The maximum alpha activity for water was 4910 pCi/L and maximum beta activity was 860 pCi/L from samples collected between 10 and 30 ft bgs. Only very small concentrations of TCE, trans-1,2 DCE, and vinyl chloride were detected in the water samples.

4.2.3 Sector 3

4.2.3.1 Site History

Sector 3 consists of the east side of the C-400 Building and several buried utility lines that parallel 11th Street. It does not contain a SWMU, and no spills or releases are known to have occurred in Sector 3.

Sector 3 is a relatively flat area lying between Sector 4 (SWMU 11) to the south and Sector 2 (SWMU 40) to the north. Several small paved areas and buried utilities are present in the sector. Access to the sector is limited on the east side by the presence of an 8- to 10-ft-high security fence. Surface drainage is into storm sewer drains along 11th Street. As part of the Phase I SI (CH2M Hill 1991) and Phase II SI (CH2M Hill 1992), a deep boring was drilled in the southern part of the sector. TCE was first detected at a depth of 50 ft bgs in this boring. PAHs occurred from the surface to total depth. Radionuclides were reported only from the near-surface soils.

4.2.3.2 Nature and Extent of Contaminants

Surface and subsurface soil samples were collected throughout Sector 3 in order to assess the nature and extent of site-related contaminants. Sampling locations within Sector 3 are shown in Fig. 4.5. Three surface soil samples were analyzed for SVOAs, three for metals, and two each for radionuclides and PCBs. The subsurface samples were collected from 10 borings at depths between the surface and 50.5 ft bgs. Thirty-six samples were analyzed for VOAs, 33 for SVOAs, and 37 (including one duplicate) for radionuclides. Thirty-two soil samples (including one duplicate) were analyzed for metals, and 16 samples were analyzed for PCBs. Shallow borings to approximately 15 ft bgs were drilled adjacent to buried utilities that parallel 11th Street and adjacent to the feeder lines that connected to storm drains within the sector. Several deep borings were also drilled near the C-400 Building to assess whether any unknown releases had occurred as a result of the processes performed in the building. Analytical results for samples collected from Sector 3 are summarized in Tables 4.13 to 4.16. Additional information about the analytical results can be found in Table 4.17 (frequency of detection).

Summary of Findings

Several small areas were identified in Sector 3 where the soil has been impacted due to localized spills or releases. The most significant area of contamination occurs in the surface and subsurface of Boring 400-011, which was drilled adjacent to the C-400 Building beside the exterior floor drain collection line. In this boring, TCE was found at elevated levels from near the surface to the total depth of 41 ft. The high TCE concentrations found at this location appear to be associated with a point source release near the C-400 Building. Elevated concentrations of arsenic, SVOAs, and PCBs were found in the surface and shallow subsurface soils at this location. TCE-impacted soil was found at depth in Boring 011-001 and may be contiguous with soil where elevated TCE was found in 400-011. A second release of contaminates at the surface is indicated by surface soil containing PCBs and radionuclides at 400-046. This area of elevated

PCB contamination may be related to the explosion of a transformer on the southwest side of the C-410 Building.

The widespread occurrences of low concentrations of VOAs, SVOAs, PCBs, and radionuclides in the Sector 3 soil represent minor surface spills or isolated releases from the buried utilities that pass through the sector and the results of daily plantwide operations.

Analytical Results-Surface and Subsurface Soils

Organics

VOAs. Three VOAs were reported from the analyzed samples: TCE, toluene, and cis-1,2dichloroethene. Toluene was detected only in the northern half of the sector between 8 and 23 ft bgs. The two highest detections occurred in 400-062 (260 μ g/kg) and 400-063 (270 μ g/kg) at 15 ft bgs. Boring 400-062 was drilled along the storm drain that parallels 11th Street. Boring 400-063 was drilled to sample the bedding material adjacent to the sanitary water line. No deeper samples were collected from either of these two borings. Toluene was not detected in any of the samples collected north of Sector 3.

TCE was detected 14 times, including a detection in one duplicate sample, from five locations. One of the most significant concentrations of TCE encountered was in Boring 400-011. The TCE content of the soil at this location was equal to or greater than 1800 μ g/kg at depths between 5 and 41 ft bgs, which was the deepest soil analyzed at that location. In addition to TCE, the two shallowest soil samples from 400-011 also contained a small (less than 20 μ g/kg) amount of cis-1,2-dichloroethene.

Another high detection of TCE (14,000 $\mu g/kg$) was found at 47 to 51 ft bgs at Boring 011-001. This boring was drilled between a storm drain and the building perimeter Floor Drain Collection Line. Only very small quantities (<20 $\mu g/kg$) of TCE were reported from the shallow depths of 15 and 30 ft bgs in 011-001.

SVOAs. Sixteen SVOAs (mostly PAHs) were identified in Sector 3 soil samples. SVOAs were most prevalent in the three surface soil samples (Fig. 4.6). The surface sample at 400-011 generally had the highest concentration for each of the detected PAHs, with 887 μ g/kg of benzo(a)pyrene, 1642 μ g/kg of fluoranthene, 1269 μ g/kg of phenanthrene, and 1566 μ g/kg of pyrene.

Small quantities of eight PAHs were also detected one or more times in the subsurface soils. SVOAs at concentrations above the SQL were not found in the subsurface.

PCBs. PCB-1260 (Aroclor-1260) was detected at four locations in Sector 3 (Fig. 4.7). The highest concentration was 3300 μ g/kg at the surface at Boring 400-046. Boring 400-011 also contained 47 μ g/kg Aroclor-1260 at the surface. One sample collected near the storm drain at Boring 400-098 and one sample collected from 400-064 near the sanitary water line each had a low concentration of Aroclor-1260.

Inorganics

Sixteen metals were detected at concentrations that exceeded background levels. The most frequently reported metals were the common soil-forming minerals, aluminum, sodium, and magnesium. An elevated arsenic occurrence of 18.1 μ g/kg was reported from 8 ft bgs at Boring 400-011.

Radionuclides

Low activities of several radiological isotopes were reported from the surface soils in Sector 3. The surface sample collected at Boring 400-046 contained the most radioisotopes and the highest activities for all of the detected isotopes. Among the highest detections were ⁹⁹Tc at 3.5 pCi/g, ²³⁰Th at 4.2 pCi/g, ²³⁴U at 7.1 pCi/g, and ²³⁸U at 9.1 pCi/g. Several radionuclides with activities below 2 pCi/g were reported from the subsurface. Figure 4.8 shows the distribution for detected activities of ²³⁸U and ¹³⁷Cs, two of the COCs identified for Sector 3 soils.

4.2.4 Sector 4 [Trichloroethene Leak Site (SWMU 11)]

4.2.4.1 Site History

The Trichloroethene Leak Site (SWMU 11) is located at the southeast corner of the C-400 Building, along 11th Street and Tennessee Avenue. It contains an area of known contamination that was caused by release of effluent from a leaking subsurface pipe carrying discharge from a sump in the C-400 Building to the storm sewer. A previously unidentified TCE spill source was discovered in Sector 4 during the WAG 6 RI. Apparently, a pump station (and associated piping) used to off-load TCE from tank cars into the aboveground storage tank had broken several times in the past and released an unknown, yet significant quantity of TCE into the subsurface soils. Based on the distribution and concentration of TCE in the soils, the off-loading pump station is now suspected to have been the primary source for TCE introduction into the WAG 6 subsurface.

Practices and Release Description

A sump in the TCE degreaser pit basement (SWMU 98) inside the C-400 Building inadvertently released TCE, along with wastewater, to the storm sewer line east of the C-400 Building. Before discovery of the leak, it was not known that the basement sump discharged directly to the storm sewer. The sump was thought to discharge to the C-403 Neutralization Tank (SWMU 40). The leak was discovered during construction of a discharge line from the truck unloading dock containment sump to the 11th Street storm sewer line. During excavation, TCE was discovered leaking from the joints of the storm sewer line. Although the actual duration of the leak is unknown, it is believed that TCE may have been discharged to the storm sewer as early as the 1950s. Once the leak was discovered, the discharge line from the basement sump was disconnected from the storm sewer, material from the sump was routed to 55-gal drums, and TCE-contaminated soil was excavated from the area of the leak.

The main excavation area measured approximately 20 ft wide (east to west) by 40 ft long (north to south). A 10-ft-wide trench, centered on the storm sewer, was dug 16 ft deep to expose the pipe, which lay 13 ft below original grade. The remainder of the excavation was 7 ft deep. Concern for the stability of nearby structures limited the extent and depth of the excavation. Not all contaminated soil could be removed. Forty 55-gal drums were used to containerize excavated contaminated soil.

Fig. 4.5. Sector 3 site map showing contaminant groups detected in UCRS soil above SQL at each sample location.

Fig. 4.6. Map showing distribution and total concentration of PAHs detected in sector 3 UCRS soil.

Fig. 4.7. Map showing distribution and total concentration of PCBs detected in sector 3 UCRS soil.

Fig. 4.8. Map showing distribution and total activity of U-238 and Cs-137 detected in sector 3 UCRS soil.

				UCRS	soil			
		San Interva	nple I (ft bgs)		Results	Lab	Validation	
Sample Type	Sample ID	Тор	Bottom	Analytical Compound	ug/kg	Qualifier	Qualifier	Data Assessment
Soil	011001SA010	8	12	Toluene	2	J	?	
		8	12	Trichloroethene	5.3	J	?	
	011001SA020	19.5	23	Toluene	1.8	J	?	
		19.5	23	Trichloroethene	3.2	J	?	
	011001SA030	30	33.5	Trichloroethene	2.4	J	?	
	011001SA048	47.5	50.5	Trichloroethene	14000		?	
	011002SA024	20	24	Trichloroethene	1.9	J	?	BH-ER
	011002SA028	24	28	Trichloroethene	1.8	J	?	BH-ER
	400011SA005	5	8	cis-1,2-Dichloroethene	46		?	
		5	8	Trichloroethene	2900		?	
	400011SA010	10	13.5	cis-1,2-Dichloroethene	9.7		?	
		10	13.5	Trichloroethene	2700		?	
	400011SA020	20	23.5	Trichloroethene	5000		?	
	400011SA030	29.5	32	Trichloroethene	1800		?	
	400011SA040	38	41	Trichloroethene	4100		?	
	400011SD005	5	8	cis-1,2-Dichloroethene	15		?	
		5	8	Trichloroethene	2100		?	
	400062SA015	11	15	Toluene	260		=	
		11	15	Trichloroethene	36	J	=	
	400063SA015	11	15	Toluene	270		=	
	400098SA036	32	36	Trichloroethene	2	J	?	
	400098SA040	36	40	Trichloroethene	3.1	J	?	

Table 4.13. VOA compounds detected in Sector 3

Table 4.13.VOA compounds detected in Sector 3UCRS soil

		Sample					
		Interval (ft bgs)		Results	Lab	Validation	
Sample Type	Sample ID	Top Bottom	Analytical Compound	ug/kg	Qualifier	Qualifier	Data Assessment

Note: Soil boring samples not containing any detectable VOA compounds in Sector 3 are:

011002SA004, 011002SA008, 011002SA012, 011002SA016, 011002SA020, 011002SA032, 011002SA040, 011002SA044, 011002SA048, 400064SA015, 400098SA008, 400098SA012, 400098SA015, 400098SA024, 400098SA028, 400098SA032, 400098SA044, 400099SA015, 400198SA015

Table 4.14.SVOA and PCB compounds detected in Sector 3UCRS soil

			Sai	nple d (ft bgs)		D		V _ N _A	
Sample Type	Analytical Group	Sample ID	Тор	Bottom	Analytical Compound	ug/kg	Lab Qualifier	Validation Qualifier	Data Assessment
Soil	SVOA	011001SA048	47.5	50.5	N-Nitroso-di-n-propylamin	331	J	?	
		011002SA004	0	4	Benz(a)anthracene	300	J	?	
			0	4	Benzo(a)pyrene	300	J	?	
			0	4	Benzo(b)Auoranthene	200	J	?	
			0	4	Benzo(k)fluoranthene	300	J	?	
			0	4	Chrysene	300	J	?	
			0	4	Fluoranthene	600	J	?	
			0	4	Phenanthrene	300	J	?	
			0	4	Pyrene	500	J	?	
		011002SA020	16	20	Fluoranthene	60	J	?	
			16	20	Pyrene	50	J	?	
		400011SA001	0.5	1.5	Acenaphthene	100	J	?	
			0.5	1.5	Anthracene	463	J	?	
			0.5	1.5	Benz(a)anthracene	968		?	
			0.5	1.5	Benzo(a)pyrene	887		?	
			0.5	1.5	Benzo(b)fluoranthene	924		?	
			0.5	1.5	Benzo(ghi)perylene	130	J	?	
			0.5	1.5	Benzo(k)Auoranthene	947		?	
			0.5	1.5	Chrysene	962		?	
			0.5	1.5	Dibenzofuran	50	J	?	
			0.5	1.5	Fluoranthene	1642		?	

- ----- :

Table 4.14.	SVOA and PCB compounds detected in Sector 3
	UCRS soil

			Sar Interva	nple d (ft bgs)		Desults	Lab	Validation	
Sample Type	Analytical Group	Sample ID	Тор	Bottom	Analytical Compound	ug/kg	Qualifier	Qualifier	Data Assessment
Soil	SVOA	400011SA001	0.5	1.5	Fluorene	70	J	?	
			0.5	1.5	Indeno(1,2,3-cd)pyrene	160	J	?	
			0.5	1.5	Naphthalene	40	J	?	
			0.5	1.5	Phenanthrene	1269		?	
			0.5	1.5	Pyrene	1566		?	
		400046SA001	0	1	Acenaphthene	130	J	?	
			0	1	Anthracene	220	J	?	
			0	1	Benz(a)anthracene	960	J	?	
			0	1	Benzo(a)pyrene	1000	J	?	
			0	1	Benzo(b)fluoranthene	1400	J	?	
			0	1	Benzo(ghi)perylene	370	J	?	
			0	1	Benzo(k)fluoranthene	870	J	?	
			0	1	Chrysene	1000	J	?	
			0	1	Dibenz(a,h)anthracene	160	J	?	
			0	1	Fluoranthene	2100		?	
			0	1	Fluorene	90	J	?	
			0	1	Indeno(1,2,3-cd)pyrene	420	J	?	
		r	0	1	Phenanthrene	1200	J	?	
			0	1	Pyrene	1800		?	
		400047SA001	0	1	Benzo(k)fluoranthene	254	J	?	
			0	1	Fluoranthene	224	- J	?	

Table 4.14.	SVOA and PCB compounds detected in Sector 3
	UCRS soil

÷

			Sai Interva	mple al (ft bgs)		Results	Lab	Validation	
Sample Type	Analytical Group	Sample ID	Тор	Bottom	Analytical Compound	ug/kg	Qualifier	Qualifier	Data Assessment
Soil	SVOA	400047SA001	0	1	Pyrene	227	J	?	
		4000648A015	9	12	Fluoranthene	40	J	?	
		4000985A008	4	8	Anthracene	40	J	?	
			4	8	Benz(a)anthracene	250	J	?	
			4	8	Benzo(a)pyrene	210	J	?	
			4	8	Benzo(b)fluoranthene	230	J	?	
			4	8	Benzo(ghi)perylene	120	J	?	
			4	8	Benzo(k)fluoranthene	180	J	?	
			4	8	Chrysene	270	J	?	
			4	8	Fluoranthene	260	J	?	
			4	8	Indeno(1,2,3-cd)pyrene	110	J	?	
			4	8	Pyrene	230	J	?	
		400098SA015	11	15	Fluoranthene	70	J	=	
			11	15	Pyrene	50	J	=	
	РРСВ	400011SA001	0.5	1.5	PCB-1260	47		?	
		400046SA001	0	1	PCB-1260	3300		?	
		400064SA015	9	12	PCB-1260	21		?	
		400098SA015	11	15	PCB-1260	120		=	

Table 4.14.SVOA and PCB compounds detected in Sector 3UCRS soil

ſ				Sample					
			4	Interval (ft bgs)		Results	Lab	Validation	
	Sample Type	Analytical Group	Sample ID	Top Bottom	Analytical Compound	ug/kg	Qualifier	Qualifier	Data Assessment

Note: Soil boring samples not containing any detectable SVOA compounds in Sector 3 are:

011001SA010, 011001SA020, 011001SA030, 011002SA008, 011002SA012, 011002SA016, 011002SA024, 011002SA028, 011002SA032, 011002SA040, 011002SA044, 011002SA048, 400011SA005, 400011SA010, 400011SA020, 400011SA030, 400011SA040, 400011SD005, 400062SA015, 400063SA015, 400098SA012, 400098SA020, 400099SA015, 400198SA015

Soil boring samples not containing any detectable PCB compounds in Sector 3 are:

011001SA010, 011001SA020, 011001SA030, 400011SA005, 400011SA010, 400011SA020, 400011SA030, 400011SA040, 400011SD005, 400062SA015, 400063SA015, 400099SA015

				UCRS	soil				
Sample Type	Sample ID	San Interva Top	nple I (ft bgs) Bottom	Analytical Compound	Results mg/kg	Lab Qualifier	Validation Qualifier	Data Assessment	Background mg/kg
Soil	011001SA010	8	12	Aluminum	12700		?		12000
		8	12	Magnesium	2310		?		2100
		8	12	Sodium	432		?		340
	011001SA020	19.5	23	Sodium	610		?		340
	011001SA030	30	33.5	Sodium	518		?		340
	011002SA004	0	4	Aluminum	20300		?		12000
		0	4	Antimony	0.8	В	?		0.21
		0	4	Arsenic	9.12		?		7.9
		0	4	Magnesium	3060		?		2100
		0	4	Potassium	1070		?		950
		0	4	Sodium	864		?		340
	011002SA008	4	8	Aluminum	17300		?		12000
		4	8	Arsenic	8.96		?		7.9
		4	8	Cobalt	15.8		?		13
		4	8	Magnesium	2260		?		2100
		4	8	Manganese	996		?		820
		4	8	Sodium	787		?		340
	011002SA012	8	12	Aluminum	14400		?		12000
		8	12	Magnesium	2410		?		2100
		8	12	Sodium	793		?		340
	011002SA016	12	16	Aluminum	12600		?		12000

Table 4.15. Metals detected in Sector 3 UCRS soil

				COR	5011				
Sample Type	Sample ID	San Interva Top	nple II (ft bgs)	Analytical Compound	Results mg/kg	Lab Qualifier	Validation Qualifier	Data Assessment	Background mg/kg
Soil	011002SA016	12	16	Cobalt	18.6	L	?		13
		12	16	Manganese	996		?		820
		12	16	Sodium	635		?		340
	011002SA020	16	20	Aluminum	18100		?		12000
		16	20	Sodium	620		?		340
	011002SA024	20	24	Aluminum	12400		?		12000
		20	24	Sodium	547		?		340
		20	24	Thallium	0.8	В	?		0.34
	011002SA028	24	28	Aluminum	15700		?		12000
		24	28	Sodium	582		?		340
	011002SA032	28	32	Aluminum	13900		?		12000
		28	32	Beryllium	1		?		0.69
		28	32	Sodium	751		?		340
	011002SA040	36	40	Sodium	465		?		340
	011002SA048	43	46.5	Aluminum	13400		?		12000
		43	46.5	Sodium	563		?		340
	400011SA001	0.5	1.5	Aluminum	15400		?		13000
		0.5	1.5	Antimony	0.6	В	?		0.21
		0.5	1.5	Cadmium	0.39	В	?		0.21
		0.5	1.5	Chromium	20.4		?		16
		0.5	1.5	Sodium	357		?		320

Table 4.15. Metals detected in Sector 3 UCRS soil

Page 2 of 4

Table 4.15.Metals detected in Sector 3UCRS soil

		Sar Interva	nple l (ft bgs)		Denula	Lab	V-8-4		n
Sample Type	Sample ID	Тор	Bottom	Analytical Compound	mg/kg	Qualifier	Qualifier	Data Assessment	mg/kg
Soil	400011SA005	5	8	Aluminum	19000	1	?		12000
		5	8	Arsenic	18.1		?		7.9
		5	8	Magnesium	2220		?		2100
		5	8	Sodium	528		?		340
	400011SA010	10	13.5	Aluminum	12500		?		12000
		10	13.5	Magnesium	2700		?		2100
		10	13.5	Sodium	540		?		340
	400011SA030	29.5	32	Beryllium	0.9		=		0.69
		29.5	32	Vanadium	37.7		=		37
	400011SA040	38	41	Antimony	3	В	=		0.21
	400011SD005	5	8	Aluminum	17500		?		12000
		5	8	Magnesium	2390		?		2100
		5	8	Sodium	559		?		340
	400046SA001	0	1	Cadmium	0.38	В	?		0.21
		0	1	Chromium	18.2		?		16
		0	1	Соррег	34.6		?		19
		0	1	Nickel	22.8		?		21
		0	1	Sodium	620		?		320
	400047SA001	0	1	Sodium	573		?		320
		0	1	Thallium	1.2	В	?		0.21
	400062SA015	11	15	Aluminum	12900		=		12000

		Sar Interva	nple d (ft bgs)		Results	Lab	Validation		Background
Sample Type	Sample ID	Тор	Bottom	Analytical Compound	mg/kg	Quaiifier	Qualifier	Data Assessment	mg/kg
Soil	400062SA015	11	15	Sodium	394		=		340
	400063SA015	11	15	Aluminum	16600		=		12000
	400064SA015	9	12	Calcium	9260		?		6100
		9	12	Magnesium	2290		?		2100
		9	12	Sodium	375		?		340
	400098SA008	4	8	Cadmium	0.4	В	?		0.21
		4	8	Sodium	633		?		340
	400098SA012	8	12	Antimony	0.8	В	?		0.21
		8	12	Sodium	739		?		340
	400098SA015	11	15	Aluminum	14000		=		12000
		11	15	Sodium	419		÷		340
	400098SA020	16	20	Calcium	14300		?		6100
		16	20	Sodium	569		?		340
	400099SA015	9	13	Sodium	364		?		340

Table 4.15.Metals detected in Sector 3UCRS soil

Note: Soil boring samples not containing any detectable metals at concentrations above background in Sector 3 are: 011001SA048, 011002SA004, 400011SA020

		Sample Interval (ft bgs)		bgs) tom Analytical Compound	Results	Lab	Validation		Background
Sample Type	Sample ID	Тор	Bottom	Analytical Compound	pCi/g	Qualifier	Qualifier	Data Assessment	pČi/g
Soil	011001SA030	30	33.5	Neptunium-237	0.2		?		0
	011001SA048	47.5	50.5	Neptunium-237	0.2		?		0
	011002SA004	0	4	Cesium-137	0.3		?		0.28
		0	4	Neptunium-237	0.3		?		0
	011002SA008	4	8	Neptunium-237	0.4		?		0
	011002SA020	16	20	Neptunium-237	0.3		?		0
	011002SA028	24	28	Cesium-137	0.4		?		0.28
		24	28	Neptunium-237	0.3		?		0
	011002SA032	28	32	Neptunium-237	0.3		?		0
	011002SA040	36	40	Cesium-137	0.3		?		0.28
	011002SA044	40	43	Cesium-137	0.3		?		0.28
	011002SA048	43	46.5	Neptunium-237	0.4		?		0
	400011SA001	0.5	1.5	Uranium-238	2.5		?		1.2
	400011SA020	20	23.5	Thorium-230	1.6		?		1.4
	400046SA001	0	1	Cesium-137	0.5		?		0.49
		0	1	Neptunium-237	0.4		?		0.1
		0	1	Technetium-99	3.5		?		2.5
		0	1	Thorium-230	4.2		?		1.5
		0	1	Uranium-234	7.1		?		2.5
		0	1	Uranium-235	0.4		?		0.14
		0	1	Uranium-238	9.1		?		1.2

Table 4.16.Radioactive isotopes detected in Sector 3UCRS soil

- . - . - . - . - .

Table 4.16.Radioactive isotopes detected in Sector 3UCRS soil

		Sa: Interva	nple d (ft bgs)		Results	Lab Validatio	n	Background
Sample Type	Sample ID	Тор	Bottom	Analytical Compound	pCi/g	Qualifier Qualifie	r Data Assessment	pCi/g
Soil	400098SA015	11	15	Uranium-238	1.8	=		1.2
	400098SA036	32	36	Cesium-137	0.4	?		0.28
	400098SA044	40	44	Uranium-235	0.2	?		0.14
	400099SA015	9	13	Americium-241	0.2	?		0

Note: Soil boring samples not containing any detectable radioactive isotopes at concentrations above background in Sector 3 are:

011001SA010, 011001SA020, 011002SA012, 011002SA016, 011002SA024, 400011SA005, 400011SA010, 400011SA030, 400011SA040, 400011SD005, 400062SA015, 400063SA015, 400064SA015, 400098SA028, 400098SA012, 400098SA020, 400098SA024, 400098SA028, 400098SA032, 400098SA040

Table 4.17.	Frequency of detection of	organic compounds, metals,	and radioactive isot	opes in Sector 3
		UCRS soil		

Analytical Group	Analytical Compound	No. of Detects	No. of Analyses	Maximum Result	Minimum Result	Average Result	Units
VOA	Trichloroethene	15	36	14000.00	1.80	1103.45	ug/kg
	Toluene	4	35	270.00	1.80	133.45	ug/kg
	cis-1,2-Dichloroethene	3	36	46.00	9.70	23.57	ug/kg
SVOA	Fluoranthene	8	33	2100.00	40.00	510.19	ug/kg
	Pyrene	7	33	1800.00	50.00	531.57	ug/kg
	Benzo(k)fluoranthene	5	33	947.00	180.00	433.40	ug/kg
	Benz(a)anthracene	4	33	968.00	250.00	509.13	ug/kg
	Benzo(a)pyrene	4	33	1000.00	210.00	518.50	ug/kg
	Benzo(b)fluoranthene	4	33	1400.00	200.00	598.50	ug/kg
	Chrysene	4	33	1000.00	270.00	518.88	ug/kg
	Anthracene	3	33	463.00	40.00	187.17	ug/kg
	Benzo(ghi)perylene	3	33	370.00	120.00	206.67	ug/kg
	Indeno(1,2,3-cd)pyrene	3	33	420.00	110.00	230.00	ug/kg
	Phenanthrene	3	33	1269.00	300.00	803.17	ug/kg
	Acenaphthene	2	33	130.00	100.00	115.00	ug/kg
	Fluorene	2	33	90.00	70.00	80.00	ug/k g
	Dibenz(a,h)anthracene	1	. 33	160.00	160.00	160.00	ug/kg
	Dibenzofuran	1	33	50.00	50.00	50.00	ug/kg
	Naphthalene	1	33	3 40.00	40.00	40.00	ug/kg
	N-Nitroso-di-n-propylamine	1	33	3 331.00	331.00	331.00	ug/kg
РСВ	PCB-1260	4	10	5 3300.00	21.00	872.00	ug/kg
Metals	Sodium	26	i 31	2 864.00	357.00	570.65	mg/kg
	Aluminum	17	32	2 20300.00	12400.00	15217.65	mg/kg
	Magnesium	8	32	2 3060.00	2220.00	2455.00	mg/kg
	Antimony	4	l 32	2 3.00) 0.60	1.30	mg/kg
	Arsenic	3	3 32	2 18.10) 8.96	5 12.06	ó mg/kg
	Cadmium	3	3 32	2 0.40	0.38	8 0.39) mg/kg
	Beryllium	2	2 32	2 1.00) 0.9 (0.95	5 mg/kg
	Calcium	2	2 32	2 14300.00	9260.00) 11780.00) mg/kg
	Chromium	2	2 32	2 20.40	18.20) 19.30) mg/kg
	Cobalt	2	2 32	2 18.60) 15.80) 17.20) mg/kg
	Manganese	2	2 3	2 996.00	996.00	996.00) mg/kg

Table 4.17. Frequency of detection of organic compounds, metals, and radioactive isotopes in Sector 3 UCRS soil

Analytical Group	Analytical Compound	No. of Detects	No. of Analyses	Maximum Result	Minimum Result	Average Result	Units
Metals	Thallium	2	32	1.20	0.80	1.00	mg/kg
	Copper	1	32	34.60	34.60	34.60	mg/kg
	Nickel	<u> </u>	32	22.80	22.80	22.80	mg/kg
	Potassium	1	32	1070.00	1070.00	1070.00	mg/kg
	Vanadium	1	32	37.70	37.70	37.70	mg/kg
Radioactive	Neptunium-237	9	37	0.40	0.20	0.31	pCi/g
isotopes	Cesium-137	6	37	0.50	0.30	0.37	pCi/g
	Uranium-238	3	37	9.10	1.80	4.47	pCi/g
	Thorium-230	2	37	4.20	1.60	2.90	pCi/g
	Uranium-235	2	37	0.40	0.20	0.30	pCi/g
	Americium-241	1	37	0.20	0.20	0.20	pCi/g
	Technetium-99	1	37	3.50	3.50	3.50	pCi/g
	Uranium-234	1	37	7.10	7.10	7.10	pCi/g

		V Avic	V-Avis	7.4 vis	
Contaminant	Level	A-AXIS (ft)	(ft)	(ft)	Notes
Source: Surface	Soil				
Arochlor-1260	3,300 µg/kg				Maximum detected values.
Neptunium-237	0.4 pCi/g				Only two surface soil sampling
PCBs	10,000 µg/kg				Locations in Sector 3, so
					Modeled as distributed across
Phenanthrene	1,200 µg/kg	122	234	1	Entire sector.
Thallium	1.2 mg/kg				
Thorium-230	4.2 pCi/g				
Uranium-234	7.1 pCi/g				
Uranium-235	0.4 pCi/g				
Uranium-238	9.1 pCi/g				
Source: Subsurf	ace Soil				
Phenanthrene	706.3 µg/kg	70	135	4	Average of 3 detects.
Trichloroethene	1,502 µg/kg	152	234	49	Average of 23 detects. Area includes entire sector plus a small portion of the eastern side of Sector 1.
Neptunium-237	0.3 pCi/g	70	234	49	Average of 8 detects. The area is centered around the 2 borings (011-001 and 011-002) with the 8 detects.

Notes:

No sources were modeled for the following subsurface contaminants because they were detected in only one sample:

- Dibenzofuran (max detect = $50 \mu g/kg$), 1 detect, 43 non-detects. •
- N-Nitroso-di-n-propylamine (max detect = $331 \mu g/kg$), 1 detect, 43 non-detects.
- Thallium (maximum detect = 0.8 mg/kg), 1 detect, 29 non-detects. The one detect value was • only slightly above the PRG.
- Americium-241 (maximum detect = 0.2 pCi/g), 1 detect, 35 non-detects. ٠

In addition, Uranium-238 was not modeled in a subsurface source because it was only detected once above the 2 times background value in 35 detects. This maximum detect value (2.5 pCi/g) only slightly exceeded 2 times background (2.4 pCi/g).

X-axis is east-west; Y-axis is north-south; Z-axis is vertical (thickness).

		C	ontamina	nt	WS-	WS-	Z					
	Site	Conce	ntration/A	Activity	Length	Width	Thickness	Volume	Volume	Bulk Density	Inventory	Inventory
Source	Contaminant	mg/kg	g/g	pCi/g	ft	ft	ft	ft ³	cm ³	g/cm ³	g	Ci
Surface	Aroclor 1260	3.3	3E-06		234	122.1	1	2.86E+04	809118309.5	1.6	4272.144674	
	PCB (General)	10	1E-05		234	122.1	1	2.86E+04	809118309.5	1.6	12945.89295	
	Phenanthrene	1.2	1E-06		234	122.1	ł	2.86E+04	809118309.5	1.6	1553.507154	
	Neptunium-237			0.4	234	122.1	1	2.86E+04	809118309.5	1.6		5.18E-04
	Thallium	1.2	1E-06		234	122.1	1	2.86E+04	809118309.5	1.6	1553.507154	
	Thorium-230			4.2	234	122.1	1	2.86E+04	809118309.5	1.6		5.44E-03
	Uranium-234			7.1	234	122.1	1	2.86E+04	809118309.5	1.6		9.19E-03
	Uranium-235			0.4	234	122.1	1	2.86E+04	809118309.5	1.6		5.18E-04
	Uranium-238			9.1	234	122.1	1	2.86E+04	809118309.5	1.6		1.18E-02
Subsurface	Phenanthrene	0.7	7E-07		135	70	4	3.78E+04	1070376930	1.86	1393.630763	
	Neptunium-237			0.3	234	70	49	8.03E+05	22727670147	1.86		1.27E-02
	Trichloroethene	1.5	2E-06		234	152	49	1.74E+06	49351512319	1.86	137690.7194	

Note:

MEPAS uses WS-Length to denote length of source in direction of groundwater flow and WS-Width to denote width in direction perpendicular to groundwater flow.

	Table 5.16. MI	EPAS results	for Sector 3	
	Plant F	ence Time	Property Bo Max Conc	oundary Time
Constituent	max Conc.	(vr)	(mg/L)(nCi/L)	(vr)
Source: Surface	(mg/L)(pcvL)		(mg/2)(per2)	
PCB	0.00E+00	10,000	0.00E+00	10,000
Aroclor-1260	0.00E+00	10,000	0.00E+00	10,000
Phenanthrene	7.73E-06	7,560	4.66E-06	7,980
²³⁵ U	4.06E-09	5,160	2.39E-09	5,950
231 Th	4.06E-09	5,160	2.39E-09	5,950
²³¹ Pa	4.19E-10	5,160	2.82E-10	5,950
²²⁷ Ac	4.16E-10	5,160	2.80E-10	5,950
²²⁷ Th	4.16E-10	5,160	2.80E-10	5,950
²²³ Ra	4.16E-10	5,160	2.80E-10	5,950
²³⁸ U	9.25E-08	5,160	5.43E-08	5,950
234 Th	9.25E-08	5,160	5.43E-08	5,950
²³⁴ U	1.35E-09	5,160	9.10E-10	5,950
²³⁰ Th	3.09E-11	5,160	2.41E-11	5,950
²²⁶ Ra	1.44E-11	5,160	1.21E-11	5,950
²²² Rn	1.44E-11	5,160	1.21E-11	5,950
²¹⁰ Pb	1.42E-11	5,160	1.20E-11	5,950
²¹⁰ Bl	1.42E-11	5,160	1.20E-11	5,950
²¹⁰ Po	1.41E-11	5,160	1.20E-11	5,950
Thallium	2.09E-03	31	1.17E-03	37
²³⁰ Th (1)	3.29E-53	10,000	0.00E+00	10,000
²²⁶ Ra (1)	3.31E-50	10,000	0.00E+00	10,000
²³⁷ Np	6.55E-08	320	3.75E-08	359
²³³ Pa	6.55E-08	320	3.75E-08	359
²³³ U	9.12E-11	320	5.86E-11	359
²²⁹ Th	1.36E-12	320	1.07E-12	379
²²⁵ Ra	1.36E-12	320	1.07E-12	379
²²⁵ Ac	1.36E-12	320	1.07E-12	379
²³⁴ U	7.10E-08	5,160	4.16E-08	5,950
²³⁰ Th	3.25E-09	5,160	2.19E-09	5,950
²²⁶ Ra	1.97E-09	5,160	1.42E-09	5,950

	Table 5	16. (continued)	
	Plant Fe	nce	Property Bo	undary
	Max Conc.	Time	Max Conc.	Time
Constituent	(mg/L)(pCi/L)	(yr)	(mg/L)(pCi/L)	(yr)
Source: Subsurface				
Phenanthrene	7.02E-06	7,560	4.21E-06	8,220
²³⁷ Np	5.77E-07	455	3.64E-07	497
²³³ Pa	5.77E-07	455	3.64E-07	497
²³³ U	1.21E-09	493	8.41E-10	537
²²⁹ Th	2.79E-11	512	2.15E-11	537
²²⁵ Ra	2.79E-11	512	2.15E-11	557
²²⁵ Ac	2.79E-11	512	2.15E-11	557
ТСЕ	2.91E-02	105	1.85E-02	112

¹Did not reach maximum during model runs.

Notes:

Bold type denote constituents which were run from screening.

Italic type denote daughter product concentrations resulting from constituents listed in bold.

		· · · · · · · · · · · · · · · · · · ·	%					%		
	Total		Total		% Total	Total		Total		% Total
Receptor	ELCR*	ELCR COCs	ELCR	ELCR POCs	ELCR	HI •	Systemic Toxicity COCs	HI	Systemic Toxicity POCs	HI
Current industrial worker at	8.5 × 10 ⁻⁵	PAHs	52	Ingestion of soil	8	0.3	NE	NE	NE	NE
current concentrations		PCBs	37	Dermal contact with soil	82					
		Cesium-137	6	External exposure	10					
		Uranium-238	3							
Future industrial worker at	8.5 × 10 ⁻⁵	PAHs	52	Ingestion of soil	8	0.3	NE	NE	NE	NE
current concentrations		PCBs	37	Dermal contact with soil	82					
		Cesium-137	6	External exposure	10					
		Uranium-238	3							
Future child recreational	NA	NA	NA	NA	NA	<0.1	NE	NE	NE	NE
user at current										
concentrations										
Future teen recreational user	NA	NA	NA	NA	NA	<0.1	NE	NE	NE	NE
at current concentrations										
Future adult recreational	5.9 × 10⁵	PAHs	16	Ingestion of rabbit	86	<0.I	NE	NE	NE	NE
user at current		PCBs	84							
concentrations										
Future child rural resident at	NA	NA	NA	NA	NA	13.3	Cadmium	5	Ingestion of soil	I I
current concentrations							Chromium	31	Dermal contact with soil	14
							Uranium	63	Ingestion of vegetables	84
Future adult rural resident at	8.2 × 10 ⁻³	PAHs	25	Ingestion of soil	<i< td=""><td>4.0</td><td>Cadmium</td><td>5</td><td>Dermal contact with soil</td><td>9</td></i<>	4.0	Cadmium	5	Dermal contact with soil	9
current concentrations		PCBs	72	Dermal contact with soil	3		Chromium	28	Ingestion of vegetables	90
		Cesium-137	<i< td=""><td>Ingestion of vegetables</td><td>96</td><td></td><td>Uranium</td><td>66</td><td></td><td></td></i<>	Ingestion of vegetables	96		Uranium	66		
		Neptunium-237	<	External exposure	<1					
		Uranium-235	<							
		Uranium-238	2							
Future excavation worker at	1.2 × 10 ⁻⁴	Arsenic	12	Ingestion of soil	15	0.7	NE	NE	NE	NE
current concentrations		Beryllium	61	Dermal contact with soil	83					
		PAHs	21	External exposure	2					
		PCBs	2							
		Cesium-137	<u> </u>							

Table 6.5. Summar	v of human hea	alth risk characteriza	tion for Sector 3	3 without lead	d as a COC
-------------------	----------------	------------------------	-------------------	----------------	------------

*Total ELCR and total HI columns reflect values from Tables 1.68 to 1.77 of Appendix A in Volume 3 without lead included. Also, the values in this table do not include contributions from water ingestion or use because groundwater was evaluated on an area basis. For risks due to water use, see Table 6.2.

Notes:

NA = ELCR not applicable to child and teen cohorts. Values for adult include exposure as child and teen.

NE = Land use scenario not of concern.