring**

There are nine MWs sampled under the Permit for the C-404 Landfill: four UCRS wells and five Upper Regional Gravel Aquifer (URGA) wells. A map of the MW locations is provided in Figure 1.

Table 1 presents the well number for URGA wells located upgradient and downgradient of the C-404 Landfill. Table 1 also presents the well numbers for the UCRS wells located in proximity to the URGA wells. This table refers to the UCRS wells as being adjacent to an upgradient or downgradient URGA well location and are identified relative to URGA groundwater flow direction. The conceptual model for the C-404 Landfill indicates that groundwater in the UCRS wells flows primarily vertically downward until it reaches the URGA; therefore, UCRS wells are not considered "upgradient" or "downgradient" of other UCRS wells in the area.

| UCRS                                         |                        |  |  |  |  |  |  |
|----------------------------------------------|------------------------|--|--|--|--|--|--|
| Located south of C-404 Landfill, adjacent to | MUV04                  |  |  |  |  |  |  |
| upgradient URGA background well MW93A        | IVI W 94               |  |  |  |  |  |  |
| Located north of C-404 Landfill, adjacent to | MW/95 MW/99 MW/01 A*   |  |  |  |  |  |  |
| downgradient URGA compliance wells           | MW 83, MW 88, MW 91A*  |  |  |  |  |  |  |
| URGA                                         |                        |  |  |  |  |  |  |
| Upgradient background wells                  | MW93A*, MW420          |  |  |  |  |  |  |
| Downgradient compliance wells                | MW84A*, MW87A*, MW90A* |  |  |  |  |  |  |

#### Table 1. Monitoring Well Locations

\*MW90 was abandoned in 2001 and replaced with MW90A. MW91 was abandoned in 2017 and replaced with MW91A. MW84, MW87, and MW93 were abandoned in 2019 and replaced with MW84A, MW87A, and MW93A.



Figure 1. Monitoring Wells

Table 2 presents the Assembled Kentucky Groundwater (AKGWA) numbers for each MW.

| Paducah Site Well | AKGWA     |
|-------------------|-----------|
| Number            | Number    |
| MW84A             | 8007-4849 |
| MW85              | 8000-5234 |
| MW87A             | 8007-4850 |
| MW88              | 8000-5237 |
| MW90A             | 8004-0357 |
| MW91A             | 8007-2917 |
| MW93A             | 8007-4851 |
| MW94              | 8000-5103 |
| MW420             | 8005-3263 |

Table 2. AKGWA Numbers

All nine MWs were sampled in January 2025 during this reporting period. Samples collected in January 2025 were analyzed for the parameters that are required by Part VIII.E of the Permit. Groundwater sampling was conducted using procedure CP4-ES-2101, *Groundwater Sampling*. The appropriate sample containers and preservatives were used. The laboratory that performed the analyses used U.S. Environmental Protection Agency-approved methods, as applicable. Appendix A of this report contains the analytical results. Appendix B of this report contains the statistical analyses.

#### **1.2.2 Landfill Leachate**

In accordance with Appendix I2, C-404 Landfill Closure Plan (Section 1.2 of the Permit), the quantity of liquid in the leachate collection system is monitored (at least monthly) and, at a minimum, will be "removed when the quantity exceeds 36 inches in depth." Once the leachate depth reaches 36 inches, the leachate is pumped into a mobile tank. The leachate then is transferred to a permitted hazardous waste storage facility on-site prior to characterization; once characterized, the leachate is transferred off-site for treatment. During this reporting period (October 2024 through March 2025), the maximum depth of the leachate was 34 inches, measured on January 14, 2025. Subsequently, 1,125 gal of leachate from the C-404 Landfill sump were pumped and sampled on February 5, 2025. Leachate sample results are presented in Appendix C.

## 2. STATISTICAL SYNOPSIS

The statistical analyses conducted on the data collected from the C-404 Landfill were performed in accordance with procedures in the Permit, Part VIII.E, reissued in February 2020. Appendix B of this report contains the statistical analyses performed for this reporting period. Statistical analyses utilized data from the URGA background wells, MW93A and MW420, and URGA compliance wells, MW84A, MW87A, and MW90A. For this reporting period, the data set includes data from January 2023, July 2023, January 2024, July 2024, and January 2025.

Appendix B provides a summary of the statistical analyses performed. The statistical test results on all wells and parameters showed no statistically significant exceedances above concentrations observed in the background wells with the exception of TCE in MW84A and Tc-99 in MW84A and MW90A. Concentrations of TCE in compliance well MW84A and Tc-99 in compliance well MW90A showed statistically significant concentrations compared to concentrations observed in the background wells; however, the concentrations did not show increasing trends. As a result, there are no confirmed exceedances for TCE from MW84A or Tc-99 from MW90A attributable to C-404; however, Tc-99 concentrations in MW84A showed an increasing Mann-Kendall (M-K) trend indicating a confirmed statistical exceedance. An evaluation of the confirmed exceedance for Tc-99 in MW84A was performed in regard to the previously referenced 2007 alternate source demonstration and was determined not to be relevant.

## 3. DATA VALIDATION AND QUALITY ASSURANCE/QUALITY CONTROL SUMMARY

The data and the data validation codes for the January 2025 data sets are provided in Appendix A. All data for these data sets were considered useable as reported. Data validation was performed on the analytical data by an independent, third-party validator.

Field quality control samples are collected during each semiannual sampling event. Equipment rinseate blanks, field blanks, field duplicates, and trip blanks are obtained to ensure quality control and are reported in the analytical results in Appendix A. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory and reported in the laboratory report. Both field and laboratory quality control sample results are reviewed as part of the data validation process.

## 4. PROFESSIONAL GEOLOGIST AUTHORIZATION

#### **DOCUMENT IDENTIFICATION:**

C-404 Hazardous Waste Landfill May 2025 Semiannual Groundwater Report (October 2024–March 2025), Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FRNP-RPT-0382/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.



enneth R. Davis

### **5. REFERENCES**

- FRNP (Four Rivers Nuclear Partnership, LLC) 2018. C-404 Hazardous Waste Landfill November 2018 Semiannual Groundwater Report (April 2018—September 2018), Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0026/V2, U.S. Department of Energy, Paducah, KY, November.
- FRNP 2019. C-404 Hazardous Waste Landfill Alternate Source Demonstration—Source of Lead and Uranium in MW87 at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0078, Four Rivers Nuclear Partnership, LLC, Paducah, KY, February.
- FRNP 2021. C-404 Hazardous Waste Landfill Alternate Source Demonstration—Source of Technetium-99 in MW84A at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0206, Four Rivers Nuclear Partnership, LLC, Paducah, KY, August.
- KDWM (Kentucky Division of Waste Management) 2020. Hazardous Waste Management Facility Permit for the U.S. Department of Energy, Paducah Gaseous Diffusion Plant, KY8-890-008-982, effective February 21.
- PRS (Paducah Remediation Services, LLC) 2007a. C-404 Landfill Source Demonstration Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PRS-ENM-0031/R2, Paducah Remediation Services, LLC, Kevil, KY, August.
- PRS 2007b. Well Plan for Addition of Wells for C-404 Monitoring Well Network, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PRS/PROJ/0028, Paducah Remediation Services, LLC, Kevil, KY, July.

# **APPENDIX A**

# C-404 HAZARDOUS WASTE LANDFILL GROUNDWATER ANALYTICAL RESULTS

THIS PAGE INTENTIONALLY LEFT BLANK

| Facility: C-404 Landfi      | 11 (      | County: <u>McCrack</u> | ten       |            | Permit #: K | Y8-89  | 0-008-982           |                 |
|-----------------------------|-----------|------------------------|-----------|------------|-------------|--------|---------------------|-----------------|
| Sampling Point:             | MW84A REG | Downgrad               | ient URG  | A          | Period: Sem | iannua | l Report            |                 |
| AKGWA Well Tag #:           | 8007-4849 |                        |           |            |             |        |                     |                 |
| <b>.</b> .                  | 0         | Desult Huite           | Reporting | Date       | Counting    | TOU    |                     | \               |
| Parameter<br>Arsenic        | Qualifier | 0.0432 mg/l            | 0.005     | 1/7/2025   | Error (+/-) | IPU    | SW846-6020B         | validation<br>= |
|                             |           | 0.0102 mg/L            | 0.000     | . /= /2023 |             |        |                     |                 |
| Arsenic, Dissolved          |           | 0.0358 mg/L            | 0.005     | 1/7/2025   |             |        | SW846-6020B         | J               |
| Barometric Pressure Reading |           | 30.46 Inches/H         | g         | 1/7/2025   |             |        |                     | Х               |
| Cadmium                     | U         | 0.001 mg/L             | 0.001     | 1/7/2025   |             |        | SW846-6020B         | =               |
| Cadmium, Dissolved          | U         | 0.001 mg/L             | 0.001     | 1/7/2025   |             |        | SW846-6020B         | UJ              |
| Chromium                    | U         | 0.01 mg/L              | 0.01      | 1/7/2025   |             |        | SW846-6020B         | =               |
| Chromium, Dissolved         | U         | 0.01 mg/L              | 0.01      | 1/7/2025   |             |        | SW846-6020B         | UJ              |
| Conductivity                |           | 458 μmhos/c            | m         | 1/7/2025   |             |        |                     | Х               |
| Depth to Water              |           | 52.61 ft               |           | 1/7/2025   |             |        |                     | х               |
| Dissolved Oxygen            |           | 4.25 mg/L              |           | 1/7/2025   |             |        |                     | Х               |
| Eh (approx)                 |           | 440 mV                 |           | 1/7/2025   |             |        |                     | х               |
| Lead                        | U         | 0.002 mg/L             | 0.002     | 1/7/2025   |             |        | SW846-6020B         | =               |
| Lead, Dissolved             | U         | 0.002 mg/L             | 0.002     | 1/7/2025   |             |        | SW846-6020B         | UJ              |
| Mercury                     | U         | 0.0002 mg/L            | 0.0002    | 1/7/2025   |             |        | SW846-7470A         | =               |
| Mercury, Dissolved          | U         | 0.0002 mg/L            | 0.0002    | 1/7/2025   |             |        | SW846-7470A         | UJ              |
| рН                          |           | 5.72 Std Unit          |           | 1/7/2025   |             |        |                     | Х               |
| Selenium                    | U         | 0.005 mg/L             | 0.005     | 1/7/2025   |             |        | SW846-6020B         | =               |
| Selenium, Dissolved         | U         | 0.005 mg/L             | 0.005     | 1/7/2025   |             |        | SW846-6020B         | UJ              |
| Sulfate                     |           | 7.9 mg/L               | 0.4       | 1/7/2025   |             |        | SW846-9056A         | =               |
| Technetium-99               |           | 104 pCi/L              | 19.5      | 1/7/2025   | 16          | 20.4   | HASL 300, Tc-02-RC  | = N             |
| Temperature                 |           | 55.8 deg F             |           | 1/7/2025   |             |        |                     | х               |
| Trichloroethene             | Y1        | 5270 ug/L              | 100       | 1/7/2025   |             |        | SW846-8260D         | =               |
| Turbidity                   |           | 5.3 NTU                |           | 1/7/2025   |             |        |                     | Х               |
| Uranium                     | U         | 0.0002 mg/L            | 0.0002    | 1/7/2025   |             |        | SW846-6020B         | =               |
| Uranium-234                 | U         | 0.354 pCi/L            | 1.29      | 1/7/2025   | 0.73        | 0.733  | HASL 300, U-02-RC N | A =             |
| Uranium-235                 | U         | -0.0335 pCi/L          | 1.17      | 1/7/2025   | 0.502       | 0.503  | HASL 300, U-02-RC N | A =             |
| Uranium-238                 | U         | 0.476 pCi/L            | 0.749     | 1/7/2025   | 0.603       | 0.606  | HASL 300, U-02-RC N | A =             |

| Facility: C-404 Land | fill      | County: McCrack | en        |           | Permit #: K | Y8-89  | 0-008-982            |            |
|----------------------|-----------|-----------------|-----------|-----------|-------------|--------|----------------------|------------|
| Sampling Point:      | MW84A FR  | Downgradi       | ent URG   | A         | Period: Sem | iannua | l Report             |            |
| AKGWA Well Tag #     | 8007-4849 |                 | Reporting | Date      | Counting    |        |                      |            |
| Parameter            | Qualifier | Result Units    | Limit     | Collected | Error (+/-) | TPU    | Method               | Validation |
| Arsenic              |           | 0.0421 mg/L     | 0.005     | 1/7/2025  |             |        | SW846-6020B          | =          |
| Arsenic, Dissolved   |           | 0.0348 mg/L     | 0.005     | 1/7/2025  |             |        | SW846-6020B          | J          |
| Cadmium              | U         | 0.001 mg/L      | 0.001     | 1/7/2025  |             |        | SW846-6020B          | =          |
| Cadmium, Dissolved   | U         | 0.001 mg/L      | 0.001     | 1/7/2025  |             |        | SW846-6020B          | UJ         |
| Chromium             | U         | 0.01 mg/L       | 0.01      | 1/7/2025  |             |        | SW846-6020B          | =          |
| Chromium, Dissolved  | U         | 0.01 mg/L       | 0.01      | 1/7/2025  |             |        | SW846-6020B          | UJ         |
| Lead                 | U         | 0.002 mg/L      | 0.002     | 1/7/2025  |             |        | SW846-6020B          | =          |
| Lead, Dissolved      | U         | 0.002 mg/L      | 0.002     | 1/7/2025  |             |        | SW846-6020B          | UJ         |
| Mercury              | U         | 0.0002 mg/L     | 0.0002    | 1/7/2025  |             |        | SW846-7470A          | =          |
| Mercury, Dissolved   | U         | 0.0002 mg/L     | 0.0002    | 1/7/2025  |             |        | SW846-7470A          | UJ         |
| Selenium             | U         | 0.005 mg/L      | 0.005     | 1/7/2025  |             |        | SW846-6020B          | =          |
| Selenium, Dissolved  | U         | 0.005 mg/L      | 0.005     | 1/7/2025  |             |        | SW846-6020B          | UJ         |
| Sulfate              |           | 7.98 mg/L       | 0.4       | 1/7/2025  |             |        | SW846-9056A          | =          |
| Technetium-99        |           | 98.9 pCi/L      | 20.1      | 1/7/2025  | 16.1        | 20.1   | HASL 300, Tc-02-RC N | 1 =        |
| Trichloroethene      | Y1        | 5340 ug/L       | 100       | 1/7/2025  |             |        | SW846-8260D          | =          |
| Uranium              | U         | 0.0002 mg/L     | 0.0002    | 1/7/2025  |             |        | SW846-6020B          | =          |
| Uranium-234          | U         | 0.132 pCi/L     | 2.11      | 1/7/2025  | 1.02        | 1.02   | HASL 300, U-02-RC M  | =          |
| Uranium-235          | U         | -0.113 pCi/L    | 1.59      | 1/7/2025  | 0.627       | 0.629  | HASL 300, U-02-RC M  | =          |
| Uranium-238          | U         | -0.213 pCi/L    | 1.56      | 1/7/2025  | 0.521       | 0.523  | HASL 300, U-02-RC M  | =          |

| Facility: C-404 Landf       | ill       | County: <u>N</u> | /IcCracken |                    |                   | Permit #: | <u>KY8-89</u> | 00-008-982           |            |
|-----------------------------|-----------|------------------|------------|--------------------|-------------------|-----------|---------------|----------------------|------------|
| Sampling Point:             | MW85 REG  | Do               | wngradien  | t UCR              | S                 | Period: S | emiannua      | l Report             |            |
| AKGWA Well Tag #:           | 8000-5234 |                  |            |                    |                   |           |               |                      |            |
| Parameter                   | Qualifier | Result           | Units      | Reporting<br>Limit | Date<br>Collected | Countin   | ng<br>/-) TPU | Method               | Validatior |
| Arsenic                     |           | 0.00509          | mg/L       | 0.005              | 1/6/2025          |           |               | SW846-6020B          | =          |
| Arsenic, Dissolved          | J         | 0.00441          | mg/L       | 0.005              | 1/6/2025          |           |               | SW846-6020B          | J          |
| Barometric Pressure Reading |           | 30.05            | Inches/Hg  |                    | 1/6/2025          |           |               |                      | Х          |
| Cadmium                     | U         | 0.001            | mg/L       | 0.001              | 1/6/2025          |           |               | SW846-6020B          | =          |
| Cadmium, Dissolved          | U         | 0.001            | mg/L       | 0.001              | 1/6/2025          |           |               | SW846-6020B          | UJ         |
| Chromium                    | J         | 0.00467          | mg/L       | 0.01               | 1/6/2025          |           |               | SW846-6020B          | =          |
| Chromium, Dissolved         | J         | 0.00351          | mg/L       | 0.01               | 1/6/2025          |           |               | SW846-6020B          | J          |
| Conductivity                |           | 350              | µmhos/cm   |                    | 1/6/2025          |           |               |                      | х          |
| Depth to Water              |           | 8.18             | ft         |                    | 1/6/2025          |           |               |                      | х          |
| Dissolved Oxygen            |           | 3                | mg/L       |                    | 1/6/2025          |           |               |                      | х          |
| Eh (approx)                 |           | 471              | mV         |                    | 1/6/2025          |           |               |                      | Х          |
| Lead                        | U         | 0.002            | mg/L       | 0.002              | 1/6/2025          |           |               | SW846-6020B          | =          |
| Lead, Dissolved             | U         | 0.002            | mg/L       | 0.002              | 1/6/2025          |           |               | SW846-6020B          | UJ         |
| Mercury                     | U         | 0.0002           | mg/L       | 0.0002             | 1/6/2025          |           |               | SW846-7470A          | =          |
| Mercury, Dissolved          | U         | 0.0002           | mg/L       | 0.0002             | 1/6/2025          |           |               | SW846-7470A          | UJ         |
| рН                          |           | 6.13             | Std Unit   |                    | 1/6/2025          |           |               |                      | Х          |
| Selenium                    | U         | 0.005            | mg/L       | 0.005              | 1/6/2025          |           |               | SW846-6020B          | =          |
| Selenium, Dissolved         | U         | 0.005            | mg/L       | 0.005              | 1/6/2025          |           |               | SW846-6020B          | UJ         |
| Sulfate                     |           | 12.3             | mg/L       | 0.4                | 1/6/2025          |           |               | SW846-9056A          | =          |
| Technetium-99               |           | 79.5             | pCi/L      | 20.5               | 1/6/2025          | 15.2      | 18            | HASL 300, Tc-02-RC N | - N        |
| Temperature                 |           | 51.6             | deg F      |                    | 1/6/2025          |           |               |                      | х          |
| Trichloroethene             | J         | 0.47             | ug/L       | 1                  | 1/6/2025          |           |               | SW846-8260D          | =          |
| Turbidity                   |           | 5.3              | NTU        |                    | 1/6/2025          |           |               |                      | х          |
| Uranium                     |           | 0.000497         | mg/L       | 0.0002             | 1/6/2025          |           |               | SW846-6020B          | =          |
| Uranium-234                 | U         | 0.0356           | pCi/L      | 1.51               | 1/6/2025          | 0.696     | 0.696         | HASL 300, U-02-RC N  | 1 =        |
| Uranium-235                 | U         | 0                | pCi/L      | 0.726              | 1/6/2025          | 0.488     | 0.489         | HASL 300, U-02-RC N  | 1 =        |
| Uranium-238                 | U         | 0.102            | pCi/L      | 1.08               | 1/6/2025          | 0.565     | 0.566         | HASL 300, U-02-RC N  | 1 =        |

| Facility: C-404 Landfi      |           | County: <u>McCra</u> | acken      |           | Permit #: H | KY8-89  | 0-008-982            |            |
|-----------------------------|-----------|----------------------|------------|-----------|-------------|---------|----------------------|------------|
| Sampling Point:             | MW87A REG | Downgr               | adient URG | A         | Period: Sen | niannua | l Report             |            |
| AKGWA Well Tag #:           | 8007-4850 |                      |            |           |             |         |                      |            |
|                             |           |                      | Reporting  | Date      | Counting    |         |                      |            |
| Parameter                   | Qualifier | Result Unit          | s Limit    | Collected | Error (+/-) | TPU     | Method               | Validatior |
| Arsenic                     |           | 0.00799 mg/L         | 0.005      | 1/7/2025  |             |         | SW846-6020B          | =          |
| Arsenic, Dissolved          |           | 0.00624 mg/L         | 0.005      | 1/7/2025  |             |         | SW846-6020B          | J          |
| Barometric Pressure Reading |           | 30.48 Inche          | s/Hg       | 1/7/2025  |             |         |                      | Х          |
| Cadmium                     | U         | 0.001 mg/L           | 0.001      | 1/7/2025  |             |         | SW846-6020B          | =          |
| Cadmium, Dissolved          | U         | 0.001 mg/L           | 0.001      | 1/7/2025  |             |         | SW846-6020B          | UJ         |
| Chromium                    | J         | 0.00531 mg/L         | 0.01       | 1/7/2025  |             |         | SW846-6020B          | =          |
| Chromium, Dissolved         | U         | 0.01 mg/L            | 0.01       | 1/7/2025  |             |         | SW846-6020B          | UJ         |
| Conductivity                |           | 336 µmhc             | os/cm      | 1/7/2025  |             |         |                      | х          |
| Depth to Water              |           | 52.7 ft              |            | 1/7/2025  |             |         |                      | х          |
| Dissolved Oxygen            |           | 3.78 mg/L            |            | 1/7/2025  |             |         |                      | х          |
| Eh (approx)                 |           | 350 mV               |            | 1/7/2025  |             |         |                      | Х          |
| Lead                        | U         | 0.002 mg/L           | 0.002      | 1/7/2025  |             |         | SW846-6020B          | =          |
| Lead, Dissolved             | U         | 0.002 mg/L           | 0.002      | 1/7/2025  |             |         | SW846-6020B          | UJ         |
| Mercury                     | U         | 0.0002 mg/L          | 0.0002     | 1/7/2025  |             |         | SW846-7470A          | =          |
| Mercury, Dissolved          | U         | 0.0002 mg/L          | 0.0002     | 1/7/2025  |             |         | SW846-7470A          | UJ         |
| рН                          |           | 5.86 Std U           | nit        | 1/7/2025  |             |         |                      | Х          |
| Selenium                    | U         | 0.005 mg/L           | 0.005      | 1/7/2025  |             |         | SW846-6020B          | =          |
| Selenium, Dissolved         | U         | 0.005 mg/L           | 0.005      | 1/7/2025  |             |         | SW846-6020B          | UJ         |
| Sulfate                     |           | 6.7 mg/L             | 0.4        | 1/7/2025  |             |         | SW846-9056A          | =          |
| Technetium-99               |           | 25.7 pCi/L           | 20.4       | 1/7/2025  | 13          | 13.3    | HASL 300, Tc-02-RC N | = N        |
| Temperature                 |           | 56.1 deg F           |            | 1/7/2025  |             |         |                      | Х          |
| Trichloroethene             | Y1        | 172 ug/L             | 4          | 1/7/2025  |             |         | SW846-8260D          | J          |
| Turbidity                   |           | 1.93 NTU             |            | 1/7/2025  |             |         |                      | х          |
| Uranium                     | U         | 0.0002 mg/L          | 0.0002     | 1/7/2025  |             |         | SW846-6020B          | =          |
| Uranium-234                 | U         | 0.591 pCi/L          | 1.11       | 1/7/2025  | 0.741       | 0.747   | HASL 300, U-02-RC N  | = N        |
| Uranium-235                 | U         | 0.408 pCi/L          | 0.896      | 1/7/2025  | 0.648       | 0.65    | HASL 300, U-02-RC N  | = N        |
| Uranium-238                 | U         | 0.262 pCi/L          | 0.393      | 1/7/2025  | 0.449       | 0.45    | HASL 300, U-02-RC N  | = N        |

| Facility: <u>C-404 Landf</u> | i11       | County: M  | cCracken   |           |          | Permit #: | <u>KY8-89</u> | 00-008-982          |            |
|------------------------------|-----------|------------|------------|-----------|----------|-----------|---------------|---------------------|------------|
| Sampling Point:              | MW88 REG  | Dow        | vngradient | UCR       | 8        | Period: S | emiannua      | l Report            |            |
| AKGWA Well Tag #:            | 8000-5237 |            |            |           |          |           |               |                     |            |
| Demonstern                   | Qualifian | Decult 1   | Inite      | Reporting | Date     | Countin   | ng<br>/\ TDU  | Mathad              | Validation |
| <u>Parameter</u>             | Quaimer   | 0.00815 r  | ng/l       | 0.005     | 1/6/2025 | Error (+  | /-) 190       | SW846-6020B         |            |
|                              |           | 0.00015 1  | 116/ L     | 0.005     | 1,0,2025 |           |               | 5110-10 00200       |            |
| Arsenic, Dissolved           |           | 0.0058 r   | ng/L       | 0.005     | 1/6/2025 |           |               | SW846-6020B         | J          |
| Barometric Pressure Reading  |           | 30.09 1    | nches/Hg   |           | 1/6/2025 |           |               |                     | Х          |
| Cadmium                      | U         | 0.001 r    | ng/L       | 0.001     | 1/6/2025 |           |               | SW846-6020B         | =          |
| Cadmium, Dissolved           | U         | 0.001 r    | ng/L       | 0.001     | 1/6/2025 |           |               | SW846-6020B         | UJ         |
| Chromium                     | J         | 0.00409 r  | ng/L       | 0.01      | 1/6/2025 |           |               | SW846-6020B         | =          |
| Chromium, Dissolved          | J         | 0.00444 r  | ng/L       | 0.01      | 1/6/2025 |           |               | SW846-6020B         | J          |
| Conductivity                 |           | 614 µ      | ımhos/cm   |           | 1/6/2025 |           |               |                     | х          |
| Depth to Water               |           | 7.9 f      | t          |           | 1/6/2025 |           |               |                     | х          |
| Dissolved Oxygen             |           | 2.72 r     | ng/L       |           | 1/6/2025 |           |               |                     | х          |
| Eh (approx)                  |           | 470 r      | nV         |           | 1/6/2025 |           |               |                     | х          |
| Lead                         |           | 0.0048 r   | ng/L       | 0.002     | 1/6/2025 |           |               | SW846-6020B         | =          |
| Lead, Dissolved              | J         | 0.00181 r  | ng/L       | 0.002     | 1/6/2025 |           |               | SW846-6020B         | J          |
| Mercury                      |           | 0.00187 r  | ng/L       | 0.0002    | 1/6/2025 |           |               | SW846-7470A         | =          |
| Mercury, Dissolved           |           | 0.000584 r | ng/L       | 0.0002    | 1/6/2025 |           |               | SW846-7470A         | J          |
| рН                           |           | 5.94 5     | itd Unit   |           | 1/6/2025 |           |               |                     | Х          |
| Selenium                     | U         | 0.005 r    | ng/L       | 0.005     | 1/6/2025 |           |               | SW846-6020B         | =          |
| Selenium, Dissolved          | U         | 0.005 r    | ng/L       | 0.005     | 1/6/2025 |           |               | SW846-6020B         | UJ         |
| Sulfate                      |           | 94 r       | ng/L       | 4         | 1/6/2025 |           |               | SW846-9056A         | =          |
| Technetium-99                | U         | 9.18 p     | oCi/L      | 17.4      | 1/6/2025 | 10.3      | 10.4          | HASL 300, Tc-02-RC  | M =        |
| Temperature                  |           | 52.2 c     | leg F      |           | 1/6/2025 |           |               |                     | х          |
| Trichloroethene              |           | 5.87 u     | ıg/L       | 1         | 1/6/2025 |           |               | SW846-8260D         | =          |
| Turbidity                    |           | 127 N      | NTU        |           | 1/6/2025 |           |               |                     | х          |
| Uranium                      |           | 0.000848 r | ng/L       | 0.0002    | 1/6/2025 |           |               | SW846-6020B         | =          |
| Uranium-234                  | U         | 0.224 p    | oCi/L      | 1.67      | 1/6/2025 | 0.862     | 0.864         | HASL 300, U-02-RC N | A =        |
| Uranium-235                  | U         | 0.231 p    | oCi/L      | 0.694     | 1/6/2025 | 0.651     | 0.652         | HASL 300, U-02-RC N | A =        |
| Uranium-238                  | U         | 0.569 p    | oCi/L      | 1.23      | 1/6/2025 | 0.844     | 0.848         | HASL 300, U-02-RC N | A =        |

| Facility: C-404 Landfil     | 1 (       | County: <u>McCrack</u> | en        | l         | Permit #: <u>K</u> | Y8-89  | 0-008-982            |            |
|-----------------------------|-----------|------------------------|-----------|-----------|--------------------|--------|----------------------|------------|
| Sampling Point: N           | 1W90A REG | Downgrad               | ient URG  | A         | Period: Sem        | iannua | l Report             |            |
| AKGWA Well Tag #:           | 8004-0357 |                        |           |           |                    |        |                      |            |
| <b>_</b>                    | Qualifian | Describe the iter      | Reporting | Date      | Counting           | TOU    |                      |            |
| Parameter                   | Qualifier | Result Units           | Limit     | Lollected | Error (+/-)        | IPU    |                      | Validation |
| Arsenic                     | J         | 0.00334 Mg/L           | 0.005     | 1/7/2025  |                    |        | SW840-0020B          | =          |
| Arsenic, Dissolved          | J         | 0.00281 mg/L           | 0.005     | 1/7/2025  |                    |        | SW846-6020B          | J          |
| Barometric Pressure Reading |           | 30.48 Inches/H         | g         | 1/7/2025  |                    |        |                      | х          |
| Cadmium                     | U         | 0.001 mg/L             | 0.001     | 1/7/2025  |                    |        | SW846-6020B          | =          |
| Cadmium, Dissolved          | U         | 0.001 mg/L             | 0.001     | 1/7/2025  |                    |        | SW846-6020B          | UJ         |
| Chromium                    | U         | 0.01 mg/L              | 0.01      | 1/7/2025  |                    |        | SW846-6020B          | =          |
| Chromium, Dissolved         | U         | 0.01 mg/L              | 0.01      | 1/7/2025  |                    |        | SW846-6020B          | UJ         |
| Conductivity                |           | 224 µmhos/c            | m         | 1/7/2025  |                    |        |                      | х          |
| Depth to Water              |           | 51.93 ft               |           | 1/7/2025  |                    |        |                      | Х          |
| Dissolved Oxygen            |           | 5 mg/L                 |           | 1/7/2025  |                    |        |                      | х          |
| Eh (approx)                 |           | 492 mV                 |           | 1/7/2025  |                    |        |                      | х          |
| Lead                        | U         | 0.002 mg/L             | 0.002     | 1/7/2025  |                    |        | SW846-6020B          | =          |
| Lead, Dissolved             | U         | 0.002 mg/L             | 0.002     | 1/7/2025  |                    |        | SW846-6020B          | UJ         |
| Mercury                     | U         | 0.0002 mg/L            | 0.0002    | 1/7/2025  |                    |        | SW846-7470A          | =          |
| Mercury, Dissolved          | U         | 0.0002 mg/L            | 0.0002    | 1/7/2025  |                    |        | SW846-7470A          | UJ         |
| рН                          |           | 5.83 Std Unit          |           | 1/7/2025  |                    |        |                      | х          |
| Selenium                    | U         | 0.005 mg/L             | 0.005     | 1/7/2025  |                    |        | SW846-6020B          | =          |
| Selenium, Dissolved         | U         | 0.005 mg/L             | 0.005     | 1/7/2025  |                    |        | SW846-6020B          | UJ         |
| Sulfate                     |           | 4.13 mg/L              | 0.4       | 1/7/2025  |                    |        | SW846-9056A          | =          |
| Technetium-99               |           | 55.8 pCi/L             | 19.6      | 1/7/2025  | 13.9               | 15.5   | HASL 300, Tc-02-RC N | 1 =        |
| Temperature                 |           | 56.2 deg F             |           | 1/7/2025  |                    |        |                      | х          |
| Trichloroethene             | Y1        | 121 ug/L               | 5         | 1/7/2025  |                    |        | SW846-8260D          | =          |
| Turbidity                   |           | 1.27 NTU               |           | 1/7/2025  |                    |        |                      | х          |
| Uranium                     | U         | 0.0002 mg/L            | 0.0002    | 1/7/2025  |                    |        | SW846-6020B          | =          |
| Uranium-234                 | U         | -0.523 pCi/L           | 1.89      | 1/7/2025  | 0.709              | 0.709  | HASL 300, U-02-RC M  | =          |
| Uranium-235                 | U         | -0.186 pCi/L           | 1.28      | 1/7/2025  | 0.431              | 0.432  | HASL 300, U-02-RC M  | =          |
| Uranium-238                 | U         | 0.0188 pCi/L           | 1.44      | 1/7/2025  | 0.669              | 0.669  | HASL 300, U-02-RC M  | =          |

| Facility: C-404 Landfi      |           | County: McCrack | ken       |           | Permit #: K | Y8-89  | 0-008-982            |            |
|-----------------------------|-----------|-----------------|-----------|-----------|-------------|--------|----------------------|------------|
| Sampling Point:             | MW91A REG | Downgrad        | lient UCR | S         | Period: Sem | iannua | l Report             |            |
| AKGWA Well Tag #:           | 8007-2917 |                 |           |           |             |        |                      |            |
| _                           |           |                 | Reporting | Date      | Counting    |        |                      |            |
| Parameter                   | Qualifier | Result Units    | Limit     | Collected | Error (+/-) | TPU    | Method               | Validation |
| Arsenic                     |           | 0.00718 Mg/L    | 0.005     | 1/0/2025  |             |        | SW840-0020B          | -          |
| Arsenic, Dissolved          |           | 0.00661 mg/L    | 0.005     | 1/6/2025  |             |        | SW846-6020B          | J          |
| Barometric Pressure Reading |           | 30.09 Inches/H  | Hg        | 1/6/2025  |             |        |                      | х          |
| Cadmium                     | U         | 0.001 mg/L      | 0.001     | 1/6/2025  |             |        | SW846-6020B          | =          |
| Cadmium, Dissolved          | U         | 0.001 mg/L      | 0.001     | 1/6/2025  |             |        | SW846-6020B          | UJ         |
| Chromium                    | U         | 0.01 mg/L       | 0.01      | 1/6/2025  |             |        | SW846-6020B          | =          |
| Chromium, Dissolved         | U         | 0.01 mg/L       | 0.01      | 1/6/2025  |             |        | SW846-6020B          | UJ         |
| Conductivity                |           | 782 µmhos/      | cm        | 1/6/2025  |             |        |                      | х          |
| Depth to Water              |           | 12.15 ft        |           | 1/6/2025  |             |        |                      | х          |
| Dissolved Oxygen            |           | 1.15 mg/L       |           | 1/6/2025  |             |        |                      | х          |
| Eh (approx)                 |           | 267 mV          |           | 1/6/2025  |             |        |                      | Х          |
| Lead                        | U         | 0.002 mg/L      | 0.002     | 1/6/2025  |             |        | SW846-6020B          | =          |
| Lead, Dissolved             | U         | 0.002 mg/L      | 0.002     | 1/6/2025  |             |        | SW846-6020B          | UJ         |
| Mercury                     | U         | 0.0002 mg/L     | 0.0002    | 1/6/2025  |             |        | SW846-7470A          | =          |
| Mercury, Dissolved          | U         | 0.0002 mg/L     | 0.0002    | 1/6/2025  |             |        | SW846-7470A          | UJ         |
| рН                          |           | 6.09 Std Unit   | :         | 1/6/2025  |             |        |                      | х          |
| Selenium                    | U         | 0.005 mg/L      | 0.005     | 1/6/2025  |             |        | SW846-6020B          | =          |
| Selenium, Dissolved         | U         | 0.005 mg/L      | 0.005     | 1/6/2025  |             |        | SW846-6020B          | UJ         |
| Sulfate                     |           | 85.9 mg/L       | 2         | 1/6/2025  |             |        | SW846-9056A          | =          |
| Technetium-99               |           | 147 pCi/L       | 19.6      | 1/6/2025  | 17.1        | 24.9   | HASL 300, Tc-02-RC I | = N        |
| Temperature                 |           | 59.7 deg F      |           | 1/6/2025  |             |        |                      | х          |
| Trichloroethene             |           | 17.2 ug/L       | 1         | 1/6/2025  |             |        | SW846-8260D          | =          |
| Turbidity                   |           | 0 NTU           |           | 1/6/2025  |             |        |                      | Х          |
| Uranium                     | U         | 0.0002 mg/L     | 0.0002    | 1/6/2025  |             |        | SW846-6020B          | =          |
| Uranium-234                 | U         | -0.756 pCi/L    | 2.38      | 1/6/2025  | 0.761       | 0.761  | HASL 300, U-02-RC N  | A =        |
| Uranium-235                 | U         | 0.0786 pCi/L    | 1.71      | 1/6/2025  | 0.821       | 0.823  | HASL 300, U-02-RC N  | A =        |
| Uranium-238                 | U         | -0.318 pCi/L    | 1.97      | 1/6/2025  | 0.722       | 0.723  | HASL 300, U-02-RC N  | A =        |

| Facility: C-404 Landfill    |           | County: McCracker | n         |                   | Permit #: K |        |                     |            |
|-----------------------------|-----------|-------------------|-----------|-------------------|-------------|--------|---------------------|------------|
| Sampling Point:             | MW93A REG | Upgradient        | URG       | A                 | Period: Sem | iannua | Report              |            |
| AKGWA Well Tag #:           | 8007-4851 |                   |           |                   |             |        |                     |            |
| Devementer                  | Qualifier | Pocult Unite      | Reporting | Date<br>Collected | Counting    | трн    | Mathad              | Validation |
| Arsenic                     | Quaimer   | 0.00902 mg/L      | 0.005     | 1/7/2025          |             | 110    | SW846-6020B         | =          |
| Arsenic. Dissolved          |           | 0.00701 mg/L      | 0.005     | 1/7/2025          |             |        | SW846-6020B         | J          |
| Barometric Pressure Reading |           | 30.5 Inches/Hg    |           | 1/7/2025          |             |        |                     | x          |
| Cadmium                     | U         | 0.001 mg/L        | 0.001     | 1/7/2025          |             |        | SW846-6020B         | =          |
|                             |           | 0.001 //          | 0.001     | 4/7/2020          |             |        |                     |            |
| Cadmium, Dissolved          | U         | 0.001 mg/L        | 0.001     | 1/7/2025          |             |        | SW846-6020B         | UJ         |
| Chromium                    |           | 0.0159 mg/L       | 0.01      | 1/7/2025          |             |        | SW846-6020B         | =          |
| Chromium, Dissolved         | U         | 0.01 mg/L         | 0.01      | 1/7/2025          |             |        | SW846-6020B         | UJ         |
| Conductivity                |           | 349 µmhos/cm      |           | 1/7/2025          |             |        |                     | Х          |
| Depth to Water              |           | 55.74 ft          |           | 1/7/2025          |             |        |                     | Х          |
| Dissolved Oxygen            |           | 2.94 mg/L         |           | 1/7/2025          |             |        |                     | Х          |
| Eh (approx)                 |           | 496 mV            |           | 1/7/2025          |             |        |                     | Х          |
| Lead                        | U         | 0.002 mg/L        | 0.002     | 1/7/2025          |             |        | SW846-6020B         | =          |
| Lead, Dissolved             | U         | 0.002 mg/L        | 0.002     | 1/7/2025          |             |        | SW846-6020B         | UJ         |
| Mercury                     | U         | 0.0002 mg/L       | 0.0002    | 1/7/2025          |             |        | SW846-7470A         | =          |
| Mercury, Dissolved          | U         | 0.0002 mg/L       | 0.0002    | 1/7/2025          |             |        | SW846-7470A         | UJ         |
| рН                          |           | 5.88 Std Unit     |           | 1/7/2025          |             |        |                     | х          |
| Selenium                    | U         | 0.005 mg/L        | 0.005     | 1/7/2025          |             |        | SW846-6020B         | =          |
| Selenium, Dissolved         | U         | 0.005 mg/L        | 0.005     | 1/7/2025          |             |        | SW846-6020B         | UJ         |
| Sulfate                     |           | 7.54 mg/L         | 0.4       | 1/7/2025          |             |        | SW846-9056A         | =          |
| Technetium-99               | U         | 3.06 pCi/L        | 23.4      | 1/7/2025          | 13.7        | 13.7   | HASL 300, Tc-02-RC  | = N        |
| Temperature                 |           | 56.6 deg F        |           | 1/7/2025          |             |        |                     | х          |
| Trichloroethene             | Y1        | 658 ug/L          | 50        | 1/7/2025          |             |        | SW846-8260D         | =          |
| Turbidity                   |           | 9.3 NTU           |           | 1/7/2025          |             |        |                     | Х          |
| Uranium                     | J         | 0.000068 mg/L     | 0.0002    | 1/7/2025          |             |        | SW846-6020B         | =          |
| Uranium-234                 | U         | 0.692 pCi/L       | 2.14      | 1/7/2025          | 1.27        | 1.28   | HASL 300, U-02-RC N | 1 =        |
| Uranium-235                 | U         | -0.0388 pCi/L     | 1.35      | 1/7/2025          | 0.638       | 0.64   | HASL 300, U-02-RC N | 1 =        |
| Uranium-238                 | U         | 0.111 pCi/L       | 1.91      | 1/7/2025          | 0.911       | 0.912  | HASL 300, U-02-RC N | 1 =        |

| Facility: C-404 Landf       | ïll       | County: McCracke | en                 |                   | Permit #:                | KY8-89  | 0-008-982            |            |
|-----------------------------|-----------|------------------|--------------------|-------------------|--------------------------|---------|----------------------|------------|
| Sampling Point:             | MW94 REG  | Upgradient       | UCR                | S                 | Period: Ser              | niannua | l Report             |            |
| AKGWA Well Tag #:           | 8000-5103 |                  |                    |                   |                          |         |                      |            |
| Parameter                   | Qualifier | Result Units     | Reporting<br>Limit | Date<br>Collected | Counting<br>I Error (+/- | ) TPU   | Method               | Validation |
| Arsenic                     | U         | 0.005 mg/L       | 0.005              | 1/6/2025          |                          | -       | SW846-6020B          | =          |
| Arsenic, Dissolved          | U         | 0.005 mg/L       | 0.005              | 1/6/2025          |                          |         | SW846-6020B          | UJ         |
| Barometric Pressure Reading |           | 30.13 Inches/Hg  | [                  | 1/6/2025          |                          |         |                      | х          |
| Cadmium                     | U         | 0.001 mg/L       | 0.001              | 1/6/2025          |                          |         | SW846-6020B          | =          |
| Cadmium, Dissolved          | U         | 0.001 mg/L       | 0.001              | 1/6/2025          |                          |         | SW846-6020B          | UJ         |
| Chromium                    | J         | 0.00333 mg/L     | 0.01               | 1/6/2025          |                          |         | SW846-6020B          | =          |
| Chromium, Dissolved         | U         | 0.01 mg/L        | 0.01               | 1/6/2025          |                          |         | SW846-6020B          | UJ         |
| Conductivity                |           | 709 μmhos/cn     | n                  | 1/6/2025          |                          |         |                      | х          |
| Depth to Water              |           | 13.29 ft         |                    | 1/6/2025          |                          |         |                      | х          |
| Dissolved Oxygen            |           | 1.75 mg/L        |                    | 1/6/2025          |                          |         |                      | х          |
| Eh (approx)                 |           | 316 mV           |                    | 1/6/2025          |                          |         |                      | х          |
| Lead                        | U         | 0.002 mg/L       | 0.002              | 1/6/2025          |                          |         | SW846-6020B          | =          |
| Lead, Dissolved             | U         | 0.002 mg/L       | 0.002              | 1/6/2025          |                          |         | SW846-6020B          | UJ         |
| Mercury                     | U         | 0.0002 mg/L      | 0.0002             | 1/6/2025          |                          |         | SW846-7470A          | =          |
| Mercury, Dissolved          | U         | 0.0002 mg/L      | 0.0002             | 1/6/2025          |                          |         | SW846-7470A          | UJ         |
| рН                          |           | 6.4 Std Unit     |                    | 1/6/2025          |                          |         |                      | х          |
| Selenium                    | U         | 0.005 mg/L       | 0.005              | 1/6/2025          |                          |         | SW846-6020B          | =          |
| Selenium, Dissolved         | U         | 0.005 mg/L       | 0.005              | 1/6/2025          |                          |         | SW846-6020B          | UJ         |
| Sulfate                     |           | 56.1 mg/L        | 2                  | 1/6/2025          |                          |         | SW846-9056A          | =          |
| Technetium-99               |           | 2850 pCi/L       | 18.9               | 1/6/2025          | 56.8                     | 355     | HASL 300, Tc-02-RC N | = N        |
| Temperature                 |           | 59.4 deg F       |                    | 1/6/2025          |                          |         |                      | х          |
| Trichloroethene             | J         | 0.6 ug/L         | 1                  | 1/6/2025          |                          |         | SW846-8260D          | =          |
| Turbidity                   |           | 69.56 NTU        |                    | 1/6/2025          |                          |         |                      | Х          |
| Uranium                     |           | 0.00132 mg/L     | 0.0002             | 1/6/2025          |                          |         | SW846-6020B          | =          |
| Uranium-234                 | U         | -0.323 pCi/L     | 2                  | 1/6/2025          | 0.809                    | 0.81    | HASL 300, U-02-RC N  | 1 =        |
| Uranium-235                 | U         | -0.384 pCi/L     | 1.77               | 1/6/2025          | 0.542                    | 0.543   | HASL 300, U-02-RC N  | 1 =        |
| Uranium-238                 | U         | 0.296 pCi/L      | 1.61               | 1/6/2025          | 0.861                    | 0.862   | HASL 300, U-02-RC N  | 1 =        |

| Facility: <u>C-404 Landfill</u> |           | County: <u>McCracker</u> | 1         |                   | Permit #: K | 0-008-982 |                      |            |
|---------------------------------|-----------|--------------------------|-----------|-------------------|-------------|-----------|----------------------|------------|
| Sampling Point:                 | MW420 REG | Upgradient               | URG       | A                 | Period: Sem | iannua    | l Report             |            |
| AKGWA Well Tag #:               | 8005-3263 |                          |           |                   |             |           |                      |            |
| Daramatar                       | Qualifier | Posult Units             | Reporting | Date<br>Collected | Counting    | трн       | Method               | Validation |
| Arsenic                         | Quaimer   | 0.0173 mg/L              | 0.005     | 1/7/2025          |             | 110       | SW846-6020B          | =          |
| Arrentia Disselved              |           | 0.0126 m a/l             | 0.005     | 1/7/2025          |             |           |                      |            |
| Arsenic, Dissolved              |           | 0.0136 mg/L              | 0.005     | 1/7/2025          |             |           | SW846-6020B          | J          |
| Barometric Pressure Reading     |           | 30.51 Inches/Hg          |           | 1/7/2025          |             |           |                      | Х          |
| Cadmium                         | U         | 0.001 mg/L               | 0.001     | 1/7/2025          |             |           | SW846-6020B          | =          |
| Cadmium, Dissolved              | U         | 0.001 mg/L               | 0.001     | 1/7/2025          |             |           | SW846-6020B          | UJ         |
| Chromium                        | U         | 0.01 mg/L                | 0.01      | 1/7/2025          |             |           | SW846-6020B          | =          |
| Chromium, Dissolved             | U         | 0.01 mg/L                | 0.01      | 1/7/2025          |             |           | SW846-6020B          | UJ         |
| Conductivity                    |           | 386 µmhos/cm             |           | 1/7/2025          |             |           |                      | х          |
| Depth to Water                  |           | 54.7 ft                  |           | 1/7/2025          |             |           |                      | х          |
| Dissolved Oxygen                |           | 0.9 mg/L                 |           | 1/7/2025          |             |           |                      | х          |
| Eh (approx)                     |           | 519 mV                   |           | 1/7/2025          |             |           |                      | х          |
| Lead                            | U         | 0.002 mg/L               | 0.002     | 1/7/2025          |             |           | SW846-6020B          | =          |
| Lead, Dissolved                 | U         | 0.002 mg/L               | 0.002     | 1/7/2025          |             |           | SW846-6020B          | UJ         |
| Mercury                         | U         | 0.0002 mg/L              | 0.0002    | 1/7/2025          |             |           | SW846-7470A          | =          |
| Mercury, Dissolved              | U         | 0.0002 mg/L              | 0.0002    | 1/7/2025          |             |           | SW846-7470A          | UJ         |
| рН                              |           | 5.75 Std Unit            |           | 1/7/2025          |             |           |                      | х          |
| Selenium                        | U         | 0.005 mg/L               | 0.005     | 1/7/2025          |             |           | SW846-6020B          | =          |
| Selenium, Dissolved             | U         | 0.005 mg/L               | 0.005     | 1/7/2025          |             |           | SW846-6020B          | UJ         |
| Sulfate                         |           | 6.08 mg/L                | 0.4       | 1/7/2025          |             |           | SW846-9056A          | =          |
| Technetium-99                   | U         | 14.3 pCi/L               | 21.9      | 1/7/2025          | 13.2        | 13.3      | HASL 300, Tc-02-RC N | / =        |
| Temperature                     |           | 59.3 deg F               |           | 1/7/2025          |             |           |                      | х          |
| Trichloroethene                 | Y1        | 2670 ug/L                | 50        | 1/7/2025          |             |           | SW846-8260D          | =          |
| Turbidity                       |           | 1.51 NTU                 |           | 1/7/2025          |             |           |                      | х          |
| Uranium                         | U         | 0.0002 mg/L              | 0.0002    | 1/7/2025          |             |           | SW846-6020B          | =          |
| Uranium-234                     | U         | 0.475 pCi/L              | 1.18      | 1/7/2025          | 0.723       | 0.727     | HASL 300, U-02-RC M  | =          |
| Uranium-235                     | U         | 0.394 pCi/L              | 0.865     | 1/7/2025          | 0.626       | 0.627     | HASL 300, U-02-RC M  | =          |
| Uranium-238                     | U         | 0.101 pCi/L              | 0.886     | 1/7/2025          | 0.453       | 0.453     | HASL 300, U-02-RC M  | =          |

| Facility: C-404 Landfill |           | County | : McC | Cracken            |                   | Permit #:               | Permit #: KY8-890-008-982 |                      |            |
|--------------------------|-----------|--------|-------|--------------------|-------------------|-------------------------|---------------------------|----------------------|------------|
| Type of Sample:          | FB        |        |       |                    |                   | Period: S               | emiannu                   | al Report QC Sample  | S          |
| AKGWA Well Tag #:        | 0000-0000 |        |       | _                  |                   | _                       |                           |                      |            |
| Parameter                | Qualifier | Result | Units | Reporting<br>Limit | Date<br>Collected | Counting<br>Error (+/-) | TPU                       | Method               | Validation |
| Arsenic                  | U         | 0.005  | mg/L  | 0.005              | 1/7/2025          |                         |                           | SW846-6020B          | =          |
| Cadmium                  | U         | 0.001  | mg/L  | 0.001              | 1/7/2025          |                         |                           | SW846-6020B          | =          |
| Chromium                 | U         | 0.01   | mg/L  | 0.01               | 1/7/2025          |                         |                           | SW846-6020B          | =          |
| Lead                     | U         | 0.002  | mg/L  | 0.002              | 1/7/2025          |                         |                           | SW846-6020B          | =          |
| Mercury                  | U         | 0.0002 | mg/L  | 0.0002             | 1/7/2025          |                         |                           | SW846-7470A          | =          |
| Selenium                 | U         | 0.005  | mg/L  | 0.005              | 1/7/2025          |                         |                           | SW846-6020B          | =          |
| Technetium-99            | U         | 16.4   | pCi/L | 22.7               | 1/7/2025          | 13.7                    | 13.9                      | HASL 300, Tc-02-RC M | =          |
| Trichloroethene          | UY1       | 1      | ug/L  | 1                  | 1/7/2025          |                         |                           | SW846-8260D          | =          |
| Uranium                  | U         | 0.0002 | mg/L  | 0.0002             | 1/7/2025          |                         |                           | SW846-6020B          | =          |
| Uranium-234              | U         | 0.307  | pCi/L | 2.08               | 1/7/2025          | 1.09                    | 1.09                      | HASL 300, U-02-RC M  | =          |
| Uranium-235              | U         | 0.0681 | pCi/L | 1.49               | 1/7/2025          | 0.712                   | 0.713                     | HASL 300, U-02-RC M  | =          |
| Uranium-238              | U         | -0.134 | pCi/L | 1.53               | 1/7/2025          | 0.605                   | 0.606                     | HASL 300, U-02-RC M  | =          |

| Facility: C-404 Landfill |           | County  | : McC | Cracken            |                   | Permit #:               | Permit #: KY8-890-008-982 |                      |            |
|--------------------------|-----------|---------|-------|--------------------|-------------------|-------------------------|---------------------------|----------------------|------------|
| Type of Sample:          | RI        |         |       |                    |                   | Period: Se              | emiannu                   | al Report QC Sample  | S          |
| AKGWA Well Tag #:        | 0000-0000 |         |       |                    |                   |                         |                           |                      |            |
| Parameter                | Qualifier | Result  | Units | Reporting<br>Limit | Date<br>Collected | Counting<br>Error (+/-) | TPU                       | Method               | Validation |
| Arsenic                  | U         | 0.005   | mg/L  | 0.005              | 1/7/2025          |                         |                           | SW846-6020B          | =          |
| Cadmium                  | U         | 0.001   | mg/L  | 0.001              | 1/7/2025          |                         |                           | SW846-6020B          | =          |
| Chromium                 | U         | 0.01    | mg/L  | 0.01               | 1/7/2025          |                         |                           | SW846-6020B          | =          |
| Lead                     | U         | 0.002   | mg/L  | 0.002              | 1/7/2025          |                         |                           | SW846-6020B          | =          |
| Mercury                  | U         | 0.0002  | mg/L  | 0.0002             | 1/7/2025          |                         |                           | SW846-7470A          | =          |
| Selenium                 | U         | 0.005   | mg/L  | 0.005              | 1/7/2025          |                         |                           | SW846-6020B          | =          |
| Technetium-99            | U         | 1.75    | pCi/L | 20.9               | 1/7/2025          | 11.9                    | 11.9                      | HASL 300, Tc-02-RC M | UJ         |
| Trichloroethene          | UY1       | 1       | ug/L  | 1                  | 1/7/2025          |                         |                           | SW846-8260D          | =          |
| Uranium                  | U         | 0.0002  | mg/L  | 0.0002             | 1/7/2025          |                         |                           | SW846-6020B          | =          |
| Uranium-234              | U         | 0.565   | pCi/L | 1.12               | 1/7/2025          | 0.805                   | 0.812                     | HASL 300, U-02-RC M  | =          |
| Uranium-235              | U         | -0.0542 | pCi/L | 1.08               | 1/7/2025          | 0.467                   | 0.468                     | HASL 300, U-02-RC M  | =          |
| Uranium-238              | U         | 0.095   | pCi/L | 1.01               | 1/7/2025          | 0.528                   | 0.528                     | HASL 300, U-02-RC M  | =          |

| Facility:   C-404 Landfill |           | County    | Mc        | Cracken          |           | Permit #: KY8-                       | -890-008-982 |            |  |  |  |  |
|----------------------------|-----------|-----------|-----------|------------------|-----------|--------------------------------------|--------------|------------|--|--|--|--|
| Type of Sample:            | ТВ        |           |           |                  |           | Period: Semiannual Report QC Samples |              |            |  |  |  |  |
| AKGWA Well Tag #:          | 0000-0000 | 0000-0000 | 0000-0000 | Tag #: 0000-0000 |           |                                      |              |            |  |  |  |  |
|                            |           |           |           | Reporting        | Date      | Counting                             |              |            |  |  |  |  |
| Parameter                  | Qualifier | Result    | Units     | Limit            | Collected | Error (+/-) TPU                      | Method       | Validation |  |  |  |  |
| Trichloroethene            | U         | 1         | ug/L      | 1                | 1/6/2025  |                                      | SW846-8260D  | =          |  |  |  |  |
|                            | UY1       | 1         | ug/L      | 1                | 1/7/2025  |                                      | SW846-8260D  | =          |  |  |  |  |
#### **QUALIFIER Codes**

- U Not detected.
- J Estimated quantitation.
- Y1 ·MS/MSD recovery outside acceptance criteria.

#### **SAMPLING POINT Codes**

- UCRS Upper Continental Recharge System
- URGA Upper Regional Gravel Aquifer

#### **SAMPLE TYPE Codes**

- FB Field Blank
- FR Field Duplicate as defined in sampling procedure.
- REG Regular
- RI QC Equipment Rinseate/Decon
- TB Trip Blank

#### VALIDATION Codes

- = Validated result, no qualifier is necessary.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- UJ Analyte, compound or nuclide not detected above the reported detection limit, and the reported detection limit is approximated due to quality deficiency.
- X Not validated.

## **APPENDIX B**

## C-404 HAZARDOUS WASTE LANDFILL STATISTICAL ANALYSES

THIS PAGE INTENTIONALLY LEFT BLANK

#### C-404 HAZARDOUS WASTE LANDFILL MAY 2025 SEMIANNUAL Facility: US DOE—Paducah Gaseous Diffusion Plant

### GROUNDWATER STATISTICAL SUMMARY

#### **INTRODUCTION**

The statistical analyses conducted on the data collected from the C-404 Hazardous Waste Landfill (C-404 Landfill) were performed in accordance with procedures provided in Appendix E of the Hazardous Waste Management Facility Permit, reissued by the Kentucky Division of Waste Management in February 2020. The percent of censored (nondetected) data points for individual parameters was calculated for the combined analytical data from the most recent five sampling events. The percent of censored data was used to select the types of statistical analyses to determine whether compliance well concentrations differed from background well concentrations. Data points were used in the statistical analysis for analyte results close to the sample quantitation limit that were judged to be below that limit by the data validator.

For the first reporting period of 2025 semiannual report, the data set includes data from January 2023, July 2023, January 2024, July 2024, and January 2025.

#### STATISTICAL ANALYSIS PROCESS

Utilizing the current data set and four previous data sets, the type of statistical test conducted for each chemical data set is a function of the number of samples and proportion of censored data (nondetects) to uncensored data (detects) in each group. The percent of censored (nondetected) data points for individual parameters was calculated for the combined analytical data. The statistical procedures applied to the data are summarized below.

- Determine the percentage of the censored data using the reporting period data set.
- Group by percentage of censored data where the following apply:
  - If censored data are greater than or equal to 90%, determine the limit of detection (LOD) and half of the LOD (½ LOD). This is Statistical Test 1.
  - If censored data are between 50% and 90%, perform a Test of Proportions. If the analysis indicates a significant proportional difference in compliance wells, further analyze through nonparametric Analysis of Variance (ANOVA) Test. This is Statistical Test 2.
  - If censored data are between 15% and 50%, perform nonparametric ANOVA Test. If results exceed the critical value, compute the critical difference used to identify individual well concentrations, which are significantly elevated compared with background. This is Statistical Test 3.
  - If censored data are less than 15%, actual data values are analyzed using parametric ANOVA procedures. If the wells exhibit equal variances, then the data are used as presented. If the wells do not exhibit equal variances, then the log of the data is taken and then used in the calculations. Where statistical testing indicates elevated compliance well concentrations, Bonferroni's Test of Contrasts

is performed. This is Statistical Test 4. Statistical Test 4 is found in Section 5.2.1 of EPA guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (April 1989).

If the statistical method above indicates no statistical difference between concentrations in downgradient wells and concentrations in background wells, then there are no indications of statistically significant impacts on the groundwater from the C-404 Landfill. If the tiered statistical method above identifies a statistically significant difference between concentrations in downgradient wells and concentrations in background wells, then the data will be evaluated further to determine if the concentrations in downgradient wells are within the statistically developed upper tolerance limit (UTL) for background concentrations or are consistent with the findings of the 2007 alternate source demonstration (ASD), as follows:

- (1) Compare the most recent downgradient sample results to a 95% UTL using the five most recent sets of data for each upgradient well as described below. If downgradient concentrations are lower than the UTL for the paired upgradient concentrations, then there is no confirmed exceedance.
- (2) Evaluate results using paired ANOVA of wells in the same direction relative to the landfill (e.g., compare upgradient westernmost well results to downgradient westernmost well results). If ANOVA does not identify a statistically significant difference between upgradient and downgradient wells, then the results are consistent with the historical ASD.
- (3) If results show downgradient wells have statistically significant higher concentrations than upgradient wells, even when evaluated with respect to the ASD, additional intra-well evaluation of trend will be performed using the Mann-Kendall test for trend. If concentrations do not show an increasing trend, then there is no confirmed exceedance attributable to C-404.
- (4) Review other Regional Gravel Aquifer (RGA) well results in vicinity to determine if they are consistent with the ASD.

If the statistical analysis identifies downgradient well concentrations that are increasing, are higher than UTL, are higher than the upgradient well concentrations even when the ASD results are taken into account, this evaluation will identify a confirmed, statistically significant exceedance (in a compliance well) over background.

#### DATA ANALYSIS

Data from the upgradient background wells in the Upper Regional Gravel Aquifer (URGA) are included for comparison with three downgradient URGA wells. Figure 1 of this C-404 Landfill Groundwater Report provides a map of the well locations associated with the C-404 Landfill. Upper continental recharge system (UCRS) wells in Figure 1 are provided for reference only. Data from wells that are in the UCRS are not included in the statistical analyses.

Table B.1 presents the C-404 Landfill upgradient or background wells and downgradient or compliance wells from the URGA. Data from the URGA compliance wells were compared with data from the URGA background wells.

#### **Table B.1. Monitoring Well Locations**

| URGA                          |                           |
|-------------------------------|---------------------------|
| Upgradient background wells   | MW93A*, MW420             |
| Downgradient compliance wells | MW84A*, MW87A*,<br>MW90A* |

\*MW90 was abandoned in 2001 and replaced with MW90A. MW84, MW87, and MW93 were abandoned in 2019 and replaced with MW84A, MW87A, and MW93A, respectively.

For this reporting period, the data set includes data from January 2023, July 2023, January 2024, July 2024, and January 2025 consisting of five semiannual sets of data.

Table B.2 lists the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), and missing observations by parameter. When field duplicate data are available from a well, the higher of the two readings was retained for further evaluation.

| Table B.2. Summary of Missing | , Censored, and | <b>Uncensored Data Collected</b> |
|-------------------------------|-----------------|----------------------------------|
|-------------------------------|-----------------|----------------------------------|

| Parameters       | Observations | Missing<br>Observations | Censored<br>Observations<br>(Nondetects) | Uncensored<br>Observations<br>(Detects) |
|------------------|--------------|-------------------------|------------------------------------------|-----------------------------------------|
|                  |              | URGA                    |                                          |                                         |
| Arsenic          | 25           | 0                       | 0                                        | 25                                      |
| Cadmium          | 25           | 0                       | 25                                       | 0                                       |
| Chromium         | 25           | 0                       | 21                                       | 4                                       |
| Lead             | 25           | 0                       | 25                                       | 0                                       |
| Mercury          | 25           | 0                       | 25                                       | 0                                       |
| Selenium         | 25           | 0                       | 25                                       | 0                                       |
| Technetium-99    | 25           | 0                       | 12                                       | 13                                      |
| Trichloroethene  | 25           | 0                       | 0                                        | 25                                      |
| Uranium (Metals) | 25           | 0                       | 24                                       | 1                                       |
| Uranium-234      | 25           | 0                       | 25                                       | 0                                       |
| Uranium-235      | 25           | 0                       | 25                                       | 0                                       |
| Uranium-238      | 25           | 0                       | 25                                       | 0                                       |

#### CENSORING PERCENTAGE AND STATISTICAL ANALYSIS

The type of statistical test set applied to the data is a function of the number of nondetects (censored) versus detects (uncensored) in each of the parameter groups and among the wells. Table B.3 presents the percentage of censored data and type of statistical test chosen for each of the parameters required by Part VIII.E of the Hazardous Waste Management Facility Permit.

| Parameter        | Total Samples<br>(Nonmissing) | Uncensored<br>(Detects) | Censored<br>(Nondetects) | Percent<br>Censored | Statistical Test<br>Set* |
|------------------|-------------------------------|-------------------------|--------------------------|---------------------|--------------------------|
|                  |                               | URGA                    | ۱.                       |                     |                          |
| Arsenic          | 25                            | 25                      | 0                        | 0                   | 4                        |
| Cadmium          | 25                            | 0                       | 25                       | 100                 | 1                        |
| Chromium         | 25                            | 4                       | 21                       | 84                  | 2                        |
| Lead             | 25                            | 0                       | 25                       | 100                 | 1                        |
| Mercury          | 25                            | 0                       | 25                       | 100                 | 1                        |
| Selenium         | 25                            | 0                       | 25                       | 100                 | 1                        |
| Technetium-99    | 25                            | 13                      | 12                       | 48                  | 3                        |
| Trichloroethene  | 25                            | 25                      | 0                        | 0                   | 4                        |
| Uranium (Metals) | 25                            | 1                       | 24                       | 96                  | 1                        |
| Uranium-234      | 25                            | 0                       | 25                       | 100                 | 1                        |
| Uranium-235      | 25                            | 0                       | 25                       | 100                 | 1                        |
| Uranium-238      | 25                            | 0                       | 25                       | 100                 | 1                        |

\*A list of the constituents with  $\geq$  90% censored data is included in Table B.4, which summarizes the results of Statistical Test 1.

#### SUMMARY OF CONCLUSIONS

The results for Statistical Test 1, LOD, are summarized in Table B.4. Table B.5 provides the summary of conclusions for the C-404 Landfill statistical analyses for the first reporting period 2025, including the statistical tests performed, the attachment number, well type, parameter, and results of each statistical test. Results of Statistical Test 2, Statistical Test 3, and Statistical Test 4 are presented in Attachments B1 through B5. The statistician qualification statement is presented in Attachment B6.

#### Table B.4. Statistical Test 1: Limit of Detection

| Parameter           | LOD    | <sup>1</sup> / <sub>2</sub> LOD |
|---------------------|--------|---------------------------------|
|                     | Values | Values                          |
|                     | URGA   |                                 |
| Cadmium (mg/L)      | 0.001  | 0.0005                          |
| Lead (mg/L)         | 0.002  | 0.001                           |
| Mercury (mg/L)      | 0.0002 | 0.0001                          |
| Selenium (mg/L)     | 0.005  | 0.0025                          |
| Uranium (mg/L)      | 0.0002 | 0.0001                          |
| Uranium-234 (pCi/L) | 2.14   | 1.07                            |
| Uranium-235 (pCi/L) | 1.35   | 0.675                           |
| Uranium-238 (pCi/L) | 1.91   | 0.955                           |

## Table B.5. Summary of Conclusions from the C-404 Hazardous Waste Landfill Statistical Analyses for the First Reporting Period 2025

| Attachment | RGA<br>Well<br>Type | Parameter                | Applied Statistical<br>Test                                                                                                                                                                           | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|---------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B1         | URGA                | Arsenic                  | Statistical Test 4,<br>parametric ANOVA<br>(abandoned) and<br>Statistical Test 3,<br>nonparametric<br>ANOVA.                                                                                          | Because equality of variance could not be confirmed,<br>Statistical Test 4 was abandoned and Statistical Test<br>3, nonparametric ANOVA, was performed.<br>Nonparametric ANOVA did not indicate a<br>statistically significant difference between<br>concentrations in downgradient wells and<br>concentrations in background wells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| B2         | URGA                | Chromium                 | Statistical Test 2,<br>Test of Proportions                                                                                                                                                            | No statistically significant difference was detected<br>between concentrations in downgradient wells and<br>concentrations in background wells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| B3         | URGA                | Technetium-99            | Statistical Test 3,<br>nonparametric<br>ANOVA, 95%<br>UTL, paired<br>(parametric)<br>ANOVA, paired<br>(nonparametric)<br>ANOVA, and<br>Mann-Kendall.                                                  | Statistical Test 3 Nonparametric ANOVA indicated a<br>statistically significant difference between<br>concentrations in downgradient wells and the<br>concentrations in background wells for compliance<br>wells MW84A and MW90A. Comparisons to the 95%<br>UTL identified statistically significant differences<br>between compliance wells (MW84A and MW90A)<br>and the background wells. Paired (parametric)<br>ANOVA (MW84A vs. MW93A and MW90A vs.<br>MW93A) were performed and determined the<br>equality of variances were not confirmed for either<br>MW84A or MW90A. Paired (nonparametric)<br>ANOVA was then performed. Paired (nonparametric)<br>ANOVA identified a significant difference between<br>upgradient (MW93A) and downgradient (MW84A<br>and MW90A) wells. The Mann-Kendall trend<br>analysis identified a statistically significant increasing<br>trend for technetium-99 in MW84A. Mann-Kendall<br>trend analysis did not identify a statistically<br>significant trend for technetium-99 in MW90A. |
| B4         | URGA                | Trichloroethene<br>(TCE) | Statistical Test 4,<br>parametric ANOVA<br>(abandoned) and<br>Statistical Test 3,<br>nonparametric<br>ANOVA, with 95%<br>UTL, paired<br>(parametric)<br>ANOVA, and<br>Mann-Kendall trend<br>analysis. | Because equality of variance could not be confirmed,<br>Statistical Test 4 was abandoned and Statistical Test<br>3, nonparametric ANOVA, was performed.<br>Nonparametric ANOVA indicated a statistically<br>significant difference between concentrations in<br>background wells and compliance well MW84A, a<br>comparison to the 95% UTL was performed. The 95%<br>UTL indicated a statistically significant difference<br>between concentrations in compliance well MW84A<br>and concentrations in background wells; therefore, a<br>paired (parametric) ANOVA (MW84A vs. MW93A)<br>was performed that indicated a statistically significant<br>difference between the wells. The Mann-Kendall<br>trend analysis did not identify a statistically<br>significant trend for TCE in MW84A.                                                                                                                                                                                                                                 |

In summary, Statistical Test 2, Test of Proportions, for chromium in the URGA indicated no statistically significant difference between concentrations in downgradient wells and concentrations in background wells.

Statistical Test 3, Nonparametric ANOVA, for technetium-99 identified statistically significant exceedances in downgradient wells MW84A and MW90A as compared to background wells. The MW84A and MW90A technetium-99 concentrations also exceeded the 95% UTL. Because equality of variance could not be confirmed for either MW84A or MW90A, paired (parametric) ANOVA was abandoned and a paired (nonparametric) was performed. Paired (nonparametric) ANOVA identified a significant difference between upgradient (MW93A) and downgradient (MW84A and MW90A) wells. Mann-Kendall trend analysis was performed and did not indicate a statistically significant trend for MW90A; however, Mann-Kendall trend analysis did indicate a statistically significant increasing trend for technetium-99 in MW84A.

Statistical Test 4, because equality of variance by parametric ANOVA for arsenic could not be confirmed, the test was abandoned. Statistical Test 3, nonparametric ANOVA, did not identify a statistically significant difference between concentrations in downgradient wells and concentrations in background wells.

Statistical Test 4, because equality of variance by parametric ANOVA for TCE could not be confirmed, the test was abandoned. Statistical Test 3, nonparametric ANOVA, indicated a statistically significant difference between concentrations in downgradient well MW84A and concentrations in background wells; therefore, the data were evaluated further by comparing results to the UTL. The 95% UTL indicated a statistically significant difference between concentrations in downgradient well MW84A and concentrations in background wells; therefore, paired (parametric) ANOVA was performed on upgradient well MW93A and downgradient well MW84A. Paired (parametric) ANOVA identified a statistically significant difference between the upgradient and downgradient wells. Mann-Kendall trend analysis was performed and did not indicate a statistically significant trend.

## **ATTACHMENT B1**

ARSENIC STATISTICAL TEST 4 THIS PAGE INTENTIONALLY LEFT BLANK

|                      |            | Arsenic (As, | mg/L)      |            |            |
|----------------------|------------|--------------|------------|------------|------------|
| Date                 | Background | Background   | Compliance | Compliance | Compliance |
|                      | MW93A      | MW420        | MW84A      | MW87A      | MW90A      |
| Jan-23               | 1.11E-02   | 1.10E-02     | 3.43E-02   | 8.57E-03   | 2.78E-03   |
| Jul-23               | 8.63E-03   | 1.14E-02     | 3.51E-02   | 8.63E-03   | 2.60E-03   |
| Jan-24               | 8.19E-03   | 1.28E-02     | 3.76E-02   | 8.20E-03   | 2.72E-03   |
| Jul-24               | 7.39E-03   | 1.35E-02     | 3.79E-02   | 7.80E-03   | 3.27E-03   |
| Jan-25               | 9.02E-03   | 1.73E-02     | 4.32E-02   | 7.99E-03   | 3.34E-03   |
| n <sub>i</sub>       | 10         | )            | 5          | 5          | 5          |
| Sum                  | 1.10E      | 2-01         | 1.88E-01   | 4.12E-02   | 1.47E-02   |
| (x <sub>i</sub> )avg | 1.10E      | 2-02         | 3.76E-02   | 8.24E-03   | 2.94E-03   |

mg/L = milligrams per liter

#### Bolded values indicate a detected result.

| Overall mean x = | 1.42E-02 |                                            |
|------------------|----------|--------------------------------------------|
| N =              | 25       | N = the total number of samples            |
| p =              | 4        | $p = the number of n_i groups$             |
| x =              | 3.54E-01 | x = the sum of the total number of samples |

#### **Determine Normality of Dataset**

#### **Coefficient of Variability Test**

Table of Residuals

| Date   | Background | Background | Compliance | Compliance | Compliance |
|--------|------------|------------|------------|------------|------------|
|        | MW93A      | MW420      | MW84A      | MW87A      | MW90A      |
| Jan-23 | 6.70E-05   | -3.30E-05  | -3.32E-03  | 3.32E-04   | -1.62E-04  |
| Jul-23 | -2.40E-03  | 3.67E-04   | -2.52E-03  | 3.92E-04   | -3.42E-04  |
| Jan-24 | -2.84E-03  | 1.77E-03   | -2.00E-05  | -3.80E-05  | -2.22E-04  |
| Jul-24 | -3.64E-03  | 2.47E-03   | 2.80E-04   | -4.38E-04  | 3.28E-04   |
| Jan-25 | -2.01E-03  | 6.27E-03   | 5.58E-03   | -2.48E-04  | 3.98E-04   |

#### Data are not normally distributed (i.e., $\geq 1$ )

If the coefficient of variation is < 1, the data are normally distributed. If the coefficient of variation is  $\geq$  1, data are not normally distributed.

#### Determine Equality of Variance of Dataset

| p = number of well groups                                | x= 3.54E-01               |
|----------------------------------------------------------|---------------------------|
| $n_i =$ number of data points per well                   | $(x_{avg})_{} = 1.42E-02$ |
| N = total sample size                                    |                           |
| $S^2$ = the square of the standard deviation             | p = 4                     |
| $ln(S_i^2) = natural logarithm of each variance$         | N = 25                    |
| f = total sample size minus the number of wells (groups) |                           |

 $f_i = n_i - 1$ 

 $x_{..}$  = the sum of the total number of samples

 $(x_{avg})_{...}$  the mean of the total number of samples

| Calculations for Equality of Variance: Bartlett's Te |
|------------------------------------------------------|
|------------------------------------------------------|

| S <sub>i</sub> | $S_i^2$  | $\ln({S_i^2})$ | n <sub>i</sub> | $f_i S_i^2$ | $f_i ln(S_i^2)$ |
|----------------|----------|----------------|----------------|-------------|-----------------|
| 2.98E-03       | 8.87E-06 | -1.16E+01      | 10             | 7.98E-05    | -1.05E+02       |
| 3.49E-03       | 1.21E-05 | -1.13E+01      | 5              | 4.86E-05    | -4.53E+01       |
| 3.60E-04       | 1.30E-07 | -1.59E+01      | 5              | 5.19E-07    | -6.34E+01       |
| 3.39E-04       | 1.15E-07 | -1.60E+01      | 5              | 4.58E-07    | -6.39E+01       |

 $\sum(S_i^2) = 2.13E-05$   $\sum f_i \ln(S_i^2) = -2.77E+02$ 

Equality of Variance: Bartlett's Test

| f =              | 21        |                                                                  |   |                    |
|------------------|-----------|------------------------------------------------------------------|---|--------------------|
| $Sp^2 =$         | 6.16E-06  |                                                                  |   |                    |
| $\ln Sp^2 =$     | -1.20E+01 |                                                                  |   |                    |
| $c^2 =$          | 2.54E+01  | (If $c^2 \le c^2_{crit}$ , then variances are equal at the given |   |                    |
|                  |           | significance level).                                             |   |                    |
| $c_{crit}^2 * =$ | 7.81E+00  | at a 5% significance level with                                  | 3 | degrees of freedom |

NOTE: The variances are NOT equal.

 $(i.e., c^2 > c_{crit}^2)$ 

Variances are not equal, transform the original data to lognormal (i.e., since  $c^2 > c_{crit}^2$ ).

\*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

#### Lognormal Data for Arsenic

| ln[As (mg/L)]                   |            |            |            |            |            |
|---------------------------------|------------|------------|------------|------------|------------|
| Date                            | Background | Background | Compliance | Compliance | Compliance |
|                                 | MW93A      | MW420      | MW84A      | MW87A      | MW90A      |
| Jan-23                          | -4.50E+00  | -4.51E+00  | -3.37E+00  | -4.76E+00  | -5.89E+00  |
| Jul-23                          | -4.75E+00  | -4.47E+00  | -3.35E+00  | -4.75E+00  | -5.95E+00  |
| Jan-24                          | -4.80E+00  | -4.36E+00  | -3.28E+00  | -4.80E+00  | -5.91E+00  |
| Jul-24                          | -4.91E+00  | -4.31E+00  | -3.27E+00  | -4.85E+00  | -5.72E+00  |
| Jan-25                          | -4.71E+00  | -4.06E+00  | -3.14E+00  | -4.83E+00  | -5.70E+00  |
| Mean x <sub>i</sub>             | -4.73E+00  | -4.34E+00  | -3.28E+00  | -4.80E+00  | -5.83E+00  |
| Background Mean                 | -4.54E     | -4.54E+00  |            | NA         | NA         |
| Grand Mean                      |            |            | -4.60E+00  |            |            |
| × <sup>2</sup>                  | 2.03E+01   | 2.03E+01   | 1.14E+01   | 2.27E+01   | 3.46E+01   |
| A <sub>i</sub>                  | 2.26E+01   | 2.00E+01   | 1.12E+01   | 2.26E+01   | 3.54E+01   |
| These values needed             | 2.31E+01   | 1.90E+01   | 1.08E+01   | 2.31E+01   | 3.49E+01   |
| for ANOVA                       | 2.41E+01   | 1.85E+01   | 1.07E+01   | 2.36E+01   | 3.28E+01   |
|                                 | 2.22E+01   | 1.65E+01   | 9.87E+00   | 2.33E+01   | 3.25E+01   |
| Sum x <sub>i</sub> <sup>2</sup> |            |            | 5.46E+02   |            |            |

mg/L = milligrams per liter

#### **Determine Normality of Dataset**

#### **Coefficient of Variability Test**

Table of ln[As (mg/L)] Data

| Date   | Background | Background | Compliance | Compliance | Compliance |
|--------|------------|------------|------------|------------|------------|
|        | MW93A      | MW420      | MW84A      | MW87A      | MW90A      |
| Jan-23 | -4.50E+00  | -4.51E+00  | -3.37E+00  | -4.76E+00  | -5.89E+00  |
| Jul-23 | -4.75E+00  | -4.47E+00  | -3.35E+00  | -4.75E+00  | -5.95E+00  |
| Jan-24 | -4.80E+00  | -4.36E+00  | -3.28E+00  | -4.80E+00  | -5.91E+00  |
| Jul-24 | -4.91E+00  | -4.31E+00  | -3.27E+00  | -4.85E+00  | -5.72E+00  |
| Jan-25 | -4.71E+00  | -4.06E+00  | -3.14E+00  | -4.83E+00  | -5.70E+00  |

X: Mean Value = -4.60E+00S: Standard Deviation = 8.47E-01

CV = S/X = -1.84E-01 < 1, data are normally distributed

Data are normally distributed (i.e., <1)

#### Determine Equality of Variance of Dataset for Lognormal Data

| p = number of wells (background wells considered as one group) | x <sub>=</sub> -1.15E+02   |
|----------------------------------------------------------------|----------------------------|
| $n_i =$ number of data points per well                         | $(x_{avg})_{} = -4.60E+00$ |
| N = total sample size                                          | $n_i = 5$                  |
| $S^2$ = the square of the standard deviation                   | p = 4                      |
| $ln(S_i^2) = natural logarithm of each variance$               | N = 25                     |
| f = total sample size minus the number of wells (groups)       |                            |

 $f_i = n_i - 1$ 

x.. = the sum of the total lognormal dataset

 $(x_{avg})_{..}$  = the mean of the lognormal dataset

| Calculations for Equ | uality of Variance: Bartlett's Test | ; |
|----------------------|-------------------------------------|---|
|                      |                                     |   |

| S <sub>i</sub> | $S_i^{\ 2}$ | $ln(S_i^2)$ | ni | $f_i S_i^2$ | $f_i ln(S_i^{\ 2})$ |
|----------------|-------------|-------------|----|-------------|---------------------|
| 2.60E-01       | 6.74E-02    | -2.70E+00   | 10 | 6.07E-01    | -2.43E+01           |
| 9.01E-02       | 8.12E-03    | -4.81E+00   | 5  | 3.25E-02    | -1.93E+01           |
| 4.38E-02       | 1.91E-03    | -6.26E+00   | 5  | 7.66E-03    | -2.50E+01           |
| 1.14E-01       | 1.29E-02    | -4.35E+00   | 5  | 5.18E-02    | -1.74E+01           |

 $\sum (S_i^2) = 9.04 \text{E-}02$ 

| Equality of Variance: | Bartlett's Test |                                                                                       |   |                    |
|-----------------------|-----------------|---------------------------------------------------------------------------------------|---|--------------------|
| f=                    | 2.10E+01        |                                                                                       |   |                    |
| $Sp^2 =$              | 3.33E-02        |                                                                                       |   |                    |
| $\ln Sp^2 =$          | -3.40E+00       |                                                                                       |   |                    |
| $c^2 =$               | 1.45E+01        | (If $c^2 \le c^2_{crit}$ , then variances are equal at the given significance level). |   |                    |
| $c_{crit}^2 * =$      | 7.81E+00        | at a 5% significance level with                                                       | 3 | degrees of freedom |

 $\sum f_i \ln(S_i^2) = -8.59E + 01$ 

NOTE: The variances are NOT equal.

(i.e.,  $c^2 \ge c^2_{crit}$ )

#### Because variances are not equal, Statistical Test 3, Nonparametric ANOVA is performed.\*\*

\*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989)].

\*\*Section 5.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989)].

#### Nonparametric ANOVA

|                                  | Arsenic (mg/L) |            |            |            |            |  |  |
|----------------------------------|----------------|------------|------------|------------|------------|--|--|
| Date                             | Background     | Background | Compliance | Compliance | Compliance |  |  |
|                                  | MW93A          | MW420      | MW84A      | MW87A      | MW90A      |  |  |
| Jan-23                           | 1.11E-02       | 1.10E-02   | 3.43E-02   | 8.57E-03   | 2.78E-03   |  |  |
| Jul-23                           | 8.63E-03       | 1.14E-02   | 3.51E-02   | 8.63E-03   | 2.60E-03   |  |  |
| Jan-24                           | 8.19E-03       | 1.28E-02   | 3.76E-02   | 8.20E-03   | 2.72E-03   |  |  |
| Jul-24                           | 7.39E-03       | 1.35E-02   | 3.79E-02   | 7.80E-03   | 3.27E-03   |  |  |
| Jan-25                           | 9.02E-03       | 1.73E-02   | 4.32E-02   | 7.99E-03   | 3.34E-03   |  |  |
| Sum                              | 1.10E-01       |            | 1.88E-01   | 4.12E-02   | 1.47E-02   |  |  |
| n <sub>i</sub>                   | 10             |            | 5          | 5          | 5          |  |  |
| (x <sub>i</sub> ) <sub>avg</sub> | 1.10E-         | 02         | 3.76E-02   | 8.24E-03   | 2.94E-03   |  |  |

mg/L = milligrams per liter

DL = detection limit

All data sets represent 1/2 DL values for nondetects. **Bolded values indicate a detected result.** 

Overall mean  $x_{..} = 1.42E-02$ 

| N = | 25       | N = the total number of samples                 |
|-----|----------|-------------------------------------------------|
| p = | 4        | $p =$ the number of $n_i$ groups                |
| x = | 3.54E-01 | $x_{}$ = the sum of the total number of samples |

#### Nonparametric ANOVA

#### **Ranking of Observations**

|          |                | Adjusted |            |
|----------|----------------|----------|------------|
| Sequence | Arsenic (mg/L) | Rank     | Tie Number |
| 1        | 2.60E-03       | 1        |            |
| 2        | 2.72E-03       | 2        |            |
| 3        | 2.78E-03       | 3        |            |
| 4        | 3.27E-03       | 4        |            |
| 5        | 3.34E-03       | 5        |            |
| 6        | 7.39E-03       | 6        |            |
| 7        | 7.80E-03       | 7        |            |
| 8        | 7.99E-03       | 8        |            |
| 9        | 8.19E-03       | 9        |            |
| 10       | 8.20E-03       | 10       |            |
| 11       | 8.57E-03       | 11       |            |
| 12       | 8.63E-03       | 12.5     | Tio 1      |
| 13       | 8.63E-03       | 12.5     | The T      |
| 14       | 9.02E-03       | 14       |            |
| 15       | 1.10E-02       | 15       |            |
| 16       | 1.11E-02       | 16       |            |
| 17       | 1.14E-02       | 17       |            |
| 18       | 1.28E-02       | 18       |            |
| 19       | 1.35E-02       | 19       |            |
| 20       | 1.73E-02       | 20       |            |
| 21       | 3.43E-02       | 21       |            |
| 22       | 3.51E-02       | 22       |            |
| 23       | 3.76E-02       | 23       |            |
| 24       | 3.79E-02       | 24       |            |
| 25       | 4.32E-02       | 25       |            |

mg/L = milligrams per liter

DL = detection limit

#### Bolded values indicate a detected result.

NOTE: For this method, observations below the detection limit that are considered nondetects (i.e., U qualified data) are reported as a concentration of 0.

 $\mathbf{n}_{\mathrm{tie}}$ 

2 Tie 1 = 6

 $\sum T_i = 6$ 

#### Sums of Ranks and Averages

|                         |                                  |                | Ars            | enic (mg/L)                                 |                             |                                                   |                      |
|-------------------------|----------------------------------|----------------|----------------|---------------------------------------------|-----------------------------|---------------------------------------------------|----------------------|
|                         | Date                             | Background     | Background     | Compliance                                  | Compliance                  | Compliance                                        |                      |
|                         |                                  | MW93A          | MW420          | MW84A                                       | MW87A                       | MW90A                                             |                      |
|                         | Jan-23                           | 1.11E-02       | 1.10E-02       | 3.43E-02                                    | 8.57E-03                    | 2.78E-03                                          |                      |
|                         | Jul-23                           | 8.63E-03       | 1.14E-02       | 3.51E-02                                    | 8.63E-03                    | 2.60E-03                                          |                      |
|                         | Jan-24                           | 8.19E-03       | 1.28E-02       | 3.76E-02                                    | 8.20E-03                    | 2.72E-03                                          |                      |
|                         | Jul-24                           | 7.39E-03       | 1.35E-02       | 3.79E-02                                    | 7.80E-03                    | 3.27E-03                                          |                      |
|                         | Jan-25                           | 9.02E-03       | 1.73E-02       | 4.32E-02                                    | 7.99E-03                    | 3.34E-03                                          |                      |
|                         | r                                |                |                |                                             |                             |                                                   |                      |
|                         |                                  |                | Observation    | n Ranks for Arse                            | nic                         | -                                                 |                      |
|                         | Date                             | Background     | Background     | Compliance                                  | Compliance                  | Compliance                                        |                      |
|                         |                                  | MW93A          | MW420          | MW84A                                       | MW87A                       | MW90A                                             |                      |
|                         | Jan-23                           | 16             | 15             | 21                                          | 11                          | 3                                                 |                      |
|                         | Jul-23                           | 12.5           | 17             | 22                                          | 12.5                        | 1                                                 |                      |
|                         | Jan-24                           | 9              | 18             | 23                                          | 10                          | 2                                                 |                      |
|                         | Jul-24                           | 6              | 19             | 24                                          | 7                           | 4                                                 |                      |
|                         | Jan-25                           | 14             | 20             | 25                                          | 8                           | 5                                                 |                      |
|                         | R <sub>i</sub>                   | 146.           | 5              | 115                                         | 48.5                        | 15                                                |                      |
|                         | (R <sub>i</sub> ) <sub>avg</sub> | 14.7           | 7              | 23.0                                        | 9.7                         | 3.0                                               |                      |
|                         | $R_i^2/n_i$                      | 2146           | .2             | 2645.0                                      | 470.5                       | 45.0                                              |                      |
|                         | $\Sigma R_i^2/n_i =$             | 5.31E+03       |                | $mg/L = milligrate{mg/L}$<br>DL = detection | ims per liter<br>limit      | $K =$ the number of $n_i$<br>N = the total number | groups<br>of samples |
|                         |                                  |                |                | Bolded values i                             | indicate a detected         | l result.                                         |                      |
|                         | K =                              | 4              |                | NOTE: For this                              | method, observation         | ons below the detection                           | n limit              |
|                         | N =                              | 25             |                | that are conside                            | red nondetects (i.e.        | , U qualified data) are                           | reported             |
|                         |                                  |                |                | as a concentration                          | on of 0.                    | ,                                                 |                      |
| Calculation of <b>H</b> | Kruskal-Wa                       | llis Statistic |                |                                             |                             |                                                   |                      |
|                         | H =                              | 2.00E+01       | Kruskal-Wallis | s Statistic                                 | H = [12/N(N+1)*]            | $\Sigma R_i^2 / n_i$ ] - 3(N+1)                   |                      |
|                         | H' =                             | 2.00E+01       | Corrected Kru  | skal-Wallis                                 | $H' = H/[1-(\sum T_i/N^2)]$ | <sup>3</sup> -N)]                                 |                      |

| $\chi^2_{crit}$ * = | 7.81E+00 | 3 | degrees of freedom at the 5% significance level |
|---------------------|----------|---|-------------------------------------------------|
|                     |          |   |                                                 |

NOTE:  $H' > \chi^2_{crit}$ 

If  $H' \leq \chi^2_{crit}$ , the data from each well come from the same continuous distribution and hence have the same median concentrations of a specific constituent.

If H' >  $\chi^2_{crit}$ , reject the null hypothesis and calculate the critical difference for well comparisons to the background.

| K-1 =      | 3    | $\alpha/(K-1) =$       | 1.67E-02 | $Z(\alpha/(K-1))^{**} =$ | 2.13E+00 |
|------------|------|------------------------|----------|--------------------------|----------|
| $\alpha =$ | 0.05 | $1 - (\alpha/K - 1) =$ | 9.83E-01 |                          |          |

NOTE: \*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

> \*\*Table 4, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

#### **Calculate Critical Values**

|         | Well No. | Ci       | $(R_i)_{avg}$ - $(R_b)_{avg}$ | Conclusion       |
|---------|----------|----------|-------------------------------|------------------|
| BG Well | MW93A    |          |                               |                  |
| BG Well | MW420    |          |                               |                  |
|         | MW84A    | 8.58E+00 | 8.35E+00                      | not contaminated |
|         | MW87A    | 8.58E+00 | -4.95E+00                     | not contaminated |
|         | MW90A    | 8.58E+00 | -1.17E+01                     | not contaminated |

Average Background Ranking = 14.7

#### **CONCLUSION:**

If  $(R_i)_{avg}$  -  $(R_b)_{avg}$  >  $C_i$ , then there is evidence that the compliance well is contaminated.

If  $(R_i)_{avg}$  -  $(R_b)_{avg} < C_i$  for wells, there is no evidence of a statistically significant difference between concentrations in downgradient compliance test wells and background wells.

Since  $(R_i)_{avg}$  -  $(R_b)_{avg}$  <  $C_i$  for MW84A, MW87A, and MW90A, there is no statistically significant difference between background wells and these downgradient compliance test wells; however, the negative value indicates that background wells have elevated concentrations.

Section 5.2.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

## ATTACHMENT B2

CHROMIUM STATISTICAL TEST 2 THIS PAGE INTENTIONALLY LEFT BLANK

|        |            | Chromium   | (mg/L)     |            |            |
|--------|------------|------------|------------|------------|------------|
| Date   | Background | Background | Compliance | Compliance | Compliance |
|        | MW93A      | MW420      | MW84A      | MW87A      | MW90A      |
| Jan-23 | 5.00E-03   | 5.00E-03   | 5.00E-03   | 5.00E-03   | 5.00E-03   |
| Jul-23 | 5.00E-03   | 5.00E-03   | 5.00E-03   | 5.00E-03   | 5.00E-03   |
| Jan-24 | 3.82E-03   | 5.00E-03   | 5.00E-03   | 4.16E-03   | 5.00E-03   |
| Jul-24 | 5.00E-03   | 5.00E-03   | 5.00E-03   | 5.00E-03   | 5.00E-03   |
| Jan-25 | 1.59E-02   | 5.00E-03   | 5.00E-03   | 5.31E-03   | 5.00E-03   |

#### Attachment B2: Chromium URGA, Statistical Test 2, Test of Proportions, First Reporting Period 2025

mg/L = milligrams per liter

DL = detection limit

All data sets represent 1/2 DL values for nondetects.

Bolded values indicate a detected result.

#### <sup>!</sup>Test of Proportions

Calculate the number of detections in background wells vs. compliance wells.

| $\mathbf{X} =$ | 2    | X = number of samples above DL in background wells                 |
|----------------|------|--------------------------------------------------------------------|
| Y =            | 2    | Y = number of samples above DL in compliance wells                 |
| $n_b =$        | 10   | n <sub>b</sub> = count of background well results/samples analyzed |
| $n_c =$        | 15   | $n_c =$ count of compliance well results/samples analyzed          |
| n =            | 25   | n = total number of samples                                        |
| P =            | 0.16 | $\mathbf{P} = (\mathbf{x} + \mathbf{v})/\mathbf{n}$                |
| 1              | 0.10 | (X + y)/11                                                         |
| nP =           | 4    | $n = n_b + n_c$                                                    |
| n(1-P) =       | 21   |                                                                    |

**NOTE:** If nP and n(1-P) are both  $\geq 5$ , then the normal approximation may be used; however, because nP < 5 and/or n(1-P) < 5, the test was continued to determine if the conclusion, along with a simple evaluation of the data would be similar.

| $P_b =$                 | 0.20 | $P_b$ = proportion of detects in background wells   |
|-------------------------|------|-----------------------------------------------------|
| $P_c =$                 | 0.13 | $P_c =$ proportion of detects in compliance wells   |
| $S_D =$                 | 0.15 | $S_D$ = standard error of difference in proportions |
| Z =                     | 0.45 | $Z = (P_b - P_c) / S_D$                             |
| absolute value of $Z =$ | 0.45 |                                                     |

If the absolute value of Z exceeds the 97.5th percentile value of 1.96 from the standard normal distribution, this provides statistically significant evidence at the 5% significance level that the proportion of detects in one group of data exceeds the proportion of detects in the other group.

# CONCLUSION: Because the absolute value of Z is less than or equal to 1.96, there is no statistical evidence that the proportion of samples with detected results differs between the background wells and compliance well samples.

<sup>1</sup> Section 8.1.2, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (EPA 1989).

THIS PAGE INTENTIONALLY LEFT BLANK

## ATTACHMENT B3

TECHNETIUM-99 STATISTICAL TEST 3 THIS PAGE INTENTIONALLY LEFT BLANK

#### Nonparametric ANOVA

|                                  | Technetium-99 (pCi/L) |            |            |            |            |
|----------------------------------|-----------------------|------------|------------|------------|------------|
| Date                             | Background            | Background | Compliance | Compliance | Compliance |
|                                  | MW93A                 | MW420      | MW84A      | MW87A      | MW90A      |
| Jan-23                           | 9.15E+00              | 8.85E+00   | 2.02E+02   | 2.44E+01   | 1.19E+01   |
| Jul-23                           | 9.35E+00              | 9.75E+00   | 6.42E+01   | 3.33E+01   | 2.47E+01   |
| Jan-24                           | 8.30E+00              | 8.15E+00   | 8.60E+01   | 1.92E+01   | 4.35E+01   |
| Jul-24                           | 9.95E+00              | 9.80E+00   | 9.35E+01   | 9.80E+00   | 4.53E+01   |
| Jan-25                           | 1.17E+01              | 1.10E+01   | 1.04E+02   | 2.57E+01   | 5.58E+01   |
| Sum                              | 9.60E+01              |            | 5.50E+02   | 1.12E+02   | 1.81E+02   |
| n <sub>i</sub>                   | 10                    |            | 5          | 5          | 5          |
| (x <sub>i</sub> ) <sub>avg</sub> | 9.60E+                | -00        | 1.10E+02   | 2.25E+01   | 3.62E+01   |

pCi/L = picocuries per liter

All data sets represent 1/2 detection limit values for nondetects. **Bolded values indicate a detected result.** 

Overall mean  $x_{..} = 3.76E+01$ 

| N =        | 25       | N = the total number of samples                 |
|------------|----------|-------------------------------------------------|
| <b>p</b> = | 4        | $p =$ the number of $n_i$ groups                |
| x =        | 9.39E+02 | $x_{}$ = the sum of the total number of samples |

#### Nonparametric ANOVA

#### **Ranking of Observations**

|          | Technetium-99 | Adjusted |            |
|----------|---------------|----------|------------|
| Sequence | (pCi/L)       | Rank     | Tie Number |
| 1        | 0             | 6.5      |            |
| 2        | 0             | 6.5      |            |
| 3        | 0             | 6.5      |            |
| 4        | 0             | 6.5      |            |
| 5        | 0             | 6.5      |            |
| 6        | 0             | 6.5      | Tio        |
| 7        | 0             | 6.5      | 110        |
| 8        | 0             | 6.5      |            |
| 9        | 0             | 6.5      |            |
| 10       | 0             | 6.5      |            |
| 11       | 0             | 6.5      |            |
| 12       | 0             | 6.5      |            |
| 13       | 1.92E+01      | 13       |            |
| 14       | 2.44E+01      | 14       |            |
| 15       | 2.47E+01      | 15       |            |
| 16       | 2.57E+01      | 16       |            |
| 17       | 3.33E+01      | 17       |            |
| 18       | 4.35E+01      | 18       |            |
| 19       | 4.53E+01      | 19       |            |
| 20       | 5.58E+01      | 20       |            |
| 21       | 6.42E+01      | 21       |            |
| 22       | 8.60E+01      | 22       |            |
| 23       | 9.35E+01      | 23       |            |
| 24       | 1.04E+02      | 24       |            |
| 25       | 2.02E+02      | 25       |            |

pCi/L = picocuries per liter

Bolded values indicate a detected result.

NOTE: For this method, observations below the detection limit that are considered nondetects (i.e., U qualified data) are reported as a concentration of 0.

n<sub>tie</sub>

12 Tie 1 = 1716

 $\sum T_i = 1716$ 

#### Nonparametric ANOVA

#### Sums of Ranks and Averages

|        |            | Techneti   | um-99 (pCi/L) |            |            |
|--------|------------|------------|---------------|------------|------------|
| Date   | Background | Background | Compliance    | Compliance | Compliance |
|        | MW93A      | MW420      | MW84A         | MW87A      | MW90A      |
| Jan-23 | 0          | 0          | 2.02E+02      | 2.44E+01   | 0          |
| Jul-23 | 0          | 0          | 6.42E+01      | 3.33E+01   | 2.47E+01   |
| Jan-24 | 0          | 0          | 8.60E+01      | 1.92E+01   | 4.35E+01   |
| Jul-24 | 0          | 0          | 9.35E+01      | 0          | 4.53E+01   |
| Ian-25 | 0          | 0          | 1 04E+02      | 2 57E+01   | 5 58E+01   |

|                                  | Observation Ranks for Technetium-99 |            |            |            |            |
|----------------------------------|-------------------------------------|------------|------------|------------|------------|
| Date                             | Background                          | Background | Compliance | Compliance | Compliance |
|                                  | MW93A                               | MW420      | MW84A      | MW87A      | MW90A      |
| Jan-23                           | 6.5                                 | 6.5        | 25         | 14         | 6.5        |
| Jul-23                           | 6.5                                 | 6.5        | 21         | 17         | 15         |
| Jan-24                           | 6.5                                 | 6.5        | 22         | 13         | 18         |
| Jul-24                           | 6.5                                 | 6.5        | 23         | 6.5        | 19         |
| Jan-25                           | 6.5                                 | 6.5        | 24         | 16         | 20         |
| R <sub>i</sub>                   | 65.00                               |            | 115.00     | 66.50      | 78.50      |
| (R <sub>i</sub> ) <sub>avg</sub> | 6.50                                |            | 23.00      | 13.30      | 15.70      |
| $R_i^2/n_i$                      | 422.50                              |            | 2645.00    | 884.45     | 1232.45    |

| $\Sigma R_i^2/n_i =$ | 5.18E+03 | $pCi/L = picocuries per liter$ K = the number of $n_i$ groups                                    |
|----------------------|----------|--------------------------------------------------------------------------------------------------|
|                      |          | N = the total number of samples                                                                  |
|                      |          | Bolded values indicate a detected result.                                                        |
| K =                  | 4        | NOTE: For this method, observations below the detection limit                                    |
| N =                  | 25       | that are considered nondetects (i.e., U qualified data) are reported<br>as a concentration of 0. |

#### **Calculation of Kruskal-Wallis Statistic**

| H =                 | 1.77E+01 | Kruskal-Wallis Statistic | $H = [12/N(N+1)*\Sigma R_i^2/n_i] - 3(N+1)$ |
|---------------------|----------|--------------------------|---------------------------------------------|
| H' =                | 1.99E+01 | Corrected Kruskal-Wallis | $H' = H/[1-(\sum T_i/N^3-N)]$               |
| $\chi^2_{crit}$ * = | 7.81E+00 | 3 degrees of fre         | edom at the 5% significance level           |

#### **NOTE:** $H' > \chi^2_{crit}$

If  $H' \leq \chi^2_{crit}$ , the data from each well come from the same continuous distribution and hence have the same median concentrations of a specific constituent.

If H' >  $\chi^2_{\text{crit}}$ , reject the null hypothesis and calculate the critical difference for well comparisons to the background.

| K-1 =      | 3    | $\alpha/(K-1) =$       | 1.67E-02 | $Z(\alpha/(K-1))^{**} =$ | 2.13E+00 |
|------------|------|------------------------|----------|--------------------------|----------|
| $\alpha =$ | 0.05 | $1 - (\alpha/K - 1) =$ | 9.83E-01 |                          |          |

NOTE: \*Table 1, Appendix B, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989).

\*\*Table 4, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

#### Nonparametric ANOVA

#### **Calculate Critical Values**

Average Background Ranking = 6.5

|         | Well No. | C <sub>i</sub> | $(R_i)_{avg}$ - $(R_b)_{avg}$ | Conclusion                |
|---------|----------|----------------|-------------------------------|---------------------------|
| BG Well | MW93A    |                |                               |                           |
| BG Well | MW420    |                |                               |                           |
|         | MW84A    | 8.58E+00       | 1.65E+01                      | evidence of contamination |
|         | MW87A    | 8.58E+00       | 6.80E+00                      | not contaminated          |
|         | MW90A    | 8.58E+00       | 9.20E+00                      | evidence of contamination |

pCi/L = picocuries per liter BG = background

#### **CONCLUSION:**

If  $(R_i)_{avg}$  -  $(R_b)_{avg} \ge C_i$ , then there is evidence that the compliance well is contaminated.

If  $(R_i)_{avg} - (R_b)_{avg} \le C_i$  for wells, there is no evidence of a statistically significant difference between concentrations in downgradient compliance test wells and background wells.

Since  $(R_i)_{avg} - (R_b)_{avg} > C_i$  for MW84A and MW90A, there is a statistically significant difference between background wells and downgradient compliance test wells in MW84A and MW90A from the C-404 Landfill.

Since  $(R_i)_{avg} - (R_b)_{avg} < C_i$  for MW87A, there is no statistically significant difference between background wells and downgradient compliance test well MW87A.

Because nonparametric ANOVA indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance well MW84A and MW90A, the 95% UTL was performed.

Section 5.2.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

#### 95% Upper Tolerance Limit (UTL)

Compare the most recent downgradient sample results to a calculated 95% UTL using the five most recent sets of data for each upgradient well, as described below. If downgradient concentration is less than the UTL for the paired upgradient concentrations, then there is no confirmed exceedance.

|          | _           | lech             | netium-99 Obs    | ervations (pCi    | /L)      |                              |
|----------|-------------|------------------|------------------|-------------------|----------|------------------------------|
| Well No. |             |                  |                  |                   |          |                              |
| MW93A    | 9.15E+00    | 9.35E+00         | 8.30E+00         | 9.95E+00          | 1.17E+01 | Upgradient Well <sup>!</sup> |
| MW420    | 8.85E+00    | 9.75E+00         | 8.15E+00         | 9.80E+00          | 1.10E+01 | Upgradient Well <sup>!</sup> |
|          |             |                  |                  |                   |          | Current Data                 |
| MW84A    |             |                  |                  |                   |          | 1.04E+02                     |
| MW90A    |             |                  |                  |                   |          | 5.58E+01                     |
|          | X: M        | ean Value =      | 9.60E+00         |                   |          |                              |
|          | S: Standard | Deviation =      | 1.11E+00         |                   |          |                              |
|          | ŀ           | $X^*$ factor =   | 2.911            | (for $n = 10$ )   |          |                              |
|          |             |                  |                  | <1, assume r      | ıormal   |                              |
|          |             | CV = S/X         | 1.15E-01         | distribution      |          |                              |
|          | Upper Toler | ance Interval: T | [L = X + (KxS) = | = <b>1.28E+01</b> | (pCi/L)  |                              |

#### January 2025 Data, First Reporting Period Technetium-99 Observations (pCi/L)

! = Data from previous 5 sampling events. Nondetect values are 1/2 DL.

CV = coefficient of variation

\* = Table 5, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

Result: MW84A and MW90A exceeded the UTL, which is statistically significant evidence that these compliance wells have elevated concentration with respect to background data.

#### Conclusion: Because the 95% UTL indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance wells MW84A and MW90A, the paired (parametric) ANOVA was performed for each downgradient well.

#### Paired (Parametric) ANOVA - MW93A and MW84A

Evaluate results using paired ANOVA of wells in the same direction relative to the landfill [e.g., compare upgradient westernmost well results to downgradient westernmost well results]. If ANOVA does not identify a statistically significant difference between upgradient and downgradient wells, then the results are consistent with the historical ASD.

| Т                                | Technetium-99 ( | pCi/L)     |          |              |
|----------------------------------|-----------------|------------|----------|--------------|
| Date                             | Background      | Compliance |          |              |
|                                  | MW93A           | MW84A      | 1        | $n_i^2$      |
| Jan-23                           | 9.15E+00        | 2.02E+02   | 8.37E+01 | 4.08E+04     |
| Jul-23                           | 9.35E+00        | 6.42E+01   | 8.74E+01 | 4.12E+03     |
| Jan-24                           | 8.30E+00        | 8.60E+01   | 6.89E+01 | 7.40E+03     |
| Jul-24                           | 9.95E+00        | 9.35E+01   | 9.90E+01 | 8.74E+03     |
| Jan-25                           | 1.17E+01        | 1.04E+02   | 1.37E+02 | 1.08E+04     |
| Sum (x <sub>i</sub> )            | 4.85E+01        | 5.50E+02   | 5.98E+02 | Total Sum (x |
| n <sub>i</sub>                   | 5               | 5          |          | -            |
| (x <sub>i</sub> ) <sub>avg</sub> | 9.69E+00        | 1.10E+02   |          |              |
| $(\mathbf{x}_i)^2$               | 2.35E+03        | 3.02E+05   |          |              |

pCi/L = picocuries per liter Nondetect values are 1/2 DL. **Bolded values indicate a detected result.** 

 $\begin{array}{rrrr} \text{Overall mean } x..=&5.98E{+}01\\ N=&10&N=\text{the total number of samples}\\ p=&2&p=\text{the number of } n_i \text{ groups}\\ x_{..=}&5.98E{+}02&x_{..}=\text{the sum of the total number of samples} \end{array}$ 

#### **Determine Normality of Dataset**

#### **Coefficient of Variability Test**

| Table | ofDo  | ai dura 1 | a (     | ·· )    |
|-------|-------|-----------|---------|---------|
| Table | or Re | siduai    | S ( X;- | -Xioval |

|        |            | /          |
|--------|------------|------------|
| Date   | Background | Compliance |
|        | MW93A      | MW84A      |
| Jan-23 | -5.40E-01  | 9.21E+01   |
| Jul-23 | -3.40E-01  | -4.57E+01  |
| Jan-24 | -1.39E+00  | -2.39E+01  |
| Jul-24 | 2.60E-01   | -1.64E+01  |
| Jan-25 | 2.01E+00   | -5.94E+00  |
|        |            |            |
| v      | M MI       | 7 115 15   |

| X: Mean Value =         | -7.11E-15 |                                   |
|-------------------------|-----------|-----------------------------------|
| S: Standard Deviation = | 3.57E+01  |                                   |
| K* Factor =             | 2.911     | (for $n = 10$ )                   |
| CV = S/X =              | -5.02E+15 | <1, data are normally distributed |

#### Data are normally distributed (i.e., < 1)

\*Table 5, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

If the coefficient of variation is < 1, the data are normally distributed. If the coefficient of variation is > or = 1, data are not normally distributed.

#### **Determine Equality of Variance of Dataset**

| p = number of wells                                      | x = 5.98E+02              |
|----------------------------------------------------------|---------------------------|
| $n_i$ = number of data points per well                   | $(x_{avg})_{} = 5.98E+01$ |
| N = total sample size                                    | $n_{i=}$ 5                |
| $S^2$ = the square of the standard deviation             | p = 2                     |
| $\ln(S_i^2)$ = natural logarithm of each variance        | N = 10                    |
| f = total sample size minus the number of wells (groups) | $f_i = 4$                 |
| $\mathbf{f}_i = \mathbf{n}_i - 1$                        |                           |

|--|

| S <sub>i</sub> | $S_i^2$  | $\ln(S_i^2)$ † | n <sub>i</sub> | $f_i S_i^2$ | $f_i ln(S_i^{\ 2}) \dagger$ |
|----------------|----------|----------------|----------------|-------------|-----------------------------|
| 1.27E+00       | 1.61E+00 | 4.77E-01       | 5              | 6.45E+00    | 1.91E+00                    |
| 5.35E+01       | 2.86E+03 | 7.96E+00       | 5              | 1.14E+04    | 3.18E+01                    |

$$\sum(S_i^2) = 2.86E+03$$
  $\sum f_i ln(S_i^2) = 3.37E+01$ 

 $\begin{array}{rcl} & & \\ f = & 8 \\ Sp^2 = & 1.43E + 03 \\ ln \ Sp^2 = & 7.27E + 00 \\ \chi^2 = & 2.44E + 01 & (If calculated \ \chi^2 \le tabulated \ \chi^2_{crit}, then variances are equal at the given significance level). \\ \chi^2_{crit} * = & 3.84E + 00 & at a 5\% significance level with & 1 & degrees of freedom (p-1) \end{array}$ 

NOTE: The variances are NOT equal. (i.e., calculated  $\chi^2 > \chi^2_{crit}$ )

Variances are not equal, transform the original data to lognormal (i.e., since calculated  $\chi^2 > \chi^2_{crit}$ ).

\*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

#### Paired (Parametric) ANOVA-Lognormal Data

| ln[Technetium-99 (pCi/L)]        |            | ]          |          |                             |
|----------------------------------|------------|------------|----------|-----------------------------|
| Date                             | Background | Compliance |          |                             |
|                                  | MW93A      | MW84A      | 1        | n <sub>i</sub> <sup>2</sup> |
| Jan-23                           | 2.21E+00   | 5.31E+00   | 4.90E+00 | 2.82E+01                    |
| Jul-23                           | 2.24E+00   | 4.16E+00   | 5.00E+00 | 1.73E+01                    |
| Jan-24                           | 2.12E+00   | 4.45E+00   | 4.48E+00 | 1.98E+01                    |
| Jul-24                           | 2.30E+00   | 4.54E+00   | 5.28E+00 | 2.06E+01                    |
| Jan-25                           | 2.46E+00   | 4.64E+00   | 6.05E+00 | 2.16E+01                    |
| Sum (x <sub>i</sub> )            | 1.13E+01   | 2.31E+01   | 3.44E+01 | Total Sum (x                |
| n <sub>i</sub>                   | 5          | 5          |          | _                           |
| (x <sub>i</sub> ) <sub>avg</sub> | 2.26E+00   | 4.62E+00   | ]        |                             |
| $(\mathbf{x}_i)^2$               | 1.28E+02   | 5.34E+02   |          |                             |

pCi/L = picocuries per liter

#### Bolded values indicate a detected result.

| Overall mean x = | 3.44E+00 |                                                 |
|------------------|----------|-------------------------------------------------|
| N =              | 10       | N = the total number of samples                 |
| p =              | 2        | $p =$ the number of $n_i$ groups                |
| X <sub> =</sub>  | 3.44E+01 | $x_{}$ = the sum of the total number of samples |

#### **Determine Normality of Dataset**

#### Coefficient of Variability Test-Lognormal Data

Table of Residuals (x<sub>i</sub>-x<sub>i</sub>avg) for Lognormal Data

| Date   | Background | Compliance |
|--------|------------|------------|
|        | MW93A      | MW84A      |
| Jan-23 | -5.08E-02  | 6.87E-01   |
| Jul-23 | -2.91E-02  | -4.59E-01  |
| Jan-24 | -1.48E-01  | -1.67E-01  |
| Jul-24 | 3.31E-02   | -8.34E-02  |
| Jan-25 | 1.95E-01   | 2.30E-02   |

| X: Mean Value =         | -1.33E-16 |                                   |
|-------------------------|-----------|-----------------------------------|
| S: Standard Deviation = | 2.95E-01  |                                   |
| K* Factor =             | 2.911     | (for n = 10)                      |
| CV = S/X =              | -2.21E+15 | <1, data are normally distributed |

#### Data are normally distributed (i.e., < 1)

\*Table 5, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

If the coefficient of variation is < 1, the residuals are normally distributed. If the coefficient of variation is > or = 1, the residuals are not normally distributed.

#### Determine Equality of Variance-Lognormal Data

| p = number of wells                                      | $x_{} = 3.44E+01$             |
|----------------------------------------------------------|-------------------------------|
| $n_i =$ number of data points per well                   | (x <sub>avg</sub> )= 3.44E+00 |
| N = total sample size                                    | $n_{i=}$ 5                    |
| $S^2$ = the square of the standard deviation             | p = 2                         |
| $\ln(S_i^2)$ = natural logarithm of each variance        | N = 10                        |
| f = total sample size minus the number of wells (groups) | $f_i = 4$                     |
| $f_{1} = n_{1} - 1$                                      |                               |

| S <sub>i</sub> | ${S_i}^2$ | $\ln(S_i^2)$ | n <sub>i</sub> | $f_i S_i^2$ | $f_i ln(S_i^2)$ |
|----------------|-----------|--------------|----------------|-------------|-----------------|
| 1.27E-01       | 1.61E-02  | -4.13E+00    | 5              | 6.46E-02    | -1.65E+01       |
| 4.24E-01       | 1.80E-01  | -1.72E+00    | 5              | 7.18E-01    | -6.87E+00       |

$$\sum (S_i^2) = 1.96E-01$$
  $\sum f_i \ln(S_i^2) = -2.34E+01$ 

 $\begin{array}{rcl} & & \\ f = & 8 \\ Sp^2 = & 9.78E\text{-}02 \\ & & \\ ln \ Sp^2 = & -2.32E\text{+}00 \\ & & \chi^2 = & 4.78E\text{+}00 & (\text{If calculated } \chi^2 \leq \text{tabulated } \chi^2_{\text{crit}}, \text{ then variances are equal at the given significance level}). \\ & & \chi^2_{\text{crit}} * = & 3.84E\text{+}00 & \text{at a 5\% significance level with} & 1 & \text{degrees of freedom (p-1)} \end{array}$ 

NOTE: The variances are NOT equal. (i.e., calculated  $\chi^2 \le \chi^2_{crit}$ )

#### Since the variances are not equal, paired (nonparametric) ANOVA is performed.

\*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

\*\*Section 5.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989)].

#### Paired (Parametric) ANOVA - MW93A and MW90A

Evaluate results using paired ANOVA of wells in the same direction relative to the landfill [e.g., compare upgradient westernmost well results to downgradient westernmost well results]. If ANOVA does not identify a statistically significant difference between upgradient and downgradient wells, then the results are consistent with the historical ASD.

| Т                                | Technetium-99 ( | pCi/L)     |          |                             |
|----------------------------------|-----------------|------------|----------|-----------------------------|
| Date                             | Background      | Compliance |          |                             |
|                                  | MW93A           | MW90A      | 1        | n <sub>i</sub> <sup>2</sup> |
| Jan-23                           | 9.15E+00        | 1.19E+01   | 8.37E+01 | 1.40E+02                    |
| Jul-23                           | 9.35E+00        | 2.47E+01   | 8.74E+01 | 6.10E+02                    |
| Jan-24                           | 8.30E+00        | 4.35E+01   | 6.89E+01 | 1.89E+03                    |
| Jul-24                           | 9.95E+00        | 4.53E+01   | 9.90E+01 | 2.05E+03                    |
| Jan-25                           | 1.17E+01        | 5.58E+01   | 1.37E+02 | 3.11E+03                    |
| Sum (x <sub>i</sub> )            | 4.85E+01        | 1.81E+02   | 2.30E+02 | Total Sum (x                |
| n <sub>i</sub>                   | 5               | 5          |          | -                           |
| (x <sub>i</sub> ) <sub>avg</sub> | 9.69E+00        | 3.62E+01   |          |                             |
| $(\mathbf{x}_i)^2$               | 2.35E+03        | 3.28E+04   |          |                             |

pCi/L = picocuries per liter Nondetect values are 1/2 DL. **Bolded values indicate a detected result.** 

 $\begin{array}{rrrr} \text{Overall mean } x..=&2.30\text{E}{+}01\\ N=&10&N=\text{the total number of samples}\\ p=&2&p=\text{the number of } n_i \text{ groups}\\ x_{..=}&2.30\text{E}{+}02&x_{..}=\text{the sum of the total number of samples} \end{array}$ 

#### **Determine Normality of Dataset**

#### **Coefficient of Variability Test**

| Table of Residuals ( | $x_i - x_{iav\sigma}$ |
|----------------------|-----------------------|
|----------------------|-----------------------|

|                            |                           | /          |
|----------------------------|---------------------------|------------|
| Date                       | Background                | Compliance |
|                            | MW93A                     | MW90A      |
| Jan-23                     | -5.40E-01                 | -2.44E+01  |
| Jul-23                     | -3.40E-01                 | -1.15E+01  |
| Jan-24                     | Jan-24 -1.39E+00 7.27E+00 |            |
| Jul-24                     | 2.60E-01                  | 9.07E+00   |
| Jan-25                     | 2.01E+00                  | 1.96E+01   |
| V. Maan Value –            |                           |            |
| X: Mean Value = $0.00E+00$ |                           |            |
| S: Standa                  | rd Deviation =            | 1.18E+01   |

| 1.18E+01 |                  |                                                                                                                    |
|----------|------------------|--------------------------------------------------------------------------------------------------------------------|
| 2.911    | (for $n = 10$ )  |                                                                                                                    |
| #ΔIς/0!  | #DIV/0!          |                                                                                                                    |
|          | 2.911<br>#ΔIς/0! | $\begin{array}{ll} 1.18E+01\\ 2.911 & (\text{for } n = 10)\\ \#\Delta I \varsigma / 0! & \#D I V / 0! \end{array}$ |

#### The Coefficient of Variability Test was not performed due to mean = 0 (i.e., division by 0 is not possible).

\*Table 5, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

If the coefficient of variation is < 1, the data are normally distributed. If the coefficient of variation is > or = 1, data are not normally distributed.

#### **Determine Equality of Variance of Dataset**

| p = number of wells                                      | x= 2.30E+02               |
|----------------------------------------------------------|---------------------------|
| $n_i$ = number of data points per well                   | $(x_{avg})_{} = 2.30E+01$ |
| N = total sample size                                    | $n_{i=}$ 5                |
| $S^2$ = the square of the standard deviation             | p = 2                     |
| $\ln(S_i^2)$ = natural logarithm of each variance        | N = 10                    |
| f = total sample size minus the number of wells (groups) | $f_i = 4$                 |
| $\mathbf{f}_i = \mathbf{n}_i - 1$                        |                           |

|--|

| S <sub>i</sub> | $S_i^2$  | $\ln(S_i^2)$ † | n <sub>i</sub> | $f_i S_i^2$ | $f_i ln(S_i^{\ 2}) \dagger$ |
|----------------|----------|----------------|----------------|-------------|-----------------------------|
| 1.27E+00       | 1.61E+00 | 4.77E-01       | 5              | 6.45E+00    | 1.91E+00                    |
| 1.76E+01       | 3.11E+02 | 5.74E+00       | 5              | 1.25E+03    | 2.30E+01                    |

$$\sum(S_i^2) = 3.13E+02$$
  $\sum f_i ln(S_i^2) = 2.49E+01$ 

 $\begin{array}{rcl} & & \\ f = & 8 \\ Sp^2 = & 1.56E + 02 \\ ln \ Sp^2 = & 5.05E + 00 \\ \chi^2 = & 1.56E + 01 & (If calculated \ \chi^2 \le tabulated \ \chi^2_{crit}, then variances are equal at the given significance level). \\ \chi^2_{crit} * = & 3.84E + 00 & at a 5\% significance level with & 1 & degrees of freedom (p-1) \end{array}$ 

NOTE: The variances are NOT equal. (i.e., calculated  $\chi^2 > \chi^2_{crit}$ )

Variances are not equal, transform the original data to lognormal (i.e., since calculated  $\chi^2 > \chi^2_{crit}$ ).

\*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).
#### Paired (Parametric) ANOVA-Lognormal Data

| ln[Technetium-99 (pCi/L)]        |            |            | ]        |                             |
|----------------------------------|------------|------------|----------|-----------------------------|
| Date                             | Background | Compliance |          |                             |
|                                  | MW93A      | MW90A      | 1        | n <sub>i</sub> <sup>2</sup> |
| Jan-23                           | 2.21E+00   | 2.47E+00   | 4.90E+00 | 6.11E+00                    |
| Jul-23                           | 2.24E+00   | 3.21E+00   | 5.00E+00 | 1.03E+01                    |
| Jan-24                           | 2.12E+00   | 3.77E+00   | 4.48E+00 | 1.42E+01                    |
| Jul-24                           | 2.30E+00   | 3.81E+00   | 5.28E+00 | 1.45E+01                    |
| Jan-25                           | 2.46E+00   | 4.02E+00   | 6.05E+00 | 1.62E+01                    |
| Sum (x <sub>i</sub> )            | 1.13E+01   | 1.73E+01   | 2.86E+01 | Total Sum (x                |
| n <sub>i</sub>                   | 5          | 5          |          | _                           |
| (x <sub>i</sub> ) <sub>avg</sub> | 2.26E+00   | 3.46E+00   | ]        |                             |
| $(\mathbf{x}_i)^2$               | 1.28E+02   | 2.99E+02   |          |                             |

pCi/L = picocuries per liter

#### Bolded values indicate a detected result.

| Overall mean x = | 2.86E+00 |                                                 |
|------------------|----------|-------------------------------------------------|
| N =              | 10       | N = the total number of samples                 |
| p =              | 2        | $p = the number of n_i groups$                  |
| X <sub> =</sub>  | 2.86E+01 | $x_{}$ = the sum of the total number of samples |

#### **Determine Normality of Dataset**

#### Coefficient of Variability Test-Lognormal Data

Table of Residuals (x<sub>i</sub>-x<sub>i</sub>avg) for Lognormal Data

| Date   | Background | Compliance |
|--------|------------|------------|
|        | MW93A      | MW90A      |
| Jan-23 | -5.08E-02  | -9.85E-01  |
| Jul-23 | -2.91E-02  | -2.51E-01  |
| Jan-24 | -1.48E-01  | 3.15E-01   |
| Jul-24 | 3.31E-02   | 3.56E-01   |
| Jan-25 | 1.95E-01   | 5.64E-01   |

| X: Mean Value =         | 3.11E-16 |                                              |
|-------------------------|----------|----------------------------------------------|
| S: Standard Deviation = | 4.27E-01 |                                              |
| K* Factor =             | 2.911    | (for n = 10)                                 |
| CV = S/X =              | 1.37E+15 | $\geq 1$ , data are NOT normally distributed |

#### Data are not normally distributed (i.e., < 1)

\*Table 5, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

If the coefficient of variation is < 1, the residuals are normally distributed. If the coefficient of variation is > or = 1, the residuals are not normally distributed.

#### Determine Equality of Variance-Lognormal Data

| p = number of wells                                      | x <sub> =</sub> 2.86E+01       |
|----------------------------------------------------------|--------------------------------|
| $n_i =$ number of data points per well                   | (x <sub>avg</sub> ) = 2.86E+00 |
| N = total sample size                                    | $n_{i=}$ 5                     |
| $S^2$ = the square of the standard deviation             | p = 2                          |
| $\ln(S_i^2)$ = natural logarithm of each variance        | N = 10                         |
| f = total sample size minus the number of wells (groups) | $f_i = 4$                      |
| $f_{1} = n_{1} - 1$                                      |                                |

| S <sub>i</sub> | ${\mathbf S_i}^2$ | $\ln(S_i^2)$ | n <sub>i</sub> | $f_i S_i^2$ | $f_i ln(S_i^2)$ |
|----------------|-------------------|--------------|----------------|-------------|-----------------|
| 1.27E-01       | 1.61E-02          | -4.13E+00    | 5              | 6.46E-02    | -1.65E+01       |
| 6.28E-01       | 3.94E-01          | -9.30E-01    | 5              | 1.58E+00    | -3.72E+00       |

$$\sum (S_i^2) = 4.11E-01$$
  $\sum f_i \ln(S_i^2) = -2.02E+01$ 

 $\begin{array}{rcl} & & \\ f = & 8 \\ Sp^2 = & 2.05E\text{-}01 \\ ln \ Sp^2 = & -1.58E\text{+}00 \\ & \chi^2 = & 7.56E\text{+}00 \end{array} (If calculated \ \chi^2 \leq tabulated \ \chi^2_{crit}, then variances are equal at the given significance level). \\ & \chi^2_{crit} * = & 3.84E\text{+}00 & at a 5\% significance level with 1 & degrees of freedom (p-1) \end{array}$ 

NOTE: The variances are NOT equal. (i.e., calculated  $\chi^2 \le \chi^2_{crit}$ )

#### Since the variances are not equal, paired (nonparametric) ANOVA is performed.

\*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

\*\*Section 5.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989)].

## Paired Nonparametric ANOVA - MW93A vs MW84A

| Technetium-99 (pCi/L)    |            |            |  |
|--------------------------|------------|------------|--|
| Date                     | Background | Compliance |  |
|                          | MW93A      | MW84A      |  |
| Jan-23                   | 9.15E+00   | 2.02E+02   |  |
| Jul-23                   | 9.35E+00   | 6.42E+01   |  |
| Jan-24                   | 8.30E+00   | 8.60E+01   |  |
| Jul-24                   | 9.95E+00   | 9.35E+01   |  |
| Jan-25                   | 1.17E+01   | 1.04E+02   |  |
| Sum                      | 4.85E+01   | 5.50E+02   |  |
| n <sub>i</sub>           | 5          | 5          |  |
| $(\mathbf{x}_{i})_{avg}$ | 9.69E+00   | 1.10E+02   |  |

Overall mean x.. = 5.98E+01N = 10p = 2x.. = 5.98E+02

#### **Ranking of Observations**

| Sequence | Technetium-99 | Adjusted | Tie Number |
|----------|---------------|----------|------------|
| 1        | 0             | 3        |            |
| 2        | 0             | 3        |            |
| 3        | 0             | 3        | Tie 1      |
| 4        | 0             | 3        |            |
| 5        | 0             | 3        |            |
| 6        | 6.42E+01      | 6        |            |
| 7        | 8.60E+01      | 7        |            |
| 8        | 9.35E+01      | 8        |            |
| 9        | 1.04E+02      | 9        |            |
| 10       | 2.02E+02      | 10       |            |

pCi/L = picocuries per liter DL = detection limit

All data sets represent 1/2 DL values for nondetects. **Bolded values indicate a detected result.** 

pCi/L = picocuries per liter

| n <sub>tie</sub> | Adjustment for | Ties: $(n_{tie}^{3} - n_{tie})$ |
|------------------|----------------|---------------------------------|
| 5                | Tie 1 =        | 120                             |
|                  | $\sum T_i =$   | 120                             |

#### Bolded values indicate a detected result.

Note: for this method, observations below the detection that are considered non-detects (i.e., U qualified data) are reported as a concentration 0.

#### Sums of Ranks and Averages

| Observation Ranks for Tc-99 |            |            |  |  |
|-----------------------------|------------|------------|--|--|
| Date                        | Background | Compliance |  |  |
|                             | MW93A      | MW84A      |  |  |
| Jan-23                      | 3          | 10         |  |  |
| Jul-23                      | 3          | 6          |  |  |
| Jan-24                      | 3          | 7          |  |  |
| Jul-24                      | 3          | 8          |  |  |
| Jan-25                      | 3          | 9          |  |  |
| R <sub>i</sub>              | 15         | 40         |  |  |
| $(R_i)_{avg}$               | 3.0        | 8          |  |  |
| $R_i^2/n_i$                 | 45.0       | 320.0      |  |  |
| $\Sigma R_i^2/n_i =$        | 365        |            |  |  |
| K =                         | 2          |            |  |  |
| N =                         | 10         |            |  |  |

#### **Calculation of Kruskal-Wallis Statistic**

| H =                 | 6.82E+00 | Kruskal-Wallis Statistic | $H = [12/N(N+1)*\Sigma R_i^2/n_i] - 3(N+1)$ |
|---------------------|----------|--------------------------|---------------------------------------------|
| H' =                | 7.76E+00 | Corrected Kruskal-Wallis | $H' = H/[1-(\sum T_i/N^3-N)]$               |
| $\chi^2_{crit} * =$ | 3.84E+00 | 1 degrees of fr          | reedom at the 5% significance level         |

NOTE:  $H' > \chi^2_{crit}$ 

If H'  $\leq \chi^2_{\text{crit}}$ , the data from each well comes from the same continuous distribution and hence have the same median concentrations of a specific constituent.

If H' >  $\chi^2_{crit}$ , reject the null hypothesis and calculate the critical difference for well comparisons to the background.

K-1 =1 $\alpha/(K-1) =$ 5.00E-02 $Z(\alpha/(K-1))^{**} =$ 1.64E+00 $\alpha =$ 0.051-( $\alpha/K-1$ ) =9.50E-01

\*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

\*\*Table 4, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

#### **Calculate Critical Values**

Average Background Ranking = 3.0

|         | Well No. | C <sub>i</sub> | $(R_i)_{avg}$ - $(R_b)_{avg}$ | Conclusion                |
|---------|----------|----------------|-------------------------------|---------------------------|
| BG Well | MW93A    |                |                               |                           |
|         | MW84A    | 3.15E+00       | 5.00E+00                      | evidence of contamination |

**CONCLUSION:** If  $(R_i)_{avg} - (R_b)_{avg} > C_i$ , then there is evidence that the compliance well is contaminated.

If  $(R_i)_{avg}$  -  $(R_b)_{avg}$  <  $C_i$  for wells, there is no evidence of a statistically significant difference between concentrations in downgradient compliance test wells and background wells.

Since (Ri)avg - (Rb)avg > Ci for MW84A, there is a statistically significant difference in this downgradient compliance test well.

Because the nonparametric ANOVA for the two wells indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance well MW84A, a Mann-Kendall statistical analysis was performed.

Section 5.2.2, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989).

## Paired Nonparametric ANOVA - MW93A vs. MW90A

| Technetium-99 (pCi/L)  |            |            |  |
|------------------------|------------|------------|--|
| Date                   | Background | Compliance |  |
|                        | MW93A      | MW90A      |  |
| Jan-23                 | 9.15E+00   | 1.19E+01   |  |
| Jul-23                 | 9.35E+00   | 2.47E+01   |  |
| Jan-24                 | 8.30E+00   | 4.35E+01   |  |
| Jul-24                 | 9.95E+00   | 4.53E+01   |  |
| Jan-25                 | 1.17E+01   | 5.58E+01   |  |
| Sum                    | 4.85E+01   | 1.81E+02   |  |
| n <sub>i</sub>         | 5          | 5          |  |
| $(\mathbf{x}_i)_{avg}$ | 9.69E+00   | 3.62E+01   |  |

Overall mean x.. = 2.30E+01N = 10p = 2x.. = 2.30E+02

#### **Ranking of Observations**

| Sequence | Technetium-99 | Adjusted | Tie Number |
|----------|---------------|----------|------------|
| 1        | 0             | 3.5      |            |
| 2        | 0             | 3.5      |            |
| 3        | 0             | 3.5      | Tio 1      |
| 4        | 0             | 3.5      |            |
| 5        | 0             | 3.5      |            |
| 6        | 0             | 3.5      |            |
| 7        | 2.47E+01      | 7        |            |
| 8        | 4.35E+01      | 8        |            |
| 9        | 4.53E+01      | 9        |            |
| 10       | 5.58E+01      | 10       |            |

pCi/L = picocuries per liter

$$\begin{array}{ll} \mathsf{n}_{\text{tie}} & \underline{\text{Adjustment for Ties: } (\mathsf{n}_{\text{tie}}^3 - \mathsf{n}_{\text{tie}})}{6} \\ 6 & \text{Tie } 1 = 210 \\ & \sum T_i = 210 \end{array}$$

# Bolded values indicate a detected result.

Note: for this method, observations below the detection that are considered non-detects (i.e., U qualified data) are reported as a concentration 0.

#### Sums of Ranks and Averages

| Observation Ranks for Tc-99 |            |            |  |  |
|-----------------------------|------------|------------|--|--|
| Date                        | Background | Compliance |  |  |
|                             | MW93A      | MW84A      |  |  |
| Jan-23                      | 3.5        | 3.5        |  |  |
| Jul-23                      | 3.5        | 7          |  |  |
| Jan-24                      | 3.5        | 8          |  |  |
| Jul-24                      | 3.5        | 9          |  |  |
| Jan-25                      | 3.5        | 10         |  |  |
| R <sub>i</sub>              | 17.5       | 37.5       |  |  |
| $(R_i)_{avg}$               | 3.5        | 7.5        |  |  |
| $R_i^2/n_i$                 | 61.3       | 281.3      |  |  |
| $\Sigma R_i^2/n_i =$        | 342.5      |            |  |  |
| K =                         | 2          |            |  |  |
| N =                         | 10         |            |  |  |

K = the number of  $n_i$  groups N = the total number of samples

| Bolded values indicate a detected result.             |
|-------------------------------------------------------|
| All data sets represent 1/2 DL values for nondetects. |
| DL = detection limit                                  |
| pCi/L = picocuries per liter                          |

#### **Calculation of Kruskal-Wallis Statistic**

| Η=                  | 4.36E+00 | Kruskal-Wallis Statistic | $H = [12/N(N+1)*\Sigma R_i^2/n_i] - 3(N+1)$ |
|---------------------|----------|--------------------------|---------------------------------------------|
| H' =                | 5.54E+00 | Corrected Kruskal-Wallis | $H' = H/[1-(\sum T_i/N^3-N)]$               |
| $\chi^2_{crit}$ * = | 3.84E+00 | 1 degrees of fr          | reedom at the 5% significance level         |

NOTE:  $H' > \chi^2_{crit}$ 

If  $H' \leq \chi^2_{crit}$ , the data from each well comes from the same continuous distribution and hence have the same median concentrations of a specific constituent.

If H' >  $\chi^2_{crit}$ , reject the null hypothesis and calculate the critical difference for well comparisons to the background.

K-1 =1 $\alpha/(K-1) =$ 5.00E-02 $Z(\alpha/(K-1))^{**} =$ 1.64E+00 $\alpha =$ 0.051-( $\alpha/K-1) =$ 9.50E-01

\*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

\*\*Table 4, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

#### **Calculate Critical Values**

Average Background Ranking = 3.5

|         | Well No. | C <sub>i</sub> | $(R_i)_{avg}$ - $(R_b)_{avg}$ | Conclusion                |
|---------|----------|----------------|-------------------------------|---------------------------|
| BG Well | MW93A    |                |                               |                           |
|         | MW90A    | 3.15E+00       | 4.00E+00                      | evidence of contamination |

**CONCLUSION:** If  $(R_i)_{avg} - (R_b)_{avg} > C_i$ , then there is evidence that the compliance well is contaminated.

If  $(R_i)_{avg}$  -  $(R_b)_{avg}$  <  $C_i$  for wells, there is no evidence of a statistically significant difference between concentrations in downgradient compliance test wells and background wells.

Since (Ri)avg - (Rb)avg > Ci for MW90A, there is a statistically significant difference in this downgradient compliance test well.

Because the nonparametric ANOVA for the two wells indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance well MW90A, a Mann-Kendall statistical analysis was performed.

Section 5.2.2, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989).

#### Mann-Kendall Trend Test Analysis

#### User Selected Options Date/Time of Computation ProUCL 5.2 3/19/2025 10:50:14 AM

From File WorkSheet\_a.xls

Full Precision OFF Confidence Coefficient 0.95

Level of Significance 0.05

#### MW84A\_Tc-99\_2025-1

#### **General Statistics**

| Number or Reported Events Not Used | 0     |
|------------------------------------|-------|
| Number of Generated Events         | 8     |
| Number Values Reported (n)         | 8     |
| Minimum                            | 47.2  |
| Maximum                            | 202   |
| Mean                               | 88.6  |
| Geometric Mean                     | 79.33 |
| Median                             | 75.1  |
| Standard Deviation                 | 50.28 |
| Coefficient of Variation           | 0.568 |
|                                    |       |

#### Mann-Kendall Test

| M-K Test Value (S)      | 18     |
|-------------------------|--------|
| Tabulated p-value       | 0.016  |
| Standard Deviation of S | 8.083  |
| Standardized Value of S | 2.103  |
| Approximate p-value     | 0.0177 |

Statistically significant evidence of an increasing trend at the specified level of significance.

#### Input Data

| input Duta |  |  |  |
|------------|--|--|--|
| Result     |  |  |  |
| (pCi/L)    |  |  |  |
| 4.79E+01   |  |  |  |
| 4.72E+01   |  |  |  |
| 6.40E+01   |  |  |  |
| 2.02E+02   |  |  |  |
| 6.42E+01   |  |  |  |
| 8.60E+01   |  |  |  |
| 9.35E+01   |  |  |  |
| 1.04E+02   |  |  |  |
|            |  |  |  |

Bolded values indicate a detected result.

# Mann-Kendall Trend Test Mann-Kendall Trend Ana 0.9500 0.0500 8.0829 2.1032 18 0.0160 0.0177 evel of Sig dard Deviation of S ndardized Value of S M-K Test Value (S) OLS Regression Line (Blue) OLS Regression Slope 6.5762 OLS Regression Intercept 59.0071 Statistically significant evidence of an increasing trend at the specified level of significance. 143 MW84A Tc-99 2025-1 118 43 0 9 8 4 Generated Index 6

## Mann-Kendall Trend Analysis for Technetium-99 in MW84A

#### Mann-Kendall Trend Test Analysis

#### User Selected Options Date/Time of Computation ProUCL 5.2 3/19/2025 10:56:54 AM

From File WorkSheet\_b.xls

Full Precision OFF Confidence Coefficient 0.95

Level of Significance 0.05

#### MW90A\_Tc-99\_2025-1

#### **General Statistics**

| Number or Reported Events Not Used | 0     |
|------------------------------------|-------|
| Number of Generated Events         | 8     |
| Number Values Reported (n)         | 8     |
| Minimum                            | 21.6  |
| Maximum                            | 55.8  |
| Mean                               | 34.16 |
| Geometric Mean                     | 32.2  |
| Median                             | 30.05 |
| Standard Deviation                 | 12.76 |
| Coefficient of Variation           | 0.373 |

#### Mann-Kendall Test

| M-K Test Value (S)      | 12     |
|-------------------------|--------|
| Tabulated p-value       | 0.089  |
| Standard Deviation of S | 8.083  |
| Standardized Value of S | 1.361  |
| Approximate p-value     | 0.0868 |

Insufficient evidence to identify a significant trend at the specified level of significance.

#### Input Data

| Date      | Result   |
|-----------|----------|
| Collected | (pCi/L)  |
| May-22    | 3.44E+01 |
| Aug-22    | 2.57E+01 |
| Nov-22    | 2.23E+01 |
| Jan-23    | 2.16E+01 |
| Jul-23    | 2.47E+01 |
| Jan-24    | 4.35E+01 |
| Jul-24    | 4.53E+01 |
| Jan-25    | 5.58E+01 |
|           |          |

Bolded values indicate a detected result.

Mann-Kendall Trend Analysis for Technetium-99 in MW90A



THIS PAGE INTENTIONALLY LEFT BLANK

# **ATTACHMENT B4**

# TRICHLOROETHENE STATISTICAL TEST 4

THIS PAGE INTENTIONALLY LEFT BLANK

| Trichloroethene (TCE, µg/L) |            |            |            |            |            |  |  |
|-----------------------------|------------|------------|------------|------------|------------|--|--|
| Date                        | Background | Background | Compliance | Compliance | Compliance |  |  |
|                             | MW93A      | MW420      | MW84A      | MW87A      | MW90A      |  |  |
| Jan-23                      | 1.96E+03   | 2.11E+03   | 7.00E+03   | 2.14E+03   | 2.96E+02   |  |  |
| Jul-23                      | 1.88E+03   | 2.09E+03   | 5.87E+03   | 2.16E+03   | 2.67E+02   |  |  |
| Jan-24                      | 1.32E+03   | 2.60E+03   | 6.09E+03   | 1.69E+03   | 3.13E+02   |  |  |
| Jul-24                      | 5.54E+02   | 1.79E+03   | 5.11E+03   | 1.00E+03   | 1.77E+02   |  |  |
| Jan-25                      | 6.58E+02   | 2.67E+03   | 5.34E+03   | 1.72E+02   | 1.21E+02   |  |  |
| n <sub>i</sub>              | 10         |            | 5          | 5          | 5          |  |  |
| Sum                         | 1.76E+04   |            | 2.94E+04   | 7.16E+03   | 1.17E+03   |  |  |
| (x <sub>i</sub> )avg        | 1.76E      | +03        | 5.88E+03   | 1.43E+03   | 2.35E+02   |  |  |

 $\mu g/L = micrograms per liter$ 

#### Bolded values indicate a detected result.

#### **Determine Normality of Dataset**

#### **Coefficient of Variability Test**

Table of Residuals

| Date   | Background | Background | Compliance | Compliance | Compliance |
|--------|------------|------------|------------|------------|------------|
|        | MW93A      | MW420      | MW84A      | MW87A      | MW90A      |
| Jan-23 | 1.97E+02   | 3.47E+02   | 1.12E+03   | 7.08E+02   | 6.12E+01   |
| Jul-23 | 1.17E+02   | 3.27E+02   | -1.20E+01  | 7.28E+02   | 3.22E+01   |
| Jan-24 | -4.43E+02  | 8.37E+02   | 2.08E+02   | 2.58E+02   | 7.82E+01   |
| Jul-24 | -1.21E+03  | 2.68E+01   | -7.72E+02  | -4.32E+02  | -5.78E+01  |
| Jan-25 | -1.11E+03  | 9.07E+02   | -5.42E+02  | -1.26E+03  | -1.14E+02  |

#### Conclusion: Since the coefficient of variability is less than 1, the data are normally distributed.

\*K factor [from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989)].

If the coefficient of variation is < 1, the data are normally distributed. If the coefficient of variation is > or = 1, data are not normally distributed.

#### Determine Equality of Variance of Dataset

| p = number of well groups                                | x= 5.54E+04               |
|----------------------------------------------------------|---------------------------|
| $n_i$ = number of data points per well                   | $(x_{avg})_{} = 2.22E+03$ |
| N = total sample size                                    |                           |
| $S^2$ = the square of the standard deviation             | $\mathbf{p} = 4$          |
| $\ln(S_i^2)$ = natural logarithm of each variance        | N = 25                    |
| f = total sample size minus the number of wells (groups) |                           |
| $\mathbf{f}_i = \mathbf{n}_i - 1$                        |                           |

 $x_{..}$  = the sum of the total number of samples

 $(x_{avg})_{...=}$  the mean of the total number of samples

| S <sub>i</sub> | $S_i^2$  | $\ln({S_i^2})$ | n <sub>i</sub> | $f_i S_i^2$ | $f_i ln(S_i^2)$ |
|----------------|----------|----------------|----------------|-------------|-----------------|
| 7.21E+02       | 5.20E+05 | 1.32E+01       | 10             | 4.68E+06    | 1.18E+02        |
| 7.39E+02       | 5.46E+05 | 1.32E+01       | 5              | 2.18E+06    | 5.28E+01        |
| 8.47E+02       | 7.18E+05 | 1.35E+01       | 5              | 2.87E+06    | 5.39E+01        |
| 8.24E+01       | 6.80E+03 | 8.82E+00       | 5              | 2.72E+04    | 3.53E+01        |

 $\sum(S_i^2) = 1.79E+06$   $\sum f_i \ln(S_i^2) = 2.61E+02$ 

Equality of Variance: Bartlett's Test

| f =              | 21       |                                                                  |   |  |
|------------------|----------|------------------------------------------------------------------|---|--|
| $Sp^2 =$         | 4.65E+05 |                                                                  |   |  |
| $\ln Sp^2 =$     | 1.30E+01 |                                                                  |   |  |
| $c^2 =$          | 1.35E+01 | (If $c^2 \le c^2_{crit}$ , then variances are equal at the given |   |  |
|                  |          | significance level).                                             |   |  |
| $c_{crit}^2 * =$ | 7.81E+00 | at a 5% significance level with                                  | 3 |  |

degrees of freedom

#### NOTE: The variances are NOT equal.

(i.e.,  $c^2 > c_{crit}^2$ )

#### Variances are not equal, transform the original data to lognormal (i.e., since $c^2 > c_{crit}^2$ ).

\*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

#### **Lognormal Data for TCE**

| ln[TCE (µg/L)]                  |                       |          |            |            |            |  |  |
|---------------------------------|-----------------------|----------|------------|------------|------------|--|--|
| Date                            | Background Background |          | Compliance | Compliance | Compliance |  |  |
|                                 | MW93A                 | MW420    | MW84A      | MW87A      | MW90A      |  |  |
| Jan-23                          | 7.58E+00              | 7.65E+00 | 8.85E+00   | 7.67E+00   | 5.69E+00   |  |  |
| Jul-23                          | 7.54E+00              | 7.64E+00 | 8.68E+00   | 7.68E+00   | 5.59E+00   |  |  |
| Jan-24                          | 7.19E+00              | 7.86E+00 | 8.71E+00   | 7.43E+00   | 5.75E+00   |  |  |
| Jul-24                          | 6.32E+00              | 7.49E+00 | 8.54E+00   | 6.91E+00   | 5.18E+00   |  |  |
| Jan-25                          | 6.49E+00              | 7.89E+00 | 8.58E+00   | 5.15E+00   | 4.80E+00   |  |  |
| Mean x <sub>i</sub>             | 7.02E+00              | 7.71E+00 | 8.67E+00   | 6.97E+00   | 5.40E+00   |  |  |
| Background Mean                 | 7.37E                 | 7.37E+00 |            | NA         | NA         |  |  |
| Grand Mean                      |                       |          | 7.15E+00   |            |            |  |  |
| x <sup>2</sup>                  | 5.75E+01              | 5.86E+01 | 7.84E+01   | 5.88E+01   | 3.24E+01   |  |  |
| A <sub>i</sub>                  | 5.68E+01              | 5.84E+01 | 7.53E+01   | 5.89E+01   | 3.12E+01   |  |  |
| These values needed             | 5.16E+01              | 6.18E+01 | 7.59E+01   | 5.52E+01   | 3.30E+01   |  |  |
| for ANOVA                       | 3.99E+01              | 5.61E+01 | 7.29E+01   | 4.77E+01   | 2.68E+01   |  |  |
|                                 | 4.21E+01              | 6.22E+01 | 7.37E+01   | 2.65E+01   | 2.30E+01   |  |  |
| Sum x <sub>i</sub> <sup>2</sup> |                       |          | 1.31E+03   |            |            |  |  |

 $\mu g/L = micrograms per liter$ 

#### **Determine Normality of Dataset**

#### **Coefficient of Variability Test**

Table of ln[TCE ( $\mu$ g/L)] Data

| Date   | Background | Background | Compliance | Compliance | Compliance |
|--------|------------|------------|------------|------------|------------|
|        | MW93A      | MW420      | MW84A      | MW87A      | MW90A      |
| Jan-23 | 7.58E+00   | 7.65E+00   | 8.85E+00   | 7.67E+00   | 5.69E+00   |
| Jul-23 | 7.54E+00   | 7.64E+00   | 8.68E+00   | 7.68E+00   | 5.59E+00   |
| Jan-24 | 7.19E+00   | 7.86E+00   | 8.71E+00   | 7.43E+00   | 5.75E+00   |
| Jul-24 | 6.32E+00   | 7.49E+00   | 8.54E+00   | 6.91E+00   | 5.18E+00   |
| Jan-25 | 6.49E+00   | 7.89E+00   | 8.58E+00   | 5.15E+00   | 4.80E+00   |

#### Data are normally distributed (i.e.,<1)

\*K factor [from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989)].

#### Determine Equality of Variance of Dataset for Lognormal Data

| p = number of wells (background wells considered as one group) | $x_{} = 1.79E+02$         |
|----------------------------------------------------------------|---------------------------|
| $n_i =$ number of data points per well                         | $(x_{avg})_{} = 7.15E+00$ |
| N = total sample size                                          | $n_i = 5$                 |
| $S^2$ = the square of the standard deviation                   | p = 4                     |
| $\ln(S_i^2) =$ natural logarithm of each variance              | N = 25                    |
| f = total sample size minus the number of wells (groups)       |                           |

 $f_i = n_i - 1$ 

x.. = the sum of the total lognormal dataset

 $(x_{avg})_{...=}$  the mean of the lognormal dataset

| Calculations for Equ | uality | of Variance | e: Bartlett's Tes | st |
|----------------------|--------|-------------|-------------------|----|
|                      |        |             |                   |    |

| S <sub>i</sub> | $S_i^2$  | $\ln(S_i^2)$ | ni | $f_i S_i^2$ | $f_i ln(S_i^2)$ |
|----------------|----------|--------------|----|-------------|-----------------|
| 5.45E-01       | 2.97E-01 | -1.21E+00    | 10 | 2.68E+00    | -1.09E+01       |
| 1.23E-01       | 1.51E-02 | -4.19E+00    | 5  | 6.04E-02    | -1.68E+01       |
| 1.06E+00       | 1.13E+00 | 1.24E-01     | 5  | 4.53E+00    | 4.96E-01        |
| 4.04E-01       | 1.64E-01 | -1.81E+00    | 5  | 6.54E-01    | -7.24E+00       |

 $\sum(S_i^2) = 1.61E+00$   $\sum f_i \ln(S_i^2) = -3.44E+01$ 

Equality of Variance: Bartlett's Test

| t =              | 21        |                                                                  |   |                    |
|------------------|-----------|------------------------------------------------------------------|---|--------------------|
| $Sp^2 =$         | 3.77E-01  |                                                                  |   |                    |
| $\ln Sp^2 =$     | -9.75E-01 |                                                                  |   |                    |
| $c^2 =$          | 1.40E+01  | (If $c^2 \le c^2_{crit}$ , then variances are equal at the given |   |                    |
|                  |           | significance level).                                             |   |                    |
| $c_{crit}^2 * =$ | 7.81E+00  | at a 5% significance level with                                  | 3 | degrees of freedom |

NOTE: The variances are NOT equal.

(i.e.,  $c^2 > c^2_{crit}$ )

Because variances are not equal, Nonparametric ANOVA will be performed.

\*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989)].

\*\*Section 5.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989)].

## Nonparametric ANOVA

|                                  | Trichloroethene (µg/L) |            |            |            |            |  |
|----------------------------------|------------------------|------------|------------|------------|------------|--|
| Date                             | Background             | Background | Compliance | Compliance | Compliance |  |
|                                  | MW93A                  | MW420      | MW84A      | MW87A      | MW90A      |  |
| Jan-23                           | 1.96E+03               | 2.11E+03   | 7.00E+03   | 2.14E+03   | 2.96E+02   |  |
| Jul-23                           | 1.88E+03               | 2.09E+03   | 5.87E+03   | 2.16E+03   | 2.67E+02   |  |
| Jan-24                           | 1.32E+03               | 2.60E+03   | 6.09E+03   | 1.69E+03   | 3.13E+02   |  |
| Jul-24                           | 5.54E+02               | 1.79E+03   | 5.11E+03   | 1.00E+03   | 1.77E+02   |  |
| Jan-25                           | 6.58E+02               | 2.67E+03   | 5.34E+03   | 1.72E+02   | 1.21E+02   |  |
| Sum                              | 1.76E+04               |            | 2.94E+04   | 7.16E+03   | 1.17E+03   |  |
| n <sub>i</sub>                   | 10                     |            | 5          | 5          | 5          |  |
| (x <sub>i</sub> ) <sub>avg</sub> | 1.76E+                 | -03        | 5.88E+03   | 1.43E+03   | 2.35E+02   |  |

 $\mu/L$  = micrograms per liter

DL = detection limit

All data sets represent 1/2 DL values for nondetects. **Bolded values indicate a detected result.** 

Overall mean x.. = 2.22E+03

| N = | 25       | N = the total number of samples                 |
|-----|----------|-------------------------------------------------|
| p = | 4        | $p =$ the number of $n_i$ groups                |
| x = | 5.54E+04 | $x_{}$ = the sum of the total number of samples |

# Nonparametric ANOVA

#### **Ranking of Observations**

|          | Trichloroethene | Adjusted |            |
|----------|-----------------|----------|------------|
| Sequence | $(\mu g/L)$     | Rank     | Tie Number |
| 1        | 121             | 1        |            |
| 2        | 172             | 2        |            |
| 3        | 177             | 3        |            |
| 4        | 267             | 4        |            |
| 5        | 296             | 5        |            |
| 6        | 313             | 6        |            |
| 7        | 554             | 7        |            |
| 8        | 658             | 8        |            |
| 9        | 1000            | 9        |            |
| 10       | 1320            | 10       |            |
| 11       | 1690            | 11       |            |
| 12       | 1790            | 12       |            |
| 13       | 1880            | 13       |            |
| 14       | 1960            | 14       |            |
| 15       | 2090            | 15       |            |
| 16       | 2110            | 16       |            |
| 17       | 2140            | 17       |            |
| 18       | 2160            | 18       |            |
| 19       | 2600            | 19       |            |
| 20       | 2670            | 20       |            |
| 21       | 5110            | 21       |            |
| 22       | 5340            | 22       |            |
| 23       | 5870            | 23       |            |
| 24       | 6090            | 24       |            |
| 25       | 7000            | 25       |            |

 $\mu/L = micrograms per liter$ 

DL = detection limit

## Bolded values indicate a detected result.

NOTE: For this method, observations below the detection limit that are considered nondetects (i.e., U qualified data) are reported as a concentration of 0.

n<sub>tie</sub> 0

Tie =

 $\sum T_i = 0$ 

0

#### Sums of Ranks and Averages

|               |                      |                | Trichlo        | roethene (µg/L)     |                         |                                   |
|---------------|----------------------|----------------|----------------|---------------------|-------------------------|-----------------------------------|
|               | Date                 | Background     | Background     | Compliance          | Compliance              | Compliance                        |
|               |                      | MW93A          | MW420          | MW84A               | MW87A                   | MW90A                             |
|               | Jan-23               | 1.96E+03       | 2.11E+03       | 7.00E+03            | 2.14E+03                | 2.96E+02                          |
|               | Jul-23               | 1.88E+03       | 2.09E+03       | 5.87E+03            | 2.16E+03                | 2.67E+02                          |
|               | Jan-24               | 1.32E+03       | 2.60E+03       | 6.09E+03            | 1.69E+03                | 3.13E+02                          |
|               | Jul-24               | 5.54E+02       | 1.79E+03       | 5.11E+03            | 1.00E+03                | 1.77E+02                          |
|               | Jan-25               | 6.58E+02       | 2.67E+03       | 5.34E+03            | 1.72E+02                | 1.21E+02                          |
|               |                      |                | Observation De | ulta fon Tricklan   | a atle ave a            |                                   |
|               | Dete                 | D1             | Observation Ra | inks for Trichlord  | Committee               | Compliance                        |
|               | Date                 | Background     | Background     | Compliance          | Compliance              | Compliance                        |
|               | I 22                 | MW93A          | MW420          | MW 84A              | MW8/A                   | MW90A                             |
|               | Jan-23               | 14             | 16             | 25                  | 17                      | 5                                 |
|               | Jul-23               | 13             | 15             | 23                  | 18                      | 4                                 |
|               | Jan-24               | 10             | 19             | 24                  | 11                      | 6                                 |
|               | Jul-24               | 7              | 12             | 21                  | 9                       | 3                                 |
|               | Jan-25               | 8              | 20             | 22                  | 2                       | 1                                 |
|               | R <sub>i</sub>       | 134            | 4              | 115                 | 57                      | 19                                |
|               | $(R_i)_{avg}$        | 13.            | 4              | 23.0                | 11.4                    | 3.8                               |
|               | $R_i^2/n_i$          | 1795           | 5.6            | 2645.0              | 649.8                   | 72.2                              |
|               | $\sum D^2/$          | 51(E+02        |                | /T                  |                         |                                   |
|               | $\Sigma R_i / n_i =$ | 5.16E+03       |                | $\mu/L = microgram$ | ms per liter            | $K =$ the number of $n_i$ groups  |
|               |                      |                |                | DL = detection      | limit                   | N = the total number of sam       |
|               |                      |                |                | Bolded values       | indicate a detecte      | d result.                         |
|               | K =                  | 4              |                | NOTE: For this      | method, observati       | ons below the detection limit     |
|               | N =                  | 25             |                | that are conside    | red nondetects (i.e     | ., U qualified data) are reported |
|               |                      |                |                | as a concentrati    | on of 0.                |                                   |
| alculation of | Kruskal-Wa           | llis Statistic |                |                     |                         |                                   |
|               | H =                  | 1.73E+01       | Kruskal-Wallis | s Statistic         | $H = [12/N(N+1))^*$     | $\Sigma R_i^2/n_i$ ] - 3(N+1)     |
|               | H' =                 | 1.73E+01       | Corrected Kru  | skal-Wallis         | $H' = H/[1-(\sum T_i/N$ | <sup>3</sup> -N)]                 |

 $\chi^2_{\text{crit}} * = 7.81\text{E}+00$  3 degrees of freedom at the 5% significance level

NOTE: H' >  $\chi^2_{crit}$ 

If  $H' \leq \chi^2_{crit}$ , the data from each well come from the same continuous distribution and hence have the same median concentrations of a specific constituent.

If H' >  $\chi^2_{crit}$ , reject the null hypothesis and calculate the critical difference for well comparisons to the background.

| K-1 =      | 3    | $\alpha/(K-1) =$       | 1.67E-02 | $Z(\alpha/(K-1))^{**} =$ | 2.13E+00 |
|------------|------|------------------------|----------|--------------------------|----------|
| $\alpha =$ | 0.05 | $1 - (\alpha/K - 1) =$ | 9.83E-01 |                          |          |

NOTE: \*Table 1, Appendix B, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989).

\*\*Table 4, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

#### **Calculate Critical Values**

|         | Well No. | Ci       | $(R_i)_{avg}$ - $(R_b)_{avg}$ | Conclusion                |
|---------|----------|----------|-------------------------------|---------------------------|
| BG Well | MW93A    |          |                               |                           |
| BG Well | MW420    |          |                               |                           |
|         | MW84A    | 8.58E+00 | 9.60E+00                      | evidence of contamination |
|         | MW87A    | 8.58E+00 | -2.00E+00                     | not contaminated          |
|         | MW90A    | 8.58E+00 | -9.60E+00                     | not contaminated          |

Average Background Ranking = 13.4

#### **CONCLUSION:**

If  $(R_i)_{avg}$  -  $(R_b)_{avg}$  >  $C_i$ , then there is evidence that the compliance well is contaminated.

If  $(R_i)_{avg}$  -  $(R_b)_{avg} < C_i$  for wells, there is no evidence of a statistically significant difference between concentrations in downgradient compliance test wells and background wells.

Since  $(R_i)_{avg}$  -  $(R_b)_{avg}$  >  $C_i$  for MW84A, there is a statistically significant difference between background wells and downgradient compliance test well MW84A.

Since  $(R_i)_{avg} - (R_b)_{avg} < C_i$  for MW87A and MW90A, there is no statistically significant difference between background wells and these downgradient compliance test wells; however, the negative value indicates that background wells have elevated concentrations.

Because nonparametric ANOVA indicated a statistically significant difference between compliance test well MW84A and background wells at the C-404 Landfill in compliance well MW84A, the 95% UTL was performed.

Section 5.2.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

#### 95% Upper Tolerance Limit (UTL)

Compare the most recent downgradient sample results to a calculated 95% UTL using the five most recent sets of data for each upgradient well, as described below. If downgradient concentration is less than the UTL for the paired upgradient concentrations, then there is no confirmed exceedance.

#### January 2025 Data, First Reporting Period TCE Observations (µg/L)

| Well No. |                           |                |                      |                    |                              |
|----------|---------------------------|----------------|----------------------|--------------------|------------------------------|
| MW93A    | 1.96E+03 1.88E+03         | 1.32E+03       | 5.54E+02             | 6.58E+02           | Upgradient Well <sup>!</sup> |
| MW420    | 2.11E+03 2.09E+03         | 2.60E+03       | 1.79E+03             | 2.67E+03           | Upgradient Well <sup>!</sup> |
|          |                           |                |                      |                    | Current Data                 |
| MW84A    |                           |                |                      |                    | 5.34E+03                     |
|          | X: Mean Value =           | 1.76E+03       |                      |                    |                              |
|          | S: Standard Deviation =   | 7.21E+02       |                      |                    |                              |
|          | K* factor =               | 2.911          | (for $n = 10$ )      |                    |                              |
|          | CV = S/X                  | 4.09E-01       | <1, assume no        | ormal distribution |                              |
|          | Upper Tolerance Interval: | TL = X + (KxS) | = <b>3.86E+03</b> () | ug/L)              |                              |

! = Data from previous 5 sampling events.

CV = coefficient of variation

- \* = Table 5, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).
- Result: MW84A exceeded the 95% UTL, which is statistically significant evidence that this compliance well has elevated TCE concentrations with respect to background data.
- Conclusion: Because the 95% UTL indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance well MW84A, the paired ANOVA was performed.

#### Paired (Parametric) ANOVA - MW93A and MW84A

Evaluate results using paired ANOVA of wells in the same direction relative to the landfill [e.g., compare upgradient westernmost well results to downgradient westernmost well results]. If ANOVA does not identify a statistically significant difference between upgradient and downgradient wells, then the results are consistent with the historical ASD.

|                                  | TCE (µg/L  | )          |          |                |
|----------------------------------|------------|------------|----------|----------------|
| Date                             | Background | Compliance |          |                |
|                                  | MW93A      | MW84A      | n        | 1 <sup>2</sup> |
| Jan-23                           | 1.96E+03   | 7.00E+03   | 3.84E+06 | 4.90E+07       |
| Jul-23                           | 1.88E+03   | 5.87E+03   | 3.53E+06 | 3.45E+07       |
| Jan-24                           | 1.32E+03   | 6.09E+03   | 1.74E+06 | 3.71E+07       |
| Jul-24                           | 5.54E+02   | 5.11E+03   | 3.07E+05 | 2.61E+07       |
| Jan-25                           | 6.58E+02   | 5.34E+03   | 4.33E+05 | 2.85E+07       |
| Sum (x <sub>i</sub> )            | 6.37E+03   | 2.94E+04   | 3.58E+04 | Total Sum (x)  |
| n <sub>i</sub>                   | 5          | 5          |          | _              |
| (x <sub>i</sub> ) <sub>avg</sub> | 1.27E+03   | 5.88E+03   |          |                |
| $(\mathbf{x}_i)^2$               | 4.06E+07   | 8.65E+08   |          |                |

 $\mu g/L = micrograms$  per liter Bolded values indicate a detected result.

| Overall mean x = | 3.58E+03 |                                            |
|------------------|----------|--------------------------------------------|
| N =              | 10       | N = the total number of samples            |
| p =              | 2        | $p =$ the number of $n_i$ groups           |
| X <sub> =</sub>  | 3.58E+04 | x = the sum of the total number of samples |

#### **Determine Normality of Dataset**

#### **Coefficient of Variability Test**

| Table of Residuals (x <sub>i</sub> -x <sub>iavg</sub> ) |            |            |  |  |
|---------------------------------------------------------|------------|------------|--|--|
| Date                                                    | Background | Compliance |  |  |
|                                                         | MW93A      | MW84A      |  |  |
| Jan-23                                                  | 6.86E+02   | 1.12E+03   |  |  |
| Jul-23                                                  | 6.06E+02   | -1.20E+01  |  |  |
| Jan-24                                                  | 4.56E+01   | 2.08E+02   |  |  |
| Jul-24                                                  | -7.20E+02  | -7.72E+02  |  |  |
| Jan-25                                                  | -6.16E+02  | -5.42E+02  |  |  |

| X: Mean Value =         | 0.00E+00 |              |
|-------------------------|----------|--------------|
| S: Standard Deviation = | 6.60E+02 |              |
| K* Factor =             | 2.911    | (for n = 10) |
| CV = S/X =              | #DIV/0!  | #DIV/0!      |

The Coefficient of Variability Test was not performed due to mean = 0 (i.e., division by 0 is not possible).

\*Table 5, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

If the coefficient of variation is < 1, the data are normally distributed. If the coefficient of variation is > or = 1, data are not normally distributed.

#### Determine Equality of Variance of Dataset

| p = number of wells                                      | x= 3.58E+04                   |
|----------------------------------------------------------|-------------------------------|
| $n_i$ = number of data points per well                   | (x <sub>avg</sub> )= 3.58E+03 |
| N = total sample size                                    | n <sub>i =</sub> 5            |
| $S^2$ = the square of the standard deviation             | p = 2                         |
| $ln(S_i^2) = natural logarithm of each variance$         | N = 10                        |
| f = total sample size minus the number of wells (groups) | $f_i = 4$                     |
| $\mathbf{f}_i = \mathbf{n}_i - 1$                        |                               |

| Calculations for | or Equalit | v of Variance <sup>.</sup> | Bartlett's | Test |
|------------------|------------|----------------------------|------------|------|
| Culculutions is  | or Lquunt  | y or variance.             | Durtiett 5 | 1000 |

| S <sub>i</sub> | $S_i^2$  | $\ln({S_i}^2)$ † | n <sub>i</sub> | $f_i S_i^2$ | $f_i ln(S_i^{\ 2}) \dagger$ |
|----------------|----------|------------------|----------------|-------------|-----------------------------|
| 6.59E+02       | 4.34E+05 | 1.30E+01         | 5              | 1.74E+06    | 5.19E+01                    |
| 7.39E+02       | 5.46E+05 | 1.32E+01         | 5              | 2.18E+06    | 5.28E+01                    |

 $\sum(S_i^2) = 9.80E+05$   $\sum f_i \ln(S_i^2) = 1.05E+02$ 

| E                | Equality of Va | ariance: Bartlett's Test                                               |             |                           |
|------------------|----------------|------------------------------------------------------------------------|-------------|---------------------------|
| f =              | 8              |                                                                        |             |                           |
| $Sp^2 =$         | 4.90E+05       |                                                                        |             |                           |
| $\ln Sp^2 =$     | 1.31E+01       |                                                                        |             |                           |
| $c^2 =$          | 5.19E-02       | (If calculated $c^2 \le tabulated c^2_{crit}$ , t significance level). | hen varianc | es are equal at the given |
| $c^2_{crit} * =$ | 3.84E+00       | at a 5% significance level with                                        | 1           | degrees of freedom (p-1)  |

NOTE: The variances are equal.

(i.e., calculated  $c^2 \le c_{crit}^2$ )

Since calculated  $c^2 \le c^2_{crit}$ , then the analysis can proceed as normal.

\*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

#### **Between Well Sum of Squares**

| Source of     |                |           | Degrees of | Mean     |              |               |
|---------------|----------------|-----------|------------|----------|--------------|---------------|
| Variation     | Sums of        | f Squares | Freedom    | Squares  | Calculated F | F Statistic** |
| Between Wells | $SS_{wells} =$ | 5.31E+07  | 1          | 5.31E+07 | 1.08E+02     | 5.32E+00      |
| Error         | $SS_{Error} =$ | 3.92E+06  | 8          | 4.90E+05 |              |               |
| Total         | $SS_{Total} =$ | 5.70E+07  | 9          |          |              |               |

If calculated F > F statistic, then reject the hypothesis of equal well means. If calculated F is less than or equal to F statistic, it can be concluded that there is no significant difference between concentrations; therefore, there is no evidence of well contamination.

# CONCLUSION: Calculated F > F statistic; therefore, ANOVA has identified a significant difference between upgradient and downgradient wells.

Mann-Kendall trend analysis was performed.

\*\*Table 2, Appendix B, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989). F statistic taken at the 5% significance level.

#### Mann-Kendall Trend Test Analysis

| User Selected Options    |                                 |
|--------------------------|---------------------------------|
| Date/Time of Computation | ProUCL 5.2 3/19/2025 2:21:31 PM |
| From File                | WorkSheet_c.xls                 |
| Full Precision           | OFF                             |
| Confidence Coefficient   | 0.95                            |
| Level of Significance    | 0.05                            |
|                          |                                 |

#### MW84A\_TCE\_2025-1

#### **General Statistics**

| Number or Reported Events Not Used | 0 |
|------------------------------------|---|
|------------------------------------|---|

- Number of Generated Events 8
- Number Values Reported (n) 8

| Minimum                  | 5110  |
|--------------------------|-------|
| Maximum                  | 7000  |
| Mean                     | 5979  |
| Geometric Mean           | 5943  |
| Median                   | 5980  |
| Standard Deviation       | 696.1 |
| Coefficient of Variation | 0.116 |

#### Mann-Kendall Test

| M-K Test Value (S)      | -6     |
|-------------------------|--------|
| Tabulated p-value       | 0.274  |
| Standard Deviation of S | 8.083  |
| Standardized Value of S | -0.619 |
| Approximate p-value     | 0.268  |

Insufficient evidence to identify a significant trend at the specified level of significance.

| Input Data |          |  |  |  |
|------------|----------|--|--|--|
| Date       | Result   |  |  |  |
| Collected  | (µg/L)   |  |  |  |
| Jul-21     | 5.29E+03 |  |  |  |
| Jan-22     | 6.56E+03 |  |  |  |
| Jul-22     | 6.57E+03 |  |  |  |
| Jan-23     | 7.00E+03 |  |  |  |
| Jul-23     | 5.87E+03 |  |  |  |
| Jan-24     | 6.09E+03 |  |  |  |
| Jul-24     | 5.11E+03 |  |  |  |
| Jan-25     | 5.34E+03 |  |  |  |

Bolded values indicate a detected result.

#### Mann-Kendall Trend Test Analysis



# ATTACHMENT B5

# STATISTICIAN STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

# FOUR RIVERS

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

April 1, 2025

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Mr. Greene:

I am submitting this statement as a supplementary document to the completed statistical analysis I performed on the groundwater data for the C-404 Hazardous Waste Landfill at the Paducah Site.

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities.

For this project, the statistical analyses on groundwater data from January 2023 through January 2025 were performed in accordance with the *Hazardous Waste Management Facility Permit*, Appendix E using Microsoft Excel 2016 and the U.S. Environmental Protection Agency's (EPA's) ProUCL Version 5.2 software. The spreadsheets include the results for the following statistical tests:

- Test of Proportions
- Parametric Analysis of Variance (ANOVA)
- Nonparametric ANOVA
- 95% Upper Tolerance Limit
- Paired (parametric) ANOVA
- Paired (nonparametric) ANOVA
- Mann-Kendall

The statistical analyses procedures were based on EPA's *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Bryan Smith

THIS PAGE INTENTIONALLY LEFT BLANK

# **APPENDIX C**

# C-404 LEACHATE SUMP SAMPLING ANALYSIS RESULTS

THIS PAGE INTENTIONALLY LEFT BLANK

# Paducah OREIS Report for 404L25-01

| Sample ID: | 404L25-01-01 | Station: C404L | Date Collected: 2/5/2025 | MedType: WW | SmpMethod: GR |
|------------|--------------|----------------|--------------------------|-------------|---------------|
|            |              |                |                          |             |               |

Comments: Depth to water 4.71' from ground surface. MH 2-5-25

| Analysis                 | Results  | Units    | Result<br>Qual | Foot<br>Note | Reporting<br>Limit | Counting<br>Frror | TPU** | Method               | LabCode | V/V/A*           |
|--------------------------|----------|----------|----------------|--------------|--------------------|-------------------|-------|----------------------|---------|------------------|
| ANION                    |          |          | quui           | Hote         | 2                  | 2.101             |       |                      |         |                  |
| Fluoride                 | 9.02     | mg/L     |                |              | 4                  |                   |       | SW846-9056A          | GEL     | 1/X/             |
| FS                       |          |          |                |              |                    |                   |       |                      |         |                  |
| Conductivity             | 548      | µmhos/cm |                |              |                    |                   |       | FS                   | FS      | 11               |
| Dissolved Oxygen         | 9.95     | mg/L     |                |              |                    |                   |       | FS                   | FS      | 11               |
| Eh (approx)              | 413      | mV       |                |              |                    |                   |       | FS                   | FS      | 11               |
| pН                       | 7.97     | Std Unit |                |              |                    |                   |       | FS                   | FS      | 11               |
| Temperature              | 58.4     | deg F    |                |              |                    |                   |       | FS                   | FS      | 11               |
| METAL                    |          |          |                |              |                    |                   |       |                      |         |                  |
| Arsenic                  | 0.00207  | mg/L     | J              |              | 0.005              |                   |       | SW846-6020B          | GEL     | /x/              |
| Barium                   | 0.111    | mg/L     |                |              | 0.004              |                   |       | SW846-6020B          | GEL     | /x/              |
| Cadmium                  | 0.001    | mg/L     | U              |              | 0.001              |                   |       | SW846-6020B          | GEL     | / X /            |
| Chromium                 | 0.00647  | mg/L     | J              |              | 0.01               |                   |       | SW846-6020B          | GEL     | S / X /          |
| Copper                   | 0.0429   | mg/L     |                |              | 0.002              |                   |       | SW846-6020B          | GEL     | / x /            |
| Iron                     | 2.05     | mg/L     |                |              | 0.1                |                   |       | SW846-6020B          | GEL     | / x /            |
| Lead                     | 0.00253  | mg/L     |                |              | 0.002              |                   |       | SW846-6020B          | GEL     | / x /            |
| Mercury                  | 0.0002   | mg/L     | U              |              | 0.0002             |                   |       | SW846-7470A          | GEL     | / X /            |
| Nickel                   | 0.0197   | mg/L     |                |              | 0.002              |                   |       | SW846-6020B          | GEL     | / X /            |
| Selenium                 | 0.005    | mg/L     | U              |              | 0.005              |                   |       | SW846-6020B          | GEL     | /x/              |
| Silver                   | 0.000302 | mg/L     | J              |              | 0.001              |                   |       | SW846-6020B          | GEL     | S/X/             |
| Uranium                  | 102      | mg/L     |                |              | 0.02               |                   |       | SW846-6020B          | GEL     | 1/X/             |
| Zinc                     | 0.0218   | mg/L     |                |              | 0.02               |                   |       | SW846-6020B          | GEL     | /x/              |
| РРСВ                     |          |          |                |              |                    |                   |       |                      |         |                  |
| PCB-1016                 | 0.102    | ug/L     | U              |              | 0.102              |                   |       | SW846-8082A          | GEL     | / x /            |
| PCB-1221                 | 0.102    | ug/L     | U              |              | 0.102              |                   |       | SW846-8082A          | GEL     | / x /            |
| PCB-1232                 | 0.102    | ug/L     | U              |              | 0.102              |                   |       | SW846-8082A          | GEL     | / X /            |
| PCB-1242                 | 0.102    | ug/L     | U              |              | 0.102              |                   |       | SW846-8082A          | GEL     | /x/              |
| PCB-1248                 | 1.1      | ug/L     |                |              | 0.102              |                   |       | SW846-8082A          | GEL     | /x/              |
| PCB-1254                 | 0.599    | ug/L     |                |              | 0.102              |                   |       | SW846-8082A          | GEL     | / X / FDUP-OUT   |
| PCB-1260                 | 0.324    | ug/L     |                |              | 0.102              |                   |       | SW846-8082A          | GEL     | / X / FDUP-OUT   |
| Polychlorinated biphenyl | 2.02     | ug/L     |                |              | 0.102              |                   |       | SW846-8082A          | GEL     | I / X / FDUP-OUT |
| RADS                     |          |          |                |              |                    |                   |       |                      |         |                  |
| Cesium-137               | 1.95     | pCi/L    | U              |              | 10.7               | 5.77              | 5.84  | EPA-901.1            | GEL     | / x /            |
| Neptunium-237            | 4.1      | pCi/L    |                |              | 1.35               | 1.89              | 1.95  | ASTM-1475-00M        | GEL     | / X /            |
| Plutonium-239/240        | 3.93     | pCi/L    |                |              | 0.792              | 1.62              | 1.7   | HASL 300, Pu-11-RC M | GEL     | s / x /          |
| Technetium-99            | 281      | pCi/L    |                |              | 22.5               | 19.7              | 37.4  | HASL 300, Tc-02-RC M | GEL     | / X /            |
| Thorium-230              | 5.05     | pCi/L    |                |              | 1.95               | 2.21              | 2.34  | HASL 300, Th-01-RC M | GEL     | / X / FDUP-OUT   |
| Uranium-234              | 3220     | pCi/L    |                |              | 131                | 388               | 598   | HASL 300, U-02-RC M  | GEL     | /x/              |
| Uranium-235              | 573      | pCi/L    |                |              | 151                | 194               | 210   | HASL 300, U-02-RC M  | GEL     | /x/              |
| Uranium-238              | 33700    | pCi/L    |                |              | 142                | 1240              | 4890  | HASL 300, U-02-RC M  | GEL     | /x/              |
| VOA                      |          |          |                |              |                    |                   |       |                      |         |                  |
| Trichloroethene          | 1        | ug/L     | U              |              | 1                  |                   |       | SW846-8260D          | GEL     | /x/              |
| WETCHEM                  | _        |          |                |              |                    |                   |       |                      |         |                  |
| Ammonia as Nitrogen      | 0.05     | mg/L     | UV             | /            | 0.05               |                   |       | EPA-350.1            | GEL     | / X /            |

\*\* TPU reported at 1.96 sigma

# Paducah OREIS Report for 404L25-01

Sample ID:

404L25-01-01D

LZ2-01-01D

Date Collected: 2/5/2025

SmpMethod: GR

MedType: WW

Comments: Field Duplicate; Depth to water 4.71' from ground surface. MH 2-5-25

Station: C404L

| Analysis                 | Results | Units | Result<br>Qual | Foot<br>Note | Reporting<br>Limit | Counting<br>Error | TPU** | Method               | LabCode | V/V/A*           |
|--------------------------|---------|-------|----------------|--------------|--------------------|-------------------|-------|----------------------|---------|------------------|
| ANION                    |         |       |                |              |                    |                   |       |                      |         |                  |
| Fluoride                 | 9.11    | mg/L  |                |              | 4                  |                   |       | SW846-9056A          | GEL     | I/X/             |
| METAL                    |         |       |                |              |                    |                   |       |                      |         |                  |
| Arsenic                  | 0.0024  | mg/L  | J              |              | 0.005              |                   |       | SW846-6020B          | GEL     | / X /            |
| Barium                   | 0.109   | mg/L  |                |              | 0.004              |                   |       | SW846-6020B          | GEL     | / X /            |
| Cadmium                  | 0.001   | mg/L  | U              |              | 0.001              |                   |       | SW846-6020B          | GEL     | / X /            |
| Chromium                 | 0.00595 | mg/L  | J              |              | 0.01               |                   |       | SW846-6020B          | GEL     | S / X /          |
| Copper                   | 0.0397  | mg/L  |                |              | 0.002              |                   |       | SW846-6020B          | GEL     | / X /            |
| Iron                     | 1.9     | mg/L  |                |              | 0.1                |                   |       | SW846-6020B          | GEL     | / X /            |
| Lead                     | 0.00239 | mg/L  |                |              | 0.002              |                   |       | SW846-6020B          | GEL     | / X /            |
| Mercury                  | 0.0002  | mg/L  | U              |              | 0.0002             |                   |       | SW846-7470A          | GEL     | / X /            |
| Nickel                   | 0.0184  | mg/L  |                |              | 0.002              |                   |       | SW846-6020B          | GEL     | / X /            |
| Selenium                 | 0.005   | mg/L  | U              |              | 0.005              |                   |       | SW846-6020B          | GEL     | / X /            |
| Silver                   | 0.001   | mg/L  | U              |              | 0.001              |                   |       | SW846-6020B          | GEL     | / X /            |
| Uranium                  | 96.1    | mg/L  |                |              | 0.02               |                   |       | SW846-6020B          | GEL     | I/X/             |
| Zinc                     | 0.0203  | mg/L  |                |              | 0.02               |                   |       | SW846-6020B          | GEL     | / X /            |
| РРСВ                     |         |       |                |              |                    |                   |       |                      |         |                  |
| PCB-1016                 | 0.0996  | ug/L  | U              |              | 0.0996             |                   |       | SW846-8082A          | GEL     | /x/              |
| PCB-1221                 | 0.0996  | ug/L  | U              |              | 0.0996             |                   |       | SW846-8082A          | GEL     | /x/              |
| PCB-1232                 | 0.0996  | ug/L  | U              |              | 0.0996             |                   |       | SW846-8082A          | GEL     | / X /            |
| PCB-1242                 | 0.0996  | ug/L  | U              |              | 0.0996             |                   |       | SW846-8082A          | GEL     | / X /            |
| PCB-1248                 | 1.37    | ug/L  |                |              | 0.0996             |                   |       | SW846-8082A          | GEL     | / X /            |
| PCB-1254                 | 0.844   | ug/L  |                |              | 0.0996             |                   |       | SW846-8082A          | GEL     | / X / FDUP-OUT   |
| PCB-1260                 | 0.509   | ug/L  |                |              | 0.0996             |                   |       | SW846-8082A          | GEL     | / X / FDUP-OUT   |
| Polychlorinated biphenyl | 2.72    | ug/L  |                |              | 0.0996             |                   |       | SW846-8082A          | GEL     | I / X / FDUP-OUT |
| RADS                     |         |       |                |              |                    |                   |       |                      |         |                  |
| Cesium-137               | 6.2     | pCi/L | U              |              | 11.1               | 5.38              | 6.09  | EPA-901.1            | GEL     | /x/              |
| Neptunium-237            | 18.5    | pCi/L |                |              | 1.65               | 4.16              | 4.69  | ASTM-1475-00M        | GEL     | s/x/             |
| Plutonium-239/240        | 11      | pCi/L |                |              | 0.689              | 2.32              | 2.64  | HASL 300, Pu-11-RC M | GEL     | S / X /          |
| Technetium-99            | 370     | pCi/L |                |              | 23.5               | 22.1              | 47.4  | HASL 300, Tc-02-RC M | GEL     | / X /            |
| Thorium-230              | 25.8    | pCi/L |                |              | 1.51               | 4.28              | 5.47  | HASL 300, Th-01-RC M | GEL     | / X / FDUP-OUT   |
| Uranium-234              | 3190    | pCi/L |                |              | 84.7               | 315               | 491   | HASL 300, U-02-RC M  | GEL     | / X /            |
| Uranium-235              | 555     | pCi/L |                |              | 65.7               | 148               | 162   | HASL 300, U-02-RC M  | GEL     | / X /            |
| Uranium-238              | 35100   | pCi/L |                |              | 53.1               | 1040              | 4250  | HASL 300, U-02-RC M  | GEL     | /x/              |
| VOA                      |         |       |                |              |                    |                   |       |                      |         |                  |
| Trichloroethene          | 1       | ug/L  | U              |              | 1                  |                   |       | SW846-8260D          | GEL     | /x/              |
| WETCHEM                  |         |       |                |              |                    |                   |       |                      |         | , .              |
| Ammonia as Nitrogen      | 0.05    | mg/L  | UW             | /            | 0.05               |                   |       | EPA-350.1            | GEL     | /x/              |

# Paducah OREIS Report for 404L25-01

Date Collected: 2/5/2025

MedType: WQ

SmpMethod:

Station: QC

Sample ID:

FB404L25-01 Comments:

| Analysis                 | Results  | Units | Result<br>Qual | Foot<br>Note | Reporting<br>Limit | Counting<br>Error | TPU** | Method               | LabCode | V/V/A* |
|--------------------------|----------|-------|----------------|--------------|--------------------|-------------------|-------|----------------------|---------|--------|
| ANION                    |          |       |                |              |                    |                   |       |                      |         |        |
| Fluoride                 | 4        | mg/L  | U              |              | 4                  |                   |       | SW846-9056A          | GEL     | /x/    |
| METAL                    |          |       |                |              |                    |                   |       |                      |         |        |
| Arsenic                  | 0.005    | mg/L  | U              |              | 0.005              |                   |       | SW846-6020B          | GEL     | / x /  |
| Barium                   | 0.004    | mg/L  | U              |              | 0.004              |                   |       | SW846-6020B          | GEL     | / x /  |
| Cadmium                  | 0.001    | mg/L  | U              |              | 0.001              |                   |       | SW846-6020B          | GEL     | / x /  |
| Chromium                 | 0.01     | mg/L  | U              |              | 0.01               |                   |       | SW846-6020B          | GEL     | / x /  |
| Copper                   | 0.002    | mg/L  | U              |              | 0.002              |                   |       | SW846-6020B          | GEL     | / x /  |
| Iron                     | 0.1      | mg/L  | U              |              | 0.1                |                   |       | SW846-6020B          | GEL     | / x /  |
| Lead                     | 0.002    | mg/L  | U              |              | 0.002              |                   |       | SW846-6020B          | GEL     | /x/    |
| Mercury                  | 0.0002   | mg/L  | U              |              | 0.0002             |                   |       | SW846-7470A          | GEL     | /x/    |
| Nickel                   | 0.002    | mg/L  | U              |              | 0.002              |                   |       | SW846-6020B          | GEL     | /x/    |
| Selenium                 | 0.005    | mg/L  | U              |              | 0.005              |                   |       | SW846-6020B          | GEL     | /x/    |
| Silver                   | 0.001    | mg/L  | U              |              | 0.001              |                   |       | SW846-6020B          | GEL     | / x /  |
| Uranium                  | 0.000546 | mg/L  |                |              | 0.0002             |                   |       | SW846-6020B          | GEL     | /x/    |
| Zinc                     | 0.02     | mg/L  | U              |              | 0.02               |                   |       | SW846-6020B          | GEL     | /x/    |
| РРСВ                     |          |       |                |              |                    |                   |       |                      |         |        |
| PCB-1016                 | 0.0991   | ug/L  | U              |              | 0.0991             |                   |       | SW846-8082A          | GEL     | / x /  |
| PCB-1221                 | 0.0991   | ug/L  | U              |              | 0.0991             |                   |       | SW846-8082A          | GEL     | / x /  |
| PCB-1232                 | 0.0991   | ug/L  | U              |              | 0.0991             |                   |       | SW846-8082A          | GEL     | /x/    |
| PCB-1242                 | 0.0991   | ug/L  | U              |              | 0.0991             |                   |       | SW846-8082A          | GEL     | /x/    |
| PCB-1248                 | 0.0991   | ug/L  | U              |              | 0.0991             |                   |       | SW846-8082A          | GEL     | / x /  |
| PCB-1254                 | 0.0991   | ug/L  | U              |              | 0.0991             |                   |       | SW846-8082A          | GEL     | / x /  |
| PCB-1260                 | 0.0991   | ug/L  | U              |              | 0.0991             |                   |       | SW846-8082A          | GEL     | / x /  |
| Polychlorinated biphenyl | 0.0991   | ug/L  | U              |              | 0.0991             |                   |       | SW846-8082A          | GEL     | /x/    |
| RADS                     |          |       |                |              |                    |                   |       |                      |         |        |
| Cesium-137               | 2.45     | pCi/L | U              |              | 8.03               | 3.9               | 4.06  | EPA-901.1            | GEL     | / X /  |
| Neptunium-237            | 0.243    | pCi/L | U              |              | 5.88               | 2.76              | 2.77  | ASTM-1475-00M        | GEL     | / X /  |
| Plutonium-239/240        | -0.147   | pCi/L | U              |              | 1.01               | 0.34              | 0.341 | HASL 300, Pu-11-RC M | GEL     | / X /  |
| Technetium-99            | 4.24     | pCi/L | U              |              | 21.2               | 12.4              | 12.4  | HASL 300, Tc-02-RC M | GEL     | / X /  |
| Thorium-230              | 1.14     | pCi/L |                |              | 0.975              | 0.819             | 0.834 | HASL 300, Th-01-RC M | GEL     | / X /  |
| Uranium-234              | 0.156    | pCi/L | U              |              | 0.62               | 0.37              | 0.371 | HASL 300, U-02-RC M  | GEL     | / x /  |
| Uranium-235              | 0.0556   | pCi/L | U              |              | 0.812              | 0.415             | 0.415 | HASL 300, U-02-RC M  | GEL     | / x /  |
| Uranium-238              | 0.446    | pCi/L | U              |              | 0.657              | 0.486             | 0.489 | HASL 300, U-02-RC M  | GEL     | /x/    |
| VOA                      |          |       |                |              |                    |                   |       |                      |         |        |
| Trichloroethene          | 1        | ug/L  | U              |              | 1                  |                   |       | SW846-8260D          | GEL     | /x/    |
| WETCHEM                  |          |       |                |              |                    |                   |       |                      |         |        |
| Ammonia as Nitrogen      | 0.05     | mg/L  | UW             | ,            | 0.05               |                   |       | EPA-350.1            | GEL     | / X /  |
## Paducah OREIS Report for 404L25-01

Sample ID:

Comments:

Station: QC RI404L25-01

Date Collected: 2/5/2025

MedType: WQ

SmpMethod:

| Analysis                 | Results | Units | Result<br>Qual | Foot<br>Note | Reporting<br>Limit | Counting<br>Error | TPU** | Method               | LabCode | V/V/A* |
|--------------------------|---------|-------|----------------|--------------|--------------------|-------------------|-------|----------------------|---------|--------|
| ANION                    |         |       |                |              |                    |                   |       |                      |         |        |
| Fluoride                 | 4       | mg/L  | U              |              | 4                  |                   |       | SW846-9056A          | GEL     | / X    |
| METAL                    |         |       |                |              |                    |                   |       |                      |         |        |
| Arsenic                  | 0.005   | mg/L  | U              |              | 0.005              |                   |       | SW846-6020B          | GEL     | / X    |
| Barium                   | 0.004   | mg/L  | U              |              | 0.004              |                   |       | SW846-6020B          | GEL     | / X    |
| Cadmium                  | 0.001   | mg/L  | U              |              | 0.001              |                   |       | SW846-6020B          | GEL     | / X    |
| Chromium                 | 0.01    | mg/L  | U              |              | 0.01               |                   |       | SW846-6020B          | GEL     | / X    |
| Copper                   | 0.002   | mg/L  | U              |              | 0.002              |                   |       | SW846-6020B          | GEL     | / X    |
| Iron                     | 0.1     | mg/L  | U              |              | 0.1                |                   |       | SW846-6020B          | GEL     | / X    |
| Lead                     | 0.002   | mg/L  | U              |              | 0.002              |                   |       | SW846-6020B          | GEL     | / X    |
| Mercury                  | 0.0002  | mg/L  | U              |              | 0.0002             |                   |       | SW846-7470A          | GEL     | / X    |
| Nickel                   | 0.002   | mg/L  | U              |              | 0.002              |                   |       | SW846-6020B          | GEL     | / X    |
| Selenium                 | 0.005   | mg/L  | U              |              | 0.005              |                   |       | SW846-6020B          | GEL     | / X    |
| Silver                   | 0.001   | mg/L  | U              |              | 0.001              |                   |       | SW846-6020B          | GEL     | / X    |
| Uranium                  | 0.00012 | mg/L  | J              |              | 0.0002             |                   |       | SW846-6020B          | GEL     | / X    |
| Zinc                     | 0.02    | mg/L  | U              |              | 0.02               |                   |       | SW846-6020B          | GEL     | / X    |
| РРСВ                     |         |       |                |              |                    |                   |       |                      |         |        |
| PCB-1016                 | 0.0983  | ug/L  | U              |              | 0.0983             |                   |       | SW846-8082A          | GEL     | / X    |
| PCB-1221                 | 0.0983  | ug/L  | U              |              | 0.0983             |                   |       | SW846-8082A          | GEL     | / X    |
| PCB-1232                 | 0.0983  | ug/L  | U              |              | 0.0983             |                   |       | SW846-8082A          | GEL     | / X    |
| PCB-1242                 | 0.0983  | ug/L  | U              |              | 0.0983             |                   |       | SW846-8082A          | GEL     | / X    |
| PCB-1248                 | 0.0983  | ug/L  | U              |              | 0.0983             |                   |       | SW846-8082A          | GEL     | / X    |
| PCB-1254                 | 0.0983  | ug/L  | U              |              | 0.0983             |                   |       | SW846-8082A          | GEL     | / X    |
| PCB-1260                 | 0.0983  | ug/L  | U              |              | 0.0983             |                   |       | SW846-8082A          | GEL     | / X    |
| Polychlorinated biphenyl | 0.0983  | ug/L  | U              |              | 0.0983             |                   |       | SW846-8082A          | GEL     | / X    |
| RADS                     |         |       |                |              |                    |                   |       |                      |         |        |
| Cesium-137               | 3.8     | pCi/L | U              |              | 7.7                | 4.6               | 4.61  | EPA-901.1            | GEL     | / X    |
| Neptunium-237            | 1.32    | pCi/L | U              |              | 4.82               | 3.04              | 3.04  | ASTM-1475-00M        | GEL     | / X    |
| Plutonium-239/240        | -0.0718 | pCi/L | U              |              | 0.829              | 0.318             | 0.318 | HASL 300, Pu-11-RC M | GEL     | / X    |
| Technetium-99            | 2.15    | pCi/L | U              |              | 20.5               | 12                | 12    | HASL 300, Tc-02-RC M | GEL     | / X    |
| Thorium-230              | 0.725   | pCi/L | U              |              | 1.36               | 0.887             | 0.896 | HASL 300, Th-01-RC M | GEL     | / X    |
| Uranium-234              | 0.22    | pCi/L | U              |              | 0.48               | 0.315             | 0.318 | HASL 300, U-02-RC M  | GEL     | / X    |
| Uranium-235              | 0.0381  | pCi/L | U              |              | 0.557              | 0.285             | 0.285 | HASL 300, U-02-RC M  | GEL     | / X    |
| Uranium-238              | 0.212   | pCi/L | U              |              | 0.515              | 0.325             | 0.326 | HASL 300, U-02-RC M  | GEL     | / x    |
| VOA                      |         |       |                |              |                    |                   |       |                      |         |        |
| Trichloroethene          | 1       | ug/L  | U              |              | 1                  |                   |       | SW846-8260D          | GEL     | / X    |
| WETCHEM                  |         |       |                |              |                    |                   |       |                      |         |        |
| Ammonia as Nitrogen      | 0.05    | mg/L  | UW             | /            | 0.05               |                   |       | EPA-350.1            | GEL     | / X    |

## Paducah OREIS Report for 404L25-01

| Sample ID:<br>Comments:       | TB404L25-01 |       | Station: (     | QC           | Date               | Collected: 2/5/   | 2025  | MedType: WQ | SmpMethod: |        |     |
|-------------------------------|-------------|-------|----------------|--------------|--------------------|-------------------|-------|-------------|------------|--------|-----|
| Analysis                      | Results     | Units | Result<br>Qual | Foot<br>Note | Reporting<br>Limit | Counting<br>Error | TPU** | Method      | LabCode    | V/V/A* | J   |
| <b>VOA</b><br>Trichloroethene | 1           | ug/L  | U              |              | 1                  |                   |       | SW846-8260D | GEL        |        | /x/ |

THIS PAGE INTENTIONALLY LEFT BLANK