PAD-ENM-0091/V1

C-404 Hazardous Waste Landfill May 2014 Semiannual Groundwater Report (October 2013–March 2014), Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

Merly

Date

LATA Kentucky Classification Support

PAD-ENM-0091/V1

C-404 Hazardous Waste Landfill May 2014 Semiannual Groundwater Report, (October 2013–March 2014) Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—May 2014

Prepared for the U.S. Department of Energy Office of Environmental Management

Prepared by LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC managing the Environmental Remediation Activities at the Paducah Gaseous Diffusion Plant under contract DE-AC30-10CC40020

TABLES
FIGURESv
ACRONYMSvii
EXECUTIVE SUMMARYix
1. INTRODUCTION
2. STATISTICAL SYNOPSIS
3. DATA VALIDATION AND QA/QC SUMMARY
4. PROFESSIONAL GEOLOGIST AUTHORIZATION9
5. REFERENCES
APPENDIX A: C-404 HAZARDOUS WASTE LANDFILL ANALYTICAL RESULTS
APPENDIX B: C-404 HAZARDOUS WASTE LANDFILL STATISTICAL ANALYSESB-1
APPENDIX C: C-404 HAZARDOUS WASTE LANDFILL LEACHATE INFORMATIONC-1
APPENDIX D: C-404 HAZARDOUS WASTE LANDFILL GROUNDWATER FLOW RATE AND DIRECTIOND-1

TABLES

1.	Monitoring Well Locations	2
2.	Assembled Kentucky Groundwater Database Numbers	2

FIGURES

1.	C-404 Landfill Monitoring Well Map	.3
2.	Detected Arsenic (Dissolved) in C-404 Wells	. 6

ACRONYMS

AKGWA ANOVA	Assembled Kentucky Groundwater Database Analysis of Variance
KDWM	Kentucky Division of Waste Management
LOD	level of detection
MCL	maximum contaminant level
MW	monitoring well
PGDP	Paducah Gaseous Diffusion Plant
RCRA	Resource Conservation and Recovery Act
RGA	Regional Gravel Aquifer
UCRS	Upper Continental Recharge System
URGA	Upper Regional Gravel Aquifer

EXECUTIVE SUMMARY

This report, *C-404 Hazardous Waste Landfill May 2014 Semiannual Groundwater Report (October 2013—March 2014), Paducah Gaseous Diffusion Plant, Paducah, Kentucky,* PAD-ENM-0091/V1, is being submitted by the U.S. Department of Energy (DOE) in accordance with requirements in the Kentucky Division of Waste Management Hazardous Waste Facility Permit, KY8-890-008-982. The reporting period covers October 2013 through March 2014 and includes analytical data from the January 2014 sampling of compliance monitoring wells (MWs) located in the vicinity of the closed C-404 Hazardous Waste Landfill (C-404 Landfill). This unit was closed as a landfill in May 1986.

The groundwater monitoring results were subjected to statistical analyses to fulfill the requirements of the Hazardous Waste Facility Permit. The nonparametric analysis of variance test (Statistical Test 3 of the permit-required statistics) for dissolved arsenic indicated that concentrations in the downgradient compliance wells (compliance wells) were different from concentrations in the upgradient background wells (background wells).

The indication of above-background dissolved arsenic concentration in compliance well MW84 (see Figure 1, C-404 Landfill Monitoring Well Map on page 3) using Statistical Test 3 is not considered evidence of contamination from the C-404 Landfill. Supporting evidence includes the following:

- The maximum concentration of dissolved arsenic in MW84 (0.00412 mg/L) is less than the drinking water standard maximum contaminant level (MCL) for arsenic (0.010 mg/L), shown in Figure 2.
- Dissolved arsenic concentrations are increasing only in upgradient well MW93; concentrations in downgradient wells MW84 and MW87 are stable; this condition is similar to the pattern of TCE concentrations seen in these same wells and attributed to a source upgradient of C-404 as documented in the Alternate Source Demonstration (PRS 2007).
- There is no significant difference in arsenic (total) concentrations between background well MW93 (0.00656 mg/L) and compliance well MW84 (0.00514 mg/L).

Statistical analysis for all other parameters indicates that concentrations in compliance wells are not statistically different from the concentrations in background wells.

1. INTRODUCTION

This report contains the statistical evaluation of data from groundwater sampling and analysis for the C-404 Hazardous Waste Landfill (C-404 Landfill) at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. This semiannual report is required by the Kentucky Division of Waste Management (KDWM) Hazardous Waste Facility Permit, KY8-890-008-982 (the permit), GSTR2 Part II, Condition T-47—Detection Monitoring Program–Recordkeeping, Reporting, and Response. The period covered by this report is October 2013 through March 2014.

Groundwater analytical results are provided in Appendix A. The statistical analyses and qualification statement are provided in Appendix B. Landfill leachate information and analytical data are provided in Appendix C. The groundwater flow direction determination is provided in Appendix D.

1.1 BACKGROUND

The C-404 Landfill is located in the west-central portion of the PGDP secured area. The 1.2-acre facility operated as a surface impoundment from approximately 1952 until early 1957. During this time, influents to the impoundment originated from the C-400 Cleaning Building. In 1957, the impoundment was converted to a solid waste disposal facility for solid uranium-contaminated wastes. When the impoundment was converted into a disposal facility, a sump was installed at the former weir to collect the leachate from the facility. Leachate is pumped from the sump and treated as needed.

In 1986, the disposal of waste at C-404 Landfill was halted, and a portion of the disposed of waste was found to be RCRA-hazardous. The landfill was covered with a RCRA multilayered cap and certified closed in 1987. It currently is regulated under RCRA as a land disposal unit and compliance is monitored under a RCRA postclosure permit issued in 1992.

Previous groundwater monitoring documented that concentrations in compliance wells were statistically different from background wells for trichloroethene (TCE). The *C-404 Landfill Source Demonstration, Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, documented that the source of the differences from background concentrations in compliance wells is not from the C-404 Landfill, but rather, the source is located upgradient/cross-gradient of the C-404 Landfill.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Groundwater sampling was conducted in January 2014 using LATA Environmental Services of Kentucky, LLC, procedure PAD-ENM-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were used. The laboratories that performed analyses used U.S. Environmental Protection Agency-approved methods, as applicable. There are nine monitoring wells (MWs) sampled under this permit for the C-404 Landfill: four Upper Continental Recharge System (UCRS) wells and five Upper Regional Gravel Aquifer (URGA) wells. Table 1 presents the well numbers for URGA wells located upgradient and downgradient of the C-404 Landfill. Table 1 also presents the well numbers for

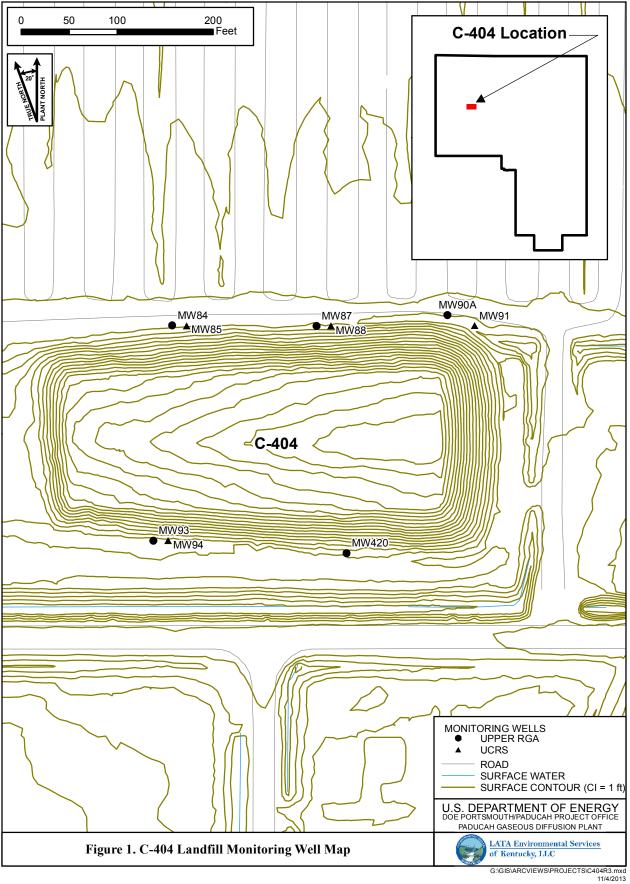
Table 1. Monitoring Well Locations

UCRS	
Located south of C-404, adjacent to upgradient Regional Gravel Aquifer (RGA) background well MW93	MW94
Located north of C-404, adjacent to downgradient RGA compliance wells	MW85, MW88, MW91
URGA	
Upgradient background wells	MW93, MW420
Downgradient compliance wells	MW84, MW87, MW90A*

*MW90 was abandoned in 2001 and replaced with MW90A.

the UCRS wells located in proximity to the URGA wells. This table refers to these UCRS wells as being adjacent to an "upgradient" or "downgradient" URGA well location, identified relative to the URGA groundwater flow direction (see Figure 1).

The conceptual model for the site demonstrates that groundwater in the UCRS wells flows vertically until it reaches the URGA; therefore, UCRS wells are not considered "upgradient" or "downgradient" of other wells in the area.


Table 2 presents the Assembled Kentucky Groundwater Database (AKGWA) numbers for each MW. A map of the MW locations is provided in Figure 1. All of the MWs listed in Tables 1 and 2 were sampled during this reporting period, and the samples were analyzed for the required parameters.

PGDP Well Number	AKGWA Number
MW84	8000-5233
MW85	8000-5234
MW87	8000-5236
MW88	8000-5237
MW90A	8004-0357
MW91	8000-5240
MW93	8000-5102
MW94	8000-5103
MW420	8005-3263

Table 2. Assembled KentuckyGroundwater Database Numbers

Appendix A of this report contains the analytical results from the nine wells that were sampled during the January 2014 semiannual sampling event. The parameters specified in Hazardous Waste Facility Permit, Attachment E, Groundwater Monitoring, were analyzed for all locations sampled. Appendix B of this report contains the statistical analyses.

Per Permit Condition GSTR2, T-37, the groundwater flow rate and direction are evaluated annually and reported in the November report. For this May report, a potentiometric map has been included in Appendix D using data from sampling performed in January as supplemental information. Depth-to-water was measured on January 30, 2014, from several wells at the perimeter of the C-404 Landfill (see Table D.1). Water level measurements in 11 vicinity well locations define the potentiometric surface for the URGA. Groundwater flow direction beneath the C-404 Landfill generally trends northward, but commonly varies from northeast to northwest.

1.2.2 Landfill Leachate

The C-404 General Inspection Records and the Quarterly Landfill Inspection Results are included in Appendix C. In accordance with the Hazardous Waste Facility Permit, the quantity of liquid in the leachate collection system is monitored (at least monthly) and, at a minimum, will be "removed when the quantity exceeds three ft in depth." The monthly leachate depths in the C-404 sump recorded for this reporting period are included in Appendix C.

The volume of leachate removed from the sump during this reporting period was 1,200 gal. Once the leachate reached 3 ft, the leachate was sampled and removed using a mobile tank. Then, the leachate was transferred to a permitted hazardous waste storage and treatment facility on-site prior to characterization and transfer off-site for treatment. Analytical results from leachate sampling conducted for this removal event (February 2014) are included in Appendix C.

Arsenic was detected in one of two leachate samples (0.00112 mg/L) slightly above the detection limit (0.001 mg/L) but at concentrations below those found in both upgradient and downgradient URGA wells. Technetium-99 (Tc-99) was detected in leachate at a maximum concentration of 334 pCi/L.

2. STATISTICAL SYNOPSIS

The statistical analyses conducted on the data collected from C-404 Landfill were performed in accordance with procedures in the approved Hazardous Waste Facility Permit, Attachment Part E. Appendix B of this report contains the statistical analyses performed for this reporting period. Data utilized for statistical analyses included data from the URGA background wells, MW93 and MW420, and URGA compliance wells, MW84, MW87, and MW90A. For this report, the reporting period data set includes data from the most current sampling event, January 2014, and from July 2011, January 2012, July 2012, January 2013, and August 2013.

The statistical test, Level of Detection (LOD), was performed for seven of the thirteen parameters (cadmium, mercury, selenium, uranium, uranium-234, uranium-235, and uranium-238). LOD values are presented in Appendix B. Statistical test, Test of Proportions, was performed for three of the thirteen parameters (chromium, lead, and Tc-99). Statistical test, nonparametric Analysis of Variance (ANOVA), was performed for arsenic and dissolved arsenic. Statistical test, parametric ANOVA, was performed for TCE.

The nonparametric ANOVA test for dissolved arsenic (Appendix B) indicated that concentrations in compliance well MW84 were different from concentrations in the background wells. Statistical analysis in Appendix B indicates that concentrations in compliance wells are not statistically different from the concentrations in background wells, except for dissolved arsenic.

The indication of above-background dissolved arsenic concentrations in compliance well MW84 using Statistical Test 3 is not considered evidence of contamination from the C-404 Landfill. Supporting evidence includes the following:

- The maximum concentration of dissolved arsenic in MW84 (0.00412 mg/L) is less than the drinking water standard maximum contaminant level (MCL) for arsenic (0.010 mg/L), shown in Figure 2.
- Dissolved arsenic concentrations are increasing only in upgradient well MW93; concentrations in downgradient wells MW84 and MW87 are stable; this condition is similar to the pattern of TCE concentrations seen in these same wells and attributed to a source upgradient of C-404 as documented in the Alternate Source Demonstration (PRS 2007).
- There is no significant difference in arsenic (total) concentrations between background well MW93 (0.00656 mg/L) and compliance well MW84 (0.00514 mg/L).

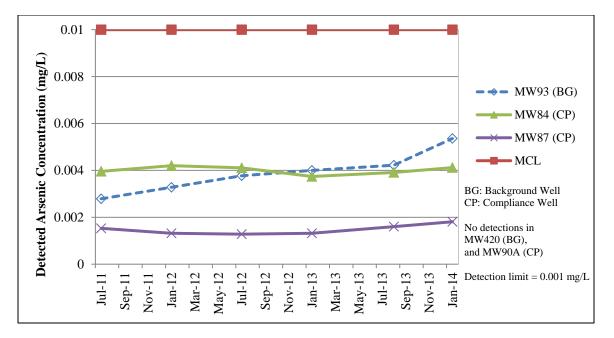


Figure 2. Detected Arsenic (Dissolved) in C-404 Wells

URGA well MW420 (background) is the only URGA well with Tc-99 levels above the minimum detectable activity, and this activity is low (see Appendix B Attachment 5). The concentrations of Tc-99 in MW420 (background) and lack of detections in compliance wells demonstrates that the C-404 Landfill is not an apparent source of statistically quantifiable levels of Tc-99. Note: UCRS wells MW85, MW88, and MW94 have low detectable levels of Tc-99; UCRS well MW91 has a higher Tc-99 level. Historical Tc-99 concentrations in leachate are lower than GW concentrations.

3. DATA VALIDATION AND QA/QC SUMMARY

The data and the data validation qualifiers for the January 2014 data set are provided in Appendix A. All data for this data set were considered useable as reported.

Data validation was performed on the organic, inorganic, and radiochemical analytical data by an independent, third-party validator.

Field quality control samples are collected semiannually during each sampling event. Equipment rinseate blanks, field blanks, and trip blanks are obtained to ensure quality control and are reported in the Analytical Results in Appendix A. No contamination was detected in these samples. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory and reported in the lab report. Both field and laboratory quality control sample results are reviewed as part of the data validation process.

4. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-404 Hazardous Waste Landfill May 2014 Semiannual Groundwater Report (October 2013–March 2014), Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PAD-ENM-0091/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

)aris

Kenneth R. Davis

PG1194

<u>'///ay 28, 2914</u> Date

5. REFERENCES

- EPA (U.S. Environmental Protection Agency) 1989. EPA Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance, Office of Resource Conservation and Recovery, U.S. Environmental Protection Agency, Washington, DC.
- EPA 2009. *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities*, Unified Guidance Document (UGD), EPA/530/R-09/007, U.S. Environmental Protection Agency, Washington, DC.
- PRS (Paducah Remediation Services, LLC) 2007. C-404 Landfill Source Demonstration, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PRS-ENM-0031/R2, Paducah Remediation Services, LLC, Kevil, KY.

APPENDIX A

C-404 HAZARDOUS WASTE LANDFILL ANALYTICAL RESULTS

Facility: <u>C-404 Landfill</u>	C	ounty: <u>N</u>	IcCracken		Permit #	: <u>KY8-8</u>	90-008-982	
Sampling Point: <u>MW</u>	84 REG	Do	wngradient	URGA	Period:	Semiannu	al Report	
AKGWA Well Tag #:8	000-5233							
Parameter	Qualifier	Result	Units	Date Collected	Counting Error (+/-)	TPU	Method	Validation
Arsenic	В	0.0051	mg/L	1/13/2014			SW846-6020	=
Arsenic, Dissolved		0.0041	mg/L	1/13/2014			SW846-6020	=
Barometric Pressure Readin	g	29.79	Inches/Hg	1/13/2014				X
Cadmium	U	0.001	mg/L	1/13/2014			SW846-6020	=
Cadmium, Dissolved	U	0.001	mg/L	1/13/2014			SW846-6020	=
Chromium	Х	0.0921	mg/L	1/13/2014			SW846-6020	=
Chromium, Dissolved	U	0.01	mg/L	1/13/2014			SW846-6020	=
Conductivity		342	umho/cm	1/13/2014				Х
Depth to Water		51.59	ft	1/13/2014				Х
Dissolved Oxygen		2.8	mg/L	1/13/2014				Х
Lead	U	0.0013	mg/L	1/13/2014			SW846-6020	=
Lead, Dissolved	UB	0.0013	mg/L	1/13/2014			SW846-6020	=
Mercury	U	0.0002	mg/L	1/13/2014			SW846-7470A	=
Mercury, Dissolved	U	0.0002	mg/L	1/13/2014			SW846-7470A	=
рH		5.91	Std Unit	1/13/2014				X
Redox		376	mV	1/13/2014				X
Selenium	В	0.0065	mg/L	1/13/2014			SW846-6020	=
Selenium, Dissolved	U	0.005	mg/L	1/13/2014			SW846-6020	=
Technetium-99	U	11.8	pCi/L	1/13/2014	11	11	RL-7100	=
Temperature		57.1	deg F	1/13/2014				Х
Trichloroethene	D	1500	ug/L	1/13/2014			SW846-8260B	=
Turbidity		23.3	NTU	1/13/2014				Х
Uranium	U	0.001	mg/L	1/13/2014			SW846-6020	=
Uranium-234	U	0.136	pCi/L	1/13/2014	0.0702	0.139	RL-7128	=
Uranium-235	U	0.0071	pCi/L	1/13/2014	0.0163	0.0696	RL-7128	=
Uranium-238	U	0.143	pCi/L	1/13/2014	0.0677	0.0851	RL-7128	=

Facility: <u>C-404 Land</u>	lfill C	ounty: <u>Mc</u>	cCracken		Permit #	<u>KY8-8</u>	90-008-982	
Sampling Point:	MW85 REG	Dow	ngradient	nt UCRS Period: Semiannual Report			al Report	
AKGWA Well Tag #	8000-5234							
Parameter	Qualifier	Result	Units	Date Collected	Counting Error (+/-)	TPU	Method	Validation
Arsenic	В	0.0115 r	ng/L	1/13/2014			SW846-6020	=
Arsenic, Dissolved		0.0125 n	ng/L	1/13/2014			SW846-6020	=
Barometric Pressure R	eading	29.79 l	nches/Hg	1/13/2014				X
Cadmium	U	0.001 n	ng/L	1/13/2014			SW846-6020	=
Cadmium, Dissolved	U	0.001 n	ng/L	1/13/2014			SW846-6020	=
Chromium	UX	0.01 n	ng/L	1/13/2014			SW846-6020	=
Chromium, Dissolved	U	0.01 n	ng/L	1/13/2014			SW846-6020	=
Conductivity		391 u	umho/cm	1/13/2014				Х
Depth to Water		11.48 f	ť	1/13/2014				X
Dissolved Oxygen		3.36 r	ng/L	1/13/2014				x
Lead	U	0.0013 n	ng/L	1/13/2014			SW846-6020	=
Lead, Dissolved	U	0.0013 n	ng/L	1/13/2014			SW846-6020	=
Mercury	U	0.0002 r	ng/L	1/13/2014			SW846-7470A	=
Mercury, Dissolved	U	0.0002 n	ng/L	1/13/2014			SW846-7470A	=
рН		6.37 \$	Std Unit	1/13/2014				Х
Redox		410 n	nV	1/13/2014				Х
Selenium	UB	0.005 n	ng/L	1/13/2014			SW846-6020	=
Selenium, Dissolved	U	0.005 n	ng/L	1/13/2014			SW846-6020	=
Technetium-99		112 p	oCi/L	1/13/2014	14.2	14.4	RL-7100	=
Temperature		57.9 c	deg F	1/13/2014				Х
Trichloroethene	Х	4.6 u	ıg/L	1/13/2014			SW846-8260B	J
Turbidity		9.2 1	UTU	1/13/2014				Х
Uranium	U	0.001 n	ng/L	1/13/2014			SW846-6020	=
Uranium-234	U	0.182 p	oCi/L	1/13/2014	0.0716	0.142	RL-7128	=
Uranium-235	U	0.0215 p	oCi/L	1/13/2014	0.026	0.0725	RL-7128	=
Uranium-238		0.216 p	oCi/L	1/13/2014	0.0769	0.0974	RL-7128	=

Facility:C-404 LandfillCounty:McCrackenPermit #:KY8-890-008-982								
Sampling Point: MW3	87 REG	Do	wngradient	URGA	Period:	Semiannu	al Report	
AKGWA Well Tag #:80	000-5236			_	_			
Parameter	Qualifier	Result	Units	Date Collected	Counting Error (+/-)	TPU	Method	Validation
Arsenic		0.0022	mg/L	1/9/2014			SW846-6020	J
Arsenic, Dissolved		0.0018	mg/L	1/9/2014			SW846-6020	=
Barometric Pressure Reading]	30.4	Inches/Hg	1/9/2014				X
Cadmium	U	0.001	mg/L	1/9/2014			SW846-6020	=
Cadmium, Dissolved	U	0.001	mg/L	1/9/2014			SW846-6020	=
Chromium	UX	0.01	mg/L	1/9/2014			SW846-6020	UJ
Chromium, Dissolved	U	0.01	mg/L	1/9/2014			SW846-6020	=
Conductivity		294	umho/cm	1/9/2014				Х
Depth to Water		52.24	ft	1/9/2014				Х
Dissolved Oxygen		2.14	mg/L	1/9/2014				Х
Lead	U	0.0013	mg/L	1/9/2014			SW846-6020	UJ
Lead, Dissolved	U	0.0013	mg/L	1/9/2014			SW846-6020	=
Mercury	U	0.0002	mg/L	1/9/2014			SW846-7470A	=
Mercury, Dissolved	U	0.0002	mg/L	1/9/2014			SW846-7470A	=
рН		6.43	Std Unit	1/9/2014				X
Redox		821	mV	1/9/2014				X
Selenium	U	0.005	mg/L	1/9/2014			SW846-6020	UJ
Selenium, Dissolved	U	0.005	mg/L	1/9/2014			SW846-6020	=
Technetium-99	U	10.1	pCi/L	1/9/2014	11	11	RL-7100	=
Temperature		54	deg F	1/9/2014				X
Trichloroethene	D	670	ug/L	1/9/2014			SW846-8260B	=
Turbidity		12.8	NTU	1/9/2014				Х
Uranium	U	0.001	mg/L	1/9/2014			SW846-6020	UJ
Uranium-234	U	0.0614	pCi/L	1/9/2014	0.0516	0.129	RL-7128	=
Uranium-235	U	0.0071	pCi/L	1/9/2014	0.0162	0.0695	RL-7128	=
Uranium-238	U	0.0563	pCi/L	1/9/2014	0.0447	0.0608	RL-7128	=

Facility: <u>C-404 Landfi</u>		ounty: <u>N</u>					390-008-982	
	MW88 REG	Do	wngradient	UCRS	RS Period: <u>Semiannual Report</u>			
AKGWA Well Tag #:	8000-5237			Data	Counting			
Parameter	Qualifier	Result	Units	Date Collected	Error (+/-)	TPU	Method	Validatio
Arsenic		0.0050	mg/L	1/9/2014			SW846-6020	=
Arsenic, Dissolved		0.0048	mg/L	1/9/2014			SW846-6020	=
Barometric Pressure Re	ading	30.4	Inches/Hg	1/9/2014				X
		29.92	Inches/Hg	1/21/2014				х
Cadmium	U	0.001	mg/L	1/9/2014			SW846-6020	=
Cadmium, Dissolved	U	0.001	mg/L	1/9/2014			SW846-6020	=
Chromium	UX	0.01	mg/L	1/9/2014			SW846-6020	=
Chromium, Dissolved	U	0.01	mg/L	1/9/2014			SW846-6020	=
Conductivity		608	umho/cm	1/9/2014				X
		589	umho/cm	1/21/2014				х
Depth to Water		11.67	ft	1/9/2014				X
		11.23	ft	1/21/2014				х
Dissolved Oxygen		1.64	mg/L	1/21/2014				Х
		1.06	mg/L	1/9/2014				х
_ead	U	0.0013	mg/L	1/9/2014			SW846-6020	=
_ead, Dissolved	U	0.0013	mg/L	1/9/2014			SW846-6020	=
Mercury	U	0.0002	mg/L	1/9/2014			SW846-7470A	=
Mercury, Dissolved	U	0.0002	mg/L	1/9/2014			SW846-7470A	=
ъН		5.84	Std Unit	1/21/2014				X
		6.11	Std Unit	1/9/2014				х
Redox		782	mV	1/21/2014				X
		636	mV	1/9/2014				х
Selenium	U	0.005	mg/L	1/9/2014			SW846-6020	=
Selenium, Dissolved	U	0.005	mg/L	1/9/2014			SW846-6020	=
Technetium-99		21.7	pCi/L	1/9/2014	11.4	11.4	RL-7100	=
Femperature		45.3	deg F	1/21/2014				х
		55.1	deg F	1/9/2014				х
Frichloroethene		4	ug/L	1/21/2014			SW846-8260B	=
Turbidity		39.4	NTU	1/9/2014				х
		36.7	NTU	1/21/2014				х

Uranium	U	0.001 mg/L	1/9/2014			SW846-6020	=
Uranium-234	U	0.14 pCi/L	1/9/2014	0.0706	0.14	RL-7128	=
Uranium-235	U	-0.008 pCi/L	1/9/2014	0.0138	0.069	RL-7128	=
Uranium-238	U	0.0542 pCi/L	1/9/2014	0.0573	0.0675	RL-7128	=

Facility: <u>C-404 Land</u>	fill C	County: McCracken			Permit #			
Sampling Point:	MW90A REG	Do	wngradient	URGA	Period:			
AKGWA Well Tag #	8004-0357							
Parameter	Qualifier	Result	Units	Date Collected	Counting Error (+/-)	TPU	Method	Validation
Arsenic	UB	0.001	mg/L	1/9/2014			SW846-6020	=
Arsenic, Dissolved	U	0.001	mg/L	1/9/2014			SW846-6020	=
Barometric Pressure R	eading	30.4	Inches/Hg	1/9/2014				Х
Cadmium	U	0.001	mg/L	1/9/2014			SW846-6020	=
Cadmium, Dissolved	U	0.001	mg/L	1/9/2014			SW846-6020	=
Chromium	UX	0.01	mg/L	1/9/2014			SW846-6020	=
Chromium, Dissolved	U	0.01	mg/L	1/9/2014			SW846-6020	=
Conductivity		208	umho/cm	1/9/2014				Х
Depth to Water		50.65	ft	1/9/2014				X
Dissolved Oxygen		3.79	mg/L	1/9/2014				x
Lead	U	0.0013	mg/L	1/9/2014			SW846-6020	=
Lead, Dissolved	U	0.0013	mg/L	1/9/2014			SW846-6020	=
Mercury	U	0.0002	mg/L	1/9/2014			SW846-7470A	=
Mercury, Dissolved	U	0.0002	mg/L	1/9/2014			SW846-7470A	=
рН		6.14	Std Unit	1/9/2014				X
Redox		542	mV	1/9/2014				X
Selenium	UB	0.005	mg/L	1/9/2014			SW846-6020	=
Selenium, Dissolved	U	0.005	mg/L	1/9/2014			SW846-6020	=
Technetium-99	U	12.4	pCi/L	1/9/2014	11.1	11.1	RL-7100	=
Temperature		57	deg F	1/9/2014				X
Trichloroethene		25	ug/L	1/9/2014			SW846-8260B	=
Turbidity		4	NTU	1/9/2014				Х
Uranium	U	0.001	mg/L	1/9/2014			SW846-6020	=
Uranium-234	U	0.122	pCi/L	1/9/2014	0.071	0.139	RL-7128	=
Uranium-235	U	0.0098	pCi/L	1/9/2014	0.0217	0.0765	RL-7128	=
Uranium-238		0.217	pCi/L	1/9/2014	0.0822	0.101	RL-7128	=

Facility: <u>C-404 Land</u>	dfill C	County: McCracken			Permit #			
Sampling Point:	MW91 REG	Downgradient		UCRS	Period:			
AKGWA Well Tag #	4: 8000-5240							
Parameter	Qualifier	Result	Units	Date Collected	Counting Error (+/-)	TPU	Method	Validation
Arsenic	В	0.0047	mg/L	1/13/2014			SW846-6020	=
Arsenic, Dissolved		0.0025	mg/L	1/13/2014			SW846-6020	=
Barometric Pressure R	Reading	29.79	Inches/Hg	1/13/2014				x
Cadmium	U	0.001	mg/L	1/13/2014			SW846-6020	=
Cadmium, Dissolved	U	0.001	mg/L	1/13/2014			SW846-6020	=
Chromium	Х	0.469	mg/L	1/13/2014			SW846-6020	=
Chromium, Dissolved		0.0183	mg/L	1/13/2014			SW846-6020	=
Conductivity		544	umho/cm	1/13/2014				Х
Depth to Water		11.58	ft	1/13/2014				X
Dissolved Oxygen		3.37	mg/L	1/13/2014				X
Lead		0.0018	mg/L	1/13/2014			SW846-6020	=
Lead, Dissolved	U	0.0013	mg/L	1/13/2014			SW846-6020	=
Mercury	U	0.0002	mg/L	1/13/2014			SW846-7470A	=
Mercury, Dissolved	U	0.0002	mg/L	1/13/2014			SW846-7470A	=
рН		5.65	Std Unit	1/13/2014				X
Redox		436	mV	1/13/2014				X
Selenium	В	0.0151	mg/L	1/13/2014			SW846-6020	=
Selenium, Dissolved		0.0059	mg/L	1/13/2014			SW846-6020	=
Technetium-99		2490	pCi/L	1/13/2014	45.4	76.7	RL-7100	=
Temperature		59.2	deg F	1/13/2014				Х
Trichloroethene		92	ug/L	1/13/2014			SW846-8260B	=
Turbidity		90	NTU	1/13/2014				Х
Uranium	U	0.001	mg/L	1/13/2014			SW846-6020	=
Uranium-234		0.4	pCi/L	1/13/2014	0.111	0.176	RL-7128	=
Uranium-235	U	0.0002	pCi/L	1/13/2014	0.00245	0.0713	RL-7128	=
Uranium-238		0.338	pCi/L	1/13/2014	0.101	0.126	RL-7128	=

Facility: <u>C-404 Landfill</u>	C	County: McCracken			Permit #: <u>KY8-890-008-982</u>			
Sampling Point: <u>MW9</u>	93 REG	Up	gradient	URGA	Period:			
AKGWA Well Tag #:80	000-5102			— .	~ .			
Parameter	Qualifier	Result	Units	Date Collected	Counting Error (+/-)	TPU	Method	Validation
Arsenic	В	0.0066	mg/L	1/9/2014			SW846-6020	=
Arsenic, Dissolved		0.0054	mg/L	1/9/2014			SW846-6020	=
Barometric Pressure Reading	9	30.4	Inches/Hg	1/9/2014				X
Cadmium	U	0.001	mg/L	1/9/2014			SW846-6020	=
Cadmium, Dissolved	U	0.001	mg/L	1/9/2014			SW846-6020	=
Chromium	UX	0.01	mg/L	1/9/2014			SW846-6020	=
Chromium, Dissolved	U	0.01	mg/L	1/9/2014			SW846-6020	=
Conductivity		402	umho/cm	1/9/2014				х
Depth to Water		53.82	ft	1/9/2014				x
Dissolved Oxygen		0.86	mg/L	1/9/2014				X
Lead	U	0.0013	mg/L	1/9/2014			SW846-6020	=
Lead, Dissolved	U	0.0013	mg/L	1/9/2014			SW846-6020	=
Mercury	U	0.0002	mg/L	1/9/2014			SW846-7470A	=
Mercury, Dissolved	U	0.0002	mg/L	1/9/2014			SW846-7470A	=
рН		6.1	Std Unit	1/9/2014				X
Redox		445	mV	1/9/2014				X
Selenium	В	0.006	mg/L	1/9/2014			SW846-6020	=
Selenium, Dissolved	U	0.005	mg/L	1/9/2014			SW846-6020	=
Technetium-99	U	7.52	pCi/L	1/9/2014	10.9	10.9	RL-7100	=
Temperature		55.8	deg F	1/9/2014				X
Trichloroethene	D	2900	ug/L	1/9/2014			SW846-8260B	=
Turbidity		50.7	NTU	1/9/2014				Х
Uranium	U	0.001	mg/L	1/9/2014			SW846-6020	=
Uranium-234	U	0.0443	pCi/L	1/9/2014	0.0529	0.129	RL-7128	=
Uranium-235	U	-0.001	pCi/L	1/9/2014	0	0.0956	RL-7128	=
Uranium-238	U	0.089	pCi/L	1/9/2014	0.0511	0.069	RL-7128	=

Facility: <u>C-404 Land</u>	fill C	ounty: <u>McCracken</u>	Permit #				
Sampling Point:	MW94 REG	Upgradient	UCRS	Period:			
AKGWA Well Tag #:	8000-5103						
Parameter	Qualifier	Result Units	Date Collected	Counting Error (+/-)	TPU	Method	Validation
Arsenic	В	0.0016 mg/L	1/9/2014			SW846-6020	=
Arsenic, Dissolved	U	0.001 mg/L	1/9/2014			SW846-6020	=
Barometric Pressure Re	eading	30.4 Inches/Hg	g 1/9/2014				X
Cadmium	U	0.001 mg/L	1/9/2014			SW846-6020	=
Cadmium, Dissolved	U	0.001 mg/L	1/9/2014			SW846-6020	=
Chromium	х	0.0105 mg/L	1/9/2014			SW846-6020	=
Chromium, Dissolved	U	0.01 mg/L	1/9/2014			SW846-6020	=
Conductivity		537 umho/cm	1/9/2014				Х
Depth to Water		15.29 ft	1/9/2014				X
Dissolved Oxygen		1.31 mg/L	1/9/2014				X
Lead		0.0020 mg/L	1/9/2014			SW846-6020	=
Lead, Dissolved	U	0.0013 mg/L	1/9/2014			SW846-6020	=
Mercury	U	0.0002 mg/L	1/9/2014			SW846-7470A	=
Mercury, Dissolved	U	0.0002 mg/L	1/9/2014			SW846-7470A	=
рН		6.31 Std Unit	1/9/2014				X
Redox		445 mV	1/9/2014				Х
Selenium	UB	0.005 mg/L	1/9/2014			SW846-6020	=
Selenium, Dissolved	U	0.005 mg/L	1/9/2014			SW846-6020	=
Technetium-99		700 pCi/L	1/9/2014	25.6	31	RL-7100	=
Temperature		55.8 deg F	1/9/2014				X
Trichloroethene		2.8 ug/L	1/9/2014			SW846-8260B	=
Turbidity		43 NTU	1/9/2014				Х
Uranium		0.0026 mg/L	1/9/2014			SW846-6020	=
Uranium-234		0.906 pCi/L	1/9/2014	0.17	0.259	RL-7128	=
Uranium-235	U	0.0028 pCi/L	1/9/2014	0.00765	0.0789	RL-7128	=
Uranium-238		0.777 pCi/L	1/9/2014	0.153	0.207	RL-7128	=

Facility: <u>C-404 Landf</u>	County: McCracken			Permit #				
Sampling Point:	Up	gradient	URGA	Period:				
AKGWA Well Tag #:	8005-3263							
Parameter	Qualifier	Result	Units	Date Collected	Counting Error (+/-)	TPU	Method	Validation
Arsenic	В	0.0011	mg/L	1/9/2014			SW846-6020	=
Arsenic, Dissolved	U	0.001	mg/L	1/9/2014			SW846-6020	=
Barometric Pressure Re	ading	30.4	Inches/Hg	1/9/2014				Х
Cadmium	U	0.001	mg/L	1/9/2014			SW846-6020	=
Cadmium, Dissolved	U	0.001	mg/L	1/9/2014			SW846-6020	=
Chromium	UX	0.01	mg/L	1/9/2014			SW846-6020	=
Chromium, Dissolved	U	0.01	mg/L	1/9/2014			SW846-6020	=
Conductivity		293	umho/cm	1/9/2014				Х
Depth to Water		53.82	ft	1/9/2014				х
Dissolved Oxygen		1.84	mg/L	1/9/2014				X
Lead	U	0.0013	mg/L	1/9/2014			SW846-6020	=
Lead, Dissolved	U	0.0013	mg/L	1/9/2014			SW846-6020	=
Mercury	U	0.0002	mg/L	1/9/2014			SW846-7470A	=
Mercury, Dissolved	U	0.0002	mg/L	1/9/2014			SW846-7470A	=
рН		5.95	Std Unit	1/9/2014				Х
Redox		725	mV	1/9/2014				Х
Selenium	UB	0.005	mg/L	1/9/2014			SW846-6020	=
Selenium, Dissolved	U	0.005	mg/L	1/9/2014			SW846-6020	=
Technetium-99	U	15.2	pCi/L	1/9/2014	11.2	11.2	RL-7100	UJ
Temperature		53.9	deg F	1/9/2014				Х
Trichloroethene	D	280	ug/L	1/9/2014			SW846-8260B	=
Turbidity		2.3	NTU	1/9/2014				Х
Uranium	U	0.001	mg/L	1/9/2014			SW846-6020	=
Uranium-234	U	0.0198	pCi/L	1/9/2014	0.0538	0.129	RL-7128	=
Uranium-235	U	-0.001	pCi/L	1/9/2014	0	0.0956	RL-7128	=
Uranium-238	U	0.0381	pCi/L	1/9/2014	0.0452	0.0566	RL-7128	=

Facility: <u>C-404 Land</u>	fill C	ounty: <u>McCrae</u>	cken	Permit #			
Sampling Point:	MW420 FR	Upgradie	nt URGA	Period:	Semiannu	al Report	
AKGWA Well Tag #	8005-3263						
Parameter	Qualifier	Result Unit	Date ts Collected	Counting Error (+/-)	TPU	Method	Validation
Arsenic	В	0.0010 mg/L	1/9/2014			SW846-6020	=
Arsenic, Dissolved	U	0.001 mg/L	1/9/2014			SW846-6020	=
Barometric Pressure R	eading	30.4 Inche	s/Hg 1/9/2014				X
Cadmium	U	0.001 mg/L	1/9/2014			SW846-6020	=
Cadmium, Dissolved	U	0.001 mg/L	1/9/2014			SW846-6020	=
Chromium	UX	0.01 mg/L	1/9/2014			SW846-6020	=
Chromium, Dissolved	U	0.01 mg/L	1/9/2014			SW846-6020	=
Conductivity		293 umho	/cm 1/9/2014				Х
Depth to Water		53.82 ft	1/9/2014				Х
Dissolved Oxygen		1.84 mg/L	1/9/2014				Х
Lead	U	0.0013 mg/L	1/9/2014			SW846-6020	=
Lead, Dissolved	U	0.0013 mg/L	1/9/2014			SW846-6020	=
Mercury	U	0.0002 mg/L	1/9/2014			SW846-7470A	=
Mercury, Dissolved	U	0.0002 mg/L	1/9/2014			SW846-7470A	=
рН		5.95 Std L	nit 1/9/2014				Х
Redox		725 mV	1/9/2014				X
Selenium	UB	0.005 mg/L	1/9/2014			SW846-6020	=
Selenium, Dissolved	U	0.005 mg/L	1/9/2014			SW846-6020	=
Technetium-99		16.8 pCi/L	1/9/2014	11.2	11.2	RL-7100	J
Temperature		53.9 deg F	1/9/2014				X
Trichloroethene	D	290 ug/L	1/9/2014			SW846-8260B	=
Turbidity		2.3 NTU	1/9/2014				Х
Uranium	U	0.001 mg/L	1/9/2014			SW846-6020	=
Uranium-234	U	0.008 pCi/L	1/9/2014	0.0515	0.128	RL-7128	=
Uranium-235	U	0.0089 pCi/L	1/9/2014	0.0198	0.0735	RL-7128	=
Uranium-238	U	0.0191 pCi/L	1/9/2014	0.0335	0.0423	RL-7128	=

Facility: C-404 Landfi	11	County: _	McCrack	en	Permit #:	KY8-890	0-008-982	
Type of Sample:	FB				Period: Ser	miannual	Report QC San	nples
AKGWA Well Tag #:	0000-0000							
Parameter	Qualifier	Result	Units	Date Collected	Counting Error (+/-)	TPU	Method	Validation
Arsenic	UB	0.001	mg/L	1/9/2014			SW846-6020	=
Cadmium	U	0.001	mg/L	1/9/2014			SW846-6020	=
Chromium	UX	0.01	mg/L	1/9/2014			SW846-6020	=
Lead	U	0.0013	mg/L	1/9/2014			SW846-6020	=
Mercury	U	0.0002	mg/L	1/9/2014			SW846-7470	Α =
Selenium	UB	0.005	mg/L	1/9/2014			SW846-6020	=
Technetium-99	U	12.2	pCi/L	1/9/2014	11	11	RL-7100	=
Trichloroethene	U	1	ug/L	1/9/2014			SW846-8260	B =
Uranium	U	0.001	mg/L	1/9/2014			SW846-6020	=
Uranium-234	U	0.176	pCi/L	1/9/2014	0.0746	0.143	RL-7128	=
Uranium-235	U	0.023	pCi/L	1/9/2014	0.0333	0.0755	RL-7128	=
Uranium-238	U	0.114	pCi/L	1/9/2014	0.0576	0.0755	RL-7128	=

Facility: C-404 Landfil	Facility: C-404 Landfill County: McCracken				Permit #: KY8-890-008-982			
Type of Sample:	RI				Period: Se	emiannual	Report QC Sam	ples
AKGWA Well Tag #:	0000-0000				C (
Parameter	Qualifier	Result	Units	Date Collected	Counting Error (+/-)	TPU	Method	Validation
Arsenic	UB	0.001	mg/L	1/9/2014			SW846-6020	=
Cadmium	U	0.001	mg/L	1/9/2014			SW846-6020	=
Chromium	UX	0.01	mg/L	1/9/2014			SW846-6020	=
Lead	U	0.0013	mg/L	1/9/2014			SW846-6020	=
Mercury	U	0.0002	mg/L	1/9/2014			SW846-74704	A =
Selenium	UB	0.005	mg/L	1/9/2014			SW846-6020	=
Technetium-99	U	14.8	pCi/L	1/9/2014	11.1	11.1	RL-7100	=
Trichloroethene	U	1	ug/L	1/9/2014			SW846-82608	3 =
Uranium	U	0.001	mg/L	1/9/2014			SW846-6020	=
Uranium-234	U	0.0599	pCi/L	1/9/2014	0.0557	0.131	RL-7128	=
Uranium-235	U	0.0002	pCi/L	1/9/2014	0.00244	0.0712	RL-7128	=
Uranium-238	U	0.116	pCi/L	1/9/2014	0.0639	0.0798	RL-7128	=

Facility: C-404 Landfi	ll C	County: _	McCracken		Permit #:	KY8-89	0-008-982	
Type of Sample:	TB				Period: Se	miannual	Report QC Sar	mples
AKGWA Well Tag #:	0000-0000							
Parameter	Qualifier	Result	Units	Date Collected	Counting Error (+/-)	TPU	Method	Validation
Trichloroethene	U	1	ug/L	1/13/2014			SW846-8260)B =
	U	1	ug/L	1/21/2014			SW846-8260)B =
	U	1	ug/L	1/9/2014			SW846-8260)B =
	U	1	ug/L	1/9/2014			SW846-8260)B =

MEDIA Codes

WG Groundwater

QUALIFIER Codes

- B Applies when the analyte is found in the associated blank.
- D Compounds identified in an analysis at a secondary dilution factor.
- U Analyte analyzed for, but not detected at or below the lowest concentration reported.
- X Other specific flags and footnotes may be required to properly define the results.

SAMPLE METHOD Codes

GR Grab

SAMPLING POINT Codes

- UCRS Upper Continental Recharge System
- URGA Upper Regional Gravel Aquifer

SAMPLE TYPE Codes

- FB Field Blank
- FR Field Replicate (Code used for Field Duplicate)
- REG Regular
- RI QC Equipment Rinseate/Decon
- TB Trip Blank

VALIDATION Code

- = Validated result, which is detected and unqualified.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- X Not validated.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B

C-404 HAZARDOUS WASTE LANDFILL STATISTICAL ANALYSES

THIS PAGE INTENTIONALLY LEFT BLANK

For Official Use Only

GROUNDWATER STATISTICAL SUMMARY

Introduction

The statistical analyses conducted on the data collected from C-404 Hazardous Waste Landfill (C-404 Landfill) were performed in accordance with procedures provided in the approved Attachment VIII, Appendix C, of the C-404 Hazardous Waste Management Permit. The percent of censored (nondetected) data points for individual parameters was calculated for the combined analytical data. The percent of censored data was used to select the types of statistical analyses to determine whether compliance well concentrations differed from background well concentrations. For this report, the reporting period data set includes data from July 2011, January 2012, July 2012, January 2013, August 2013, and January 2014.

Statistical Analysis Process

The type of statistical test conducted for each chemical data set is a function of the number of samples and proportion of censored data (nondetects) to uncensored data (detects) in each group. The percent of censored (nondetected) data points for individual parameters was calculated for the combined analytical data. The statistical procedures applied to the data are summarized below.

- Determine the percentage of the censored data using the reporting period data set.
- Group by percentage of censored data where the following apply:
 - If censored data are greater than or equal to 90%, determine the Limit of Detection (LOD) and half of the LOD (1/2 LOD). This is Statistical Test 1.
 - If censored data are between 50% and 90%, perform a Test of Proportions. If the analysis indicates a significant proportional difference in compliance wells, further analyze through nonparametric Analysis of Variance (ANOVA) Test. This is Statistical Test 2.
 - If censored data are between 15% and 50%, perform nonparametric ANOVA Test. If results exceed the critical value, compute the critical difference used to identify individual well concentrations, which are significantly elevated compared with background. This is Statistical Test 3.
 - If censored data are less than 15%, actual data values are analyzed using parametric ANOVA procedures. If the wells exhibit equal variances, then the data are used as presented. If the wells do not exhibit equal variances, then the log of the data is taken and then used in the calculations. Where statistical testing indicates elevated compliance well concentrations, Bonferroni's Test of Contrasts is performed. This is Statistical Test 4. If variances are found to be unequal even for log-transformed concentrations, Statistical Test 4 is abandoned and Statistical Test 3 is used to compare compliance wells with background wells.

Data Analysis

Data from the upgradient background wells in the Upper Regional Gravel Aquifer (URGA) are included for comparison with three downgradient URGA wells. Figure 1 of this C-404 Landfill Groundwater Report provides a map of the well locations associated with the C-404 Landfill. Upper Continental Recharge System (UCRS) wells in Figure 1 are provided for reference only. Data from wells that are in the UCRS are not included in the statistical analyses.

Table B.1 presents the C-404 Landfill upgradient or background wells and downgradient or compliance wells from the URGA. Data from the URGA compliance wells were compared with data from the URGA background wells.

For this report, the reporting period data set from July 2011 through January 2014 consists of six sets of data.

UCRS					
Located South of C-404; adjacent to upgradient Regional Gravel Aquifer (RGA) background well MW93	MW94				
Located North of C-404, adjacent to downgradient RGA compliance wells	MW85, MW88, MW91				
URGA					
Upgradient background wells	MW93, MW420				
Downgradient compliance wells MW84, MW87, MW90A*					
*MW90 was abandoned in 2001 and replaced with M	W90A.				

Table B.1. Monitoring Well Locations

in 2001 and replaced with MW90A.

Table B.2 lists the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), and missing observations by parameter. When field duplicate data are available from a well, the higher of the two readings was retained for further evaluation.

Parameters	Observations	Missing Observations*	Censored Observations	Uncensored Observations
URGA				
Arsenic	30	0	11	19
Arsenic, Dissolved	30	0	12	18
Cadmium	30	0	29	1
Cadmium, Dissolved	30	0	30	0
Chromium	30	0	18	12
Chromium, Dissolved	30	0	30	0
Lead	30	0	25	5
Lead, Dissolved	30	0	30	0
Mercury	30	0	30	0
Mercury, Dissolved	30	0	30	0
Selenium	30	0	28	2
Selenium, Dissolved	30	0	30	0
Technetium-99	30	0	20	10
Trichloroethene	30	0	0	30
Uranium (Metals)	30	0	30	0
Uranium, Dissolved	30	0	30	0
Uranium-234	30	0	30	0
Uranium-235	30	0	30	0
Uranium-238	30	0	29	1

*Missing parameters that were dissolved metals were not analyzed when the parent total metals were not detected.

Censoring Percentage and Statistical Analysis

The type of statistical test set applied to the data is a function of the number of nondetects (censored) versus detects (uncensored) in each of the parameter groups and among the wells. Table B.3 presents the percentage of censored and uncensored data and type of statistical test chosen for each of the parameters.

Parameter	Total Samples (Nonmissing)	Detects	Nondetects	Percent Censored	Statistical Test Set
URGA					
Arsenic	30	19	11	37 %	3
Arsenic, Dissolved	30	18	12	40 %	3
Cadmium	30	1	29	97 %	1
Chromium	30	12	18	60 %	2
Lead	30	5	25	83 %	2
Mercury	30	0	30	100 %	1
Selenium	30	2	28	93 %	1
Technetium-99	30	10	20	67 %	2
Trichloroethene	30	30	0	0%	4
Uranium	30	0	30	100 %	1
Uranium-234	30	0	30	100 %	1
Uranium-235	30	0	30	100 %	1
Uranium-238	30	1	29	97 %	1

Table B.3. Percent Censored Report and Statistical Test Set Selected

A list of the constituents with greater than or equal to 90% censored data is included in Table B.4, which summarizes the results of Statistical Test 1.

SUMMARY OF CONCLUSIONS

The results for Test 1, LOD, are summarized in Table B.4. Table B.5 provides the summary of conclusions for the statistical analyses for the C-404 Landfill, including the statistical tests performed, the attachment number, well type, parameter, and results of each statistical test. Results of Statistical Test 2, Statistical Test 3, and Statistical Test 4 are presented in Attachments 1 through 6.

In summary, Statistical Test 2, Test of Proportions, for chromium, lead, and Tc-99 and Statistical Test 3, Nonparametric ANOVA, for total arsenic in the URGA indicated no statistical evidence of releases of these contaminants from the C-404 Landfill.

Statistical Test 3, Nonparametric ANOVA, for dissolved arsenic in the URGA, indicated concentrations were elevated relative to background in MW84; however no statistical evidence of elevated dissolved arsenic in the other two compliance wells (MW87 and MW90A) was found. Dissolved arsenic concentrations in background wells ranged from nondetect (DL = 0.001 mg/L) to 0.0054 mg/L, and were of the same order of magnitude in MW84, with concentrations ranging from 0.0039 to 0.0042 mg/L. Statistical Test 4, Parametric ANOVA, could not be used for TCE in the URGA because there was no evidence of equality of variance. An analysis of TCE data in the URGA indicated that there was no evidence of equality of variance. Thus, Statistical Test 4 was abandoned and Statistical Test 3, Non-parametric ANOVA was performed. Statistical Test 3 showed there was no evidence of contamination of TCE in any compliance well.

Parameter	LOD Values	¹ / ₂ LOD Values
JRGA		
Cadmium (mg/L)	0.001	0.0005
Aercury (mg/L)	0.0002	0.0001
Selenium (mg/L)	0.005	0.0025
ranium (mg/L)	0.001	0.0005
Jranium-234 (pCi/L)	0.30	0.15
Jranium-235 (pCi/L)	0.18	0.09
ranium-238 (pCi/L)	0.15	0.08

Table B.4. Statistical Test 1: Limit of Detection

LOD = Limit of Detection; mg/L = milligrams per liter; pCi/L = picocuries per liter

Table B.5. Summary of Conclusions from the Statistical Analyses for the C-404 Hazardous Waste Landfillfor the January 2014 Data Set

Attachment	RGA Well Type	Parameter	Applied Statistical Test	Results
1	URGA	Arsenic	Statistical Test 3, Nonparametric ANOVA	No statistically significant evidence of contamination from the C-404 Landfill in compliance wells.
2	URGA	Arsenic, Dissolved	Statistical Test 3, Nonparametric ANOVA	There is statistically significant evidence that dissolved arsenic is higher in MW84 when compared to background wells. There is no statistically significant evidence of contamination from the C-404 Landfill in other compliance wells (MW87 and MW90A). (See Figure B.1 for graph of detected arsenic concentrations in monitoring wells versus time).
3	URGA	Chromium	Statistical Test 2, Test of Proportions	No statistically significant evidence of contamination from the C-404 Landfill in compliance wells.
4	URGA	Lead	Statistical Test 2, Test of Proportions	No statistically significant evidence of contamination from the C-404 Landfill in compliance wells.
5	URGA	Technetium-99	Statistical Test 2 Test of Proportions	No statistically significant evidence of contamination from the C-404 Landfill in compliance wells.
6	URGA	Trichloroethene	Statistical Test 4 Parametric ANOVA	Because equality of variance could not be confirmed, Statistical Test 4 was abandoned and Statistical Test 3, Non- parametric ANOVA, was performed. No statistically significant evidence of contamination in compliance wells.

RGA = Regional Gravel Aquifer; URGA = Upper Regional Gravel Aquifer

The concentrations of dissolved arsenic in the URGA wells were plotted against time, as shown in Figure B.1. The dissolved arsenic concentrations in MW84 in the three most recent monitoring events were lower or comparable to the concentrations measured during the three previous semiannual events. None of the concentrations exceeded the U.S. Environmental Protection Agency drinking water standard maximum contaminant level (MCL) for arsenic (0.010 mg/L). The dissolved arsenic concentrations in the upgradient well MW93 exceeded the concentrations in MW84 for the last three events. As noted in Figure B.1, the detection limit for dissolved arsenic concentrations in C-404 monitoring wells was 0.001 mg/L.

As a result of this analysis, it does not appear that the C-404 Landfill is a source of dissolved arsenic contamination of the URGA.

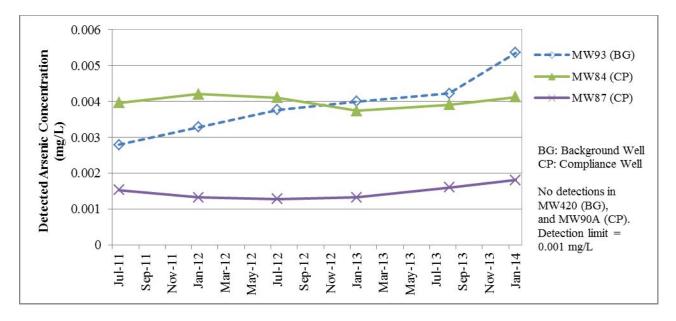


Figure B.1. Detected Dissolved Arsenic Concentrations in C-404 Monitoring Wells

Attachment 1: Statistical Test 3, Nonparametric ANOVA, January 2014 Arsenic (Total) URGA

	Arsenic (Total) (mg/L)							
Date	Background	Background	Compliance	Compliance	Compliance			
	MW93	MW420	MW84	MW87	MW90A			
Jul-11	0.00255	0.0005	0.00422	0.00103	0.0005			
Jan-12	0.00535	0.0005	0.00434	0.00187	0.0005			
Jul-12	0.00412	0.0005	0.00425	0.00133	0.0005			
Jan-13	0.00652	0.0005	0.00572	0.00183	0.0005			
Aug-13	0.00472	0.0005	0.00441	0.0015	0.0005			
Jan-14	0.00656	0.0011	0.00514	0.00218	0.0005			
Sum	0.0334		0.02808	0.00974	0.0030			
ni	12		6	6	6			
$(\mathbf{x}_i)_{avg}$	0.00278		0.00468	0.00162	0.0005			

mg/L = milligrams per liter BG=background DL=detection limit All data sets represent 1/2DL values for nondetects. **Bolded values indicate a detected result.**

Overall mean $x_{..} = 0.00247$

N = 30 p = 4 $x_{..} = 0.07$

Statistical Test 3, Non-parametric ANOVA

Ranking of Observations

	Arsenic	Adjusted	
Sequence	(mg/L)	Rank	Tie Number
1	0.0005	6	
2	0.0005	6	
3	0.0005	6	
4	0.0005	6	
5	0.0005	6	
6	0.0005	6	Tie 1
7	0.0005	6	
8	0.0005	6	
9	0.0005	6	
10	0.0005	6	
11	0.0005	6	
12	0.00103	12	
13	0.0011	13	
14	0.00133	14	
15	0.0015	15	
16	0.00183	16	
17	0.00187	17	
18	0.00218	18	
19	0.00255	19	
20	0.00412	20	
21	0.00422	21	
22	0.00425	22	
23	0.00434	23	
24	0.00441	24	
25	0.00472	25	
26	0.00514	26	
27	0.00535	27	
28	0.00572	28	
29	0.00652	29	
30	0.00656	30	

mg/L = milligrams per liter BG=background DL=detection limit All data sets represent 1/2DL values for nondetects. **Bolded values indicate a detected result.**

Adjustment for Ties:
Tie 1 =
$$(11^3-11) = 1320$$

 $\Sigma T_i = 1320$

Attachment 1: Statistical Test 3, Nonparametric ANOVA, January 2014 Arsenic (Total) URGA

Arsenic (mg/L)					
Date	Background	Background	Compliance	Compliance	Compliance
	MW93	MW420	MW84	MW87	MW90A
Jul-11	0.00255	0.0005	0.00422	0.00103	0.0005
Jan-12	0.00535	0.0005	0.00434	0.00187	0.0005
Jul-12	0.00412	0.0005	0.00425	0.00133	0.0005
Jan-13	0.00652	0.0005	0.00572	0.00183	0.0005
Aug-13	0.00472	0.0005	0.00441	0.0015	0.0005
Jan-14	0.00656	0.0011	0.00514	0.00218	0.0005
		Observation R	anks for Arseni	ic	
Date	Background	Background	Compliance	Compliance	Compliance
	MW93	MW420	MW84	MW87	MW90A
Jul-10	19	6	21	12	6
Jan-11	27	6	23	17	6
Jul-11	20	6	22	14	6
Jan-12	29	6	28	16	6
Jul-12	25	6	24	15	6
Jan-13	30	13	26	18	6
R _i	19	93	144	92	36
(R _i) _{avg}	16	5.1	24.0	15.3	6.0
R_i^2/n_i	310	04.1	3456.0	1410.7	216.0
$\Sigma R_i^2/n_i = 8186.8$ mg/L = milligrams per liter					

Sums of Ranks and Averages

$R_i^2/n_i =$	8186.8	mg/L = milligrams per liter
		BG=background
		DL=detection limit
		All data sets represent 1/2DL values for nondetects.
K=	4	Bolded values indicate a detected result.
N=	30	

Calculation of Kruskal-Wallis Statistic

H =	12.635	Kruskal-Wallis Statistic	$H = [12/N(N+1)*\Sigma R_i^2/n_i] - 3(N+1)$
H' =	13.286	Corrected Kruskal-Wallis	$H' = H/[1-(\sum T_i/N^3-N)]$
χ^2_{crit} *=	7.815	3 degrees of fre	eedom at the 5% significance level

NOTE: $H' > \chi^2_{crit}$

If H' $\leq \chi^2_{crit}$, the data from each well come from the same continuous distribution and hence have the same median concentrations of a specific constituent.

If $H' > \chi^2_{crit}$, reject the null hypothesis and calculate the critical difference for well comparisons to the background.

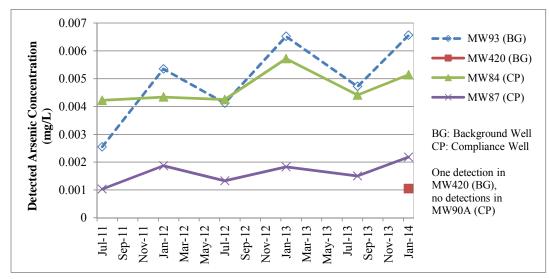
 $Z(\alpha/(K-1))^{**} =$ K-1= 3 α/(K-1)= 0.01667 2.1280 $\alpha =$ 0.05 $1-(\alpha/K-1)=$ 0.983

NOTE

* Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, USEPA, 1989. **Table 4, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, USEPA, 1989.

Calculate Critical Values

	Well No.	C _i	$(R_i)_{avg}$ - $(R_b)_{avg}$	Conclusion
BG Well	MW93			
BG Well	MW420			
	MW84	9.367	7.92	not contaminated
	MW87	9.367	-0.75	not contaminated
	MW90A	9.367	-10.08	not contaminated


Average Background Ranking = 16.083

mg/L = milligrams per liter BG=background DL=detection limit All data sets represent 1/2DL values for nondetects. **Bolded values indicate a detected result.**

If $(R_i)_{avg}$ - $(R_b)_{avg}$ > C_i , then there is evidence that the compliance well is contaminated.

CONCLUSION: Since $(R_i)_{avg} - (R_b)_{avg} < C_i$ for all MW84, MW87 and MW90A, there is no statistically significant evidence of contamination from C-404 in these downgradient compliance test wells.

Section 5.2.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, USEPA, 1989

*Detection limit was 0.001 mg/L for all samples included in the graph.

Attachment 2: Statistical Test 3, Nonparametric ANOVA, January 2014 Arsenic (Dissolved) URGA

	Arsenic (Dissolved) (mg/L)					
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93	MW420	MW84	MW87	MW90A	
Jul-11	0.00279	0.0005	0.00396	0.00153	0.0005	
Jan-12	0.00328	0.0005	0.0042	0.00132	0.0005	
Jul-12	0.00377	0.0005	0.00411	0.00128	0.0005	
Jan-13	0.004	0.0005	0.00374	0.00132	0.0005	
Aug-13	0.00422	0.0005	0.00391	0.0016	0.0005	
Jan-14	0.00536	0.0005	0.00412	0.00181	0.0005	
Sum	0.0234	0.0030	0.02404	0.00886	0.0030	
n _i	12		6	6	6	
$(\mathbf{x}_i)_{avg}$	0.00	0.00220		0.00148	0.0005	

mg/L = milligrams per liter BG=background DL=detection limit All data sets represent 1/2DL values for nondetects. **Bolded values indicate a detected result.**

Overall mean $x_{..} = 0.00208$

N =	30
p =	4
x=	0.06

Statistical Test 3, Non-parametric ANOVA

Ranking of Observations

	Arsenic	Adjusted	
Sequence	(mg/L)	Rank	Tie Number
1	0.0005	6.5	
2	0.0005	6.5	
3	0.0005	6.5	
4	0.0005	6.5	
5	0.0005	6.5	
6	0.0005	6.5	Tie 1
7	0.0005	6.5	The T
8	0.0005	6.5	
9	0.0005	6.5	
10	0.0005	6.5	
11	0.0005	6.5	
12	0.0005	6.5	
13	0.00128	13	
14	0.00132	14.5	Tie 2
15	0.00132	14.5	The 2
16	0.00153	16	
17	0.0016	17	
18	0.00181	18	
19	0.00279	19	
20	0.00328	20	
21	0.00374	21	
22	0.00377	22	
23	0.00391	23	
24	0.00396	24	
25	0.004	25	
26	0.00411	26	
27	0.00412	27	
28	0.0042	28	
29	0.00422	29	
30	0.00536	30	

mg/L = milligrams per liter BG=background DL=detection limit All data sets represent 1/2DL values for nondetects. **Bolded values indicate a detected result.**

> <u>Adjustment for Ties:</u> Tie 1 = $(12^{3}-12) = 1716$ Tie 2 = $(2^{3}-2) = 6$ $\sum T_{i} = 1722$

Attachment 2: Statistical Test 3, Nonparametric ANOVA, January 2014 Arsenic (Dissolved) URGA

Sums of Ranks and Averages

	Arsenic (mg/L)				
Date	Background	Background	Compliance	Compliance	Compliance
	MW93	MW420	MW84	MW87	MW90A
Jul-11	0.00279	0.0005	0.00396	0.00153	0.0005
Jan-12	0.00328	0.0005	0.0042	0.00132	0.0005
Jul-12	0.00377	0.0005	0.00411	0.00128	0.0005
Jan-13	0.004	0.0005	0.00374	0.00132	0.0005
Aug-13	0.00422	0.0005	0.00391	0.0016	0.0005
Jan-14	0.00536	0.0005	0.00412	0.00181	0.0005

	Observation Ranks for Arsenic					
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93	MW420	MW84	MW87	MW90A	
Jul-11	19	6.5	24	16	6.5	
Jan-12	20	6.5	28	14.5	6.5	
Jul-12	22	6.5	26	13	6.5	
Jan-13	25	6.5	21	14.5	6.5	
Aug-13	29	6.5	23	17	6.5	
Jan-14	30	6.5	27	18	6.5	
R _i	184		149	93	39	
(R _i) _{avg}	15.3		24.8	15.5	6.5	
R_i^2/n_i	282	2821.3		1441.5	253.5	

$\Sigma R_i^2/n_i =$	8216.5	mg/L = milligrams per liter
		BG=background
		DL=detection limit
		All data sets represent 1/2DL values for nondetects.
K=	4	Bolded values indicate a detected result.
N=	30	

Calculation of Kruskal-Wallis Statistic

H =	13.019	Kruskal-Wallis Statistic	$H = [12/N(N+1)*\Sigma R_i^2/n_i] - 3(N+1)$
H' =	13.907	Corrected Kruskal-Wallis	$H' = H/[1-(\sum T_i/N^3-N)]$
χ^2_{crit} *=	7.815	3 degrees of fre	edom at the 5% significance level

NOTE: $H' > \chi^2_{crit}$

If $H' \leq \chi^2_{crit}$, the data from each well come from the same continuous distribution and hence have the same median concentrations of a specific constituent.

If $H' > \chi^2_{crits}$ reject the null hypothesis and calculate the critical difference for well comparisons to the background.

K-1=3
$$\alpha/(K-1)=$$
0.01667 $Z(\alpha/(K-1))^{**}=$ 2.1280 $\alpha =$ 0.051- $(\alpha/K-1)=$ 0.983

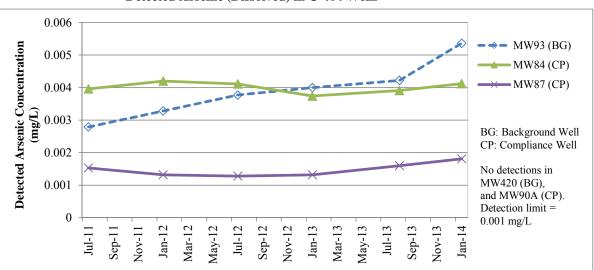
NOTE

E * Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, USEPA, 1989.

**Table 4, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, USEPA, 1989.

Calculate Critical Values

	Well No.	Ci	$(R_i)_{avg}$ - $(R_b)_{avg}$	Conclusion
BG Well	MW93			
BG Well	MW420			
	MW84	9.367	9.50	evidence of contamination
	MW87	9.367	0.17	not contaminated
	MW90A	9.367	-8.83	not contaminated


Average Background Ranking = 15.333

mg/L = milligrams per liter BG=background DL=detection limit All data sets represent 1/2DL values for nondetects. Bolded values indicate a detected result.

If $(R_i)_{avg}$ - $(R_b)_{avg} > C_i$, then there is evidence that the compliance well is contaminated.

CONCLUSION: Since (Ri)avg - (Rb)avg < Ci for MW87 and MW90A, there is no statistically significant evidence of contamination from C-404 in these downgradient compliance test wells; however, there is statistically evidence that compliance well MW84 is contaminated.

> Section 5.2.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, USEPA, 1989

Detected Arsenic (Dissolved) in C-404 Wells

Attachment 3: Statistical Test 2, Test of Proportions, January 2014 Chromium URGA

	Chromium (mg/L)					
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93	MW420	MW84	MW87	MW90A	
Jul-11	0.005	0.005	0.0232	0.0357	0.005	
Jan-12	0.0214	0.005	0.005	0.0792	0.005	
Jul-12	0.005	0.005	0.005	0.0218	0.005	
Jan-13	0.224	0.005	0.0604	0.177	0.005	
Aug-13	0.0288	0.005	0.0639	0.0691	0.005	
Jan-14	0.005	0.005	0.0921	0.005	0.005	

mg/L = milligrams per liter BG=background DL=detection limit All data sets represent 1/2DL values for nondetects. Bolded values indicate a detected result.

[!]Test of Proportions

Calculate the number of detections in background wells vs. compliance wells.

X=	3	X=number of samples above DL in background wells
Y=	9	Y=number of samples above DL in compliance wells
$n_b =$	12	n _b =count of background well results/samples analyzed
n _c =	18	n _c =count of compliance well results/samples analyzed
n=	30	n=total number of samples

P =	0.400	P=(x+y)/n
nP =	12	n=n _b +n _c
n(1-P) =	18	

NOTE: If nP and n(1-P) are both ≥ 5 , then the normal approximation may be used.

$P_b =$	0.250	P _b =proportion of detects in background wells
$P_c =$	0.500	P_c =proportion of detects in compliance wells
$S_D =$	0.183	S_D =standard error of difference in proportions
Z =	-1.369	$Z = (P_b - P_c)/S_D$
absolute value of Z =	1.369	

If the absolute value of Z exceeds the 97.5th percentile value of 1.96 from the standard normal distribution, this provides statistically significant evidence at the 5% significance level that the proportion of detects in one group of data exceeds the proportion of detects in the other group.

CONCLUSION: Because the absolute value of Z is less than 1.96, there is no statistical evidence that the proportion of samples with detected results differs between the background well and compliance well samples.

¹ Section 8.1.2, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (EPA, 1989)

Attachment 4: Statistical Test 2, Test of Proportions, January 2014 Lead URGA

Lead (mg/L)					
Date	Background	Background	Compliance	Compliance	Compliance
	MW93	MW420	MW84	MW87	MW90A
Jul-11	0.00065	0.00065	0.00065	0.00065	0.00065
Jan-12	0.00229	0.00065	0.00065	0.00279	0.00065
Jul-12	0.00065	0.00065	0.00065	0.00065	0.00065
Jan-13	0.00256	0.00065	0.00164	0.0117	0.00065
Aug-13	0.00065	0.00065	0.00065	0.00065	0.00065
Jan-14	0.00065	0.00065	0.00065	0.00065	0.00065

mg/L = milligrams per liter BG=background DL=detection limit Nondetect values are 1/2DL. Bolded values indicate a detected result.

[!]Test of Proportions

Calculate the number of detections in background wells vs. compliance wells.

X=	2	X=number of samples above DL in background wells
Y=	3	Y=number of samples above DL in compliance wells
$n_b =$	12	n _b =count of background well results/samples analyzed
n _c =	18	n _c =count of compliance well results/samples analyzed
n=	30	n=total number of samples

$\mathbf{P} =$	0.167	P=(x+y)/n
nP =	5	n=n _b +n _c
n(1-P) =	25	

NOTE: If nP and n(1-P) are both ≥ 5 , then the normal approximation may be used.

$P_b =$	0.167	P _b =proportion of detects in background wells
$P_c =$	0.167	P_c =proportion of detects in compliance wells
$S_D =$	0.139	S_D =standard error of difference in proportions
Z =	0.000	$Z = (P_b - P_c)/S_D$
absolute value of Z =	0.000	

If the absolute value of Z exceeds the 97.5th percentile value of 1.96 from the standard normal distribution, this provides statistically significant evidence at the 5% significance level that the proportion of detects in one group of data exceeds the proportion of detects in the other group.

CONCLUSION: Because the absolute value of Z is less than 1.96, there is no statistical evidence that the proportion of samples with detected results differs between the background well and compliance well samples.

¹ Section 8.1.2, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (EPA, 1989)

Attachment 5: Statistical Test 2, Test of Proportions, January 2014 Technetium-99 URGA

Technetium-99 (pCi/L)					
Date	Background	Background	Compliance	Compliance	Compliance
	MW93	MW420	MW84	MW87	MW90A
Jul-11	12.9	35.3	12.5	13.6	6.20
Jan-12	7.90	32.6	7.90	7.90	7.90
Jul-12	9.25	9.25	22.3	9.25	9.25
Jan-13	7.4	49.1	7.4	7.4	7.4
Aug-13	3.165	17.9	18.8	4.88	7.25
Jan-14	8.1	16.8	8.1	8.1	8.1

pCi/L = picocuries per liter BG=background DL=detection limit Data represent 1/2DL values for nondetects. Bolded values indicate a detected result.

[!]Test of Proportions

Calculate the number of detections in background wells vs. compliance wells.

X=	6	X=number of samples above DL in background wells
Y=	4	Y=number of samples above DL in compliance wells
$n_b =$	12	n _b =count of background well results/samples analyzed
n _c =	18	n _c =count of compliance well results/samples analyzed
n=	30	n=total number of samples

P =	0.333	P=(x+y)/n
nP =	10	n=n _b +n _c
n(1-P) =	20	

NOTE: If nP and n(1-P) are both ≥ 5 , then the normal approximation may be used.

$P_b =$	0.500	P _b =proportion of detects in background wells
$P_c =$	0.222	P _c =proportion of detects in compliance wells
$S_D =$	0.176	S_D =standard error of difference in proportions
Z =	1.581	$Z = (P_b - P_c) / S_D$
absolute value of $Z =$	1.581	

If the absolute value of Z exceeds the 97.5th percentile value of 1.96 from the standard normal distribution, this provides statistically significant evidence at the 5% significance level that the proportion of detects in one group of data exceeds the proportion of detects in the other group.

CONCLUSION: Because the absolute value of Z is less than 1.96, there is no statistical evidence that the proportion of samples with detected results differs between the background well and compliance well samples.

¹ Section 8.1.2, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (EPA, 1989)

Attachment 6: Statistical Test 4, Parametric ANOVA, January 2014 Trichloroethene URGA

	Trichloroethene (TCE, µg/L)					
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93	MW420	MW84	MW87	MW90A	
Jul-11	990	290	1000	420	26	
Jan-12	1200	280	1300	540	24	
Jul-12	1500	210	1100	450	14	
Jan-13	1900	190	1100	470	17	
Aug-13	2200	230	1300	760	35	
Jan-14	2900	290	1500	670	25	
n _i	1	2	6	6	6	
Sum	12	180	7300	3310	141.00	
(x _i)avg	101	5.00	1216.67	551.67	23.50	

 $\mu g/L = micrograms per liter$

Bolded values indicate a detected result.

Overall mean x.. =
$$764.37$$

N = 30
p = 4
x..= 22931.00

Determine Normality of Dataset

Coefficient of Variability Test

Table of Residuals

Date	Background	Background	Compliance	Compliance	Compliance
	MW93	MW420	MW84	MW87	MW90A
Jul-11	-25.00	-725.00	-216.67	-131.67	2.50
Jan-12	185.00	-735.00	83.33	-11.67	0.50
Jul-12	485.00	-805.00	-116.67	-101.67	-9.50
Jan-13	885.00	-825.00	-116.67	-81.67	-6.50
Aug-13	1185.00	-785.00	83.33	208.33	11.50
Jan-14	1885.00	-725.00	283.33	118.33	1.50

X: Mean Value =	-1.14E-14	
S: Standard Deviation =	581.5	
K* Factor =	2.22	(for n = 30)
CV = S/X =	-5.12E+16	<1, residuals are normal

* K factor (From Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance*, USEPA, 1989).

Because the coefficient of variation is <1, the resdiuals appear to be normally distributed.

Determine Equality of Variance of Dataset

p = number of wells	x ₌ 22931.00
n_i = number of data points per well	$(x_{avg})_{} = 764.37$
N = total sample size	-
S^2 = the square of the standard deviation	p= 4
$ln(S_i^2) = natural logarithm of each variance$	N= 30
f = total sample size minus the number of wells (groups)	
$\mathbf{f}_i = \mathbf{n}_i - 1$	

S_i	S_i^2	$\ln(S_i^2)$	n _i	$f_i S_i^2$	$f_i ln(S_i^2)$	
931.621	867918.182	13.674	12	9547100.000	150.4	
183.485	33666.667	10.424	6	168333.333	52.1	
135.561	18376.667	9.819	6	91883.333	49.1	
7.396	54.700	4.002	6	273.500	20.0	
$\sum (S_i^2) =$	920016.22		$\sum f_i ln(S_i^2) =$	271.6		
$\frac{\text{Equality of Variance: Bartlett's Test}}{f = 26}$						

-	Equality of Va	analice. Dartiett S Test		
f =	26			
$Sp^2 =$	377215.006			
$\ln Sp^2 =$	12.841			
χ_ =	62.218	(If calculated $\chi^2 \le \chi^2_{\text{crit}}$, then variances are equa	l at the g	iven
		significance level).		
$\chi^2_{crit} *=$	7.815	at a 5% significance level with	3	degrees of freedom

Variances are not equal, transform the original data to lognormal.

* Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, USEPA, 1989.

Attachment 6: Statistical Test 4, Parametric ANOVA, January 2014 Trichloroethene URGA

Lognormal Data for TCE

ln[TCE (µg/L)]					
Date	Background	Background	Compliance	Compliance	Compliance
	MW93	MW420	MW84	MW87	MW90A
Jul-11	6.90	5.67	6.91	6.04	3.26
Jan-12	7.09	5.63	7.17	6.29	3.18
Jul-12	7.31	5.35	7.00	6.11	2.64
Jan-13	7.55	5.25	7.00	6.15	2.83
Aug-13	7.70	5.44	7.17	6.63	3.56
Jan-14	7.97	5.67	7.31	6.51	3.22
x _i	77	.53	42.57	37.73	18.68
(x _i)avg	6.	46	7.09	6.29	3.11

 $\mu g/L = micrograms per liter$

Determine Normality of Dataset

Coefficient of Variability Test

Table of residua	als				
Date	Background	Background	Compliance	Compliance	Compliance
	MW93	MW420	MW84	MW87	MW90A
Jan-11	0.44	-0.79	-0.19	-0.25	0.14
Jul-11	0.63	-0.83	0.08	0.00	0.06
Jan-12	0.85	-1.11	-0.09	-0.18	-0.47
Jul-12	1.09	-1.21	-0.09	-0.14	-0.28
Jan-13	1.24	-1.02	0.08	0.34	0.44
Aug-13	1.51	-0.79	0.22	0.22	0.11

$$\begin{array}{rll} X: \mbox{ Mean Value} & 0.00 \\ S: \mbox{ Standard Deviation} & 0.7 \\ K* \mbox{ Factor} & 2.22 & (for n = 30) \\ CV = S/X = & -1.96E+15 & <1, residuals of log-transformed data are normally distributed \\ \end{array}$$

* K factor (From Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance*, USEPA, 1989)

Determine Equality of Variance of Dataset

p = number of wells (background wells considered as one group)	x= 176.51
n_i = number of data points per well	$(x_{avg})_{}= 5.88$
N = total sample size	
S^2 = the square of the standard deviation	p= 4
$\ln(S_i^2)$ = natural logarithm of each variance	N= 30
f = total sample size minus the number of wells (groups)	

$f_i =$	n _i	- 1
---------	----------------	-----

Calculations for Equality of Variance: Bartlett's	Test
---	------

S _i	S_i^2	$\ln({S_i}^2)$	ni	$f_i S_i^2$	$f_i ln(S_i^2)$
1.045	1.091	0.087	12	12.003	1.0

0.149	0.022	-3.809	6	0.111	-19.0
0.236	0.056	-2.886	6	0.279	-14.4
0.327	0.107	-2.235	6	0.535	-11.2

$\sum (S_i^2) =$	1.28	$\sum f_i \ln(S_i^2) =$	-43.7
	1.20		10.7

<u>I</u>	Equality of V	/ariance: Bartlett's Test		
f =	26			
$Sp^2 =$	0.497			
$\ln \mathrm{Sp}^2 =$	-0.699			
$\chi^2 =$	25.523	(If calculated $\chi^2 \le$ tabulated χ^2 , then varian significance level).	nces are equal a	t the given
tabulated $\chi^2 *=$	7.815	at a 5% significance level with	3	degrees of freedom

Variances are not equal.

* Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, USEPA, 1989.

Because variances are not equal, Statistical Test 3 - Nonparameteric ANOVA is performed.

Statistical Test 3, Nonparametric ANOVA

	TCE (µg/L)					
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93	MW420	MW84	MW87	MW90A	
Jul-11	990	290	1000	420	26	
Jan-12	1200	280	1300	540	24	
Jul-12	1500	210	1100	450	14	
Jan-13	1900	190	1100	470	17	
Aug-13	2200	230	1300	760	35	
Jan-14	2900	290	1500	670	25	
n _i	1	2	6	6	6	
x _i	12	180	7300	3310	141.00	
(x _i)avg	101	5.00	1216.67	551.67	23.50	

Overall mean $x_{..} = 764.37$

$$N = 30$$

 $p = 4$
 $x_{..} = 22931.00$

 $\mu g/L = micrograms per liter$

Non-Parametric ANOVA

Ranking of Observations

	Adjusted	
TCE (µg/L)	Rank	Tie Number
-	4	
35	6	
190	7	
210	8	
230	9	
280		
290		Tie 1
290		
420	13	
450	14	
470	15	
540	16	
670	17	
760	18	
990	19	
1000	20	
1100	21.5	Tie 2
1100	21.5	
1200	23	
1300	24.5	Tie 3
1300	24.5	110.5
1500	26.5	Tie 4
1500	26.5	116 4
1900	28	
2200	29	
2900	30	
	210 230 280 290 420 450 470 540 670 760 990 1000 1100 1200 1300 1500 1900 2200	TCE (μg/L) Rank 14 1 17 2 24 3 25 4 26 5 35 6 190 7 210 8 230 9 280 10 290 11.5 420 13 450 14 470 15 540 16 670 17 760 18 990 19 1000 21.5 1100 21.5 1200 23 1300 24.5 1500 26.5 1500 26.5 1500 26.5 1900 28 2200 29

Adjustment for Ties:

No. of Ties: Tie 1	2	Tie 1 =	2^3 -2=	6
Tie 2	2	Tie 2 =	2^3 -2=	6
Tie 3	2	Tie 3 =	2^3 -2=	6
Tie 4	2	Tie 4 =	2^3 -2=	6

$$\sum T_i = 24$$

Sums	of	Ranks	and	Averages
------	----	-------	-----	----------

		TCE (μg/L)		
Date	Background	Background	Compliance	Compliance	Compliance
	MW93	MW420	MW84	MW87	MW90A
Jul-11	990	290	1000	420	26
Jan-12	1200	280	1300	540	24
Jul-12	1500	210	1100	450	14
Jan-13	1900	190	1100	470	17
Aug-13	2200	230	1300	760	35
Jan-14	2900	290	1500	670	25
	-				-
		Observation R	anks for TCE		
Date	Background	Background	Compliance	Compliance	Compliance

Observation Ranks for TCE					
Date	Background	Background	Compliance	Compliance	Compliance
	MW93	MW420	MW84	MW87	MW90A
Jul-11	19	11.5	20	13	5
Jan-12	23	10	24.5	16	3
Jul-12	26.5	8	21.5	14	1
Jan-13	28	7	21.5	15	2
Aug-13	29	9	24.5	18	6
Jan-14	30	11.5	26.5	17	4
R _{i.}	21	2.5	138.5	93	21
(R _i) _{avg}	11	17.7		15.5	3.5
R_i^2/n_i	370	63.0	3197.0	1441.5	73.5

$$\Sigma R_i^2 / n_i = 8475.1$$

Calculation of Kruskal-Wallis Statistic

H =	16.356	Kruskal-Wallis Statistic	$H = [12/N(N+1)*\Sigma R_i^2/n_i] - 3(N+1)$
H' =	16.370	Corrected Kruskal-Wallis	$H' = H/[1-(\sum T_i/N^3-N)]$
χ^2_{crit} *=	7.815	3 degrees of fre	eedom at the 5% significance level

NOTE: $H' > \chi^2_{crit}$

If $H' \leq \chi^2_{crit}$, the data from each well come from the same continuous distribution and hence have the same median concentrations of a specific constituent.

If $H' > \chi^2_{crit}$, reject the null hypothesis and calculate the critical difference for well comparisons to the background.

K-1=3
$$\alpha/(K-1)=$$
0.01667 $Z(\alpha/(K-1))^{**}=$ 2.128 $\alpha =$ 0.05 $1-(\alpha/K-1)=$ 0.983

NOTE

* Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, USEPA, 1989.

**Table 4, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, USEPA, 1989.

Attachment 6: Statistical Test 4, Parametric ANOVA, January 2014 Trichloroethene URGA

Calculate Critical Values

Average Background Ranking =	17.7
------------------------------	------

	Well No.	Ci	$(R_i)_{avg}$ - $(R_b)_{avg}$	Conclusion
BG Well	MW93			
BG Well	MW420			
	MW84	9.367	5.38	not contaminated
	MW87	9.367	-2.21	not contaminated
	MW90A	9.367	-14.21	not contaminated

If $(R_i)_{avg}$ - $(R_b)_{avg}$ > C_i , then there is evidence that the compliance well is contaminated.

CONCLUSION: Since $(R_i)_{avg} - (R_b)_{avg} < C_i$, there is no statistically significant evidence that downgradient compliance test wells are contaminated; however, the negative value indicates that background wells have elevated concentrations.

Section 5.2.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, USEPA, 1989

April 22, 2014 LKYBA10836-14-0011

Mr. Mark Legier LATA Kentucky P.O. Box 280, Kevil, KY 42053

Subject: Statistical analysis of groundwater data for C-404 landfill

Dear Mr. Legier:

I am submitting this statement in response to your request that it be provided as a supplementary document to the completed statistical analysis I performed on the groundwater data for the C-404 Landfill at the Paducah Gaseous Diffusion Plant.

As a Senior Environmental Engineer, with a doctorate in Civil Engineering and Professional Engineer license with the State of Tennessee, I have twenty-two years of experience in the analysis and interpretation of environmental data.

For this project, the statistical analyses on groundwater data from July 2011 through January 2014 were performed in accordance with the C-404 Hazardous Waste Landfill Permit, Appendix C using Microsoft Excel 2010. The Excel files were saved in a format compatible with Microsoft Excel 1997-2003. I used the Excel files from the previous reporting period (November 2013) and modified these as appropriate for this reporting period. This approach was used so that the format for the spreadsheets would be familiar to you and would facilitate your review. The spreadsheets include the results for the following statistical tests:

- Test of Proportions
- Parametric Analysis of Variance (ANOVA)
- Nonparametric ANOVA

The statistical analyses procedures were based on the U.S. Environmental Protection Agency (USEPA) *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Please feel free to contact me at (865) 671-4401, Jeff Douthitt, or Vanessa Pineda at (270) 462-3882 if you have any questions.

Sincerely,

Olivia R. West

Olivia R. West, Ph.D., P.E.

OW:vp

cc: GEO Kevil DMC

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C

C-404 HAZARDOUS WASTE LANDFILL LEACHATE INFORMATION

THIS PAGE INTENTIONALLY LEFT BLANK

PADUCAH GASEOUS DIFFUSION PLANT C-404 HAZARDOUS WASTE LANDFILL PERMIT NUMBER KY8-890-008-982

LEACHATE INFORMATION

The leachate information in this document includes the monthly and quarterly inspections; volumes of leachate removed during this reporting period; and analytical results of leachate sampling.

Paducah OREIS Report for 404L13-03

L1404L3-13		from: C4	04L	on 1	2/9/20 ⁻	13 Media:	WW	SmpMethod: GR	
Comments: F039									
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
ANION									
Fluoride	12		mg/L	Х		1		SW846-9056	IS / X
FS									
Conductivity	642		umho/cm					FS	1.
Dissolved Oxygen	5.77		mg/L					FS	1.
pН	7.7		Std Unit					FS	1.
Redox	460		mV					FS	1.
Temperature	67.6		deg F					FS	1.
METAL									
Arsenic	0.00112		mg/L			0.001		SW846-6020	/ X /
Barium	0.088		mg/L			0.005		SW846-6020	S / X /
Cadmium	0.00742		mg/L			0.001		SW846-6020	I / X .
Chromium	0.0103		mg/L			0.01		SW846-6020	/ X /
Copper	0.195		mg/L			0.1		SW846-6020	/ X /
Iron	0.1		mg/L	U		0.1		SW846-6010B	/ X /
Lead	0.0153		mg/L			0.0013		SW846-6020	/ X /
Mercury	0.0002		mg/L	UW		0.0002		SW846-7470A	/ X /
Nickel	0.0242		mg/L			0.005		SW846-6020	/ X /
Selenium	0.005		mg/L	U		0.005		SW846-6020	/ X /
Silver	0.001		mg/L	U		0.001		SW846-6020	/ X /
Uranium	141		mg/L			2		SW846-6020	IS / X
Zinc	0.139		mg/L			0.02		SW846-6020	/ X /
РРСВ									
PCB-1016	0.17		ug/L	U		0.17		SW846-8082	/ X /
PCB-1221	0.18		ug/L	U		0.18		SW846-8082	/ X /
PCB-1232	0.14		ug/L	U		0.14		SW846-8082	/ X /
PCB-1242	0.1		ug/L	U		0.1		SW846-8082	/ X /
PCB-1248	0.12		ug/L	U		0.12		SW846-8082	/ X /
PCB-1254	0.07		ug/L	U		0.07		SW846-8082	/ X /
PCB-1260	0.05		ug/L	U		0.05		SW846-8082	/ X /
PCB-1268	0.09		ug/L	U		0.09		SW846-8082	/ X /
Polychlorinated biphenyl	0.18		ug/L	U		0.18		SW846-8082	/ X /
RADS									
Cesium-137	6.98	14	pCi/L	U		19.6	14	RL-7124	/ X /
Neptunium-237	0.912	0.508	pCi/L	U		1.29	0.686	RL-7128	/ X /
Plutonium-239/240	-0.0521	0.0887	pCi/L	U		2.31	0.929	RL-7128	/ X /
Technetium-99	215	16.4	pCi/L			15.5	17.2	RL-7100	/ X /
Thorium-230	1.99	0.975	pCi/L	U		2.83	1.51	RL-7128	/ X /
Uranium-234	2790	149	pCi/L	Т		27	720	RL-7128	/ X /
Uranium-235	418	64.2	pCi/L	Т		17.4	124	RL-7128	S / X /
Uranium-238	31100	496	pCi/L	Т		16	7870	RL-7128	/ X /
VOA									
Trichloroethene	1		ug/L	U		1		SW846-8260B	/ X /
WETCHEM									
Ammonia as Nitrogen	0.2		mg/L	U		0.2		EPA-350.3	/ X /

TB404L3-13		from: QC		on 12	2/9/201	3 Media	: WQ	SmpMethod:	
Comments:									
Analysis	Results	Counting Error	Units	Result Qual	Foot Note	Reporting Limit	TPU	Method	V/V/A*
VOA Trichloroethene	1		ug/L	U		1		SW846-8260B	/ X /

Paducah OREIS Report for 404L13-03

*Verification/Validation/Assessment

Paducah OREIS Report for 404L13-03

L1404L4-13		from: C4	04L	on 12	2/9/2013	Media: WW	SmpMethod: GR	
Comments: F039								
Analysis ANION	Results	Counting Error	Units	Result Qual	Foot Reportin Note Limit		Method	V/V/A*
Fluoride	8.5		mg/L	х	1		SW846-9056	I/X/
FS								
Conductivity	620		umho/cm				FS	11
Dissolved Oxygen	9.86		mg/L				FS	11
рН	8.25		Std Unit				FS	11
Redox	431		mV				FS	1 /
Temperature	67.5		deg F				FS	11
METAL								
Arsenic	0.001		mg/L	U	0.001		SW846-6020	/ X /
Barium	0.069		mg/L		0.005		SW846-6020	/ X /
Cadmium	0.00228		mg/L		0.001		SW846-6020	/ X /
Chromium	0.01		mg/L	U	0.01		SW846-6020	/ X /
Copper	0.02		mg/L	U	0.02		SW846-6020	/ X /
Iron	0.1		mg/L	U	0.1		SW846-6010B	/ X /
Lead	0.00436		mg/L		0.0013	3	SW846-6020	/ X /
Mercury	0.0002		mg/L	UW	0.0002	2	SW846-7470A	/ X /
Nickel	0.005		mg/L	U	0.005		SW846-6020	/ X /
Selenium	0.005		mg/L	U	0.005		SW846-6020	/ X /
Silver	0.001		mg/L	U	0.001		SW846-6020	/ X /
Uranium	124		mg/L		2		SW846-6020	IS / X /
Zinc	0.02		mg/L	U	0.02		SW846-6020	/ X /
РРСВ								
PCB-1016	0.16		ug/L	U	0.16		SW846-8082	/ X /
PCB-1221	0.17		ug/L	U	0.17		SW846-8082	/ X /
PCB-1232	0.14		ug/L	U	0.14		SW846-8082	/ X /
PCB-1242	0.1		ug/L	U	0.1		SW846-8082	/ X /
PCB-1248	0.12		ug/L	U	0.12		SW846-8082	/ X /
PCB-1254	0.07		ug/L	U	0.07		SW846-8082	/ X /
PCB-1260	0.05		ug/L	U	0.05		SW846-8082	/ X /
PCB-1268	0.09		ug/L	U	0.09		SW846-8082	/ X /
Polychlorinated biphenyl	0.17		ug/L	U	0.17		SW846-8082	/ X /
RADS								
Cesium-137	0.854	1.71	pCi/L	U	19	10.6	RL-7124	/ X /
Neptunium-237	0.59	0.459	pCi/L	U	1.64	0.639	RL-7128	/ X /
Plutonium-239/240	0.104	0.157	pCi/L	U	2.31	0.938	RL-7128	/ X /
Technetium-99	334	18.9	pCi/L		15.5	20.7	RL-7100	/ X /
Thorium-230	0.327	0.483	pCi/L	U	2.78	1.2	RL-7128	/ X /
Uranium-234	2970	160	pCi/L	т	31.1	801	RL-7128	/ X /
Uranium-235	424	67.4	pCi/L	Т	21.6	131	RL-7128	S / X /
Uranium-238	33200	533	pCi/L	т	18.8	8790	RL-7128	/ X /
VOA								
Trichloroethene	1		ug/L	U	1		SW846-8260B	/ X /
WETCHEM								
Ammonia as Nitrogen	0.2		mg/L	U	0.2		EPA-350.3	/ X /

*Verification/Validation/Assessment

C-404 Monthly Inspection Summary^{1, 2, 3, 4}

Period of Inspection: January, February, March 2014

Leachate Level	Date (M/D/YY)	Level (inches deep)*	Inspector(s)
First monthly leachate level determination	1-30-14	32''	Teff Boulton Juff Barlos
Second monthly leachate level determination	2-17-14	38''	Sitt Boulton
Third monthly leachate level determination	3-18-14	16''	Jeft Boulton

* If the leachate level in the sump is at 3 feet (36 inches), then contact the appropriate personnel to initial removal and sampling of leachate AND when leachate is removed, complete the "C-404 Inspection Checklist for Leachate Removal."

NOTES:

- 1. If any item is found to be unacceptable and cannot be explained in the space available, the inspector must identify the specific observation and nature of the problem on the "C-404 Inspection Addendum" Form.
- 2. Third quarter of calendar year inspection includes the annual leachate collection system inspection.
- 3. The original forms shall be kept on file in the facility operating record.
- 4. Upon completing the monthly inspections, e-mail Environmental Compliance the leachate level and whether or not the leachate needs to be sampled or removed.

C-7

ENM-F-0001 (8/17/10) PAD-ENM-0022

C-404 Inspection Checklist for Leachate Removal^{1, 2, 3}

	Leachate Removal Inspection			NO	N/A	Date	(M/D/YY)	Volume (gallons)
	Was any removal necessary during the quarter?					2-1	19-14	1200
Has any leachate removed during the quarter been sampled?			~	-		a-a	27-14	
Date of superficial inspection upon removal of leachate.			~	-		2-	19-14	
Date of	sampling of leachat	e after removal.	\checkmark			2-6	19-14 17-14	\checkmark
ltem No.	Inspection Item	Item Desci	ription	_	Inspe Resi		Co	omments
		Interior malformatio	ons					
A Leachate Pit Exterior malformati			ons		~			
	Inspector: <u>Jeff Boulton</u> (Printed Name)				Signature	10	eff B	1426
(i ninou				[Date:	(-/9-	<u>14</u> _Time:	142Ce

A=Acceptable U=Unacceptable

NOTES:

- 1. This form is completed if the leachate level in the sump is at **3 feet (36 inches)** and is being removed. Ensure the appropriate personnel have been contacted and complete the information above.
- 2. If any item is found to be unacceptable, the inspector must identify the specific observation and nature of the problem on the "C-404 Inspection Addendum" Form.
- 3. The original forms shall be kept on file in the facility operating record.

Leachate was sampled at C-752-A from poly container RFD 118261-01. Jeff Boulto 2-27-14

ENM-F-0005 (8/17/10) PAD-ENM-0022

ltem	Inspection Item	Item Description	Inspec Resu		Comments/Observations
No.			Α	U	
Α	Warning Signs	Four signs around landfill			· · · · · · · · · · · · · · · · · · ·
		Gully erosion depth > 6 inches	~		
		Vegetative die-off			
В	Vegetative Cover ²	Varmint intrusion/burrowing from animals	/		
		Overgrowth			
		Depressions			
		Debris in ditches			· · · · · · · · · · · · · · · · · · ·
с	Ditches ³	Excessive sediment			
C	Ditches	Drainage			
		Erosion			
		Washouts or depressions			······································
_		Lack of discharge			
D	Anchor Trench ⁴	Unusual volume or color			
		Drainage (4 drains from landfill)	~		
Е	Leachate	Level			
L.	System	Cracks or damage			
Inspecto (Printed	or: <u> </u>	Boulton	Signature Date:		14 Boulor 14 Time: 1.322

C-404 Quarterly Inspection Checklist^{1, 5}

A=Acceptable

U=Unacceptable

NOTES:

- 1. If any item is found to be unacceptable, the inspector must identify the specific observation and nature of the problem on the "C-404 Inspection Addendum" Form.
- 2. For Item No. B, the vegetative cover shall be mowed regularly during the active growing season to discourage the growth of weeds, competitive species, or deep-rooted vegetation. Mowing shall be conducted using a sickle-type mower to prevent airborne contaminants. A radiation work permit will be required. Any erosion damage greater than 6 inches will be repaired by restoring to its original grade and reseeding. Differential settlement will be repaired by restoring site to its original grade and reseeding.
- For Item No. C, blockage of or damage to the system shall be repaired by removing debris and accumulated sediment and restoring the ditch to its original grade. Ditches shall be reseeded and additional gravel shall be installed as needed.
- For Item No. D, drainage pipe failures shall be repaired by removing the failed pipe, installing a new section, and replacing the fill material as necessary.
- 5. The original forms shall be kept on file in the facility operating record.

ENM-F-0002 (8-17-10) PAD-ENM-0022

C-404 Monthly Inspection Summary^{1, 2, 3, 4}

Period of Inspection: October, November, December

Leachate Level	Date (M/D/YY)	Level (inches deep)*	Inspector(s)
First monthly leachate level determination	1018/13	16"	Konton
Second monthly leachate level determination	11/5/13	17*	Honitoyu
Third monthly leachate level determination	12/5/13	17"	forus toryun

* If the leachate level in the sump is at 3 feet (36 inches), then contact the appropriate personnel to initial removal and sampling of leachate AND when leachate is removed, complete the "C-404 Inspection Checklist for Leachate Removal."

NOTES:

1. If any item is found to be unacceptable and cannot be explained in the space available, the inspector must identify the specific observation and nature of the problem on the "C-404 Inspection Addendum" Form.

2. Third quarter of calendar year inspection includes the annual leachate collection system inspection.

3. The original forms shall be kept on file in the facility operating record.

4. Upon completing the monthly inspections, e-mail Environmental Compliance the leachate level and whether or not the leachate needs to be sampled or removed.

ENM-F-0001 (8/17/10) PAD-ENM-0022

ltem	Inspection Item	Item Description	Inspe Resi	ction ults	Comments/Observations
No.			A	U	
Α	Warning Signs	Four signs around landfill	V		
		Gully erosion depth > 6 inches			
		Vegetative die-off			
В	Vegetative Cover ²	Varmint intrusion/burrowing from animals	/		
1		Overgrowth			
		Depressions	~		
		Debris in ditches			
C	Ditches ³	Excessive sediment	V.,		
U .		Drainage			
		Erosion			•
		Washouts or depressions			
_		Lack of discharge			
D	Anchor Trench ⁴	Unusual volume or color			
		Drainage (4 drains from landfill)			
E	Leachate	Level	<i>_</i>		
E .	System	Cracks or damage			1 1
Inspecto (Printed	pr: <u>Ronnie 7</u> Name)	oynen	Signature Date: 4	TAL	Omi Toyur Time: 1330

C-404 Quarterly Inspection Checklist^{1, 5}

A=Acceptable

U=Unacceptable

NOTES:

- 1. If any item is found to be unacceptable, the inspector must identify the specific observation and nature of the problem on the "C-404 Inspection Addendum" Form.
- 2. For Item No. B, the vegetative cover shall be mowed regularly during the active growing season to discourage the growth of weeds, competitive species, or deep-rooted vegetation. Mowing shall be conducted using a sickle-type mower to prevent airborne contaminants. A radiation work permit will be required. Any erosion damage greater than 6 inches will be repaired by restoring to its original grade and reseeding. Differential settlement will be repaired by restoring site to its original grade and reseeding.
- 3. For Item No. C, blockage of or damage to the system shall be repaired by removing debris and accumulated sediment and restoring the ditch to its original grade. Ditches shall be reseeded and additional gravel shall be installed as needed.
- 4. For Item No. D, drainage pipe failures shall be repaired by removing the failed pipe, installing a new section, and replacing the fill material as necessary.
- 5. The original forms shall be kept on file in the facility operating record.

ENM-F-0002 (8-17-10) PAD-ENM-0022

C-404 Inspection Checklist for a 24-Hour Rain Event^{1, 2, 3}

ltem No.	Inspection Item	Item Description	Inspection Results		Comments/Observations	
NO.		••••	A	U		
		Gully erosion depth > 6 inches	1			
		Vegetative die-off	. 1			
А	Vegetative Cover	Varmint intrusion/burrowing from animals	~			
		Overgrowth	r			
		Depressions	V		······································	
		Debris in ditches	V			
B	Ditches	Excessive sediment				
D	Dicties	Drainage	. ~	······································		
	· ·	Erosion	. ~			
		Washouts or depressions	~			
c	Anchor Trench	Lack of discharge				
	Anchor Trench	Unusual volume or color	~			
		Drainage (4 drains from landfill)			· · · · · · · · · · · · · · · · · · ·	
nspecto Printed	or: <u> </u>	2.Ff Boulton	Signature Date:	2-22	13 Time: 1842	

A=Acceptable

U≈Unacceptable

NOTES:

1. This checklist is used after a major storm in the event that 5.8 inches falls in 24 hours.

 If any item is found to be unacceptable, the inspector must identify the specific observation and nature of the problem on the "C-404 Inspection Addendum" Form.

3. The original forms shall be kept on file in the facility operating record.

ENM-F-0004 (8-17-10) PAD-ENM-0022

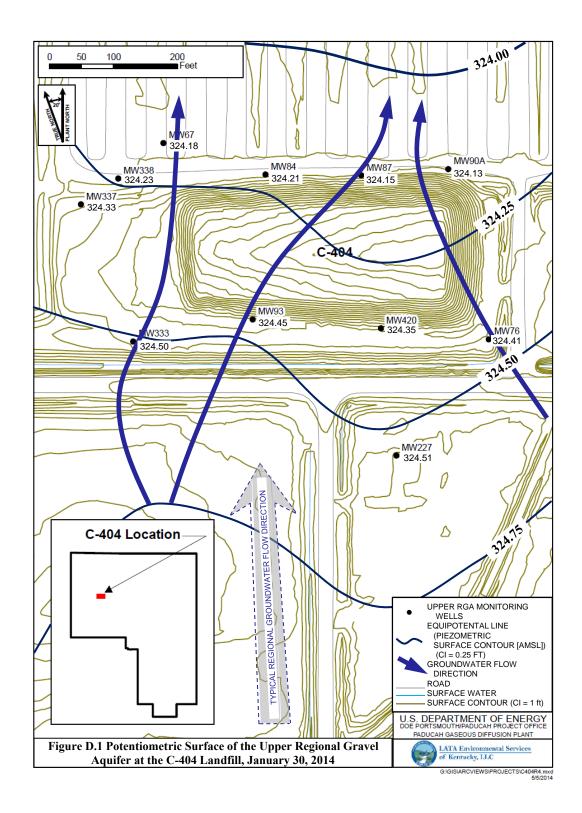
APPENDIX D

C-404 HAZARDOUS WASTE LANDFILL GROUNDWATER FLOW RATE AND DIRECTION

THIS PAGE INTENTIONALLY LEFT BLANK

C-404 LANDFILL FLOW DIRECTION

The C-404 Hazardous Waste Landfill (C-404 Landfill) Permit requires annual determination of average hydraulic flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below C-404 Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are taken from several wells at the perimeter of the C-404 Landfill on a semiannual basis. The flow direction information included in this report is supplemental to the permit-required annual flow rate and direction.


The water levels used for this analysis (taken on January 30, 2014) were measured as closely as possible and within a 24-hour period to ensure the comparability of the data. These measurements were used to plot the potentiometric surface of the upper RGA for the January 2014 sampling event. As indicated in previous reports, flow direction beneath the C-404 Landfill generally trends northward, but commonly varies from northeast to northwest.

Contours for the potentiometric surface were drawn after water-level data were corrected for barometric efficiency. The potentiometric contours depict the directions of hydraulic flow during each sampling event.

The January potentiometric surface data of the upper RGA are presented in Table D.1, and potentiometric surface maps are presented in Figures D.1.

						Raw	Data	*Corre	ected Data
Date	Time	Well	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
			(ft amsl)	(in Hg)	(ft Hg)	(ft H ₂ O)	(ft amsl)	(ft)	(ft amsl)
1/30/2014	8:07	MW67	374.95	30.19	0.00	50.77	324.18	50.77	324.18
1/30/2014	7:40	MW76	376.86	30.19	0.00	52.45	324.41	52.45	324.41
1/30/2014	8:21	MW84	375.91	30.19	0.00	51.70	324.21	51.70	324.21
1/30/2014	8:05	MW87	375.79	30.19	0.00	51.64	324.15	51.64	324.15
1/30/2014	8:00	MW90A	374.28	30.19	0.00	50.15	324.13	50.15	324.13
1/30/2014	7:48	MW93	377.59	30.19	0.00	53.14	324.45	53.14	324.45
1/30/2014	7:36	MW227	378.74	30.19	0.00	54.23	324.51	54.23	324.51
1/30/2014	7:55	MW333	377.27	30.19	0.00	52.77	324.50	52.77	324.50
1/30/2014	8:16	MW337	374.59	30.19	0.00	50.26	324.33	50.26	324.33
1/30/2014	8:19	MW338	374.77	30.19	0.00	50.54	324.23	50.54	324.23
1/30/2014	7:43	MW420	377.59	30.19	0.00	53.24	324.35	53.24	324.35
Initial Baro	metric P	ressure	30.19						
Elev = elev	ation								
amsl = abov		sea level							
BP = baron	netric pro	essure							
	-		elow datum						
*Assumes a									

Table D.1. Barometric Pressure Corrections

