In Boring 400-020, TCE ranged from 17 μ g/kg to 2900 μ g/kg between 16 and 48 ft bgs. The maximum concentration was near the base of the UCRS. In addition to the high TCE at the base of the UCRS, a second zone of elevated TCE containing 700 μ g/kg was detected at approximately 20 ft bgs in this boring.

SVOAs. No SVOAs were reported from the Sector 1 subsurface soils.

Inorganics

Five metals were detected above background concentrations in the subsurface soils collected below the C-400 Building. Antimony and thallium were detected only at concentrations below the SQL. Iron and cadmium were reported at concentrations only slightly above background levels. The most widespread inorganic substance was the common rock-forming element, sodium.

Radionuclides

Small quantities of two radionuclides were detected above screening levels from the subsurface soils of Sector 1. The soil samples contained ¹³⁷Cs at a maximum activity of 0.5 pCi/g and ²³⁷Np at 0.3 pCi/g. These two radionuclides were reported from both Borings 400-019 and 400-020 at depths between 8 and 44 ft bgs.

4.2.2 Sector 2 [C-403 Neutralization Tank (SWMU 40)]

4.2.2.1 Site History

Location and Physical Description

The C-403 Neutralization Tank is located at the northeast corner of the C-400 Cleaning Facility. It consists of a 25-ft-square by 26-ft-deep, in-ground open-top tank constructed of concrete and lined with two layers of acid brick. Influent from C-400 Building was received from an 8-in.-diameter Duriron acid waste line. The C-403 Neutralization Tank was connected to the C-402 Lime House by a 4-in.-diameter Duriron transfer line.

Practice and Release Description

The C-403 Neutralization Tank was used for the storage and treatment (i.e., neutralization) of acidic, uranium-bearing waste solutions generated during cleaning operations in the C-400 Building. During treatment, a lime slurry was added to the wastewater from the C-402 Lime House to raise the pH and precipitate out the uranium in the form of a low-level radioactive sludge. Once the pH was raised to the proper level (10 to 12), the effluent was discharged to the C-404 Holding Pond where the sludge was allowed to settle out of the solution. In 1957, the discharge from the C-403 Neutralization Tank was routed to the North-South Diversion Ditch, where it flowed to the Little Bayou Creek. In the late 1970s, the flow from the North-South Diversion Ditch was routed into the C-616-F Full Flow Lagoon, and direct discharge to Little Bayou Creek was subsequently discontinued. Drawings for C-403 show that a 15-in. vitreous-clay pipe was installed between the C-403 Neutralization Tank and the C-410-B Neutralization Lagoon. This pipe was constructed utilizing part of an existing stormwater line. The intended purpose of this line is unknown. The C-410-B Neutralization Lagoon was used for the neutralization of hydrogen fluoride cell electrolytes.

The C-403 Neutralization Tank was not used to neutralize waste solutions from the C-400 Cleaning Facility after 1957, because treatment equipment was installed in the C-400 Building to complete the neutralization process. Although neutralization was no longer carried out at C-403, low-level, uranium-bearing wastewater continued to be discharged to C-403 until 1990. These discharges included UF₆ cylinder hydrostatic-test water, overflow and runoff from cleaning tanks, discharge from floor drains, and other unknown sources.

Location and Results of Previous Sampling

The C-403 Neutralization Tank was investigated during the Phase II SI completed in 1991 and 1992. Field activities completed during the Phase II SI included the installation of two groundwater monitoring wells (MW-177 and MW-178) south of C-403. Five composite soil samples were collected during the drilling of the borehole for MW-178 at depths ranging from 14 to 44 ft bgs. Soil samples were analyzed for TCL VOA, SVOA, pesticides/PCBs, TAL metals, cyanide, dioxins and furans, and selected radioisotopes including ²³⁵U, ²³⁸U, ⁹⁹Tc, ²³⁹Pu, and ²³⁰Th. No contamination was detected in any of the samples collected from MW-178. No soil samples were collected from the MW-177 borehole.

In late 1989 and early 1990, PGDP pumped the standing water from C-403. The C-403 Neutralization Tank was covered with a Hypalon plastic cover after the removal activities were completed in an unsuccessful attempt to prevent water from entering the pit. In 1993, nine water and three sediment samples were collected from the C-403 tank. These samples reported TCE concentrations between 17 and 1300 μ g/L [parts per billion (ppb)]. TCE concentrations in the three sediment samples ranged from 35 to 6700 ppb. In addition to TCE, PCBs and uranium also were detected. During the WAG 6 RI field investigation, a water line located near the C-403 Tank broke, and subsurface water apparently flowed into the tank where one of the still extant fill lines enters the tank. Approximately 10 to 12 ft of water accumulated in the tank. Samples of the water from the tank were analyzed during November 1997 and found to contain as much as 21,000 ppb TCE and a gross beta activity of 43,750 pCi/L. Re-sampling in January 1998 indicated that the TCE content of the tank had dropped to 5600 ppb and that the beta activity was only 4430 pCi/L.

No spills or releases are known to have occurred within Sector 2. Previous sampling activities and process knowledge indicate that the processes described above represents potential sources for several organic, inorganic, and radiological contaminants, including TCE, uranium, ⁹⁹Tc, and PCBs.

4.2.2.2 Nature and Extent of Contaminants

Sampling at Sector 2 (SWMU 40) was conducted to determine whether or not releases of contaminants into the soil and groundwater had occurred and to define the extent of any identified contamination. Much of the sector is covered by man-made structures, and only limited surface soil is exposed. Shallow (15-ft) borings were drilled along utility lines to assess these corridors as potential migration pathways. At the C-403 Neutralization Tank, soil beneath influent and effluent lines was also investigated to check for the possibility of line releases. Several deep borings were drilled in proximity to the tank and near the C-400 Building to assess whether processes at either the C-403 Neutralization Tank or the C-400 Building had resulted in undiscovered releases of contaminants to the surrounding environment.

Six surface soil samples were collected from Sector 2. Three of the samples were collected due west of the C-403 Neutralization Tank (SWMU 40), and three sampling sites were located on the west and south side of the C-402 Limehouse. Thirty-three subsurface soil samples, including two duplicates, were collected from 19 locations in Sector 2 (Fig. 4.2). The samples were collected between 5 and 49 ft bgs and were analyzed for VOAs, SVOAs and metals. Twelve samples were selected for isotopic analyses. Twenty-two of the samples were screened for PCBs. The results of these analyses are summarized in Tables 4.8 through 4.11. In addition, information concerning the frequency of detection is given in Table 4.12.

Summary of Findings

Contamination related to spills and releases was identified in both the surface and subsurface soil samples within Sector 2. Three distinct areas have been defined that appear to have been impacted.

A small area of surface soil between the C-402 Building and the C-400 Building was found to be impacted with moderate concentrations of several common PAH compounds. The extent of contamination appears to be confined both vertically and horizontally to the surface soil surrounding Boring 400-005. The source for the identified SVOA contaminants is unknown, but these compounds could have been derived from any number of one-time surface releases associated with the operation of an industrial facility.

A second area of contamination is associated with the floor drain collection line on the outer perimeter of the C-400 Building. Low levels of several radionuclides were detected between 15 and 40 ft bgs along this line.

A third area of contamination is associated with the C-403 Neutralization Tank and the former storm sewer. Subsurface soil collected adjacent to the tank backfill at a depth of 30 ft bgs was found to be impacted by several radionuclides. Based upon available data, the extent of contamination around the C-403 Neutralization Tank appears to be limited to the area of the tank backfill. Elevated radioactivity was also detected at a few locations along the former storm sewer utility line that connects the C-403 Neutralization Tank to the HF Lagoon. High concentrations of two metals, silver and antimony, were associated with the area of elevated radioactivity detected along this line. Both metals were used in the plating process that was performed within the C-400 Building.

Sporadic occurrences of contamination along the utility corridor suggest that leaking joints or cracks provided isolated point sources for contaminant introduction into the subsurface.

Analytical Results-Surface and Subsurface Soils

Organics

VOAs. Only small quantities of four VOAs were reported for soils from Sector 2, and these were found at concentrations below the SQL.

SVOAs. Seventeen SVOAs, most of which are PAH compounds, were reported from the six surface soil samples from Sector 2. The only samples that contained SVOAs in concentrations above the SQL (Fig. 4.3) were the sample collected at Boring 400-005 between the C-400 Building and the C-402 Limehouse and the sample from 400-008 collected south of the Limehouse. The sample from 400-005 had the maximum concentrations of all 17 detected

SVOAs, including fluoranthene at 8285 μ g/kg and pyrene at 7853 μ g/kg. Sample 400-008 contained only one SVOA, fluoranthene, at a concentration above the SQL. Subsurface soil samples did not contain significant quantities of SVOAs.

PCBs. Four surface soil samples and 18 subsurface soil samples collected from 11 locations within Sector 2 were analyzed for PCBs. Only PCB 1260 at 43 μ g/kg in sample 400-008 was reported at a concentration above the SQL.

Inorganics

Fifteen metals were reported at concentrations that exceeded PGDP background levels; however, most were only slightly above background. Two of the metals, silver and antimony, both used in the processes performed at the C-400 Building, exceeded the PGDP background levels by approximately 2 and 22 times, respectively. The single exceedance for silver of 4.28 mg/kg was from the 10- to 14-ft-bgs sample of Boring 400-059. The same sample contained 4.7 mg/kg of antimony.

<u>Radionuclides</u>

Seven isotopes were detected above screening levels. The radiological constituents generally were found in two areas. One location was from samples collected at Borings 400-007 and 400-008, between the C-402 Building and the C-400 Building. At these locations, activities of less than 5 pCi/g of ⁹⁹Tc, ²³⁰Th, ²³⁴U, ²³⁵U, and ²³⁸U were detected in the surface soil sample and low activities (less than 2 pCi/g) of ²³⁰Th and ²⁴¹Am were detected in the subsurface samples collected at 9 to 12.5 and 35 to 42 ft bgs, respectively.

A second area of radiological contamination was located around the C-403 Tank and along the adjacent storm sewer line. Most of the detected isotopes in this area are found below 7 ft bgs and at low levels of ²³⁷Np, ²⁴¹Am, ²³⁰Th, ⁹⁹Tc, ²³⁴U, ²³⁵U, and ²³⁸U. Uranium-238 had the highest activity of any of the radionuclides at 20.2 pCi/g. The distribution of ²³⁸U within Sector 2 is shown in Fig. 4.4.

No ²³⁸U radionuclide activity was detected in the sample from Boring 040-005, which was collected at approximately 15 ft bgs along the storm sewer line between Borings 400-056 and 400-061, both of which contained reportable activities of ²³⁸U. This observation suggests that this storm sewer line had probably leaked along pipe joints during its many years of operation.

Supplemental Sampling

During April of 1998, six borings were drilled near the C-403 Neutralization Tank. All borings were drilled into the backfill of the tank pit to determine if the elevated radiological activity and TCE that was detected in the C-403 tank may have been sourced from water contained in the backfill of the tank pit. Seven water and 28 soil samples were collected and analyzed for gross alpha/beta and TCE and TCE degradation products. Analytical data from this sampling event are contained in the Addendum to Appendix J, found at the end of the SWMU 40 data set in Appendix J (Volume 4). The maximum soil alpha activity was 62.2 pCi/g and maximum soil beta activity was 243 pCi/g from soil samples collected between 20 and 24 ft bgs immediately adjacent to the tank. TCE or TCE degradation products were not detected in the soil samples. The maximum alpha activity for water was 4910 pCi/L and maximum beta activity was 860 pCi/L from samples collected between 10 and 30 ft bgs. Only very small concentrations of TCE, trans-1,2 DCE, and vinyl chloride were detected in the water samples.

4.2.3 Sector 3

4.2.3.1 Site History

Sector 3 consists of the east side of the C-400 Building and several buried utility lines that parallel 11th Street. It does not contain a SWMU, and no spills or releases are known to have occurred in Sector 3.

Sector 3 is a relatively flat area lying between Sector 4 (SWMU 11) to the south and Sector 2 (SWMU 40) to the north. Several small paved areas and buried utilities are present in the sector. Access to the sector is limited on the east side by the presence of an 8- to 10-ft-high security fence. Surface drainage is into storm sewer drains along 11th Street. As part of the Phase I SI (CH2M Hill 1991) and Phase II SI (CH2M Hill 1992), a deep boring was drilled in the southern part of the sector. TCE was first detected at a depth of 50 ft bgs in this boring. PAHs occurred from the surface to total depth. Radionuclides were reported only from the near-surface soils.

4.2.3.2 Nature and Extent of Contaminants

Surface and subsurface soil samples were collected throughout Sector 3 in order to assess the nature and extent of site-related contaminants. Sampling locations within Sector 3 are shown in Fig. 4.5. Three surface soil samples were analyzed for SVOAs, three for metals, and two each for radionuclides and PCBs. The subsurface samples were collected from 10 borings at depths between the surface and 50.5 ft bgs. Thirty-six samples were analyzed for VOAs, 33 for SVOAs, and 37 (including one duplicate) for radionuclides. Thirty-two soil samples (including one duplicate) were analyzed for metals, and 16 samples were analyzed for PCBs. Shallow borings to approximately 15 ft bgs were drilled adjacent to buried utilities that parallel 11th Street and adjacent to the feeder lines that connected to storm drains within the sector. Several deep borings were also drilled near the C-400 Building to assess whether any unknown releases had occurred as a result of the processes performed in the building. Analytical results for samples collected from Sector 3 are summarized in Tables 4.13 to 4.16. Additional information about the analytical results can be found in Table 4.17 (frequency of detection).

Summary of Findings

Several small areas were identified in Sector 3 where the soil has been impacted due to localized spills or releases. The most significant area of contamination occurs in the surface and subsurface of Boring 400-011, which was drilled adjacent to the C-400 Building beside the exterior floor drain collection line. In this boring, TCE was found at elevated levels from near the surface to the total depth of 41 ft. The high TCE concentrations found at this location appear to be associated with a point source release near the C-400 Building. Elevated concentrations of arsenic, SVOAs, and PCBs were found in the surface and shallow subsurface soils at this location. TCE-impacted soil was found at depth in Boring 011-001 and may be contiguous with soil where elevated TCE was found in 400-011. A second release of contaminates at the surface is indicated by surface soil containing PCBs and radionuclides at 400-046. This area of elevated

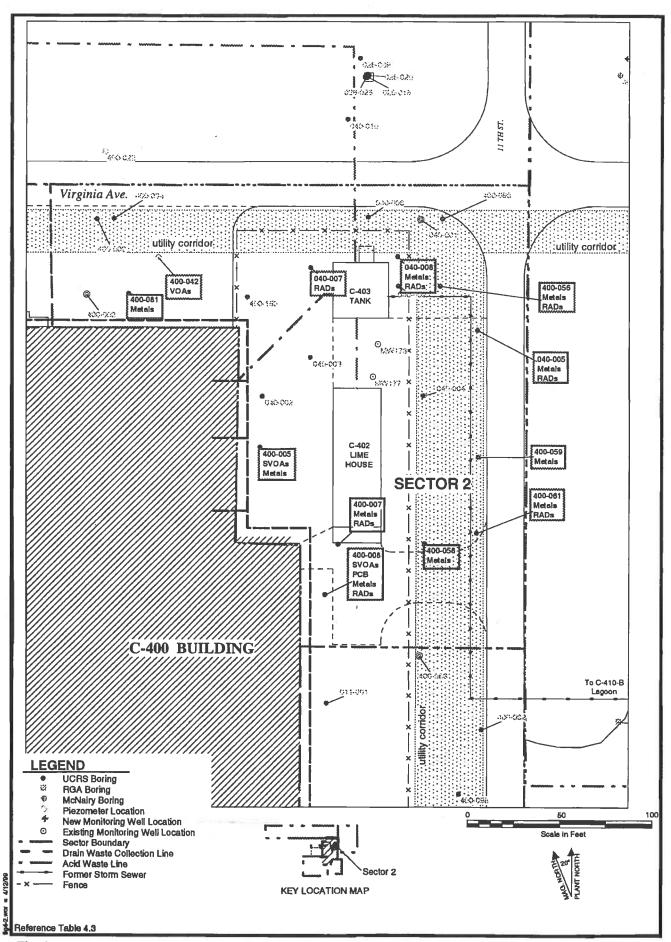


Fig. 4.2. Sector 2 site map showing contaminant groups detected in UCRS soil above SQL at each sampling location.

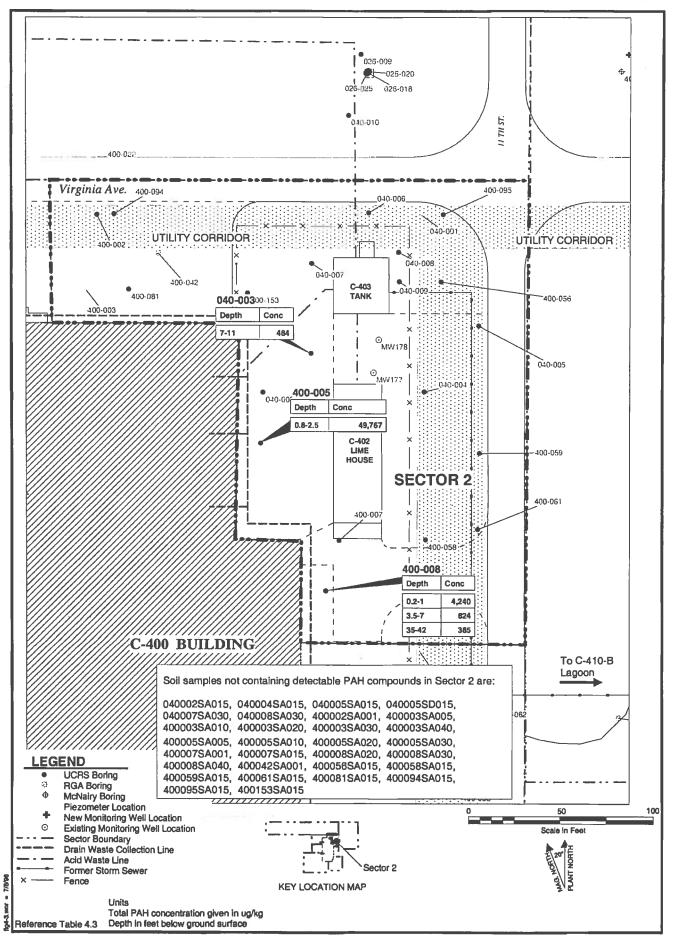


Fig. 4.3. Map showing distribution of PAHs detected in sector 2 UCRS soil.

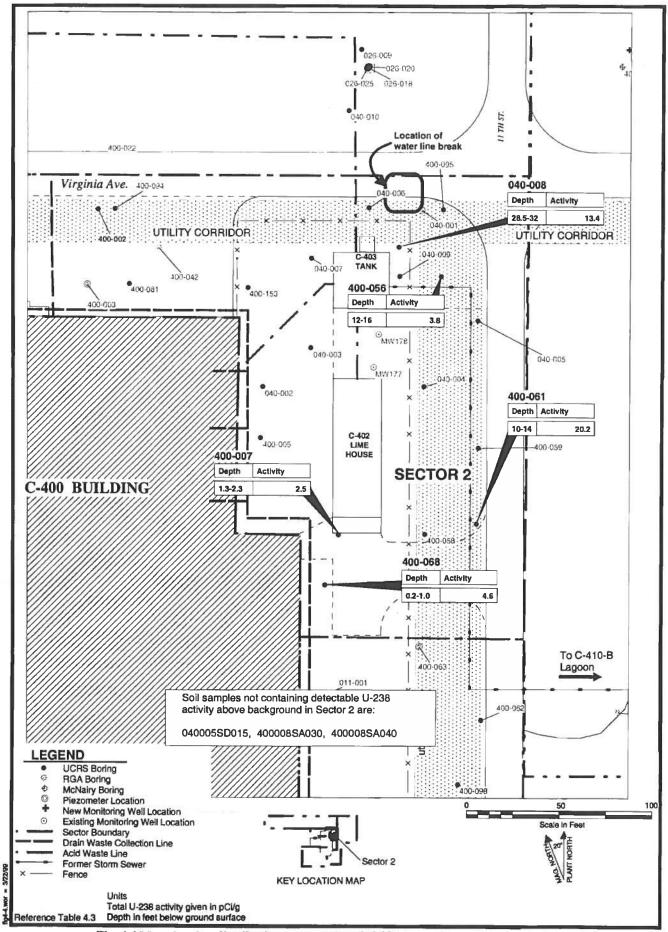


Fig. 4.4 Map showing distribution and activity of U-238 detected in sector 2 UCRS soil.

Table 4.8. VOA compounds detected in Sector 2

UCRS soil

		Sample Interval (ft	Sample Interval (ft bgs)		Results	Lab	Lab Validation	
Sample Type	Sample ID	Top	Top Bottom	Analytical Compound	ug/kg	Qualifier	Qualifier Qualifier	Data Assessment
Soll	040003SA015	7	Ξ	Toluene	2.3	ſ	2	
	040005SA015	7	11	Toluene	1.6	ſ	5	
		7	11	Vinyl acetate	1.3	ſ	6.	SS-H8
	040005SD015	7	11	Toluene	1.8	ſ	6 -•	
		7	11	Vinyl acetate	28	ŗ	••	BH-SS
	400005SA030	30	33	2-Butanone	9	ſ	2	
		30	33	Vinyl acetate	1.3	ſ	¢.	BII-SS
	400007SA015	6	12.5	Toluene	1.5	-	21	
	400008SA040	35	42	Toluene	1.4	ſ	01	
	400008SD040	35	42	Toluene	1.5	ر ا	81	
	400081SA015	9	10	Trichloroethene	2.2	-	2	

Note: Soil boring samples not containing any detectable VOA compounds in Sector 2 are:

040002SA015, 040004SA015, 040006SA015, 040007SA030, 040008SA030, 400003SA005, 400003SA010, 400003SA020, 400003SA030, 400003SA040, 400005SA010, 400005SA010, 400008SA010, 400008SA030, 400008SA030, 400008SA015, 400008SA030, 400008SA030, 400008SA015, 400008SA030, 400008SA030, 400008SA015, 400098SA015, 40009

Page 1 of 1

This page intentionally left blank.

					UCRS soil				
-		-	Sar Interva			Results	Lab Onalifier	Validation Onalifier	
Sample Lype	Analyucai Group		dol					1	Data Assessment
Soll	SVOA	040003SA015	L	11	N-Nitroso-di-n-propylamin	484	18	2	
		040006SA015	8.5	12.5	2,6-Dinitrotoluene	432	ſ	2	
		400003SA001	-	1.5	2,6-Dinitrotoluene	347	ſ	ż	
		400005SA001	0.8	2.5	2,6-Dinitrotoluene	374	ſ	i	
			0.8	2.5	Acenaphthene	1220		2	
			0.8	2.5	Anthracene	1893		•	
			0.8	2.5	Benz(a)anthracene	4133		2	
			0.8	2.5	Benzo(a)pyrene	3362		ć	
			0.8	2.5	Benzo(b)fluoranthene	3424		ċ	
			0.8	2.5	Benzo(ghi)perylene	1867		ć	
			0.8	2.5	Benzo(k)fluoranthene	1982		ć	
			0.8	2.5	Chrysene	3968		6.	
			0.8	2.5	Dibenz(a,h)anthracene	412	7	¢	
			0.8	2.5	Dibenzofuran	576	ſ	ć	
			0.8	2.5	Fluoranthene	8285		6.	
			0.8	2.5	Fluorene	925		5	
			0.8	2.5	Indeno(1,2,3-cd)pyrene	1891		¢	
			0.8	2.5	Naphthalene	503	ſ	ć	
			0.8	2.5	Phenanthrene	7473		¢	
			0.8	25	Pyrene	7853		د.	
		400005SA040	39	42	2.6-Dinitrotoluene	345	-	ć	

.

Page 1 of 3

	20		Sai	Sample Interval (ft bes)					
Sample Type	Analytical Group	Sample ID	Top	Bottom	Analytical Compound	ug/kg	Qualifier		Data Assessment
Sofl	SVOA	400008SA001	0.2	1	Acenaphthene	40	ſ	2	
			0.2	-	Anthracene	80	ſ	ć	
			0.2	Ţ	Benz(a)anthracene	350	-	ż	
			0.2	Ţ	Benzo(a)pyrene	300	-,	5	
			0.2	1	Benzo(b)fluoranthene	430	ſ	2	
			0.2	I	Benzo(ghi)perylene	170	ſ	÷	
			0.2	F	Benzo(k)fluoranthene	280	ſ	ċ	
			0.2	-	Chrysene	400	ſ	ė	
			0.2	-	Fluoranthene	860		\$	
			0.2	1	Indeno(1,2,3-cd)pyrene	180		۰.2	
			0.2	Ţ	Phenanthrene	470	7	6.	
			0.2	Ţ	Pyrene	680	~	ė	
		400008SA005	3.5	2	Fluoranthene	80	•••	•	
			3.5	2	N-Nitroso-di-n-propylamin	634	ſ	¢	
			3.5	2	Phenanthrene	50	7	6.	
			3.5	2	Pyrene	60	ſ	ć	
		400008SA010	10.5	14	2,6-Dinitrotoluene	416	٦	¢.	
		400008SD040	35	42	N-Nitroso-di-n-propylamin	385	-	¢	
	PPCB	400003SA001	1	1.5	PCB-1254	5.2	ŗ	e.,	

Page 2 of 3

040003SA015, 040005SA015, 040005SD015, 040006SA015, 040007SA030, 040008SA030, 400002SA001, 400003SA005, 400003SA010, 400007SA001, 400007SA0015, 400007SA0015, 400007SA0015, 400007SA015, 400007SA015,

Page 3 of 3

This page intentionally left blank.

Ĵ

8	
Sector	
in	
detected	
Metals	
4.10.	
Table	

UCRS soil

		Interva	Sample Interval (ft bgs)		Results	Lab	Validation	_	Background
Sample Type	Sample ID	Top	Bottom	Analytical Compound	mg/kg	Qualifier	Qualifier	Data Assessment	mg/kg
Soil	040002SA015	11	15	Sodium	382		2		340
		п	15	Thallium	0.7	8	2		0.34
	040003SA015	2	1	Magnesium	2150		ć		2100
		2		Nickel	24.9		÷		22
		2	11	Sodium	409		¢		340
	040005SA015	7	11	Sodium	389		6.		340
	040005SD015	2	11	Aluminum	12400		¢.		12000
		2	11	Antimony	0.7	B	e.,		0.21
		2	11	Sodium	408		¢.		340
6	040006SA015	8.5	12.5	Sodium	359		- e-		340
	040008SA030	28.5	32	Aluminum	12600		N		12000
		28.5	32	Antimony	1.2	B	11		0.21
		28.5	32	Thallium	0.6	8	81		0.34
	400002SA001	0.8	2.7	Antimony	1.2	B	2		0.21
		0.8	2.7	Cadmium	0.26	B	¢.		0.21
		0.8	2.7	Cobalt	15.4		¢		14
		0.8	2.7	Nickel	21.9		6		21
		0.8	2.7	Sodium	1670		6.		320
	400003SA001	1	1.5	Antimony	3.4	B	ć		0.21
		1	1.5	Cadmium	0.33	8	6.		0.21
		1	1.5	Calcium	318000		3		20000

.

Table 4.10. Metals detected in Sector 2UCRS soil

ll

. -

II

		Sa: Intervi	Sample Interval (ft bgs)		Results	Lab	Validation		Background
Sample Type	Sample ID	Top	Bottom	Analytical Compound	mg/kg	Qualifier	Qualifier	Data Assessment	mg/kg
Soll	400003SA001	1	1.5	Magnesium	8040		6-		7700
		1	1.5	Sodium	352		ć		320
		-	1.5	Thallium	2.3		6.		0.21
	400003SA010	9	12	Barium	181		2		170
		9	12	Magnesium	2270		7		2100
		9	12	Sodium	398		~		340
	400003SA020	20	2	Sodium	379		6.		340
	40005SA005	3.5	L	Aluminum	13700		~		12000
		3.5	7	Antimony	0.9	B	••		0.21
	400005SA010	10.5	14	Aluminum	12900		¢.,		12000
		10.5	14	Sodium	451		ċ		340
	400005SA040	39	42	Vanadium	47		ċ		37
	400007SA001	1.3	2.3	Aluminum	13800		11		13000
		1.3	2.3	Antimony	1.6	æ	81		0.21
		1.3	23	Chromium	22.9		tt		16
		1.3	23	Thallium	0.9	8	a		0.21
	400008SA001	0.2	-	Chromium	19.3		ć		16
		0.2	uni n	Zinc	70.2		د.		65
	400008SA005	3.5	L	Aluminum	13800		6.		12000
		3.5	2	Arsenic	9.2		4		7.9
		3.5	2	Beryllium	0.7		¢.	·	0.69

*

Page 2 of 5

2	
Sector	
in.	
Metals detected	
Table 4.10.	

UCRS soil

		Interva	Sample Interval (ft bgs)		Results	Lab			Background
Sample Type	Sample ID	Top	Top Bottom	Analytical Compound	mg/kg	Qualifier	Qualifier	Data Assessment	mg/kg
Soil	400008SA005	3.5	7	Sodium	386		۴.		340
	400008SA020	21	24.5	Antimony	0.8	8	e.		0.21
		21	24.5	Beryllium	0.79		¢•		0.69
		21	24.5	Chromium	54.3		с.		43
		21	24.5	Vanadium	53.3		6.		37
	400008SA030	31.5	35	Thallium	0.8	8	ł		0.34
	400008SA040	35	42	Antimony	5.5	B	11		0.21
		35	42	Beryllium	0.9		n		0.69
		35	42	Thallium	0.6	8	ŧ		0.34
		35	42	Vanadium	38.6		H		37
	400008SD040	35	42	Aluminum	12900		H		12000
		35	42	Beryllium	0.7		88		0.69
		35	42	Thallium	0.8	a	H		0.34
	400042SA001	1.2	1.7	Antimony	1.2	8	۰.		0.21
		1.2	1.7	Cadmium	0.49	8	6.		0.21
		1.2	1.7	Calcium	340000		e.		200000
		1.2	1.7	Sodium	665		۰.		320
	400056SA015	12	16	Aluminum	17100		04		12000
		12	16	Antimony	1.9	B	u		0.21
		12	16	Arsenic	8.83		в		7.9
		12	16	Magnesium	2350		II		2100

.

Page 3 of 5

Table 4.10. Metals detected in Sector 2UCRS soil

-

		Sa Interv	Sample Interval (ft bgs)		Results	Lab	Validation		Background
Sample Type	Sample ID	Top	Bottom	Analytical Compound	mg/kg	Qualifier	Qualifier	Data Assessment	mg⁄kg
Soll	400056SA015	12	16	Potassium	1080		1		950
		12	16	Sodium	619		ŧ		340
	400058SA015	10	14	Aluminum	13500		ć		12000
		10	14	Sodium	451		2		340
	400059SA015	10	14	Aluminum	12600		¢		12000
		10	14	Antimony	4.7		¢;		0.21
		10	14	Beryllium	0.79		6.		0.69
		10	14	Silver	4.28		6.		2.7
		10	14	Sodium	341		2		340
		10	14	Thallium	0.8	B	6		0.34
		10	14	Vanadium	37.7		6		37
	400061SA015	10	14	Aluminum	14900		¢.		12000
	400081SA015	9	01	Aluminum	15300		2		12000
		9	-9-	Barium	179		e.,		170
		9	10	Beryllium	0.81		¢.		0.69
		9	-01	Cobalt	16.8		e.		13
		9	10	Magneslum	2490		6.		2100
		9	10	Manganese	842		6.		820
		9	10	Sodium	410		•		340

Page 4 of 5

1.1.1

1°

I

....

_
Sector 2
detected in
Metals
Table 4.10.

UCRS soil

put		
Backgrou	mg/kg	
	ssment	
	ata Asse	
ion	5	
Validat	Qualif	
Lab	Qualifier	
Results	mg/kg	
	punod	
	cal Com	
	Analyd	
ple (ft bgs)	Bottom	
Sam Interval	Top	
	le ID	
	Samp	
	Type	
	Sample	
<u> </u>		

Note: Soil boring samples not containing any detectable metals at concentrations above background in Sector 2 are:

040004SA015, 040007SA030, 400003SA005, 400003SA030, 400003SA040, 400005SA001, 400005SA020, 400005SA030, 400007SA015, 400008SA010, 400095SA015, 400153SA015, 400153SA015

Page 5 of 5

This page intentionally left blank.

		San Interva	Sample Interval (ft bgs)		Results	Lab Validation	ation	Background
Sample Type	Sample ID	Top	Bottom	Analytical Compound		Ŀ	Qualifier Data Assessment	
Soll	040005SA015	7	11	Neptunium-237	0.3	e.		0
	040007SA030	30.5	33.5	Americium-241	0.2	6.		0
	040008SA030	28.5	32	Uranium-234	13	11		2.4
		28.5	32	Uranium-235	0.6	11		0.14
		28.5	32	Uranium-238	13.4	11		1.2
	400007SA001	1.3	2.3	Uranium-238	2.5	11		1.2
	400007SA015	6	12.5	Thorium-230	1.5	81		1.4
	400008SA001	0.2	1	Technetium-99	3.6	6.0		2.5
		0.2	1	Thorium-230	1.8	2.0		1.5
		0.2		Uranium-234	3.4	54		2.5
		0.2		Uranium-235	0.2	2.+		0.14
		0.2	-	Uranium-238	4.6	2.4		1.2
	400008SD040	35	42	Americium-241	0.8	1		0
		35	42	Thorium-230	1.6	68	10	1.4
	400056SA015	12	16	Technetium-99	4	.4	11	2.8
		12	16	Thorium-230	1.9	4		1.4
		12	16	Uranium-234	3.5	49	82	2.4
		12	16	Uranium-235	0.2	42	01	0.14
		-12	16	Uranium-238	3.8	**	11	1.2
	400061SA015	10	14	Uranium-234	20.1	•••	¢.	2.4
		10	14	Uranium-235	0.7	• **		0.14

Table 4.11. Radioactive isotopes detected in Sector 2

Page 1 of 2

•

Table 4.11. Radioactive isotopes detected in Sector 2

UCRS soil

ckground	pCi/g	1.2
Backs		
	Data Assessment	
Validation	Qualifier	6-
Lab	pCi/g Qualifier Qualifier	
Results	pCi/g	20.2
	Analytical Compound	14 Uranium-238
Sample iterval (ft bgs)	Bottom	14
Sar Interva	Top 1	10
	Sample ID	400061SA015
	Sample Type	Soli

Note: Soil boring samples not containing any detectable radioactive isotopes at concentrations above background in Sector 2 are: 040005SD015, 400008SA030, 400008SA040

Page 2 of 2

Table 4.12. Frequency of detection of organic compounds, metals, and radioactive isotopes in Sector 2

UCRS soil

Analytical Group	Analytical Compound	No. of Detects	No. of Analyses	Maximum Result	Minimum Result	Average Result	Units
VOA	Toluene	9	20	2.30	1.40	1.68	ug/kg
	Vinyl acetate	£	20	28.00	1.30	10.20	ug/kg
	2-Butanone	1	20	6.00	6.00	6.00	ug/kg
	Trichloroethene	1	34	2.20	2.20	2.20	ug/kg
SVOA	2,6-Dinitrotoluene	ŝ	39	432.00	345.00	382.80	ug/kg
	Flaoranthene	e	39	8285.00	80.00	3075.00	ug/kg
	N-Nitroso-di-n-propylamine	e	39	634.00	385.00	501.00	ug/kg
	Phenanthrene	e	39	7473.00	50.00	2664.33	ug/kg
	Pyrene	e	39	7853.00	60.09	2864.33	ug/kg
	Acenaphthene	7	39	1220.00	40.00	630.00	ug/kg
	Anthracene	1	39	1893.00	80.00	986.50	ug/kg
	Benz(a)anthracene	2	39	4133.00	350.00	2241.50	ug/kg
	Benzo(a)pyrene	2	39		300.00	1831.00	ug/kg
	Benzo(b)fluoranthene	2	39		430.00	1927.00	ug/kg
	Benzo(ghi)perylene	7	39		170.00	1018.50	ug/kg
	Benzo(k)fluoranthene	7	39	1982.00	280.00	1131.00	ug/kg
	Chrysene	7	39	3968.00	400.00	2184.00	ug/kg
	Indeno(1,2,3-cd)pyrene	7	96	1891.00	180.00	1035.50	ug/kg
	Dibenz(a,h)anthracene	1	39	412.00	412.00	412.00	ug/kg
	Dibenzofuran	1	39	576.00		576.00	ug/kg
	Fluorene	1	39	925.00	925.00	925.00	ug/kg
	Naphthalene	1	39	503.00	503.00	503.00	ug/kg
PCB	PCB-1254	1	22	5.20	5.20	5.20	ng/kg
	PCB-1260	1	22	43.00	43.00	43.00	ug/kg
Metals	Sodium	16	39	1670.00	341.00	504.31	mg/kg
	Aluminum	12	39	17100.00	12400.00	13791.67	mg/kg
	Antimony	11	36	5.50	0.70	2.10	mg/kg
	Thallium	80	96	2.30	0.60	0.94	mg/kg
	Beryllium	9	36	0.00	0.70	0.78	mg/kg
	Magnesium	ŝ	36	8040.00	2150.00	3460.00	mg/kg
	Vanadium	4	36	53.30	37.70	44.15	mg/kg
		•	36				

.

Page 1 of 2

 Table 4.12. Frequency of detection of organic compounds, metals, and radioactive isotopes in Sector 2

 UCRS soil

Analytical Group	Analytical Compound	No. of Detects	No. of Analyses	Maximum Result	Minimum Result	Average Result	Units
Metals	Chromium	6.	96 39				mg/kg
7	Arsenic	2	39	9.20			mg/kg
	Barium	~	39	181.00			mg/kg
	Calcium	4	39	340000.00	**3		mg/kg
	Cobalt	7	39	16.80			mg/kg
	Nickel	7	39	24.90			mg/kg
	Manganese	-	39	842.00			mg/kg
1	Potassium	-	1 39	1080.00			mg/gm
	Silver	-	1 39	4.28			mg/kg
	Zinc	-	l 39				mg/kg
Radioactive	Uranium-238		5 12				pCi/g
Isotopes	Thorium-230	P	1 12	1.90			pCIV
	Uranium-234	Ŧ	1 12	20.10			pCIVE
	Uranium-235	Ŧ	1 12	0.70			pCVg
	Americium-241	R	2 12	0.80			pCIVB
	Technetium-99	4	2 12	4.00	3.60	3.80	pCIVB
	Nentunium-237		12	0.30			DCI/2

e 2 of 2

Contaminant	Level	X-Axis (ft)	Sector 2 sou Y-Axis (ft)	Z-Axis (ft)	Notes
		S	URFACE SO	DIL	문 문 · 문제 · 트
Phenanthrene	470 µg/kg	230	210	1	Modeled over entire sector.
Uranium-238	4.6 pCi/g				
		SUI	BSURFACE	SOIL	
2,6-Dinitrotoluene	432 µg/kg	182	180	49	Maximum detect of 5 detects (in Borings 400-003, 400-005, 400-006, and 400-008). This contaminant could not be modeled because it was absent from the MEPAS database.
Chromium	54.3 mg/kg	101	41	49	Maximum detect. Area around Boring 400-008.
Dibenzofuran	576µg/kg	51	76	2	From 0-2 ft. This contaminant could not be modeled because it was absent from the MEPAS database.
N-Nitroso-di-n- propylamine	634 µg/kg	80	170	46	Maximum detect of 3 detects (in Borings 040-003 and 400-008).
Phenanthrene	487µg/kg	101	117	6	Average of 2 detects +1/2 of 62 non- detects. Detected in borings in southwestern portion of sector (400- 005 and 400-008) in soil samples from 1-7 ft bgs.
Thallium	2.3 mg/kg	58	53	2	Maximum detect (Boring 400-003). Detected in 0-2 ft sample.
Uranium-234	20.1 pCi/g	53	129	38	Maximum detects.
Uranium-235	0.7 pCi/g				Detected in SWMU 40 area (Borings 40-005, 40-007, 40-008) and in southeastern portion of sector (Borings 400-058 and 400-061).
Uranium-238	20.2 pCi/g	210	230	49	Maximum detect.
		Modeled ov	ver entire sect	OF	

Notes:

The following detects were excluded from consideration in the subsurface in Sector 2 because they only slightly exceeded the background levels:

- Chromium detected concentration of 39 mg/kg in Boring 040-002 at 11-15 ft bgs just exceeds background of 38 mg/kg.
- Thallium detected concentration of 0.9 mg/kg in Boring 400-007 at 1-2 ft bgs just exceeds background of 0.7 mg/kg.
- Thallium detected concentration of 0.8 mg/kg in Boring 400-008 at 32-42 ft bgs just exceeds background of 0.7 mg/kg
- Thallium detected concentration of 0.8 mg/kg in Boring 400-059 at 10-14 ft bgs just exceeds background of

0.7 mg/kg. In addition, ²³⁷Np was excluded from consideration because it had only one detect in 11 samples (0.3 pCi/g in Boring 040-005 at 7-11 ft bgs). There was a non-detect at 0.1 pCi/g in the same boring. X-axis is east-west; Y-axis is north-south; Z-axis is vertical (thickness).

Image: Contantinant WS- x				Ta	Table 5.12.		ninant in	Contaminant inventory for Sector 2	Sector 2				1
Site Concentration/Activity Length Width Thickness Volume Bulk Density Contaminant mg/kg g/g pC/g f f f f mg/k g/cm ³ anthrene 0.47 5E-07 210 230 1 4.83E+04 1367703855 1.6 anthrene 0.432 4E-07 210 230 1 4.83E+04 1367703855 1.6 imm-238 1 4.83E+04 1367703855 1.6 1.6 immoluene 0.432 4E-07 180 182 49 1.61E+06 45455340294 1.86 mium 54.3 5E-05 170 80 46 6.26E+05 1.715021360 1.86 mium 0.634 6E-07 177 10 80 1.66 1.86 mium 2.3 2.9 2 2 2.05E+05 1.715021360 1.86 mm 2.3 58 2 6 1.0			5	ontamina	nt	-SM	-SW	Z	e E	7			
Containinant mg/kg g/g pCi/g ft ft ft ¹ cm ³ g/cm ³ anthrene 0.47 $5E-07$ $5E-07$ 210 230 1 $4.83E+04$ 1367703855 1.6 anthrene 0.432 $4E-07$ 210 230 1 $4.83E+04$ 1367703855 1.6 binitrotoluene 0.432 $4E-07$ 180 182 49 $1.61E+06$ 45455340294 1.86 mium 54.3 $5E-05$ 41 101 49 $2.03E+05$ 219512212 1.86 mium 576 0.0006 76 51 2 $7.75E+03$ 219512212 1.86 roso-di-n-propylamine 0.634 $6E-07$ 117 101 49 $2.03E+06$ 1.86 muthere 0.487 $5E-07$ 117 101 6 $7.05E+03$ 1.715021360 1.86 ium-234 2.3 2.9 2.3 <		Site	Concer	ntration/A	ctivity	Length	Width	Thickness	Volume	Volume	Bulk Density	Inventory	Inventory
anthrene 0.47 $5E-07$ 210 230 1 $4.83E+04$ 1367703855 1.6ium-238 4.6 210 230 1 $4.83E+04$ 1367703855 1.6Dinitroluene 0.432 $4E-07$ 180 182 49 1.61E+06 57455340294 1.86mium 54.3 $5E-07$ 110 101 49 $2.03E+05$ 5745743717 1.86mium 576 0.0006 76 51 2 $7.75E+03$ 219512221.2 1.86 nzofuran 576 0.0006 76 51 2 $7.75E+03$ 219512221.2 1.86 nzofuran 5.3 $6E-07$ 117 101 6 $7.09E+04$ 2007721299 1.86 num 2.3 $2E-06$ 53 58 2 $6.15E+03$ 174091993.8 1.6 ium-234 2.3 20.1 53 58 2 $6.15E+03$ 714091993.8 1.6 ium-235 2.3 $2.000+06$ 53 53 $2.00E+05$ 7356887531 1.86 ium-238 2.01 53 129 38 $2.60E+05$ 7356887531 1.86 ium-238 2.02 2.01 230 49 $2.37E+06$ 67017488955 1.86 ium-238 2.02 2.02 2.02 2.02 $2.37E+06$ 67017488955 1.86 ium-238 2.02 2.02 2.02 2.02 2.02687531 1.86 ium-238 2.02 2.02	Source	Contaminant	mg/kg	8/8	pCi/g	IJ	ų	ų	R ³	cm3	g/cm ³	60	ü
ium-2384.621023014.83E+0413677038551.6Dinitrotoluene 0.432 $4E-07$ 180 182 49 $1.61E+06$ 574573370294 1.86 mium 54.3 $5E-05$ 41 101 49 $2.03E+05$ 5745743717 1.86 mium 576 0.0006 76 51 2 $7.75E+03$ 219512221.2 1.86 nzofuran 576 0.0006 76 51 2 $7.75E+03$ 219512221.2 1.86 nzoordi-n-propylamine 0.634 $6E-07$ 177 170 80 46 $6.26E+05$ 17715021360 1.86 num 2.3 $22e-07$ 117 101 6 $7.09E+04$ 2007721299 1.86 num 2.3 $22e-05$ 53 58 2 $6.15E+03$ 174091993.8 1.6 num-234 2.3 2.021 53 58 2 $6.12E+03$ 174091993.8 1.6 num-235 2.022 2.02 210 53 $2.60E+05$ 7356887531 1.86 num-238 2.022 210 230 49 2.3754887531 1.86 num-238 2.022 210 230 $2.37E+06$ 67017488955 1.86 num-238 2.022 210 230 49 2.375687731 1.86 num-238 2.022 210 230 $2.37E+06$ 67017488955 1.86 num-238 2.022 210 230 <td>Surface</td> <td>Phenanthrene</td> <td>0.47</td> <td>5E-07</td> <td>с 17-е</td> <td>210</td> <td>230</td> <td>-</td> <td>4.83E+04</td> <td>1367703855</td> <td>1.6</td> <td>1028.513299</td> <td></td>	Surface	Phenanthrene	0.47	5E-07	с 17-е	210	230	-	4.83E+04	1367703855	1.6	1028.513299	
initrotoluene 0.432 $4E-07$ 180 182 49 $1.61E+06$ 45455340294 1.86 mium 54.3 $5E-05$ 41 101 49 $2.03E+05$ 5745743717 1.86 nzofuran 576 0.0006 76 51 2 $7.75E+03$ 219512221.2 1.86 nzofuran 0.634 $6E-07$ 170 80 46 $6.26E+05$ 17715021360 1.86 nthere 0.487 $5E-07$ 117 101 6 $7.09E+04$ 2007721299 1.86 anthrene 0.487 $5E-07$ 117 101 6 $7.09E+04$ 2007721299 1.86 ium 2.33 $2E-06$ 53 53 53 2 $6.15E+03$ 174091993.8 1.6 ium-234 2.03 2.32 $2.06+05$ 7356887531 1.86 ium-235 2.01 53 129 38 $2.60E+05$ 7356887531 1.86 ium-238 2.02 2.02 2.02 2.02 2.02 $2.037E+06$ 67017488955 1.86 ium-238 2.02 2.02 2.02 2.02 $2.37E+06$ 67017488955 1.86 ium-238 2.02 2.02 2.02 2.02 2.02 2.02 2.02 1.86 ium-238 2.02 2.02 2.02 2.02 2.02721299 1.86 ium-238 2.02 2.02 2.02 2.02 2.027721299 1.86 ium-238 2.02 </td <td></td> <td>Uranium-238</td> <td></td> <td></td> <td>4.6</td> <td>210</td> <td>230</td> <td>-</td> <td>4.83E+04</td> <td>1367703855</td> <td>1.6</td> <td></td> <td>1.01E-02</td>		Uranium-238			4.6	210	230	-	4.83E+04	1367703855	1.6		1.01E-02
mium 54.3 $5E-05$ 41 101 49 $2.03E+05$ 5745743717 1.86 nzofuran 576 0.0006 76 51 2 $7.75E+03$ 219512221.2 1.86 troso-di-n-propylamine 0.634 $6E-07$ 170 80 46 $6.26E+05$ 17715021360 1.86 anthrene 0.487 $5E-07$ 117 101 6 $7.09E+04$ 2007721299 1.86 anthrene 0.487 $5E-07$ 117 101 6 $7.09E+04$ 2007721299 1.86 anthrene 2.33 $22E-06$ 53 58 2 $6.15E+03$ 174091993.8 1.6 ium-234 $2.0.1$ 53 129 38 $2.60E+05$ 7356887531 1.86 ium-235 2.02 2.01 53 129 38 $2.60E+05$ 7356887531 1.86 ium-238 2.02 2.02 2.02 2.02 2.02 $2.37E+06$ 67017488955 1.86 ium-238 2.02 2.02 2.02 2.02 2.02 $2.37E+06$ 67017488955 1.86 2.024 2.027 2.02 2.02 $2.027+05$ 2.0717488955 1.86 2.024 2.026 $2.027+05$ 2.0717488955 1.86 2.024 2.02 2.02 $2.37E+06$ 67017488955 1.86 2.024 2.02 2.02 2.02 2.0272216 2.02 2.0272216 2.0272216 2.0272216 2.0272216 <td>Subsurface</td> <td>2-6 Dinitrotoluene</td> <td>0.432</td> <td>4E-07</td> <td></td> <td>180</td> <td>182</td> <td>49</td> <td>1.61E+06</td> <td></td> <td>1.86</td> <td>36524.27503</td> <td></td>	Subsurface	2-6 Dinitrotoluene	0.432	4E-07		180	182	49	1.61E+06		1.86	36524.27503	
nzofuran 576 0.0006 76 51 2 7.75E+03 219512221.2 1.86 troso-di-n-propylamine 0.634 6E-07 170 80 46 6.26E+05 17715021360 1.86 anthrene 0.487 5E-07 117 101 6 7.09E+04 2007721299 1.86 anthrene 2.3 2E-06 53 58 2 6.15E+03 174091993.8 1.6 ium-234 2.3 2E-06 53 58 2 6.15E+03 174091993.8 1.6 ium-235 2.03 38 2.60E+05 7356887531 1.86 ium-235 2.02 210 230 49 2.3756887531 1.86 ium-235 2.02 2.03 49 2.3756887531 1.86 ium-238 2.60E+05 7356887531 1.86 1.86 1.86 ium-238 2.02 2.03 2.06E+05 7356887531 1.86 1.86 ium-238 2.		Chromium	54.3	5E-05		41	101	49	2.03E+05	5745743717	1.86	580308.6239	
troso-di-n-propylamine 0.634 6E-07 170 80 46 6.26E+05 17115021360 1.86 anthrene 0.487 5E-07 117 101 6 7.09E+04 2007721299 1.86 ium 2.3 2E-06 53 58 2 6.15E+03 174091993.8 1.6 ium-234 2.01 53 129 38 2.60E+05 7356887531 1.86 ium-235 . 20.1 53 129 38 2.60E+05 7356887531 1.86 ium-235 . . 0.7 53 129 38 2.60E+05 7356887531 1.86 ium-235 2.30 49 2.3756887531 1.86 ium-238 ium-238 ium-238 		Dibenzofuran	576	0.0006		76	51	2	7.75E+03	219512221.2	1.86	235176.6133	
anthrene 0.487 5E-07 117 101 6 7.09E+04 2007721299 1.86 1 ium 2.3 2E-06 53 53 58 2 6.15E+03 174091993.8 1.6 6 ium-234 2.3 2D.1 53 129 38 2.60E+05 7356887531 1.86 ium-235 0.7 53 129 38 2.60E+05 7356887531 1.86 ium-235 129 38 2.60E+05 7356887531 1.86 ium-238 2.0.2 210 230 49 2.37E+06 67017488895 1.86		N-Nitroso-di-n-propylamine	0.634	6E-07		170	80	46	6.26E+05	17715021360	1.86	20890.26179	
ium 2.3 2E-06 53 58 2 6.15E+03 174091993.8 1.6 ium-234 20.1 53 129 38 2.60E+05 7356887531 1.86 ium-235 0.7 53 129 38 2.60E+05 7356887531 1.86 ium-235 0.7 53 129 38 2.60E+05 7356887531 1.86 ium-238 20.2 210 230 49 2.37E+06 67017488895 1.86 .cength to denote length of source in direction of groundwater flow and WS-Width to denote width in direction perpendicular to		Phenanthrene	0.487	5E-07		117	101	9	7.09E+04	2007721299	1.86	1818.634107	
Uranium-234 20.1 53 129 38 2.60E+05 7356887531 1.86 Uranium-235 0.7 53 129 38 2.60E+05 7356887531 1.86 Uranium-238 2.0.2 210 230 49 2.37E+06 67017488895 1.86 Note: MEPAS uses WS-Length to denote length of source in direction of groundwater flow and WS-Width to denote width in direction perpendicular to		Thallium	2.3	2E-06		53	58	2	6.15E+03	174091993.8	1.6	640.6585372	
Uranium-235 0.7 53 129 38 2.60E+05 7356887531 1.86 Uranium-238 20.2 210 230 49 2.37E+06 67017488895 1.86 Note: 20.2 210 230 49 2.37E+06 67017488895 1.86 MePAS uses WS-Length to denote length of source in direction of groundwater flow and WS-Width to denote width in direction perpendicular to		Uranium-234			20.1	53	129	38	2.60E+05	7356887531	1.86		2.75E-01
Uranium-238 20.2 210 230 49 2.37E+06 67017488895 1.86 Note: MEPAS uses WS-Length to denote length of source in direction of groundwater flow and WS-Width to denote width in direction perpendicular to		Uranium-235			0.7	53	129	38	2.60E+05	7356887531	1.86		9.58E-03
Note: MEPAS uses WS-Length to denote length of source in direction of groundwater flow and WS-Width to denote width in direction perpendicular to		Uranium-238			20.2	210	230	49	2.37E+06	67017488895	1.86		2.52E+00
MEPAS uses WS-Length to denote length of source in direction of groundwater flow and WS-Width to denote width in direction perpendicular to	Note:					2						2210	
	MEPAS us	es WS-Length to denote length of	f source in (direction c	of ground	water flow	v and W	S-Width to d	lenote widt	i in direction pe	rpendicular to		
	groundwater flow.	r flow.											

.

ATL/991190012 W6tabs-5.xlsTab 5-12

· · · · · · · · · · · · · · · · · ·	Table 5.13. MEPAS			
	Plant Fo Max Conc.	Time	Property Bo Max Conc.	Time
Constituent	(mg/L)(pCi/L)	(ут)	(mg/L)(pCi/L)	(yr)
Source: Surface				
" U	7.22E-08	5,160	4.51E-08	5,950
244 Th	7 <u>.22E-08</u>	5,160	4.51E-08	5.950
^{IH} U	1.05E-09	5,160	7.55E-10	5,950
230 Th	2.41E-11	5,160	2.00E-11	5.950
²³⁶ Ra	1.12E-11	5,160	1.01E-11	5.950
²²² Rn	1.12E-11	5,160	1.01E-11	5,950
²¹⁰ Pb	1.12E-11	5,160	9.93E-12	6,180
210 Bl	1.12E-11	5,160	9.93E-12	6.180
²¹⁰ Po	1.12E-11	5,160	9.92E-12	6,180
Phenanthrene	4.68E-06	7,560	3.00E-06	7,980
Source: Subsurface				
Chromium ¹	2.56E-53	10,000	0.00E+00	NA
N-Nitroso-di-propylamine	2.17E-02	24	1.37E-02	27
Phenanthrene	8.62E-06	7,810	5.41E-06	8,450
Thallium	8.45E-04	31	4.94E-04	37
¹¹⁴ U	6.62E-06	7,380	4.28E-06	8,050
234 Th	6.62E-06	7,380	4.28E-06	8,050
u U	1.45E-07	7,870	1.03E-07	8,750
¹³⁰ Th	5.17E-09	8,110	4.02E-09	8,980
¹²⁶ Ra	3.05E-09	8,110	2.49E-09	8,980
²²² Rn	3.05E-09	8,110	2.49E-09	8,980
²¹⁰ Pb	3.02E-09	8,110	2.47E-09	8,980
²¹⁰ Bl	3.02E-09	8,110	2.47E-09	8,980
210 Po	3.02E-09	8,110	2.47E-09	8,980
^{UH} U	9.61E-07	6,460	6.08E-07	7,580
¹³⁰ Th	5.93E-08	7,130	4.15E-08	7,820
²³⁶ Ra	4.13E-08	7,130	3.02E-08	8,050
²³⁵ U	3.41E-08	6,640	2.16E-08	7,580
²³¹ Th	3.41E-08	6,640	2.16E-08	7,580
²³⁷ Pa	4.67E-09	7,130	3.26E-09	7,810
²³⁷ Ac	4.65E-09	7,130	3.25E-09	7.810
³³⁷ Th	4.65E-09	7,130	3.25E-09	7.810
¹²³ Ra	4.65E-09	7,130	3.25E-09	7,810

¹Did not reach maximum during model runs

Notes:

Bold type denote constituents which were run from screening.

Italic type denotes daughter products resulting from constituents listed in **bold**

F			5					2		
	Total		Total		% Total	Total		Total		% Total
Receptor E	ELCR.	ELCR COCs	ELCR	ELCR POCS	ELCR	"IH	Systemic Toxicity COCs	Ħ	Systemic Toxicity POCs	IH
Current industrial worker at 1.7	1.7×10^{-3}	PAHs	88	Dermal contact with soil	86	0.4	NE	NE	NE	NE
current concentrations		Uranium-238	6	External exposure	10					
Future industrial worker at 1.7	1.7×10^{-5}	PAHs	80	Dermal contact with soil	86	0.4	NE	NE	NE	NE
		Uranium-238	6	External exposure	01					
Future child rural resident at	AN	NA	٨N	NA	NA	10.6	Chromium	55	Ingestion of soil	_
current concentrations							Uranium	40	Dermal contact with soil	23
							Zinc	4	Consumption of vegetables	76
Future adult rural resident at 8.1×10^4	1 × 10 ⁻⁴	PAHs	84	Ingestion of soil	V	3.0	Chromium	51	Dermal contact with soil	16
current concentrations		PCBs	S	Dermal contact with soil	ŝ		Uranium	4	Consumption of vegetables	84
		Uranium-235	v	External exposure	6		Zinc	ŝ		
		Uranium-238	11							
Future child recreational	NA	NA	AN	NA	NA	<0.1	NE	NE	NE	NE
user at current										
concentrations										
Future teen recreational user	٨A	NA	٩N	NA	NA	₹0.1	NE	NE	NE	NΕ
at current concentrations										
Future adult recreational 4.7	4.7×10^{-7}	NE	NE	NE	NE	₹9.I	NE	NE	NE	NE
user at current										
concentrations										
Future excavation worker at 1.6×10^{-4}	5 × 104	Arsenic	9	Ingestion of soil	17	1.2	Aleminum	0	Ingestion of soil	11
current concentrations		Beryllium	4	Dermal contact with soil	8		Antimony	20	Dermal contact with soil	83
		PAHs	35	External exposure	2		Chromium	4		
		N-nitroso-di-n-propylamine	9				Manganese	16		
		Uranium-234	V				Vanadium	28		
		Uranium-238	3	1						

COPC t la 144. e . ขึ ś - 22-į health vick ch. f he Table 6 4 C.

Notes: ∇ = ELCR not applicable to child and teen cohorts. Values for adult include exposure as child and teen. NE = Land use scenario not of concern.

ATL/991170002 W6TAB6-4.DOC