

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

November 18, 2022

Ms. Lauren Linehan Division of Waste Management Kentucky Department for Environmental Protection 625 Hospital Drive Madisonville, Kentucky 42431

Ms. April Webb Hazardous Waste Branch Manager Division of Waste Management Kentucky Department for Environmental Protection 300 Sower Boulevard, 2nd Floor Frankfort, Kentucky 40601

Dear Ms. Linehan and Ms. Webb:

C-404 HAZARDOUS WASTE LANDFILL NOVEMBER 2022 SEMIANNUAL GROUNDWATER REPORT (APRIL 2022–SEPTEMBER 2022), PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, FRNP-RPT-0244/V2, HAZARDOUS WASTE MANAGEMENT FACILITY PERMIT NO. KY8-890-008-982, AGENCY INTEREST ID NO. 3059

Enclosed is the subject report for the second reporting period, fiscal year 2022. This report is required in accordance with Part II, Specific Condition II.K.6.d, of Hazardous Waste Management Facility Permit No. KY8-890-008-982 (Permit).

Results of the statistical analyses indicate that compliance well concentrations of permit-required parameters are not statistically different from those in background wells, except for arsenic in monitoring well MW84A. The plume discussed in the 2007 *C-404 Landfill Source Demonstration Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PRS-ENM-0031/R2 (ASD), demonstrated that the C-404 Landfill was not the source of the historical, statistically significant background exceedance of trichloroethene (TCE) in MW84. Current concentration trends and spatial distribution data for arsenic were demonstrated to be consistent with TCE distribution and trends presented in the 2007 ASD. This demonstration precludes the need for a compliance monitoring program or corrective action plan under Section II.K.8 of the Permit for the arsenic in MW84A.

RECEIVED By Terri Drake at 1:46 pm, Nov 21, 2022

PPPO-02-10022827-23B

If you have any questions or require additional information, please contact David Dollins at (270) 441-6819.

Sincerely,

April Ladd Date: 2022.11.18 10:09:16

April Ladd Acting Paducah Site Lead Portsmouth/Paducah Project Office

Enclosures:

- 1. Certification Page
- C-404 Hazardous Waste Landfill November 2022 Semiannual Groundwater Report (April 2022–September 2022), Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0244/V2

cc w/enclosures: abigal.parish@pppo.gov, PPPO april.ladd@pppo.gov, PPPO april.webb@ky.gov, KDEP brian.begley@ky.gov, KDEP bruce.ford@pad.pppo.gov, FRNP bryan.smith@pad.pppo.gov, FRNP christopher.travis@ky.gov, KDEP dave.dollins@pppo.gov, PPPO dennis.greene@pad.pppo.gov, FRNP frnpcorrespondence@pad.pppo.gov jennifer.woodard@pppo.gov, PPPO ken.davis@pad.pppo.gov, FRNP lauren.linehan@ky.gov, KDEP leo.williamson@ky.gov, KDEP lisa.crabtree@pad.pppo.gov, FRNP myrna.redfield@pad.pppo.gov, FRNP pad.rmc@pad.pppo.gov stephaniec.brock@ky.gov, KYRHB tracey.duncan@pppo.gov, PPPO victor.weeks@epa.gov EPA

CERTIFICATION

Document Identification: C-404 Hazardous Waste Landfill November 2022 Semiannual Groundwater Report (April 2022–September 2022), Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0244/V2, Permit No. KY8-890-008-982, Agency Interest ID No. 3059, dated November 2022

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Four Rivers Nuclear Partnership, LLC

Myrna E. Redfield

Digitally signed by Myrna E. Redfield Date: 2022.11.17 12:33:32 -06'00'

Myrna E. Redfield, Program Manager Four Rivers Nuclear Partnership, LLC Date Signed

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

U.S. Department of Energy

April Ladd Date: 2022.11.17 15:40:03 -06'00'

April Ladd, Acting Paducah Site Lead Portsmouth/Paducah Project Office U.S. Department of Energy Date Signed

FRNP-RPT-0244/V2

C-404 Hazardous Waste Landfill November 2022 Semiannual Groundwater Report (April–September 2022), Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

<u>11 - 15.22</u> Date **Classification Support**

FRNP-RPT-0244/V2

C-404 Hazardous Waste Landfill November 2022 Semiannual Groundwater Report (April–September 2022), Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—November 2022

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FOUR RIVERS NUCLEAR PARTNERSHIP, LLC, managing the Deactivation and Remediation Project at the Paducah Gaseous Diffusion Plant under Contract DE-EM0004895

TA	ABLES	
FIC	GURES	
AC	CRONYMS	vii
EX	ECUTIVE SU	JMMARYix
1.	INTRODUC 1.1 BACK 1.2 MONT 1.2.1 1.2.2	TION 1 GROUND 1 TORING PERIOD ACTIVITIES 2 Groundwater Monitoring 2 Landfill Leachate 4
2.	STATISTIC	AL SYNOPSIS
3.	DATA VAL SUMMARY	IDATION AND QUALITY ASSURANCE/QUALITY CONTROL
4.	PROFESSIO	NAL GEOLOGIST AUTHORIZATION11
5.	REFERENC	ES13
AP	PPENDIX A:	C-404 HAZARDOUS WASTE LANDFILL GROUNDWATER ANALYTICAL RESULTS
AP	PENDIX B:	C-404 HAZARDOUS WASTE LANDFILL STATISTICAL ANALYSES B-1
AP	PPENDIX C:	2022 ANNUAL REPORT OF THE C-404 LANDFILL HYDRAULIC FLOW RATE AND DIRECTIONC-1

CONTENTS

TABLES

1.	Monitoring Well Locations	. 2
2.	Assembled Kentucky Groundwater Numbers	.4

FIGURES

1.	Monitoring Wells	3
2.	Arsenic and TCE Trends in C-404 Landfill Compliance Well MW84/84A	. 5
3.	Arsenic Trends in C-404 Landfill Compliance Wells	6
4.	Arsenic Trends in C-404 Landfill Background Wells	6
5.	Potentiometric Surface of the Upper Regional Gravel Aquifer at the C-404 Landfill,	
	July 26, 2022	. 7

ACRONYMS

- Assembled Kentucky Groundwater AKGWA
- monitoring well MW
- Resource Conservation and Recovery Act Regional Gravel Aquifer RCRA
- RGA
- Upper Continental Recharge System Upper Regional Gravel Aquifer UCRS
- URGA

EXECUTIVE SUMMARY

This report, *C-404 Hazardous Waste Landfill November 2022 Semiannual Groundwater Report (April-September 2022), Paducah Gaseous Diffusion Plant, Paducah, Kentucky,* FRNP-RPT-0244/V2, is being submitted by the U.S. Department of Energy in accordance with requirements in Kentucky Division of Waste Management Hazardous Waste Management Facility Permit, KY8-890-008-982 (Permit). The period covered by this report is April through September 2022; and the report includes analytical data from the July 2021, November 2021, January 2022, May 2022, and July–August 2022 quarterly compliance monitoring for radionuclides (including a resampling event for technetium-99; see Section 3 for additional details), as well as the July–September 2022 semiannual sampling [including resampling events for trichloroethene (TCE)] for all parameters of monitoring wells (MWs) located in the vicinity of the closed C-404 Hazardous Waste Landfill).

The groundwater monitoring analytical data were subjected to statistical analyses. The analyses were conducted in accordance with the Hazardous Waste Management Facility Permit. Arsenic concentrations in compliance well MW84A were statistically different from concentrations in the background wells. The statistical tests on all other parameters showed no statistical difference between concentrations in the compliance and background wells.

Arsenic concentrations in compliance well MW84A are increasing similar to past TCE trends in the same well. Moreover, arsenic trends are increasing for both background and other compliance well locations, indicating that the contaminant plume discussed in the 2007 *C-404 Landfill Source Demonstration, Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PRS-ENM-0031/R2 (PRS 2007a) (2007 ASD) for TCE appears to have continued to migrate northeastward. Additionally, none of the C-404 Landfill leachate samples collected over the past 10 years have had detectable concentrations of arsenic; therefore, consistent with the findings in the 2007 ASD for TCE, the C-404 Landfill cannot be the source of the arsenic found in the wells. This demonstration for arsenic in MW84A fulfills Section II.K.8 of the Hazardous Waste Management Facility Permit, which allows for demonstrating that the exceedance is consistent with the findings in the 2007 ASD and also allows for the demonstration to be submitted within the semiannual report.

The leachate in the C-404 Landfill leachate collection system is monitored at least monthly and, at a minimum, is removed and sampled when the level exceeds 3 ft in depth. During this reporting period of April through September 2022, the maximum depth of the leachate did not exceed 3 ft. Consequently, no leachate was removed or sampled during the current reporting period.

The annual leachate sump integrity test, as required by Section 1.2 of Appendix I2 of the Permit, was conducted between August 16, 2022, and September 26, 2022. Data was collected at a known depth at 1-hour increments to determine the change in leachate levels over time. Results of the integrity test were within normal limits.

1. INTRODUCTION

This report contains the statistical evaluation of data from groundwater sampling and analysis for the closed C-404 Hazardous Waste Landfill (C-404 Landfill) at the U.S. Department of Energy Paducah Site (Paducah Site), Paducah, Kentucky. This semiannual report is required by the Kentucky Division of Waste Management Hazardous Waste Management Facility Permit, KY8-890-008-982 (Permit) (KDWM 2020), Specific Condition II.K.6.d—Recordkeeping, Reporting, and Response. The period covered by this report is April through September 2022.

Groundwater analytical results are provided in Appendix A. The statistical analyses and qualification statement are provided in Appendix B. The annual groundwater flow rate and direction determination is provided in Appendix C.

1.1 BACKGROUND

The closed C-404 Landfill is located in the west-central portion of the Paducah Site secured area. The 1.2-acre facility operated as a surface impoundment from approximately 1952 until early 1957. During this time, influents to the impoundment originated from the C-400 Cleaning Building. In 1957, the impoundment was converted to a solid waste disposal facility for uranium-contaminated solid waste. When the impoundment was converted into a disposal facility, a sump was installed at the former weir to collect the leachate from the facility. Leachate is pumped from the sump, as needed, into a mobile tank. The leachate then is transferred to a permitted hazardous waste storage facility on-site prior to characterization and transferred off-site for treatment.

In 1986, the disposal of waste at the C-404 Landfill was halted, and a portion of the disposed-of waste was found to be Resource Conservation and Recovery Act (RCRA)-hazardous. The landfill was covered with a RCRA multilayered cap and certified closed in 1987. It currently is regulated under RCRA as a land disposal unit and compliance is monitored under the current Hazardous Waste Management Facility Permit (KDWM 2020).

Previous groundwater monitoring documented that concentrations in compliance wells were statistically different from background wells for trichloroethene (TCE). The *C-404 Landfill Source Demonstration, Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, (PRS 2007a) (2007 ASD) demonstrated that the source of the TCE in compliance wells is not from the C-404 Landfill, but rather, the source is located upgradient/crossgradient of the C-404 Landfill.

Regional Gravel Aquifer (RGA) compliance monitoring well (MW) 90 was abandoned and replaced by MW90A in 2001. RGA compliance well MW420 was installed in 2007 to better assess groundwater quality at the C-404 Landfill (PRS 2007b).

Previous groundwater monitoring of RGA compliance well MW87 documented that concentrations in the compliance well were statistically different from background wells for lead and uranium (FRNP 2018). The *C-404 Hazardous Waste Landfill Alternate Source Demonstration—Source of Lead and Uranium in MW87 at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, (FRNP 2019) concluded that the statistical differences were a result of infiltration of Upper Continental Recharge System (UCRS) groundwater into the RGA well due to compromised integrity of the well. The integrity of the well had deteriorated to a point that it no longer was suitable for its intended purpose. RGA compliance wells MW84, MW87, and background well MW93 were abandoned and replaced with MW84A, MW87A, and MW93A in 2019. RGA wells MW84 and MW93 were abandoned and replaced because they were the same age (installed in 1988) as MW87. MW84A and MW87A were placed 10 ft north of MW84 and MW87, respectively, and

screened at the same depth intervals. MW93A was placed 6 ft west of MW93 and screened at the same depth interval.

In the first semiannual reporting period for 2021 (October 2020–March 2021), statistical analysis of Tc-99 detections in downgradient compliance well MW84A indicated a statistically significant exceedance over background concentrations. Notification of the statistically significant difference for Tc-99 in MW84A was submitted, pursuant to Part II, Specific Condition II.K.6.a, to the Kentucky Department of Waste Management.

An alternate source demonstration investigation for Tc-99 in MW84A was performed in June 2021. The *C-404 Hazardous Waste Landfill Alternate Source Demonstration—Source of Technetium-99 in MW84A at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, FRNP-RPT-0206, consisted of redevelopment and over pumping of MW84A, and review of the lines of evidence relating redevelopment of MW84A and the associated Tc-99 levels (FRNP 2021). The lines of evidence concluded that the observed trend of increasing Tc-99 in MW84A is not a result of contamination introduced into the well boring during drilling and well installation, but it is indicative of dissolved Tc-99 contamination in the RGA. Quarterly compliance monitoring for Tc-99 and other radionuclides is currently being conducted at the C-404 Landfill. This current semiannual report contains results from additional quarterly compliance sampling for radiological constituents conducted in November 2021 and May 2022, in addition to the routine semiannual groundwater sampling.

In accordance with Permit Specific Condition II.K.6.j, development and submittal of an engineering feasibility plan for a corrective action program is not required when a statistically significant exceedance has been confirmed for radionuclides (i.e., Tc-99).

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

There are nine MWs sampled under the Permit for the C-404 Landfill: four UCRS wells and five Upper Regional Gravel Aquifer (URGA) wells. A map of the MW locations is provided in Figure 1.

Table 1 presents the well number for URGA wells located upgradient and downgradient of the C-404 Landfill. Table 1 also presents the well numbers for the UCRS wells located in proximity to the URGA wells. This table refers to the UCRS wells as being adjacent to an upgradient or downgradient URGA well location and are identified relative to URGA groundwater flow direction. The conceptual model for the C-404 Landfill indicates that groundwater in the UCRS wells flows primarily vertically downward until it reaches the URGA; therefore, UCRS wells are not considered "upgradient" or "downgradient" of other UCRS wells in the area.

UCRS						
Located south of C-404 Landfill, adjacent to	MW04					
upgradient URGA background well MW93A	WI W 94					
Located north of C-404 Landfill, adjacent to	MW85, MW88, MW91A*					
downgradient URGA compliance wells						
URGA						
Upgradient background wells	MW93A*, MW420					
Downgradient compliance wells	MW84A*, MW87A*, MW90A*					

 Table 1. Monitoring Well Locations

*MW90 was abandoned in 2001 and replaced with MW90A. MW91 was abandoned in 2017 and replaced with MW91A. MW84, MW87, and MW93 were abandoned in 2019 and replaced with MW84A, MW87A, and MW93A.

Figure 1. Monitoring Wells

Table 2 presents the Assembled Kentucky Groundwater (AKGWA) numbers for each MW.

Paducah Site Well	AKGWA
Number	Number
MW84A	8007-4849
MW85	8000-5234
MW87A	8007-4850
MW88	8000-5237
MW90A	8004-0357
MW91A	8007-2917
MW93A	8007-4851
MW94	8000-5103
MW420	8005-3263

Table 2.	Assembled	Kentucky
Grou	ndwater Ni	umbers

All nine MWs were sampled in May and July 2022 during this reporting period. Samples collected in May 2022 were analyzed for radionuclides and the samples collected in July 2022 were analyzed for parameters required by Part VIII.E of the Permit. Four MWs were resampled for TCE and Tc-99 in August 2022, and three MWs were resampled for TCE in September 2022 (see Section 3 for additional details). Groundwater sampling was conducted using procedure CP4-ES-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were used. The laboratory that performed the analyses used U.S. Environmental Protection Agency-approved methods, as applicable. Appendix A of this report contains the analytical results. Appendix B of this report contains the statistical analyses.

1.2.2 Landfill Leachate

In accordance with Appendix I2, C-404 Landfill Closure Plan, Section 1.2 of the Permit, the quantity of liquid in the leachate collection system is monitored (at least monthly) and, at a minimum, will be "removed when the quantity exceeds 3 ft in depth." Once the leachate depth reaches 3 ft, the leachate is pumped into a mobile tank. The leachate then is transferred to a permitted hazardous waste storage facility on-site prior to characterization and transferred off-site for treatment. During this reporting period of April through September 2022, the maximum depth of the leachate did not exceed 3 ft. Consequently, no leachate was removed or sampled during the current reporting period.

The annual leachate sump integrity test, as required by Section 1.2 of Appendix I2 of the Permit, was conducted between August 16, 2022, and September 26, 2022. Data was collected at a known depth at 1-hour increments to determine the change in leachate levels over time. Results of the integrity test were within normal limits.

2. STATISTICAL SYNOPSIS

The statistical analyses conducted on the data collected from the C-404 Landfill were performed in accordance with procedures in the Permit, Part VIII.E, reissued in February 2020. Appendix B of this report contains the statistical analyses performed for this reporting period. Statistical analyses utilized data from the URGA background wells, MW93A and MW420, and URGA compliance wells, MW84A, MW87A, and MW90A. Quarterly compliance monitoring groundwater sampling for radiological constituents was initiated during third quarter 2021 (July 2021) and the second quarterly monitoring event occurred during fourth quarter 2021 (November 2021). The additional quarter of groundwater data for radiological constituents alters the available data sets for the statistical analyses. For this reporting period, the data set includes nonradionuclide data from July 2020, January 2021, July 2021, January 2022 and July–August 2022 (including resampling events for TCE; see Section 3 for additional details). The reporting period data set for radionuclides includes July 2021, November 2021, January 2022, May 2022, and July–August 2022 (including resampling events for Tc-99).

Appendix B provides a summary of the statistical analyses performed. The statistical tests on all wells and parameters showed no statistical difference between concentrations in the compliance and background wells with the exception of arsenic in MW84A.

STATISTICALLY SIGNIFICANT EXCEEDANCE OF ARSENIC BACKGROUND IN MW84A

An alternate source demonstration previously was conducted for TCE in MW84. The 2007 ASD demonstrated that the C-404 Landfill was not the source of the historical, statistically significant background exceedance of TCE in MW84. The 2007 ASD found that the statistically significant increase of TCE in compliance well MW84 appeared to be due to an upgradient source of TCE migrating through the C-404 Landfill area.

The exceedance in arsenic concentration in MW84A over background concentrations is consistent with the findings in the 2007 ASD (PRS 2007a). The trend of arsenic concentrations in MW84 and MW84A is similar to the historical TCE trends observed at MW84 and MW84A (Figure 2). Rising arsenic levels occur in adjacent compliance well MW87A as well as background wells MW93A and MW420, as demonstrated in Figures 3 and 4.

Figure 2. Arsenic and TCE Trends in C-404 Landfill Compliance Well MW84/84A

Figure 3. Arsenic Trends in C-404 Landfill Compliance Wells

Figure 4. Arsenic Trends in C-404 Landfill Background Wells

Groundwater flow directions in July 2022 were to the northeast (see Figure 5), consistent with flow patterns found in 2007 during the alternate source demonstration. Recent increasing arsenic concentration trends in both compliance and background wells at the C-404 Landfill further indicate that the source of the arsenic is upgradient to the C-404 Landfill.

None of the C-404 Landfill leachate samples collected over the past 10 years have had detectable concentrations of arsenic; therefore, the C-404 Landfill cannot be the source of the arsenic found in the MWs.

This demonstration fulfills Section II.K.8 of the Hazardous Waste Management Facility Permit, which allows for demonstrating that the exceedance is consistent with the findings in the 2007 ASD and allows for the demonstration to be submitted within the semiannual report.

Figure 5. Potentiometric Surface of the Upper Regional Gravel Aquifer at the C-404 Landfill, July 26, 2022

3. DATA VALIDATION AND QUALITY ASSURANCE/QUALITY CONTROL SUMMARY

The data and the data validation qualifiers for the May and July-September 2022 data sets are provided in Appendix A. All data for these data sets were considered useable as reported. Data validation was performed on the analytical data by an independent, third-party validator.

Field quality control samples are collected during each semiannual sampling event. Equipment rinseate blanks, field blanks, field duplicates, and trip blanks are obtained to ensure quality control and are reported in the analytical results in Appendix A. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory and reported in the laboratory report. Both field and laboratory quality control sample results are reviewed as part of the data validation process.

In review of the July 2022 data, the laboratory suspected carryover of TCE in groundwater samples from MW420, MW87A, MW90A, and MW93A. Resampling of these wells for TCE was performed on August 15, 2022. TCE samples were collected to address analytical uncertainty. The same four wells were also resampled for Tc-99 in August 2022. Tc-99 samples were collected (opportunistically) to more fully evaluate Tc-99 trends across the C-404 Landfill.

Subsequent to the resampling, the original data package was reviewed and it was determined that the original sample from MW420 did not have an issue with carryover of TCE. The suspected carryover was associated with MW85. In addition to resampling MW85 on September 1, 2022, MW88 and MW94 were also resampled for TCE.

4. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-404 Hazardous Waste Landfill November 2022 Semiannual Groundwater Report (April–September 2022), Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FRNP-RPT-0244/V2)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

Kenneth R. Davis

PG113927

<u>November 14, 2022</u> Date

5. REFERENCES

- FRNP (Four Rivers Nuclear Partnership, LLC) 2018. C-404 Hazardous Waste Landfill November 2018 Semiannual Groundwater Report (April 2018—September 2018), Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0026/V2, U.S. Department of Energy, Paducah, KY, November.
- FRNP 2019. C-404 Hazardous Waste Landfill Alternate Source Demonstration—Source of Lead and Uranium in MW87 at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0078, Four Rivers Nuclear Partnership, LLC, Kevil, KY.
- FRNP 2021. C-404 Hazardous Waste Landfill Alternate Source Demonstration—Source of Technetium-99 in MW84A at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0206, Four Rivers Nuclear Partnership, LLC, Kevil, KY, August.
- KDWM (Kentucky Division of Waste Management) 2020. Hazardous Waste Management Facility Permit for the U.S. Department of Energy, Paducah Gaseous Diffusion Plant, KY8-890-008-982, effective February 21.
- PRS (Paducah Remediation Services, LLC) 2007a. C-404 Landfill Source Demonstration, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PRS-ENM-0031/R2, Paducah Remediation Services, LLC, Kevil, KY.
- PRS 2007b. Well Plan for Addition of Wells for C-404 Monitoring Well Network, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PRS/PROJ/0028, Paducah Remediation Services, LLC, Kevil, KY, July.

APPENDIX A

C-404 HAZARDOUS WASTE LANDFILL GROUNDWATER ANALYTICAL RESULTS

Facility: <u>C-404 Landfill</u> County: McCracken **Permit #:** KY8-890-008-982 Sampling Point: MW84A REG Downgradient URGA Period: Semiannual Report **AKGWA Well Tag #:** 8007-4849 Reporting Date Counting Parameter Qualifier **Result Units** Limit Collected Error (+/-) TPU Method Validation SW846-6020B 0.036 mg/L 0.005 7/11/2022 Arsenic = 7/11/2022 Arsenic, Dissolved 0.0361 mg/L 0.005 SW846-6020B = 29.93 Inches/Hg **Barometric Pressure Reading** 7/11/2022 Х SW846-6020B Cadmium U 0.001 mg/L 0.001 7/11/2022 = SW846-6020B Cadmium, Dissolved U 0.001 mg/L 0.001 7/11/2022 = SW846-6020B Chromium U 0.01 mg/L 0.01 7/11/2022 = Chromium, Dissolved U 0.01 mg/L 0.01 SW846-6020B 7/11/2022 = 472 umho/cm 7/11/2022 Conductivity Х Depth to Water 47.49 ft 7/11/2022 Х **Dissolved Oxygen** 3.98 mg/L 7/11/2022 Х 0.002 mg/L 0.002 SW846-6020B Lead U 7/11/2022 = Lead, Dissolved U 0.002 mg/L 0.002 7/11/2022 SW846-6020B = U 0.0002 mg/L 0.0002 7/11/2022 SW846-7470A Mercury = Mercury, Dissolved U 0.0002 mg/L 0.0002 7/11/2022 SW846-7470A = рΗ 5.81 Std Unit 7/11/2022 Х Redox 337 mV 7/11/2022 Х U 0.005 mg/L SW846-6020B Selenium 0.005 7/11/2022 = SW846-6020B Selenium, Dissolved U 0.005 mg/L 0.005 7/11/2022 = SW846-9056A Sulfate 6.99 mg/L 0.4 7/11/2022 = Technetium-99 47.2 pCi/L HASL 300, Tc-02-RC M 20.9 7/11/2022 13.5 14.4 = 64.2 deg F Temperature 7/11/2022 Х Trichloroethene 6570 ug/L 200 7/11/2022 SW846-8260D = Turbidity 0 NTU 7/11/2022 Х 7/11/2022 Uranium J 0.000068 mg/L 0.0002 SW846-6020B = Uranium-234 U -0.713 pCi/L 2.37 7/11/2022 0.763 0.764 HASL 300, U-02-RC M = Uranium-235 U 0.216 pCi/L 7/11/2022 0.811 0.812 HASL 300, U-02-RC M 1.36 = HASL 300, U-02-RC M = Uranium-238 U 0.239 pCi/L 7/11/2022 0.818 0.819 1.52

Facility: <u>C-404 Landfill</u> County: McCracken **Permit #:** KY8-890-008-982 Sampling Point: MW85 REG Downgradient UCRS Period: Semiannual Report **AKGWA Well Tag #:** 8000-5234 Reporting Date Counting Qualifier **Result Units** Limit Collected Error (+/-) TPU Method Validation Parameter SW846-6020B 0.00505 mg/L 0.005 7/11/2022 Arsenic = 7/11/2022 Arsenic, Dissolved J 0.00356 mg/L 0.005 SW846-6020B = 29.93 Inches/Hg **Barometric Pressure Reading** 7/11/2022 Х SW846-6020B Cadmium U 0.001 mg/L 0.001 7/11/2022 = SW846-6020B Cadmium, Dissolved U 0.001 mg/L 0.001 7/11/2022 = SW846-6020B Chromium J 0.00342 mg/L 7/11/2022 0.01 = Chromium, Dissolved 0.00338 mg/L 0.01 SW846-6020B J 7/11/2022 = 391 umho/cm 7/11/2022 Conductivity Х Depth to Water 8.75 ft 7/11/2022 Х **Dissolved Oxygen** 3.27 mg/L 7/11/2022 Х 0.002 mg/L 0.002 SW846-6020B Lead U 7/11/2022 = Lead, Dissolved U 0.002 mg/L 0.002 7/11/2022 SW846-6020B = U 0.0002 mg/L 0.0002 7/11/2022 SW846-7470A Mercury = Mercury, Dissolved U 0.0002 mg/L 0.0002 7/11/2022 SW846-7470A = рΗ 6.18 Std Unit 7/11/2022 Х Redox 348 mV 7/11/2022 Х U 0.005 mg/L SW846-6020B Selenium 0.005 7/11/2022 = SW846-6020B Selenium, Dissolved U 0.005 mg/L 0.005 7/11/2022 = SW846-9056A Sulfate 10.7 mg/L 0.4 7/11/2022 = Technetium-99 47.5 pCi/L HASL 300, Tc-02-RC M 21.6 7/11/2022 13.9 14.9 = 65.5 deg F Temperature 7/11/2022 Х Trichloroethene Х 95.1 ug/L 1 7/11/2022 SW846-8260D J Turbidity 1.36 NTU 7/11/2022 Х Uranium 0.00106 mg/L 0.0002 7/11/2022 SW846-6020B = Uranium-234 U 0.00942 pCi/L 2.75 7/11/2022 1.26 1.26 HASL 300, U-02-RC M = Uranium-235 U 0.192 pCi/L 2.05 7/11/2022 1.07 1.07 HASL 300, U-02-RC M = HASL 300, U-02-RC M = Uranium-238 U 0.479 pCi/L 2.6 7/11/2022 1.39 1.4

Facility: C-404 Lands	ill	County: <u>N</u>	McCracken			Permit #: <u>K</u>	Y8-890	-008-982	
Sampling Point:	MW85 REG	Do	owngradien	t UCR	5	Period: Semi	annual	Report	
AKGWA Well Tag #:	8000-5234		_						
. .	Qualifian	Decult	11	Reporting	Date	Counting	TDU	Mathad	Validation
Parameter	Qualifier	Result	Units	Limit	Collected	Error (+/-)	IPU	ivietnoa	validation
Barometric Pressure Read	ling	30.08	3 Inches/Hg		9/1/2022				Х
Conductivity		428	3 umho/cm		9/1/2022				Х
Depth to Water		9.68	3 ft		9/1/2022				Х
Dissolved Oxygen		2.24	↓ mg/L		9/1/2022				Х
рН		6.18	3 Std Unit		9/1/2022				Х
Redox		468	3 mV		9/1/2022				Х
Temperature		63.3	8 deg F		9/1/2022				Х
Trichloroethene	U	1	ug/L	1	9/1/2022			SW846-8260D	=
Turbidity		12.01	L NTU		9/1/2022				Х

Facility: <u>C-404 Landfill</u> County: McCracken **Permit #:** KY8-890-008-982 **Sampling Point:** MW85 FR Downgradient UCRS Period: Semiannual Report **AKGWA Well Tag #:** 8000-5234 Reporting Date Counting Error (+/-) TPU Parameter Qualifier **Result Units** Limit Collected Method Validation SW846-6020B Arsenic 0.00506 mg/L 0.005 7/11/2022 = Arsenic, Dissolved J 0.00304 mg/L 0.005 7/11/2022 SW846-6020B = Cadmium U 0.001 mg/L SW846-6020B 0.001 7/11/2022 = Cadmium, Dissolved SW846-6020B U 0.001 mg/L 0.001 7/11/2022 = SW846-6020B Chromium J 0.00319 mg/L 0.01 7/11/2022 = Chromium, Dissolved U SW846-6020B 0.01 mg/L 0.01 7/11/2022 = U 0.002 mg/L 0.002 SW846-6020B Lead 7/11/2022 = SW846-6020B Lead, Dissolved U 0.002 mg/L 0.002 7/11/2022 = U 0.0002 mg/L SW846-7470A Mercury 0.0002 7/11/2022 = Mercury, Dissolved U 0.0002 mg/L 0.0002 7/11/2022 SW846-7470A = U 0.005 mg/L 0.005 SW846-6020B Selenium 7/11/2022 = Selenium, Dissolved U 0.005 mg/L 0.005 7/11/2022 SW846-6020B = Sulfate 10.7 mg/L 0.4 7/11/2022 SW846-9056A = Technetium-99 49 pCi/L 7/11/2022 13.8 14.8 HASL 300, Tc-02-RC M = 21.4 Trichloroethene Х 51.2 ug/L 1 7/11/2022 SW846-8260D J SW846-6020B Uranium 0.00106 mg/L 0.0002 7/11/2022 = Uranium-234 -0.0255 pCi/L 1.07 HASL 300, U-02-RC M U 2.33 7/11/2022 1.07 = Uranium-235 HASL 300, U-02-RC M U 0.0112 pCi/L 0.829 1.84 7/11/2022 0.83 = HASL 300, U-02-RC M = Uranium-238 U 0.751 pCi/L 1.75 7/11/2022 1.13 1.13

Facility: <u>C-404 Landfill</u>		County: McCracken			Permit #: <u>KY8-890-008-982</u>				
Sampling Point:	MW85 FR	De	owngradi	ent UCRS	5	Period: Semi	annual	Report	
AKGWA Well Tag #	8000-5234		_						
				Reporting	Date	Counting			
Parameter	Qualifier	Result	Units	Limit	Collected	l Error (+/-)	TPU	Method	Validation
Trichloroethene	U	:	1 ug/L	1	9/1/2022			SW846-8260D	=
Facility: <u>C-404 Landfill</u> County: McCracken **Permit #:** KY8-890-008-982 Sampling Point: MW87A REG Downgradient URGA Period: Semiannual Report **AKGWA Well Tag #:** 8007-4850 Reporting Date Counting Parameter Qualifier **Result Units** Limit Collected Error (+/-) TPU Method Validation SW846-6020B 0.00827 mg/L 0.005 7/11/2022 Arsenic = Arsenic, Dissolved 0.00563 mg/L 0.005 7/11/2022 SW846-6020B = 29.94 Inches/Hg **Barometric Pressure Reading** 7/11/2022 Х SW846-6020B Cadmium U 0.001 mg/L 0.001 7/11/2022 = SW846-6020B Cadmium, Dissolved U 0.001 mg/L 0.001 7/11/2022 = SW846-6020B Chromium U 0.01 mg/L 0.01 7/11/2022 = Chromium, Dissolved U 0.01 mg/L 0.01 SW846-6020B 7/11/2022 = 345 umho/cm 7/11/2022 Conductivity Х Depth to Water 47.51 ft 7/11/2022 Х **Dissolved Oxygen** 3.7 mg/L 7/11/2022 Х 0.002 mg/L 0.002 SW846-6020B Lead U 7/11/2022 = Lead, Dissolved U 0.002 mg/L 0.002 7/11/2022 SW846-6020B = U 0.0002 mg/L 0.0002 7/11/2022 SW846-7470A Mercury = Mercury, Dissolved U 0.0002 mg/L 0.0002 7/11/2022 SW846-7470A = рΗ 5.74 Std Unit 7/11/2022 Х Redox 397 mV 7/11/2022 Х U 0.005 mg/L SW846-6020B Selenium 0.005 7/11/2022 = SW846-6020B Selenium, Dissolved U 0.005 mg/L 0.005 7/11/2022 = SW846-9056A Sulfate 6.84 mg/L 0.4 7/11/2022 = Technetium-99 U 4.85 pCi/L HASL 300, Tc-02-RC M 20.5 7/11/2022 12 12 = 65.6 deg F Temperature 7/11/2022 Х Trichloroethene 2330 ug/L 50 7/11/2022 SW846-8260D = Turbidity 0 NTU 7/11/2022 Х Uranium U 0.0002 mg/L 0.0002 SW846-6020B 7/11/2022 = Uranium-234 U 0.135 pCi/L 1.64 7/11/2022 0.806 0.807 HASL 300, U-02-RC M = Uranium-235 U -0.116 pCi/L 1.34 7/11/2022 0.514 0.515 HASL 300, U-02-RC M = HASL 300, U-02-RC M = Uranium-238 U 0.392 pCi/L 0.588 7/11/2022 0.672 0.674

Facility: <u>C-404 Land</u>	fill	County: 1	l		Permit #: <u>K</u>	0-008-982			
Sampling Point:	MW87A REG	De	owngradier	t URG	A	Period: Sem	iannual	Report	
AKGWA Well Tag #:	8007-4850		_						
Parameter	Qualifier	Result	Units	Reporting Limit	Date Collected	Counting Error (+/-)	TPU	Method \	/alidation
Barometric Pressure Read	ling	29.96	6 Inches/Hg		8/15/2022				х
Conductivity		339	9 umho/cm		8/15/2022				Х
Depth to Water		48.05	5 ft		8/15/2022				Х
Dissolved Oxygen		4.99	9 mg/L		8/15/2022				Х
рН		5.53	3 Std Unit		8/15/2022				Х
Redox		425	5 mV		8/15/2022				Х
Technetium-99	U	8.78	3 pCi/L	13.4	8/15/2022	8.04	8.1	HASL 300, Tc-02-RC N	A =
Temperature		64.4	1 deg F		8/15/2022				Х
Trichloroethene		1400) ug/L	50	8/15/2022			SW846-8260D	=
Turbidity		2.02	l ntu		8/15/2022				Х

Facility: <u>C-404 Landfill</u> County: McCracken **Permit #:** KY8-890-008-982 Sampling Point: MW88 REG Downgradient UCRS Period: Semiannual Report **AKGWA Well Tag #:** 8000-5237 Reporting Counting Date Qualifier **Result Units** Limit Collected Error (+/-) TPU Method Validation Parameter SW846-6020B 0.00694 mg/L 0.005 7/11/2022 Arsenic = Arsenic, Dissolved J 0.00367 mg/L 0.005 SW846-6020B 7/11/2022 = 29.95 Inches/Hg **Barometric Pressure Reading** 7/11/2022 Х SW846-6020B Cadmium U 0.001 mg/L 0.001 7/11/2022 = SW846-6020B Cadmium, Dissolved U 0.001 mg/L 0.001 7/11/2022 = SW846-6020B Chromium J 0.00317 mg/L 0.01 7/11/2022 = Chromium, Dissolved U 0.01 mg/L 0.01 SW846-6020B 7/11/2022 = 627 umho/cm 7/11/2022 Conductivity Х Depth to Water 8.23 ft 7/11/2022 Х **Dissolved Oxygen** 1.22 mg/L 7/11/2022 Х 0.000584 mg/L 0.002 SW846-6020B Lead J 7/11/2022 = Lead, Dissolved U 0.002 mg/L 0.002 7/11/2022 SW846-6020B = J 0.000156 mg/L 0.0002 7/11/2022 SW846-7470A Mercury = Mercury, Dissolved U 0.0002 mg/L 0.0002 7/11/2022 SW846-7470A = рΗ 5.73 Std Unit 7/11/2022 Х Redox 398 mV 7/11/2022 Х 0.005 mg/L 0.005 SW846-6020B Selenium U 7/11/2022 = SW846-6020B Selenium, Dissolved U 0.005 mg/L 0.005 7/11/2022 = SW846-9056A Sulfate 116 mg/L 4 7/11/2022 = Technetium-99 U 20 pCi/L HASL 300, Tc-02-RC M 21.4 7/11/2022 13 13.2 = 65.4 deg F Temperature 7/11/2022 Х Trichloroethene Х 59.4 ug/L 1 7/11/2022 SW846-8260D = Turbidity 13.55 NTU 7/11/2022 Х Uranium J 0.000127 mg/L 0.0002 SW846-6020B 7/11/2022 = Uranium-234 U -0.697 pCi/L 2.61 7/11/2022 0.742 0.744 HASL 300, U-02-RC M = Uranium-235 U 0.496 pCi/L 2.37 7/11/2022 1.36 1.37 HASL 300, U-02-RC M = HASL 300, U-02-RC M = Uranium-238 U -0.376 pCi/L 2.2 7/11/2022 0.712 0.714

Facility: <u>C-404 Land</u>	fill	County: <u>N</u>	AcCracken	. <u> </u>		Permit #: <u>K</u>			
Sampling Point:	MW88 REG	Do	wngradien	t UCRS	5	Period: Semi	annual	Report	
AKGWA Well Tag #:	8000-5237								
Parameter	Qualifier	Result	Units	Reporting Limit	Date Collected	Counting Error (+/-)	TPU	Method	Validation
Barometric Pressure Read	ling	30.09	Inches/Hg		9/1/2022				х
Conductivity		638	umho/cm		9/1/2022				Х
Depth to Water		9.02	ft		9/1/2022				Х
Dissolved Oxygen		1.26	mg/L		9/1/2022				Х
рН		5.8	Std Unit		9/1/2022				Х
Redox		391	mV		9/1/2022				Х
Temperature		65.7	deg F		9/1/2022				Х
Trichloroethene		2.3	ug/L	1	9/1/2022			SW846-8260D	=
Turbidity		110	NTU		9/1/2022				Х

Facility: <u>C-404 Landfi</u>		County: <u>McCracke</u>	n		Permit #: <u>H</u>	0-008-982		
Sampling Point:	MW90A REG	Downgradie	ent URG	A	Period: Sem	niannual	Report	
AKGWA Well Tag #:	8004-0357							
Parameter	Qualifier	Result Units	Reporting	Date Collected	Counting	тріі	Method \	alidation/
Arsenic	U	0.005 mg/L	0.005	7/11/2022			SW846-6020B	=
Arsenic, Dissolved	U	0.005 mg/L	0.005	7/11/2022			SW846-6020B	=
Barometric Pressure Readi	ng	29.95 Inches/Hg	3	7/11/2022				X
Cadmium	U	0.001 mg/L	0.001	7/11/2022			SW846-6020B	=
Cadmium, Dissolved	J	0.000353 mg/L	0.001	7/11/2022			SW846-6020B	J
Chromium	U	0.01 mg/L	0.01	7/11/2022			SW846-6020B	=
Chromium, Dissolved	U	0.01 mg/L	0.01	7/11/2022			SW846-6020B	=
Conductivity		224 umho/cm	1	7/11/2022				Х
Depth to Water		46.72 ft		7/11/2022				Х
Dissolved Oxygen		5.4 mg/L		7/11/2022				Х
Lead	U	0.002 mg/L	0.002	7/11/2022			SW846-6020B	=
Lead, Dissolved	U	0.002 mg/L	0.002	7/11/2022			SW846-6020B	=
Mercury	U	0.0002 mg/L	0.0002	7/11/2022			SW846-7470A	=
Mercury, Dissolved	U	0.0002 mg/L	0.0002	7/11/2022			SW846-7470A	=
рН		5.79 Std Unit		7/11/2022				х
Redox		391 mV		7/11/2022				Х
Selenium	U	0.005 mg/L	0.005	7/11/2022			SW846-6020B	=
Selenium, Dissolved		0.0121 mg/L	0.005	7/11/2022			SW846-6020B	=
Sulfate		4.2 mg/L	0.4	7/11/2022			SW846-9056A	=
Technetium-99	U	19.4 pCi/L	21	7/11/2022	12.8	12.9	HASL 300, Tc-02-RC N	1 =
Temperature		66 deg F		7/11/2022				Х
Trichloroethene		231 ug/L	4	7/11/2022			SW846-8260D	=
Turbidity		2.57 NTU		7/11/2022				Х
Uranium	U	0.0002 mg/L	0.0002	7/11/2022			SW846-6020B	=
Uranium-234	U	-0.316 pCi/L	1.83	7/11/2022	0.657	0.658	HASL 300, U-02-RC M	=
Uranium-235	U	-0.254 pCi/L	1.74	7/11/2022	0.587	0.589	HASL 300, U-02-RC M	=
Uranium-238	U	0.0171 pCi/L	1.73	7/11/2022	0.785	0.786	HASL 300, U-02-RC M	=

Facility: <u>C-404 Land</u>	fill	County: <u>I</u>	l		Permit #: <u>K</u>	0-008-982			
Sampling Point:	MW90A REG	Do	owngradier	t URG	A	Period: Sem	iannual	Report	
AKGWA Well Tag #:	8004-0357		_						
Parameter	Qualifier	Result	Units	Reporting Limit	Date Collected	Counting Error (+/-)	TPU	Method \	/alidation
Barometric Pressure Read	ding	29.96	6 Inches/Hg		8/15/2022				х
Conductivity		226	6 umho/cm		8/15/2022				Х
Depth to Water		47.4	l ft		8/15/2022				Х
Dissolved Oxygen		5.35	5 mg/L		8/15/2022				Х
рН		5.71	L Std Unit		8/15/2022				Х
Redox		410) mV		8/15/2022				Х
Technetium-99		25.7	7 pCi/L	13.5	8/15/2022	8.98	9.42	HASL 300, Tc-02-RC N	Λ =
Temperature		64.4	l deg F		8/15/2022				Х
Trichloroethene		222	2 ug/L	5	8/15/2022			SW846-8260D	=
Turbidity		1.04	1 NTU		8/15/2022				Х

Facility: <u>C-404 Landf</u>	ill (County: <u>McCracke</u>	n]	Permit #: <u>K</u>	0-008-982		
Sampling Point:	MW91A REG	Downgradie	ent UCR	S	Period: Sem	iannual	Report	
AKGWA Well Tag #:	8007-2917							
_			Reporting	Date	Counting			
Parameter	Qualifier	Result Units	Limit	Collected	Error (+/-)	TPU	Method \	alidation/
Arsenic	J	0.00366 mg/L	0.005	//11/2022			SW846-6020B	=
Arsenic, Dissolved	U	0.005 mg/L	0.005	7/11/2022			SW846-6020B	=
Barometric Pressure Read	ing	29.93 Inches/H	g	7/11/2022				Х
Cadmium	U	0.001 mg/L	0.001	7/11/2022			SW846-6020B	=
Cadmium, Dissolved	U	0.001 mg/L	0.001	7/11/2022			SW846-6020B	=
Chromium	U	0.01 mg/L	0.01	7/11/2022			SW846-6020B	=
Chromium, Dissolved	U	0.01 mg/L	0.01	7/11/2022			SW846-6020B	=
Conductivity		812 umho/cm	ı	7/11/2022				Х
Depth to Water		12.47 ft		7/11/2022				Х
Dissolved Oxygen		2.5 mg/L		7/11/2022				Х
Lead	U	0.002 mg/L	0.002	7/11/2022			SW846-6020B	=
Lead, Dissolved	U	0.002 mg/L	0.002	7/11/2022			SW846-6020B	=
Mercury	U	0.0002 mg/L	0.0002	7/11/2022			SW846-7470A	=
Mercury, Dissolved	U	0.0002 mg/L	0.0002	7/11/2022			SW846-7470A	=
рН		6.01 Std Unit		7/11/2022				Х
Redox		230 mV		7/11/2022				Х
Selenium	U	0.005 mg/L	0.005	7/11/2022			SW846-6020B	=
Selenium, Dissolved	U	0.005 mg/L	0.005	7/11/2022			SW846-6020B	=
Sulfate		69.8 mg/L	2	7/11/2022			SW846-9056A	=
Technetium-99		86.7 pCi/L	22.8	7/11/2022	15.6	18.3	HASL 300, Tc-02-RC N	1 =
Temperature		66.5 deg F		7/11/2022				Х
Trichloroethene		24.4 ug/L	1	7/11/2022			SW846-8260D	=
Turbidity		3.21 NTU		7/11/2022				Х
Uranium	U	0.0002 mg/L	0.0002	7/11/2022			SW846-6020B	=
Uranium-234	U	0.29 pCi/L	1.25	7/11/2022	0.691	0.693	HASL 300, U-02-RC M	=
Uranium-235	U	0 pCi/L	0.514	7/11/2022	0.346	0.346	HASL 300, U-02-RC M	=
Uranium-238	U	0.316 pCi/L	0.847	7/11/2022	0.559	0.56	HASL 300, U-02-RC M	=

Facility: C-404 Landfill County: McCracken **Permit #:** KY8-890-008-982 Sampling Point: MW93A REG Upgradient URGA Period: Semiannual Report AKGWA Well Tag #: 8007-4851 Reporting Date Counting Qualifier **Result Units** Limit Collected Error (+/-) TPU Method Validation Parameter SW846-6020B 0.0111 mg/L 0.005 7/11/2022 Arsenic = 7/11/2022 Arsenic, Dissolved 0.00816 mg/L 0.005 SW846-6020B = 29.95 Inches/Hg **Barometric Pressure Reading** 7/11/2022 Х SW846-6020B Cadmium U 0.001 mg/L 0.001 7/11/2022 = SW846-6020B Cadmium, Dissolved U 0.001 mg/L 0.001 7/11/2022 = SW846-6020B Chromium J 0.00527 mg/L 0.01 7/11/2022 = Chromium, Dissolved U 0.01 mg/L 0.01 SW846-6020B 7/11/2022 = 380 umho/cm 7/11/2022 Conductivity Х Depth to Water 50.45 ft 7/11/2022 Х **Dissolved Oxygen** 3.25 mg/L 7/11/2022 Х 0.002 mg/L 0.002 SW846-6020B Lead U 7/11/2022 = Lead, Dissolved U 0.002 mg/L 0.002 7/11/2022 SW846-6020B = U 0.0002 mg/L 0.0002 7/11/2022 SW846-7470A Mercury = Mercury, Dissolved U 0.0002 mg/L 0.0002 7/11/2022 SW846-7470A = рΗ 5.8 Std Unit 7/11/2022 Х Redox 365 mV 7/11/2022 Х 0.005 mg/L SW846-6020B Selenium U 0.005 7/11/2022 = SW846-6020B Selenium, Dissolved U 0.005 mg/L 0.005 7/11/2022 = SW846-9056A Sulfate 7.51 mg/L 0.4 7/11/2022 = Technetium-99 U 2.26 pCi/L HASL 300, Tc-02-RC M 22.1 7/11/2022 12.9 12.9 = 65.9 deg F Temperature 7/11/2022 Х Trichloroethene 2870 ug/L 50 7/11/2022 SW846-8260D = Turbidity 7.65 NTU 7/11/2022 Х Uranium 0.000076 mg/L 0.0002 SW846-6020B J 7/11/2022 = Uranium-234 U -0.592 pCi/L 1.78 7/11/2022 0.646 0.646 HASL 300, U-02-RC M = Uranium-235 U -0.0417 pCi/L 0.833 7/11/2022 0.36 0.36 HASL 300, U-02-RC M = HASL 300, U-02-RC M = Uranium-238 U -0.0675 pCi/L 0.779 7/11/2022 0.298 0.299

Facility: <u>C-404 Land</u>	fill	County: McCrac	ken		Permit #: <u>KY8-890-008-982</u>				
Sampling Point:	MW93A REG	Upgradie	nt URG	iΑ	Period: Semi	iannual	Report		
AKGWA Well Tag #:	8007-4851								
			Reporting	Date	Counting				
Parameter	Qualifier	Result Units	Limit	Collected	Error (+/-)	TPU	Method \	/alidation	
Barometric Pressure Read	ling	29.95 Inches,	/Hg	8/15/2022				х	
Conductivity		382 umho/	cm	8/15/2022				Х	
Depth to Water		51.02 ft		8/15/2022				Х	
Dissolved Oxygen		3.3 mg/L		8/15/2022				Х	
рН		5.6 Std Un	it	8/15/2022				Х	
Redox		407 mV		8/15/2022				Х	
Technetium-99	U	2.94 pCi/L	15.7	8/15/2022	9.03	9.03	HASL 300, Tc-02-RC N	Λ =	
Temperature		63.7 deg F		8/15/2022				Х	
Trichloroethene		1630 ug/L	50	8/15/2022			SW846-8260D	=	
Turbidity		3.59 NTU		8/15/2022				Х	

Facility: <u>C-404 Landfil</u>	1	County: McCracken			Permit #: <u>KY8-890-008-982</u>			
Sampling Point: <u>N</u>	IW94 REG	Upgradient	UCR	S	Period: Semi	annual	Report	
AKGWA Well Tag #:	8000-5103							
Parameter	Qualifier	Result Units	Reporting Limit	Date Collected	Counting Error (+/-)	TPU	Method V	alidation
Arsenic	U	0.005 mg/L	0.005	7/11/2022			SW846-6020B	=
Arsenic, Dissolved	U	0.005 mg/L	0.005	7/11/2022			SW846-6020B	=
Barometric Pressure Readin	g	29.96 Inches/H	lg	7/11/2022				Х
Cadmium	U	0.001 mg/L	0.001	7/11/2022			SW846-6020B	=
Cadmium, Dissolved	U	0.001 mg/L	0.001	7/11/2022			SW846-6020B	=
Chromium	J	0.00683 mg/L	0.01	7/11/2022			SW846-6020B	=
Chromium, Dissolved	U	0.01 mg/L	0.01	7/11/2022			SW846-6020B	=
Conductivity		800 umho/cr	n	7/11/2022				Х
Depth to Water		13.22 ft		7/11/2022				Х
Dissolved Oxygen		1.47 mg/L		7/11/2022				Х
Lead	J	0.000893 mg/L	0.002	7/11/2022			SW846-6020B	=
Lead, Dissolved	U	0.002 mg/L	0.002	7/11/2022			SW846-6020B	=
Mercury	U	0.0002 mg/L	0.0002	7/11/2022			SW846-7470A	=
Mercury, Dissolved	U	0.0002 mg/L	0.0002	7/11/2022			SW846-7470A	=
рН		6.32 Std Unit		7/11/2022				х
Redox		374 mV		7/11/2022				Х
Selenium	U	0.005 mg/L	0.005	7/11/2022			SW846-6020B	=
Selenium, Dissolved	U	0.005 mg/L	0.005	7/11/2022			SW846-6020B	=
Sulfate		77.1 mg/L	2	7/11/2022			SW846-9056A	=
Technetium-99		759 pCi/L	22.1	7/11/2022	27.4	88.4	HASL 300, Tc-02-RC M	=
Temperature		66 deg F		7/11/2022				Х
Trichloroethene	Х	64.8 ug/L	1	7/11/2022			SW846-8260D	=
Turbidity		21.91 NTU		7/11/2022				Х
Uranium		0.00153 mg/L	0.0002	7/11/2022			SW846-6020B	=
Uranium-234	U	0.356 pCi/L	3.19	7/11/2022	1.61	1.61	HASL 300, U-02-RC M	=
Uranium-235	U	0.434 pCi/L	2.07	7/11/2022	1.38	1.38	HASL 300, U-02-RC M	=
Uranium-238	U	1.01 pCi/L	2.16	7/11/2022	1.58	1.59	HASL 300, U-02-RC M	=

Facility: <u>C-404 Land</u>	<u>fill</u>	County: <u>M</u>			Permit #: <u>K</u>				
Sampling Point:	MW94 REG	Upgradient UCRS			5	Period: Semi	annual	Report	
AKGWA Well Tag #:	8000-5103								
Parameter	Qualifier	Result	Units	Reporting Limit	Date Collected	Counting Error (+/-)	TPU	Method	Validation
Barometric Pressure Reac	ling	30.09	Inches/Hg		9/1/2022				Х
Conductivity		805	umho/cm		9/1/2022				Х
Depth to Water		13.9	ft		9/1/2022				Х
Dissolved Oxygen		1.4	mg/L		9/1/2022				Х
рН		6.34	Std Unit		9/1/2022				Х
Redox		378	mV		9/1/2022				Х
Temperature		65.3	deg F		9/1/2022				Х
Trichloroethene		1.12	ug/L	1	9/1/2022			SW846-8260D	=
Turbidity		114	NTU		9/1/2022				Х

Facility: C-404 Landfill County: McCracken **Permit #:** KY8-890-008-982 Sampling Point: MW420 REG Upgradient URGA Period: Semiannual Report **AKGWA Well Tag #:** 8005-3263 Reporting Date Counting Parameter Qualifier **Result Units** Limit Collected Error (+/-) TPU Method Validation SW846-6020B 0.0103 mg/L 0.005 7/11/2022 Arsenic = 7/11/2022 Arsenic, Dissolved 0.0059 mg/L 0.005 SW846-6020B = 29.96 Inches/Hg **Barometric Pressure Reading** 7/11/2022 Х SW846-6020B Cadmium U 0.001 mg/L 0.001 7/11/2022 = SW846-6020B Cadmium, Dissolved U 0.001 mg/L 0.001 7/11/2022 = SW846-6020B Chromium U 0.01 mg/L 0.01 7/11/2022 = Chromium, Dissolved U 0.01 mg/L 0.01 SW846-6020B 7/11/2022 = 380 umho/cm 7/11/2022 Conductivity Х Depth to Water 50.15 ft 7/11/2022 Х **Dissolved Oxygen** 1.79 mg/L 7/11/2022 Х U 0.002 mg/L 0.002 SW846-6020B Lead 7/11/2022 = Lead, Dissolved U 0.002 mg/L 0.002 7/11/2022 SW846-6020B = U 0.0002 mg/L 0.0002 7/11/2022 SW846-7470A Mercury = Mercury, Dissolved U 0.0002 mg/L 0.0002 7/11/2022 SW846-7470A = рΗ 5.74 Std Unit 7/11/2022 Х Redox 410 mV 7/11/2022 Х U 0.005 mg/L SW846-6020B Selenium 0.005 7/11/2022 = SW846-6020B Selenium, Dissolved U 0.005 mg/L 0.005 7/11/2022 = SW846-9056A Sulfate 6.22 mg/L 0.4 7/11/2022 = Technetium-99 U -4 pCi/L 22.7 HASL 300, Tc-02-RC M 7/11/2022 13.1 13.1 = 67 deg F Temperature 7/11/2022 Х Trichloroethene 2590 ug/L 40 7/11/2022 SW846-8260D = Turbidity 3.48 NTU 7/11/2022 Х Uranium U 0.0002 mg/L 0.0002 7/11/2022 SW846-6020B = Uranium-234 U -0.957 pCi/L 2.39 7/11/2022 0.727 0.728 HASL 300, U-02-RC M UJ Uranium-235 U -0.43 pCi/L 1.98 7/11/2022 0.607 HASL 300, U-02-RC M 0.606 = HASL 300, U-02-RC M = Uranium-238 U 0.058 pCi/L 1.26 7/11/2022 0.606 0.607

Facility: <u>C-404 Land</u>	fill	County: McCracken				Permit #:	0-008-982		
Sampling Point:	MW420 REG	U	pgradient	URG	A	Period: <u>Ser</u>	niannual	Report	
AKGWA Well Tag #:	8005-3263								
Parameter	Qualifier	Result	Units	Reporting Limit	Date Collected	Counting Error (+/-) TPU	Method	/alidation
Barometric Pressure Read	ling	29.9	94 Inches/Hg		8/15/2022				х
Conductivity		38	35 umho/cm		8/15/2022	1			Х
Depth to Water		50.5	51 ft		8/15/2022				Х
Dissolved Oxygen		2.4	l4 mg/L		8/15/2022				Х
рН		5.6	51 Std Unit		8/15/2022				Х
Redox		46	64 mV		8/15/2022				Х
Technetium-99	U	-6.5	58 pCi/L	14.5	8/15/2022	7.84	7.84	HASL 300, Tc-02-RC I	/ =
Temperature		66	.1 deg F		8/15/2022				Х
Trichloroethene		162	20 ug/L	40	8/15/2022			SW846-8260D	=
Turbidity		3.7	'9 NTU		8/15/2022				Х

Facility: C-404 Landfil	1	County	McC	racken	I	Permit #: KY8-890-008-982				
Type of Sample:	FB				ŀ	Period: Semia	innual Re	port QC Sample	es	
AKGWA Well Tag #:	0000-0000)								
Parameter	Qualifier	Result	Units	Reporting Limit	Date Collected	Counting Error (+/-)	TPU	Method	Validation	
Arsenic	U	0.005	mg/L	0.005	7/11/2022			SW846-6020B	=	
Cadmium	U	0.001	mg/L	0.001	7/11/2022			SW846-6020B	=	
Chromium	U	0.01	mg/L	0.01	7/11/2022			SW846-6020B	=	
Lead	U	0.002	mg/L	0.002	7/11/2022			SW846-6020B	=	
Mercury	U	0.0002	mg/L	0.0002	7/11/2022			SW846-7470A	=	
Selenium	U	0.005	mg/L	0.005	7/11/2022			SW846-6020B	=	
Technetium-99	U	-5.64	pCi/L	22.1	7/11/2022	12.6	12.6	HASL 300, Tc-02	2- =	
Trichloroethene	U	1	ug/L	1	7/11/2022			SW846-8260D	=	
Uranium	U	0.0002	mg/L	0.0002	7/11/2022			SW846-6020B	=	
Uranium-234	U	-0.824	pCi/L	1.82	7/11/2022	0.586	0.587	HASL 300, U-02 RC M	- UJ	
Uranium-235	U	-0.0411	pCi/L	0.821	7/11/2022	0.354	0.355	HASL 300, U-02 RC M	- =	
Uranium-238	U	-0.0277	pCi/L	0.971	7/11/2022	0.416	0.416	HASL 300, U-02 RC M	- =	

Facility: <u>C-404 Landfi</u>	11	County	McC	racken	Permit #: KY8-890-008-982				
Type of Sample:	RI]	Period: Ser	niannual Re	port QC Sampl	es
AKGWA Well Tag #:	0000-0000								
Parameter	Qualifier	Result	Units	Reporting Limit	Date Collected	Counting Error (+/-	;) TPU	Method	Validation
Arsenic	U	0.005	mg/L	0.005	7/11/2022			SW846-6020B	=
Cadmium	U	0.001	mg/L	0.001	7/11/2022			SW846-6020B	=
Chromium	U	0.01	mg/L	0.01	7/11/2022			SW846-6020B	=
Lead	U	0.002	mg/L	0.002	7/11/2022			SW846-6020B	=
Mercury	U	0.0002	mg/L	0.0002	7/11/2022			SW846-7470A	=
Selenium	U	0.005	mg/L	0.005	7/11/2022			SW846-6020B	=
Technetium-99	U	4.78	pCi/L	21.8	7/11/2022	12.	8 12.8	HASL 300, Tc-0 RC M	2- =
Trichloroethene	U	1	ug/L	1	7/11/2022			SW846-8260D	=
Uranium	U	0.0002	mg/L	0.0002	7/11/2022			SW846-6020B	=
Uranium-234	U	0.408	pCi/L	2.08	7/11/2022	1.1	2 1.13	HASL 300, U-02 RC M	2- =
Uranium-235	U	-0.132	pCi/L	1.52	7/11/2022	0.58	3 0.585	HASL 300, U-02 RC M	2- =
Uranium-238	U	-0.311	pCi/L	1.93	7/11/2022	0.70	7 0.708	HASL 300, U-02 RC M	2- =

Facility: C-404 Landfill		Count	y: McC	racken	Permit #: KY8-890-008-982				
Type of Sample:	TB]	Period: Semia	nnual Re	eport QC Sampl	les
AKGWA Well Tag #:	0000-0000)							
Parameter	Qualifier	Result	Units	Reporting Limit	Date Collected	Counting Error (+/-)	TPU	Method	Validation
Trichloroethene	U	1	ug/L	1	7/11/2022			SW846-8260D	=
	U	1	ug/L	1	8/15/2022			SW846-8260D	=
	U	1	ug/L	1	9/1/2022			SW846-8260D	=
	U	1	ug/L	1	9/1/2022			SW846-8260D	=

QUALIFIER Codes

- U Analyte analyzed for, but not detected at or below the lowest concentration reported.
- J Estimated quantitation.
- X Other specific flags and footnotes may be required to properly define the results.

SAMPLING POINT Codes

- UCRS Upper Continental Recharge System
- URGA Upper Regional Gravel Aquifer

SAMPLE TYPE Codes

- FB Field Blank
- FR Field Duplicate as defined in sampling procedure.
- REG Regular
- RI QC Equipment Rinseate/Decon
- TB Trip Blank

VALIDATION Codes

- = Validated result, no qualifier is necessary.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- X Not validated.

Facility: C-404 Landfi	11	County: McCracken	Permit #: <u>KY8-890-008-982</u>					
Sampling Point: <u>N</u>	MW84A REG	Downgradien	A	Report				
AKGWA Well Tag #:	8007-4849		Donorting	Data	Counting			
Parameter	Qualifier	Result Units	Limit	Collected	Error (+/-)	TPU	Method \	/alidation
Barometric Pressure Reading	ng	30.19 Inches/Hg		5/11/2022				Х
Conductivity		512 umho/cm		5/11/2022				Х
Depth to Water		46.52 ft		5/11/2022				х
Dissolved Oxygen		3.28 mg/L		5/11/2022				Х
рН		5.9 Std Unit		5/11/2022				Х
Redox		387 mV		5/11/2022				Х
Technetium-99		47.9 pCi/L	18.4	5/11/2022	11.9	13.1	HASL 300, Tc-02-RC N	= 1
Temperature		63.4 deg F		5/11/2022				Х
Turbidity		0 NTU		5/11/2022				Х
Uranium-234	U	-0.155 pCi/L	0.6	5/11/2022	0.198	0.198	HASL 300, U-02-RC N	=
Uranium-235	U	0.0585 pCi/L	0.369	5/11/2022	0.219	0.22	HASL 300, U-02-RC N	=
Uranium-238	U	0.142 pCi/L	0.38	5/11/2022	0.251	0.252	HASL 300, U-02-RC N	=

Facility: <u>C-404 Landf</u>	ill	County: McCracken		Permit #: <u>KY8-890-008-982</u>				
Sampling Point:	MW85 REG	Downgradier	nt UCR	S	Period: Semi	iannual	Report	
AKGWA Well Tag #:	8000-5234							
			Reporting	Date	Counting			
Parameter	Qualifier	Result Units	Limit	Collected	Error (+/-)	TPU	Method V	alidation
Barometric Pressure Read	ing	30.19 Inches/Hg		5/11/2022				Х
Conductivity		409 umho/cm		5/11/2022				Х
Depth to Water		8.1 ft		5/11/2022				Х
Dissolved Oxygen		2.85 mg/L		5/11/2022				Х
рН		6.24 Std Unit		5/11/2022				Х
Redox		367 mV		5/11/2022				Х
Technetium-99		56 pCi/L	16.7	5/11/2022	11.5	13.1	HASL 300, Tc-02-RC N	1 =
Temperature		65.7 deg F		5/11/2022				Х
Turbidity		2.19 NTU		5/11/2022				Х
Uranium-234	U	-0.131 pCi/L	0.623	5/11/2022	0.215	0.215	HASL 300, U-02-RC M	=
Uranium-235	U	-0.041 pCi/L	0.473	5/11/2022	0.181	0.182	HASL 300, U-02-RC M	=
Uranium-238		1.32 pCi/L	0.558	5/11/2022	0.642	0.667	HASL 300, U-02-RC M	=

Facility: <u>C-404 Land</u>	fill	County: McCracken	Permit #: <u>k</u>	0-008-982				
Sampling Point:	MW87A REG	Downgradien	t URG	A	Period: Sem	iannual	Report	
AKGWA Well Tag #:	8007-4850		Deperting	Data	Counting			
Parameter	Qualifier	Result Units	Limit	Collected	Error (+/-)	TPU	Method V	alidation
Barometric Pressure Read	ding	30.19 Inches/Hg		5/11/2022				х
Conductivity		355 umho/cm		5/11/2022				Х
Depth to Water		46.53 ft		5/11/2022				Х
Dissolved Oxygen		2.81 mg/L		5/11/2022				Х
рН		5.8 Std Unit		5/11/2022				Х
Redox		407 mV		5/11/2022				Х
Technetium-99	U	4.57 pCi/L	12	5/11/2022	7.11	7.13	HASL 300, Tc-02-RC N	1 =
Temperature		65.3 deg F		5/11/2022				Х
Turbidity		0 NTU		5/11/2022				Х
Uranium-234	U	-0.00031 pCi/L	0.605	5/11/2022	0.281	0.281	HASL 300, U-02-RC M	=
Uranium-235	U	-0.0354 pCi/L	0.409	5/11/2022	0.157	0.157	HASL 300, U-02-RC M	=
Uranium-238	U	0.0191 pCi/L	0.463	5/11/2022	0.218	0.218	HASL 300, U-02-RC M	=

Facility: <u>C-404 Land</u>	fill	County: McCracken	Permit #: <u>k</u>					
Sampling Point:	MW88 REG	Downgradien	t UCR	S	Period: Sem	Report		
AKGWA Well Tag #:	8000-5237							
Parameter	Qualifier	Result Units	Reporting Limit	Date Collected	Counting Error (+/-)	TPU	Method V	alidation
Barometric Pressure Read	ling	30.17 Inches/Hg		5/11/2022				х
Conductivity		618 umho/cm		5/11/2022				Х
Depth to Water		8.76 ft		5/11/2022				Х
Dissolved Oxygen		1.41 mg/L		5/11/2022				Х
рН		5.78 Std Unit		5/11/2022				Х
Redox		401 mV		5/11/2022				Х
Technetium-99		23.6 pCi/L	22.6	5/11/2022	13.8	14	HASL 300, Tc-02-RC N	1 =
Temperature		64.8 deg F		5/11/2022				Х
Turbidity		6.13 NTU		5/11/2022				Х
Uranium-234	U	-0.28 pCi/L	0.666	5/11/2022	0.169	0.17	HASL 300, U-02-RC M	UJ
Uranium-235	U	0.0626 pCi/L	0.549	5/11/2022	0.28	0.281	HASL 300, U-02-RC M	=
Uranium-238	U	-0.137 pCi/L	0.531	5/11/2022	0.156	0.156	HASL 300, U-02-RC M	=

Facility: <u>C-404 Land</u>	fill	County: McCracken	Permit #:					
Sampling Point:	MW90A REG	Downgradien	t URG	A	Period: <u>Se</u>	miannual	Report	
AKGWA Well Tag #:	8004-0357							
Parameter	Qualifier	Result Units	Reporting Limit	Date Collected	Counting I Error (+/-	; ·) TPU	Method \	alidation/
Barometric Pressure Read	ding	30.17 Inches/Hg		5/11/2022				х
Conductivity		271 umho/cm		5/11/2022				Х
Depth to Water		45.74 ft		5/11/2022				Х
Dissolved Oxygen		5.19 mg/L		5/11/2022				Х
рН		5.81 Std Unit		5/11/2022				Х
Redox		405 mV		5/11/2022				Х
Technetium-99		28.5 pCi/L	22	5/11/2022	13.6	13.9	HASL 300, Tc-02-RC N	1 =
Temperature		66.4 deg F		5/11/2022				Х
Turbidity		0.1 NTU		5/11/2022				Х
Uranium-234	U	-0.0322 pCi/L	0.539	5/11/2022	0.228	0.228	HASL 300, U-02-RC M	=
Uranium-235	U	-0.0187 pCi/L	0.373	5/11/2022	0.161	0.161	HASL 300, U-02-RC M	=
Uranium-238	U	-0.106 pCi/L	0.488	5/11/2022	0.149	0.149	HASL 300, U-02-RC M	=

Facility: C-404 Land	fill	County: McCracke	Permit #: <u>KY8-890-008-982</u>					
Sampling Point:	MW90A FR	Downgradie	ent URG	A	Period: Sem	niannual	Report	
AKGWA Well Tag #:	8004-0357		Penarting	Date	Counting			
Parameter	Qualifier	Result Units	Limit	Collected	Error (+/-)	TPU	Method	Validation
Technetium-99		34.4 pCi/L	20.7	5/11/2022	13	13.6	HASL 300, Tc-02-RC	M =
Uranium-234	U	-0.126 pCi/L	0.676	5/11/2022	0.256	0.256	HASL 300, U-02-RC N	A =
Uranium-235	U	0 pCi/L	0.25	5/11/2022	0.168	0.168	HASL 300, U-02-RC N	A =
Uranium-238	U	0.00539 pCi/L	0.544	5/11/2022	0.248	0.248	HASL 300, U-02-RC N	A =

Facility: C-404 Land	fill	County: McCracken	Permit #:)-008-982				
Sampling Point:	MW91A REG	Downgradien	t UCR	S	Period: Ser	niannual	Report	
AKGWA Well Tag #:	8007-2917							
Parameter	Qualifier	Result Units	Reporting Limit	Date Collected	Counting Error (+/-) TPU	Method \	alidation/
Barometric Pressure Read	ling	30.17 Inches/Hg		5/11/2022				х
Conductivity		772 umho/cm		5/11/2022				Х
Depth to Water		12.53 ft		5/11/2022				Х
Dissolved Oxygen		2.09 mg/L		5/11/2022				Х
рН		6.18 Std Unit		5/11/2022				Х
Redox		366 mV		5/11/2022				Х
Technetium-99		82.2 pCi/L	19.4	5/11/2022	13.4	16.2	HASL 300, Tc-02-RC N	1 =
Temperature		65.8 deg F		5/11/2022				Х
Turbidity		3.44 NTU		5/11/2022				Х
Uranium-234	U	-0.0774 pCi/L	0.45	5/11/2022	0.16	0.16	HASL 300, U-02-RC M	=
Uranium-235	U	-0.0632 pCi/L	0.434	5/11/2022	0.146	0.147	HASL 300, U-02-RC M	=
Uranium-238	U	0.0426 pCi/L	0.373	5/11/2022	0.191	0.191	HASL 300, U-02-RC M	=

Facility: <u>C-404 Land</u>	fill	County: McCracken			Permit #:	KY8-890	0-008-982	
Sampling Point:	MW93A REG	Upgradient	URG	A	Period: Ser	niannual	Report	
AKGWA Well Tag #:	8007-4851							
Parameter	Qualifier	Result Units	Reporting Limit	Date Collected	Counting) TPU	Method V	alidation
Barometric Pressure Read	ling	30.19 Inches/Hg		5/11/2022				х
Conductivity		379 umho/cm		5/11/2022				Х
Depth to Water		49.55 ft		5/11/2022				Х
Dissolved Oxygen		2.94 mg/L		5/11/2022				Х
рН		5.81 Std Unit		5/11/2022				Х
Redox		371 mV		5/11/2022				Х
Technetium-99	U	13 pCi/L	15.9	5/11/2022	9.62	9.73	HASL 300, Tc-02-RC N	1 =
Temperature		64.6 deg F		5/11/2022				Х
Turbidity		4.8 NTU		5/11/2022				Х
Uranium-234	U	-0.0627 pCi/L	0.552	5/11/2022	0.222	0.222	HASL 300, U-02-RC M	=
Uranium-235	U	0 pCi/L	0.224	5/11/2022	0.15	0.151	HASL 300, U-02-RC M	=
Uranium-238	U	0.198 pCi/L	0.368	5/11/2022	0.27	0.271	HASL 300, U-02-RC M	=

Facility: <u>C-404 Land</u>	fill	County: McCracken			Permit #: <u>l</u>	XY8-89)-008-982	
Sampling Point:	MW94 REG	Upgradient	UCRS	S	Period: Sen	niannual	Report	
AKGWA Well Tag #	8000-5103		Reporting	Date	Counting			
Parameter	Qualifier	Result Units	Limit	Collected	Error (+/-)	TPU	Method V	alidation
Barometric Pressure Rea	ding	30.19 Inches/Hg		5/11/2022				х
Conductivity		787 umho/cm		5/11/2022				Х
Depth to Water		12.56 ft		5/11/2022				Х
Dissolved Oxygen		1.66 mg/L		5/11/2022				Х
рН		6.34 Std Unit		5/11/2022				Х
Redox		357 mV		5/11/2022				Х
Technetium-99		460 pCi/L	22.5	5/11/2022	22.5	55.7	HASL 300, Tc-02-RC N	1 =
Temperature		64.6 deg F		5/11/2022				Х
Turbidity		13.2 NTU		5/11/2022				Х
Uranium-234		0.883 pCi/L	0.576	5/11/2022	0.518	0.532	HASL 300, U-02-RC M	=
Uranium-235	U	0 pCi/L	0.215	5/11/2022	0.145	0.145	HASL 300, U-02-RC M	=
Uranium-238		0.453 pCi/L	0.407	5/11/2022	0.366	0.371	HASL 300, U-02-RC M	=

Facility: <u>C-404 Landfil</u>	1	County: McCracken	Permit #: <u>KY8-890-008-982</u>					
Sampling Point: <u>N</u>	AW420 REG	Upgradient	URG	A	Period: Sem	iannual	Report	
AKGWA Well Tag #:	8005-3263		Reporting	Date	Counting			
Parameter	Qualifier	Result Units	Limit	Collected	Error (+/-)	TPU	Method ۱	/alidation
Barometric Pressure Reading	ng	30.18 Inches/Hg		5/11/2022				х
Conductivity		427 umho/cm		5/11/2022				Х
Depth to Water		49.28 ft		5/11/2022				Х
Dissolved Oxygen		1.93 mg/L		5/11/2022				Х
рН		5.81 Std Unit		5/11/2022				Х
Redox		332 mV		5/11/2022				Х
Technetium-99	U	2.96 pCi/L	15.9	5/11/2022	9.28	9.29	HASL 300, Tc-02-RC N	1 =
Temperature		65 deg F		5/11/2022				Х
Turbidity		0 NTU		5/11/2022				Х
Uranium-234	U	-0.202 pCi/L	0.723	5/11/2022	0.236	0.236	HASL 300, U-02-RC M	=
Uranium-235	U	0.0682 pCi/L	0.43	5/11/2022	0.256	0.256	HASL 300, U-02-RC M	=
Uranium-238	U	-0.122 pCi/L	0.563	5/11/2022	0.172	0.172	HASL 300, U-02-RC M	=

Facility: <u>C-404 Landfill</u>		County: McCracken			Permit #: <u>KY8-890-008-982</u>					
Type of Sample:	FB				Period: Semiannual Report QC Samples					
AKGWA Well Tag #:	0000-0000)								
Parameter	Qualifier	Result	Units	Reporting Limit	Date Collected	Counting Error (+/-)	TPU	Method	Validation	
Technetium-99	U	0.318	pCi/L	19.2	5/11/2022	11.2	11.2	HASL 300, Tc-02 RC M	- =	
Uranium-234	U	-0.104	pCi/L	0.588	5/11/2022	0.224	0.224	HASL 300, U-02- RC M	=	
Uranium-235	U	-0.0177	pCi/L	0.353	5/11/2022	0.152	0.153	HASL 300, U-02- RC M	=	
Uranium-238	U	0.198	pCi/L	0.461	5/11/2022	0.296	0.298	HASL 300, U-02- RC M	=	

Facility: C-404 Landfill		County: McCracken			Permit #: <u>KY8-890-008-982</u>							
Type of Sample:	RI				I	Period: Semiannual Report QC Samples						
AKGWA Well Tag #:	0000-0000	0000-0000										
Parameter	Qualifier	Result	Units	Reporting Limit	Date Collected	Counting Error (+/-)	TPU	Method	Validation			
Technetium-99	U	-1.47	pCi/L	14.5	5/11/2022	8.28	8.28	HASL 300, Tc-02 RC M	- =			
Uranium-234	U	0.00982	pCi/L	0.645	5/11/2022	0.299	0.299	HASL 300, U-02- RC M	- =			
Uranium-235	U	-0.0425	pCi/L	0.491	5/11/2022	0.188	0.188	HASL 300, U-02- RC M	- =			
Uranium-238	U	-0.086	pCi/L	0.503	5/11/2022	0.163	0.163	HASL 300, U-02- RC M	- =			

QUALIFIER Codes

U Analyte analyzed for, but not detected at or below the lowest concentration reported.

SAMPLING POINT Codes

- UCRS Upper Continental Recharge System
- URGA Upper Regional Gravel Aquifer

SAMPLE TYPE Codes

- FB Field Blank
- FR Field Duplicate as defined in sampling procedure.
- REG Regular
- RI QC Equipment Rinseate/Decon

VALIDATION Codes

- = Validated result, no qualifier is necessary.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- X Not validated.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B

C-404 HAZARDOUS WASTE LANDFILL STATISTICAL ANALYSES

THIS PAGE INTENTIONALLY LEFT BLANK

C-404 HAZARDOUS WASTE LANDFILL NOVEMBER 2022 SEMIANNUAL Facility: US DOE—Paducah Gaseous Diffusion Plant

Finds/Unit: <u>KY8-980-008-982/1</u> LAB ID:

GROUNDWATER STATISTICAL SUMMARY

INTRODUCTION

The statistical analyses conducted on the data collected from the C-404 Hazardous Waste Landfill (C-404 Landfill) were performed in accordance with procedures provided in Appendix E of the Hazardous Waste Management Facility Permit, reissued by the Kentucky Division of Waste Management in February 2020. The percent of censored (nondetected) data points for individual parameters was calculated for the combined analytical data from the most recent five sampling events. The percent of censored data was used to select the types of statistical analyses to determine whether compliance well concentrations differed from background well concentrations. Data points were used in the statistical analysis for analyte results close to the sample quantitation limit that were judged to be below that limit by the data validator.

Quarterly compliance monitoring groundwater sampling for radiological constituents was initiated in third quarter 2021 (July 2021) and has continued through August 2022 (including a resampling event for technetium-99; see Section 3 for additional details). The additional quarters of groundwater data for radiological constituents alters the available data sets for the statistical analyses. For the second reporting period 2022 semiannual report, the reporting period data set includes nonradiological data from July 2020, January 2021, July 2021, January 2022, and July–August 2022 (including a resampling event for trichloroethene conducted in August 2022). The reporting period data set for radiological constituents includes July 2021, January 2022, May 2022, and July–August 2022.

STATISTICAL ANALYSIS PROCESS

Utilizing the current data set and four previous data sets, the type of statistical test conducted for each chemical data set is a function of the number of samples and proportion of censored data (nondetects) to uncensored data (detects) in each group. The percent of censored (nondetected) data points for individual parameters was calculated for the combined analytical data. The statistical procedures applied to the data are summarized below.

- Determine the percentage of the censored data using the reporting period data set.
- Group by percentage of censored data where the following apply:
 - If censored data are greater than or equal to 90%, determine the limit of detection (LOD) and half of the LOD (½ LOD). This is Statistical Test 1.
 - If censored data are between 50% and 90%, perform a Test of Proportions. If the analysis indicates a significant proportional difference in compliance wells, further analyze through nonparametric Analysis of Variance (ANOVA) Test. This is Statistical Test 2.

- If censored data are between 15% and 50%, perform nonparametric ANOVA Test. If results exceed the critical value, compute the critical difference used to identify individual well concentrations, which are significantly elevated compared with background. This is Statistical Test 3.
- If censored data are less than 15%, actual data values are analyzed using parametric ANOVA procedures. If the wells exhibit equal variances, then the data are used as presented. If the wells do not exhibit equal variances, then the log of the data is taken and then used in the calculations. Where statistical testing indicates elevated compliance well concentrations, Bonferroni's Test of Contrasts is performed. This is Statistical Test 4. Statistical Test 4 is found in Section 5.2.1 of EPA guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (April 1989).

If the statistical method above indicates no statistical difference between concentrations in downgradient wells and concentrations in background wells, then there are no indications of statistically significant impacts on the groundwater from the C-404 Landfill. If the tiered statistical method above identifies a statistically significant difference between concentrations in downgradient wells and concentrations in background wells, then the data will be evaluated further to determine if the concentrations in downgradient wells are within the statistically developed upper tolerance limit (UTL) for background concentrations or are consistent with the findings of the 2007 Alternate Source Demonstration (ASD), as follows:

- (1) Compare the most recent downgradient sample results to a 95% UTL using the five most recent sets of data for each upgradient well as described below. If downgradient concentrations are lower than the UTL for the paired upgradient concentrations, then there is no confirmed exceedance.
- (2) Evaluate results using paired ANOVA of wells in the same direction relative to the landfill (e.g., compare upgradient westernmost well results to downgradient westernmost well results). If ANOVA does not identify a statistically significant difference between upgradient and downgradient wells, then the results are consistent with the historical ASD.
- (3) If results show downgradient wells have statistically significant higher concentrations than upgradient wells, even when evaluated with respect to the ASD, additional intra-well evaluation of trend will be performed using the Mann-Kendall test for trend. If concentrations do not show an increasing trend, then there is no confirmed exceedance attributable to C-404.
- (4) Review other Regional Gravel Aquifer (RGA) well results in vicinity to determine if they are consistent with ASD.

If the statistical analysis identifies downgradient well concentrations that are increasing, are higher than UTL, are higher than the upgradient well concentrations even when the ASD results are taken into account, this evaluation will identify a confirmed, statistically significant exceedance (in a compliance well) over background.

DATA ANALYSIS

Data from the upgradient background wells in the Upper Regional Gravel Aquifer (URGA) are included for comparison with three downgradient URGA wells. Figure 1 of this C-404 Landfill Groundwater Report provides a map of the well locations associated with the C-404 Landfill. Upper Continental Recharge System (UCRS) wells in Figure 1 are provided for reference only. Data from wells that are in the UCRS are not included in the statistical analyses.

Table B.1 presents the C-404 Landfill upgradient or background wells and downgradient or compliance wells from the URGA. Data from the URGA compliance wells were compared with data from the URGA background wells.

URGA				
Upgradient background wells	MW93A*, MW420			
Downgradient compliance wells	MW84A*, MW87A*, MW90A*			
*MW90 was abandoned in 2001 and replaced with MW90A. MW84, MW87, and MW93 were abandoned in				
2019 and replaced with MW84A, MW87A, and MW93A, respectively.				

Table B.1. Monitoring Well Locations

For this reporting period, the data set includes nonradionuclide data from July 2020, January 2021, July 2021, January 2022, and July–August 2022 (including a resampling event for trichloroethene) and consists of five sets of data. The reporting period data set for radiological data is from July 2021 through August 2022 (including a resampling event for technetium-99 conducted in August) and also consists of five sets of data.

Table B.2 lists the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), and missing observations by parameter. When field duplicate data are available from a well, the higher of the two readings was retained for further evaluation.

Parameters	Observations	Missing Observations	Censored Observations (Nondetects)	Uncensored Observations (Detects)
URGA				, , , , , , , , , , , , , , , , ,
Arsenic	25	0	3	22
Cadmium	25	0	24	1
Chromium	25	0	22	3
Lead	25	0	24	1
Mercury	25	0	25	0
Selenium	25	0	25	0
Technetium-99	25	0	16	9
Trichloroethene	25	0	0	25
Uranium (Metals)	25	0	17	8
Uranium-234	25	0	25	0
Uranium-235	25	0	25	0
Uranium-238	25	0	25	0

Table B.2. Summary of Missing, Censored, and Uncensored Data Collected

Censoring Percentage and Statistical Analysis

The type of statistical test set applied to the data is a function of the number of nondetects (censored) versus detects (uncensored) in each of the parameter groups and among the wells. Table B.3 presents the percentage of censored data and type of statistical test chosen for each of the parameters required by Part VIII.E of the Permit.
Parameter	Total Samples (Nonmissing)	Uncensored (Detects)	Censored (Nondetects)	Percent Censored	Statistical Test Set*
URGA					
Arsenic	25	22	3	12	4
Cadmium	25	1	24	96	1
Chromium	25	3	22	88	2
Lead	25	1	24	96	1
Mercury	25	0	25	100	1
Selenium	25	0	25	100	1
Technetium-99	25	9	16	64	2
Trichloroethene	25	25	0	0	4
Uranium (Metals)	25	8	17	68	2
Uranium-234	25	0	25	100	1
Uranium-235	25	0	25	100	1
Uranium-238	25	0	25	100	1

Table B.3. Percent Censored Report and Statistical Test Set Selected

*A list of the constituents with greater than or equal to 90% censored data is included in Table B.4, which summarizes the results of Statistical Test 1.

SUMMARY OF CONCLUSIONS

The results for Statistical Test 1, LOD, are summarized in Table B.4. Table B.5 provides the summary of conclusions for the C-404 Landfill statistical analyses for the second reporting period 2022, including the statistical tests performed, the attachment number, well type, parameter, and results of each statistical test. Results of Statistical Test 2, Statistical Test 3, and Statistical Test 4 are presented in Attachments B1 through B5. The statistician qualification statement is presented in Attachment B6.

Table B.4. Statistical Test 1: Limit of Detection

Parameter	LOD	½ LOD
	Values	Values
URGA		
Cadmium (mg/L)	0.001	0.0005
Lead (mg/L)	0.002	0.001
Mercury (mg/L)	0.0002	0.0001
Selenium (mg/L)	0.005	0.0025
Uranium-234 (pCi/L)	2.39	1.195
Uranium-235 (pCi/L)	1.98	0.99
Uranium-238 (pCi/L)	1.73	0.865

Table B.5. Summary of Conclusions from the C-404 Hazardous Waste Landfill Statistical Analyses for theSecond Reporting Period 2022

Attachment	RGA Well Type	Parameter	Applied Statistical Test	Results
B1	URGA	Arsenic	Statistical Test 4, Parametric ANOVA, Statistical Test 3, Nonparametric ANOVA with 95% UTL, paired ANOVA (MW84A vs. MW93A), and Mann-Kendall	Because equality of variance could not be confirmed, Statistical Test 4 was abandoned and Statistical Test 3, Nonparametric ANOVA, was performed. Nonparametric ANOVA indicated a statistically significant difference between concentrations in downgradient well MW84A and concentrations in background wells; a comparison to the 95% UTL, paired ANOVA, and Mann-Kendall trend analysis were performed, as required by the Hazardous Waste Management Facility Permit. The 95% UTL indicated a statistically significant difference between concentrations in compliance well MW84A and concentrations in background wells. Results of the paired ANOVA identified a significant difference between upgradient (MW93A) and downgradient (MW84A) wells. The Mann-Kendall trend analysis identified a statistically significant increasing trend in MW84A.
B2	URGA	Chromium	Statistical Test 2, Test of Proportions, Nonparametric ANOVA.	Because Test of Proportions indicated statistically significant evidence that the proportion of detects in one group of data exceeds the proportion of detects in the other group, Nonparametric ANOVA was performed. Nonparametric ANOVA indicated no statistically significant difference between concentrations in downgradient wells and concentrations in background wells.
В3	URGA	Technetium-99	Statistical Test 2, Test of Proportions, Nonparametric ANOVA, 95% UTL, Parametric paired ANOVA	Because Test of Proportions indicated statistically significant evidence that the proportion of detects in one group of data exceeds the proportion of detects in the other group, Nonparametric ANOVA was performed. Nonparametric ANOVA indicated a statistically significant difference between concentrations in downgradient wells and concentrations in background wells for compliance well MW84A. A comparison to the 95% UTL identified a statistically significant difference between compliance well MW84A and background wells. The paired parametric ANOVA identified a statistically significant difference between concentrations in the background well and compliance well MW84A. The Mann-Kendall trend analysis was performed and identified a statistically significant decreasing technetium-99 trend in MW84A

Second Reporting Period 2022 (Continued) Attachment RGA Well Type Parameter Parameter Applied Statistical Test Results B4 URGA Trichloroethene Statistical Test 4 Because Parametric ANOVA indicated a

Table B.5. Summary of Conclusions from the C-404 Hazardous Waste Landfill Statistical Analyses for the

	Туре		~	
Β4	URGA	Trichloroethene	Statistical Test 4, Parametric ANOVA, with 95% UTL, paired ANOVA (MW84A vs. MW93A), and Mann-Kendall trend analysis.	Because Parametric ANOVA indicated a statistically significant difference between concentrations in background wells and compliance well MW84A, a comparison to the 95% UTL was performed. The 95% UTL indicated a statistically significant difference between concentrations in compliance well MW84A and concentrations in background wells; therefore, a paired ANOVA (MW84A vs. MW93A) was performed that indicated a statistically significant difference between the wells. The Mann-Kendall trend analysis did not identify a statistically significant trend in MW84A.
В5	URGA	Uranium	Statistical Test 2, Test of	No statistically significant difference between concentrations in downgradient wells and
			Proportions	concentrations in background wells.

In summary, Statistical Test 2, Test of Proportions, for chromium in the URGA identified a statistically significant difference between background and downgradient wells; however, detectable concentrations of chromium were not observed in any of the downgradient wells. As a result, an evaluation by nonparametric ANOVA was performed and did not indicate a statistically significant exceedance in downgradient wells as compared to background wells.

Statistical Test 2, Test of Proportions, for technetium-99 in the URGA identified a statistically significant difference between background and downgradient wells. As a result, an evaluation by nonparametric ANOVA was performed and identified a statistically significant exceedance in downgradient well MW84A when compared to background wells. The MW84A technetium-99 concentration exceeded the 95% UTL. Because a paired parametric ANOVA between upgradient well MW93A and downgradient well MW84A indicated a statistically significant exceedance, Mann-Kendall trend analysis was performed. The Mann-Kendall analysis showed a decreasing trend.

Statistical Test 2, Test of Proportions, for uranium in the URGA indicated no statistically significant difference between concentrations in downgradient wells and concentrations in background wells.

Statistical Test 4, parametric ANOVA, for arsenic in the URGA could not be performed because equality of variance could not be confirmed. Statistical Test 4 was abandoned and Statistical Test 3, Nonparametric ANOVA, was performed. Statistical Test 3, Nonparametric ANOVA, identified a statistically significant difference between concentrations in downgradient well MW84A and concentrations in background wells; therefore, the data were evaluated further by comparing results to the UTL. The 95% UTL indicated a statistically significant difference between concentrations in downgradient well MW84A and concentrations in background wells. Based on these results, the data were evaluated using paired (parametric) ANOVA of wells in the same direction relative to the landfill [e.g., performed a comparison of downgradient well (MW84A) results to upgradient westernmost well (MW93A) results]. Results of the paired (parametric) ANOVA identified a statistically significant difference between upgradient and

downgradient wells. A Mann-Kendall test was performed to evaluate the data further, and a statistically significant trend was identified for arsenic in MW84A.

Statistical Test 4, parametric ANOVA, for trichloroethene in the URGA indicated statistically significant difference between concentrations in downgradient well MW84A and concentrations in background wells; therefore, the data were evaluated further by comparing results to the UTL. The 95% UTL indicated a statistically significant difference between concentrations in downgradient well MW84A and concentrations in background wells; therefore, paired (parametric) ANOVA was performed on upgradient well MW93A and downgradient well MW84A. Paired (parametric) ANOVA identified a statistically significant difference between the upgradient and downgradient wells. A Mann-Kendall test was performed to evaluate the data further, and did not identify a statistically significant trend for trichloroethene in MW84A.

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT B1

ARSENIC STATISTICAL TEST 4 THIS PAGE INTENTIONALLY LEFT BLANK

Arsenic (As, mg/L)							
Background	Background	Compliance	Compliance	Compliance			
MW93A	MW420	MW84A	MW87A	MW90A			
0.0109	0.00534	0.0222	0.00895	0.0025			
0.0154	0.00832	0.0212	0.00939	0.00211			
0.00806	0.00859	0.0284	0.00793	0.0025			
0.0134	0.0106	0.0348	0.00838	0.00213			
0.0111	0.0103	0.036	0.00827	0.0025			
10		5	5	5			
0.1020		0.1426	0.0429	0.0117			
0.0	0.010		0.009	0.002			
	Background MW93A 0.0109 0.0154 0.00806 0.0134 0.0111 10 0.10 0.00	Arsenic (As, Background Background MW93A MW420 0.0109 0.00534 0.0154 0.00832 0.00806 0.00859 0.0134 0.0106 0.0111 0.0103 10 0.1020 0.010 0.010	Arsenic (As, mg/L) Background Background Compliance MW93A MW420 MW84A 0.0109 0.00534 0.0222 0.0154 0.00832 0.0212 0.00806 0.00859 0.0284 0.0134 0.0106 0.0348 0.0111 0.0103 0.036 10 5 0.1020 0.1426 0.010 0.029 0.029	Arsenic (As, mg/L) Background Background Compliance Compliance MW93A MW420 MW84A MW87A 0.0109 0.00534 0.0222 0.00895 0.0154 0.00832 0.0212 0.00939 0.00806 0.00859 0.0284 0.00793 0.0134 0.0106 0.0348 0.00838 0.0111 0.0103 0.036 0.00827 10 5 5 0.1020 0.1426 0.0429 0.010 0.029 0.009			

mg/L = milligrams per liter

Bolded values indicate a detected result.

Overall mean x =	0.01	
N =	25	N = the total number of samples
p =	4	$p =$ the number of n_i groups
x =	0.30	$x_{}$ = the sum of the total number of samples

Determine Normality of Dataset

Coefficient of Variability Test

Table of Residuals

Date	Background	Background	Compliance	Compliance	Compliance
	MW93A	MW420	MW84A	MW87A	MW90A
Jul-20	0.001	-0.005	-0.006	0.000	0.000
Jan-21	0.005	-0.002	-0.007	0.001	0.000
Jul-21	-0.002	-0.002	0.000	-0.001	0.000
Jan-22	0.003	0.000	0.006	0.000	0.000
Jul-22	0.001	0.000	0.007	0.000	0.000

X: Mean Value = 1.73E-20 S: Standard Deviation = 0.0

Data are not normally distributed (i.e.,>1)

*K factor [from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989)].

If the coefficient of variation is < 1, the data are normally distributed. If the coefficient of variation is > or = 1, data are not normally distributed.

Determine Equality of Variance of Dataset

p = number of well groups	x ₌ 0.30
n _i = number of data points per well	$(x_{avg})_{} = 0.01$
N = total sample size	
S^2 = the square of the standard deviation	p = 4
$\ln(S_i^2)$ = natural logarithm of each variance	N = 25
f = total sample size minus the number of wells (groups)	

 $f_i = n_i - 1$

 $x_{..}$ = the sum of the total number of samples

 $(x_{avg})_{...}$ the mean of the total number of samples

|--|

S _i	S_i^2	$\ln(S_i^2)$	n _i	$f_i S_i^2$	$f_i ln(S_i^2)$
0.003	0.00	-11.721	10	0.0	-105.5
0.007	0.00	-9.960	5	0.000	-39.8
0.001	0.00	-14.901	5	0.000	-59.6
0.000	0.00	-16.953	5	0.000	-67.8

 $\sum (S_i^2) = 0.00 \qquad \sum f_i \ln(S_i^2) = -272.7$

Equality of Variance: Bartlett's Test

f =	21	_		
$Sp^2 =$	0.000			
$\ln \mathrm{Sp}^2 =$	-11.286			
$c^2 =$	35.746	(If $c^2 \le c^2_{crit}$, then variances are equal at the given		
		significance level).		
$c_{crit}^2 * =$	7.815	at a 5% significance level with	3	de

degrees of freedom

NOTE: The variances are NOT equal.

 $(i.e., c^2 > c_{crit}^2)$

Variances are not equal, transform the original data to lognormal (i.e., since $c^2 > c_{crit}^2$).

*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

Lognormal Data for As

ln[As (mg/L)]						
Date	Background	Background Background Compliance Compliance Compliance				
	MW93A	MW420	MW84A	MW87A	MW90A	
Jul-20	-4.52	-5.23	-3.81	-4.72	-5.99	
Jan-21	-4.17	-4.79	-3.85	-4.67	-6.16	
Jul-21	-4.82	-4.76	-3.56	-4.84	-5.99	
Jan-22	-4.31	-4.55	-3.36	-4.78	-6.15	
Jul-22	-4.50	-4.58	-3.32	-4.80	-5.99	
Mean x _i	-4.47	-4.78	-3.58	-4.76	-6.06	
Background Mean	-4.62 NA NA NA				NA	
Grand Mean			-4.73			
× ²	20.42	27.38	14.50	22.24	35.90	
A _i	17.42	22.94	14.85	21.79	37.96	
These values needed for ANOVA	23.24	22.63	12.68	23.40	35.90	
	18.60	20.67	11.28	22.87	37.84	
	20.26	20.94	11.05	22.99	35.90	
Sum x _i ²			576			

mg/L = milligrams per liter

Determine Normality of Dataset

Coefficient of Variability Test

Table of ln[As (mg/L)] Data

Date	Background	Background	Compliance	Compliance	Compliance
	MW93A	MW420	MW84A	MW87A	MW90A
Jul-20	-4.52	-5.23	-3.81	-4.72	-5.99
Jan-21	-4.17	-4.79	-3.85	-4.67	-6.16
Jul-21	-4.82	-4.76	-3.56	-4.84	-5.99
Jan-22	-4.31	-4.55	-3.36	-4.78	-6.15
Jul-22	-4.50	-4.58	-3.32	-4.80	-5.99

Data are normally distributed (i.e.,<1)

*K factor [from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989)].

Determine Equality of Variance of Dataset for Lognormal Data

p = number of wells (background wells considered as one group)	x ₌ -118.22
$n_i =$ number of data points per well	$(x_{avg})_{} = -4.73$
N = total sample size	$n_i = 5$
S^2 = the square of the standard deviation	p = 4
$\ln(S_i^2)$ = natural logarithm of each variance	N = 25
f = total sample size minus the number of wells (groups)	

 $f_i = n_i - 1$

 $x_{\cdot \cdot}$ = the sum of the total lognormal dataset

 $(x_{avg})_{...=}$ the mean of the lognormal dataset

Calculations for Equ	ality of Variance:	Bartlett's Test

S _i	$S_i^{\ 2}$	$\ln(S_i^2)$	n _i	$f_i S_i^2$	$f_i ln(S_i^2)$
0.296	0.088	-2.435	10	0.789	-21.9
0.246	0.060	-2.806	5	0.242	-11.2
0.067	0.005	-5.402	5	0.018	-21.6
0.090	0.008	-4.808	5	0.033	-19.2

 $\sum (S_i^2) = 0.16$

Equality of Variance: Bartlett's Test

f =	21			
$Sp^2 =$	0.051			
$\ln Sp^2 =$	-2.967			
$c^2 =$	11.677	(If $c^2 \le c^2_{crit}$, then variances are equal at the given significance level).		
$c^2_{crit} * =$	7.815	at a 5% significance level with	3	degrees of freedom

 $\sum f_i \ln(S_i^2) =$

NOTE: The variances are NOT equal.

(i.e., $c^2 \le c^2_{crit}$)

-74.0

Because variances are not equal, Statistical Test 3, Nonparametric ANOVA is performed.**

*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989)].

**Section 5.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989)].

	Arsenic (mg/L)						
Date	Background	Background	Compliance	Compliance	Compliance		
	MW93A	MW420	MW84A	MW87A	MW90A		
Jul-20	0.0109	0.00534	0.0222	0.00895	0.0025		
Jan-21	0.0154	0.00832	0.0212	0.00939	0.00211		
Jul-21	0.00806	0.00859	0.0284	0.00793	0.0025		
Jan-22	0.0134	0.0106	0.0348	0.00838	0.00213		
Jul-22	0.0111	0.0103	0.036	0.00827	0.0025		
Sum	0.102	0	0.14260	0.04292	0.0117		
n _i	10		5	5	5		
(x _i) _{avg}	0.0102	20	0.02852	0.00858	0.0023		

mg/L = milligrams per liter

BG = background

DL = detection limit

All data sets represent 1/2 DL values for nondetects.

Bolded values indicate a detected result.

Overall mean $x_{..} = 0.01197$

N =	25	N = the total number of samples
p =	4	$p =$ the number of n_i groups
x =	0.30	$x_{}$ = the sum of the total number of samples

Nonparametric ANOVA

Ranking of Observations

		Adjusted	
Sequence	Arsenic (mg/L)	Rank	Tie Number
1	0	2	
2	0	2	Tie
3	0	2	
4	0.00211	4	
5	0.00213	5	
6	0.00534	6	
7	0.00793	7	
8	0.00806	8	
9	0.00827	9	
10	0.00832	10	
11	0.00838	11	
12	0.00859	12	
13	0.00895	13	
14	0.00939	14	
15	0.0103	15	
16	0.0106	16	
17	0.0109	17	
18	0.0111	18	
19	0.0134	19	
20	0.0154	20	
21	0.0212	21	
22	0.0222	22	
23	0.0284	23	
24	0.0348	24	
25	0.036	25	

mg/L = milligrams per liter

BG = background

DL = detection limit

Bolded values indicate a detected result.

NOTE: For this method, observations below the detection limit that are considered nondetects (i.e., U qualified data) are reported as a concentration of 0.

n_{tie} 3

Tie 1 =	24

$$\Sigma T_i = 24$$

Sums of Ranks and Averages

		Ars	enic (mg/L)			
Date	Background	Background	Compliance	Compliance	Compliance]
	MW93A	MW420	MW84A	MW87A	MW90A	
Jul-20	0.0109	0.00534	0.0222	0.00895	0	
Jan-21	0.0154	0.00832	0.0212	0.00939	0.00211	
Jul-21	0.00806	0.00859	0.0284	0.00793	0	
Jan-22	0.0134	0.0106	0.0348	0.00838	0.00213	
Jul-22	0.0111	0.0103	0.036	0.00827	0	
						_
		Observation	n Ranks for Arsen	nic		
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93A	MW420	MW84A	MW87A	MW90A	
Jul-20	17	6	22	13	2	
Jan-21	20	10	21	14	4	
Jul-21	8	12	23	7	2	
Jan-22	19	16	24	11	5	
Jul-22	18	15	25	9	2	
R _i	14	1	115	54	15	
$(R_i)_{avg}$	14.	.1	23.0	10.8	3.0	
R_i^2/n_i	198	8.1	2645.0	583.2	45.0	
$\Sigma P^{2}/n$ –	5261.3		ma/I – milliara	ms per liter	K = the number of	f n groups
$\Delta \mathbf{x}_i / \mathbf{n}_i -$	5201.5		BC = backgrour	d	N = the total number of	har of samplas
			DI = datastion l	imit		ber of samples
			DL – detection i	ndicata a datacta	d rocult	
<i>V</i> –	1		NOTE: For this	mathad absorvati	ong bolow the detect	tion limit
K – N –	4		that are consider	nietnou, observan	II qualified data) a	non minu
IN =	23		as a concentratio	on of 0 .	., 0 quanned data) a	ire reported
ruskal-Wa	llie Statistic					

Calculation of Kruskal-Wallis Statistic

H =	19.132	Kruskal-Wallis Statistic	$H = [12/N(N+1)*\Sigma R_i^2/n_i] - 3(N+1)$
H' =	19.161	Corrected Kruskal-Wallis	$H' = H/[1-(\sum T_i/N^3-N)]$
χ^2_{crit} * =	7.815	3 degrees of fre	eedom at the 5% significance level

NOTE: H' > χ^2_{crit}

If $H' \leq \chi^2_{crit}$, the data from each well come from the same continuous distribution and hence have the same median concentrations of a specific constituent.

If H' > χ^2_{crit} , reject the null hypothesis and calculate the critical difference for well comparisons to the background.

K-1 =	3	α/(K-1) =	0.01667	$Z(\alpha/(K-1))^{**} =$	2.1280
$\alpha =$	0.05	$1 - (\alpha/K - 1) =$	0.983		

NOTE: *Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

**Table 4, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

Calculate Critical Values

	Well No.	Ci	$(R_i)_{avg}$ - $(R_b)_{avg}$	Conclusion
BG Well	MW93A			
BG Well	MW420			
	MW84A	8.578	8.9	evidence of contamination
	MW87A	8.578	-3.3	not contaminated
	MW90A	8.578	-11.1	not contaminated

Average Background Ranking = 14.1

mg/L = milligrams per liter

BG = background

DL = detection limit

CONCLUSION:

If $(R_i)_{avg}$ - $(R_b)_{avg}$ > C_i , then there is evidence that the compliance well is contaminated.

If $(R_i)_{avg}$ - $(R_b)_{avg} < C_i$ for wells, there is no evidence of a statistically significant difference between concentrations in downgradient compliance test wells and background wells.

Since $(R_i)_{avg}$ - $(R_b)_{avg}$ > C_i for MW84A, there is a statistically significant difference between downgradient compliance test wells and background wells in MW84A from the C-404 Landfill.

Because nonparametric ANOVA indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance well MW84A, the 95% UTL was performed.

Since $(R_i)_{avg} - (R_b)_{avg} < C_i$ for MW87A and MW90A, there is no statistically significant difference between background wells and these downgradient compliance test wells; however, the negative value indicates that background wells have elevated concentrations.

Section 5.2.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

95% Upper Tolerance Limit (UTL)

Compare the most recent downgradient sample results to a calculated 95% UTL using the five most recent sets of data for each upgradient well, as described below. If downgradient concentration is less than the UTL for the paired upgradient concentrations, then there is no confirmed exceedance.

July 2022 Data, Second Reporting Period Arsenic Observations (mg/L)

Well No.						
MW93A	0.01090	0.01540	0.00806	0.01340	0.01110	Upgradient Well [!]
MW420	0.00534	0.00832	0.00859	0.01060	0.01030	Upgradient Well [!]
						<u>Current Data</u>
MW84A						0.036
	X: M	lean Value =	0.0102			
	S: Standard	Deviation =	0.0028			
		K* factor =	2.911	(for $n = 10$)		
		CV = S/X	0.2793	<1, assume	normal distribution	
	Upper Toler	ance Interval: T	TL = X + (KxS) =	0.0185	(mg/L)	

! = Data from previous 5 sampling events.

CV = coefficient of variation

* = Table 5, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

Result: MW84A exceeded the UTL, which is statistically significant evidence that this compliance well has elevated concentration with respect to background data.

> Because the 95% UTL indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance well MW84A, the paired ANOVA was performed.

Paired (Parametric) ANOVA - MW93A and MW84A

Evaluate results using paired ANOVA of wells in the same direction relative to the landfill [e.g., compare upgradient westernmost well results to downgradient westernmost well results]. If ANOVA does not identify a statistically significant difference between upgradient and downgradient wells, then the results are consistent with the historical ASD.

	Arsenic (mg/	L)		
Date	Background	Compliance		
	MW93A	MW84A	1	n_i^2
Jul-20	0.0109	0.0222	0.00012	0.00049
Jan-21	0.0154	0.0212	0.00024	0.00045
Jul-21	0.00806	0.0284	0.00006	0.00081
Jan-22	0.0134	0.0348	0.00018	0.00121
Jul-22	0.0111	0.036	0.00012	0.00130
Sum (x _i)	0.0589	0.1426	0.20146	Total Sum (x)
n _i	5	5		_
$(x_i)_{avg}$	0.0118	0.0285		
$(\mathbf{x}_i)^2$	0.0035	0.0203		

mg/L = milligrams per liter Bolded values indicate a detected result.

Overall mean x =	0.0201	
N =	10	N = the total number of samples
$\mathbf{p} =$	2	$p =$ the number of n_i groups
X ₌	0.2015	$x_{}$ = the sum of the total number of samples

Determine Normality of Dataset

Coefficient of Variability Test

Table of Residuals $(x_i - x_{iavg})$				
Date	Background	Compliance		
	MW93A	MW84A		
Jul-20	-0.0009	-0.0063		
Jan-21	0.0036	-0.0073		
Jul-21	-0.0037	-0.0001		
Jan-22	0.0016	0.0063		
Jul-22	-0.0007	0.0075		

X: Mean Value =	-8.67E-19	
S: Standard Deviation =	0.005	
K* Factor =	2.911	(for n = 10)
CV = S/X =	-5.70E+15	<1, data are normally distributed

Data are normally distributed (i.e.,<1)

*Table 5, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

If the coefficient of variation is < 1, the data are normally distributed. If the coefficient of variation is > or = 1, data are not normally distributed.

Determine Equality of Variance of Dataset

p = number of wells	x ₌ 0.2015
$n_i =$ number of data points per well	$(x_{avg})_{} = 0.0201$
N = total sample size	$n_{i=}$ 5
S^2 = the square of the standard deviation	p = 2
$\ln(S_i^2)$ = natural logarithm of each variance	N = 10
f = total sample size minus the number of wells (groups)	$f_i = 4$
$\mathbf{f}_{i} = \mathbf{n}_{i} - 1$	

Calculations for Equality of Variance: Bartlett's Test

S _i	S_i^2	$\ln(S_i^2)$ †	n _i	$f_i S_i^2$	$f_i ln({S_i}^2) \dagger$
0.0028	0.0000	-11.774	5	0	-47.1
0.0069	0.0000	-9.960	5	0	-39.8

$$\sum (S_i^2) = 0$$
 $\sum f_i \ln(S_i^2) = -87$

$$\begin{split} & \frac{Equality \text{ of Variance: Bartlett's Test}}{f = & 8} \\ & Sp^2 = & 0.0000 \\ & \ln Sp^2 = & -10.503 \\ & \chi^2 = & 2.918 \qquad (\text{If calculated } \chi^2 \leq \text{tabulated } \chi^2_{\text{crit}} \text{ then variances are equal at the given significance level}).} \\ & \chi^2_{\text{crit}} * = & 3.841 \qquad \text{at a 5\% significance level with} \qquad 1 \qquad \text{degrees of freedom (p-1)} \end{split}$$

NOTE: The variances are equal.

(i.e., calculated $\chi^2 \leq \chi^2_{crit}$)

Since calculated $\chi^2 \leq \chi^2_{crit}$, then the analysis can proceed as normal.

*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

Between Well Sum of Squares

Source of			Degrees of	Mean		
Variation	Sums o	f Squares	Freedom	Squares	Calculated F	F Statistic**
Between Wells	$SS_{wells} =$	0.0007	1	0.00070	25.53	5.32
Error	$SS_{Error} =$	0.0002	8	0.00003		
Total	$SS_{Total} =$	0.0009	9			

If calculated F > F statistic, then reject the hypothesis of equal well means. If calculated F is less than or equal to F statistic, it can be concluded that there is no significant difference between concentrations; therefore, there is no evidence of well contamination.

CONCLUSION:

Calculated F > F statistic; therefore, ANOVA has identified a significant difference between upgradient and downgradient wells.

Because the paired ANOVA for the two wells indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance well MW84A, a Mann-Kendall statistical analysis was performed.

**Table 2, Appendix B, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989). F statistic taken at the 5% significance level.

Mann-Kendall Trend Test Analysis MW84A Arsenic July 2022

User Selected Options Date/Time of Computation ProUCL 5.19/20/2022 1:54:52 PM From File WorkSheet.xls Full Precision OFF Confidence Coefficient 0.95 Level of Significance 0.05

MW84A_As_Jul22

General Statistics

Input Data		
Date	Result	
Collected	(µg/L)	
Jan-19	27.5	
Jul-19	16.8	
Jan-20	20.2	
Jul-20	22.2	
Jan-21	21.2	
Jul-21	28.4	
Jan-22	34.8	
Jul-22	36.0	

Bolded values indicate : detected result.

Number or Reported Events Not Used	0
Number of Generated Events	8
Number Values Reported (n)	8
Minimum	16.8
Maximum	36
Mean	25.89
Geometric Mean	25.07
Median	24.85
Standard Deviation	6.981
Coefficient of Variation	0.27

Mann-Kendall Test

M-K Test Value (S)	18
Tabulated p-value	0.016
Standard Deviation of S	8.083
Standardized Value of S	2.103
Approximate p-value	0.0177

Statistically significant evidence of an increasing trend at the specified level of significance.

Mann-Kendall Trend Test Analysis MW84A Arsenic July 2022

ATTACHMENT B2

CHROMIUM STATISTICAL TEST 2 THIS PAGE INTENTIONALLY LEFT BLANK

Chromium (mg/L)							
Date	Background	Background	Compliance	Compliance	Compliance		
	MW93A	MW420	MW84A	MW87A	MW90A		
Jul-20	0.005	0.005	0.005	0.005	0.005		
Jan-21	0.00338	0.005	0.005	0.005	0.005		
Jul-21	0.005	0.005	0.005	0.005	0.005		
Jan-22	0.00777	0.005	0.005	0.005	0.005		
Jul-22	0.00527	0.005	0.005	0.005	0.005		

mg/L = milligrams per liter BG = background DL = detection limit All data sets represent 1/2 DL values for nondetects. Bolded values indicate a detected result.

¹Test of Proportions

Calculate the number of detections in background wells vs. compliance wells.

X =	3	X = number of samples above DL in background wells
Y =	0	Y = number of samples above DL in compliance wells
$n_b =$	10	$n_b =$ count of background well results/samples analyzed
$n_c =$	15	$n_c = count of compliance well results/samples analyzed$
n =	25	n = total number of samples
P =	0.120	$\mathbf{P} = (\mathbf{x} + \mathbf{y})/\mathbf{n}$
nP =	3	$n = n_b + n_c$
n(1-P) =	22	

NOTE: If nP and n(1-P) are both ≥ 5 , then the normal approximation may be used; however, because nP < 5 and/or n(1-P) < 5, the test was continued to determine if the conclusion, along with a simple evaluation of the data would be similar.

$P_b =$	0.300	P_b = proportion of detects in background wells
$P_c =$	0.000	P_c = proportion of detects in compliance wells
$S_D =$	0.133	S_D = standard error of difference in proportions
Z =	2.261	$Z = (P_{b}-P_{c})/S_{D}$
absolute value of Z =	2.261	

If the absolute value of Z exceeds the 97.5th percentile value of 1.96 from the standard normal distribution, this provides statistically significant evidence at the 5% significance level that the proportion of detects in one group of data exceeds the proportion of detects in the other group.

CONCLUSION: Because the absolute value of Z greater than 1.96, there is statistical evidence that the proportion of samples with detected results differs between the background well and compliance well samples. Non-parametric ANOVA was performed.

¹ Section 8.1.2, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (EPA 1989).

Attachment B2: Chromium URGA, Statistical Test Statistical Test 2, Test of Proportions Second Reporting Period 2022

Nonparametric ANOVA

Ranking of Observations

		Adjusted	
Sequence	Chromium (mg/L)	Rank	Tie Number
1	0	11.5	
2	0	11.5	
3	0	11.5	
4	0	11.5	
5	0	11.5	
6	0	11.5	
7	0	11.5	
8	0	11.5	
9	0	11.5	
10	0	11.5	
11	0	11.5	Tio
12	0	11.5	Tie
13	0	11.5	
14	0	11.5	
15	0	11.5	
16	0	11.5	
17	0	11.5	
18	0	11.5	
19	0	11.5	
20	0	11.5	
21	0	11.5	
22	0	11.5	
23	0.00338	23	
24	0.00527	24	
25	0.00777	25	

mg/L = milligrams per liter

BG = background

DL = detection limit

Bolded values indicate a detected result.

NOTE: For this method, observations below the detection limit that are considered nondetects (i.e., U qualified data) are reported as a concentration of 0.

n_{tie}

22	Tie 1 =	10626

$$\Sigma T_i = 10626$$

Attachment B2: Chromium URGA, Statistical Test Statistical Test 2, Test of Proportions Second Reporting Period 2022

Sums of Ranks and Averages

Chromium (mg/L)						
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93A	MW420	MW84A	MW87A	MW90A]
Jul-20	0	0	0	0	0	1
Jan-21	0.00338	0	0	0	0]
Jul-21	0	0	0	0	0]
Jan-22	0.00777	0	0	0	0]
Jul-22	0.00527	0	0	0	0]
						_
		Observation	Ranks for Chrom	ium]
Date	Background	Background	Compliance	Compliance	Compliance]
	MW93A	MW420	MW84A	MW87A	MW90A	
Jul-20	11.5	11.5	11.5	11.5	11.5]
Jan-21	23	11.5	11.5	11.5	11.5]
Jul-21	11.5	11.5	11.5	11.5	11.5	
Jan-22	25	11.5	11.5	11.5	11.5]
Jul-22	24	11.5	11.5	11.5	11.5	
R _i	R _i 152.5		57.5	57.5	57.5	
$(R_i)_{avg}$	15.	3	11.5	11.5	11.5]
R_i^2/n_i	2325	5.6	661.3	661.3	661.3	
50 ² /	1200.1		/7 111]
$\Sigma R_i^2/n_i =$	4309.4		mg/L = milligra	ms per liter	K = the number o	f n _i groups
			BG = backgrour	nd	N = the total num	ber of samples
			DL = detection	imit		
			Bolded values i	ndicate a detected	l result.	
K =	4		NOTE: For this	method, observation	ons below the detec	tion limit
N =	25		that are considered nondetects (i.e., U qualified data) are reported			
			as a concentration	on of 0.		

Calculation of Kruskal-Wallis Statistic

H =	1.558	Kruskal-Wallis Statistic	$H = [12/N(N+1)*\Sigma R_i^2/n_i] - 3(N+1)$
H' =	4.885	Corrected Kruskal-Wallis	$H' = H/[1-(\sum T_i/N^3-N)]$
χ^2_{crit} * =	7.815	3 degrees of fre	edom at the 5% significance level

NOTE: $H' < \chi^2_{crit}$

If $H' \leq \chi^2_{crit}$, the data from each well come from the same continuous distribution and hence have the same median concentrations of a specific constituent.

If H' > χ^2_{crit} , reject the null hypothesis and calculate the critical difference for well comparisons to the background.

K-1 =	3	$\alpha/(K-1) =$	0.01667	$Z(\alpha/(K-1))^{**} =$	2.1280
$\alpha =$	0.05	$1 - (\alpha/K - 1) =$	0.983		

NOTE: *Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

**Table 4, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

Attachment B2: Chromium URGA, Statistical Test Statistical Test 2, Test of Proportions Second Reporting Period 2022

Calculate Critical Values

	Well No.	C_i	$(R_i)_{avg}$ - $(R_b)_{avg}$	Conclusion
BG Well	MW93A			
BG Well	MW420			
	MW84A	8.578	-3.8	not contaminated
	MW87A	8.578	-3.8	not contaminated
	MW90A	8.578	-3.8	not contaminated

Average Background Ranking = 15.3

mg/L = milligrams per liter

BG = background

DL = detection limit

CONCLUSION:

If $(R_i)_{avg}$ - $(R_b)_{avg}$ > C_i , then there is evidence that the compliance well is contaminated.

If $(R_i)_{avg}$ - $(R_b)_{avg} < C_i$ for wells, there is no evidence of a statistically significant difference between concentrations in downgradient compliance test wells and background wells.

Since $(R_i)_{avg} - (R_b)_{avg} < C_i$ for MW84A, MW87A, and MW90A, there is no statistically significant difference between background wells and these downgradient compliance test wells; however, the negative value indicates that background wells have elevated concentrations.

Section 5.2.2, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989).

ATTACHMENT B3

TECHNETIUM-99 STATISTICAL TEST 2 THIS PAGE INTENTIONALLY LEFT BLANK

Technetium-99 (pCi/L)						
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93A	MW420	MW84A	MW87A	MW90A	
Jul-21	20.5	5.3	229	5.75	24.3	
Nov-21	9.25	9.4	258	9.1	9.05	
Jan-22	10.45	9.65	225	10	9.55	
May-22	7.95	7.95	47.9	6	34.4	
Jul-Aug-22	7.85	7.25	47.2	6.7	25.7	

pCi/L = picocuries per liter BG = background DL = detection limit Nondetect values are 1/2 DL. Bolded values indicate a detected result.

[!]Test of Proportions

Calculate the number of detections in background wells vs. compliance wells.

$\begin{array}{l} \mathbf{X} = \\ \mathbf{Y} = \\ \mathbf{n}_{\mathrm{b}} = \\ \mathbf{n}_{\mathrm{c}} = \\ \mathbf{n} = \end{array}$	1 8 10 15 25	X = number of samples above DL in background wells Y = number of samples above DL in compliance wells $n_b =$ count of background well results/samples analyzed $n_c =$ count of compliance well results/samples analyzed n = total number of samples
$\mathbf{P} =$	0.360	P=(x+y)/n
nP =	9	$n=n_b+n_c$
n(1-P) =	16	

NOTE: If nP and n(1-P) are both >= 5, then the normal approximation may be used.

0.100	P_b = proportion of detects in background wells
0.533	P_c = proportion of detects in compliance wells
0.196	S_D = standard error of difference in proportions
-2.211	$Z = (P_b - P_c)/S_D$
2.211	
	0.100 0.533 0.196 -2.211 2.211

If the absolute value of Z exceeds the 97.5th percentile value of 1.96 from the standard normal distribution, this provides statistically significant evidence at the 5% significance level that the proportion of detects in one group of data exceeds the proportion of detects in the other group.

CONCLUSION: Because the absolute value of Z is greater than 1.96, Nonparameteric ANOVA was performed.

¹Section 8.1.2, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (EPA 1989).

		Techneti	um-99 (pCi/L)		
Date	Background	Background	Compliance	Compliance	Compliance
	MW93A	MW420	MW84A	MW87A	MW90A
Jul-21	20.5	5.3	229	5.75	24.3
Nov-21	9.25	9.4	258	9.1	9.05
Jan-22	10.45	9.65	225	10	9.55
May-22	7.95	7.95	47.9	6	34.4
Jul-Aug-22	7.85	7.25	47.2	6.7	25.7
Sum	95.550	00	807.10000	37.55000	103.0000
n _i	10		5	5	5
(x _i) _{avg}	9.5550	00	161.42000	7.51000	20.6000

pCi/L = picocuries per liter

BG = background

DL = detection limit

All data sets represent 1/2 DL values for nondetects.

Bolded values indicate a detected result.

Overall mean $x_{..} = 41.72800$

N =	25	N = the total number of samples
p =	4	$p =$ the number of n_i groups
x =	1043.20	$x_{}$ = the sum of the total number of samples

Nonparametric ANOVA

Ranking of Observations

	Technetium-99	Adjusted	
Sequence	(pCi/L)	Rank	Tie Number
1	0	8.5	
2	0	8.5	
3	0	8.5	
4	0	8.5	
5	0	8.5	
6	0	8.5	
7	0	8.5	
8	0	8.5	Tio 1
9	0	8.5	The T
10	0	8.5	1
11	0	8.5	
12	0	8.5	1
13	0	8.5	
14	0	8.5	
15	0	8.5	1
16	0	8.5	
17	20.5	17	
18	24.3	18	
19	25.7	19	
20	34.4	20	
21	47.2	21	
22	47.9	22	
23	225	23	
24	229	24	
25	258	25	

pCi/L = picocuries per liter

BG = background

DL = detection limit

Bolded values indicate a detected result.

NOTE: For this method, observations below the detection limit that are considered nondetects (i.e., U qualified data) are reported as a concentration of 0.

n_{tie}

16	Tie 1 =	4080
10		4000

 $\Sigma T_{i} = 4080$

Sums of Ranks and Averages

		Technet	1um-99 (pC1/L)			
Date	Background	Background	Compliance	Compliance	Compliance]
	MW93A	MW420	MW84A	MW87A	MW90A]
Jul-21	20.5	0	229	0	24.3]
Nov-21	0	0	258	0	0]
Jan-22	0	0	225	0	0]
May-22	0	0	47.9	0	34.4	
Jul-Aug-22	0	0	47.2	0	25.7]
						_
		Observation Ra	nks for Technetiu	ım-99		
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93A	MW420	MW84A	MW87A	MW90A	
Jul-21	17	8.5	24	8.5	18	
Nov-21	8.5	8.5	25	8.5	8.5	
Jan-22	8.5	8.5	23	8.5	8.5	
May-22	8.5	8.5	22	8.5	20	
Jul-Aug-22	8.5	8.5	21	8.5	19	
R _i	93.	5	115	42.5	74	
(R _i) _{avg}	9.4	4	23.0	8.5	14.8	
R_i^2/n_i	874	.2	2645.0	361.3	1095.2	
$\Sigma R_i^2/n_i = K =$	4975.7 4		pCi/L = picocur BG = backgrour DL = detection I Bolded values i NOTE: For this	ies per liter id imit ndicate a detecte method, observati	K = the number of $N =$ the total number of d result.	f n _i groups ber of samples tion limit
N =	25		that are consider as a concentratio	red nondetects (i.e	., U qualified data) a	ire reported

Calculation of Kruskal-Wallis Statistic

H =	13.859	Kruskal-Wallis Statistic	$H = [12/N(N+1)*\Sigma R_i^2/n_i] - 3(N+1)$
H' =	18.767	Corrected Kruskal-Wallis	$H' = H/[1-(\sum T_i/N^3-N)]$
$\chi^2_{crit} * =$	7.815	3 degrees of fre	eedom at the 5% significance level

NOTE: $H' > \chi^2_{crit}$

If $H' \leq \chi^2_{crit}$, the data from each well come from the same continuous distribution and hence have the same median concentrations of a specific constituent.

If H' > χ^2_{crit} , reject the null hypothesis and calculate the critical difference for well comparisons to the background.

K-1 =	3	$\alpha/(K-1) =$	0.01667	$Z(\alpha/(K-1))^{**} =$	2.1280
$\alpha =$	0.05	$1 - (\alpha/K - 1) =$	0.983		

NOTE: *Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

**Table 4, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

Calculate Critical Values

Average Background Ranking = 9.4

		•		
	Well No.	Ci	$(R_i)_{avg}$ - $(R_b)_{avg}$	Conclusion
BG Well	MW93A			
BG Well	MW420			
	MW84A	8.578	13.7	evidence of contamination
	MW87A	8.578	-0.9	not contaminated
	MW90A	8.578	5.5	not contaminated

pCi/L = picocuries per liter BG = background DL = detection limit

CONCLUSION:

If $(R_i)_{avg}$ - $(R_b)_{avg}$ > C_i , then there is evidence that the compliance well is contaminated.

If $(R_i)_{avg}$ - $(R_b)_{avg} \le C_i$ for wells, there is no evidence of a statistically significant difference between concentrations in downgradient compliance test wells and background wells.

Since $(R_i)_{avg} - (R_b)_{avg} > C_i$ for MW84A, there is a statistically significant difference between downgradient compliance test wells and background wells in MW84A from the C-404 Landfill.

Because nonparametric ANOVA indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance well MW84A, the 95% UTL was performed.

Since $(R_i)_{avg} - (R_b)_{avg} < C_i$ for MW87A and MW90A, there is no statistically significant difference between background wells and these downgradient compliance test wells.

Section 5.2.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

95% Upper Tolerance Limit (UTL)

Compare the most recent downgradient sample results to a calculated 95% UTL using the five most recent sets of data for each upgradient well, as described below. If downgradient concentration is less than the UTL for the paired upgradient concentrations, then there is no confirmed exceedance.

	_	reem	1001um >> 0.0	ser varions (per	2)	
Well No.						
MW93A	20.5	9.25	10.45	7.95	7.85	Upgradient Well [!]
MW420	5.3	9.4	9.65	7.95	7.25	Upgradient Well [!]
						<u>Current Data</u>
MW84A						47.2
	X: M	lean Value =	10			
	S: Standard	Deviation =	4			
]	K* factor =	2.911	(for $n = 10$)		
				<1, assume n	ormal	
		CV = S/X	0.4304	distribution		
	Upper Toler	ance Interval: T	L = X + (KxS)	= 22 ((pCi/L)	

July-August 2022 Data, Second Reporting Period Technetium-99 Observations (pCi/L)

- ! = Data from previous 5 sampling events. Nondetect values are 1/2 DL.
- CV = coefficient of variation
 - * = Table 5, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).
- Result: MW84A exceeded the UTL, which is statistically significant evidence that this compliance well has elevated concentration with respect to background data.

Because the 95% UTL indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance wells MW84A, the paired (parametric) ANOVA was performed.

Paired (Parametric) ANOVA - MW93A and MW84A

Evaluate results using paired ANOVA of wells in the same direction relative to the landfill [e.g., compare upgradient westernmost well results to downgradient westernmost well results]. If ANOVA does not identify a statistically significant difference between upgradient and downgradient wells, then the results are consistent with the historical ASD.

Te	chnetium-99 (p	Ci/L)		
Date	Background	Compliance		
	MW93A	MW84A		n_i^2
Jul-21	20.5	229	420	52441
Nov-21	9.25	258	86	66564
Jan-22	10.45	225	109	50625
May-22	7.95	47.9	63	2294
Jul-Aug-22	7.85	47.2	62	2228
Sum (x _i)	56	807	863	Total Sum (x
n _i	5	5		_
(x _i) _{avg}	11	161		
$(\mathbf{x}_i)^2$	3136	651410		

pCi/L = picocuries per liter Nondetect values are 1/2 DL. **Bolded values indicate a detected result.**

Overall mean x =	86	
N =	10	N = the total number of samples
p =	2	$p =$ the number of n_i groups
X ₌	863	$x_{}$ = the sum of the total number of samples

Determine Normality of Dataset

Coefficient of Variability Test

Date	Background	Compliance
	MW93A	MW84A
Jul-21	9	68
Nov-21	-2	97
Jan-22	-1	64
May-22	-3	-114
Jul-Aug-22	-3	-114

0.00E+00	
70	
2.911	(for n = 10)
$#\Delta I \varsigma / 0!$	#DIV/0!
	0.00E+00 70 2.911 #ΔΙς/0!

†The Coefficient of Variability Test was not performed due to mean = 0 (i.e., division by 0 not possible).

*Table 5, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

If the coefficient of variation is < 1, the data are normally distributed. If the coefficient of variation is > or = 1, data are not normally distributed.
Determine Equality of Variance of Dataset

p = number of wells	x ₌ 863
n_i = number of data points per well	$(x_{avg})_{} = 86$
N = total sample size	$n_{i=}$ 5
S^2 = the square of the standard deviation	p = 2
$\ln(S_i^2)$ = natural logarithm of each variance	N = 10
f = total sample size minus the number of wells (group	$f_i = 4$
$\mathbf{f}_i = \mathbf{n}_i - 1$	

|--|

S _i	S_i^2	$\ln(S_i^2)$ †	n _i	$f_i S_i^2$	$f_i ln(S_i^{\ 2}) \dagger$
5	28	3.338	5	113	13.4
105	10968	9.303	5	43870	37.2

$$\sum (S_i^2) = 10,996$$
 $\sum f_i \ln(S_i^2) = 51$

Equality of Variance: Bartlett's Test f =8 $Sp^2 =$ 5498 $\ln Sp^2 =$ 8.612 $\chi^2 =$ (If calculated $\chi^2 \leq$ tabulated $\chi^2_{\rm \, crit},$ then variances are equal at the given 18.335 significance level). $\chi^2_{crit} * =$ 3.841 at a 5% significance level v 1 degrees of freedom (p-1)

NOTE: The variances are NOT equal. (i.e., calculated $\chi^2 > \chi^2_{crit}$)

Variances are not equal, transform the original data to lognormal (i.e., since calculated $\chi^2 > \chi^2_{crit}$).

*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

Paired (Parametric) ANOVA-Lognormal Data

ln[Te	echnetium-99 (pCi/L)]		
Date	Background	Compliance		
	MW93A	MW84A		n_i^2
Jul-21	3.02	5.43	9.12	29.53
Nov-21	2.22	5.55	4.95	30.84
Jan-22	2.35	5.42	5.51	29.33
May-22	2.07	3.87	4.30	14.97
Jul-Aug-22	2.06	3.85	4.25	14.86
Sum (x _i)	11.73	24.13	35.85	Total Sum (x)
n _i	5	5		_
(x _i) _{avg}	2.35	4.83		
$(\mathbf{x}_i)^2$	137.48	582.08		

pCi/L = picocuries per liter

Bolded values indicate a detected result.

Overall mean x =	3.59	
N =	10	N = the total number of samples
p =	2	$p =$ the number of n_i groups
X ₌	35.85	x = the sum of the total number of samples

Determine Normality of Dataset

Coefficient of Variability Test-Lognormal Data

Table of Residuals (x_i-x_iavg) for Lognormal Data

Date	Background	Compliance
	MW93A	MW84A
Jul-21	0.68	0.61
Nov-21	-0.12	0.73
Jan-22	0.00	0.59
May-22	-0.27	-0.96
Jul-Aug-22	-0.28	-0.97

X: Mean Value =
$$-8.88E-17$$

S: Standard Deviation = 0.64
K* Factor = 2.911 (for n = 10)
 $CV = S/X = -7.25E+15 < 1$, data are normally distributed

Data are normally distributed (i.e., < or =1)

*Table 5, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

If the coefficient of variation is < 1, the residuals are normally distributed. If the coefficient of variation is > or = 1, the residuals are not normally distributed.

Determine Equality of Variance-Lognormal Data

p = number of wells	$x_{} = 35.85$
$n_i =$ number of data points per well	$(x_{avg})_{} = 3.59$
N = total sample size	$n_{i=}5$
S^2 = the square of the standard deviation	p = 2
$\ln(S_i^2)$ = natural logarithm of each variance	N = 10
f = total sample size minus the number of wells (group)	$f_i = 4$
$f_{1} = n_{1} - 1$	

Calculations	for Equ	ality of	Variance.	Bartlett's	Test
Calculations	IOI LYL	ianty Or	variance.	Darnens	103

S _i	${S_i}^2$	$\ln(S_i^2)$	n _i	$f_i S_i^2$	$f_i ln(S_i^2)$
0.40	0.16	-1.86	5	0.63	-7.4
0.88	0.78	-0.25	5	3.11	-1.0

$$\sum(S_i^2) = 0.93$$
 $\sum f_i \ln(S_i^2) = -8.43$

 $\begin{array}{rcl} & & \\ f = & 8 \\ Sp^2 = & 0.47 \\ ln \ Sp^2 = & -0.76 \\ \chi^2 = & 2.33 \\ \chi^2_{crit} * = & 3.841 \end{array} \quad at a 5\% \ significance \ level v \\ \end{array} \quad 1 \qquad degrees \ of \ freedom \ (p-1) \end{array}$

NOTE: The variances are equal.

(i.e., calculated $\chi^2 \leq \chi^2_{crit}$)

Since calculated $\chi^2 \le \chi^2_{\text{crit}}$, then the analysis can proceed as normal.

*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

**Section 5.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989)].

Between Well Sum of Squares

Source of			Degrees of	Mean		
Variation	Sums of	Squares	Freedom	Squares	Calculated F	F Statistic**
Between Wells	$SS_{wells} =$	15.38	1	15.38	32.97	5.32
Error	$SS_{Error} =$	3.73	8	0.47		
Total	$SS_{Total} =$	19.11	9			

If calculated F > F statistic, then reject the hypothesis of equal well means. If calculated F is less than or equal to F statistic, it can be concluded that there is no significant difference between concentrations; therefore, there is no evidence of well contamination.

CONCLUSION: Calculated F > F statistic; therefore, ANOVA has identified a significant difference between background and downgradient wells.

Because the paired ANOVA for the two wells indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance well MW84A, a Mann-Kendall statistical analysis was performed.

**Table 2, Appendix B, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989). F statistic taken at the 5% significance level.

Mann-Kendall Trend Analysis for Technetium-99 in MW84A

Mann-Kendall Trend Test Analysis

Input Data	
Date Collected	Result (pCi/L)
Jan-20	297
Jul-20	332
Jan-21	353
Jul-21	229
Nov-21	258
Jan-22	225
May-22	47.9
Jul-22	47.2
Bolded valu	es indicatet a

detected result.

Full Precision	OFF					
Confidence Coefficient	0.95					
Level of Significance	0.05					
MW84A_Tc-99_July2022						
Conoral Statiat						

Date/Time of Computation ProUCL 5.19/26/2022 2:39:52 PM From File WorkSheet_a.xls

User Selected Options

General Statistics	
Number or Reported Events Not Used	0
Number of Generated Events	8
Number Values Reported (n)	8
Minimum	47.2
Maximum	353
Mean	223.6
Geometric Mean	178.8
Median	243.5
Standard Deviation	117.8
Coefficient of Variation	0.527

Mann-Kendall Test

M-K Test Value (S)	-20
Tabulated p-value	0.007
Standard Deviation of S	8.083
Standardized Value of S	-2.351
Approximate p-value	0.00937

Statistically significant evidence of a decreasing trend at the specified level of significance.

Mann-Kendall Trend Analysis for Technetium-99 in MW84A

ATTACHMENT B4

TRICHLOROETHENE STATISTICAL TEST 4

Trichloroethene (TCE, µg/L)						
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93A	MW420	MW84A	MW87A	MW90A	
Jul-20	2220	1340	3230	3090	52	
Jan-21	3120	1690	2630	2570	99.6	
Jul-21	3170	1790	5290	2410	148	
Jan-22	2550	2100	6560	1890	146	
Jul-Aug-22	1630	1620	6570	1400	222	
n _i	10		5	5	5	
Sum	21230		24280	11360	667.60	
(x _i)avg	2123	.00	4856.00	2272.00	133.52	

 $\mu g/L = micrograms per liter$

Bolded values indicate a detected result.

Overall mean x =	2301.50	
N =	25	N = the total number of samples
p =	4	$p = the number of n_i groups$
x =	57537.60	$x_{}$ = the sum of the total number of samples

Determine Normality of Dataset

Coefficient of Variability Test

Table of Residuals

Date	Background	Background	Compliance	Compliance	Compliance
	MW93A	MW420	MW84A	MW87A	MW90A
Jul-20	97.00	-783.00	-1626.00	818.00	-81.52
Jan-21	997.00	-433.00	-2226.00	298.00	-33.92
Jul-21	1047.00	-333.00	434.00	138.00	14.48
Jan-22	427.00	-23.00	1704.00	-382.00	12.48
Jul-Aug-22	-493.00	-503.00	1714.00	-872.00	88.48

X: Mean Value = S: Standard Deviation =	0.00E+00 890.2	
K^* Factor = CV = S/X =	2.292 #DIV/0!	(for n = 25)

The Coefficient of Variability Test was not performed due to mean = 0 (i.e., division by 0 not possible).

*K factor [from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989)].

If the coefficient of variation is < 1, the data are normally distributed. If the coefficient of variation is > or = 1, data are not normally distributed.

Determine Equality of Variance of Dataset

p = number of well groups	x ₌ 57537.60
$n_i =$ number of data points per well	$(x_{avg})_{} = 2301.50$
N = total sample size	
S^2 = the square of the standard deviation	p = 4
$ln(S_i^2) = natural logarithm of each variance$	N = 25
f = total sample size minus the number of wells (groups)	

 $f_i = n_i - 1$

 $x_{..}$ = the sum of the total number of samples

 $(x_{avg})_{...}$ the mean of the total number of samples

S _i	S_i^2	$\ln(S_i^2)$	n _i	$f_i S_i^2$	$f_i ln(S_i^2)$
640.313	410001.11	12.924	10	3690010.0	116.3
1845.855	3407180.00	15.041	5	13628720.000	60.2
648.706	420820.00	12.950	5	1683280.000	51.8
63.226	3997.55	8.293	5	15990.208	33.2

 $\sum(S_i^2) =$ 4241998.66 $\sum f_i \ln(S_i^2) =$ 261.5

Equality of Variance: Bartlett's Test

f =	21			
$Sp^2 =$	905619.058			
$\ln Sp^2 =$	13.716			
$c^2 =$	26.589	(If $c^2 \le c^2_{crit}$, then variances are equal at the given		
		significance level).		
$c_{crit}^2 * =$	7.815	at a 5% significance level with	3	degrees of freedom

NOTE: The variances are NOT equal.

(i.e., $c^2 > c_{crit}^2$)

Variances are not equal, transform the original data to lognormal (i.e., since $c^2 > c_{crit}^2$).

*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

Lognormal Data for TCE

ln[TCE (µg/L)]					
Date	Background	Background	Compliance	Compliance	Compliance
	MW93A	MW420	MW84A	MW87A	MW90A
Jul-20	7.71	7.20	8.08	8.04	3.95
Jan-21	8.05	7.43	7.87	7.85	4.60
Jul-21	8.06	7.49	8.57	7.79	5.00
Jan-22	7.84	7.65	8.79	7.54	4.98
Jul-Aug-22	7.40	7.39	8.79	7.24	5.40
Mean x _i	7.81	7.43	8.42	7.69	4.79
Background Mean	7.6	2	NA	NA	NA
Grand Mean			7.23		
× ²	59.37	51.85	65.29	64.58	15.61
A _i	64.73	55.24	62.01	61.65	21.17
These values needed for ANOVA	64.99	56.10	73.51	60.64	24.97
	61.53	58.52	77.24	56.92	24.84
	54.71	54.61	77.27	52.48	29.19
Sum x _i ²			1349		

 $\mu g/L = micrograms per liter$

Determine Normality of Dataset

Coefficient of Variability Test

Table of ln[TCE ($\mu g/L$)] Data

Date	Background	Background	Compliance	Compliance	Compliance
	MW93A	MW420	MW84A	MW87A	MW90A
Jul-20	7.71	7.20	8.08	8.04	3.95
Jan-21	8.05	7.43	7.87	7.85	4.60
Jul-21	8.06	7.49	8.57	7.79	5.00
Jan-22	7.84	7.65	8.79	7.54	4.98
Jul-Aug-22	7.40	7.39	8.79	7.24	5.40

Data are normally distributed (i.e.,<1)

*K factor [from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989)].

Determine Equality of Variance of Dataset for Lognormal Data

p = number of wells (background wells considered as one group)	x ₌ 180.72
$n_i =$ number of data points per well	$(x_{avg})_{} = 7.23$
N = total sample size	$n_i = 5$
S^2 = the square of the standard deviation	p = 4
$\ln(S_i^2) =$ natural logarithm of each variance	N = 25
f = total sample size minus the number of wells (groups)	

 $f_i = n_i - 1$

 $x_{\cdot \cdot}$ = the sum of the total lognormal dataset

 $(x_{avg})_{..}$ = the mean of the lognormal dataset

Calculations for Ec	uality	y of Variance:	Bartlett's	Test

S_i	S_i^2	$\ln(S_i^2)$	ni	$f_i S_i^2$	$f_i ln(S_i^2)$
0.292	0.085	-2.465	10	0.765	-22.2
0.421	0.177	-1.730	5	0.709	-6.9
0.306	0.094	-2.367	5	0.375	-9.5
0.547	0.299	-1.208	5	1.195	-4.8

 $\sum (S_i^2) = 0.65$ $\sum f_i \ln (S_i^2) =$

Equality of Variance: Bartlett's Test

f =	21			
$Sp^2 =$	0.145			
$\ln Sp^2 =$	-1.931			
$c^2 =$	2.848	(If $c^2 \le c^2_{crit}$, then variances are equal at the given significance level).		
$c_{crit}^2 * =$	7.815	at a 5% significance level with	3	degrees of freedom

NOTE: The variances are equal.

(i.e., $c^2 \le c^2_{crit}$)

-43.4

Because variances are equal, the Parametric ANOVA for the lognormal dataset will proceed.

*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989)].

**Section 5.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989)].

Parametric ANOVA

Between Well Sum of Squares¹

Source of Variation	Sums of Squares	df	Mean Squares	Fcalculated
Between Wells (SS wells)	39.54	3	13.180	90.90
Error within wells (SS error)	3.04	21	0.145	
Total (SS total)	42.58	24		

If $F_{calculated} > F_{tabulated}$, then reject the hypothesis of equal well means. If $F_{calculated}$ is less than or equal to $F_{tabulated}$, it can be concluded that there is no significant difference between concentrations, therefore, there is no evidence of well contamination.

 $F_{tabulated} = 3.07 **$

CONCLUSION:

 $F_{calculated} > F_{tabulated}$; therefore, evidence of well contamination. Additional comparisons must be made.

NOTE: ** Table 2, Appendix B, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance*, USEPA, 1989. F_{tabulated} taken at the 5% significance level.

Comparison of Compliance Wells to Background Wells (Bonferroni Test)

$n_b =$	10	N-p =	21	$\alpha =$	0.05
$(x_b)_{avg} =$	7.62	m =	3	$1-\alpha/m =$	0.9833
$n_{\rm h} = tot$	al sample size o	f all background wells			

 $(x_b)_{avg}$ = average concentration from all background wells

Well No.	Well Mean	Differences of Avg.	Standard Error	Bonferroni's t ²	D _i	Conclusion
	$(\mathbf{x}_{\mathbf{b}})_{\mathrm{avg}}$	$(x_i)_{avg}$ - $(x_b)_{avg}$	SE_i	t _{(N-p),(a/m)}		
MW93A						
MW420						
MW84A	8.42	0.80	0.21	2.27	0.47	evidence of contamination
MW87A	7.69	0.07	0.21	2.27	0.47	not contaminated
MW90A	4.79	-2.83	0.21	2.27	0.47	not contaminated

CONCLUSION:

If the "Differences of Averages" is greater than D_i, then the well is contaminated. After performing Bonferroni's t calculation, the following can be concluded: MW84A shows statistically significantly levels of contamination as compared background wells.

MW87A and MW90A do not show statistically significant levels of contamination.

¹Section 5.2.1, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance, (EPA, 1989).

²Appendix B, Table 3 (EPA, 1989).

A 95% UTL comparison is performed.

95% Upper Tolerance Limit (UTL)

Compare the most recent downgradient sample results to a calculated 95% UTL using the five most recent sets of data for each upgradient well, as described below. If downgradient concentration is less than the UTL for the paired upgradient concentrations, then there is no confirmed exceedance.

July-August 2022 Data, Second Reporting Period TCE Observations (µg/L)

Well No.						_
MW93A	2220	3120	3170	2550	1630	Upgradient Well [!]
MW420	1340	1690	1790	2100	1620	Upgradient Well [!]
						Current Data
MW84A						6570
	X: M	ean Value =	2123			
	S: Standard	Deviation =	640			
	H	X^* factor =	2.911	(for $n = 10$)		
		CV = S/X	0.3016	<1, assume nor	rmal distribution	
	Upper Toler	ance Interval: T	TL = X + (KxS)	= 3987 (μ	.g/L)	

! = Data from previous 5 sampling events.

CV = coefficient of variation

- * = Table 5, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).
- Result: MW84A exceeded the 95% UTL, which is statistically significant evidence that this compliance well has elevated TCE concentrations with respect to background data.

Paired (Parametric) ANOVA - MW93A and MW84A

Evaluate results using paired ANOVA of wells in the same direction relative to the landfill [e.g., compare upgradient westernmost well results to downgradient westernmost well results]. If ANOVA does not identify a statistically significant difference between upgradient and downgradient wells, then the results are consistent with the historical ASD.

	TCE (µg/L))		
Date	Background	Compliance		
	MW93A	MW84A	r	n_i^2
Jul-20	2220	3230	4928400	10432900
Jan-21	3120	2630	9734400	6916900
Jul-21	3170	5290	10048900	27984100
Jan-22	2550	6560	6502500	43033600
Jul-Aug-22	1630	6570	2656900	43164900
Sum (x _i)	12690	24280	36970	Total Sum (x
n _i	5	5		_
(x _i) _{avg}	2538	4856]	
$(\mathbf{x}_i)^2$	161036100	589518400		

 $\mu g/L = micrograms$ per liter Bolded values indicate a detected result.

Overall mean x =	3697	
N =	10	N = the total number of samples
p =	2	$p =$ the number of n_i groups
X ₌	36970	x = the sum of the total number of samples

Determine Normality of Dataset

Coefficient of Variability Test

Table of Resid	duals (x _i -x _{iavg})	
Date	Background	Compliance
	MW93A	MW84A
Jul-20	-318	-1626
Jan-21	582	-2226
Jul-21	632	434
Jan-22	12	1704
Jul-Aug-22	-908	1714

X: Mean Value =	0.00E+00	
S: Standard Deviation =	1304	
K* Factor =	2.911	(for n = 10)
CV = S/X =	$#\Delta I \varsigma / 0!$	#DIV/0!

†The Coefficient of Variability Test was not performed due to mean = 0 (i.e., division by 0 not possible).

*Table 5, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

If the coefficient of variation is < 1, the data are normally distributed. If the coefficient of variation is > or = 1, data are not normally distributed.

Determine Equality of Variance of Dataset

p = number of wells	x ₌ 36970
n _i = number of data points per well	$(x_{avg})_{} = 3697$
N = total sample size	$n_{i=}$ 5
S^2 = the square of the standard deviation	p = 2
$\ln(S_i^2)$ = natural logarithm of each variance	N = 10
f = total sample size minus the number of wells (groups)	$f_i = 4$
$\mathbf{f}_i = \mathbf{n}_i - 1$	

Calculations for Equality of Variance: Bartlett's Test

S _i	S_i^2	$\ln({S_i}^2)$ †	n _i	$f_i S_i^2$	$f_i ln(S_i^{\ 2}) \dagger$
645	415970	12.938	5	1663880	51.8
1846	3407180	15.041	5	13628720	60.2

 $\sum(S_i^2) = 3,823,150$ $\sum f_i \ln(S_i^2) = 112$

E	quality of Va	ariance: Bartlett's Test		
f =	8			
$Sp^2 =$	1911575			
$\ln Sp^2 =$	14.463			
$\chi^2 =$	3.788	(If calculated $\chi^2 \leq$ tabulated χ^2_{crit} , significance level).	then variand	ces are equal at the given
$\chi^2_{crit} \ * =$	3.841	at a 5% significance level with	1	degrees of freedom (p-1)

NOTE: The variances are equal.

(i.e., calculated $\chi^2 \leq \chi^2_{crit}$)

Since calculated $\chi^2 \leq \chi^2_{\rm \ crit},$ then the analysis can proceed as normal.

*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

Between Well Sum of Squares

Source of			Degrees of	Mean		
Variation	Sums of	f Squares	Freedom	Squares	Calculated F	F Statistic**
Between Wells	$SS_{wells} =$	13432810.00	1	13432810.0	7.03	5.32
Error	$SS_{Error} =$	15292600.00	8	1911575.0		
Total	$SS_{Total} =$	28725410.00	9			

If calculated F > F statistic, then reject the hypothesis of equal well means. If calculated F is less than or equal to F statistic, it can be concluded that there is no significant difference between concentrations; therefore, there is no evidence of well contamination.

CONCLUSION: Calculated F > F statistic; therefore, ANOVA has identified a significant difference between upgradient and downgradient wells.

Mann-Kendall trend analysis was performed.

**Table 2, Appendix B, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989). F statistic taken at the 5% significance level.

Mann-Kendall Trend Test Analysis MW84A Trichloroethene July 2022

Mann-Kendall Trend Test Analysis

User Selected Options Date/Time of Computation From File Full Precision Confidence Coefficient Level of Significance

MW84-MW84A TCE July 2022

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	8
Number Values Reported (n)	8
Minimum	2000
Maximum	6570
Mean	4349
Geometric Mean	3983
Median	4260
Standard Deviation	1850
Coefficient of Variation	0.425

Mann-Kendall Test

M-K Test Value (S)	14
Tabulated p-value	0.054
Standard Deviation of S	8.083
Standardized Value of S	1.608
Approximate p-value	0.0539

Insufficient evidence to identify a significant trend at the specified level of significance.

Input Data		
Date		
Collected	Result (µg/L)	
Jan-19	5580	
Jul-19	2000	
Jan-20	2930	
Jul-20	3230	
Jan-21	2630	
Jul-21	5290	
Jan-22	6560	
Jul-22	6570	
Bolded values indicate		

a detected result.

Attachment B4: Trichloroethene URGA, Statistical Test 4, Parametric ANOVA, Second Reporting Period 2022 Mann-Kendall Trend Test Analysis MW84A Trichloroethene July 2022

ATTACHMENT B5

URANIUM STATISTICAL TEST 2

		Uraniu	m (mg/L)		
Date	Background	Background	Compliance	Compliance	Compliance
	MW93A	MW420	MW84A	MW87A	MW90A
Jul-20	0.000089	0.0001	0.000219	0.0001	0.0001
Jan-21	0.0001	0.0001	0.000156	0.0001	0.0001
Jul-21	0.000079	0.0001	0.0001	0.0001	0.0001
Jan-22	0.000126	0.0001	0.0001	0.0001	0.0001
Jul-22	0.000076	0.0001	0.000068	0.0001	0.0001

mg/L = milligrams per liter BG = background DL = detection limit Nondetect values are 1/2 DL. **Bolded values indicate a detected result.**

¹Test of Proportions

Calculate the number of detections in background wells vs. compliance wells.

$\begin{array}{l} \mathbf{X} = \\ \mathbf{Y} = \\ \mathbf{n}_{\mathrm{b}} = \\ \mathbf{n}_{\mathrm{c}} = \\ \mathbf{n} = \end{array}$	5 3 10 15 25	X = number of samples above DL in background wells Y = number of samples above DL in compliance wells $n_b =$ count of background well results/samples analyzed $n_c =$ count of compliance well results/samples analyzed n = total number of samples
P = nP = n(1-P) =	0.320 8 17	$P=(x+y)/n$ $n=n_b+n_c$

NOTE: If nP and n(1-P) are both ≥ 5 , then the normal approximation may be used.

$P_b =$	0.500	P_b = proportion of detects in background wells
$P_c =$	0.200	P_c = proportion of detects in compliance wells
$S_D =$	0.190	S_D = standard error of difference in proportions
Z =	1.575	$Z = (P_b - P_c)/S_D$
absolute value of $Z =$	1.575	

If the absolute value of Z exceeds the 97.5th percentile value of 1.96 from the standard normal distribution, this provides statistically significant evidence at the 5% significance level that the proportion of detects in one group of data exceeds the proportion of detects in the other group.

CONCLUSION: Because the absolute value of Z is less than 1.96, there is no statistical evidence that the proportion of samples with detected results differs between the background well and compliance well samples.

¹Section 8.1.2, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (EPA 1989).

ATTACHMENT B6

STATISTICIAN STATEMENT

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

October 17, 2022

Mr. Dennis Greene Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Mr. Greene:

I am submitting this statement as a supplementary document to the completed statistical analysis I performed on the groundwater data for the C-404 Hazardous Waste Landfill at the Paducah Site.

As an Environmental Scientist, with a bachelor's degree in Earth Sciences/Geology, I have over 30 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities.

For this project, the statistical analyses on groundwater data from July 2020 through July-September 2022 were performed in accordance with the Hazardous Waste Management Facility Permit, Appendix E using Microsoft Excel 2016 and U.S. Environmental Protection Agency's (EPA's) ProUCL 5.1. The spreadsheets include the results for the following statistical tests:

- Test of Proportions
- Parametric Analysis of Variance (ANOVA)
- Nonparametric ANOVA
- 95% Upper Tolerance Limit
- Paired (parametric) ANOVA
- Mann-Kendall

The statistical analyses procedures were based on EPA's *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Bryan Smith

APPENDIX C

2022 ANNUAL REPORT OF THE C-404 LANDFILL HYDRAULIC FLOW RATE AND DIRECTION

2022 ANNUAL REPORT OF THE C-404 LANDFILL HYDRAULIC FLOW RATE AND DIRECTION

The Hazardous Waste Management Facility Permit, KY8-890-008-982, (Permit) requires annual determination of average hydraulic flow rate and direction of flow in the uppermost aquifer at the C-404 Hazardous Waste Landfill (C-404 Landfill). The uppermost aquifer below C-404 Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are taken from several wells at the perimeter of the C-404 Landfill on a semiannual basis. The water levels used for this analysis (taken on January 5, 2022, and July 26, 2022) were measured as closely as possible and within a 24-hour period to ensure the comparability of the data. Table C.1 documents the datums used for the water level measurements. These measurements were used to plot the potentiometric surface of the upper RGA for the January and July 2022 semiannual sampling events.

Well	Measurement Location	Datum Point Elevation (ft amsl)
MW84A	Top of Outside Casing	375.29
MW87A	Top of Outside Casing	375.30
MW90A	Top of Inside Casing	374.15
MW93A	Top of Outside Casing	378.67
MW420	Top of Inside Casing	377.55

Table C.1. Measurement Control Datums Used for Upper Regional Gravel AquiferC-404 Monitoring Wells During 2022

Contours for each potentiometric surface were drawn after water level data were corrected for barometric pressure; groundwater hydraulic gradients then are calculated from the contours. The average of the gradients measured during this reporting period is the annual average groundwater hydraulic gradient for the upper RGA and is calculated at 1.36×10^{-3} ft/ft.

The hydraulic conductivity values reported in the *Resource Conservation and Recovery Act (RCRA) Part B Permit Modification for Inclusion of C-404 Low-Level Radioactive/Hazardous Waste Landfill* (June 1992) were determined by multi-well testing and range from 21 to 140 ft/day $(7.41 \times 10^{-3} \text{ to } 4.94 \times 10^{-2} \text{ cm/s})$.

Multiplication of the hydraulic gradient (i) and the hydraulic conductivity (K) yields the specific discharge (q) for a unit area of the RGA. Annual average linear-flow velocity (v) is calculated by multiplying the hydraulic conductivity by the gradient and dividing by the porosity (n). It is assumed that the porosity equals 25% in the RGA beneath the C-404 Landfill.

Table C.2 summarizes the annual average results of the calculations. Table C.3 presents the calculation information for the annual groundwater flow rate. The January and July 2022 potentiometric surface data of the upper RGA are presented in Tables C.4 and C.5, and potentiometric surface maps are presented in Figures C.1 and C.2.

The potentiometric contours depict the directions of hydraulic flow during each sampling event. Hydraulic flow direction beneath the C-404 Landfill generally trends northeastward, but commonly varies from northeast to north.

Hydraulic Conductivity (K) Range	Annual Average Specific Discharge (q) ft/day (cm/s)	Annual Average Linear Flow Velocity (v) ft/day (cm/s)
Low K	0.0285 (1.01 × 10 ⁻⁵)	0.115 (4.03 × 10 ⁻⁵)
High K	0.191 (6.72 × 10 ⁻⁵)	0.762 (2.69 × 10 ⁻⁴)

Table	C.2.	C-404	Landfill	Annual	Average	Groun	dwater	Flow	Rate	for	2022	2

Upper RGA K = 21 ft/d									
	i (ft/ft)	q (ft/d)	q (cm/s)	v (ft/d)	v (cm/s)				
January 2022	-1.35×10^{-3}	0.0284	1.00×10^{-5}	0.114	4.01 × 10 ⁻⁵				
July 2022	-1.37 × 10 ⁻³	0.0287	1.01 × 10 ⁻⁵	0.115	4.05×10^{-5}				
Annual Average	-1.36 × 10 ⁻³	0.0285	1.01 × 10 ⁻⁵	0.115	4.03 × 10 ⁻⁵				
	Upper RGA K = 140 ft/d								
	i (ft/ft)	q (ft/d)	q (cm/s)	v (ft/d)	v (cm/s)				
January 2022	-1.35×10^{-3}	0.190	6.69 × 10 ⁻⁵	0.758	2.67×10^{-4}				
July 2022	-1.37×10^{-3}	0.191	6.75×10^{-5}	0.765	$2.70 imes 10^{-4}$				
Annual Average	-1.36 × 10 ⁻³	0.191	6.72 × 10 ⁻⁵	0.762	2.69 × 10 ⁻⁴				
q = K*i			$\mathbf{v} = q/n$						
where:			where:						
q = specific discharge			v = average l	inear velocity	y				
K = hydraulic conductivity			q = specific di	ischarge					
i = hydraulic gradient (from p	otentiometric m	ap)	$n_e = porosity (assumed to be 25\%)$						
ft/ft = foot per foot									
ft/d = foot per day									
cm/s = centimeter/second									

C-404 Landfill (January 2022) Water Levels									
						Raw Data		*Corr	ected Data
Date	Time	Well	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
			(ft amsl)	(in Hg)	(ft H ₂ 0)	(ft)	(ft amsl)	(ft)	(ft amsl)
1/5/2022	7:30	MW67	374.89	29.91	0.02	50.35	324.54	50.37	324.52
1/5/2022	8:09	MW76	376.56	29.93	0.00	51.95	324.61	51.95	324.61
1/5/2022	7:32	MW84A	375.29	29.91	0.02	50.90	324.39	50.92	324.37
1/5/2022	7:33	MW87A	375.30	29.91	0.02	50.95	324.35	50.97	324.33
1/5/2022	7:38	MW90A	374.15	29.91	0.02	49.79	324.36	49.81	324.34
1/5/2022	8:05	MW93A	378.67	29.93	0.00	53.42	325.25	53.42	325.25
1/5/2022	8:02	MW95A	376.96	29.93	0.00	52.21	324.75	52.21	324.75
1/5/2022	7:21	MW227	378.81	29.91	0.02	53.83	324.98	53.85	324.96
1/5/2022	8:06	MW333	377.20	29.93	0.00	52.42	324.78	52.42	324.78
1/5/2022	7:48	MW337	374.39	29.91	0.02	49.76	324.63	49.78	324.61
1/5/2022	7:50	MW338	374.85	29.91	0.02	50.10	324.75	50.12	324.73
1/5/2022	8:00	MW420	377.55	29.93	0.00	53.67	323.88	53.67	323.88
Reference	Barometr	ic Pressure	29.93						
Elev = elev	Elev = elevation								
amsl = above mean sea level									
BP = barometric pressure									
DTW = depth to water in feet below datum									
*Assumes a barometric efficiency of 1.0									

Table C.4. January	2022 RGA	Potentiometric	Surface	Data
Table Con Sandary	LULL ROLL	i otentionieti ie	Surface	Data

Table C.5.	July 2022	RGA	Potentiometric	Surface	Data
rabic C.S.	July 2022	non	1 ottentionneth it	Surface	Data

C-404 Landfill (July 2022) Water Levels									
						Raw Data *Correcte			
Date	Time	Well	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
			(ft amsl)	(in Hg)	(ft H ₂ 0)	(ft)	(ft amsl)	(ft)	(ft amsl)
7/26/2022	13:12	MW67	374.89	30.04	-0.03	47.63	327.26	47.60	327.30
7/26/2022	8:50	MW76	376.56	30.01	0.00	49.15	327.41	49.15	327.41
7/26/2022	13:15	MW84A	375.29	30.04	-0.03	48.15	327.14	48.12	327.18
7/26/2022	13:21	MW87A	375.30	30.04	-0.03	48.12	327.18	48.09	327.21
7/26/2022	13:30	MW90A	374.15	30.04	-0.03	47.03	327.12	47.00	327.15
7/26/2022	8:53	MW93A	378.67	30.01	0.00	51.09	327.58	51.09	327.58
7/26/2022	8:38	MW227	378.81	30.01	0.00	51.10	327.71	51.10	327.71
7/26/2022	9:15	MW333	377.20	30.01	0.00	49.50	327.70	49.50	327.70
7/26/2022	12:40	MW337	374.39	30.05	-0.05	46.96	327.43	46.91	327.48
7/26/2022	12:41	MW338	374.85	30.05	-0.05	48.37	326.48	48.32	326.53
7/26/2022	8:51	MW420	377.55	30.01	0.00	50.10	327.45	50.10	327.45
Reference E	Barometri	c Pressure	30.01						
Eleve elevation									

Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum

*Assumes a barometric efficiency of 1.0

Figure C.1. Potentiometric Surface of the Upper Regional Gravel Aquifer at the C-404 Landfill, January 5, 2022

Figure C.2. Potentiometric Surface of the Upper Regional Gravel Aquifer at the C-404 Landfill, July 26, 2022
THIS PAGE INTENTIONALLY LEFT BLANK