Sampling Plan Strategy Sector 7 **DRAFT - FOR DISCUSSION ONLY (5/15/2018)** ### **Location of Sector 7** ## **Sector 7 Background** - Area of ~32,000 ft² - Surface area is predominantly covered by gravel and concrete - Limited area of exposed soil - Sector contains Waste Discard Sump (SWMU 203) Key context from WAG 6 RI Twenty-four borings were drilled to investigate Sector 7. Total depths of the borings ranged between 8 ft and 136 ft bgs. - 11 surface soil samples - Analyzed for SVOCs, PCBs, inorganics and RAD - Surface soils showed contamination in one area associated with the Waste Discard Sump (SWMU 203) - Mercury reported at 42 times background in boring 203-003, however non-detect at subsurface samples (15 and 32 ft bgs) in same boring - ⁹⁹Tc reported at 17 times background near SWMU 203 (203-003, 0.5 to 1.5 ft bgs), but only slightly exceeds background at 15 ft bgs in same boring - 2 samples contained SVOA constituents - Antimony reported at 45 times background in one boring - 30 subsurface soil samples - Sampled between 1 and 48.5 ft bgs - Analyzed for VOCs, SVOCs and inorganic constituents, PCBs and RAD - 10 contaminants present above screening levels - PCB detected in 1 sample, concentration below SQL - Identified areas of contamination - Waste Discard Pump (SWMU 203) # Sector 7 WAG 6 RI Identified Areas of Contamination # Sector 7 Sampling Strategies: Targeted ### Anticipated remedial action(s) - Excavation of Waste Discard Sump (SWMU 203) (likely action) - Removal of surface soil near SWMU 203 (likely action) ### Primary recognized uncertainties - Nature and extent of surface soil contamination (addressed by surface soil removal) - Near-field extent (lateral and vertical) of metals and radionuclides associated with identified areas of contamination ### Sample strategies - (2) Confirmatory surface soil samples planned - Sample 3 subsoil horizons - HU1: ~ 10 ft depth - HU2A: ~ 20 ft depth - HU3: ~ 35 ft depth - Targeted contaminant sources and COCs from WAG 6 RI Baseline Risk Assessment - Sampling to update extent of contaminants # Sector 7 Targeted Sampling Approach ## **Sector 7 Analyses** Targeted Sampling Approach (based on WAG 6 RI Baseline Risk Assessment) - Metals (chromium as total chromium) - PCBs - Radionuclides - SVOCs - VOCs (includes toluene) # Adaptation of Table 2.1 Significant Chemicals and Radionuclides of Potential Concern at PGDP from Methods for Conducting Risk Assessments and Risk Evaluations at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky DOE/LX/07-0107&D2/R8/V1 | Inorganic Chemicals | | Organic Compounds | | | | Radionuclides | | |---------------------|------------|--------------------------|--------------------|-------------------------|-----------------------|---------------------|------------| | Analyte | CAS | Analyte | CAS Number | Analyte | CAS Number | Analyte | CAS Number | | | Number | | | | | | | | Aluminum | 7429-90-5 | Acenaphthene | 83-32-9 | Total Dioxins/Furans | 1746-01-6 | Americium-241 | 14596-10-2 | | Antimony | 7440-36-0 | Acenaphthylene | 208-96-8 | 2,3,7,8-HpCDD | 37871-00-4 | Cesium-137+D | 10045-97-3 | | Arsenic | 7440-38-2 | Acrylonitrile | 107-13-1 | -2,3,7,8-HpCDF | 38998-75-3 | Neptunium-
237+D | 13994-20-2 | | Barium | 7440-39-3 | Anthracene | 120-12-7 | 2,3,7,8-HxCDD | 34465-46-8 | Plutonium-238 | 13981-16-3 | | Beryllium | 7440-41-7 | Benzene | 71-43-2 | 2,3,7,8-HxCDF | 55684-94-1 | Plutonium-239 | 15117-48-3 | | Boron | 7440-42-8 | Bromodichloromethane | 75-27-4 | -OCDD | 3268-87-9 | Plutonium-240 | 14119-33-6 | | Cadmium | 7440-43-9 | Carbazole | 86-74-8 | -OCDF | 39001-02-0 | Technetium-99 | 14133-76-7 | | Chromium III | 16065-83-1 | Carbon tetrachloride | 56-23-5 | 2,3,7,8-PeCDD | 36088-22-9 | Thorium-230 | 14269-63-7 | | Chromium VI | 18540-29-9 | Chloroform | 67-66-3 | -1,2,3,7,8-PeCDF | 57117-41-6 | Uranium-234 | 13966-29-5 | | Total
Chromium | 7440-47-3 | 1,1-Dichloroethene | 75-35-4 | 2,3,4,7,8-PeCDF | 57117-31-4 | Uranium-235+D | 15117-96-1 | | Cobalt | 7440-48-4 | 1,2-Dichloroethane | 107-06-2 | 2,3,7,8-TCDD | 1746-01-6 | Uranium-238+D | 7440-61-1 | | Copper | 7440-50-8 | 1,2-Dichloroethene | 540-59-0 | 2,3,7,8-TCDF | 5127-31-9 | į | | | | | (mixed) | | | | | | | Fluoride | 16984-48-8 | trans-1,2-Dichloroethene | 156-60-5 | Total Carcinogenic PAHs | 50-32-8 | | | | Iron | 7439-89-6 | cis-1,2-Dichloroethene | 156-59-2 | Benz(a)anthracene | 56-55-3 | į | | | Lead | 7439-92-1 | Dieldrin | 60-57-1 | Benzo(a)pyrene | 50-32-8 | į | | | Manganese | 7439-96-5 | Ethylbenzene | 100-41-4 | Benzo(b)fluoranthene | 205-99-2 | İ | | | Mercury | 7439-97-6 | Fluoranthene | 206-44-0 | Benzo(k)fluoranthene | 207-08-9 | İ | | | Molybdenum | 7439-98-7 | Fluorene | 86-73-7 | Chrysene | 218-01-9 | | | | Nickel | 7440-02-0 | Hexachlorobenzene | 118-74-1 | Dibenz(a,h)anthracene | 53-70-3 | | | | Selenium | 7782-49-2 | Naphthalene | 91-20-3 | Indeno(1,2,3-cd)pyrene | 193-39-5 | | | | Silver | 7440-22-4 | 2-Nitroaniline | 88-74-4 | Total PCBs | 1336-36-3 | | | | Thallium | 7440-28-0 | N-Nitroso-di-n- | 621-64-7 | Aroclor 1016 | 12674-11-2 | | | | | | propylamine | | | | | | | Uranium | NA | Pentachlorophenol | 87-86-5 | Aroclor 1221 | 11104-28-2 | | | | Vanadium | 7440-62-2 | Phenanthrene | 85-01-8 | Aroclor 1232 | 11141-16-5 | | | | Zinc | 7440-66-6 | Pyrene | 129-00-0 | Aroclor 1242 | 53469-21-9 | | | | | | Tetrachloroethene | 127-18-4 | Aroclor 1248 | 12672-29-6 | | | | | | Toluene | 108-88-3 | Aroclor 1254 | 11097-69-1 | | | | | | 1,1,1-Trichloroethane | 71-55-6 | Aroclor 1260 | 11096-82-5 | | | | | | 1,1,2-Trichloroethane | 79-00-5 | Vinyl chloride | 75-01-4 | | | | | | Trichloroethene | 79-01-6 | Xylenes (Mixture) | 1330-20-7 | | | | | | I | | p-Xylene | 106-42-3 | | | | | | 1 | | m-Xylene | 108-38-3 | | | | | | ļ | | o-Xylene | 95-47-6 | | | ¹ This list of chemicals, compounds, and radionuclides was compiled from COPCs retained as COCs in baseline risk assessments performed at PGDP between 1990 and 2013 (i.e., DOE 1996a; DOE 1999b; DOE 1999a; DOE 2000a; DOE 2001; DOE 2005; DOE 2008; DOE 2010; DOE 2013). ² List may be added to during project scoping based on additional information. Yellow cells with strikethrough text-indicate COPCs that will not be analyzed for C-400 RI/FS. Green cells indicate additional analytes, not identified as COPCs, that will be analyzed for C-400 RI/FS. ## **Sector 7 - Possible Response Actions** ### **Surface Soil** • Excavation, if required ### **Subsurface Soil** - Above Water Table - o Thermal VOCs/SVOCs - Soil Vapor Extraction VOC/SVOCs - o Solidification/Stabilization Inorganics/Radionuclides - Enhanced Bioremediation VOCs/SVOCs/Inorganics (contaminant dependent) - Excavation and treatment/disposition (Treatment contaminant dependent) - Chemical Oxidation VOCs/SVOCs/Inorganics (contaminant dependent) - Barrier/Slurry Wall VOC/SVOCs/Inorganics - Combination of Technologies - Below Water Table - o Thermal VOCs / SVOCs - Dual Phase Extraction VOC / SVOCs - Soil Flushing VOCs / Inorganics - o Solidification/Stabilization Inorganics / Radionuclides - Enhanced Bioremediation VOCs/SVOCs/Inorganics (contaminant dependent) - Excavation and treatment/disposition (Treatment-contaminant dependent) - o Chemical Oxidation VOCs/SVOCs/Inorganics (contaminant dependent) - Barrier/Slurry Wall VOC/SVOCs/Inorganics - o Pump and Treat Contaminants dependent on treatment system - Combination of Technologies # **Sector 7 – Geotechnical Samples** Geotechnical samples (in general): - Engineering properties, transport properties, and risk assessment - Geotechnical properties likely consistent across C-400 OU Complex - 1 boring (3 samples) per sector to define characteristic value and variability for C-400 OU Complex - Samples from minimally affected soil - Examples of data needs for potential remedial actions - Geochemical and biological parameters that could affect chemical degradation and transformation - Modeling parameters including chemical parameters, mineralogy, reduction-oxidation potential, porosity, permeability, and stratigraphy - Potentiometric surfaces (groundwater flow direction) - Physical parameters including compaction, grain size, cation exchange, chemical oxygen demand, pH, permeability, genetic profiling, microbial community, NOD, and moisture content of soils