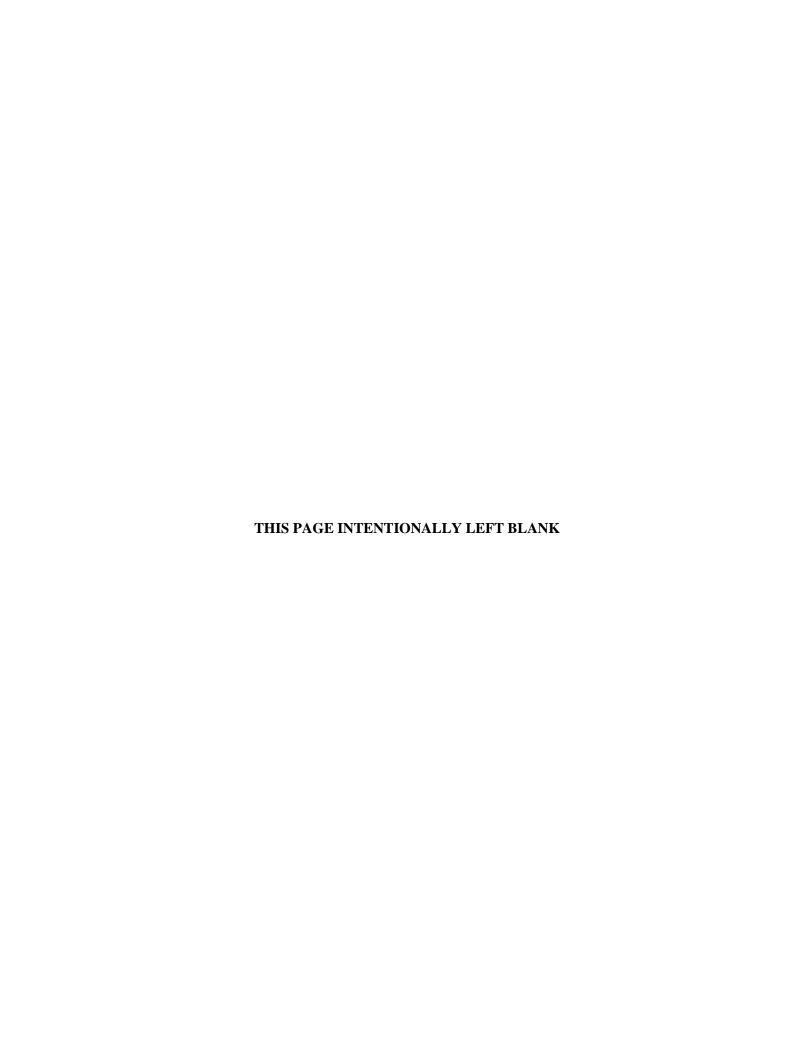
C-746-U Contained Landfill
Third Quarter Calendar Year 2019
(July-September)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

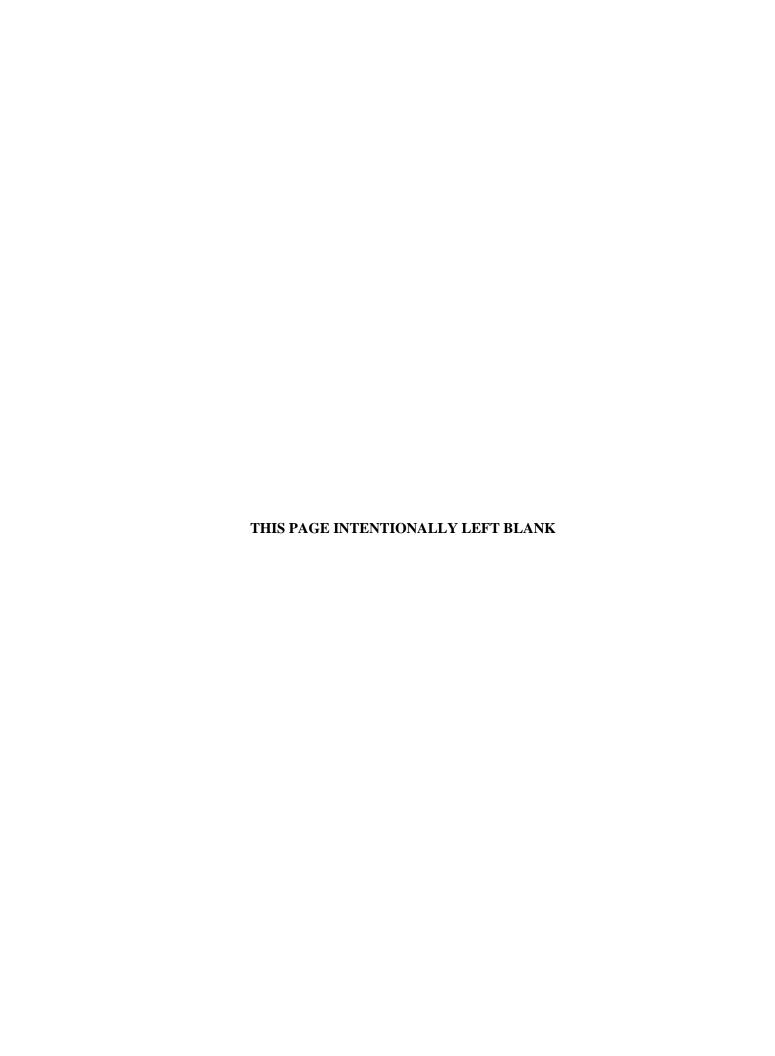


C-746-U Contained Landfill
Third Quarter Calendar Year 2019
(July-September)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—November 2019

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895


CONTENTS

FI	GURES	S		V
TA	ABLES			v
ΑC	CRONY	/MS		vii
1.	INTR	ODUCTI	ON	1
			ROUND	
	1.2		ORING PERIOD ACTIVITIES	
		1.2.1	Groundwater Monitoring	1
			Methane Monitoring	
			Surface Water Monitoring	
	1.3	KEY RE	SULTS	5
2.			JATION/STATISTICAL SYNOPSIS	
	2.1		ΓΙCAL ANALYSIS OF GROUNDWATER DATA	
			Upper Continental Recharge System	
		2.1.2 U	Upper Regional Gravel Aquifer	10
		2.1.3 I	Lower Regional Gravel Aquifer	10
	2.2	DATA V	ERIFICATION AND VALIDATION	11
3.	PROF	FESSION	AL GEOLOGIST AUTHORIZATION	13
4.	REFE	ERENCES	S	15
Αŀ	PPEND	IX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING 1 SAMPLE DATA REPORTING FORM	A-1
ΑF	PPEND	IX B:	FACILITY INFORMATION SHEET	B-1
ΑF	PPEND	IX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
ΑF	PPEND	IX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
ΑF	PPEND	IX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
ΑF	PPEND	IX F:	NOTIFICATIONS	F-1
ΑF	PPEND	IX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
ΑF	PPEND	IX H:	METHANE MONITORING DATA	H-1
ΑF	PPEND	IX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
ΑF	PPEND	IX J:	ANALYTICAL LABORATORY CERTIFICATION	J-1

APPENDIX K:	LABORATORY ANALYTICAL METHODS	K-1
APPENDIX L:	MICRO-PURGING STABILITY PARAMETERS	L-1

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	2
	C-746-U Landfill Surface Water Monitoring Locations	
	TABLES	
	TABLES	
	Summary of MCL Exceedances	
2.	Exceedances of Statistically Derived Historical Background Concentrations	5
	Exceedances of Current Background UTL in Downgradient Wells	
	C-746-U Landfill Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	7
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells*	
	Monitoring Wells Included in Statistical Analysis*	

ACRONYMS

CFR Code of Federal Regulations

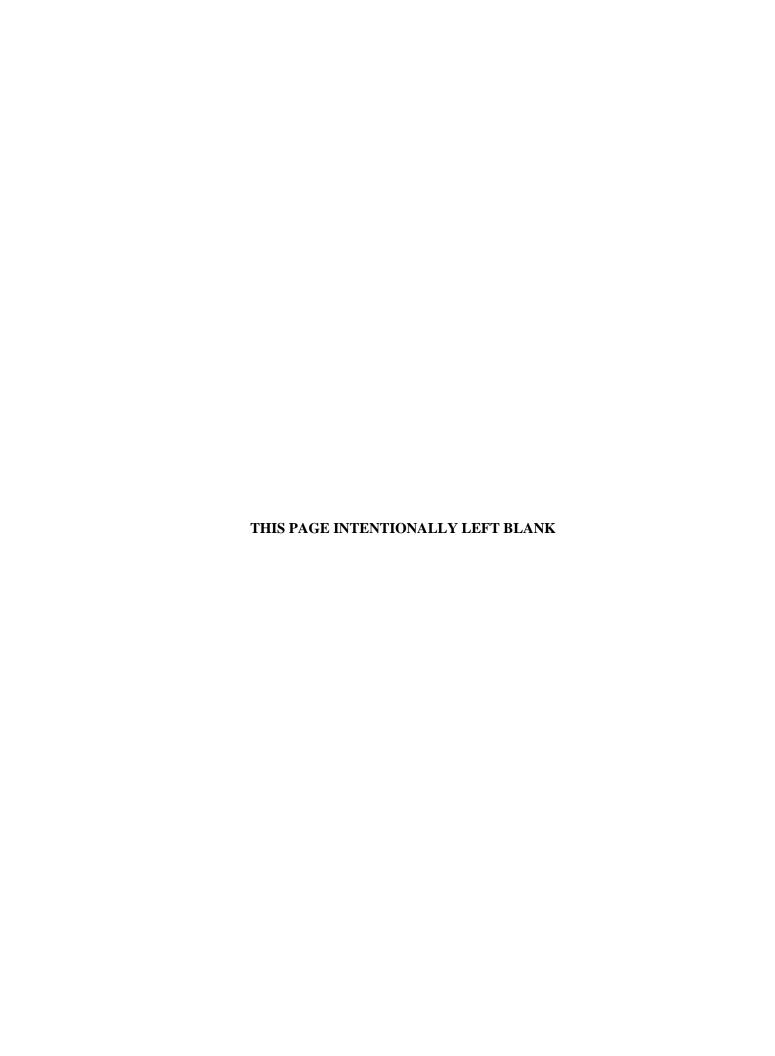
CY calendar year

KAR Kentucky Administrative Regulations
KDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit


MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

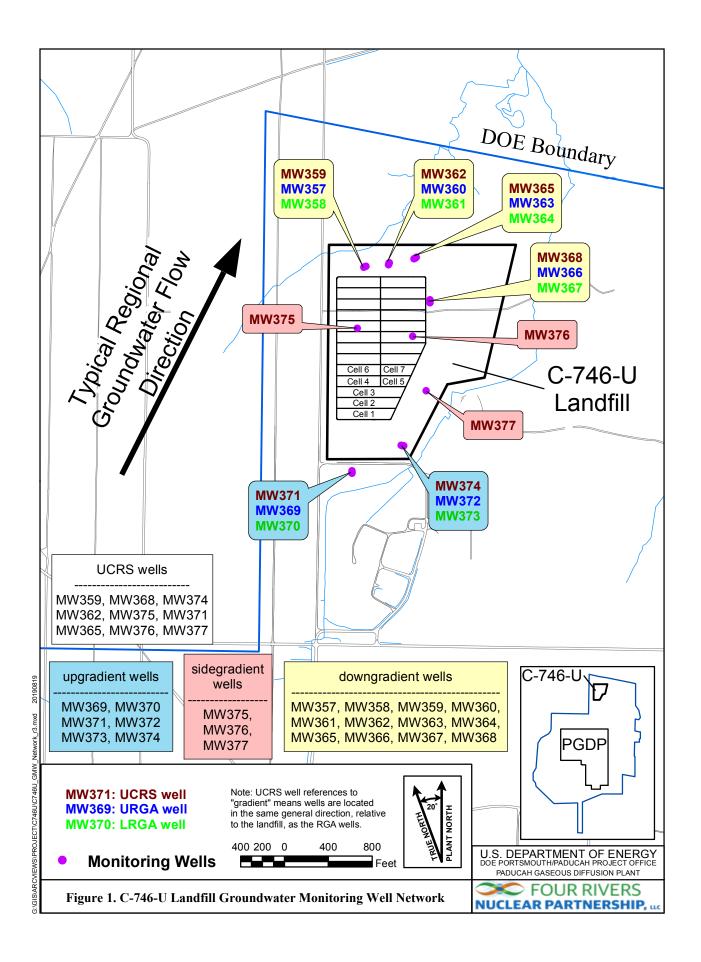
UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill Third Quarter Calendar Year 2019 (July–September) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of MCL exceedances and exceedances of the historical background UTL that have occurred, beginning in the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micro-purging stability parameter results are provided in Appendix L.

1.1 BACKGROUND


The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Site and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. The C-746-U Landfill currently is operating in Phases 4 and 5, with Phases 6 and 7 approved for receipt of waste as of September 27, 2019. Phases 1, 2, and 3 have long-term cover. Phases 8 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and MW377 (both screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no laboratory analysis results for these locations.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, (Groundwater Monitoring Plan) UCRS wells are included

in the monitoring program (LATA Kentucky 2014). Groundwater flow gradients are downward through the UCRS, but flow in the underlying Regional Gravel Aquifer (RGA) is lateral. Groundwater flow in the RGA typically is in a northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills.

Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the third quarter 2019 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on July 29, 2019, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During July, RGA groundwater flow in the area of the landfill was oriented north-northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-U Landfill in July was 4.99×10^{-4} ft/ft. The hydraulic gradients for the URGA and LRGA at the C-746-U Landfill were 1.06×10^{-3} ft/ft and 1.10×10^{-3} ft/ft, respectively. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 1.80 to 3.08 ft/day for the URGA and 1.87 to 3.19 ft/day for the LRGA (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application Attachment 12, of the Solid Waste Permit. Landfill operations staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on September 3, 2019. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed at three locations (see Figure 2) monitored for the C-746-U Landfill: (1) upstream location, L154; (2) downstream location, L351; and (3) location L150 capturing

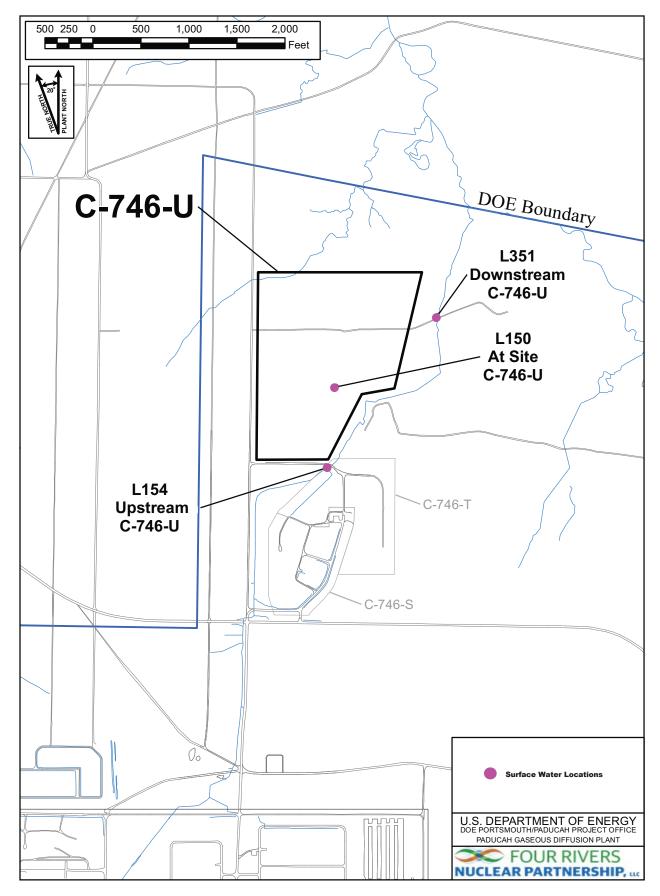


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

runoff from the landfill surface. Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application Attachment 24, of the Solid Waste Permit. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (that do not have MCLs) with concentrations that exceeded the statistically derived historical background UTL¹ during the third quarter 2019, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW369: Beta activity	MW358: Trichloroethene
	MW372: Beta activity	MW361: Trichloroethene
		MW364: Trichloroethene
		MW370: Beta activity

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW359: Dissolved oxygen,	MW357: Oxidation-reduction	MW361: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential
MW362: Dissolved oxygen,	MW360: Oxidation-reduction	MW364: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential, technetium-99
MW365: Dissolved oxygen,	MW363: Oxidation-reduction	MW367: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential, pH**
MW368: Calcium, dissolved	MW366: Oxidation-reduction	MW370: Beta activity,
oxygen, magnesium, oxidation-	potential	oxidation-reduction potential,
reduction potential, sulfate		technetium-99
MW371: Calcium, dissolved	MW369: Beta activity,	MW373: Chemical oxygen demand,
oxygen, oxidation-reduction	oxidation-reduction potential	oxidation-reduction potential
potential, sulfate		
MW374: Oxidation-reduction	MW372: Beta activity, chemical	
potential	oxygen demand, conductivity,	
	dissolved solids	
	oxidation-reduction potential,	
	technetium-99	
MW375: Oxidation-reduction		
potential, sulfate		

_

¹ The UTL comparison for pH uses a two-sided test, for both UTLs and LTLs. For the purposes of this report, the reference to "UTL exceedances" also includes the LTL for pH.

Table 2. Exceedance of Statistically Derived historical Background Concentrations (Continued)

*Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

**pH concentration is less than the LTL.

Sidegradient wells: MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368

Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
None	MW367: pH*

*pH concentration is less than the LTL.

The notification of parameters that exceeded the MCL was submitted electronically to the KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL in a downgradient well were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW358, MW361, and MW364 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0001, Standard Requirement 5; and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTLs that were developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient RGA wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a C-746-U Landfill source; therefore, they are a Type 1 exceedance (not attributable to the C-746-U Landfill).

The constituent listed in Table 3 that exceeds both the historical UTL and the current UTL does not have an identified source and is considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan. To evaluate the preliminary Type 2 exceedance further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. The preliminary Type 2 exceedance in a downgradient well did not have an increasing or decreasing trend and is considered to be a Type 1 exceedance (not attributable to the C-746-U Landfill).

Table 4. C-746-U Landfill Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Decision ⁴
C-746-U Landfill	MW367	pH ⁵	8	0.05	0.106	-11	No Trend

Footnotes

Note: Statistics generated using ProUCL.

The statistical evaluation of current UCRS concentrations against the current UCRS background UTL identified UCRS well, MW368 with calcium, magnesium, and sulfate values that exceed both the historical and current backgrounds (Table 5). Because UCRS wells are not hydrogeologically downgradient of the C-746-U Landfill, the exceedances are not attributable to C-746-U sources and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS					
MW368: Calcium, magnesium, sulfate					
skY (1	E C (1 C (4 1 10H) BCA H				

^{*}In the same direction (relative to the landfill) as RGA wells.

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

¹ An alpha of 0.05 represents a 95% confidence interval.

² The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 $^{^4}$ The Mann-Kendall decision operates on two hypotheses, the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

⁵ pH concentration is less than the LTL.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the third quarter 2019 groundwater data collected from the C-746-U Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the C-746-U Landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the C-746-U Landfill).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both a UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371**	MW369 (upgradient)	MW370 (upgradient)
MW374**	MW372 (upgradient)	MW373 (upgradient)
MW375	, 10	, 10
MW376***		
MW377***		

^{*}A map showing the monitoring well locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the UCRS. During the third quarter, calcium, dissolved oxygen, magnesium, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Calcium, magnesium, and sulfate exceeded the current background UTL and are included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 26 parameters, including those with MCLs, required statistical analysis in the URGA. During the third quarter, beta activity, chemical oxygen demand, conductivity, dissolved solids, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no exceedences of the current background UTL for any downgradient wells.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the LRGA. During the third quarter, beta activity, chemical oxygen demand, oxidation-reduction potential, pH, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. The pH exceeded the current background UTL and is included in Table 3.

^{**}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^{***}Well had insufficient water to permit a water sample for laboratory analysis.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill

Third Quarter Calendar Year 2019 (July-September)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (FRNP-RPT-0087/V3)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of KRS Chapter 322A.

> Registronon Profession of State of Stat PG 113927 KDavis 11-18-19

> > PG113927

<u>November 18, 2419</u>

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:			s Diffusion Plant M Permit Face)	Activity:		U Contained Landfill
Permit No:	SW07300014, SW07300015, SW07300045	F	inds/Unit No:	Quarter -	& Year	3rd Qtr. CY 2019
Please check the	e following as applic	able:				
Charac	terization X	Quarterly	Semiannual	Anr	nual	Assessment
Please check app	plicable submittal(s)	:X	Groundwater	X	Surfac	e Water
		-	Leachate	X	Metha	ne Monitoring
45:160) or by statu jurisdiction of the (48) hours of ma Submitting the lal instruction pages. I certify under peraccordance with a Based on my inquithe best of my kno	Division of Waste Making the determinate be report is NOT considerable of law that this system designed to as ry of the person or perwledge and belief, true	Statues Chalanagement. cion using sidered notification document assure that questions directly e, accurate, a	egulation (Kentucky Was apter 224) to conduct group You must report any instatistical analyses, directation. Instructions for contained all attachments were salified personnel properly responsible for gathering and complete. I am aware imprisonment for such violents.	undwater and indication of ect comparison in the first prepared uncay gather and on the information in that there are	surface wa contamina on, or oth orm are attra- der my dire- evaluate the on, the infe	ter monitoring under the ation within forty-eight ter similar techniques. ached. Do not submit the ection or supervision in a information submitted. ormation submitted is, to
	eld, Program Mana clear Partnership, I			<u>-</u>	Date Date	la
	rd, Paducah Site L	ead			N 2 !	5/19

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

St	roundwater: July 2019 urface water: July 2019 lethane: September 2019	County:	McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045			
Facility Name: <u>U</u>	.S. DOE—Paducah Gaseous D							
	(As officially sho	wn on DWM Permit Face	·)					
Site Address:								
Street City/State Zip								
Phone No: (270)	441-6800 Latitude:	N 37° 07' 45"	Longi	tude: W	88° 47' 55"			
	OWN	NER INFORMATION						
Facility Owner:	U.S. DOE, Robert E. Edwards	III. Manager	Phone No:	(859) 227	7-5020			
_	David Hutchison		Phone No:					
	Director, Environmental	Services	Thone Ivo.	(270) 111	. 5,2,			
Contact Person Title:	Four Rivers Nuclear Part	nership, LLC						
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053				
	Street	City/State		Zip				
Company: GEO C	• •							
Mailing Address:	199 Kentucky Avenue	Kevil, Kentucky		42053				
S	Street	City/State		Zip				
	LABO	RATORY RECORD #1						
Laboratory GEL I	Laboratories, LLC	Lab	ID No: <u>KY90</u>	129				
Contact Person:	Valerie Davis		Phone No:	(843) 769) -7391			
Mailing Address:	2040 Savage Road	Charleston, South Car	rolina	2940				
	Street	City/State		Zij)			
	LABO	RATORY RECORD #2						
Laboratory: N/A		Lab II	D No: N/A					
Contact Person:	N/A		Phone No:	N/A				
Mailing Address:	N/A							
	Street	City/State			Zip			
	LABO	RATORY RECORD #3						
Laboratory: N/A		Lab II	D No: N/A					
Contact Person:	N/A		Phone No:	N/A				
Mailing Address:	N/A							
J	Street	City/State		,	Zip			

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-47	' 99	8004-09	81	8004-480	00
Facility's Loc	al Well or Spring Number (e.g., I	.)	357		358		359		360			
Sample Sequence	e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		7/10/2019 09	9:11	7/10/2019	10:01	7/10/2019	10:48	7/10/2019 0	06:58
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW357UG4	-19	MW358U0	34-19	MW359U0	34-19	MW360UG	4-19
Laboratory Sam	ple ID Number (if applicable)				48438400	2	484384	004	4843840	005	4843840	06
Date of Analys	is (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	7/12/2019)	7/12/20	19	7/12/20	19	7/12/201	9
Gradient with	respect to Monitored Unit (UP, Do	, NWC	SIDE, UNKN	OWN)	DOWN		DOW	N	DOWI	٧	DOWN	I
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.388		0.452		<0.2		0.137	J
16887-00-6	Chloride(s)	Т	mg/L	9056	32.4		34.9		0.893		8.64	
16984-48-8	Fluoride	Т	mg/L	9056	0.181		0.173		0.241		0.244	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.3	*	1.14	*	0.714		0.498	
14808-79-8	Sulfate	Т	mg/L	9056	44.7		65.3		47.1		9.94	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.01		30.01		30		29.98	
S0145	Specific Conductance	Т	μ M H0/cm	Field	427		505		224		402	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-4799)	8004-0981		8004-4800	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	330.7		330.7		340.61		330.74	
N238	Dissolved Oxygen	т	mg/L	Field	4.72		2.01		3.4		1.51	
S0266	Total Dissolved Solids	т	mg/L	160.1	231		321		143		210	
S0296	рн	т	Units	Field	6.1		6.11		5.89		6.16	
NS215	Eh	т	mV	Field	413		101		217		423	
s0907	Temperature	т	°C	Field	18.67		19.28		18.78		16.72	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.0207	J	0.0271	J	0.126	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		0.00114	J
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00242	J	<0.005		0.00232	J
7440-39-3	Barium	т	mg/L	6020	0.0698		0.0514		0.0248		0.177	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.377		0.466		<0.015		0.0183	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	27		33.5		5.91		19	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.0019		<0.001		0.00286	
7440-50-8	Copper	т	mg/L	6020	0.00057	J	0.00045	J	0.00085	J	0.0008	J
7439-89-6	Iron	т	mg/L	6020	<0.1		0.845		0.0337	J	0.591	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.7	*	15.1	*	3.26	*	7.94	*
7439-96-5	Manganese	т	mg/L	6020	0.00263	J	0.173		<0.005		0.0395	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUM	BER ¹ ,	Facility Well/Spring Number			8004-479	8	8004-479	99	8004-098	1	8004-480	00	
Facility'	s Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	Т	mg/L	6020	<0.001		0.00022	J	<0.001		<0.001	
7440-02-0		Nickel	Т	mg/L	6020	<0.002		0.0041		0.00087	J	0.00118	J
7440-09-7		Potassium	Т	mg/L	6020	1.57		2.23		<0.3		0.632	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	т	mg/L	6020	42.4		40.7		37.2		58.4	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.00007	J	0.00011	J
7440-62-2	2	Vanadium	Т	mg/L	6020	<0.02		<0.02		0.00536	J	0.00359	J
7440-66-6		Zinc	Т	mg/L	6020	0.00642	BJ	0.00715	BJ	0.00628	BJ	0.0063	BJ
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1,	Facility Well/Spring Number				8004-4798		8004-4799	9	8004-098	31	8004-480	00
Facility's L	oca	al Well or Spring Number (e.g., N	4W −1	l, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴		CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
75-27-4		Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2		Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9		Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3		Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6		trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0		Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3		Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3		Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3		Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2		cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3		Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3		1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2		1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4		1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4		Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5		Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6		Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5		Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6		Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4		Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4		Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6		Ethene, Trichloro-	т	mg/L	8260	0.00371		0.00512		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-4799)	8004-098	31	8004-480	00
	Facility's Loca	al Well or Spring Number (e.g., N	4W−1	L, MW−2, et	.c.)	357		358		359		360	
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
ľ	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
Ī	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
I	124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
ှ	108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.0000197		<0.0000198		<0.0000198	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
L	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
L	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3	PCB, Total	т	ug/L	8082	<0.0969		<0.101		<0.0977		<0.0969	
	12674-11-2	PCB-1016	Т	ug/L	8082	<0.0969		<0.101		<0.0977		<0.0969	
	11104-28-2	PCB-1221	т	ug/L	8082	<0.0969		<0.101		<0.0977		<0.0969	
	11141-16-5	PCB-1232	т	ug/L	8082	<0.0969		<0.101		<0.0977		<0.0969	
	53469-21-9	PCB-1242	т	ug/L	8082	<0.0969		<0.101		<0.0977		<0.0969	
	12672-29-6	PCB-1248	Т	ug/L	8082	<0.0969		<0.101		<0.0977		<0.0969	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-4798		8004-4799		8004-098	1	8004-480	00	
Facility's Loc	al Well or Spring Number (e.g., N	⁄w−1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0969		<0.101		<0.0977		<0.0969	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0969		<0.101		<0.0977		<0.0969	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0969		<0.101		<0.0977		<0.0969	
12587-46-1	Gross Alpha	Т	pCi/L	9310	12.4	*	2.03	*	3.88	*	0.373	*
12587-47-2	Gross Beta	Т	pCi/L	9310	45.5	*	32.7	*	-0.678	*	13.9	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.137	*	0.0593	*	0.318	*	0.413	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.98	*	0.251	*	1.36	*	0.318	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	30.5	*	36.6	*	-6.7	*	8.71	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.354	*	0.293	*	-0.377	*	0.0351	*
10028-17-8	Tritium	т	pCi/L	906.0	-102	*	-166	*	19.8	*	-126	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		10.8	J	<20		<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	Т	mg/L	9060	0.902	J	1.09	J	0.899	J	1.29	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00654	J	0.00684	J	<0.01		0.00654	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	'96	8004-479	97
Facility's Loc	al Well or Spring Number (e.g., N	∕w-1	, MW-2, etc	.)	361		362		363		364	
Sample Sequenc	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		7/10/2019 07	7:44	7/10/2019	08:26	7/10/2019	11:32	7/10/2019 1	12:17
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW361UG4	-19	MW362U0	34-19	MW363U0	G4-19	MW364UG	4-19
Laboratory Sam	ple ID Number (if applicable)				48438400	7	484384	001	4843840	800	4843840	09
Date of Analys	is (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	7/12/2019)	7/12/20	19	7/12/20	19	7/12/201	9
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOWN		DOW	N	DOWI	V	DOWN	I
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.446		0.117	J	<0.2		0.439	
16887-00-6	Chloride(s)	т	mg/L	9056	32.3		4.25		19.2		33	
16984-48-8	Fluoride	т	mg/L	9056	0.164		0.425		0.218		0.152	
s0595	Nitrate & Nitrite	т	mg/L	9056	1		0.416		5.08	*	1.01	
14808-79-8	Sulfate	т	mg/L	9056	73.8		32.1		36.7		70.2	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.99		30		30.01		30	
S0145	Specific Conductance	т	μ M H0/cm	Field	492		733		412		485	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986	3	8004-4796		8004-4797	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	330.75		341.57		330.67		329.17	
N238	Dissolved Oxygen	т	mg/L	Field	2.89		4.48		0.78		3.23	
s0266	Total Dissolved Solids	т	mg/L	160.1	364		449		283		274	
S0296	рн	т	Units	Field	6.02		6.93		6.07		6.01	
NS215	Eh	т	mV	Field	412		381		365		356	
s0907	Temperature	т	°C	Field	17		16.78		21.06		19.06	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.111		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	0.00109	J	<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00201	J	<0.005		<0.005		0.00215	J
7440-39-3	Barium	т	mg/L	6020	0.0562		0.104		0.128		0.0644	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.162		0.0189		0.0196		0.0168	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	32		22.8		26.5		32	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		<0.001		0.0011		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00052	J	0.00148	J	0.00033	J	0.00043	J
7439-89-6	Iron	т	mg/L	6020	<0.1		0.0953	J	0.0549	J	0.0411	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	13.8	*	10.1	*	10.5	*	13.7	*
7439-96-5	Manganese	т	mg/L	6020	0.00525		0.001	J	0.25		0.00521	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGV	WA NUMBEI	R ¹ , Facility Well/Spring Number				8004-479	5	8004-098	36	8004-479	6	8004-479	7
Faci	ility's 1	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS	S RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439	9-98-7	Molybdenum	Т	mg/L	6020	<0.001		0.00075	J	<0.001		<0.001	
7440	0-02-0	Nickel	Т	mg/L	6020	<0.002		0.00093	J	0.0071		<0.002	
7440	0-09-7	Potassium	Т	mg/L	6020	2.12		0.317		1.39		1.9	
7440	0-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782	2-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440	0-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440	0-23-5	Sodium	Т	mg/L	6020	45.5		140		42.5		45	
7440	0-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440	0-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440	0-61-1	Uranium	Т	mg/L	6020	<0.0002		0.00437		<0.0002		<0.0002	
744	0-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7440	0-66-6	Zinc	Т	mg/L	6020	0.00617	BJ	0.00508	BJ	0.00535	BJ	0.0389	В
108-	-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-6	64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-	-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-	-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-4	43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-	-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330	0-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-	-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-	-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-9	97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1 ,	Facility Well/Spring Number				8004-4795		8004-0986	6	8004-479	96	8004-479	97
Facility's L	oca	l Well or Spring Number (e.g., N	4W −1	1, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
75-27-4		Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2		Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9		Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3		Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6		trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0		Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3		Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3		Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3		Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2		cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3		Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3		1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2		1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4		1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4		Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5		Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6		Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5		Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6		Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4		Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4		Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6		Ethene, Trichloro-	т	mg/L	8260	0.00546		<0.001		<0.001		0.00669	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: <u>None</u>
For Official Use Only

ſ	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-479	96	8004-479	97
	Facility's Loca	al Well or Spring Number (e.g., N	4W−1	., MW-2, et	.c.)	361		362		363		364	
 	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
ľ	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
Ī	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
구 -	108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
<u>با</u>	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000194		<0.000196		<0.0000193		<0.0000194	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
L	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3	PCB, Total	т	ug/L	8082	<0.0962		<0.1		<0.0984		<0.0999	
	12674-11-2	PCB-1016	Т	ug/L	8082	<0.0962		<0.1		<0.0984		<0.0999	
	11104-28-2	PCB-1221	т	ug/L	8082	<0.0962		<0.1		<0.0984		<0.0999	
	11141-16-5	PCB-1232	Т	ug/L	8082	<0.0962		<0.1		<0.0984		<0.0999	
	53469-21-9	PCB-1242	Т	ug/L	8082	<0.0962		<0.1		<0.0984		<0.0999	
	12672-29-6	PCB-1248	Т	ug/L	8082	<0.0962		<0.1		<0.0984		<0.0999	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795	1	8004-0986		8004-479	6	8004-479	97
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-1	1, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0962		<0.1		<0.0984		<0.0999	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0962		<0.1		<0.0984		<0.0999	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0962		<0.1		<0.0984		<0.0999	
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.58	*	3.36	*	-4.4	*	7.74	*
12587-47-2	Gross Beta	Т	pCi/L	9310	44.1	*	4.39	*	-0.878	*	34.8	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.0668	*	0.368	*	0.825	*	0.23	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-2.09	*	-1.64	*	3.38	*	-0.835	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	43.3	*	9.4	*	5.08	*	52.5	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.466	*	0.0157	*	-0.793	*	-0.369	*
10028-17-8	Tritium	Т	pCi/L	906.0	-96.6	*	-81.7	*	-86.9	*	-68.1	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	31.5		17.7	J	21.1		28	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	T	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.33	J	2.26		1.2	J	0.873	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00726	BJ	0.019		0.00844	BJ	0.00666	BJ

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-09	84	8004-	0982	8004-4	1793	8004-0	983
Facility's Loc	eal Well or Spring Number (e.g., N	⁄W−1	, MW-2, etc	.)	365		36	66	36	7	368	3
Sample Sequence	e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		7/10/2019	13:00	7/11/201	9 07:06	7/11/201	9 07:59	7/11/2019	08:49
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW365U0	94-19	MW366	JG4-19	MW367U	JG4-19	MW368U	IG4-19
Laboratory Sam	oratory Sample ID Number (if applicable))10	48457	8001	48457	8003	484578	3005
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ganics Anal	ysis	7/12/20	19	7/17/2	2019	7/17/2	019	7/17/20	019	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOW	١	DO	ΝN	DOV	VN	DOW	/N
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	<0.2		0.477		0.445		<0.2	
16887-00-6	Chloride(s)	т	mg/L	9056	2.7		38.6	*	33.8	*	7.3	*
16984-48-8	Fluoride	т	mg/L	9056	0.331		0.181		0.139		0.25	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.975		0.91		0.0659	J	<0.1	
14808-79-8	Sulfate	Т	mg/L	9056	58.4		53.1		48.3		164	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.3		29.93		29.93		29.95	
s0145	Specific Conductance	Т	μ MH 0/cm	Field	430		471	_	400		733	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

^{* =} See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-4793	1	8004-0983	1
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	335.75		330.84		330.63		339.89	
N238	Dissolved Oxygen	т	mg/L	Field	2.74		2.99		2.23		4.17	
S0266	Total Dissolved Solids	т	mg/L	160.1	290		273		234		687	
S0296	рн	т	Units	Field	6.2		6.03		5.79		6.42	
NS215	Eh	т	mV	Field	388		390		312		338	
s0907	Temperature	т	°C	Field	18.78		17.33		17.33		17.39	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		<0.05		0.139	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00238	J	0.00208	J	0.00467	J
7440-39-3	Barium	т	mg/L	6020	0.106		0.11		0.155		0.0506	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00728	J	0.191		0.0538		0.00821	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	23.2		33.4		25.9		73.1	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00173		<0.001		0.00726		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00488		0.00046	J	0.00059	J	0.00069	J
7439-89-6	Iron	т	mg/L	6020	<0.1		0.0508	J	0.593		0.0869	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.8	*	14.2	*	12.2	*	21.8	*
7439-96-5	Manganese	т	mg/L	6020	0.0113		0.00412	J	1		0.00473	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: <u>None</u>
For Official Use Only

7	AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-098	4	8004-098	32	8004-479	3	8004-098	3
I	acility's	Local Well or Spring Number (e.g.,	, MW-	-1, MW-2, e	tc.)	365		366		367		368	
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7	439-98-7	Molybdenum	Т	mg/L	6020	<0.001		<0.001		<0.001		0.00088	J
7	7440-02-0	Nickel	Т	mg/L	6020	0.00491		<0.002		0.00387		0.00098	J
	440-09-7	Potassium	Т	mg/L	6020	0.239	J	1.76		2.96		0.721	
7	7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7	7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7	7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
<u> </u>	440-23-5	Sodium	Т	mg/L	6020	55.3		45.8		35.3		65.6	
۱.	440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7	440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	440-61-1	Uranium	Т	mg/L	6020	0.00019	J	<0.0002		<0.0002		0.0004	
Ŀ	7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02		<0.02	
7	440-66-6	Zinc	Т	mg/L	6020	0.00907	BJ	0.00477	BJ	0.0114	BJ	0.00634	BJ
1	.08-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
6	57-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1	.07-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
1	.07-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	1-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1	.08-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1	.330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
1	.00-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1	.08-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
7	74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1,	Facility Well/Spring Number				8004-0984		8004-098	2	8004-479	93	8004-098	33
Facility's L	oca	l Well or Spring Number (e.g., N	4W −1	1, MW-2, et	cc.)	365		366		367		368	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4		Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2		Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9		Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3		Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6		trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0		Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3		Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3		Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3		Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2		cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3		Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3		1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2		1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4		1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4		Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5		Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6		Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5		Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6		Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4		Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4		Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6		Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00454		0.00495		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

Ī	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-479	93	8004-09	83
	Facility's Loca	al Well or Spring Number (e.g., N	4W−1	L, MW−2, et	.c.)	365		366		367		368	
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
ı	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
ĺ	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
\cdot	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
9	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000193		<0.0000194		<0.0000195	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	1336-36-3	PCB,Total	Т	ug/L	8082	0.0954	J	<0.0985		<0.0986		<0.0992	
	12674-11-2	PCB-1016	Т	ug/L	8082	<0.0985		<0.0985		<0.0986		<0.0992	
	11104-28-2	PCB-1221	Т	ug/L	8082	<0.0985		<0.0985		<0.0986		<0.0992	
	11141-16-5	PCB-1232	Т	ug/L	8082	<0.0985		<0.0985		<0.0986		<0.0992	
	53469-21-9	PCB-1242	Т	ug/L	8082	0.0954	J	<0.0985		<0.0986		<0.0992	
	12672-29-6	PCB-1248	Т	ug/L	8082	<0.0985		<0.0985		<0.0986		<0.0992	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982	!	8004-479	3	8004-098	33
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0985		<0.0985		<0.0986		<0.0992	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0985		<0.0985		<0.0986		<0.0992	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0985		<0.0985		<0.0986		<0.0992	
12587-46-1	Gross Alpha	T	pCi/L	9310	4.31	*	-1.75	*	1.5	*	5.71	*
12587-47-2	Gross Beta	Т	pCi/L	9310	7.98	*	42	*	9.55	*	4.53	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.706	*	0.823	*	0.838	*	0.322	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.704	*	0.882	*	-2.67	*	-0.0496	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	-3.44	*	43.8	*	8.13	*	-0.571	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.139	*	-0.193	*	-0.392	*	-0.194	*
10028-17-8	Tritium	Т	pCi/L	906.0	-32.9	*	-46.7	*	-202	*	-196	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	34.9		14.2	J	<20		149	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.65	J	0.849	J	0.929	J	1.73	J
s0586	Total Organic Halides	T	mg/L	9020	0.0201	В	0.0059	BJ	0.0064	BJ	0.00956	J
							_					

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-48	20	8004-	4818	8004-4	1819	8004-4	808
Facility's Loc	al Well or Spring Number (e.g., N	, MW-2, etc	.)	369		37	0	37	1	372	2	
Sample Sequenc	e #			1		1		1		1		
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		7/15/2019	07:12	7/15/201	9 07:58	7/15/201	9 08:43	7/11/2019	9 09:36
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)		MW369U0	94-19	MW370	JG4-19	MW371L	JG4-19	MW372U	G4-19		
Laboratory Sam	ple ID Number (if applicable)			4847430	001	48474	3003	48474	3005	484578	3007	
Date of Analys	is (Month/Day/Year) For Volatile	e Or	ganics Anal	ysis	7/20/20	19	7/20/2	2019	7/20/2	019	7/19/20	019
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	UP		U	Р	UF	•	UP	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.366		0.394		<0.2		0.576	
16887-00-6	Chloride(s)	Т	mg/L	9056	31.6		34.2		1.87		44.8	*
16984-48-8	Fluoride	т	mg/L	9056	0.21		0.175		0.151		0.177	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.655		0.707		0.0621	J	1.53	*
14808-79-8	Sulfate	Т	mg/L	9056	8.91		20.2		55.4		70.5	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.07		30.07		30.07		29.95	
s0145	Specific Conductance	т	μ M H0/cm	Field	373		421		523		640	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				8004-4820)	8004-4818	3	8004-4819		8004-4808	;
Facility's L	ocal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	331.78		331.74		346.2		332.25	
N238	Dissolved Oxygen	т	mg/L	Field	3.09		4.09		4.6		3.63	
s0266	Total Dissolved Solids	T	mg/L	160.1	194	В	241	В	341	В	616	
s0296	рН	T	Units	Field	6.25		6.15		6.56		6.08	
NS215	Eh	T	mV	Field	410		421		423		390	
s0907	Temperature	T	°c	Field	17.06		17.22		17.06		18.44	
7429-90-5	Aluminum	T	mg/L	6020	0.0609		<0.05		0.249		<0.05	
7440-36-0	Antimony	T	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	T	mg/L	6020	<0.005		0.00271	J	0.00337	J	0.0021	J
7440-39-3	Barium	T	mg/L	6020	0.381		0.23		0.0773		0.0582	
7440-41-7	Beryllium	T	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	T	mg/L	6020	0.0168		0.0299		0.0102	J	0.889	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	17.7		27.7		70.4		49.7	
7440-47-3	Chromium	T	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	T	mg/L	6020	0.00539		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00121	J	0.0005	J	0.00215		0.00064	J
7439-89-6	Iron	Т	mg/L	6020	0.136		<0.1		0.16		0.0634	J
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	7.51		12.1		12.6		19.2	*
7439-96-5	Manganese	Т	mg/L	6020	0.00693		0.00111	J	0.0203		0.00159	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: <u>None</u>
For Official Use Only

I	KGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-482	0	8004-481	8	8004-481	9	8004-480	18
I	'acility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	369		370		371		372	
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
-	439-98-7	Molybdenum	T	mg/L	6020	<0.001		<0.001		0.00031	J	<0.001	
7	440-02-0	Nickel	T	mg/L	6020	0.00474		<0.002		0.00169	J	0.00064	J
	440-09-7	Potassium	T	mg/L	6020	0.57		2.46		0.495		1.95	
-	440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7	782-49-2	Selenium	Т	mg/L	6020	0.00207	J	<0.005		<0.005		<0.005	
7	440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
	440-23-5	Sodium	Т	mg/L	6020	49.3		42.3		28.2		54.4	
23 -	440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7	440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	440-61-1	Uranium	T	mg/L	6020	<0.0002		<0.0002		0.00088		<0.0002	
	7440-62-2	Vanadium	Т	mg/L	6020	<0.02		<0.02		0.00549	J	<0.02	
7	440-66-6	Zinc	Т	mg/L	6020	0.00487	BJ	0.00444	BJ	0.00632	BJ	0.00509	BJ
1	.08-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
6	7-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
1	.07-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
1	.07-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
-	1-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
1	.08-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
1	.330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	*
1	.00-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
1	.08-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
7	4-97-5	Chlorobromomethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-480	08
	Facility's Loc	al Well or Spring Number (e.g., 1	MW-	1, MW-2, et	:c.)	369		370		371		372	
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
	75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	78-93-3	Methyl ethyl ketone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
	75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
C-24	75-00-3	Chloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
	79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00099	J	0.00057	J	<0.001		0.00256	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBEI	R ¹ , Facility Well/Spring Number				8004-482	0	8004-4818	3	8004-48	19	8004-48	08
Facility's 1	Local Well or Spring Number (e.g., N	4W−1	L, MW−2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000196		<0.0000197		<0.0000198		<0.0000199	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
1336-36-3	PCB,Total	т	ug/L	8082	<0.1		<0.0986		<0.0981		<0.0998	
12674-11-2	PCB-1016	т	ug/L	8082	<0.1		<0.0986		<0.0981		<0.0998	
11104-28-2	PCB-1221	т	ug/L	8082	<0.1		<0.0986		<0.0981		<0.0998	
11141-16-5	PCB-1232	Т	ug/L	8082	<0.1		<0.0986		<0.0981		<0.0998	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.1		<0.0986		<0.0981		<0.0998	
12672-29-6	PCB-1248	т	ug/L	8082	<0.1		<0.0986		<0.0981		<0.0998	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480)8
Facility's Loc	al Well or Spring Number (e.g., N	⁄w−1	l, MW−2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.1		<0.0986		<0.0981		<0.0998	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.1		<0.0986		<0.0981		<0.0998	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.1		<0.0986		<0.0981		<0.0998	
12587-46-1	Gross Alpha	Т	pCi/L	9310	2.87	*	10.4	*	13.3	*	-1.85	*
12587-47-2	Gross Beta	Т	pCi/L	9310	120	*	52.7	*	5.76	*	141	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.451	*	0.104	*	0.55	*	0.629	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.0294	*	-1.35	*	-0.437	*	-0.0276	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	55.8	*	107	*	-1.71	*	183	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.045	*	-0.233	*	0.739	*	0.0604	*
10028-17-8	Tritium	Т	pCi/L	906.0	65.8	*	-40.2	*	-45.1	*	-112	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20	*	36.7	*	<20	*	69.4	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.11	J	0.988	J	1.75	J	1.27	J
s0586	Total Organic Halides	Т	mg/L	9020	0.0092	J	0.007	J	0.00386	J	0.00828	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-09	990	8004-09	85	8004-098	88
Facility's Loc	cal Well or Spring Number (e.g., b	4W−1	, MW-2, etc	:.)	373		374		375		376	
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		7/11/2019 10	0:21	7/11/2019	11:07	7/11/2019	11:52	NA	
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW373UG4	- 19	MW374U	G4-19	MW375U0	G4-19	NA	
Laboratory Sam	mple ID Number (if applicable)		48457800	9	484578	011	4845780	013	NA			
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ysis.	7/18/2019	9	7/18/20	19	7/18/20	19	NA			
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	Т	mg/L	9056	0.532		0.705		<0.2			*
16887-00-6	Chloride(s)	т	mg/L	9056	40.5	*	60.5	*	3.89	*		*
16984-48-8	Fluoride	т	mg/L	9056	0.2		0.2		0.306			*
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.06	*	<0.1		1.01			*
14808-79-8	Sulfate	Т	mg/L	9056	148		8.06		24.2			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.95		29.95		29.95			*
S0145	Specific Conductance	т	μ M H0/cm	Field	785		661		335			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-4792	2	8004-0990)	8004-0985		8004-0988	š
Facility's L	ocal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-1	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	332.24		341.77		342.77			*
N238	Dissolved Oxygen	Т	mg/L	Field	2.36		2.23		1.21			*
S0266	Total Dissolved Solids	Т	mg/L	160.1	481		363		166			*
S0296	рН	Т	Units	Field	6.03		6.54		6.27			*
NS215	Eh	Т	mV	Field	417		354		363			*
s0907	Temperature	т	°C	Field	19.11		18.5		17.72			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0249	J		*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		0.00115	J		*
7440-38-2	Arsenic	т	mg/L	6020	0.00262	J	<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020	0.0393		0.129		0.163			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	1.52		0.00968	J	0.00903	J		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	67.9		20.7		13.8			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	0.00097	J	0.00037	J	<0.001			*
7440-50-8	Copper	Т	mg/L	6020	0.00065	J	0.00057	J	0.00057	J		*
7439-89-6	Iron	Т	mg/L	6020	0.103		0.44		0.0715	J		*
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	Т	mg/L	6020	27.2	*	5.35	*	5.15	*		*
7439-96-5	Manganese	Т	mg/L	6020	0.0499		0.309		0.00245	J		*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

A	KGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	5	8004-098	8
F	acility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
(CAS RN ⁴		CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7	139-98-7		Molybdenum	Т	mg/L	6020	<0.001		0.00021	J	<0.001			*
7	440-02-0		Nickel	Т	mg/L	6020	0.00217		0.00119	J	0.00074	J		*
7.	140-09-7		Potassium	Т	mg/L	6020	2.6		0.317		0.252	J		*
7.	440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7	782-49-2		Selenium	Т	mg/L	6020	<0.005		0.00202	J	0.00234	J		*
7.	140-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001			*
7.	140-23-5		Sodium	Т	mg/L	6020	58.6		119		52.9			*
7.	140-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005			*
7.	140-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002			*
7.	440-61-1		Uranium	Т	mg/L	6020	0.000076	J	0.00036		<0.0002			*
7	440-62-2		Vanadium	Т	mg/L	6020	<0.02		<0.02		<0.02			*
7.	140-66-6		Zinc	Т	mg/L	6020	0.00565	BJ	0.00531	BJ	0.00527	BJ		*
1	08-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			*
6	7-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
1	07-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005			*
1	07-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			*
7	1-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1	08-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1	330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			*
1	00-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1	08-88-3		Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			*
7.	1-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1,	Facility Well/Spring Number				8004-4792		8004-099	0	8004-09	85	8004-09	88
Facility's L	oca	al Well or Spring Number (e.g., N	4W −1	1, MW-2, et	cc.)	373		374		375		376	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
75-27-4		Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2		Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9		Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3		Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6		trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0		Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3		Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3		Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3		Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2		cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3		Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3		1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2		1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4		1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4		Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5		Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6		Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5		Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6		Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4		Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4		Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6		Ethene, Trichloro-	т	mg/L	8260	0.00069	J	0.00417		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

Ī	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-0990)	8004-098	35	8004-09	88
	Facility's Loca	al Well or Spring Number (e.g., N	MW−1	L, MW−2, et	.c.)	373		374		375		376	
1	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
ľ	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
I	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
	74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
	124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
	56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
ဂျ	108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
=	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000195		<0.0000194			*
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
	10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			*
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
	106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
	1336-36-3	PCB,Total	т	ug/L	8082	<0.101		<0.1		<0.0997			*
	12674-11-2	PCB-1016	т	ug/L	8082	<0.101		<0.1		<0.0997			*
	11104-28-2	PCB-1221	т	ug/L	8082	<0.101		<0.1		<0.0997			*
	11141-16-5	PCB-1232	т	ug/L	8082	<0.101		<0.1		<0.0997			*
	53469-21-9	PCB-1242	Т	ug/L	8082	<0.101		<0.1		<0.0997			*
	12672-29-6	PCB-1248	Т	ug/L	8082	<0.101		<0.1		<0.0997			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-098	38
Facility's Loc	cal Well or Spring Number (e.g., h	MW-1	L, MW-2, et	tc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.101		<0.1		<0.0997			*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.101		<0.1		<0.0997			*
11100-14-4	PCB-1268	T	ug/L	8082	<0.101		<0.1		<0.0997			*
12587-46-1	Gross Alpha	T	pCi/L	9310	0.123	*	3.25	*	2.39	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	21.9	*	2.84	*	1.28	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.26	*	0.281	*	0.474	*		*
10098-97-2	Strontium-90	T	pCi/L	905.0	-0.556	*	-3.68	*	-3.37	*		*
14133-76-7	Technetium-99	T	pCi/L	Tc-02-RC	28.3	*	8.86	*	1.51	*		*
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC	-0.0756	*	0.564	*	0.0115	*		*
10028-17-8	Tritium	T	pCi/L	906.0	-146	*	-111	*	-55	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	107		17.7	J	<20			*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		<0.5		<0.5			*
S0268	Total Organic Carbon	Т	mg/L	9060	1.28	J	2.39		0.942	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.00652	J	0.0135		0.00828	J		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-00	00	0000-00	00	0000-000	0
Facility's Loc	al Well or Spring Number (e.g., N	1W - 1	L, MW-2, etc	.)	377		E. BLAN	lK	F. BLAN	IK	T. BLANK	(1
Sample Sequenc	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) ∈	ethod, or (E)	quipment	NA		Е		F		Т	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		NA		7/10/2019	06:07	7/10/2019	10:08	7/10/2019 0	5:55
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				NA		RI1UG4	·19	FB1UG4	-19	TB1UG4-	19
Laboratory Sam	ple ID Number (if applicable)		NA		4843840	12	4843840	11	4843840	13		
Date of Analys	e of Analysis (Month/Day/Year) For Volatile Organics Analysis						7/12/20	19	7/12/201	19	7/12/201	9
Gradient with	dient with respect to Monitored Unit (UP			OWN)	SIDE		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHO D	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	μ MH0/cm	Field		*		*		*		*

 $^{^{1}}$ AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

^{5&}quot;T" = Total; "D" = Dissolved

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989)	0000-0000)	0000-0000		0000-0000	,
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	377		E. BLANK	(F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	T	mg/L	160.1		*		*		*		*
s0296	рН	T	Units	Field		*		*		*		*
NS215	Eh	T	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020		*	0.00108	J	<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		0.00211	J		*
7440-39-3	Barium	т	mg/L	6020		*	<0.004		<0.004			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	Т	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	T	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	Т	mg/L	6020		*	<0.002		<0.002			*
7439-89-6	Iron	Т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	Т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	Т	mg/L	6020		*	<0.03	*	<0.03	*		*
7439-96-5	Manganese	Т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002			*

C-34

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NU	MBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	0	0000-000	0
Facility	's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	377		E. BLAN	K	F. BLAN	K	T. BLANK	.1
CAS RN	4	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-	7	Molybdenum	Т	mg/L	6020		*	<0.001		<0.001			*
7440-02-	0	Nickel	Т	mg/L	6020		*	<0.002		<0.002			*
7440-09-	7	Potassium	T	mg/L	6020		*	<0.3		<0.3			*
7440-16-	6	Rhodium	Т	mg/L	6020		*	<0.005		<0.005			*
7782-49-	2	Selenium	Т	mg/L	6020		*	<0.005		<0.005			*
7440-22-	4	Silver	Т	mg/L	6020		*	<0.001		<0.001			*
7440-23-	5	Sodium	Т	mg/L	6020		*	<0.25		<0.25			*
7440-25-	7	Tantalum	Т	mg/L	6020		*	<0.005		<0.005			*
7440-28-	0	Thallium	Т	mg/L	6020		*	<0.002		<0.002			*
7440-61-	1	Uranium	Т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-	-2	Vanadium	Т	mg/L	6020		*	0.00491	J	0.00552	J		*
7440-66-	6	Zinc	Т	mg/L	6020		*	0.00512	BJ	0.00519	BJ		*
108-05-4		Vinyl acetate	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1		Acetone	т	mg/L	8260		*	0.00613		0.00511		0.00613	
107-02-8		Acrolein	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2		Benzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	T	mg/L	8260		*	0.00119		0.00086	J	0.00127	
1330-20-	7	Xylenes	T	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5		Styrene	T	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	_
74-97-5		Chlorobromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000)	0000-000	00	0000-000	00
	Facility's Loc	al Well or Spring Number (e.g., 1	∕w-1	, MW-2, etc	c.)	377		E. BLANK	(F. BLAN	IK	T. BLAN	(1
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
	75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	75-25-2	Tribromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
	74-83-9	Methyl bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	78-93-3	Methyl ethyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
	110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
	75-15-0	Carbon disulfide	т	mg/L	8260		*	<0.005		<0.005		<0.005	
C-36	75-00-3	Chloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	67-66-3	Chloroform	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
	74-87-3	Methyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
	156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
	74-95-3	Methylene bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	75-34-3	1,1-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
	75-35-4	1,1-Dichloroethylene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
	106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	75-01-4	Vinyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
	127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-0000)	0000-000	00	0000-00	00
Facility's Loc	cal Well or Spring Number (e.g., N	1W −1	l, MW-2, et	.c.)	377		E. BLAN		F. BLAN	IK	T. BLANI	K 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011		*	<0.0000193		<0.0000194		<0.0000194	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*	<0.0998		<0.0942			*
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.0998		<0.0942			*
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.0998		<0.0942			*
11141-16-5	PCB-1232	Т	ug/L	8082		*	<0.0998		<0.0942			*
53469-21-9	PCB-1242	Т	ug/L	8082		*	<0.0998		<0.0942			*
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.0998		<0.0942			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-0989		0000-0000		0000-000	0	0000-0000)	
Facility's Loc	cal Well or Spring Number (e.g., N	MW-1	1, MW-2, et	tc.)	377		E. BLANK		F. BLAN	<	T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.0998		<0.0942			*
11096-82-5	PCB-1260	T	ug/L	8082		*	<0.0998		<0.0942			*
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.0998		<0.0942			*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	0.778	*	-2.42	*		*
12587-47-2	Gross Beta	T	pCi/L	9310		*	3.61	*	6.27	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	T	pCi/L	AN-1418		*	0.388	*	0.291	*		*
10098-97-2	Strontium-90	T	pCi/L	905.0		*	-0.132	*	-0.777	*		*
14133-76-7	Technetium-99	T	pCi/L	Tc-02-RC		*	-1.45	*	-11	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	0.332	*	0.572	*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*	-92.4	*	-142	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0		*	<0.5		<0.5			*
S0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	T	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u> / 1
LAB ID: None

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	8004-4799)	\	
Facility's Loca	al Well or Spring Number (e.g., M	W−1	., MW-2, etc	2.)	T. BLANK	(2	T. BLAN	K 3	358			
Sample Sequence	ple Sequence #				1		1		2			
If sample is a Bl	lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	Т		Т		NA			
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		7/11/2019 0	6:00	7/15/2019	05:50	7/10/2019 10):01		
Duplicate ("Y"	or "N") ²				N		N		Y			
Split ("Y" or '	"") ³				N		N		N			
Facility Sample	e ID Number (if applicable)				TB2UG4-	19	TB3UG4	-19	MW358DUG	4-19		
Laboratory Samp	ple ID Number (if applicable)				4845780	15	4847430	07	48438400	3	\ /	
Date of Analysi	is (Month/Day/Year) For <u>Volatile</u>	Or	ganics Anal	ysis.	7/18/201	9	7/20/20	19	7/12/2019)	\ /	
Gradient with r	respect to Monitored Unit (UP, DO	, NW	SIDE, UNKN	IOWN)	NA		NA		DOWN		I Y	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQI	F L A G S
24959-67-9	Bromide	Т	mg/L	9056		*		*	0.473			\
16887-00-6	Chloride(s)	Т	mg/L	9056		*		*	36			
16984-48-8	Fluoride	т	mg/L	9056		*		*	0.18			
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*	1.31	*		
14808-79-8	Sulfate	Т	mg/L	9056		*		*	66.6			
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		
S0145	Specific Conductance	Т	μ MH 0/cm	Field		*		*		*	/	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

* = See Comments

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

D = Concentration from analysis
of a secondary dilution

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000)	8004-4799		1	
Facility's Loca	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	358		\	\exists
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED F VALUE I OR F PQL6	F L A
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*		
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*	<u> </u>	
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*	290			
S0296	рН	Т	Units	Field		*		*		*	\	
NS215	Eh	Т	mV	Field		*		*		*		
s0907	Temperature	Т	ပ	Field		*		*		*	\ /	
7429-90-5	Aluminum	т	mg/L	6020		*		*	<0.05		\ /	
7440-36-0	Antimony	Т	mg/L	6020		*		*	<0.003		<u> </u>	
7440-38-2	Arsenic	Т	mg/L	6020		*		*	0.00217	J	X	
7440-39-3	Barium	Т	mg/L	6020		*		*	0.0494		/\	
7440-41-7	Beryllium	Т	mg/L	6020		*		*	<0.0005		/ \	
7440-42-8	Boron	Т	mg/L	6020		*		*	0.474		/ /	
7440-43-9	Cadmium	Т	mg/L	6020		*		*	<0.001		/ /	
7440-70-2	Calcium	т	mg/L	6020		*		*	33.5		/ \	
7440-47-3	Chromium	Т	mg/L	6020		*		*	<0.01			
7440-48-4	Cobalt	Т	mg/L	6020		*		*	0.00112			
7440-50-8	Copper	Т	mg/L	6020		*		*	0.00043	J	<u> </u>	
7439-89-6	Iron	Т	mg/L	6020		*		*	0.267			\setminus
7439-92-1	Lead	Т	mg/L	6020		*		*	<0.002			
7439-95-4	Magnesium	Т	mg/L	6020		*		*	14.7	*		\setminus
7439-96-5	Manganese	Т	mg/L	6020		*		*	0.07			
7439-97-6	Mercury	Т	mg/L	7470		*		*	<0.0002		/	

C-40

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				0000-000	0	0000-000	00	8004-479	9		
Facility's	Local Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLANK	(3	358			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
7439-98-7	Molybdenum	Т	mg/L	6020		*		*	<0.001			
7440-02-0	Nickel	т	mg/L	6020		*		*	0.00246			
7440-09-7	Potassium	т	mg/L	6020		*		*	2.22			
7440-16-6	Rhodium	т	mg/L	6020		*		*	<0.005			<u> </u>
7782-49-2	Selenium	т	mg/L	6020		*		*	<0.005			<u> </u>
7440-22-4	Silver	т	mg/L	6020		*		*	<0.001		\ /	
7440-23-5	Sodium	т	mg/L	6020		*		*	42		\ /	
7440-25-7	Tantalum	т	mg/L	6020		*		*	<0.005		\ <i>\</i>	
7440-28-0	Thallium	т	mg/L	6020		*		*	<0.002		X	
7440-61-1	Uranium	Т	mg/L	6020		*		*	<0.0002			
7440-62-2	Vanadium	т	mg/L	6020		*		*	<0.02		/ \	
7440-66-6	Zinc	т	mg/L	6020		*		*	0.00826	BJ	/ /	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			<u> </u>
67-64-1	Acetone	т	mg/L	8260	<0.005		0.00864		<0.005			Λ
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			\perp
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			\coprod
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		0.0008	J	<0.001			
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001			
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, 1	Facility Well/Spring Number				0000-0000		0000-0000)	8004-47	99	\	-
Facility's Lo	ca	l Well or Spring Number (e.g., N	1W-1	l, MW-2, et	.c.)	T. BLANK 2	2	T. BLANK	3	358			1
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4		Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-25-2		Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			
74-83-9		Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			
78-93-3		Methyl ethyl ketone	Т	mg/L	8260	<0.005		0.00198	7	<0.005			
110-57-6		trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			
75-15-0		Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
75-00-3		Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		\ /	
67-66-3		Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		\/	
74-87-3		Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		X	
156-59-2		cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		/\	
74-95-3		Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
75-34-3		1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		/ /	
107-06-2		1,2-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001			\
75-35-4		1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001			
106-93-4		Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			\setminus
79-34-5		Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			
71-55-6		Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
79-00-5		Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			
630-20-6		Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-01-4		Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			
127-18-4		Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6		Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		0.00505			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

Ī	AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000	0	0000-000	0	8004-479	99	\	
	Facility's Loca	l Well or Spring Number (e.g., N	w−1	., MW-2, et	.c.)	T. BLANK	2	T. BLANK	3	358			
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			
	591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005			
	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005			
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
	56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001			
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			
C-43	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
ü	96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000195		<0.0000195		<0.0000195		\/	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		X	
	10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		/\	
	10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		/ /	\
	75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			\
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
	106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
	1336-36-3	PCB,Total	т	ug/L	8082		*		*	<0.0964			
	12674-11-2	PCB-1016	т	ug/L	8082		*		*	<0.0964			
	11104-28-2	PCB-1221	т	ug/L	8082		*		*	<0.0964			
	11141-16-5	PCB-1232	Т	ug/L	8082		*		*	<0.0964			
	53469-21-9	PCB-1242	Т	ug/L	8082		*		*	<0.0964			
	12672-29-6	PCB-1248	т	ug/L	8082	_	*		*	<0.0964			

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-0000		8004-4799			
Facility's Loc	al Well or Spring Number (e.g., 1	MW-1	L, MW-2, et	tc.)	T. BLANK	2	T. BLANK 3		358			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
11097-69-1	PCB-1254	Т	ug/L	8082		*		*	<0.0964			\square
11096-82-5	PCB-1260	Т	ug/L	8082		*		*	<0.0964			Π
11100-14-4	PCB-1268	Т	ug/L	8082		*		*	<0.0964			I
12587-46-1	Gross Alpha	T	pCi/L	9310		*		*	2.12	*		
12587-47-2	Gross Beta	T	pCi/L	9310		*		*	37.6	*	\ /	
10043-66-0	Iodine-131	Т	pCi/L			*		*		*	\ /	
13982-63-3	Radium-226	T	pCi/L	AN-1418		*		*	0.694	*	\ /	
10098-97-2	Strontium-90	T	pCi/L	905.0		*		*	-0.259	*	V	
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*		*	43.7	*	Λ.	
14269-63-7	Thorium-230	T	pCi/L	Th-01-RC		*		*	-0.155	*	/\	
10028-17-8	Tritium	T	pCi/L	906.0		*		*	-14.4	*	/ /	
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*	<20		/ /	
57-12-5	Cyanide	T	mg/L	9012		*		*	<0.2			
20461-54-5	Iodide	Т	mg/L	300.0		*		*	<0.5			
s0268	Total Organic Carbon	Т	mg/L	9060		*		*	0.989	J		
s0586	Total Organic Halides	T	mg/L	9020		*		*	0.00694	J		
				_								

C-44

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4798 MW357	MW357UG4-19	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Magnesium	E	Result estimated due to matrix interferences.
		Gross alpha		TPU is 7.79. Rad error is 7.52.
		Gross beta		TPU is 12.4. Rad error is 10.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.434. Rad error is 0.434.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.68. Rad error is 2.68.
		Technetium-99		TPU is 13.6. Rad error is 13.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.526. Rad error is 0.526.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 151. Rad error is 151.
3004-4799 MW358	MW358UG4-19	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Magnesium	E	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.16. Rad error is 6.14.
		Gross beta		TPU is 9.56. Rad error is 7.95.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.42. Rad error is 0.42.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.64. Rad error is 1.64.
		Technetium-99		TPU is 14. Rad error is 13.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.736. Rad error is 0.733.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 145. Rad error is 145.
3004-0981 MW359	MW359UG4-19	Magnesium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.93. Rad error is 4.89.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.21. Rad error is 4.21.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.587. Rad error is 0.586.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.66. Rad error is 2.65.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 11.7. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.589. Rad error is 0.588.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 136. Rad error is 136.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4800 MW360	MW360UG4-19	Magnesium	E	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.32. Rad error is 4.31.
		Gross beta		TPU is 8.09. Rad error is 7.77.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.69. Rad error is 0.687.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.58. Rad error is 2.58.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.667. Rad error is 0.666.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 128. Rad error is 128.
3004-4795 MW361	MW361UG4-19	Magnesium	E	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.94. Rad error is 3.94.
		Gross beta		TPU is 11.9. Rad error is 9.48.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.533. Rad error is 0.532.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.53. Rad error is 2.53.
		Technetium-99		TPU is 15.6. Rad error is 14.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.82. Rad error is 0.813.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 127. Rad error is 127.
8004-0986 MW362	MW362UG4-19	Magnesium	E	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.62. Rad error is 6.6.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 5.66. Rad error is 5.61.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.641. Rad error is 0.641.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.31. Rad error is 2.31.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 12.3. Rad error is 12.3.
		Thorium-230	U 	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.66. Rad error is 0.658.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 137. Rad error is 137.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4796 MW363	MW363UG4-19	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Magnesium	E	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.54. Rad error is 4.53.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.55. Rad error is 4.55.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.85. Rad error is 0.836.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.96. Rad error is 3.92.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 11.8. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.788. Rad error is 0.787.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 136. Rad error is 136.
3004-4797 MW364	MW364UG4-19	Magnesium	E	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 8.2. Rad error is 8.1.
		Gross beta		TPU is 10.5. Rad error is 8.81.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.567. Rad error is 0.565.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.18. Rad error is 2.18.
		Technetium-99		TPU is 14.7. Rad error is 13.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.398. Rad error is 0.397.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 155. Rad error is 155.
3004-0984 MW365	MW365UG4-19	Magnesium	E	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 5.53. Rad error is 5.48.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.2. Rad error is 6.05.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.793. Rad error is 0.776.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.61. Rad error is 3.61.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 11.4. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.732. Rad error is 0.732.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 139. Rad error is 139.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0982 MW366	MW366UG4-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Magnesium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.1. Rad error is 2.1.
		Gross beta		TPU is 11.6. Rad error is 9.21.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.796. Rad error is 0.796.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.69. Rad error is 2.69.
		Technetium-99		TPU is 13.4. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.501. Rad error is 0.5.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 145. Rad error is 145.
3004-4793 MW367	MW367UG4-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Magnesium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.21. Rad error is 4.2.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 7.21. Rad error is 7.03.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.866. Rad error is 0.865.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 1.86. Rad error is 1.86.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 11.3. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.894. Rad error is 0.894.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 135. Rad error is 135.
3004-0983 MW368	MW368UG4-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Magnesium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 8.14. Rad error is 8.08.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.84. Rad error is 6.8.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.656. Rad error is 0.655.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.08. Rad error is 2.08.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 12.2. Rad error is 12.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.518. Rad error is 0.517.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 137. Rad error is 137.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4820 MW369	MW369UG4-19	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 5.03. Rad error is 5.01.
		Gross beta		TPU is 24.3. Rad error is 14.7.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.722. Rad error is 0.717.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 1.67. Rad error is 1.67.
		Technetium-99		TPU is 14.8. Rad error is 13.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.565. Rad error is 0.564.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 157. Rad error is 156.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
004-4818 MW370	MW370UG4-19	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 9.31. Rad error is 9.15.
		Gross beta		TPU is 13.6. Rad error is 10.4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.649. Rad error is 0.647.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 1.05. Rad error is 1.05.
		Technetium-99		TPU is 19.9. Rad error is 15.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.324. Rad error is 0.323.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 153. Rad error is 153.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
004-4819 MW371	MW371UG4-19	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 9.36. Rad error is 9.09.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 5.67. Rad error is 5.58.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.849. Rad error is 0.838.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 1.24. Rad error is 1.24.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 12.6. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 1.08. Rad error is 1.07.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 134. Rad error is 134.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4808 MW372	MW372UG4-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Magnesium	E	Result estimated due to matrix interferences.
		Vinyl acetate	Н	Analysis performed outside holding time requirement
		Acetone	Н	Analysis performed outside holding time requirement
		Acrolein	Н	Analysis performed outside holding time requirement
		Acrylonitrile	Н	Analysis performed outside holding time requirement
		Benzene	Н	Analysis performed outside holding time requirement
		Chlorobenzene	Н	Analysis performed outside holding time requirement
		Xylenes	Н	Analysis performed outside holding time requirement
		Styrene	Н	Analysis performed outside holding time requirement
		Toluene	Н	Analysis performed outside holding time requirement
		Chlorobromomethane	Н	Analysis performed outside holding time requirement
		Bromodichloromethane	Н	Analysis performed outside holding time requirement
		Tribromomethane	Н	Analysis performed outside holding time requirement
		Methyl bromide	Н	Analysis performed outside holding time requirement
		Methyl Ethyl Ketone	Н	Analysis performed outside holding time requirement
		trans-1,4-Dichloro-2-butene	Н	Analysis performed outside holding time requirement
		Carbon disulfide	Н	Analysis performed outside holding time requirement
		Chloroethane	Н	Analysis performed outside holding time requirement
		Chloroform	Н	Analysis performed outside holding time requirement
		Methyl chloride	Н	Analysis performed outside holding time requirement
		cis-1,2-Dichloroethene	Н	Analysis performed outside holding time requirement
		Methylene bromide	Н	Analysis performed outside holding time requirement
		1,1-Dichloroethane	Н	Analysis performed outside holding time requirement
		1,2-Dichloroethane	Н	Analysis performed outside holding time requirement
		1,1-Dichloroethylene	Н	Analysis performed outside holding time requirement
		1,2-Dibromoethane	Н	Analysis performed outside holding time requirement
		1,1,2,2-Tetrachloroethane	Н	Analysis performed outside holding time requirement
		1,1,1-Trichloroethane	Н	Analysis performed outside holding time requirement
		1,1,2-Trichloroethane	Н	Analysis performed outside holding time requirement
		1,1,1,2-Tetrachloroethane	Н	Analysis performed outside holding time requirement
		Vinyl chloride	Н	Analysis performed outside holding time requirement
		Tetrachloroethene	Н	Analysis performed outside holding time requirement
		Trichloroethene	Н	Analysis performed outside holding time requirement
		Ethylbenzene	Н	Analysis performed outside holding time requirement
		2-Hexanone	Н	Analysis performed outside holding time requirement
		Iodomethane	Н	Analysis performed outside holding time requirement
		Dibromochloromethane	Н	Analysis performed outside holding time requirement

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4808 MW372	MW372UG4-19	Carbon tetrachloride	Н	Analysis performed outside holding time requirement
		Dichloromethane	Н	Analysis performed outside holding time requirement
		Methyl Isobutyl Ketone	Н	Analysis performed outside holding time requirement
		1,2-Dichloropropane	Н	Analysis performed outside holding time requirement
		trans-1,3-Dichloropropene	Н	Analysis performed outside holding time requirement
		cis-1,3-Dichloropropene	Н	Analysis performed outside holding time requirement
		trans-1,2-Dichloroethene	Н	Analysis performed outside holding time requirement
		Trichlorofluoromethane	Н	Analysis performed outside holding time requirement
		1,2,3-Trichloropropane	Н	Analysis performed outside holding time requirement
		1,2-Dichlorobenzene	Н	Analysis performed outside holding time requirement
		1,4-Dichlorobenzene	Н	Analysis performed outside holding time requirement
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 3.72. Rad error is 3.72.
		Gross beta		TPU is 26.9. Rad error is 14.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.792. Rad error is 0.79.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.93. Rad error is 1.93.
		Technetium-99		TPU is 25.9. Rad error is 16.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.925. Rad error is 0.924.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 145. Rad error is 145.
3004-4792 MW373	MW373UG4-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Magnesium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 6.27. Rad error is 6.26.
		Gross beta		TPU is 8.81. Rad error is 8.06.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.67. Rad error is 0.669.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.89. Rad error is 2.89.
		Technetium-99		TPU is 12.5. Rad error is 12.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.545. Rad error is 0.544.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 137. Rad error is 137.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0990 MW374	MW374UG4-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Magnesium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.96. Rad error is 6.93.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6. Rad error is 5.98.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.372. Rad error is 0.37.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.89. Rad error is 2.89.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 11.9. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.863. Rad error is 0.853.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 142. Rad error is 142.
04-0985 MW375	MW375UG4-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Magnesium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.77. Rad error is 3.75.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6. Rad error is 5.99.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.465. Rad error is 0.459.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.88. Rad error is 3.88.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.769. Rad error is 0.768.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 147. Rad error is 147.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well went dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well went dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample woollected.
		Temperature		During sampling, the well went dry; therefore, no sample w collected.
		Aluminum		During sampling, the well went dry; therefore, no sample w collected.
		Antimony		During sampling, the well went dry; therefore, no sample woollected.
		Arsenic		During sampling, the well went dry; therefore, no sample w collected.
		Barium		During sampling, the well went dry; therefore, no sample woollected.
		Beryllium		During sampling, the well went dry; therefore, no sample woollected.
		Boron		During sampling, the well went dry; therefore, no sample was collected.
		Cadmium		During sampling, the well went dry; therefore, no sample woollected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample was collected.
		Copper		During sampling, the well went dry; therefore, no sample woollected.
		Iron		During sampling, the well went dry; therefore, no sample w collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

<u>Point</u>	Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Molybdenum		During sampling, the well went dry; therefore, no sample wa collected.
		Nickel		During sampling, the well went dry; therefore, no sample wa collected.
		Potassium		During sampling, the well went dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample we collected.
		Thallium		During sampling, the well went dry; therefore, no sample wa collected.
		Uranium		During sampling, the well went dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well went dry; therefore, no sample we collected.
		Zinc		During sampling, the well went dry; therefore, no sample w collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample w collected.
		Acetone		During sampling, the well went dry; therefore, no sample w collected.
		Acrolein		During sampling, the well went dry; therefore, no sample w collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample w collected.
		Benzene		During sampling, the well went dry; therefore, no sample w collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample w collected.
		Xylenes		During sampling, the well went dry; therefore, no sample w collected.
		Styrene		During sampling, the well went dry; therefore, no sample w collected.
		Toluene		During sampling, the well went dry; therefore, no sample w collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample woollected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample w collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample w collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample w collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample w collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample w
		Carbon distillide		collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376		Chloroform		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample we collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample w collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample w collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample w collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample w collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample w collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample was collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample w collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample w collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample w collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample w collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample we collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample we collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample we collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample w collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample w collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample w collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample we collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample w

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376	•	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well went dry; therefore, no sample wa collected.
		lodide		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

<u>Point</u> 004-0989 MW377	Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well went dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well went dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample was collected.
		Temperature		During sampling, the well went dry; therefore, no sample w collected.
		Aluminum		During sampling, the well went dry; therefore, no sample w collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample w collected.
		Boron		During sampling, the well went dry; therefore, no sample we collected.
		Cadmium		During sampling, the well went dry; therefore, no sample was collected.
		Calcium		During sampling, the well went dry; therefore, no sample we collected.
		Chromium		During sampling, the well went dry; therefore, no sample was collected.
		Cobalt		During sampling, the well went dry; therefore, no sample we collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample we collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample wa

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Point 004-0989 MW377	Sample ID	Constituent	Flag	Description
		Molybdenum		During sampling, the well went dry; therefore, no sample wa collected.
		Nickel		During sampling, the well went dry; therefore, no sample wa collected.
		Potassium		During sampling, the well went dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well went dry; therefore, no sample wa collected.
		Selenium		During sampling, the well went dry; therefore, no sample wa collected.
		Silver		During sampling, the well went dry; therefore, no sample wa collected.
		Sodium		During sampling, the well went dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well went dry; therefore, no sample wa collected.
		Thallium		During sampling, the well went dry; therefore, no sample wa collected.
		Uranium		During sampling, the well went dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well went dry; therefore, no sample wa collected.
		Zinc		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample wa collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		Xylenes		During sampling, the well went dry; therefore, no sample wa collected.
		Styrene		During sampling, the well went dry; therefore, no sample wa collected.
		Toluene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample wa

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Chloroform		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample w collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample w collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample w collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample w collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample w collected.
		lodomethane		During sampling, the well went dry; therefore, no sample w collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample w collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample w collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample woollected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample woollected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample woollected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample w collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wollected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample w collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377	•	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample wa collected.
		Tritium		During sampling, the well went dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well went dry; therefore, no sample wa collected.
		Iodide		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1UG4-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Magnesium	E	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.52. Rad error is 3.52.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 4.46. Rad error is 4.42.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 0.684. Rad error is 0.676.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 2.16. Rad error is 2.16.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. I 11.6. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 0.714. Rad error is 0.709.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 139. Rad error is 139.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-0000 QC	FB1UG4-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Magnesium	E	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 2.19. Rad error is 2.18.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 5.41. Rad error is 5.31.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 0.609. Rad error is 0.604.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 2.34. Rad error is 2.34.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. 1 12.5. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 0.864. Rad error is 0.856.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 139. Rad error is 139.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG4-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG4-19	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG4-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG4-19	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG4-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG4-19	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4799 MW358	MW358DUG4-19	Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Magnesium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.32. Rad error is 6.31.
		Gross beta		TPU is 10.4. Rad error is 8.27.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.764. Rad error is 0.762.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.79. Rad error is 1.79.
		Technetium-99		TPU is 14.5. Rad error is 13.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.391. Rad error is 0.39.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 137. Rad error is 137.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

RESIDENTIAL/CONTAINED—OUARTERLY, 3rd CY 2019 Finds/Unit: KY8-980-008-982/1

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

For Official Use Only

LAB ID: None

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the third quarter 2019 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The third quarter 2019 data used to conduct the statistical analyses were collected in July 2019. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses, using the last eight quarters, was run on analytes that had at least one downgradient well that had exceeded the historical background. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Type	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362 ^a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368 ^a	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376 ^{a,b}	SG	UCRS
MW377 ^{a,b}	SG	UCRS

^a The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

BG: upgradient or background wells **TW:** downgradient or test wells

SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

^b Well was dry this quarter, and a groundwater sample could not be collected.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be lognormally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, third quarter 2019. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

lower $TL = X - (K \times S)$

D-5

_

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations:

upper $TL = X + (K \times S)$

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters
Aluminum
Antimony
Beta Activity
Boron
Bromide
Calcium
Chemical Oxygen Demand (COD)
Chloride
Cobalt
Conductivity
Copper
Dissolved Oxygen
Dissolved Solids
Iron
Magnesium
Manganese
Molybdenum
Nickel
Oxidation-Reduction Potential
PCB, Total
PCB-1242
pH*
Potassium
Sodium
Sulfate
Technetium-99
Total Organic Carbon (TOC)
Total Organic Halides (TOX)
Trichloroethene
Vanadium
Zinc

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	2	5	Yes
Antimony	7	6	1	Yes
Beryllium	7	7	0	No
Boron	7	1	6	Yes
Bromide	7	5	2	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	3	4	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	7	0	No
cis-1,3-Dichloropropene	7	7	0	No
	7	5	2	Yes
Cobalt Conductivity	7	0	7	Yes
•	7	0	7	Yes
Copper Cyanide	7	7	0	
	7	7	0	No No
Dibromochloromethane	7	7	0	No
Dibromomethane				No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	1	6	Yes
Magnesium	7	0	7	Yes
Manganese	7	1	6	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	4	3	Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	6	1	Yes
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	6	1	Yes
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
PCB-1268	7	7	0	No
рН	7	0	7	Yes
Potassium	7	1	6	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	7	0	No
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	1	6	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichlorofluoromethane	7	7	0	No
Vanadium	7	5	2	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	7	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	4	2	Yes
Antimony	6	5	1	Yes
Beryllium	6	6	0	No
Beta activity	6	1	5	Yes
Boron	6	0	6	Yes
Bromide	6	1	5	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	3	3	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	3	3	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	1	5	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Molybdenum	6	6	0	No
Nickel	6	2	4	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
pН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	2	4	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichlorofluoromethane	6	6	0	No
Vanadium	6	5	1	Yes
Vinyl Acetate	6	6	0	No
Zinc	6	6	0	No

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	5	1	Yes
Antimony	6	5	1	Yes
Beryllium	6	6	0	No
Beta activity	6	1	5	Yes
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	1	5	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	3	3	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	2	4	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No

Exhibit D.5. Tests Summary for Qualified Parameters—LRGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
26.1.1.1		Observation	Observation	Analysis?
Molybdenum	6	6	0	No
Nickel	6	3	3	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
pH	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	1	5	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	3	3	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	5	1	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 27, 26, and 27 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified historical background exceedances for calcium, dissolved oxygen, magnesium, oxidation-reduction potential, and sulfate.

URGA

This quarter's results identified historical background exceedances for beta activity, chemical oxygen demand (COD), conductivity, dissolved solids, oxidation-reduction potential, and technetium-99.

LRGA

This quarter's results identified historical background exceedances for beta activity, chemical oxygen demand (COD), oxidation-reduction potential, pH, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW359: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW357: Oxidation-Reduction Potential	MW361: Oxidation-Reduction Potential
MW362: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW360: Oxidation-Reduction Potential	MW364: Oxidation-Reduction Potential, Technetium-99
MW365: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW363: Oxidation-Reduction Potential	MW367: Oxidation-Reduction Potential, pH*
MW368: Calcium, Dissolved Oxygen, Magnesium, Oxidation-Reduction Potential, Sulfate	MW366: Oxidation-Reduction Potential	MW370: Beta activity, Oxidation-Reduction Potential, Technetium-99
MW371: Calcium, Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW369: Beta Activity, Oxidation-Reduction Potential	MW373: Chemical Oxygen Demand (COD), Oxidation-Reduction Potential
MW374: Oxidation-Reduction Potential	MW372: Beta Activity, Chemical Oxygen Demand (COD), Conductivity, Dissolved Solids, Oxidation-Reduction Potential, Technetium-99	
MW375: Oxidation-Reduction Potential, Sulfate	Teemenum 77	

^{*}pH concentration is less than the LTL.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration.
Antimony	Tolerance Interval	1.89	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.40	Current results exceed statistically derived historical background concentration in MW368 and MW371.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, and MW371.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	Current results exceed statistically derived historical background concentration in MW368.
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Tests Summary for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, MW374, and MW375.
PCB, Total	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.41	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, and MW375.
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Antimony	Tolerance Interval	1.25	No exceedance of statistically derived historical background concentration.
Beta activity ¹	Tolerance Interval	0.74	Current results exceed statistically derived historical background concentration in MW369 and MW372.
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	Current results exceed statistically derived historical background concentration in MW372.
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	0.85	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Tests Summary for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.75	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.87	Current results exceed statistically derived historical background concentration in MW372.
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

A tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration.
Antimony	Tolerance Interval	1.25	No exceedance of statistically derived historical background concentration.
Beta activity ¹	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370.
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	Current results exceed statistically derived historical background concentration in MW373.
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.83	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Tests Summary for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW361, MW364, MW367, MW370, and MW373.
pH**	Tolerance Interval	0.03	Current results exceed statistically derived historical background concentration in MW367.
Potassium	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW364 and MW370.
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.
**pH concentration is less than the LTL.

A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the results of the one-sided tolerance interval test compared to current background, and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 5, 6, and 5 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (in Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
None	MW367: pH [*]

^{*}pH concentration is less than the LTL

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted, however, that calcium, magnesium, and sulfate in MW368 exceeded the current TL this quarter.

URGA

This quarter's results showed no exceedances in wells located downgradient of the landfill.

LRGA

This quarter's results showed an exceedance of pH in MW367; this well is located downgradient of the landfill.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Calcium	Tolerance Interval	0.42	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW368 and MW371 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Oxygen	Tolerance Interval	0.87	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Magnesium	Tolerance Interval	0.45	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW368 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.24	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	1.23	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW368 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.83	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.55	MW372 exceeded the upper TL, which is evidence of a difference in concentration with respect to current background data
Conductivity	Tolerance Interval	0.24	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Dissolved Solids	Tolerance Interval	0.27	MW372 exceeded the upper TL, which is evidence of a difference in concentration with respect to current background data
Oxidation-Reduction Potential	Tolerance Interval	0.12	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.76	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

CV: coefficient of variation

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta activity	Tolerance Interval	0.67	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.38	MW373 exceeded the upper TL, which is evidence of a difference in concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.11	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
рН	Tolerance Interval	0.01	MW367 exceeded the lower TL, which is evidence of a difference in concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.75	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

CV: coefficient of variation

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.300

S= 6.859

CV(1)=2.078

K factor=** 2.523

TL(1)= 20.604

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.371 S = 1.678 CV(2) = -4.521

K factor**= 2.523

TL(2) = 3.863

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.24	0.806
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 3.059
Date Collected	Result	,
Date Collected 10/8/2002	Result 21.3	3.059
Date Collected 10/8/2002 1/7/2003	Result 21.3 20	3.059 2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 21.3 20 4.11	3.059 2.996 1.413
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 21.3 20 4.11 1.41	3.059 2.996 1.413 0.344
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 21.3 20 4.11 1.41 1.09	3.059 2.996 1.413 0.344 0.086

Dry/Partially Dry Wells

Well No. Gradient MW376

Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

ı	Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.0271	N/A	-3.608	NO
MW362	Downgradient	Yes	0.111	N/A	-2.198	NO
MW365	Downgradient	No	0.05	N/A	-2.996	N/A
MW368	Downgradient	Yes	0.139	N/A	-1.973	NO
MW371	Upgradient	Yes	0.249	N/A	-1.390	NO
MW374	Upgradient	No	0.05	N/A	-2.996	N/A
MW375	Sidegradient	Yes	0.0249	N/A	-3.693	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-3

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Antimony UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.042

S = 0.079

CV(1)=1.891

K factor=** 2.523

TL(1) = 0.240

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.607 S = 1.487

CV(2) = -0.323

K factor**= 2.523

TL(2) = -0.855

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.2	-1.609
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -5.298
Date Collected	Result	
Date Collected 10/8/2002	Result 0.005	-5.298
Date Collected 10/8/2002 1/7/2003	Result 0.005 0.005	-5.298 -5.298
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.005 0.005 0.005	-5.298 -5.298 -5.298
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.005 0.005 0.005 0.005	-5.298 -5.298 -5.298 -5.298
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.005 0.005 0.005 0.005 0.005	-5.298 -5.298 -5.298 -5.298 -5.298

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Curren	t Quarter Data
--------	----------------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.003	N/A	-5.809	N/A
MW362	Downgradient	No	0.003	N/A	-5.809	N/A
MW365	Downgradient	No	0.003	N/A	-5.809	N/A
MW368	Downgradient	No	0.003	N/A	-5.809	N/A
MW371	Upgradient	No	0.003	N/A	-5.809	N/A
MW374	Upgradient	No	0.003	N/A	-5.809	N/A
MW375	Sidegradient	Yes	0.00115	5 N/A	-6.768	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-4

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.805

CV(1)=1.238

K factor=** 2.523

TL(1) = 2.681

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.030

CV(2) = -0.996

K factor=** 2.523

TL(2)=1.564

Because CV(1) is greater than 1, the

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 10/8/2002	Result 2	0.693
Date Collected 10/8/2002 1/7/2003	Result 2 0.2	0.693 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2 0.2 0.2	0.693 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2 0.2 0.2 0.2	0.693 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2 0.2 0.2 0.2 0.2 0.2	0.693 -1.609 -1.609 -1.609

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Curren	t Quarter Data
--------	----------------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.015	N/A	-4.200	N/A
MW362	Downgradient	Yes	0.0189	N/A	-3.969	NO
MW365	Downgradient	Yes	0.00728	N/A	-4.923	NO
MW368	Downgradient	Yes	0.00821	N/A	-4.802	NO
MW371	Upgradient	Yes	0.0102	N/A	-4.585	NO
MW374	Upgradient	Yes	0.00968	N/A	-4.638	NO
MW375	Sidegradient	Yes	0.00903	N/A	-4.707	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-5

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.394

S = 0.474 CV(1) = 0.340

K factor=** 2.523

TL(1) = 2.590

Because CV(1) is less than or equal to

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.279 S = 0.332

CV(2)=1.190

K factor=** 2.523

TL(2)= 1.118

1, assume normal distribution and

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.742
Date Collected	Result	, ,
Date Collected 10/8/2002	Result 2.1	0.742
Date Collected 10/8/2002 1/7/2003	Result 2.1 2.1	0.742 0.742
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2.1 2.1 1.9	0.742 0.742 0.642
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2.1 2.1 1.9 1	0.742 0.742 0.642 0.000
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2.1 2.1 1.9 1 1.9	0.742 0.742 0.642 0.000 0.642

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient

Current Ouarter Data

continue with statistical analysis utilizing TL(1).

	•					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t No	0.2	N/A	-1.609	N/A
MW362	Downgradien	t Yes	0.117	NO	-2.146	N/A
MW365	Downgradien	t No	0.2	N/A	-1.609	N/A

MW368 Downgradient No 0.2 N/A -1.609N/A MW371 Upgradient No 0.2 N/A -1.609N/A MW374 Upgradient 0.705 NO -0.350N/A Yes MW375 Sidegradient No 0.2 N/A -1.609N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-6

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 34.100 S = 13.637 CV(1) = 0.400

K factor**= 2.523

TL(1) = 68.505 LL(1) = N/A

Statistics-Transformed Background Data

X = 3.466 S = 0.356

S = 0.356 CV(2) = 0.103

K factor=** 2.523

TL(2) = 4.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	17.2	2.845
4/22/2002	22.4	3.109
7/15/2002	25.5	3.239
10/8/2002	26.4	3.273
1/8/2003	27.2	3.303
4/3/2003	30.3	3.411
7/9/2003	25.9	3.254
10/6/2003	27	3.296
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.209
Date Collected	Result	
Date Collected 10/8/2002	Result 67.3	4.209
Date Collected 10/8/2002 1/7/2003	Result 67.3 60.6	4.209 4.104
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 67.3 60.6 47.2	4.209 4.104 3.854
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 67.3 60.6 47.2 34.7	4.209 4.104 3.854 3.547
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 67.3 60.6 47.2 34.7 37.1	4.209 4.104 3.854 3.547 3.614

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	: Q	uartei	. D	ata

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	5.91	NO	1.777	N/A
MW362	Downgradient	Yes	22.8	NO	3.127	N/A
MW365	Downgradient	Yes	23.2	NO	3.144	N/A
MW368	Downgradient	Yes	73.1	YES	4.292	N/A
MW371	Upgradient	Yes	70.4	YES	4.254	N/A
MW374	Upgradient	Yes	20.7	NO	3.030	N/A
MW375	Sidegradient	Yes	13.8	NO	2.625	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW368 MW371

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-7

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 72.938 S = 70.749 CV(1) = 0.970

K factor=** 2.523

TL(1)= 251.437 LL(1)=N/A

Statistics-Transformed Background Data

X = 4.000S = 0.702 CV(2) = 0.175

K factor**= 2.523

TL(2) = 5.770

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.561
Date Collected	Result	, ,
Date Collected 10/8/2002	Result 260	5.561
Date Collected 10/8/2002 1/7/2003	Result 260 214	5.561 5.366
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 260 214 147	5.561 5.366 4.990
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 260 214 147 72	5.561 5.366 4.990 4.277
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 260 214 147 72 56	5.561 5.366 4.990 4.277 4.025

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	20	N/A	2.996	N/A
MW362	Downgradient	Yes	17.7	NO	2.874	N/A
MW365	Downgradient	Yes	34.9	NO	3.552	N/A
MW368	Downgradient	Yes	149	NO	5.004	N/A
MW371	Upgradient	No	20	N/A	2.996	N/A
MW374	Upgradient	Yes	17.7	NO	2.874	N/A
MW375	Sidegradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-8

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Chloride** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 91.300 S = 86.959 CV(1) = 0.952

K factor=** 2.523

TL(1)= 310.697 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.620

S= 1.590 CV(2) = 0.439 **K** factor**= 2.523

TL(2) = 7.631

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	8.3	2.116
10/8/2002	7.6	2.028
1/8/2003	7.7	2.041
4/3/2003	8.8	2.175
7/9/2003	8.1	2.092
10/6/2003	8.6	2.152
1/7/2004	7.6	2.028
4/6/2004	7.6	2.028
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.294
Date Collected	Result	
Date Collected 10/8/2002	Result 199.2	5.294
Date Collected 10/8/2002 1/7/2003	Result 199.2 199.7	5.294 5.297
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 199.2 199.7 171.8	5.294 5.297 5.146
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 199.2 199.7 171.8 178.7	5.294 5.297 5.146 5.186
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 199.2 199.7 171.8 178.7 175.6	5.294 5.297 5.146 5.186 5.168

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.893	NO	-0.113	N/A
MW362	Downgradient	Yes	4.25	NO	1.447	N/A
MW365	Downgradient	Yes	2.7	NO	0.993	N/A
MW368	Downgradient	Yes	7.3	NO	1.988	N/A
MW371	Upgradient	Yes	1.87	NO	0.626	N/A
MW374	Upgradient	Yes	60.5	NO	4.103	N/A
MW375	Sidegradient	Yes	3.89	NO	1.358	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-9

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.009

CV(1)=1.314

K factor=** 2.523

TL(1) = 0.031

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.843 S = 1.392

CV(2) = -0.238

K factor**= 2.523

TL(2) = -2.331

LL(2)=N/A

(2)

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -4.605
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 0.01	-4.605
Date Collected 10/8/2002 1/7/2003	Result 0.01 0.01	-4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.01 0.01 0.01	-4.605 -4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.01 0.01 0.01 0.001 0.00161	-4.605 -4.605 -4.605 -6.432
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.01 0.01 0.01 0.01 0.00161 0.001	-4.605 -4.605 -4.605 -6.432 -6.908

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter D	ata
--------------------------	-----

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	t No	0.001	N/A	-6.908	N/A
MW362	Downgradient	t No	0.001	N/A	-6.908	N/A
MW365	Downgradient	Yes	0.00173	N/A	-6.360	NO
MW368	Downgradient	t No	0.001	N/A	-6.908	N/A
MW371	Upgradient	No	0.001	N/A	-6.908	N/A
MW374	Upgradient	Yes	0.00037	N/A	-7.902	NO
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-10

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 918.744 S = 417.257 CV(1) = 0.454

K factor=** 2.523

TL(1)= 1971.483 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.705 S = 0.550 CV(2) = 0.082

K factor=** 2.523

TL(2) = 8.092

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	541	6.293
4/22/2002	643	6.466
7/15/2002	632	6.449
10/8/2002	631	6.447
1/8/2003	680	6.522
4/3/2003	749	6.619
7/9/2003	734	6.599
10/6/2003	753	6.624
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 6.915
Date Collected	Result	, ,
Date Collected 3/18/2002	Result 1007	6.915
Date Collected 3/18/2002 10/8/2002	Result 1007 1680	6.915 7.427
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 1007 1680 1715.9	6.915 7.427 7.448
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 1007 1680 1715.9 172	6.915 7.427 7.448 5.147
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1007 1680 1715.9 172 1231	6.915 7.427 7.448 5.147 7.116

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient

MW375 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

5.814

N/A

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	224	NO	5.412	N/A	
MW362	Downgradient	Yes	733	NO	6.597	N/A	
MW365	Downgradient	Yes	430	NO	6.064	N/A	
MW368	Downgradient	Yes	733	NO	6.597	N/A	
MW371	Upgradient	Yes	523	NO	6.260	N/A	
MW374	Upgradient	Yes	661	NO	6.494	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

335

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-11

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.056

S = 0.072

CV(1)=1.275

K factor=** 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.395 S = 0.915

CV(2) = -0.270

K factor**= 2.523

TL(2) = -1.086

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

C	urrent	Quarter	Data
---	--------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00085	N/A	-7.070	NO
MW362	Downgradient	Yes	0.00148	N/A	-6.516	NO
MW365	Downgradient	Yes	0.00488	N/A	-5.323	NO
MW368	Downgradient	Yes	0.00069	N/A	-7.279	NO
MW371	Upgradient	Yes	0.00215	N/A	-6.142	NO
MW374	Upgradient	Yes	0.00057	N/A	-7.470	NO
MW375	Sidegradient	Yes	0.00057	N/A	-7.470	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-12

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.138S = 0.621 CV(1) = 0.546

K factor=** 2.523

TL(1) = 2.704

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.013 S = 0.577

CV(2) = -43.069

K factor**= 2.523

TL(2) = 1.441

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.26	0.815
4/22/2002	1.15	0.140
7/15/2002	0.94	-0.062
10/8/2002	0.74	-0.301
1/8/2003	2.62	0.963
4/3/2003	1.5	0.405
7/9/2003	1.66	0.507
10/6/2003	1.28	0.247
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.511
Date Collected	Result	
Date Collected 3/18/2002	Result 0.6	-0.511
Date Collected 3/18/2002 10/8/2002	Result 0.6 0.67	-0.511 -0.400
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 0.6 0.67 0.23	-0.511 -0.400 -1.470
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.6 0.67 0.23 0.65	-0.511 -0.400 -1.470 -0.431
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.6 0.67 0.23 0.65 0.92	-0.511 -0.400 -1.470 -0.431 -0.083

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

|--|

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	3.4	YES	1.224	N/A
MW362	Downgradient	Yes	4.48	YES	1.500	N/A
MW365	Downgradient	Yes	2.74	YES	1.008	N/A
MW368	Downgradient	Yes	4.17	YES	1.428	N/A
MW371	Upgradient	Yes	4.6	YES	1.526	N/A
MW374	Upgradient	Yes	2.23	NO	0.802	N/A
MW375	Sidegradient	Yes	1.21	NO	0.191	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW362

MW365

MW368

MW371

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-13

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 590.000 **S**= 248.068 **CV(1)**=0.420

K factor**= 2.523

TL(1)= 1215.876 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.308 S

S = 0.383 CV(2) = 0.061

K factor=** 2.523

TL(2) = 7.274

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	274	5.613
4/22/2002	409	6.014
7/15/2002	418	6.035
10/8/2002	424	6.050
1/8/2003	431	6.066
4/3/2003	444	6.096
7/9/2003	445	6.098
10/6/2003	438	6.082
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 7.035
Date Collected	Result	
Date Collected 10/8/2002	Result 1136	7.035
Date Collected 10/8/2002 1/7/2003	Result 1136 1101	7.035 7.004
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 1136 1101 863	7.035 7.004 6.760
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1136 1101 863 682	7.035 7.004 6.760 6.525
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 1136 1101 863 682 589	7.035 7.004 6.760 6.525 6.378

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	143	NO	4.963	N/A
MW362	Downgradient	Yes	449	NO	6.107	N/A
MW365	Downgradient	Yes	290	NO	5.670	N/A
MW368	Downgradient	Yes	687	NO	6.532	N/A
MW371	Upgradient	Yes	341	NO	5.832	N/A
MW374	Upgradient	Yes	363	NO	5.894	N/A
MW375	Sidegradient	Yes	166	NO	5.112	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-14

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.612

S= 6.487 **CV(1)**=0.981

K factor=** 2.523

TL(1)= 22.979

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.363

S= 1.147

CV(2) = 0.841

K factor=** 2.523

TL(2) = 4.256

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1.31	0.270
4/22/2002	0.913	-0.091
7/15/2002	0.881	-0.127
10/8/2002	3.86	1.351
1/8/2003	1.88	0.631
4/3/2003	3.18	1.157
7/9/2003	0.484	-0.726
10/6/2003	2.72	1.001
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.135
Date Collected	Result	
Date Collected 10/8/2002	Result 23	3.135
Date Collected 10/8/2002 1/7/2003	Result 23 13.9	3.135 2.632
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 23 13.9 14	3.135 2.632 2.639
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 23 13.9 14 14.2	3.135 2.632 2.639 2.653
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 23 13.9 14 14.2 7.92	3.135 2.632 2.639 2.653 2.069

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	0.0337	NO	-3.390	N/A
MW362	Downgradien	t Yes	0.0953	NO	-2.351	N/A
MW365	Downgradien	t No	0.1	N/A	-2.303	N/A
MW368	Downgradien	t Yes	0.0869	NO	-2.443	N/A
MW371	Upgradient	Yes	0.16	NO	-1.833	N/A
MW374	Upgradient	Yes	0.44	NO	-0.821	N/A
MW375	Sidegradient	Yes	0.0715	NO	-2.638	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-15

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 11.347 S = 3.019

CV(1)=0.266

K factor=** 2.523

TL(1)= 18.963

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.401S = 0.237 CV(2) = 0.099

K factor**= 2.523

TL(2) = 2.999

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	7.1	1.960
4/22/2002	9.77	2.279
7/15/2002	10.4	2.342
10/8/2002	10.2	2.322
1/8/2003	10.7	2.370
4/3/2003	11.9	2.477
7/9/2003	10.8	2.380
10/6/2003	10.9	2.389
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 2.996
Date Collected	Result	
Date Collected 10/8/2002	Result 20	2.996
Date Collected 10/8/2002 1/7/2003	Result 20 16.1	2.996 2.779
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 20 16.1 13.1	2.996 2.779 2.573
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 20 16.1 13.1 10.3	2.996 2.779 2.573 2.332
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 20 16.1 13.1 10.3 11.1	2.996 2.779 2.573 2.332 2.407

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Wells with Exceedances

MW368

Current	Ouarter	Data
Cultivit	V mmr ter	Dutte

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	3.26	NO	1.182	N/A
MW362	Downgradient	Yes	10.1	NO	2.313	N/A
MW365	Downgradient	Yes	10.8	NO	2.380	N/A
MW368	Downgradient	Yes	21.8	YES	3.082	N/A
MW371	Upgradient	Yes	12.6	NO	2.534	N/A
MW374	Upgradient	Yes	5.35	NO	1.677	N/A
MW375	Sidegradient	Yes	5.15	NO	1.639	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-16

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 0.248 **S**= 0.222

CV(1) = 0.894

K factor=** 2.523

TL(1)= 0.809

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.873 S = 1.068

1.068 **CV(2)=**-0.570

K factor=** 2.523

TL(2) = 0.821

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.063	-2.765
4/22/2002	0.067	-2.703
7/15/2002	0.074	-2.604
10/8/2002	0.0521	-2.955
1/8/2003	0.0385	-3.257
4/3/2003	0.0551	-2.899
7/9/2003	0.0546	-2.908
10/6/2003	0.0543	-2.913
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.518
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 0.596	-0.518
Date Collected 10/8/2002 1/7/2003	Result 0.596 0.565	-0.518 -0.571
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.596 0.565 0.675	-0.518 -0.571 -0.393
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.596 0.565 0.675 0.397	-0.518 -0.571 -0.393 -0.924
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.596 0.565 0.675 0.397 0.312	-0.518 -0.571 -0.393 -0.924 -1.165

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.005	N/A	-5.298	N/A
MW362	Downgradient	Yes	0.001	NO	-6.908	N/A
MW365	Downgradient	Yes	0.0113	NO	-4.483	N/A
MW368	Downgradient	Yes	0.00473	NO	-5.354	N/A
MW371	Upgradient	Yes	0.0203	NO	-3.897	N/A
MW374	Upgradient	Yes	0.309	NO	-1.174	N/A
MW375	Sidegradient	Yes	0.00245	S NO	-6.012	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-17

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.006

S= 0.010 CV(1) = 1.650 **K factor**=** 2.523

TL(1) = 0.030

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.108 S = 1.239

CV(2) = -0.203

K factor**= 2.523

TL(2) = -2.983

LL(2)=N/A

(2)

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.00121	-6.717
4/3/2003	0.001	-6.908
7/9/2003	0.00111	-6.803
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -6.110
Date Collected	Result	` '
Date Collected 10/8/2002	Result 0.00222	-6.110
Date Collected 10/8/2002 1/7/2003	Result 0.00222 0.00201	-6.110 -6.210
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.00222 0.00201 0.00159	-6.110 -6.210 -6.444
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.00222 0.00201 0.00159 0.00242	-6.110 -6.210 -6.444 -6.024
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.00222 0.00201 0.00159 0.00242 0.001	-6.110 -6.210 -6.444 -6.024 -6.908

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW359	Downgradient	No	0.001	N/A	-6.908	N/A
MW362	Downgradient	No	0.00075	N/A	-7.195	N/A
MW365	Downgradient	No	0.001	N/A	-6.908	N/A
MW368	Downgradient	Yes	0.00088	N/A	-7.036	NO
MW371	Upgradient	Yes	0.00031	N/A	-8.079	NO
MW374	Upgradient	Yes	0.00021	N/A	-8.468	NO
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-18

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Nickel UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.023

S = 0.022

CV(1)=0.980

K factor=** 2.523

TL(1)= 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.349 S = 1.109

CV(2) = -0.255

K factor**= 2.523

TL(2) = -1.552

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.0124	-4.390
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 0.05	-2.996
Date Collected 10/8/2002 1/7/2003	Result 0.05 0.05	-2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.05 0.05 0.05 0.005 0.00794	-2.996 -2.996 -2.996 -4.836
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.05 0.05 0.05 0.05 0.00794 0.005	-2.996 -2.996 -2.996 -4.836 -5.298

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00087	NO	-7.047	N/A
MW362	Downgradient	Yes	0.00093	NO	-6.980	N/A
MW365	Downgradient	Yes	0.00491	NO	-5.316	N/A
MW368	Downgradient	Yes	0.00098	NO	-6.928	N/A
MW371	Upgradient	Yes	0.00169	NO	-6.383	N/A
MW374	Upgradient	Yes	0.00119	NO	-6.734	N/A
MW375	Sidegradient	Yes	0.00074	NO	-7.209	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-19

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.281 S = 78.889 CV(1) = 3.541

K factor=** 2.523

TL(1)= 221.319 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.642

 $S= 1.729 \quad CV(2)=0.475$

K factor=** 2.523

TL(2) = 5.106

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	75	4.317
4/22/2002	165	5.106
7/15/2002	65	4.174
4/3/2003	-19	#Func!
7/9/2003	114	4.736
10/6/2003	-22	#Func!
1/7/2004	20.5	3.020
4/6/2004	113	4.727
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.905
Date Collected	Result	
Date Collected 3/18/2002	Result 135	4.905
Date Collected 3/18/2002 4/2/2003	Result 135 -56	4.905 #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003	Result 135 -56 -68	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003	Result 135 -56 -68 -50	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003 1/6/2004	Result 135 -56 -68 -50 -85	4.905 #Func! #Func! #Func!

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW359	Downgradient	Yes	217	N/A	5.380	YES
	MW362	Downgradient	Yes	381	N/A	5.943	YES
	MW365	Downgradient	Yes	388	N/A	5.961	YES
	MW368	Downgradient	Yes	338	N/A	5.823	YES
	MW371	Upgradient	Yes	423	N/A	6.047	YES
	MW374	Upgradient	Yes	354	N/A	5.869	YES
	MW375	Sidegradient	Yes	363	N/A	5.894	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with	Exceedances
MW359	

MW362 MW365 MW368

MW371 MW374

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-20

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** PCB, Total **UNITS: UG/L**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.224

S = 0.207

CV(1)=0.922

K factor=** 2.523

TL(1) = 0.746

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.647 S = 0.440

CV(2) = -0.267

K factor**= 2.523

TL(2) = -0.537

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.17	-1.772
7/15/2002	0.17	-1.772
7/9/2003	0.17	-1.772
10/6/2003	0.17	-1.772
7/13/2004	0.18	-1.715
7/25/2005	0.17	-1.772
4/5/2006	0.18	-1.715
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.772
Date Collected	Result	
Date Collected 7/9/2003	Result 0.17	-1.772
Date Collected 7/9/2003 10/7/2003	Result 0.17 0.17	-1.772 -1.772
Date Collected 7/9/2003 10/7/2003 7/14/2004	Result 0.17 0.17 0.18	-1.772 -1.772 -1.715
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005	Result 0.17 0.17 0.18 0.17	-1.772 -1.772 -1.715 -1.772
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005 4/6/2006	Result 0.17 0.17 0.18 0.17 0.18	-1.772 -1.772 -1.715 -1.772 -1.715

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

		Current	Ouarter	Data
--	--	---------	----------------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0977	N/A	-2.326	N/A
MW362	Downgradient	No	0.1	N/A	-2.303	N/A
MW365	Downgradient	Yes	0.0954	NO	-2.350	N/A
MW368	Downgradient	No	0.0992	N/A	-2.311	N/A
MW371	Upgradient	No	0.0981	N/A	-2.322	N/A
MW374	Upgradient	No	0.1	N/A	-2.303	N/A
MW375	Sidegradient	No	0.0997	N/A	-2.306	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-21

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison UNITS: UG/L PCB-1242**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.159

S = 0.224CV(1)=1.409 **K factor**=** 2.523

TL(1) = 0.726

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.134 S = 0.579 CV(2) = -0.272

K factor=** 2.523

TL(2) = -0.672

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	0.11	-2.207
7/15/2002	0.11	-2.207
7/9/2003	0.13	-2.040
10/6/2003	0.09	-2.408
7/13/2004	0.1	-2.303
7/25/2005	0.09	-2.408
4/5/2006	0.1	-2.303
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -2.040
Date Collected	Result	
Date Collected 7/9/2003	Result 0.13	-2.040
Date Collected 7/9/2003 10/7/2003	Result 0.13 0.09	-2.040 -2.408
Date Collected 7/9/2003 10/7/2003 7/14/2004	Result 0.13 0.09 0.1	-2.040 -2.408 -2.303
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005	Result 0.13 0.09 0.1 0.1	-2.040 -2.408 -2.303 -2.303
Date Collected 7/9/2003 10/7/2003 7/14/2004 7/26/2005 4/6/2006	Result 0.13 0.09 0.1 0.1 0.1	-2.040 -2.408 -2.303 -2.303 -2.303

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Į	Current Quarter Data						
	Well No	Gradient	Dete				

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0977	N/A	-2.326	N/A
MW362	Downgradient	No	0.1	N/A	-2.303	N/A
MW365	Downgradient	Yes	0.0954	N/A	-2.350	NO
MW368	Downgradient	No	0.0992	N/A	-2.311	N/A
MW371	Upgradient	No	0.0981	N/A	-2.322	N/A
MW374	Upgradient	No	0.1	N/A	-2.303	N/A
MW375	Sidegradient	No	0.0997	N/A	-2.306	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-22

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.619

S = 0.295 CV

CV(1) = 0.045

K factor=** 2.904

TL(1) = 7.475

LL(1)=5.7635

Statistics-Transformed Background Data

X = 1.889

S = 0.046

CV(2) = 0.024

K factor=** 2.904

TL(2) = 2.023

LL(2)=1.7548

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	6.3	1.841
4/22/2002	6.5	1.872
7/15/2002	6.5	1.872
10/8/2002	6.6	1.887
1/8/2003	6.6	1.887
4/3/2003	6.9	1.932
7/9/2003	6.7	1.902
10/6/2003	7	1.946
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 3/18/2002	Result 5.75	1.749
Date Collected 3/18/2002 10/8/2002	Result 5.75 6.6	1.749 1.887
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 5.75 6.6 6.82	1.749 1.887 1.920
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.75 6.6 6.82 6.86	1.749 1.887 1.920 1.926
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5.75 6.6 6.82 6.86 6.7	1.749 1.887 1.920 1.926 1.902

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW359	Downgradien	t Yes	5.89	NO	1.773	N/A
MW362	Downgradien	t Yes	6.93	NO	1.936	N/A
MW365	Downgradien	t Yes	6.2	NO	1.825	N/A
MW368	Downgradien	t Yes	6.42	NO	1.859	N/A
MW371	Upgradient	Yes	6.56	NO	1.881	N/A
MW374	Upgradient	Yes	6.54	NO	1.878	N/A
MW375	Sidegradient	Yes	6.27	NO	1.836	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-23

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Potassium** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.262

S = 0.907

CV(1) = 0.718

K factor=** 2.523

TL(1) = 3.549

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.023 S = 0.752

CV(2) = -32.218

K factor**= 2.523

TL(2) = 1.874

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.408	-0.896
1/8/2003	0.384	-0.957
4/3/2003	0.368	-1.000
7/9/2003	0.587	-0.533
10/6/2003	0.382	-0.962
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 10/8/2002	Result 3.04	1.112
Date Collected 10/8/2002 1/7/2003	Result 3.04 2.83	1.112 1.040
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 3.04 2.83 2	1.112 1.040 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 3.04 2.83 2 1.09	1.112 1.040 0.693 0.086
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 3.04 2.83 2 1.09 0.802	1.112 1.040 0.693 0.086 -0.221

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.3	N/A	-1.204	N/A
MW362	Downgradient	Yes	0.317	NO	-1.149	N/A
MW365	Downgradient	Yes	0.239	NO	-1.431	N/A
MW368	Downgradient	Yes	0.721	NO	-0.327	N/A
MW371	Upgradient	Yes	0.495	NO	-0.703	N/A
MW374	Upgradient	Yes	0.317	NO	-1.149	N/A
MW375	Sidegradient	Yes	0.252	NO	-1.378	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-24

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 183.063 S = 73.222 CV(1) = 0.400

K factor**= 2.523

TL(1)= 367.800 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.146 S = 0.356

CV(2) = 0.069

K factor=** 2.523

TL(2) = 6.044

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

337 11 37 1	MW371			
Well Number:	MW3/1			
Date Collected	Result	LN(Result)		
3/18/2002	129	4.860		
4/22/2002	131	4.875		
7/15/2002	127	4.844		
10/8/2002	123	4.812		
1/8/2003	128	4.852		
4/3/2003	144	4.970		
7/9/2003	126	4.836		
10/6/2003	120	4.787		
Well Number:	MW374			
Well Number: Date Collected	MW374 Result	LN(Result)		
		LN(Result) 5.817		
Date Collected	Result			
Date Collected 10/8/2002	Result 336	5.817		
Date Collected 10/8/2002 1/7/2003	Result 336 329	5.817 5.796		
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 336 329 287	5.817 5.796 5.659		
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 336 329 287 181	5.817 5.796 5.659 5.198		
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 336 329 287 181 182	5.817 5.796 5.659 5.198 5.204		

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

MW371

MW374

Upgradient

Upgradient

Yes

Yes

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

3.339

4.779

N/A

N/A

Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW359	Downgradient	Yes	37.2	NO	3.616	N/A
	MW362	Downgradient	Yes	140	NO	4.942	N/A
	MW365	Downgradient	Yes	55.3	NO	4.013	N/A
	MW368	Downgradient	Yes	65.6	NO	4.184	N/A

NO

NO

MW375 Sidegradient Yes 52.9 NO 3.968 N/A N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

28.2

119

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-25

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.469

 $S= 3.153 \quad CV(1)=0.487$

K factor=** 2.523

TL(1)= 14.423

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.794 S = 0.357

CV(2)=0.199

K factor=** 2.523

TL(2) = 2.694

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371		
Date Collected	Result	LN(Result)	
3/18/2002	16.3	2.791	
4/22/2002	8.6	2.152	
7/15/2002	6.7	1.902	
10/8/2002	5	1.609	
1/8/2003	5	1.609	
4/3/2003	5	1.609	
7/9/2003	5	1.609	
10/6/2003	5	1.609	
Well Number:	MW374		
Well Number: Date Collected		LN(Result)	
***************************************		LN(Result) 1.609	
Date Collected	Result	, ,	
Date Collected 10/8/2002	Result 5	1.609	
Date Collected 10/8/2002 1/7/2003	Result 5 5	1.609 1.609	
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 5 5 5 5	1.609 1.609 1.609	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5 5 5 5 5 6	1.609 1.609 1.609 1.723	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.723 1.609	

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

MW375 Sidegradient

Yes

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW359	Downgradient	Yes	47.1	YES	3.852	N/A
	MW362	Downgradient	Yes	32.1	YES	3.469	N/A
	MW365	Downgradient	Yes	58.4	YES	4.067	N/A
	MW368	Downgradient	Yes	164	YES	5.100	N/A
	MW371	Upgradient	Yes	55.4	YES	4.015	N/A
	MW374	Ungradient	Yes	8.06	NO	2.087	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

YES

24.2

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells	with	Exceedances

N/A

MW359 MW362 MW365

3.186

MW368

MW371

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-26

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Total Organic Carbon (TOC)** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 17.631 S = 24.314 CV(1) = 1.379

K factor=** 2.523

TL(1)= 78.977

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.318 S = 0.979 CV(2) = 0.422

K factor**= 2.523

TL(2) = 4.788

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	11.1	2.407
4/22/2002	7	1.946
7/15/2002	4.1	1.411
10/8/2002	6	1.792
1/8/2003	5.3	1.668
4/3/2003	5.3	1.668
7/9/2003	2.9	1.065
10/6/2003	3.2	1.163
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
	MW374	LN(Result) 4.500
Date Collected	MW374 Result	
Date Collected 10/8/2002	MW374 Result	4.500
Date Collected 10/8/2002 1/7/2003	MW374 Result 90 64	4.500 4.159
Date Collected 10/8/2002 1/7/2003 4/2/2003	MW374 Result 90 64 25	4.500 4.159 3.219
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	MW374 Result 90 64 25 16	4.500 4.159 3.219 2.773
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	MW374 Result 90 64 25 16 13	4.500 4.159 3.219 2.773 2.565

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

urrent Qua	rter Data
------------	-----------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.899	N/A	-0.106	NO
MW362	Downgradient	Yes	2.26	N/A	0.815	NO
MW365	Downgradient	Yes	1.65	N/A	0.501	NO
MW368	Downgradient	Yes	1.73	N/A	0.548	NO
MW371	Upgradient	Yes	1.75	N/A	0.560	NO
MW374	Upgradient	Yes	2.39	N/A	0.871	NO
MW375	Sidegradient	Yes	0.942	N/A	-0.060	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-27

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 214.094 S = 231.089 CV(1) = 1.079

K factor=** 2.523

TL(1)= 797.131 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.867

 $S= 1.065 \quad CV(2)=0.219$

K factor=** 2.523

TL(2) = 7.554

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	105	4.654
7/15/2002	70	4.248
10/8/2002	52	3.951
1/8/2003	20.2	3.006
4/3/2003	104	4.644
7/9/2003	34.2	3.532
10/6/2003	46.1	3.831
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.806
Date Collected	Result	
Date Collected 10/8/2002	Result 903	6.806
Date Collected 10/8/2002 1/7/2003	Result 903 539	6.806 6.290
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 903 539 295	6.806 6.290 5.687
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 903 539 295 272	6.806 6.290 5.687 5.606
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 903 539 295 272 197	6.806 6.290 5.687 5.606 5.283

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	10	N/A	2.303	N/A
MW362	Downgradient	Yes	19	N/A	2.944	NO
MW365	Downgradient	Yes	20.1	N/A	3.001	NO
MW368	Downgradient	Yes	9.56	N/A	2.258	NO
MW371	Upgradient	Yes	3.86	N/A	1.351	NO
MW374	Upgradient	Yes	13.5	N/A	2.603	NO
MW375	Sidegradient	Yes	8.28	N/A	2.114	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-28

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.055

S = 0.072

CV(1)=1.319

K factor=** 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.438 S = 0.912

CV(2) = -0.265

K factor=** 2.523

TL(2) = -1.138

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 0.2	-1.609
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00536	N/A	-5.229	NO
MW362	Downgradient	No	0.02	N/A	-3.912	N/A
MW365	Downgradient	No	0.02	N/A	-3.912	N/A
MW368	Downgradient	No	0.02	N/A	-3.912	N/A
MW371	Upgradient	Yes	0.00549	N/A	-5.205	NO
MW374	Upgradient	No	0.02	N/A	-3.912	N/A
MW375	Sidegradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-29

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison URGA** Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.774X = 0.625

CV(1)=1.239

K factor=** 2.523

TL(1) = 2.578

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.973 S = 0.935 CV(2) = -0.961

K factor**= 2.523

TL(2) = 1.386

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.255	-1.366
4/22/2002	0.2	-1.609
7/15/2002	0.322	-1.133
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/8/2003	0.2	-1.609
10/6/2003	0.689	-0.373
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.959
Date Collected	Result	
Date Collected 3/19/2002	Result 2.61	0.959
Date Collected 3/19/2002 4/23/2002	Result 2.61 0.2	0.959 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 2.61 0.2 1.14	0.959 -1.609 0.131
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 2.61 0.2 1.14 0.862	0.959 -1.609 0.131 -0.149
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 2.61 0.2 1.14 0.862 2.32	0.959 -1.609 0.131 -0.149 0.842

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.05	N/A	-2.996	N/A
MW360	Downgradient	Yes	0.126	N/A	-2.071	NO
MW363	Downgradient	No	0.05	N/A	-2.996	N/A
MW366	Downgradient	No	0.05	N/A	-2.996	N/A
MW369	Upgradient	Yes	0.0609	N/A	-2.799	NO
MW372	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-30

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Antimony** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S= 0.098 X = 0.078

CV(1)=1.248

K factor**= 2.523

TL(1) = 0.324

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.915 S = 1.844 CV(2) = -0.471

K factor=** 2.523

TL(2) = 0.739

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.2	-1.609
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 3/19/2002	Result 0.2	-1.609
Date Collected 3/19/2002 4/23/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.2 0.2 0.2 0.005	-1.609 -1.609 -1.609 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.2 0.2 0.2 0.005 0.005	-1.609 -1.609 -1.609 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.003	N/A	-5.809	N/A
MW360	Downgradient	Yes	0.00114	N/A	-6.777	NO
MW363	Downgradient	No	0.003	N/A	-5.809	N/A
MW366	Downgradient	No	0.003	N/A	-5.809	N/A
MW369	Upgradient	No	0.003	N/A	-5.809	N/A
MW372	Upgradient	No	0.003	N/A	-5.809	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-31

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Beta activity UNITS: pCi/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=15.996 S=11.899 CV(1)=0.744

K factor**= 2.523

TL(1)= 46.017 LL(1)=N/A

Statistics-Transformed Background Data

X = 2.497 S = 0.783 CV(2) = 0.314

K factor**= 2.523

TL(2) = 4.473

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	32.5	3.481
4/22/2002	35.4	3.567
7/15/2002	12.9	2.557
10/8/2002	7.59	2.027
1/8/2003	9.58	2.260
4/3/2003	6.69	1.901
7/8/2003	9.1	2.208
10/6/2003	7.31	1.989
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.350
Date Collected	Result	
Date Collected 3/19/2002	Result 28.5	3.350
Date Collected 3/19/2002 4/23/2002	Result 28.5 5.37	3.350 1.681
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 28.5 5.37 19.9	3.350 1.681 2.991
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 28.5 5.37 19.9 38.7	3.350 1.681 2.991 3.656
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 28.5 5.37 19.9 38.7 13	3.350 1.681 2.991 3.656 2.565

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	45.5	N/A	3.818	N/A			
MW360	Downgradient	Yes	13.9	N/A	2.632	N/A			
MW363	Downgradient	No	-0.878	N/A	#Error	N/A			
MW366	Downgradient	Yes	42	N/A	3.738	N/A			
MW369	Upgradient	Yes	120	YES	4.787	N/A			
MW372	Upgradient	Yes	141	YES	4.949	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW369 MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-32

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Boron UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 0.985S = 0.825CV(1)=0.838**K factor**=** 2.523 TL(1) = 3.067Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background** X = -0.430 S = 0.990

Data

CV(2) = -2.302

K factor=** 2.523

TL(2) = 2.068

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 0.693 4/22/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.2 -1.6091/8/2003 0.2 -1.6094/3/2003 0.2 -1.6097/8/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 0.693 2 10/8/2002 0.492 -0.7091/7/2003 0.492-0.7094/2/2003 0.6 -0.5117/9/2003 0.57 -0.56210/7/2003 0.604 -0.504

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	0.377	NO	-0.976	N/A			
MW360	Downgradient	Yes	0.0183	NO	-4.001	N/A			
MW363	Downgradient	Yes	0.0196	NO	-3.932	N/A			
MW366	Downgradient	Yes	0.191	NO	-1.655	N/A			
MW369	Upgradient	Yes	0.0168	NO	-4.086	N/A			
MW372	Upgradient	Yes	0.889	NO	-0.118	N/A			
3.T/A D	1. 11 .10 1 31				1 . 11 1				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-33

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.000
 S= 0.000
 CV(1)=0.000
 K factor**= 2.523
 TL(1)= 1.000
 LL(1)=N/A

 Statistics-Transformed Background
 X= 0.000
 S= 0.000
 CV(2)=#Num!
 K factor**= 2.523
 TL(2)= 0.000
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 0.000 4/22/2002 1 0.000 7/15/2002 1 0.000 10/8/2002 1 0.000 1/8/2003 1 0.000 4/3/2003 1 0.000 7/8/2003 1 0.000 10/6/2003 1 0.000Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.000 4/23/2002 1 0.000 7/16/2002 0.000 10/8/2002 0.000 1/7/2003 0.0001 4/2/2003 0.000 7/9/2003 0.000 10/7/2003 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

L	Current Quarter Data									
1	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
	MW357	Downgradient	Yes	0.388	NO	-0.947	N/A			
	MW360	Downgradient	Yes	0.137	NO	-1.988	N/A			
	MW363	Downgradient	No	0.2	N/A	-1.609	N/A			
	MW366	Downgradient	Yes	0.477	NO	-0.740	N/A			
	MW369	Upgradient	Yes	0.366	NO	-1.005	N/A			
	MW372	Upgradient	Yes	0.576	NO	-0.552	N/A			
	NT/A D	1, 11, 20, 1, 3	r			1 . 1:1 .:				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-34

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 32.763 **S**= 9.391 **CV(1)**= 0.287

K factor**= 2.523

TL(1)= 56.456

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.449 S = 0.299

CV(2) = 0.087

K factor=** 2.523

TL(2) = 4.202

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 29.5 3.384 4/22/2002 29.8 3.395 7/15/2002 25.3 3.231 10/8/2002 21.9 3.086 1/8/2003 20.9 3.040 4/3/2003 22.2 3.100 7/8/2003 22.9 3.131 10/6/2003 21.7 3.077 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 41.5 3.726 4/23/2002 43.6 3.775 7/16/2002 40.4 3.699 10/8/2002 38.8 3.658 1/7/2003 41.1 3.716 4/2/2003 42.9 3.759 7/9/2003 35.1 3.558 10/7/2003 46.6 3.842

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	27	NO	3.296	N/A			
MW360	Downgradient	Yes	19	NO	2.944	N/A			
MW363	Downgradient	Yes	26.5	NO	3.277	N/A			
MW366	Downgradient	Yes	33.4	NO	3.509	N/A			
MW369	Upgradient	Yes	17.7	NO	2.874	N/A			
MW372	Upgradient	Yes	49.7	NO	3.906	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-35

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.938 S = 3.750CV(1) = 0.104 **K factor**=** 2.523

TL(1)= 45.399

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.578 S = 0.089

CV(2) = 0.025

K factor**= 2.523

TL(2) = 3.803

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	50	3.912
1/8/2003	35	3.555
4/3/2003	35	3.555
7/8/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.555
Date Collected	Result	, ,
Date Collected 3/19/2002	Result 35	3.555
Date Collected 3/19/2002 4/23/2002	Result 35 35	3.555 3.555
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 35 35 35	3.555 3.555 3.555
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 35 35 35	3.555 3.555 3.555 3.555
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 35 35 35 35	3.555 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data								
_	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
	MW357	Downgradient	No	20	N/A	2.996	N/A		
	MW360	Downgradient	No	20	N/A	2.996	N/A		
	MW363	Downgradient	Yes	21.1	NO	3.049	N/A		
	MW366	Downgradient	Yes	14.2	NO	2.653	N/A		
	MW369	Upgradient	No	20	N/A	2.996	N/A		
	MW372	Upgradient	Yes	69.4	YES	4.240	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-36

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 44.119 **S**= 4.554

K factor=** 2.523

TL(1)= 55.607

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.782 S = 0.099

CV(2) = 0.026

CV(1)=0.103

K factor=** 2.523

TL(2) = 4.033

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/15/2002	48.3	3.877
10/8/2002	47.7	3.865
1/8/2003	45.7	3.822
4/3/2003	47.4	3.859
7/8/2003	55.9	4.024
10/6/2003	47.4	3.859
1/7/2004	45.5	3.818
4/7/2004	43.4	3.770
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.684
Date Collected	Result	
Date Collected 7/16/2002	Result 39.8	3.684
Date Collected 7/16/2002 10/8/2002	Result 39.8 41	3.684 3.714
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 39.8 41 39.4	3.684 3.714 3.674
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 39.8 41 39.4 39.2	3.684 3.714 3.674 3.669
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 39.8 41 39.4 39.2 39.8	3.684 3.714 3.674 3.669 3.684

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	32.4	NO	3.478	N/A			
MW360	Downgradient	Yes	8.64	NO	2.156	N/A			
MW363	Downgradient	Yes	19.2	NO	2.955	N/A			
MW366	Downgradient	Yes	38.6	NO	3.653	N/A			
MW369	Upgradient	Yes	31.6	NO	3.453	N/A			
MW372	Upgradient	Yes	44.8	NO	3.802	N/A			
MW366 MW369	Downgradient Upgradient	Yes Yes	38.6 31.6	NO NO	3.653 3.453	N/A N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-37

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.025

CV(1) = 0.845S = 0.021

K factor=** 2.523

TL(1) = 0.077

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.090 S = 1.006

CV(2) = -0.246

K factor**= 2.523

TL(2) = -1.553

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00938	-4.669
1/8/2003	0.00548	-5.207
4/3/2003	0.00587	-5.138
7/8/2003	0.0541	-2.917
10/6/2003	0.0689	-2.675
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
Date Collected	Result	LN(Result)
Date Collected 3/19/2002	Result 0.025	LN(Result) -3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	LN(Result) -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	LN(Result) -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.00158	LN(Result) -3.689 -3.689 -3.689 -6.450
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.00158 0.0147	LN(Result) -3.689 -3.689 -3.689 -6.450 -4.220

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	No	0.001	N/A	-6.908	N/A			
MW360	Downgradient	Yes	0.00286	NO	-5.857	N/A			
MW363	Downgradient	Yes	0.0011	NO	-6.812	N/A			
MW366	Downgradient	No	0.001	N/A	-6.908	N/A			
MW369	Upgradient	Yes	0.00539	NO	-5.223	N/A			
MW372	Upgradient	No	0.001	N/A	-6.908	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-38

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 482.856 **S**= 57.603 **CV(1)**=0.119

K factor=** 2.523

TL(1)= 628.189 LL

LL(1)=N/A

Statistics-Transformed Background Data

X = 6.173 S = 0.123 CV(2) = 0.020

K factor**= 2.523

TL(2) = 6.484

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 5.961 388 4/22/2002 404 6.001 7/15/2002 394 5.976 10/8/2002 403 5.999 1/8/2003 520 6.254 4/3/2003 487 6.188 7/8/2003 478 6.170 10/6/2003 476 6.165 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 508 6.230 4/23/2002 501 6.217 7/16/2002 6.229 507 10/8/2002 495 6.205 1/7/2003 508.7 6.232 4/2/2003 515 6.244 7/9/2003 576 6.356 10/7/2003 565 6.337

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Currer	Current Quarter Data								
Well No	o. Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	7 Downgradient	Yes	427	NO	6.057	N/A			
MW360	Downgradient	Yes	402	NO	5.996	N/A			
MW363	3 Downgradient	Yes	412	NO	6.021	N/A			
MW366	6 Downgradient	Yes	471	NO	6.155	N/A			
MW369	9 Upgradient	Yes	373	NO	5.922	N/A			
MW372	2 Upgradient	Yes	640	YES	6.461	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-39

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

MW372 Upgradient

Statistics-Background Data

S = 0.010X = 0.025

CV(1) = 0.400

K factor=** 2.523

TL(1) = 0.050

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.742 S = 0.307 CV(2) = -0.082

K factor=** 2.523

TL(2) = -2.967

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.05	-3.689 -3.689 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.05 0.02	-3.689 -3.689 -2.996 -3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.05 0.02 0.02	-3.689 -3.689 -2.996 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

-7.354

N/A

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	0.00057	NO	-7.470	N/A		
MW360	Downgradient	Yes	0.0008	NO	-7.131	N/A		
MW363	Downgradient	Yes	0.00033	NO	-8.016	N/A		
MW366	Downgradient	Yes	0.00046	NO	-7.684	N/A		
MW369	Upgradient	Yes	0.00121	NO	-6.717	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

0.00064

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-40

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.781 S = 1.351 CV(1) = 0.759 K factor**= 2.523 TL(1) = 5.190 LL(1) = N/A Statistics-Transformed Background X = 0.228 S = 1.065 CV(2) = 4.665 K factor**= 2.523 TL(2) = 2.915 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 5.41 1.688 4/22/2002 1.57 0.451 7/15/2002 -0.2230.8 10/8/2002 1.09 0.086 1/8/2003 2.69 0.990 4/3/2003 2.04 0.713 7/8/2003 1.19 0.174 10/6/2003 1.78 0.577 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 3.89 1.358 4/23/2002 0.05 -2.9967/16/2002 0.285 1.33 10/8/2002 2.66 0.978 1/7/2003 0.4 -0.916 -0.094 4/2/2003 0.91 7/9/2003 1.42 0.351 10/7/2003 1.26 0.231

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	4.72	NO	1.552	N/A		
MW360	Downgradient	Yes	1.51	NO	0.412	N/A		
MW363	Downgradient	Yes	0.78	NO	-0.248	N/A		
MW366	Downgradient	Yes	2.99	NO	1.095	N/A		
MW369	Upgradient	Yes	3.09	NO	1.128	N/A		
MW372	Upgradient	Yes	3.63	NO	1.289	N/A		
						_		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-41

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 285.188 **S**= 44.908 **CV(1)**= 0.157

K factor**= 2.523

TL(1)= 398.489 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.640 S = 0.175 CV(2) = 0.031

K factor**= 2.523

TL(2) = 6.080

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	173	5.153
4/22/2002	246	5.505
7/15/2002	232	5.447
10/8/2002	275	5.617
1/8/2003	269	5.595
4/3/2003	250	5.521
7/8/2003	295	5.687
10/6/2003	276	5.620
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.687
Date Collected	Result	,
Date Collected 3/19/2002	Result 295	5.687
Date Collected 3/19/2002 4/23/2002	Result 295 322	5.687 5.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 295 322 329	5.687 5.775 5.796
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 295 322 329 290	5.687 5.775 5.796 5.670
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 295 322 329 290 316	5.687 5.775 5.796 5.670 5.756

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	231	NO	5.442	N/A	
MW360	Downgradient	Yes	210	NO	5.347	N/A	
MW363	Downgradient	Yes	283	NO	5.645	N/A	
MW366	Downgradient	Yes	273	NO	5.609	N/A	
MW369	Upgradient	Yes	194	NO	5.268	N/A	
MW372	Upgradient	Yes	616	YES	6.423	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-42

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 7.385**S**= 6.991 CV(1)=0.947**K factor**=** 2.523 **TL(1)=** 25.024 Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background** X = 1.358 S = 1.323 CV(2) = 0.974

Data

K factor**= 2.523

TL(2) = 4.697

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.656 -0.4224/22/2002 0.695 -0.3647/15/2002 1.960 7.1 10/8/2002 21.5 3.068 1/8/2003 2.918 18.5 4/3/2003 14.9 2.701 7/8/2003 11.3 2.425 10/6/2003 14.9 2.701 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 5.95 1.783 4/23/2002 0.792 -0.2337/16/2002 1.78 0.577 10/8/2002 0.776 -0.2541/7/2003 3.55 1.267 4/2/2003 5.02 1.613 7/9/2003 10 2.303 10/7/2003 0.733 -0.311

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	No	0.1	N/A	-2.303	N/A		
MW360	Downgradient	Yes	0.591	NO	-0.526	N/A		
MW363	Downgradient	Yes	0.0549	NO	-2.902	N/A		
MW366	Downgradient	Yes	0.0508	NO	-2.980	N/A		
MW369	Upgradient	Yes	0.136	NO	-1.995	N/A		
MW372	Upgradient	Yes	0.0634	NO	-2.758	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-43

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Magnesium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 12.864 S = 3.505

CV(1)=0.272

K factor=** 2.523

TL(1)= 21.707

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.517 S = 0.290 CV(2) = 0.115

K factor=** 2.523

TL(2) = 3.248

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 11.4 2.434 4/22/2002 12 2.485 7/15/2002 10 2.303 10/8/2002 8.62 2.154 1/8/2003 7.89 2.066 4/3/2003 7.97 2.076 7/8/2003 10.3 2.332 10/6/2003 9.14 2.213 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 15.7 2.754 4/23/2002 16.6 2.809 7/16/2002 15.4 2.734 10/8/2002 15.8 2.760 1/7/2003 15.8 2.760 2.797 4/2/2003 16.4 7/9/2003 15.2 2.721 10/7/2003 17.6 2.868

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	11.7	NO	2.460	N/A		
MW360	Downgradient	Yes	7.94	NO	2.072	N/A		
MW363	Downgradient	Yes	10.5	NO	2.351	N/A		
MW366	Downgradient	Yes	14.2	NO	2.653	N/A		
MW369	Upgradient	Yes	7.51	NO	2.016	N/A		
MW372	Upgradient	Yes	19.2	NO	2.955	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-44

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.413 S = 0.274 CV(1) = 0.664 K factor**= 2.523 TL(1) = 1.105 LL(1) = N/A

Statistics-Transformed Background Data

X=-1.226 **S**= 1.008 **CV(2)**=-0.822

K factor**= 2.523

TL(2) = 1.317

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.034 -3.381 4/22/2002 0.062 -2.7817/15/2002 0.436 -0.83010/8/2002 0.867-0.1431/8/2003 0.828 -0.1894/3/2003 0.672 -0.3977/8/2003 0.321 -1.136 0.714 10/6/2003 -0.337Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.205 -1.5854/23/2002 0.345 -1.0647/16/2002 -1.561 0.21 10/8/2002 0.0539 -2.9211/7/2003 0.537 -0.622 0.415 -0.879 4/2/2003 7/9/2003 0.654 -0.42510/7/2003 0.254 -1.370

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW357	Downgradient	Yes	0.00263	NO	-5.941	N/A		
MW360	Downgradient	Yes	0.0395	NO	-3.231	N/A		
MW363	Downgradient	Yes	0.25	NO	-1.386	N/A		
MW366	Downgradient	Yes	0.00412	NO	-5.492	N/A		
MW369	Upgradient	Yes	0.00693	NO	-4.972	N/A		
MW372	Upgradient	Yes	0.00159	NO	-6.444	N/A		
						_		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-45

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Nickel UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.021X = 0.024

CV(1) = 0.910

K factor**= 2.523

TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.246 S = 1.075 CV(2) = -0.253

K factor**= 2.523

TL(2) = -1.535

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.05 -2.9960.05 4/22/2002 -2.9967/15/2002 0.05 -2.99610/8/2002 0.005 -5.298 1/8/2003 0.005 -5.2984/3/2003 0.005 -5.2987/8/2003 0.013 -4.343 0.0104 10/6/2003 -4.566Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.05 -2.996 4/23/2002 0.05 -2.9967/16/2002 0.05 -2.99610/8/2002 0.005 -5.298 1/7/2003 0.005-5.298 -5.298 4/2/2003 0.005 7/9/2003 0.019 -3.96310/7/2003 0.005 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.002	N/A	-6.215	N/A	
MW360	Downgradient	Yes	0.00118	NO	-6.742	N/A	
MW363	Downgradient	Yes	0.0071	NO	-4.948	N/A	
MW366	Downgradient	No	0.002	N/A	-6.215	N/A	
MW369	Upgradient	Yes	0.00474	NO	-5.352	N/A	
MW372	Upgradient	Yes	0.00064	NO	-7.354	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-46

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 74.563 S = 94.243 CV(1) = 1.264

K factor=** 2.523

TL(1)= 312.337 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.554 S = 0.784 CV(2) = 0.172

K factor**= 2.523

TL(2) = 5.371

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
		131/D 10
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.347
Date Collected	Result	
Date Collected 3/19/2002	Result 210	5.347
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	413	N/A	6.023	YES	
MW360	Downgradient	Yes	423	N/A	6.047	YES	
MW363	Downgradient	Yes	365	N/A	5.900	YES	
MW366	Downgradient	Yes	390	N/A	5.966	YES	
MW369	Upgradient	Yes	410	N/A	6.016	YES	
MW372	Upgradient	Yes	390	N/A	5.966	YES	
3.1/4 D	1/ 11 /10 1 NI	. D			1 / 11 /	1 .	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW357 MW360

MW363 MW366

MW369 MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

D1-47

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.274 S = 0.194 CV(1) = 0.031 K factor** = 2.904 TL(1) = 6.837 LL(1) = 5.7114

Statistics-Transformed Background X = 1.836 S = 0.031 CV(2) = 0.017 K factor**= 2.904 TL(2) = 1.925 LL(2) = 1.7467 Data

Historical Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 1.808 6.1 4/22/2002 6.1 1.808 7/15/2002 1.808 6.1 10/8/2002 6.5 1.872 1/8/2003 6.5 1.872 4/3/2003 6.6 1.887 7/8/2003 6.5 1.872 10/6/2003 6.5 1.872 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 6.1 1.808 4/23/2002 6.12 1.812 7/16/2002 6.1 1.808 10/8/2002 6.06 1.802 1/7/2003 6.26 1.834 4/2/2003 6.15 1.816 7/9/2003 6.3 1.841 10/7/2003 6.4 1.856

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW357	Downgradien	t Yes	6.1	NO	1.808	N/A
MW360	Downgradien	t Yes	6.16	NO	1.818	N/A
MW363	Downgradien	t Yes	6.07	NO	1.803	N/A
MW366	Downgradien	t Yes	6.03	NO	1.797	N/A
MW369	Upgradient	Yes	6.25	NO	1.833	N/A
MW372	Upgradient	Yes	6.08	NO	1.805	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-48

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.663
 S= 0.488
 CV(1)=0.293
 K factor**= 2.523
 TL(1)= 2.895
 LL(1)=N/A

 Statistics-Transformed Background Data
 X= 0.456
 S= 0.362
 CV(2)=0.794
 K factor**= 2.523
 TL(2)= 1.368
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 0.693 0.793 4/22/2002 2.21 7/15/2002 2 0.693 10/8/2002 0.966 -0.035 1/8/2003 0.727 -0.3194/3/2003 0.8 -0.2237/8/2003 1.62 0.482 0.131 10/6/2003 1.14 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2.04 0.713 4/23/2002 2.03 0.708 7/16/2002 0.693 10/8/2002 1.54 0.432 1/7/2003 1.88 0.631 4/2/2003 2.09 0.737 7/9/2003 1.78 0.577

1.79

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	1.57	NO	0.451	N/A
MW360	Downgradient	Yes	0.632	NO	-0.459	N/A
MW363	Downgradient	Yes	1.39	NO	0.329	N/A
MW366	Downgradient	Yes	1.76	NO	0.565	N/A
MW369	Upgradient	Yes	0.57	NO	-0.562	N/A
MW372	Upgradient	Yes	1.95	NO	0.668	N/A
NI/A D	14 11 416 1 3	J D	1 1 1 1		1.7 11.1.7	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.582

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-49

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 45.100 S = 11.875 CV(1) = 0.263

K factor=** 2.523

TL(1)= 75.061 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.780 S = 0.242 CV(2) = 0.064

K factor=** 2.523

TL(2) = 4.390

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 35.7 3.575 4/22/2002 37.6 3.627 7/15/2002 42.4 3.747 10/8/2002 66.9 4.203 1/8/2003 67.9 4.218 4/3/2003 61.8 4.124 7/8/2003 45.6 3.820 4.079 10/6/2003 59.1 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 37.2 3.616 4/23/2002 38.6 3.653 7/16/2002 35.6 3.572 10/8/2002 37.5 3.624 1/7/2003 34.1 3.529 4/2/2003 34.4 3.538 7/9/2003 44.1 3.786 10/7/2003 43.1 3.764

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	42.4	NO	3.747	N/A
MW360	Downgradient	Yes	58.4	NO	4.067	N/A
MW363	Downgradient	Yes	42.5	NO	3.750	N/A
MW366	Downgradient	Yes	45.8	NO	3.824	N/A
MW369	Upgradient	Yes	49.3	NO	3.898	N/A
MW372	Upgradient	Yes	54.4	NO	3.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-50

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison URGA Sulfate** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 45.031 S = 33.919 CV(1) = 0.753

K factor=** 2.523

TL(1)= 130.609

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.420 S = 0.981 CV(2) = 0.287

K factor**= 2.523

TL(2) = 5.894

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369			
Date Collected	Result	LN(Result)		
3/18/2002	15.5	2.741		
4/22/2002	15.8	2.760		
7/15/2002	13.8	2.625		
10/8/2002	6.9	1.932		
1/8/2003	10.5	2.351		
4/3/2003	10.5	2.351		
7/8/2003	10.9	2.389		
10/6/2003	16.3	2.791		
Well Number:	MW372	_,,,,		
Well Number: Date Collected	MW372 Result	LN(Result)		
Date Collected	Result	LN(Result)		
Date Collected 3/19/2002	Result 71.7	LN(Result) 4.272		
Date Collected 3/19/2002 4/23/2002	Result 71.7 74.7	LN(Result) 4.272 4.313		
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 71.7 74.7 74.1	LN(Result) 4.272 4.313 4.305		
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 71.7 74.7 74.1 70.5	LN(Result) 4.272 4.313 4.305 4.256		
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 71.7 74.7 74.1 70.5 75.8	LN(Result) 4.272 4.313 4.305 4.256 4.328		

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	44.7	NO	3.800	N/A
MW360	Downgradient	Yes	9.94	NO	2.297	N/A
MW363	Downgradient	Yes	36.7	NO	3.603	N/A
MW366	Downgradient	Yes	53.1	NO	3.972	N/A
MW369	Upgradient	Yes	8.91	NO	2.187	N/A
MW372	Upgradient	Yes	70.5	NO	4.256	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-51

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Technetium-99** UNITS: pCi/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 20.821 S = 18.044 CV(1) = 0.867

K factor**= 2.523

TL(1)= 66.344

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.770 S = 1.150 CV(2) = 0.415

K factor**= 2.523

TL(2) = 3.972

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369				
Date Collected	Result	LN(Result)			
3/18/2002	41.7	3.731			
4/22/2002	53.1	3.972			
7/15/2002	18.1	2.896			
10/8/2002	16.4	2.797			
1/8/2003	3.49	1.250			
4/3/2003	9.34	2.234			
7/8/2003	17.5	2.862			
10/6/2003	17	2.833			
Well Number:	MW372				
Well Number: Date Collected	MW372 Result	LN(Result)			
		LN(Result) 3.802			
Date Collected	Result				
Date Collected 3/19/2002	Result 44.8	3.802			
Date Collected 3/19/2002 4/23/2002	Result 44.8 0.802	3.802 -0.221			
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 44.8 0.802 19.8	3.802 -0.221 2.986			
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 44.8 0.802 19.8 46.1	3.802 -0.221 2.986 3.831			
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 44.8 0.802 19.8 46.1 -0.973	3.802 -0.221 2.986 3.831 #Func!			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	30.5	NO	3.418	N/A
MW360	Downgradient	No	8.71	N/A	2.164	N/A
MW363	Downgradient	No	5.08	N/A	1.625	N/A
MW366	Downgradient	Yes	43.8	NO	3.780	N/A
MW369	Upgradient	Yes	55.8	NO	4.022	N/A
MW372	Upgradient	Yes	183	YES	5.209	N/A
3.7/4 B	1	r - 15				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-52

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Total Organic Carbon (TOC)** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 3.513S = 4.307CV(1)=1.226**K factor**=** 2.523 **TL(1)=** 14.378 Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background**

Data

X = 0.851 S = 0.828 CV(2) = 0.973

K factor=** 2.523

TL(2) = 2.940

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 0.531 1.7 4/22/2002 1.6 0.470 7/15/2002 3.1 1.131 10/8/2002 17.7 2.874 1/8/2003 9 2.197 4/3/2003 4 1.386 7/8/2003 4.9 1.589 10/6/2003 2.4 0.875 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.000 4/23/2002 1.2 0.182 7/16/2002 0.000 1 10/8/2002 1 0.000 1/7/2003 1.6 0.470 4/2/2003 1.5 0.405 7/9/2003 3 1.099 10/7/2003 1.5 0.405

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.902	N/A	-0.103	NO
MW360	Downgradient	Yes	1.29	N/A	0.255	NO
MW363	Downgradient	Yes	1.2	N/A	0.182	NO
MW366	Downgradient	Yes	0.849	N/A	-0.164	NO
MW369	Upgradient	Yes	1.11	N/A	0.104	NO
MW372	Upgradient	Yes	1.27	N/A	0.239	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-53

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 67.963 S = 64.316 CV(1) = 0.946

K factor**= 2.523

TL(1) = 230.231LL(1)=N/A

Statistics-Transformed Background Data

X = 3.772 S = 1.023 CV(2) = 0.271

K factor**= 2.523

TL(2) = 6.353

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 3.912 4/22/2002 50 3.912 7/15/2002 4.394 81 10/8/2002 202 5.308 1/8/2003 177 5.176 4/3/2003 93.1 4.534 7/8/2003 17.5 2.862 10/6/2003 37.5 3.624 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 184 5.215 4/23/2002 50 3.912 7/16/2002 50 3.912 10/8/2002 50 3.912 10 1/7/2003 2.303 12.7 4/2/2003 2.542 7/9/2003 10 2.303 10/7/2003 12.6 2.534

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	6.54	NO	1.878	N/A
MW360	Downgradient	Yes	6.54	NO	1.878	N/A
MW363	Downgradient	No	8.44	N/A	2.133	N/A
MW366	Downgradient	No	5.9	N/A	1.775	N/A
MW369	Upgradient	Yes	9.2	NO	2.219	N/A
MW372	Upgradient	Yes	8.28	NO	2.114	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-54

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Vanadium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.006CV(1)=0.259**K factor**=** 2.523 TL(1) = 0.039**Statistics-Background Data** X = 0.024LL(1)=N/A **Statistics-Transformed Background** X = -3.771 S = 0.223CV(2) = -0.059TL(2) = -3.208

Data

K factor=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.689 4/22/2002 0.027 -3.6127/15/2002 0.025 -3.689 10/8/2002 0.02 -3.912 1/8/2003 0.02 -3.912 -3.912 4/3/2003 0.02 7/8/2003 0.02 -3.912 -3.912 10/6/2003 0.02 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.039 -3.2444/23/2002 0.037 -3.2977/16/2002 0.025 -3.68910/8/2002 0.02 -3.912 0.02 -3.912 1/7/2003 0.02 -3.912 4/2/2003 7/9/2003 0.02 -3.912 10/7/2003 0.02 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.02	N/A	-3.912	N/A
MW360	Downgradient	Yes	0.00359	NO	-5.630	N/A
MW363	Downgradient	No	0.02	N/A	-3.912	N/A
MW366	Downgradient	No	0.02	N/A	-3.912	N/A
MW369	Upgradient	No	0.02	N/A	-3.912	N/A
MW372	Upgradient	No	0.02	N/A	-3.912	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-55

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 2.026 **S**= 5.626 **CV(1)**= 2.777

K factor**= 2.523

TL(1)= 16.219 **LL(1)=**N/A

Statistics-Transformed Background Data

X = -0.803 S = 1.380 CV(2) = -1.718

K factor=** 2.523

TL(2) = 2.678

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.539 4.66 4/23/2002 0.2 -1.6097/15/2002 0.2 -1.609 10/8/2002 0.2 -1.6091/8/2003 0.2 -1.6094/3/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 22.7 3.122 4/23/2002 1.46 0.378 7/16/2002 -1.3740.253 10/8/2002 0.482 -0.730-0.498 1/7/2003 0.6080.446 -0.807 4/2/2003 7/9/2003 0.2 -1.60910/7/2003 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0207	N/A	-3.878	NO
MW361	Downgradient	No	0.05	N/A	-2.996	N/A
MW364	Downgradient	No	0.05	N/A	-2.996	N/A
MW367	Downgradient	No	0.05	N/A	-2.996	N/A
MW370	Upgradient	No	0.05	N/A	-2.996	N/A
MW373	Upgradient	No	0.05	N/A	-2.996	N/A
37/4 B	1. 11 .10 1 33					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-56

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Antimony** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.078S = 0.098 CV(1)=1.248

K factor=** 2.523

TL(1) = 0.324

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.915 S = 1.844 CV(2) = -0.471

K factor=** 2.523

TL(2) = 0.739

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.2 -1.609 4/23/2002 0.2 -1.6097/15/2002 0.2 -1.609 10/8/2002 0.005 -5.298 1/8/2003 0.005 -5.2984/3/2003 0.005 -5.2987/9/2003 0.005 -5.298 10/6/2003 0.005 -5.298Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.2 -1.609 4/23/2002 0.2 -1.6097/16/2002 -1.6090.2 10/8/2002 0.005 -5.298 1/7/2003 0.005-5.298 -5.298 4/2/2003 0.005 7/9/2003 0.005 -5.29810/7/2003 0.005 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.003	N/A	-5.809	N/A
MW361	Downgradient	Yes	0.00109	N/A	-6.822	NO
MW364	Downgradient	No	0.003	N/A	-5.809	N/A
MW367	Downgradient	No	0.003	N/A	-5.809	N/A
MW370	Upgradient	No	0.003	N/A	-5.809	N/A
MW373	Upgradient	No	0.003	N/A	-5.809	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-57

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S= 7.838 CV(1)=0.799**K factor**=** 2.523 **TL(1)=** 29.591 **Statistics-Background Data** X = 9.815LL(1)=N/A **Statistics-Transformed Background**

Data

X = 2.072 S = 0.630 CV(2) = 0.304

K factor**= 2.523

TL(2) = 3.662

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	10.1	2.313
4/23/2002	4.46	1.495
7/15/2002	6.58	1.884
10/8/2002	4.9	1.589
1/8/2003	4.47	1.497
4/3/2003	8.65	2.158
7/9/2003	3.66	1.297
10/6/2003	5.38	1.683
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.715
Date Collected	Result	
Date Collected 3/18/2002	Result 15.1	2.715
Date Collected 3/18/2002 4/23/2002	Result 15.1 6.26	2.715 1.834
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 15.1 6.26 6.22	2.715 1.834 1.828
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 15.1 6.26 6.22 4.06	2.715 1.834 1.828 1.401
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 15.1 6.26 6.22 4.06 11.2	2.715 1.834 1.828 1.401 2.416

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	37.6	N/A	3.627	N/A
MW361	Downgradient	Yes	44.1	N/A	3.786	N/A
MW364	Downgradient	Yes	34.8	N/A	3.550	N/A
MW367	Downgradient	No	9.55	N/A	2.257	N/A
MW370	Upgradient	Yes	52.7	YES	3.965	N/A
MW373	Upgradient	Yes	21.9	N/A	3.086	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW370

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-58

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 1.140
 S= 0.780
 CV(1)=0.684
 K factor**= 2.523
 TL(1)= 3.108
 LL(1)=N/A

 Statistics-Transformed Background
 X= -0.235
 S= 1.006
 CV(2)=-4.287
 K factor**= 2.523
 TL(2)= 2.303
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

MW370 Well Number: Date Collected Result LN(Result) 3/17/2002 0.693 4/23/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.2 -1.6091/8/2003 0.2 -1.6094/3/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 0.693 2 10/8/2002 0.79 -0.2361/7/2003 0.807 -0.2144/2/2003 1.13 0.122 7/9/2003 1.28 0.247 10/7/2003 0.215 1.24

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.474	NO	-0.747	N/A
MW361	Downgradient	Yes	0.162	NO	-1.820	N/A
MW364	Downgradient	Yes	0.0168	NO	-4.086	N/A
MW367	Downgradient	Yes	0.0538	NO	-2.922	N/A
MW370	Upgradient	Yes	0.0299	NO	-3.510	N/A
MW373	Upgradient	Yes	1.52	NO	0.419	N/A
3.T/A D	1	v			1 . 111	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-59

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Bromide** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 1.000S = 0.000CV(1)=0.000**K factor**=** 2.523 **TL(1)=** 1.000 Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background** X = 0.000**CV(2)=**#Num! S = 0.000TL(2) = 0.000LL(2)=N/A

Data

K factor=** 2.523

Historical Background Data from **Upgradient Wells with Transformed Result**

MW370 Well Number: Date Collected Result LN(Result) 3/17/2002 0.000 4/23/2002 1 0.000 7/15/2002 1 0.000 10/8/2002 1 0.000 1/8/2003 1 0.000 4/3/2003 1 0.000 7/9/2003 1 0.000 10/6/2003 1 0.000Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 1 0.000 4/23/2002 1 0.000 7/16/2002 0.000 10/8/2002 0.000 1/7/2003 0.0001 4/2/2003 0.000 7/9/2003 0.000 10/7/2003 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Downgradient	Yes	0.473	NO	-0.749	N/A
Downgradient	Yes	0.446	NO	-0.807	N/A
Downgradient	Yes	0.439	NO	-0.823	N/A
Downgradient	Yes	0.445	NO	-0.810	N/A
Upgradient	Yes	0.394	NO	-0.931	N/A
Upgradient	Yes	0.532	NO	-0.631	N/A
	Downgradient Downgradient Upgradient	Gradient Detected? Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Upgradient Yes	Gradient Detected? Result Downgradient Yes 0.473 Downgradient Yes 0.446 Downgradient Yes 0.439 Downgradient Yes 0.445 Upgradient Yes 0.394	Gradient Detected? Result Result >TL(1)? Downgradient Yes 0.473 NO Downgradient Yes 0.446 NO Downgradient Yes 0.439 NO Downgradient Yes 0.445 NO Upgradient Yes 0.394 NO	Gradient Detected? Result Result >TL(1)? LN(Result) Downgradient Yes 0.473 NO -0.749 Downgradient Yes 0.446 NO -0.807 Downgradient Yes 0.439 NO -0.823 Downgradient Yes 0.445 NO -0.810 Upgradient Yes 0.394 NO -0.931

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-60

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 43.413 S = 13.444 CV(1) = 0.310

K factor**= 2.523

TL(1) = 77.331

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.723 S = 0.323 CV(2) = 0.087

K factor**= 2.523

TL(2) = 4.539

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	34.8	3.550
4/23/2002	43.4	3.770
7/15/2002	33.2	3.503
10/8/2002	29.2	3.374
1/8/2003	31.3	3.444
4/3/2003	32.4	3.478
7/9/2003	22.9	3.131
10/6/2003	28	3.332
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 4.126
Date Collected	Result	
Date Collected 3/18/2002	Result 61.9	4.126
Date Collected 3/18/2002 4/23/2002	Result 61.9 59.2	4.126 4.081
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 61.9 59.2 47.6	4.126 4.081 3.863
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 61.9 59.2 47.6 46.1	4.126 4.081 3.863 3.831
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 61.9 59.2 47.6 46.1 49.2	4.126 4.081 3.863 3.831 3.896

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	33.5	NO	3.512	N/A
MW361	Downgradient	Yes	32	NO	3.466	N/A
MW364	Downgradient	Yes	32	NO	3.466	N/A
MW367	Downgradient	Yes	25.9	NO	3.254	N/A
MW370	Upgradient	Yes	27.7	NO	3.321	N/A
MW373	Upgradient	Yes	67.9	NO	4.218	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-61

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=41.938 **S**= 24.732 **CV(1)**=0.590

K factor=** 2.523

TL(1)= 104.336 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.658 S = 0.339 CV(2) = 0.093

K factor=** 2.523

TL(2) = 4.512

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	35	3.555
4/23/2002	134	4.898
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.555
Date Collected	Result	
Date Collected 3/18/2002	Result 35	3.555
Date Collected 3/18/2002 4/23/2002	Result 35 47	3.555 3.850
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 35 47 35	3.555 3.850 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 47 35 35	3.555 3.850 3.555 3.555
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 47 35 35 35	3.555 3.850 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	10.8	NO	2.380	N/A
MW361	Downgradient	Yes	31.5	NO	3.450	N/A
MW364	Downgradient	Yes	28	NO	3.332	N/A
MW367	Downgradient	No	20	N/A	2.996	N/A
MW370	Upgradient	Yes	36.7	NO	3.603	N/A
MW373	Upgradient	Yes	107	YES	4.673	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-62

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 45.919 S= 7.524 CV(1)=0.164 K factor**= 2.523 TL(1)=64.901 LL(1)=N/A

Statistics-Transformed Background Data

X= 3.814 **S**= 0.165 **CV(2)**= 0.043

K factor**= 2.523

TL(2) = 4.231 LL(

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/15/2002 55.5 4.016 10/8/2002 53.6 3.982 1/8/2003 52.9 3.968 4/3/2003 53.6 3.982 7/9/2003 51.9 3.949 10/6/2003 53 3.970 1/7/2004 53 3.970 3.944 4/7/2004 51.6 Well Number: MW373 Date Collected Result LN(Result) 7/16/2002 40.6 3.704 10/8/2002 38.8 3.658 39 1/7/2003 3.664 4/2/2003 38.4 3.648 7/9/2003 38.1 3.640 10/7/2003 38 3.638 1/6/2004 37.9 3.635 4/7/2004 38.8 3.658

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	36	NO	3.584	N/A
MW361	Downgradient	Yes	32.3	NO	3.475	N/A
MW364	Downgradient	Yes	33	NO	3.497	N/A
MW367	Downgradient	Yes	33.8	NO	3.520	N/A
MW370	Upgradient	Yes	34.2	NO	3.532	N/A
MW373	Upgradient	Yes	40.5	NO	3.701	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-63

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Cobalt UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.027

S = 0.032CV(1)=1.165

MW373 Upgradient

K factor=** 2.523

TL(1)= 0.108

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.058 S = 1.011 CV(2) = -0.249

K factor**= 2.523

TL(2) = -1.507

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.0174	-4.051
1/8/2003	0.0105	-4.556
4/3/2003	0.00931	-4.677
7/9/2003	0.137	-1.988
10/6/2003	0.0463	-3.073
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 3/18/2002	Result 0.025	-3.689
Date Collected 3/18/2002 4/23/2002	Result 0.025 0.034	-3.689 -3.381
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.025 0.034 0.025	-3.689 -3.381 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.034 0.025 0.00411	-3.689 -3.381 -3.689 -5.494
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.034 0.025 0.00411 0.00344	-3.689 -3.381 -3.689 -5.494 -5.672

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

-6.938

NO

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0019	N/A	-6.266	NO
MW361	Downgradient	No	0.001	N/A	-6.908	N/A
MW364	Downgradient	No	0.001	N/A	-6.908	N/A
MW367	Downgradient	Yes	0.00726	N/A	-4.925	NO
MW370	Upgradient	No	0.001	N/A	-6.908	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

N/A

0.00097

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-64

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 608.719 S = 156.157 CV(1) = 0.257

K factor**= 2.523

TL(1)= 1002.702 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.380 S = 0.260 CV(2) = 0.041

K factor**= 2.523

TL(2) = 7.036

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	406	6.006
4/23/2002	543	6.297
7/15/2002	476	6.165
10/8/2002	441	6.089
1/8/2003	486	6.186
4/3/2003	466	6.144
7/9/2003	479	6.172
10/6/2003	435	6.075
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.494
Date Collected	Result	
Date Collected 3/18/2002	Result 661	6.494
Date Collected 3/18/2002 4/23/2002	Result 661 801	6.494 6.686
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 661 801 774	6.494 6.686 6.652
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 661 801 774 680	6.494 6.686 6.652 6.522
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 661 801 774 680 686.5	6.494 6.686 6.652 6.522 6.532

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	505	NO	6.225	N/A
MW361	Downgradient	Yes	492	NO	6.198	N/A
MW364	Downgradient	Yes	485	NO	6.184	N/A
MW367	Downgradient	Yes	400	NO	5.991	N/A
MW370	Upgradient	Yes	421	NO	6.043	N/A
MW373	Upgradient	Yes	785	NO	6.666	N/A
NI/A D	1/ 11 /10 1 N	. B.	1 . 11		1.7	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-65

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Copper UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.010CV(1)=0.399**K factor**=** 2.523 TL(1) = 0.050Statistics-Background Data X = 0.025LL(1)=N/A **Statistics-Transformed Background** X = -3.739 S = 0.308CV(2) = -0.082**K factor**=** 2.523 TL(2) = -2.963LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.689 0.025 4/23/2002 -3.6897/15/2002 0.05 -2.99610/8/2002 0.02 -3.912 1/8/2003 0.02 -3.912 -3.912 4/3/2003 0.02 7/9/2003 0.02 -3.912 -3.912 10/6/2003 0.02 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.026 -3.650 4/23/2002 0.025 -3.6897/16/2002 0.05 -2.99610/8/2002 0.02 -3.9120.02 -3.912 1/7/2003 0.02 -3.912 4/2/2003 7/9/2003 0.02 -3.912 10/7/2003 0.02 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00045	NO	-7.706	N/A
MW361	Downgradient	Yes	0.00052	NO	-7.562	N/A
MW364	Downgradient	Yes	0.00043	NO	-7.752	N/A
MW367	Downgradient	Yes	0.00059	NO	-7.435	N/A
MW370	Upgradient	Yes	0.0005	NO	-7.601	N/A
MW373	Upgradient	Yes	0.00065	NO	-7.339	N/A
NT/A D	14 11 416 1 3	T D	1 1 1 1		1.7 1:1.7	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-66

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.387S = 1.153 CV(1) = 0.831

K factor=** 2.523

TL(1) = 4.295

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.115 S = 1.207 CV(2) = -10.514

K factor=** 2.523

TL(2) = 2.930

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.463 4.32 4/23/2002 1.24 0.215 7/15/2002 0.75 -0.28810/8/2002 0.94 -0.0621/8/2003 3.08 1.125 4/3/2003 1.45 0.372 7/9/2003 1.22 0.199 0.068 10/6/2003 1.07 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 3.04 1.112 4/23/2002 0.03 -3.5077/16/2002 0.23 -1.47010/8/2002 0.86 -0.1511/7/2003 0.21 -1.561 4/2/2003 1.19 0.174 7/9/2003 1.1 0.095 10/7/2003 1.46 0.378

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.01	NO	0.698	N/A
MW361	Downgradient	Yes	2.89	NO	1.061	N/A
MW364	Downgradient	Yes	3.23	NO	1.172	N/A
MW367	Downgradient	Yes	2.23	NO	0.802	N/A
MW370	Upgradient	Yes	4.09	NO	1.409	N/A
MW373	Upgradient	Yes	2.36	NO	0.859	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-67

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 356.188 **S**= 106.752 **CV(1)**= 0.300

K factor**= 2.523

TL(1)= 625.523 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.831 S = 0.311 CV(2) = 0.053

K factor**= 2.523

TL(2) = 6.616

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 236 5.464 4/23/2002 337 5.820 7/15/2002 266 5.583 10/8/2002 240 5.481 1/8/2003 282 5.642 4/3/2003 238 5.472 7/9/2003 248 5.513 10/6/2003 224 5.412 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 427 6.057 4/23/2002 507 6.229 7/16/2002 464 6.140 10/8/2002 408 6.011 1/7/2003 404 6.001 4/2/2003 450 6.109 7/9/2003 487 6.188 10/7/2003 481 6.176

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	321	NO	5.771	N/A
MW361	Downgradient	Yes	364	NO	5.897	N/A
MW364	Downgradient	Yes	274	NO	5.613	N/A
MW367	Downgradient	Yes	234	NO	5.455	N/A
MW370	Upgradient	Yes	241	NO	5.485	N/A
MW373	Upgradient	Yes	481	NO	6.176	N/A
37/4 B	1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-68

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S= 8.841 X = 9.230

CV(1)=0.958

K factor=** 2.523

TL(1)= 31.535

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.942 S = 0.713 CV(2) = 0.367

K factor**= 2.523

TL(2) = 3.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	9.34	2.234
4/23/2002	4.33	1.466
7/15/2002	3.52	1.258
10/8/2002	7.45	2.008
1/8/2003	7.04	1.952
4/3/2003	4.64	1.535
7/9/2003	15.8	2.760
10/6/2003	6.49	1.870
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.627
Date Collected	Result	
Date Collected 3/18/2002	Result 37.6	3.627
Date Collected 3/18/2002 4/23/2002	Result 37.6 19	3.627 2.944
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 37.6 19 10.7	3.627 2.944 2.370
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 37.6 19 10.7 3.75	3.627 2.944 2.370 1.322
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 37.6 19 10.7 3.75 3.87	3.627 2.944 2.370 1.322 1.353

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.845	NO	-0.168	N/A
MW361	Downgradient	No	0.1	N/A	-2.303	N/A
MW364	Downgradient	Yes	0.0411	NO	-3.192	N/A
MW367	Downgradient	Yes	0.593	NO	-0.523	N/A
MW370	Upgradient	No	0.1	N/A	-2.303	N/A
MW373	Upgradient	Yes	0.103	NO	-2.273	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-69

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Magnesium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 17.544 S = 5.911

CV(1) = 0.337

K factor=** 2.523

TL(1) = 32.458

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.810 S = 0.343 CV(2) = 0.122

K factor**= 2.523

TL(2) = 3.676

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	12.1	2.493
4/23/2002	15.1	2.715
7/15/2002	12.4	2.518
10/8/2002	12.2	2.501
1/8/2003	11.5	2.442
4/3/2003	12.3	2.510
7/9/2003	10	2.303
10/6/2003	12.1	2.493
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.211
Date Collected	Result	, ,
Date Collected 3/18/2002	Result 24.8	3.211
Date Collected 3/18/2002 4/23/2002	Result 24.8 22.7	3.211 3.122
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 24.8 22.7 18.8	3.211 3.122 2.934
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 24.8 22.7 18.8 21.1	3.211 3.122 2.934 3.049
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 24.8 22.7 18.8 21.1 19.9	3.211 3.122 2.934 3.049 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	15.1	NO	2.715	N/A		
MW361	Downgradient	Yes	13.8	NO	2.625	N/A		
MW364	Downgradient	Yes	13.7	NO	2.617	N/A		
MW367	Downgradient	Yes	12.2	NO	2.501	N/A		
MW370	Upgradient	Yes	12.1	NO	2.493	N/A		
MW373	Upgradient	Yes	27.2	NO	3.303	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-70

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X=1.080 S= 0.674 CV(1)=0.624 K factor**= 2.523 TL(1)= 2.780 LL(1)=N/A

Statistics-Transformed Background Data

X=-0.114 **S**= 0.658 **CV(2)**=-5.762

K factor**= 2.523

TL(2)=1.547

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.244 -1.411 0.599 4/23/2002 1.82 7/15/2002 0.199 1.22 10/8/2002 0.988 -0.012 1/8/2003 -0.3160.729 4/3/2003 0.637 -0.4517/9/2003 2.51 0.920 0.049 10/6/2003 1.05 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.355 -1.0364/23/2002 2.16 0.770 7/16/2002 0.329 1.39 10/8/2002 0.717 -0.3331/7/2003 0.587-0.533-0.607 4/2/2003 0.545 7/9/2003 1.76 0.565 10/7/2003 0.57 -0.562

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.173	NO	-1.754	N/A	
MW361	Downgradient	Yes	0.00525	NO	-5.250	N/A	
MW364	Downgradient	Yes	0.00521	NO	-5.257	N/A	
MW367	Downgradient	Yes	1	NO	0.000	N/A	
MW370	Upgradient	Yes	0.00111	NO	-6.803	N/A	
MW373	Upgradient	Yes	0.0499	NO	-2.998	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-71

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.024 S = 0.022

CV(1)=0.901

K factor**= 2.523

TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.239 S = 1.087

CV(2) = -0.256

K factor=** 2.523

TL(2) = -1.497

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.05	-2.996
4/23/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.0264	-3.634
10/6/2003	0.00971	-4.635
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 3/18/2002	Result 0.05	-2.996
Date Collected 3/18/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	0.0041	NO	-5.497	N/A		
MW361	Downgradient	. No	0.002	N/A	-6.215	N/A		
MW364	Downgradient	. No	0.002	N/A	-6.215	N/A		
MW367	Downgradient	Yes	0.00387	' NO	-5.555	N/A		
MW370	Upgradient	No	0.002	N/A	-6.215	N/A		
MW373	Upgradient	Yes	0.00217	NO NO	-6.133	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-72

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 46.688 S = 60.986 CV(1) = 1.306

K factor=** 2.523

TL(1) = 200.555LL(1)=N/A

Statistics-Transformed Background Data

X = 3.829 S = 1.151 CV(2) = 0.301

K factor**= 2.523

TL(2) = 4.942

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.942
Date Collected	Result	
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	101	N/A	4.615	NO	
MW361	Downgradient	Yes	412	N/A	6.021	YES	
MW364	Downgradient	Yes	356	N/A	5.875	YES	
MW367	Downgradient	Yes	312	N/A	5.743	YES	
MW370	Upgradient	Yes	421	N/A	6.043	YES	
MW373	Upgradient	Yes	417	N/A	6.033	YES	
						_	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW361 MW364

MW367

MW370

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-73

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.283 S = 0.159 CV(1) = 0.025 K factor**= 2.904 TL(1) = 6.745 LL(1) = 5.8202

Statistics-Transformed Background Data

X= 1.837 **S**= 0.025 **CV(2)**= 0.014

K factor**= 2.904

TL(2)= 1.911

LL(2)=1.7634

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.841 6.3 4/23/2002 6.4 1.856 7/15/2002 6.3 1.841 10/8/2002 6.3 1.841 1/8/2003 6.4 1.856 4/3/2003 6.5 1.872 7/9/2003 6.3 1.841 10/6/2003 6.5 1.872 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 6 1.792 4/23/2002 6.3 1.841 7/16/2002 6.45 1.864 10/8/2002 6.18 1.821 1/7/2003 6.35 1.848 4/2/2003 6.14 1.815 7/9/2003 6.1 1.808 10/7/2003 6 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Vuai tei	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW358	Downgradien	t Yes	6.11	NO	1.810	N/A
MW361	Downgradien	t Yes	6.02	NO	1.795	N/A
MW364	Downgradien	t Yes	6.01	NO	1.793	N/A
MW367	Downgradien	t Yes	5.79	YES	1.756	N/A
MW370	Upgradient	Yes	6.15	NO	1.816	N/A
MW373	Upgradient	Yes	6.03	NO	1.797	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW367

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-74

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Potassium** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.522CV(1)=0.185**K factor**=** 2.523 TL(1) = 4.139**Statistics-Background Data** X = 2.823LL(1)=N/A **Statistics-Transformed Background** X = 1.024 S = 0.167TL(2) = 1.445

Data

CV(2) = 0.163

K factor=** 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 3.22 1.169 4/23/2002 3.43 1.233 7/15/2002 2.98 1.092 10/8/2002 2.46 0.900 1/8/2003 2.41 0.880 4/3/2003 2.43 0.888 7/9/2003 2.44 0.892 0.908 10/6/2003 2.48 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 4.34 1.468 4/23/2002 3.04 1.112 7/16/2002 2.93 1.075 10/8/2002 2.3 0.8331/7/2003 2.45 0.896 0.993 4/2/2003 2.7 7/9/2003 2.68 0.986 10/7/2003 2.88 1.058

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	2.23	NO	0.802	N/A	
MW361	Downgradient	Yes	2.12	NO	0.751	N/A	
MW364	Downgradient	Yes	1.9	NO	0.642	N/A	
MW367	Downgradient	Yes	2.96	NO	1.085	N/A	
MW370	Upgradient	Yes	2.46	NO	0.900	N/A	
MW373	Upgradient	Yes	2.6	NO	0.956	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-75

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.544 S = 15.227 CV(1) = 0.295

K factor=** 2.523

TL(1)= 89.962

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.906 S = 0.272 CV(2) = 0.070

K factor**= 2.523

TL(2) = 4.592

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	31.8	3.459
4/23/2002	50	3.912
7/15/2002	44.7	3.800
10/8/2002	40	3.689
1/8/2003	44.6	3.798
4/3/2003	41.9	3.735
7/9/2003	40	3.689
10/6/2003	38.1	3.640
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.770
Date Collected	Result	, ,
Date Collected 3/18/2002	Result 43.4	3.770
Date Collected 3/18/2002 4/23/2002	Result 43.4 79.8	3.770 4.380
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 43.4 79.8 87.7	3.770 4.380 4.474
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 43.4 79.8 87.7 61.6	3.770 4.380 4.474 4.121
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 43.4 79.8 87.7 61.6 59.3	3.770 4.380 4.474 4.121 4.083

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	42	NO	3.738	N/A		
MW361	Downgradient	Yes	45.5	NO	3.818	N/A		
MW364	Downgradient	Yes	45	NO	3.807	N/A		
MW367	Downgradient	Yes	35.3	NO	3.564	N/A		
MW370	Upgradient	Yes	42.3	NO	3.745	N/A		
MW373	Upgradient	Yes	58.6	NO	4.071	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-76

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 122.381 S = 195.095 CV(1) = 1.594

K factor**= 2.523

TL(1)= 614.606 **LL(1)=**N/A

Statistics-Transformed Background Data

X=3.985 S=1.323 CV(2)=0.332

K factor=** 2.523

TL(2) = 7.322

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 17.4 2.856 4/23/2002 37.9 3.635 7/15/2002 2.754 15.7 10/8/2002 13.4 2.595 1/8/2003 14.4 2.667 4/3/2003 18.1 2.896 7/9/2003 9.6 2.262 10/6/2003 16.5 2.803 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 163.3 5.096 4/23/2002 809.6 6.697 7/16/2002 4.695 109.4 10/8/2002 110.6 4.706 1/7/2003 113.7 4.734 4/2/2003 133 4.890 7/9/2003 182.1 5.205 10/7/2003 193.4 5.265

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	66.6	N/A	4.199	NO	
MW361	Downgradient	Yes	73.8	N/A	4.301	NO	
MW364	Downgradient	Yes	70.2	N/A	4.251	NO	
MW367	Downgradient	Yes	48.3	N/A	3.877	NO	
MW370	Upgradient	Yes	20.2	N/A	3.006	NO	
MW373	Upgradient	Yes	148	N/A	4.997	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-77

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 7.655 S= 13.274 CV(1)=1.734 K factor**= 2.523 TL(1)=41.146

Statistics-Transformed Background X=1.946 S= 0.939 CV(2)=0.483 K factor**= 2.523 TL(2)

tor**= 2.523 TL(2)= 3.833 LL(2)=N/A

LL(1)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 2.380 10.8 4/23/2002 8.53 2.144 7/15/2002 5.09 1.627 10/8/2002 4.78 1.564 1/8/2003 -5.12#Func! 4/3/2003 5.11 1.631 7/9/2003 4.25 1.447 10/6/2003 6.54 1.878 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 16.5 2.803 4/23/2002 3.49 1.250 7/16/2002 0.351 1.42 10/8/2002 -6.06#Func! 1/7/2003 -8.41 #Func! 26.3 3.270 4/2/2003 7/9/2003 3.06 1.118 10/7/2003 46.2 3.833

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	43.7	N/A	3.777	NO
MW361	Downgradient	Yes	43.3	N/A	3.768	NO
MW364	Downgradient	Yes	52.5	N/A	3.961	YES
MW367	Downgradient	No	8.13	N/A	2.096	N/A
MW370	Upgradient	Yes	107	N/A	4.673	YES
MW373	Upgradient	Yes	28.3	N/A	3.343	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW364 MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-78

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 6.169 **S**= 12.072 **CV(1)**=1.957

K factor=** 2.523

TL(1)= 36.626 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 1.069 S = 1

S= 1.014 **CV(2)**=0.948

K factor=** 2.523

TL(2) = 3.626

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	1.2	0.182
4/23/2002	4.3	1.459
7/15/2002	2.6	0.956
10/8/2002	2.3	0.833
1/8/2003	3	1.099
4/3/2003	1.2	0.182
7/9/2003	2.6	0.956
10/6/2003	1.7	0.531
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 0.095
Date Collected	Result	
Date Collected 3/18/2002	Result 1.1	0.095
Date Collected 3/18/2002 4/23/2002	Result 1.1 17.5	0.095 2.862
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1.1 17.5 49	0.095 2.862 3.892
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1.1 17.5 49 2.9	0.095 2.862 3.892 1.065
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1.1 17.5 49 2.9 3.9	0.095 2.862 3.892 1.065 1.361

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	1.09	N/A	0.086	NO	
MW361	Downgradient	Yes	1.33	N/A	0.285	NO	
MW364	Downgradient	Yes	0.873	N/A	-0.136	NO	
MW367	Downgradient	Yes	0.929	N/A	-0.074	NO	
MW370	Upgradient	Yes	0.988	N/A	-0.012	NO	
MW373	Upgradient	Yes	1.28	N/A	0.247	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-79

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 79.819 S = 78.470 CV(1) = 0.983

K factor=** 2.523

TL(1)= 277.798 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.971 S = 0.950 CV(2) = 0.239

K factor**= 2.523

TL(2) = 6.368

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	50	3.912
4/23/2002	228	5.429
7/15/2002	88	4.477
10/8/2002	58	4.060
1/8/2003	72.4	4.282
4/3/2003	26.6	3.281
7/9/2003	16.4	2.797
10/6/2003	31.1	3.437
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 3/18/2002	Result 50	3.912
Date Collected 3/18/2002 4/23/2002	Result 50 276	3.912 5.620
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 50 276 177	3.912 5.620 5.176
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 50 276 177 76	3.912 5.620 5.176 4.331
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 50 276 177 76 45.9	3.912 5.620 5.176 4.331 3.826

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	6.94	NO	1.937	N/A		
MW361	Downgradient	No	7.26	N/A	1.982	N/A		
MW364	Downgradient	No	6.66	N/A	1.896	N/A		
MW367	Downgradient	No	6.4	N/A	1.856	N/A		
MW370	Upgradient	Yes	7	NO	1.946	N/A		
MW373	Upgradient	Yes	6.52	NO	1.875	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-80

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2019 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 12.188 **S=** 6.950

K factor**= 2.523

TL(1)= 29.721

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.305 S = 0.687

CV(2) = 0.298

CV(1)=0.570

K factor=** 2.523

TL(2) = 4.039

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW370 Well Number: Date Collected Result LN(Result) 3/17/2002 19 2.944 4/23/2002 17 2.833 7/15/2002 15 2.708 10/8/2002 18 2.890 1/8/2003 17 2.833 4/3/2003 18 2.890 7/9/2003 15 2.708 10/6/2003 16 2.773 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 5 1.609 4/23/2002 25 3.219 7/16/2002 1.099 3 10/8/2002 4 1.386 1/7/2003 6 1.792 4/2/2003 5 1.609 7/9/2003 1.792 6 10/7/2003 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	5.12	NO	1.633	N/A		
MW361	Downgradient	Yes	5.46	NO	1.697	N/A		
MW364	Downgradient	Yes	6.69	NO	1.901	N/A		
MW367	Downgradient	Yes	4.95	N/A	1.599	N/A		
MW370	Upgradient	Yes	0.57	N/A	-0.562	N/A		
MW373	Upgradient	Yes	0.69	N/A	-0.371	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-81

C-746-U Third Quarter 2019 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.037X = 0.055

CV(1)=0.673

K factor**= 2.523

TL(1) = 0.147

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.131 S = 0.691 CV(2) = -0.221

K factor**= 2.523

TL(2) = -1.388

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.1	-2.303
4/23/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -2.303
Date Collected	Result	
Date Collected 3/18/2002	Result 0.1	-2.303
Date Collected 3/18/2002 4/23/2002	Result 0.1 0.1	-2.303 -2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.1 0.1 0.1	-2.303 -2.303 -2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.1 0.1 0.1 0.1 0.025	-2.303 -2.303 -2.303 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.1 0.1 0.1 0.025 0.035	-2.303 -2.303 -2.303 -3.689 -3.352

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	No	0.00826	N/A	-4.796	N/A	
MW361	Downgradient	No	0.00617	N/A	-5.088	N/A	
MW364	Downgradient	Yes	0.0389	NO	-3.247	N/A	
MW367	Downgradient	No	0.0114	N/A	-4.474	N/A	
MW370	Upgradient	No	0.00444	N/A	-5.417	N/A	
MW373	Upgradient	No	0.00565	N/A	-5.176	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-82

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-U Third Quarter 2019 Statistical Analysis

Current Background Comparison

Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 34.088 S = 14.357 CV(1) = 0.421

K factor**= 2.523

TL(1) = 70.311

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.448 S = 0.412 CV(2) = 0.119

K factor**= 2.523

TL(2) = 4.487

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/20/2017	40.3	3.696
10/3/2017	42.1	3.740
1/22/2018	38.1	3.640
4/12/2018	62.5	4.135
7/18/2018	58.4	4.067
10/10/2018	48	3.871
1/16/2019	40	3.689
4/15/2019	43.3	3.768

7/13/2017	73.3	3.700
Well Number:	MW374	
Date Collected	Result	LN(Result)
7/20/2017	21.5	3.068
10/3/2017	22	3.091
1/22/2018	24.2	3.186
4/12/2018	21.4	3.063
7/18/2018	19.9	2.991
10/10/2018	20.4	3.016
1/17/2019	21.8	3.082
4/11/2019	21.5	3.068

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW368	Downgradien	t Yes	73.1	YES	4.292	N/A
MW371	Upgradient	Yes	70.4	YES	4.254	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW368 MW371

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 $\overline{\text{CV}}$ Coefficient-of-Variation, $\overline{\text{CV}} = S/X$ If $\overline{\text{CV}}$ is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-3

C-746-U Third Quarter 2019 Statistical Analysis

Current Background Comparison

Dissolved Oxygen

UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background I) ata
-------------------------	--------------

$$X = 2.798$$

UNITS: mg/L

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.693

S = 0.847

CV(2)=1.222

K factor**= 2.523

TL(2)= 2.828

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/20/2017	3.51	1.256
10/3/2017	1.82	0.599
1/22/2018	2.8	1.030
4/12/2018	7.85	2.061
7/18/2018	4.89	1.587
10/10/2018	0.96	-0.041
1/16/2019	8.02	2.082
5/28/2019	5.2	1.649
Well Number:	MW374	
Date Collected	Result	LN(Result)
7/20/2017	1.95	0.668

1.12

1.39

1.67

0.52

0.88

0.67

1.52

10/3/2017

1/22/2018

4/12/2018

7/18/2018

10/10/2018

1/17/2019

4/11/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	3.4	NO	1.224	N/A
MW362	Downgradien	t Yes	4.48	NO	1.500	N/A
MW365	Downgradien	t Yes	2.74	NO	1.008	N/A
MW368	Downgradien	t Yes	4.17	NO	1.428	N/A
MW371	Upgradient	Yes	4.6	NO	1.526	N/A

Conclusion of Statistical Analysis on Current Data

0.113

0.329

0.513

-0.654

-0.128 -0.400

0.419

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U Third Quarter 2019 Statistical Analysis

Current Background Comparison

Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 8.874

CV(1) = 0.454

K factor**= 2.523

TL(1)= 19.036

UCRS

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.091

S = 0.439 CV(2

S = 4.028

CV(2) = 0.210

K factor**= 2.523

TL(2) = 3.198

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 7/20/2017 13.8 2.625 10/3/2017 14.8 2.695 1/22/2018 14.4 2.667 4/12/2018 10.3 2.332 7/18/2018 11.3 2.425 10/10/2018 16.1 2.779 1/16/2019 9.38 2.239

7.86

Well Number: MW374

4/15/2019

Date Collected Result LN(Result) 7/20/2017 5.32 1.671 10/3/2017 6.22 1.828 1/22/2018 5.91 1.777 4/12/2018 5.03 1.615 7/18/2018 5.09 1.627 10/10/2018 5.62 1.726 1/17/2019 5.63 1.728 4/11/2019 5.22 1.652

1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Because CV(1) is less than or equal to

Current Quarter Data

1	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW368	Downgradien	t Yes	21.8	YES	3.082	N/A

Conclusion of Statistical Analysis on Current Data

2.062

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW368

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 $\overline{\text{CV}}$ Coefficient-of-Variation, $\overline{\text{CV}} = S/X$ If $\overline{\text{CV}}$ is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-5

C-746-U Third Quarter 2019 Statistical Analysis **UNITS: mV**

Current Background Comparison UCRS

Oxidation-Reduction Potential

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 307.000 S = 73.300 CV(1) = 0.239

K factor**= 2.523

TL(1)= 491.937

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.696

S = 0.263

CV(2) = 0.046

K factor**= 2.523

TL(2) = 6.360

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 7/20/2017 364 5.897 10/3/2017 5.927 375 1/22/2018 339 5.826 4/12/2018 365 5.900 7/18/2018 342 5.835 10/10/2018 328 5.793 1/16/2019 396 5.981 4/15/2019 5.961 388 Well Number: MW374

Date Collected Result LN(Result) 7/20/2017 188 5.236 10/3/2017 194 5.268 1/22/2018 206 5.328 4/12/2018 5.802 331 7/18/2018 269 5.595 10/10/2018 218 5.384 1/17/2019 254 5.537 5/28/2019 355 5.872

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
Current	Qual tti	Data

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	217	NO	5.380	N/A
MW362	Downgradient	Yes	381	NO	5.943	N/A
MW365	Downgradient	Yes	388	NO	5.961	N/A
MW368	Downgradient	Yes	338	NO	5.823	N/A
MW371	Upgradient	Yes	423	NO	6.047	N/A
MW374	Upgradient	Yes	354	NO	5.869	N/A
MW375	Sidegradient	Yes	363	NO	5.894	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-6

Current Background Comparison

Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 20.090 S = 24.624 CV(1) = 1.226

= 1.226 **K factor**=** 2.523

TL(1)= 82.217

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.546

S = 0.871 CV(2) = 0.342

Current Ouarter Data

K factor**= 2.523

TL(2) = 4.745

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371

Data Collected Result LN(Result)

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/20/2017	14	2.639
10/3/2017	10	2.303
1/22/2018	11	2.398
4/12/2018	91.6	4.517
7/18/2018	47.7	3.865
10/10/2018	21.9	3.086
1/16/2019	10.1	2.313
4/15/2019	59.1	4.079
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
-		LN(Result) 1.842
Date Collected	Result	
Date Collected 7/20/2017	Result 6.31	1.842
Date Collected 7/20/2017 10/3/2017	Result 6.31 6.78	1.842 1.914
Date Collected 7/20/2017 10/3/2017 1/22/2018	Result 6.31 6.78 6.34	1.842 1.914 1.847
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018	Result 6.31 6.78 6.34 7.24	1.842 1.914 1.847 1.980
Date Collected 7/20/2017 10/3/2017 1/22/2018 4/12/2018 7/18/2018	Result 6.31 6.78 6.34 7.24 7.69	1.842 1.914 1.847 1.980 2.040

	Q					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	47.1	N/A	3.852	NO
MW362	Downgradien	t Yes	32.1	N/A	3.469	NO
MW365	Downgradien	t Yes	58.4	N/A	4.067	NO
MW368	Downgradien	t Yes	164	N/A	5.100	YES
MW371	Upgradient	Yes	55.4	N/A	4.015	NO
MW375	Sidegradient	Yes	24.2	N/A	3.186	NO
	10					

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW368

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Beta activity UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 47.381 S = 39.265 CV(1) = 0.829

K factor**= 2.523

TL(1)= 146.447

URGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.599

S = 0.700CV(2)=0.194 K factor**= 2.523

TL(2) = 5.365

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 7/20/2017 26.1 3.262 10/3/2017 40.7 3.706 1/22/2018 32 3.466 102 4/11/2018 4.625 7/18/2018 14.9 2.701 10/9/2018 23.2 3.144 1/16/2019 22.5 3.114 4/15/2019 83.7 4.427

., 10, 2019	00.7	,
Well Number:	MW372	
Date Collected	Result	LN(Result)
7/20/2017	21.3	3.059
10/3/2017	132	4.883
1/22/2018	21.7	3.077
4/12/2018	20.9	3.040
7/18/2018	27.7	3.321
10/10/2018	123	4.812
1/17/2019	25.4	3.235
4/11/2019	41	3.714

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Upgradient	Yes	120	NO	4.787	N/A
MW372	Upgradient	Yes	141	NO	4.949	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-8

Current Background Comparison

Chemical Oxygen Demand (COD)

UNITS: mg/L

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 20.857 S = 11.357 CV(1) = 0.545

K factor**= 2.523

TL(1) = 49.512

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.928 **S**= 0.463

CV(2) = 0.158

K factor**= 2.523

TL(2) = 4.096

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 7/20/2017 12.7 2.542 10/3/2017 9.71 2.273 1/22/2018 12.6 2.534 24.7 4/11/2018 3.207 7/18/2018 14.5 2.674 10/9/2018 21.4 3.063 1/16/2019 18.4 2.912 4/15/2019 17.4 2.856

Well Number: MW372 Date Collected Result LN(Result) 7/20/2017 12.7 2.542 10/3/2017 21.5 3.068 1/22/2018 29.3 3.378 4/12/2018 10.7 2.370 7/18/2018 39.1 3.666 10/10/2018 16.4 2.797 2.996 1/17/2019 20 4/11/2019 52.6 3.963

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	69 4	YES	4 240	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Conductivity UNITS: umho/cm

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 499.063 S = 119.557 CV(1) = 0.240

K factor**= 2.523

TL(1) = 800.705

LL(1)=N/A

Statistics-Transformed Background Data

X = 6.185 S = 0.247 CV(2) = 0.040

K factor**= 2.523

TL(2)= 6.807

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 7/20/2017 367 5.905 10/3/2017 5.914 370 1/22/2018 351 5.861 6.052 4/11/2018 425 7/18/2018 372 5.919 10/9/2018 374 5.924 1/16/2019 386 5.956

4/15/2019	439	6.084
Well Number:	MW372	
Date Collected	Result	LN(Result)
7/20/2017	585	6.372
10/3/2017	622	6.433
1/22/2018	620	6.430
4/12/2018	614	6.420
7/18/2018	597	6.392
10/10/2018	618	6.426
1/17/2019	613	6.418
4/11/2019	632	6.449

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data
Current	Vuui tti	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	640	NO	6 461	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-10

Current Background Comparison

Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 274.500 S = 71.734 CV(1) = 0.261

K factor**= 2.523

TL(1) = 455.484

URGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.580 S = 0.278

CV(2) = 0.050

K factor**= 2.523

TL(2) = 6.281

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 7/20/2017 206 5.328 10/3/2017 180 5.193 1/22/2018 5.081 161 4/11/2018 281 5.638 7/18/2018 197 5.283 10/9/2018 196 5.278 1/16/2019 224 5.412 4/15/2019 261 5.565

Well Number:	MW372	
Date Collected	Result	LN(Result)
7/20/2017	334	5.811
10/3/2017	304	5.717
1/22/2018	330	5.799
4/12/2018	356	5.875
7/18/2018	323	5.778
10/10/2018	336	5.817
1/17/2019	394	5.976
4/11/2019	309	5.733

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well 1	No. Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW:	372 Ungradient	Ves	616	YES	6.423	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-11

Current Background Comparison URGA

Oxidation-Reduction Potential

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Data

X = 358.813 S = 42.818 CV(1) = 0.119

K factor**= 2.523

TL(1)= 466.842 LL(1)=N/A

Statistics-Transformed Background

X = 5.876S = 0.124CV(2) = 0.021 K factor**= 2.523

TL(2)= 6.188

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 7/20/2017 376 5.930 399 10/3/2017 5.989 1/22/2018 346 5.846 397 5.984 4/11/2018 7/18/2018 338 5.823 10/9/2018 341 5.832

1/16/2019 432 6.068 4/15/2019 372 5.919

Well Number: MW372

Date Collected Result LN(Result) 7/20/2017 300 5.704 10/3/2017 358 5.881 1/22/2018 275 5.617 4/12/2018 5.852 348 5.916 7/18/2018 371 10/10/2018 295 5.687 5.974 1/17/2019 393 5/28/2019 400 5.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradien	t Yes	413	NO	6.023	N/A
MW360	Downgradien	t Yes	423	NO	6.047	N/A
MW363	Downgradien	t Yes	365	NO	5.900	N/A
MW366	Downgradien	t Yes	390	NO	5.966	N/A
MW369	Upgradient	Yes	410	NO	6.016	N/A
MW372	Upgradient	Yes	390	NO	5.966	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-12

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Technetium-99

X = 67.781 S = 51.779 CV(1) = 0.764

UNITS: pCi/L

K factor**= 2.523

TL(1)= 198.419

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.993

S = 0.666CV(2) = 0.167 K factor**= 2.523

TL(2) = 5.673

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 7/20/2017 34.2 3.532 10/3/2017 70.8 4.260 1/22/2018 38.8 3.658 4.956 4/11/2018 142 7/18/2018 31.4 3.447 10/9/2018 55 4.007 1/16/2019 39.1 3.666 4/15/2019 70.8 4.260

Well Number:	MW372	
Date Collected	Result	LN(Result)
7/20/2017	30.2	3.408
10/3/2017	195	5.273
1/22/2018	17.3	2.851
4/12/2018	36.6	3.600
7/18/2018	70.9	4.261
10/10/2018	158	5.063
1/17/2019	35	3.555
4/11/2019	59.4	4.084

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Ungradient	Yes	183	NO	5 209	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-13

C-746-U Third Quarter 2019 Statistical Analysis Beta activity UNITS: pCi/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 46.643 S = 31.146 CV(1) = 0.668

K factor**= 2.523

TL(1)= 125.224

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.560

S = 0.857CV(2) = 0.241 K factor**= 2.523

TL(2) = 5.721

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/20/2017 84.6 4.438 69 10/3/2017 4.234 1/22/2018 71.9 4.275 3.912 4/11/2018 50 7/18/2018 102 4.625 10/9/2018 81.7 4.403 1/16/2019 75.8 4.328 4/15/2019 61 4.111

Well Number: MW373 Date Collected Result LN(Result) 7/20/2017 16.7 2.815 10/3/2017 20.6 3.025 1/22/2018 23.5 3.157 4/12/2018 4.99 1.607 3.421 7/18/2018 30.6 10/10/2018 22.8 3.127 1/17/2019 17.4 2.856 4/11/2019 13.7 2.617

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

W	ell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	лW370	Ungradient	Yes	52.7	NO	3 965	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-14

Current Background Comparison

Chemical Oxygen Demand (COD)

UNITS: mg/L

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 22.506 **S**= 8.653

CV(1) = 0.384

K factor**= 2.523

TL(1) = 44.338

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.049

S = 0.370 C

CV(2)=0.122

K factor**= 2.523

TL(2) = 3.983

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
7/20/2017	10.4	2.342
10/3/2017	17.5	2.862
1/22/2018	16.8	2.821
4/11/2018	20	2.996
7/18/2018	19.4	2.965
10/9/2018	31.4	3.447
1/16/2019	28.6	3.353
4/15/2019	20	2.996

4/15/2019	20	2.996
Well Number:	MW373	
Date Collected	Result	LN(Result)
7/20/2017	14.9	2.701
10/3/2017	15.6	2.747
1/22/2018	31.4	3.447
4/12/2018	24.7	3.207
7/18/2018	30.9	3.431
10/10/2018	14.7	2.688
1/17/2019	20	2.996
4/11/2019	43.8	3.780

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Ungradient	Yes	107	YES	4 673	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-15

Current Background Comparison

Oxidation-Reduction Potential

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

UNITS: mV

Statistics-Background Data

X= 366.875 **S**= 38.889 **CV(1)**=0.106

K factor**= 2.523

TL(1)= 464.993

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.900 S = 0.104 CV(2) = 0.018

K factor**= 2.523

TL(2) = 6.163

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/20/2017 343 5.838 10/3/2017 392 5.971 1/22/2018 334 5.811 5.908 4/11/2018 368 7/18/2018 369 5.911 10/9/2018 346 5.846

1/16/2019 440 6.087 5/28/2019 400 5.991 Well Number: MW373

Well Number: MW373 Date Collected Result LN(Result) 7/20/2017 309 5.733 10/3/2017 347 5.849 1/22/2018 393 5.974 4/12/2018 5.858 350 7/18/2018 318 5.762 10/10/2018 438 6.082 1/17/2019 336 5.817 4/11/2019 387 5.958

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW361	Downgradien	t Yes	412	NO	6.021	N/A
MW364	Downgradien	t Yes	356	NO	5.875	N/A
MW367	Downgradien	t Yes	312	NO	5.743	N/A
MW370	Upgradient	Yes	421	NO	6.043	N/A
MW373	Upgradient	Yes	417	NO	6.033	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 \overline{CV} Coefficient-of-Variation, $\overline{CV} = S/X$ If \overline{CV} is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-16

Current Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

pН

X = 6.159

CV(1)=0.010

UNITS: Std Unit

K factor**= 2.904

TL(1)= 6.331

LRGA

LL(1)=5.9864

Statistics-Transformed Background Data

X = 1.818

S= 0.010 **CV(2)**=0.005

S = 0.059

005 K fa

K factor**= 2.904

TL(2)= 1.846

LL(2)=1.7897

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/20/2017 6.19 1.823 10/3/2017 1.813 6.13 1/22/2018 1.812 6.12 1.808 4/11/2018 6.1 7/18/2018 6.09 1.807 10/9/2018 6.01 1.793 1/16/2019 6.17 1.820 4/15/2019 6.18 1.821

Well Number:	MW373	
Date Collected	Result	LN(Result)
7/20/2017	6.24	1.831
10/3/2017	6.24	1.831
1/22/2018	6.19	1.823
4/12/2018	6.18	1.821
7/18/2018	6.14	1.815
10/10/2018	6.19	1.823
1/17/2019	6.16	1.818
4/11/2019	6.21	1.826

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data	ı				
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< td=""><td>,</td><td>LN(Result) >TL(2)? LN(Result) <ll(2)?< td=""></ll(2)?<></td></ll(1)?<>	,	LN(Result) >TL(2)? LN(Result) <ll(2)?< td=""></ll(2)?<>
MW367	Downgradien	t Yes	5.79	YES	1.756	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW367

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 \overline{CV} Coefficient-of-Variation, $\overline{CV} = S/X$ If \overline{CV} is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-17

C-746-U Third Quarter 2019 Statistical Analysis Technetium-99 UNITS: pCi/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 60.539 **S**= 45.620 **CV(1)**=0.754

K factor**= 2.523

TL(1)= 175.637

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.910 **S**= 0.838 **CV(2)**=0.214

K factor**= 2.523

TL(2) = 4.787

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
7/20/2017	120	4.787
10/3/2017	103	4.635
1/22/2018	73.9	4.303
4/11/2018	107	4.673
7/18/2018	96.2	4.566
10/9/2018	114	4.736
1/16/2019	94.3	4.546
4/15/2019	111	4.710
Well Number:	MW373	
Date Collected	Result	LN(Result)
7/20/2017	9.12	2.210
10/3/2017	29.6	3.388
1/22/2018	24.8	3.211

30.2

-15.9

20.3

28.4

22.7

4/12/2018

7/18/2018

10/10/2018

1/17/2019

4/11/2019

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Ouarter	Data
Current	Qualter	Data

,	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW364	Downgradien	t Yes	52.5	NO	3.961	N/A
	MW370	Upgradient	Yes	107	NO	4.673	N/A

Conclusion of Statistical Analysis on Current Data

3.408

#Func!

3.011

3.346

3.122

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-18

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

Four Rivers Nuclear Partnership, LLC

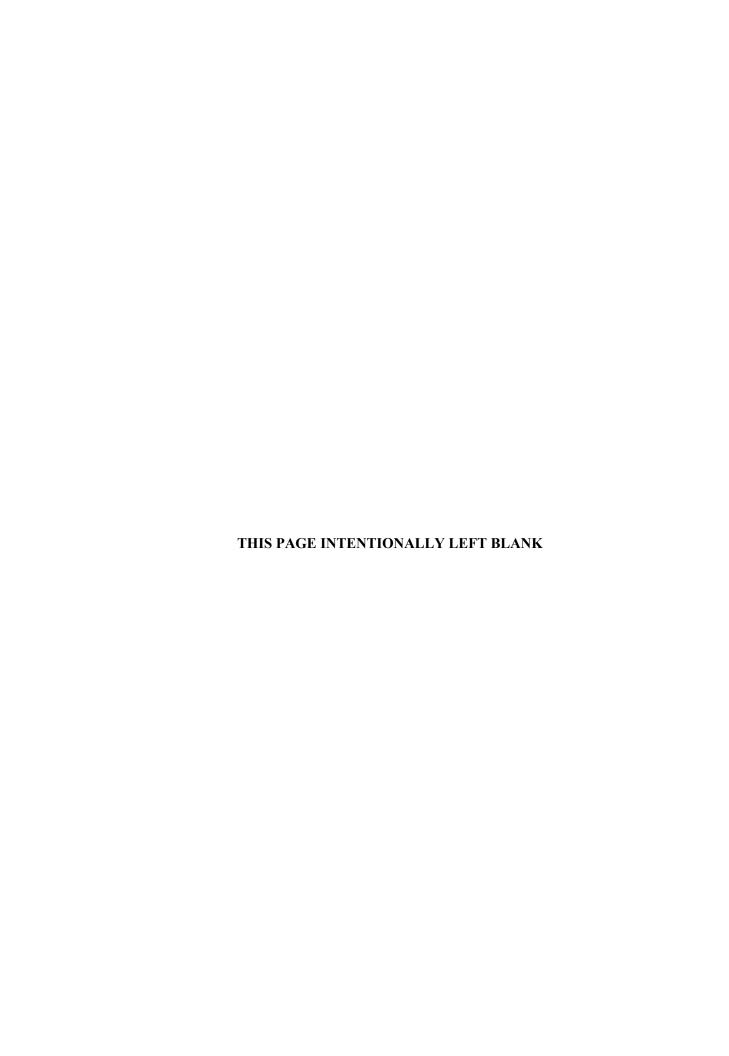
5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

October 17, 2019

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Site.


As an Environmental Scientist, with a bachelor's degree in science, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the third quarter 2019 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Jennifer R. Watson

Water

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

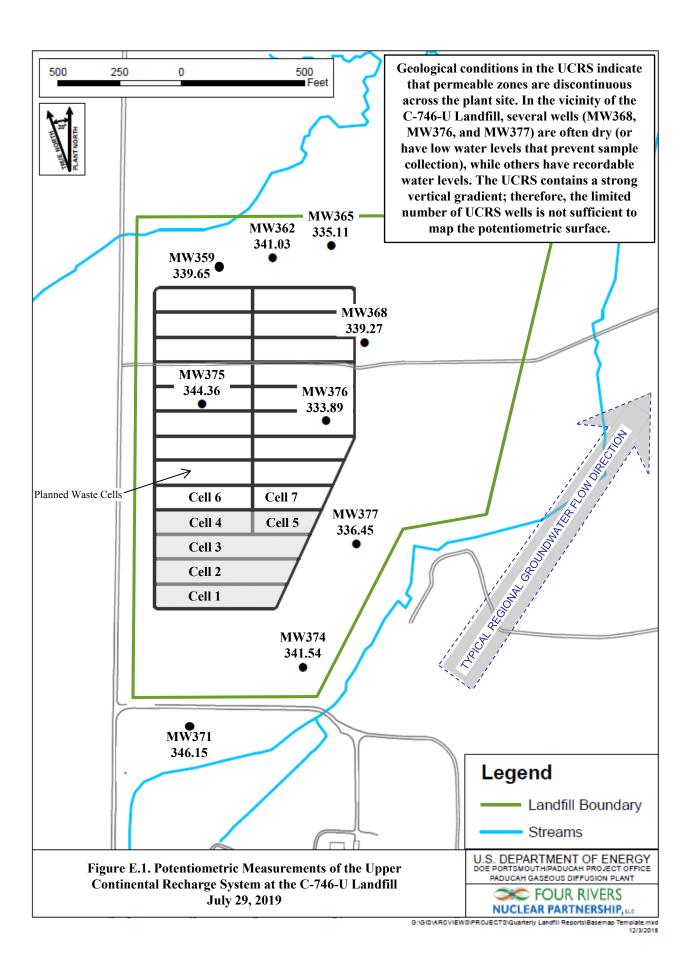
RESIDENTIAL/CONTAINED—QUARTERLY, 3rd CY 2019

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION


Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the third quarter 2019 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on July 29, 2019. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. UCRS wells MW376 and MW377 had insufficient water to permit sampling for laboratory analysis.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill, as measured along the defined groundwater flow directions, were 1.06×10^{-3} ft/ft and 1.10×10^{-3} ft/ft, respectively. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 4.99×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric maps for July 2019, the groundwater flow direction in the immediate area of the landfill was to the north/northeast.

E-4

Table E.1. C-746-U Landfill Third Quarter 2019 (July) Water Levels

	C-746-U Landfill (July 2019) Water Levels													
							Ra	w Data	*Corre	ected Data				
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev				
7/20/2010	15.16	1.000.50	LIDGA	(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)				
7/29/2019	15:16	MW357	URGA	368.99	29.98	0.02	39.37	329.62	39.39	329.60				
7/29/2019	15:14	MW358	LRGA	369.13	29.98	0.02	39.52	329.61	39.54	329.59				
7/29/2019	15:15	MW359	UCRS	369.11	29.98	0.02	29.44	339.67	29.46	339.65				
7/29/2019	15:10	MW360	URGA	362.30	29.98	0.02	32.65	329.65	32.67	329.63				
7/29/2019	15:12	MW361	LRGA	361.54	29.98	0.02	31.94	329.60	31.96	329.58				
7/29/2019	15:11	MW362	UCRS	362.04	29.98	0.02	20.99	341.05	21.01	341.03				
7/29/2019	15:24	MW363	URGA	368.84	29.98	0.02	39.20	329.64	39.22	329.62				
7/29/2019	15:26	MW364	LRGA	368.45	29.98	0.02	38.88	329.57	38.90	329.55				
7/29/2019	15:25	MW365	UCRS	368.37	29.98	0.02	33.24	335.13	33.26	335.11				
7/29/2019	15:27	MW366	URGA	369.27	29.98	0.02	39.35	329.92	39.37	329.90				
7/29/2019	15:29	MW367	LRGA	369.66	29.98	0.02	39.79	329.87	39.81	329.85				
7/29/2019	15:28	MW368	UCRS	369.27	29.98	0.02	29.98	339.29	30.00	339.27				
7/29/2019	15:46	MW369	URGA	364.48	29.98	0.02	33.08	331.40	33.10	331.38				
7/29/2019	15:48	MW370	LRGA	365.35	29.98	0.02	33.95	331.40	33.97	331.38				
7/29/2019	15:47	MW371	UCRS	364.88	29.98	0.02	18.71	346.17	18.73	346.15				
7/29/2019	15:44	MW372	URGA	359.66	29.98	0.02	28.19	331.47	28.21	331.45				
7/29/2019	15:42	MW373	LRGA	359.95	29.98	0.02	28.50	331.45	28.52	331.43				
7/29/2019	15:43	MW374	UCRS	359.71	29.98	0.02	18.15	341.56	18.17	341.54				
7/29/2019	15:36	MW375	UCRS	370.53	29.98	0.02	26.15	344.38	26.17	344.36				
7/29/2019	15:38	MW376	UCRS	370.61	29.98	0.02	36.70	333.91	36.72	333.89				
7/29/2019	15:40	MW377	UCRS	365.92	29.98	0.02	29.45	336.47	29.47	336.45				
112712017	13.40	141 44 3 / /	OCKS	303.72	27.70	0.02	27.73	330.77	47.T1	330.73				

Reference Barometric Pressure

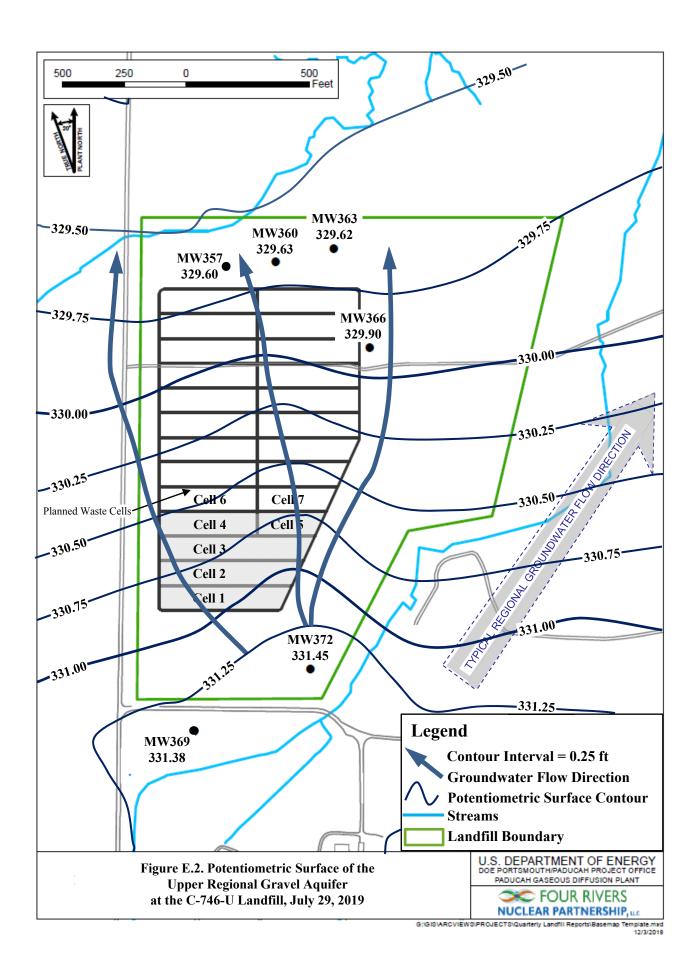
30.00

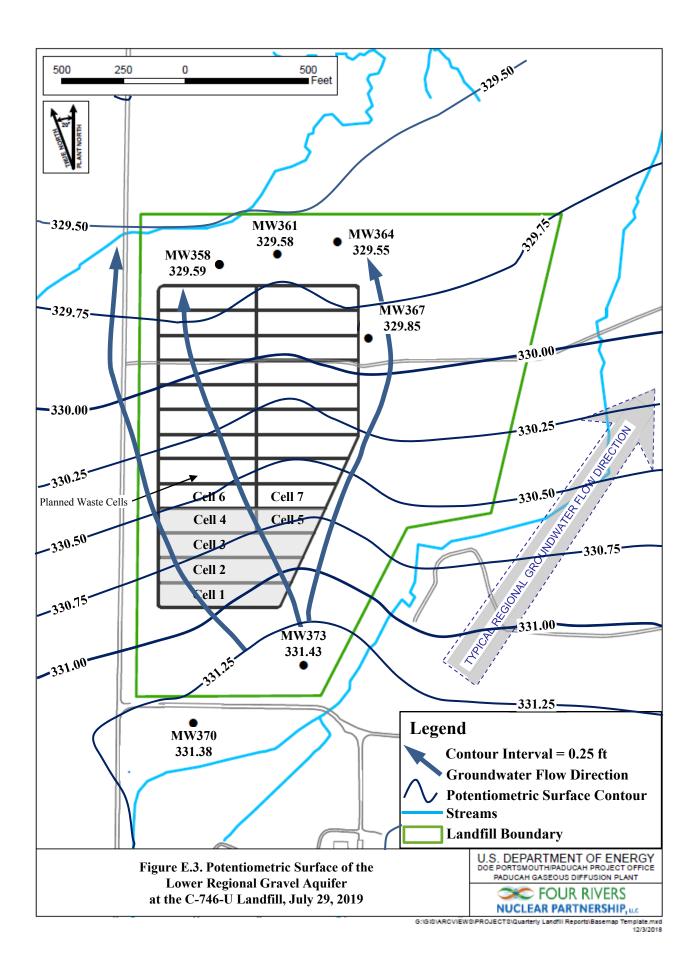
Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum


URGA = Upper Regional Gravel Aquifer


LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

ND = No Data acquired

*Assumes a barometric efficiency of 1.0

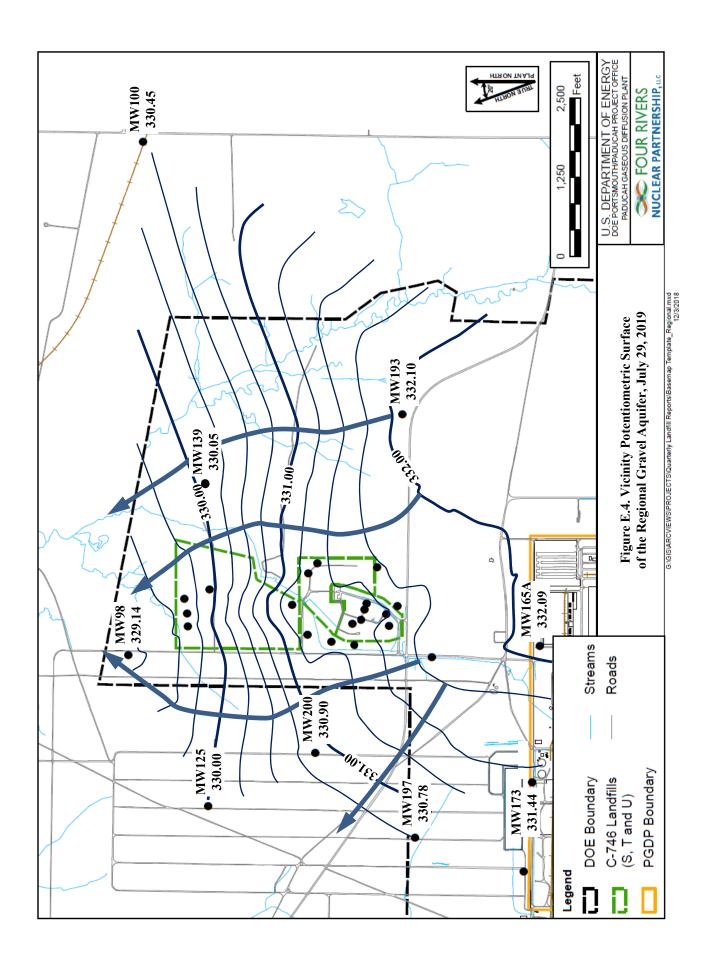
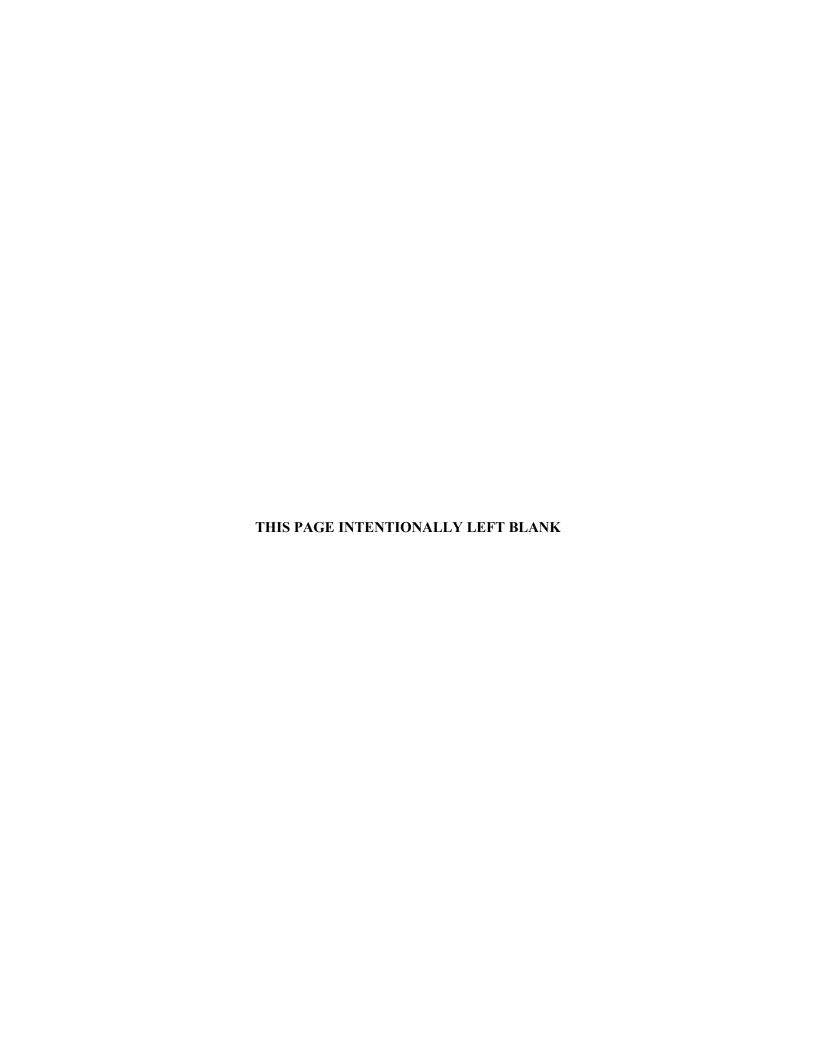



Table E.2. C-746-U Landfill Hydraulic Gradients

	ft/ft
Beneath Landfill—Upper RGA	1.06×10^{-3}
Beneath Landfill—Lower RGA	1.10×10^{-3}
Vicinity	4.99 × 10 ⁻⁴

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	nductivity (K)	Specific	Discharge (q)	Average Linear Velocity (v)						
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s					
Upper RGA										
725	0.256	0.769	2.72×10^{-4}	3.08	1.09×10^{-3}					
425	0.150	0.451	1.59×10^{-4}	1.80	6.37×10^{-4}					
Lower RGA										
725	0.256	0.798	2.82×10^{-4}	3.19	1.13×10^{-3}					
425	0.150	0.468	1.65×10^{-4}	1.87	6.61×10^{-4}					

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations, is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the third quarter 2019 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	Technetium-99	MW372
Lower Regional Gravel Aquifer	Technetium-99	MW364, MW370

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

8/19/2019

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL

SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4799	MW358	Trichloroethene Trichloroethene	8260B 8260B	5.12 5.05	ug/L ug/L	5 5
8004-4795	MW361	Trichloroethene	8260B	5.46	ug/L	5
8004-4797	MW364	Trichloroethene	8260B	6.69	ug/L	5
8004-4820	MW369	Beta activity	9310	120	pCi/L	50
8004-4818	MW370	Beta activity	9310	52.7	pCi/L	50
8004-4808	MW372	Beta activity	9310	141	pCi/L	50

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill

Groundwater Flow System	UCRS						URGA						LRGA								
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
ACETONE																					
Quarter 3, 2002										*	*	*									
Quarter 4, 2002										*	*	*									
Quarter 1, 2003											*	*									
Quarter 2, 2003											*	*									
Quarter 3, 2003	*						*			*	*	*			*			*			
Quarter 4, 2003						*	*				*			*							
Quarter 3, 2004						*										*					<u> </u>
Quarter 3, 2005						*															<u> </u>
Quarter 4, 2005						*															
ALPHA ACTIVITY																					
Quarter 1, 2004	-	-	-			_					-	-			-			-	-		
Quarter 2, 2004																					
Quarter 3, 2009						_															
ALUMINUM											-14										
Quarter 3, 2003											*										
BETA ACTIVITY															_						
Quarter 1, 2004															_						—
Quarter 2, 2004															4						
Quarter 3, 2004	1—	 	 					-	 		 	 	 	 		 	 	 	 		—
Quarter 4, 2004	1—	 	 					-	 		 	 	 	 		 	 	 	 		—
Quarter 4, 2005	├	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>		!	<u> </u>	<u> </u>	<u> </u>		_
Quarter 1, 2006	├	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>		!	<u> </u>	<u> </u>	<u> </u>		-
Quarter 2, 2006	├	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	!	<u> </u>	<u> </u>	<u> </u>		-
Quarter 3, 2006 Quarter 4, 2006	├	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>		!	<u> </u>	<u> </u>	<u> </u>		-
` ,										_											
Quarter 1, 2007																					•
Quarter 2, 2007										_					-						
Quarter 3, 2007										▝											_
Quarter 4, 2007																					
Quarter 1, 2008														_		_					<u> </u>
Quarter 2, 2008										_					_				_		<u> </u>
Quarter 3, 2008										•											<u> </u>
Quarter 4, 2008										▝											—
Quarter 1, 2009										•						<u> </u>	_				—
Quarter 2, 2009															▝						—
Quarter 3, 2009										•											<u> </u>
Quarter 4, 2009															▝						—
Quarter 1, 2010										_						<u> </u>					—
Quarter 2, 2010										▝											<u> </u>
Quarter 3, 2010										•					_						<u> </u>
Quarter 4, 2010										_						_					<u> </u>
Quarter 2, 2011															_						<u> </u>
Quarter 4, 2011										_											<u> </u>
Quarter 1, 2012										▝								000000			<u> </u>
Quarter 2, 2012	1—	<u> </u>	<u> </u>						<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	-		<u> </u>	Marille	<u> </u>		<u> </u>
Quarter 3, 2012	1	<u> </u>	<u> </u>						<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		!	<u> </u>	<u> </u>	<u> </u>		—
Quarter 4, 2012	1-	<u> </u>	<u> </u>						<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		!	<u> </u>	<u> </u>	<u> </u>		•
Quarter 1, 2013	<u> </u>	<u> </u>	<u> </u>						<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		-
Quarter 3, 2013	├	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>		!	<u> </u>	<u> </u>	<u> </u>		•
Quarter 4, 2013	<u> </u>	<u> </u>	<u> </u>						<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	4	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>
Quarter 1, 2014	1—	<u> </u>	<u> </u>						<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>		<u> </u>
Quarter 4, 2014	1—	 	 					-	 		 	 	 	 		 	 	 	 		
Quarter 1, 2015	├	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>		!	<u> </u>	<u> </u>	<u> </u>		—
Quarter 2, 2015	├	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	◾	<u> </u>	<u> </u>	-		—
Quarter 4, 2015	ऻ—	<u> </u>	<u> </u>	<u> </u>		<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>			<u> </u>
Quarter 3, 2016	├	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	!	<u> </u>	<u> </u>	<u> </u>		
Quarter 4, 2016	├	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	!	<u> </u>	<u> </u>	<u> </u>	_	
Quarter 2, 2017	<u> </u>	<u> </u>	<u> </u>						<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	<u> </u>
Quarter 3, 2017	1—	<u> </u>	<u> </u>						<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	-		<u> </u>	<u> </u>	<u> </u>	_	<u> </u>
Quarter 4, 2017	├	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>		!	<u> </u>	<u> </u>	-	_	
Quarter 1, 2018	<u> </u>	<u> </u>	<u> </u>						<u> </u>		<u> </u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>
Quarter 2, 2018	1-	<u> </u>	<u> </u>						<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>	!	<u> </u>	<u> </u>	<u> </u>	_	—
Quarter 3, 2018	1														L_					_	Ь
Quarter 4, 2018	<u> </u>	<u> </u>	<u> </u>					L	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	_	<u> </u>
Quarter 1, 2019	1													L_						_	Ь
Quarter 2, 2019	1	<u> </u>	<u> </u>						ļ		<u> </u>	<u> </u>	ļ		L		ļ	<u> </u>	<u> </u>		<u> </u>
Quarter 3, 2019	$ldsymbol{oxed}$													•	•					•	
BROMIDE																					
Quarter 2, 2004	<u> </u>												*			<u> </u>					

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System	I			UCR	S							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CALCIUM																					
Quarter 3, 2003	<u> </u>									*											
Quarter 2, 2005															.						*
Quarter 3, 2006	1														*						
Quarter 2, 2008 Quarter 3, 2009	1														*						
Quarter 4, 2009	1														*						
Quarter 1, 2010	1														*						
Quarter 2, 2010	<u> </u>														*						
Quarter 3, 2010	l														*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011																					*
Quarter 4, 2011															*						*
Quarter 1, 2012															*						*
Quarter 2, 2012															*						*
Quarter 3, 2012	<u> </u>														*						*
Quarter 4, 2012	ļ														*						444
Quarter 1, 2013	1	-		 							-	 		-	*			-	-		*
Quarter 2, 2013	₩	-	_	<u> </u>	_	_	-		_	-	_	<u> </u>	_	_	*	-	_	_	_		*
Quarter 3, 2013 Quarter 4, 2013	 			<u> </u>			<u> </u>		_		<u> </u>	<u> </u>		<u> </u>	*			<u> </u>	<u> </u>		ᅏ
Quarter 4, 2013 Quarter 2, 2014	1			-							-	-		-	*			-	-		*
Quarter 2, 2014 Quarter 3, 2014	1			-							-	-		-	*			-	-		*
Quarter 4, 2014 Quarter 4, 2014	t	-					 								*						~
Quarter 2, 2015	t			 							 	 		 	*			 	 		
Quarter 3, 2015	t														*						
Quarter 4, 2015	t														*						
Quarter 1, 2016	t														*						
Quarter 2, 2016	t														*						
Quarter 2, 2017	*																				
Quarter 1, 2018	*																				
Quarter 3, 2018	*																				
Quarter 3, 2019	*							*													
CARBON DISULFIDE																					
Quarter 3, 2003	ļ									*											
Quarter 2, 2005	₽						*														
Quarter 3, 2005	-					*															
Quarter 4, 2005 Quarter 1, 2006	₩					*															
Quarter 2, 2006	\vdash					*															
Quarter 3, 2010	1	*				~					*										
Quarter 4, 2010	<u> </u>													*							
Quarter 1, 2011	l														*						
CHEMICAL OXYGEN DEMA	ND																				
Quarter 3, 2002										*	*	*	*	*	*						
Quarter 4, 2002										*	*										
Quarter 1, 2003										*	*										
Quarter 2, 2003										*	*	*									
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003						*				*	*										
Quarter 3, 2004				<u> </u>						*	<u> </u>	<u> </u>		<u> </u>	لا			<u> </u>	Ļ		
Quarter 3, 2005				<u> </u>		*				*	<u> </u>	<u> </u>		<u> </u>	*	*		<u> </u>	*		
		1		<u> </u>		*												*	*		
Quarter 4, 2005	<u> </u>				1	1					<u> </u>	<u> </u>		<u> </u>	—			- NE	*		
Quarter 1, 2006				-					i		l				1			*	<u> </u>		
Quarter 1, 2006 Quarter 4, 2016											*										
Quarter 1, 2006 Quarter 4, 2016 Quarter 1, 2017											*	ale:			3 42						
Quarter 1, 2006 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2019											*	*			*						*
Quarter 1, 2006 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019											*	*			*						*
Quarter 1, 2006 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 CHLORIDE											*	*								*	*
Quarter 1, 2006 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 CHLORIDE Quarter 1, 2006											*	*			*					*	*
Quarter 1, 2006 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014											*	*								*	*
Quarter 1, 2006 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 CHLORIDE Quarter 1, 2006	*						*			*	*	*	*	*	*	*	*	*		*	*
Quarter 1, 2006 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT	*						*			*		*	*	*	*	*	*	*			*
Quarter 1, 2006 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003	*						*			*		*	*		*	*	*	*			*
Quarter 1, 2006 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004	*						*			*		*	*	*	*	*	*	*			*
Quarter 1, 2006 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016	*						*			*		*	*	*	*	*	*	*			*
Quarter 1, 2006 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 1, 2004 COBAUT QUARTER 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY	*						*			*	*	*	*	*	*	*	*	*			*
Quarter 1, 2006 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2016	*						*			* *		*	*	*	*	*	*	*			*
Quarter 1, 2006 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2013 Quarter 3, 2003 Quarter 4, 2003	*						*			* * *	*	*	*	*	*	*	*	*			*
Quarter 1, 2006 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004	*						*			* * * * *	*	*	*	*	*	*	*	*			*
Quarter 1, 2006 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2019 Quarter 3, 2019 CHLORIDE Quarter 3, 2019 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2013 Quarter 2, 2003 Quarter 4, 2003	*						*			* * *	*	*	*	*	*	*	*	*			*

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System	UCRS					URGA						LRGA									
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CONDUCTIVITY Quarter 3, 2004										*											
Quarter 1, 2005										*					*						
Quarter 2, 2005															*						
Quarter 3, 2005						*													*		
Quarter 4, 2005															*			*			
Quarter 1, 2006															*						
Quarter 2, 2006															*						
Quarter 3, 2006															*						
Quarter 1, 2007 Quarter 2, 2007		-			-	-						-			*				-		
Quarter 3, 2007															*						
Quarter 4, 2007															*						
Quarter 1, 2008															*						
Quarter 2, 2008															*						
Quarter 3, 2008															*						
Quarter 4, 2008															*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
Quarter 4, 2009	 	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	*	<u> </u>			<u> </u>	<u> </u>	
Quarter 1, 2010 Quarter 2, 2010	 	-	-	-		-			-		-	-	-	-	*		-		-		
Quarter 2, 2010 Quarter 3, 2010	 	-	-	-	-	-	-		-	-	-	-	-	-	*	-	-	-	-		
Quarter 4, 2010	1	1	—		1		-	_		1	1	1		—	*	-	1	1			
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012														*	*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013		-			-	-						-			*				-		
Quarter 3, 2013 Quarter 4, 2013															*						
Quarter 1, 2014															*						
Quarter 2, 2014															*						
Quarter 3, 2014															*						
Quarter 4, 2014															*						
Quarter 1, 2015															*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016															*						
Quarter 3, 2016 Quarter 2, 2019		-				-						-			*				-		
Quarter 3, 2019															*						
DISSOLVED OXYGEN															T						
Quarter 1, 2003					*	*				*											
Quarter 3, 2003					*					*											
Quarter 4, 2003					*																
Quarter 1, 2004					*																
Quarter 2, 2004								*								*					
Quarter 1, 2005					*																
Quarter 2, 2005	<u> </u>	<u> </u>		<u> </u>	J.	<u> </u>		*	<u> </u>			<u> </u>	<u> </u>					-	<u> </u>		
Quarter 1, 2006 Quarter 2, 2006		 		-	*	 		*	-		-	 	-			-	-	-	 		
Quarter 2, 2006 Quarter 3, 2006	 	-	-	 	*	-	-	*	 	-	-	-	 	-		-	-	-	-		
Quarter 4, 2006 Quarter 4, 2006	1		-		*		-	_	*		\vdash			-		-	\vdash	 			
Quarter 2, 2007	1	 		1	*	 		*	т.			 	1						 		
Quarter 3, 2007					*			*	*												
Quarter 1, 2008					*														*		
Quarter 2, 2008								*	*												
Quarter 3, 2008								*													
Quarter 1, 2009					Ļ		*	Ļ													
Quarter 2, 2009					*	L		*	*												
Quarter 3, 2009						*	L	*	*												
Quarter 1, 2010	<u> </u>	<u> </u>		<u> </u>	*	<u> </u>	*	L	<u> </u>	<u> </u>		<u> </u>	<u> </u>				<u> </u>		<u> </u>	L	
Quarter 2, 2010	<u> </u>	<u> </u>	<u> </u>		*	*	<u> </u>	*	*		<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	*	*
Quarter 3, 2010	<u> </u>	<u> </u>	<u> </u>		*	*					<u> </u>	- Ju		<u> </u>		-	<u> </u>	<u> </u>	<u> </u>		
Quarter 4, 2010	 	 		-	-	ماد	*		-	-	-	*	-			-	-	-	 	*	
Quarter 1, 2011 Quarter 2, 2011	1	<u> </u>		<u> </u>	*	*	*	*	*		-	<u> </u>	<u> </u>	*		-	-		<u> </u>		
Quarter 2, 2011	_				本	*	*	不	<u> </u>	_				不		_					

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Groundwater Flow System	1			UCF	S					URGA					LRGA						
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
DISSOLVED OXYGEN	300	3,0	370	377	30)	302	300	3,1	57.	300	300	303	307	307	372	301	301	501	350	370	373
Quarter 3, 2011						*			*												
Quarter 1, 2012					-	-	*		*			-					-				
Quarter 1, 2012 Quarter 2, 2012	*			*	*	*	т.	*	*												
Quarter 3, 2012	т			т-	т.	*		т	т .												
Quarter 4, 2012						不			*												
						*			*												\vdash
Quarter 1, 2013						*	-14														
Quarter 2, 2013					-14		*		*												
Quarter 3, 2013	*				*		*	*	*											144	\vdash
Quarter 4, 2013									*											*	
Quarter 2, 2014	*				*	*	*	*	*									*			
Quarter 3, 2014	*				*	*	*														
Quarter 4, 2014						*															
Quarter 2, 2015					*	*	*	*													
Quarter 3, 2015					*	*		*													
Quarter 4, 2015	*					*	*														
Quarter 1, 2016	*				*		*														
Quarter 2, 2016	*	*			*	*	*	*	*											*	*
Quarter 3, 2016					*	*	*	*					*								
Quarter 4, 2016						*			*												
Quarter 1, 2017							*						*								
Quarter 2, 2017	*				*	*	*	*												\Box	\Box
Quarter 3, 2017	*	*			*	*	*	*										*		Н	\vdash
Quarter 4, 2017	Η-		-	-	<u> </u>	*	*	<u> </u>				-					-	*		$\vdash \vdash$	\vdash
Quarter 1, 2018	1	\vdash	 	 	*	*	*	*	\vdash	H	 	 				H	 	<u> </u>	 	*	H
Quarter 1, 2018 Quarter 2, 2018	1	-	 	 	*	*	*	*				 					 	-		~	\vdash
Quarter 2, 2018 Quarter 3, 2018	*	-	<u> </u>	<u> </u>	*			*	-	 	 	<u> </u>	 			 	<u> </u>	-	 	$\vdash \vdash$	$\vdash \vdash$
` '	ボ	-	 	 	ᅏ	*	*	ᅏ				 	 				 	-		$\vdash\vdash$	$\vdash \vdash$
Quarter 4, 2018	 	-	 	 	<u>.</u>	*	<u>.</u>	<u>.</u>		ļ	<u> </u>	 				-	 	-	<u> </u>	$\vdash \vdash$	\vdash
Quarter 1, 2019		-	<u> </u>	<u> </u>	*	*	*	*	1		<u> </u>	<u> </u>					<u> </u>	-	<u> </u>	Щ	ш
Quarter 2, 2019					*	*		*													
Quarter 3, 2019	*				*	*	*	*													
DISSOLVED SOLIDS																					
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 3, 2003							*			*	*										
Quarter 4, 2003										*											
Quarter 3, 2005						*															
Quarter 4, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2007															*						
Quarter 4, 2008															*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009															*						
																					\vdash
Quarter 4, 2009															*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>					<u> </u>			*		<u> </u>	<u> </u>		Щ	
Quarter 4, 2010	<u> </u>		L	L	L	L	L					L			*		L			ш	ш
Quarter 1, 2011															*					Ш	
Quarter 2, 2011															*					لط	Ш
Quarter 3, 2011															*					oxdot	
Quarter 4, 2011	L	LĪ	ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ	L	L	L	L	LJ	L		L	آا		*		L	L		الل	\Box
Quarter 1, 2012														*	*					L	
Quarter 2, 2012															*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013															*					\Box	
Quarter 2, 2013															*					Н	\vdash
Quarter 3, 2013	1		1	1	1	1	1	1				1			*		1			\vdash	\vdash
Quarter 4, 2013	1	\vdash	<u> </u>	<u> </u>	\vdash		 	 			*		 	\vdash	 	$\vdash \vdash$	\vdash				
Quarter 1, 2014	1	-	 	-				 			*		 	-		$\vdash \vdash$	\vdash				
			-	-	<u> </u>	<u> </u>	<u> </u>			_		<u> </u>			*		<u> </u>			$\vdash\vdash$	$\vdash\vdash$
Quarter 2, 2014	 	-	 	 		ļ	<u> </u>	 	 			-	 	-	<u> </u>	$\vdash \vdash \vdash$	⊣				
Quarter 4, 2014	—	-	<u> </u>	<u> </u>	1	<u> </u>		<u> </u>			*	<u> </u>	<u> </u>	-		Щ	\vdash				
Quarter 2, 2015	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>			*	<u> </u>	<u> </u>	<u> </u>		ш	igspace
Quarter 3, 2015															*					ш	
Quarter 4, 2015															*					Ш	
Quarter 1, 2016															*					ш	
Quarter 3, 2019															*					لــــا	
IODIDE																					
Quarter 2, 2003																*					
Quarter 3, 2003	*									*											
Quarter 4, 2003							*														
Quarter 3, 2010						*		*					*				*			\Box	
	_				_	<u> </u>	_					_					÷				

Gradient Monitoring Well IODINE-131 Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004	D 368	S 375	S 376	S 377	D 359	D 362	D 365	U 371	U 374	D 366	D 360	D 363	D 357	U 369	U 372	D 367	D 361	D 364	D 358	U 370	U 373
IODINE-131 Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004	308	373	370	311	339	302	303	3/1	3/4			303	1001								
Quarter 3, 2010 IODOMETHANE Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004											300				372	307	301	304	336	370	3/3
Quarter 4, 2003 IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004																					
IRON Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004																					
Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004						*															
Quarter 3, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004						*															
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004						*										*					
Quarter 1, 2004 Quarter 2, 2004										*						*					
										*						*					
0										*											
Quarter 3, 2004										*											
Quarter 3, 2005																*					
MAGNESIUM Quarter 2, 2005															*						*
Quarter 3, 2005						*									~						*
Quarter 2, 2006															*						*
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2008															*						
Quarter 2, 2009		<u> </u>	<u> </u>	<u> </u>						-					*	-					
Quarter 3, 2009 Quarter 4, 2009		-													*						
Quarter 4, 2009 Quarter 1, 2010		1	1	1								1			*						\vdash
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012 Quarter 2, 2012															*						┢
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						<u> </u>
Quarter 4, 2013															*						
Quarter 2, 2014 Quarter 4, 2014															*						
Quarter 4, 2014 Quarter 2, 2015															*						\vdash
Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016															*						
Quarter 3, 2016	*																				
Quarter 4, 2016	*																				
Quarter 2, 2017 Quarter 3, 2017	*																				┢
Quarter 1, 2018	*																				
Quarter 3, 2018	*																				
Quarter 3, 2019	*																				
MANGANESE																					
Quarter 3, 2002										*		*									
Quarter 4, 2002 Quarter 2, 2003		*	<u> </u>	<u> </u>		*	*			*		*		*		-					
Quarter 2, 2003 Quarter 3, 2003										*		*	*			*	*	*	*		\vdash
Quarter 4, 2003										*	*	*	*			Ψ.	*	*	т .		
Quarter 1, 2004										*	*	*				*	*	*			
Quarter 2, 2004							*			*	*	*						*			
Quarter 3, 2004							*			*	*	*				*					
Quarter 4, 2004										*		*				*					<u> </u>
Quarter 1, 2005										*		*									
Quarter 2, 2005										*		*				*					
Quarter 3, 2005 Quarter 4, 2005		 	 	 						*		Ψ.				*					\vdash
Quarter 1, 2006										*						_					
Quarter 2, 2006							*			*		*									
Quarter 3, 2006										*		L				*					
Quarter 4, 2006										*											
Quarter 1, 2007										*											<u> </u>
Quarter 2, 2007							*			*											
Quarter 3, 2007		<u> </u>	<u> </u>	<u> </u>			*			-						-					
Quarter 3, 2008 Quarter 4, 2008							*			<u> </u>		-									\vdash
Quarter 4, 2006	_	_	_	_		_	т		_	_	_		_	_	_	_	_	_	_		

Groundwater Flow System	I			UCF	RS							URG	GA			<u> </u>		LRG	GA		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
MANGANESE							4														
Quarter 3, 2009	-				-		*				-	-	-								
Quarter 3, 2011 Ouarter 2, 2016	1						不							*							
Quarter 2, 2016 Quarter 3, 2016									*					~							
NICKEL									Τ.												
Quarter 3, 2003										*											
OXIDATION-REDUCTION P	OTE	NTIA	I.																		
Quarter 4, 2002	I	1															*		*		
Quarter 1, 2002																	*		*		
Quarter 2, 2003																			*		
Quarter 3, 2003	*																				
Quarter 4, 2003					*																
Quarter 2, 2004					-11								*				*				*
Quarter 3, 2004					*			*					*	*	*		*			*	*
Quarter 4, 2004												*									*
Quarter 1, 2005												-11					*			*	*
Quarter 2, 2005								*					*				*			*	
Quarter 3, 2005	1	1			*	*	1	*			*	*	*			1	*		*	*	*
Quarter 4, 2005	1	*			+	<u> </u>	1	*			٠,	-	*			1	*			*	┢╨
Quarter 1, 2006	1	<u> </u>			*	1	1	*	*		1	1	٠,			1	*		†		*
Quarter 1, 2006 Quarter 2, 2006	1	1			*	1	*	*	- T		1	1	*			1	*		†	*	┢╨
Quarter 2, 2006 Quarter 3, 2006	1	\vdash	\vdash	\vdash	*	<u> </u>	<u> </u>	*	\vdash	—	 	 	*	 	 	1	*	\vdash	\vdash	*	<u> </u>
Quarter 4, 2006	1	\vdash	\vdash	\vdash	*	 	*	-	\vdash	*	 	*	*	 	 	1	*	\vdash	\vdash	*	*
	1	*	\vdash	\vdash	*	 	 	*	\vdash	Ť	 	_	*	 	 	1	*	\vdash	\vdash	*	*
Quarter 1, 2007	1	 	\vdash	\vdash	*	 	 	 	\vdash	—	 	 	*	 	 	1	*	\vdash	\vdash	*	*
Quarter 2, 2007 Quarter 3, 2007	1	 	-	-	*	 	 	*	-		 	 	*			1	*	-	 	*	*
Quarter 3, 2007 Quarter 4, 2007	1	1	1	1	*	-	-	不	1		-	-	-			1	*	1	1	*	*
					*			*				3E	*				不		*	*	不
Quarter 1, 2008					*			*		*		*	*	*				*	不	*	*
Quarter 2, 2008	1				*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 3, 2008	1				不		不	*	不	*		*	*	不			*	*	不	*	*
Quarter 4, 2008	1						- JL					*					不				不
Quarter 1, 2009	1	-					*	*		*			*					*		*	
Quarter 2, 2009	1				*	- JL	*	*	- J	*		*	*	*			*	*		*	*
Quarter 3, 2009	1	*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009	1	*				*	*	*	*	*		*	*			<u>.</u>	*	*	*	*	*
Quarter 1, 2010	1	*			*	.	*	*		*	4		*			*	*	*		*	
Quarter 2, 2010	-	- 14			*	*	- 14	*		*	*	*	*	- 14	- 14	*	*	*	*	*	*
Quarter 3, 2010	1	*			*	*	*	*	*	*	*		*	*	*	<u>.</u>	*	*	*	*	*
Quarter 4, 2010	1	*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011	-	- 14			- 114	*	- 14	*		*	*	*	*	*		*	*	*	*	*	-14
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2011	-	*				*	- 14	*	*	*	*	*	*	*		*	*	*	- 14	*	*
Quarter 1, 2012		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*				*		*		*		*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*		*	
Quarter 2, 2013	L.	*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013	<u> </u>	*	<u> </u>	<u> </u>	<u> </u>	*	<u> </u>	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014	L	*	<u> </u>	<u> </u>	<u> </u>	L	<u> </u>	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2014	*	*	<u> </u>	<u> </u>	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2014	*	*	<u> </u>	<u> </u>	*	*	*	*	*	*	<u> </u>	*	*	*		*	*	*	*	*	*
Quarter 4, 2014	<u> </u>	*	<u> </u>	<u> </u>	<u> </u>	*	<u> </u>	*	*	*	<u> </u>	*	*	*	Ļ.,	*	*	*	*	*	*
Quarter 1, 2015		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	<u> </u>	*			*	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*	*			*		*	*		*		*	*	*	*	*	*	*	*	*	*
Quarter 2, 2016	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
Quarter 3, 2016	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2016	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2017	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2017	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2017	*	*	匚	匚	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
Quarter 4, 2017		*				*	*	*	*	*		*	*	*	*		*	*		*	*
Quarter 1, 2018	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*		*	*
Quarter 2, 2018	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2018	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2018		*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	ъ.	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2019	*	***																			
Quarter 1, 2019 Quarter 2, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
					*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		*

Groundwater Flow System	I			UCR	S					Г		URC	iΑ					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
PCB, TOTAL																					
Quarter 4, 2003																	*				
Quarter 3, 2004												*									
Quarter 3, 2005							*														
Quarter 2, 2006							*														
Quarter 3, 2006	1						*														
Quarter 1, 2007	1						*														
Quarter 2, 2007 Quarter 3, 2007	1		-				*				-										
Quarter 1, 2008							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1016																					
Quarter 3, 2004												*									
Quarter 2, 2006	1						*					*									
Quarter 1, 2007	İ						*														
Quarter 2, 2007	İ						*														
Quarter 3, 2007	Ĺ						*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1242																					
Quarter 3, 2006							*					*									
Quarter 4, 2006										*											
Quarter 1, 2008							*														
Quarter 2, 2012							*														
PCB-1248							ala.														
Quarter 2, 2008							*														
PCB-1260							4														
Quarter 2, 2006							*														
pH																					
Quarter 4, 2002	1									*											-
Quarter 4, 2002 Quarter 1, 2003	1		-							*	-										-
Quarter 1, 2003 Quarter 2, 2003	1		-							*	-										-
Quarter 3, 2003	*						*			*											
Quarter 4, 2003	-						*			-						*					
Quarter 1, 2004							*									*					
Quarter 3, 2005	1		-			*	-				-					-		*	*		
Quarter 4, 2005						*												т	*		
Quarter 3, 2006																*					
Quarter 2, 2011														*		-					
Quarter 3, 2011														*							
Quarter 4, 2011	T													*							
Quarter 1, 2012	Ī															*	*				
Quarter 2, 2012	T											*									
Quarter 1, 2013	1									*		*				*					
Quarter 3, 2015																	*				
Quarter 2, 2016	1																			*	*
Quarter 3, 2016	Ĺ																			*	
Quarter 2, 2017																	*				
Quarter 3, 2018					*					*		*					*	*	*		
Quarter 4, 2018																*		*			
Quarter 3, 2019																*					
POTASSIUM																					
Quarter 1, 2014	oxdot															*					
RADIUM-228																					
Quarter 2, 2005																					
Quarter 4, 2005	$ldsymbol{ldsymbol{eta}}$					•						•						•			
SELENIUM																					
Quarter 4, 2003	<u> </u>																				

Groundwater Flow System	1			UCR	S					l		URG	iΑ			l		LRG	iΑ		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SODIUM																					
Quarter 3, 2002										*	*		*					<u> </u>			<u> </u>
Quarter 4, 2002										*	*			*				<u> </u>			
Quarter 1, 2003										*	-14										
Quarter 2, 2003									-	*	*							├	<u> </u>		
Quarter 3, 2003											*										
Quarter 1, 2007 Quarter 1, 2012											不			*				├─	-		
Quarter 1, 2012 Quarter 1, 2014														不	*			\vdash	-		
Quarter 3, 2014 Quarter 3, 2014		-	-	-			-				*				т.			 	 		
Quarter 4, 2014											*							 			
Quarter 4, 2015											*							†	\vdash		
Quarter 1, 2016											*										
Quarter 2, 2016											*										
Quarter 3, 2016											*										
Quarter 4, 2016											*										
Quarter 1, 2017											*										
Quarter 2, 2017											*							<u> </u>			<u> </u>
Quarter 3, 2017											*							<u> </u>			
Quarter 4, 2017	-	<u> </u>	<u> </u>	<u> </u>			<u> </u>		1	!	*	1			<u> </u>	!		₩	igspace	Ш	₩
Quarter 1, 2018									ļ		*							<u> </u>			Ь.
Quarter 3, 2018											*										
STRONTIUM-90							_											_			
Quarter 4, 2008							_														
SULFATE Quarter 1, 2003							*														
Quarter 1, 2003 Quarter 2, 2003						*	*					<u> </u>						 	 		-
Quarter 3, 2003	*	-	-	-		*	-											 	 		
Quarter 4, 2003	- " -				*		*					-						 	†		
Quarter 1, 2004					*	*	*											†	\vdash		
Quarter 2, 2004					*	*	*														
Quarter 3, 2004					*	*	*														
Quarter 1, 2005					*	*			*												
Quarter 2, 2005					*		*		*						*						
Quarter 3, 2005					*	*	*														
Quarter 4, 2005															*						
Quarter 1, 2006					*				*												
Quarter 2, 2006						*	*		*						*			<u> </u>			<u> </u>
Quarter 3, 2006							*											<u> </u>			<u> </u>
Quarter 1, 2007							*		ļ									<u> </u>			Ь.
Quarter 2, 2007							*		-									├	<u> </u>		
Quarter 3, 2007		*					*														
Quarter 4, 2007 Quarter 1, 2008		*			*		*		*									├─	-		
Quarter 1, 2008 Quarter 2, 2008		*			*	*	*		不			<u> </u>						 	 		-
Quarter 3, 2008		*	-	-	*	*	*											 	 		
Quarter 4, 2008		*				*	*					-						 	†		
Quarter 1, 2009		*					*					-						 	†		
Quarter 2, 2009		*			*	*	*											 			
Quarter 3, 2009		*			*	*	*								*						
Quarter 4, 2009		*			*	*									*						
Quarter 1, 2010		*			*	*	*								*						
Quarter 2, 2010		*			*	*	*								*						
Quarter 3, 2010		*			*	*	*								*						
Quarter 4, 2010		*				*	*								*			<u> </u>			<u> </u>
Quarter 1, 2011		*																<u> </u>			<u> </u>
Quarter 2, 2011		*			*	*	*								*			<u> </u>			<u> </u>
Quarter 3, 2011		*				*	*	*							*			<u> </u>			<u> </u>
Quarter 4, 2011		*				*		14							*			<u> </u>			
Quarter 1, 2012	<u>.</u>	*		4			*	*							*			├	<u> </u>		
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 3, 2012 Quarter 4, 2012		*				不									*			├─	-		
Quarter 4, 2012 Quarter 1, 2013	1	*	-	-		*	-	-	1	1	-	1	-	-	*	1	-	\vdash	\vdash	$\vdash \vdash$	╁
Quarter 1, 2013 Quarter 2, 2013		*				*			1	1		 			*	1		\vdash	\vdash	\vdash	\vdash
Quarter 2, 2013 Quarter 3, 2013	*	*		*	*	*	*		1	1		 			*	1		\vdash	\vdash	\vdash	\vdash
Quarter 4, 2013	Ť	*		<u> </u>	<u> </u>		<u> </u>		1	1		 			*	1		\vdash	\vdash	\vdash	\vdash
Quarter 1, 2014	1	*	 	 			 	 	 	1		 			*	1		 	\vdash	$\vdash \vdash$	
Quarter 2, 2014	*	*			*		*	*	 						*			\vdash	\vdash	Н	
	*	*	1	1	*	*	*	*	l	1		t			*	1		\vdash	\vdash	\vdash	
Ouarter 3, 2014			_	1	Ė	*	Ė	Ė	 	t —	-	t	 	-	H	1	1	 	+		t —
Quarter 3, 2014 Quarter 4, 2014		*				~													1	, ,	
Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015		*				•												┢			

Groundwater Flow System	T			UCF	RS							URG	Ā			1		LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SULFATE																					
Quarter 2, 2015	*	*			*		*								*						
Quarter 3, 2015		*			*	*	.	*							*						
Quarter 4, 2015 Quarter 1, 2016	*	*			*	*	*	*													
Quarter 1, 2016 Quarter 2, 2016	*	*			*	*	*														
Quarter 3, 2016	*	*			*	*	*	*													
Quarter 4, 2016	*	*				*	*	*													
Quarter 1, 2017	*	*				*	*														
Quarter 2, 2017	*	*			*	*	*														
Quarter 3, 2017	*	*			*	*	*														
Quarter 4, 2017		*				*	*														
Quarter 1, 2018	*	*			*	*	*														
Quarter 2, 2018	*	*			*	*	*	*													
Quarter 3, 2018	*	*			*	*	*	*													
Quarter 4, 2018	*	*			*	*	*	不													
Quarter 1, 2019 Quarter 2, 2019	*	*			*	*	*	*													
Quarter 3, 2019	*	*			*	*	*	*			-	-									
TECHNETIUM-99																					
Quarter 4, 2002																	*	*	*		
Quarter 2, 2003							*						*			*	*	*	*		*
Quarter 3, 2003																	*				
Quarter 4, 2003																	*				*
Quarter 1, 2004															*		*				*
Quarter 2, 2004															*						*
Quarter 3, 2004	1			<u> </u>	<u> </u>						<u> </u>	<u> </u>			*		11.				*
Quarter 4, 2004	1—			<u> </u>	<u> </u>	<u> </u>	<u> </u>			-	<u> </u>	<u> </u>			*	 	*	<u> </u>		—	*
Quarter 1, 2005	1	-	-	<u> </u>	<u> </u>		<u> </u>	_	-		<u> </u>	<u> </u>			*	-	*		_		*
Quarter 1, 2006 Quarter 2, 2006	1	*							*						不						*
Quarter 3, 2006	1	~							Ψ.												*
Quarter 4, 2006	1														*						*
Quarter 1, 2007	1																				*
Quarter 2, 2007	1												*		*					*	
Quarter 3, 2007															*		*	*			
Quarter 4, 2007										*					*				*		*
Quarter 1, 2008															*					*	*
Quarter 2, 2008							*	*						*		*			*		
Quarter 3, 2008															*						
Quarter 4, 2008	_									*							*		*		
Quarter 1, 2009	╂				-					*	-	-									
Quarter 2, 2009 Quarter 3, 2009	1							*		*					*			*			
Quarter 4, 2009	1							不		*					*			*	*		
Quarter 4, 2009 Quarter 2, 2010	1									*	-	-			т.	*	*	*	*		
Quarter 3, 2010	1									*					*						
Quarter 4, 2010	1																	*			
Quarter 1, 2011	1	*								*							*				
Quarter 2, 2011																*	*	*	*		
Quarter 1, 2012																	*	*			
Quarter 2, 2012								*										*			
Quarter 3, 2012																	*	*			<u> </u>
Quarter 4, 2012	1			<u> </u>	<u> </u>						<u> </u>	<u> </u>	.		*			* +			*
Quarter 1, 2013	1-	-	-	-	-		-		-		 	 				!		*			*
Quarter 2, 2013	1-	-	-	 	 				-	*	 	 				 					*
Quarter 3, 2013 Quarter 4, 2013	1-	-	-	-	-	-	-		-	*	-	-			*	 	*	*			*
Quarter 4, 2013 Quarter 1, 2014	1	\vdash	\vdash			-	-		\vdash						*	1	*	*			*
Quarter 2, 2014	1														·r			*			
Quarter 3, 2014	1																*	*	*		
Quarter 4, 2014	1			1											*	1	<u> </u>	<u> </u>	Ė		
Quarter 1, 2015															*			*			
Quarter 2, 2015																*					
Quarter 3, 2015																		*	*	*	
Quarter 4, 2015															*		*			*	
Quarter 1, 2016	1															*	*	*	*		*
Quarter 2, 2016	1			<u> </u>	<u> </u>						<u> </u>	<u> </u>				*	*	*	*	*	
Quarter 3, 2016	1			<u> </u>	<u> </u>						<u> </u>	<u> </u>	<u> </u>			<u> </u>	*	sil.	*	*	
Quarter 4, 2016	1—			<u> </u>	<u> </u>	<u> </u>	<u> </u>			*	<u> </u>	<u> </u>		*		 	*	*	ىد	J.	
Quarter 1, 2017	1	-	-	-	 				-		 	 				_	*		*	*	
Quarter 2, 2017 Quarter 3, 2017	1-	-	-	 	-	-	-		-		-	-				 	-	*		*	
Quarter 3, 2017 Quarter 4, 2017	1-	1	1	 	 				1		 	 		*	*	1	*	*		*	
Quarter 1, 2018	1													*	т.			<u> </u>		*	
Quarter 2, 2018	t													*		*				*	
Quarter 3, 2018															*					*	
Quarter 4, 2018															*		*	*	*	*	
Quarter 4, 2010																*				*	
Quarter 1, 2019		<u></u>														不				不	

	D 368	S 375	S 376	S 377	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
TECHNETIUM-99 Quarter 2, 2019 Quarter 3, 2019 THORIUM-230	368	375	376	377																	_
Quarter 2, 2019 Quarter 3, 2019 THORIUM-230				511	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 3, 2019 THORIUM-230																					
THORIUM-230														*	ale.			ala.		*	
															*			*		*	
																*					
Quarter 2, 2016										*						-					
Quarter 4, 2016	*											*				*			*		
Quarter 4, 2017													*								
Quarter 2, 2018										*			*								
TOLUENE																					
Quarter 2, 2014										*				*							
TOTAL ORGANIC CARBON										111	ala.	ala.		ala.							
Quarter 3, 2002										*	*	*		*							*
Quarter 4, 2002										*	*			*							
Quarter 1, 2003 Quarter 3, 2003	*									*	*					*					-
Quarter 4, 2003	Ψ.									*	*					Ψ.					
Quarter 1, 2004										Ψ.	*										
Quarter 3, 2005						*				*					*	*			*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2006																			*		
TOTAL ORGANIC HALIDES																					
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003										*											
Quarter 1, 2004																*					
TRICHLOROETHENE																					
Quarter 3, 2002																					
Quarter 4, 2002																					
Quarter 1, 2003																					
Quarter 2, 2003																					
Quarter 3, 2003																					
Quarter 4, 2003															▝					_	_
Quarter 1, 2004															_					_	_
Quarter 2, 2004															-					_	
Quarter 3, 2004																				_	
Quarter 4, 2004															=						
Quarter 1, 2005 Quarter 2, 2005															=					=	
Quarter 3, 2005															=					=	
Quarter 4, 2005															=					=	
Quarter 1, 2006															=					=	
Quarter 2, 2006															▔					=	
Quarter 3, 2006															Ŧ					Ŧ	
Quarter 4, 2006															Ŧ						
Quarter 1, 2007																					
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																					
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																					•
Quarter 2, 2009																					
Quarter 3, 2009						_								L_	_		L_				•
Quarter 4, 2009									.				_		_						_
Quarter 1, 2010													_		_						-
Quarter 2, 2010		<u> </u>								—		<u> </u>	-	<u> </u>	-	-	<u> </u>	<u> </u>			
Quarter 3, 2010												-									
Quarter 4, 2010																					
Quarter 2, 2011												<u> </u>		<u> </u>		-		<u> </u>			
Quarter 3, 2011 Quarter 4, 2011																			_		
Quarter 1, 2012												-		-	=			-	W"W		
Quarter 2, 2012															=		_		undla		
Quarter 3, 2012															=						
Quarter 4, 2012															▔						
Quarter 1, 2013														_	=						
Quarter 2, 2013													=		=						
Quarter 3, 2013															-						
Quarter 4, 2013																					
Quarter 1, 2014																					
Quarter 2, 2014																					

Groundwater Flow System				UCF	RS							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TRICHLOROETHENE																					
Quarter 3, 2014																			•		
Quarter 4, 2014																					
Quarter 1, 2015																					
Quarter 2, 2015																					•
Quarter 3, 2015																	•				
Quarter 4, 2015																					
Quarter 1, 2016																					
Quarter 2, 2016																					•
Quarter 3, 2016																					
Quarter 4, 2016																	•		•		
Quarter 1, 2017																					
Quarter 2, 2017																					•
Quarter 3, 2017																	•				
Quarter 4, 2017										•							•				•
Quarter 1, 2018																	•				•
Quarter 2, 2018																	•				
Quarter 3, 2018																					
Quarter 4, 2018																					
Quarter 1, 2019																					
Quarter 2, 2019																					
Quarter 3, 2019																	•				
TURBIDITY																					
Quarter 1, 2003										*											
URANIUM																					
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC																					
Quarter 3, 2005																			*		
* Statistical test results indicate an eleva	ted conc	entrati	on (i.e.,	, a stati	stical e	xceedar	ice).														
■ MCL Exceedance																					
Previously reported as an MCL exc	eedance:	; howe	ver, resi	ult was	equal t	o MCL															
UCRS Upper Continental Recharge System	m																				
URGA Unner Regional Gravel Aquifer																					

URGA Upper Regional Gravel Aquifer LRGA Lower Regional Gravel Aquifer

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F04 - C-746-U LANDFILL METHANE MONITORING REPORT

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>

McCracken County, Kentucky

1	09/03/19	Time: 0915	Monitor:	i tobert i inby
Weather Con	^{ditions:} Sunny, Warn	n, Slight Wind, and 8	0 Degrees	
Monitoring E	^{quipment::} RAE Syste	ms, Multi-RAE Seria	ıl #7970	
		toring Location		Reading (% LEL)
C-746-U1	Checked at floor	rlevel		0
C-746-U2	Checked at floor	rlevel		0
C-746-U-T-14	Checked at floor	rlevel		0
C-746-U15	Checked at floor	r level		0
MG1	Dry casing			0
MG2	Dry casing			0
MG3	Dry casing			0
MG4	Dry casing			0
Suspect or Problem Area		oted		0
Remarks: N	A			
Performed by	Robert Kirby //	11/2		09/03/19
	Signat			Date

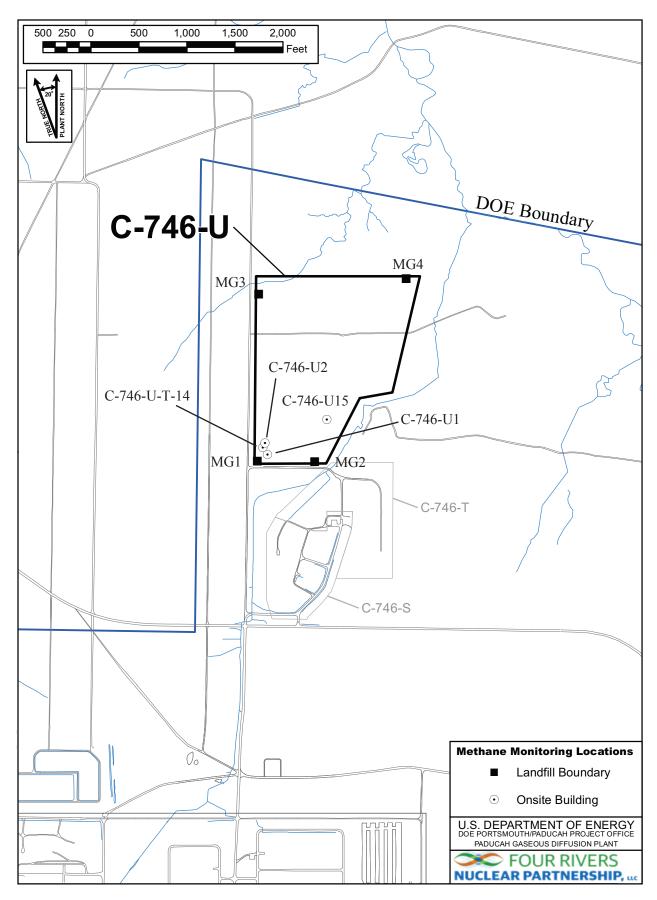
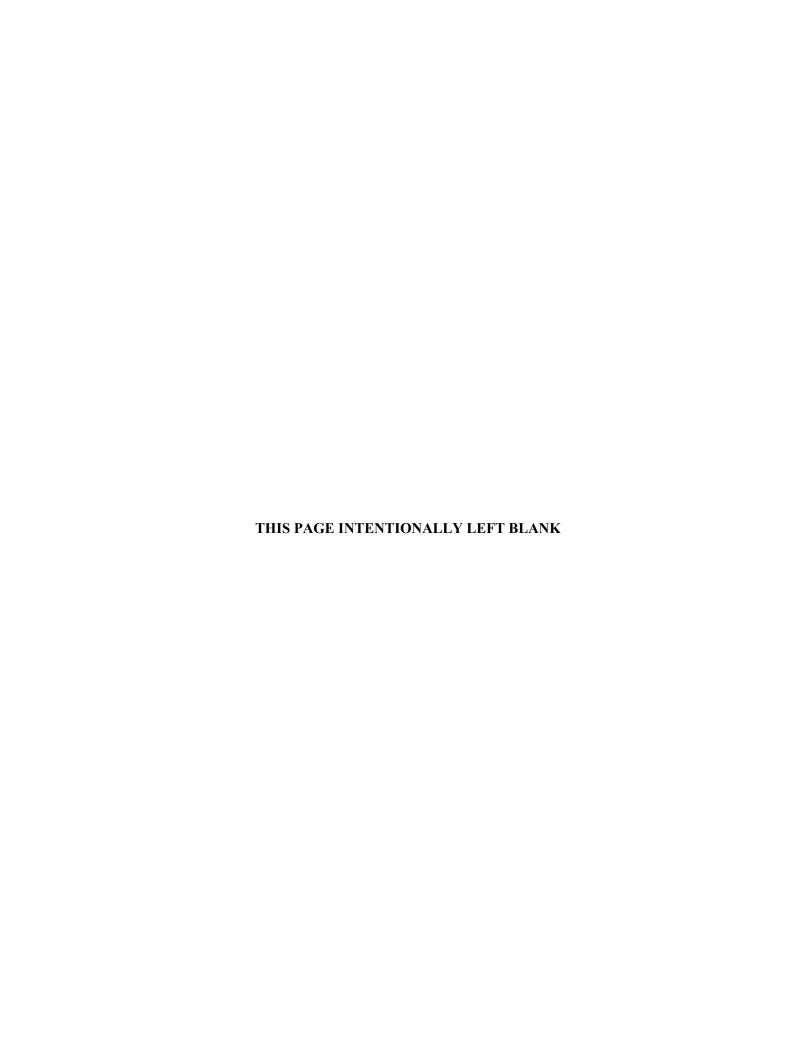



Figure H.1. C-746-U Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/CONTAINED-OUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "D	OWNSTREAM")	L150 AT SITE		L154 UPSTRE	AM	L351 DOWNSTR	REAM	\	
Sample Seque	nce	#				1		1		1			
If sample is	a B	lank, specify Type: (F)ield, (T) r	ip, (M)ethod	, or (E) quipment	NA		NA		NA			
Sample Date	and	Time (Month/Day/Year hour: m	inu	tes)		7/22/2019 14:3	34	7/22/2019 14:	53	7/22/2019 14:	17		
Duplicate ("	Y" (or "N") ¹				N		N		N			
Split ('Y' o	r "1	N") ²				N		N		N			
Facility Samp	ole	ID Number (if applicable)				L150US4-19)	L154US4-19)	L351US4-19	9		1
Laboratory Sa	amp.	le ID Number (if applicable)				485497001		485497002		485497003			1
Date of Analy	ysi	s (Month/Day/Year)				8/19/2019		8/16/2019		8/16/2019			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQI	F L A G
A200-00-0	0	Flow	Т	MGD	Field		*		*		*		
16887-00-6	2	Chloride(s)	Т	mg/L	300.0	3.12	*	6.91	*	2.73	*		
14808-79-8	0	Sulfate	Т	mg/L	300.0	22.9		2.87		5.32			\
7439-89-6	0	Iron	Т	mg/L	200.8	61.4		1.5		1.28			
7440-23-5	0	Sodium	т	mg/L	200.8	10.5		1.75		2.81			
s0268	0	Organic Carbon ⁶	т	mg/L	9060	8.3		20.9		12.1			
s0097	0	BOD ⁶	Т	mg/L	not applicable		*		*		*	/	
s0130	0	Chemical Oxygen Demand	Т	mg/L	410.4	41.9		114		34.4			

¹Respond "Y" if the sample was a duplicate of another sample in this report

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300015, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

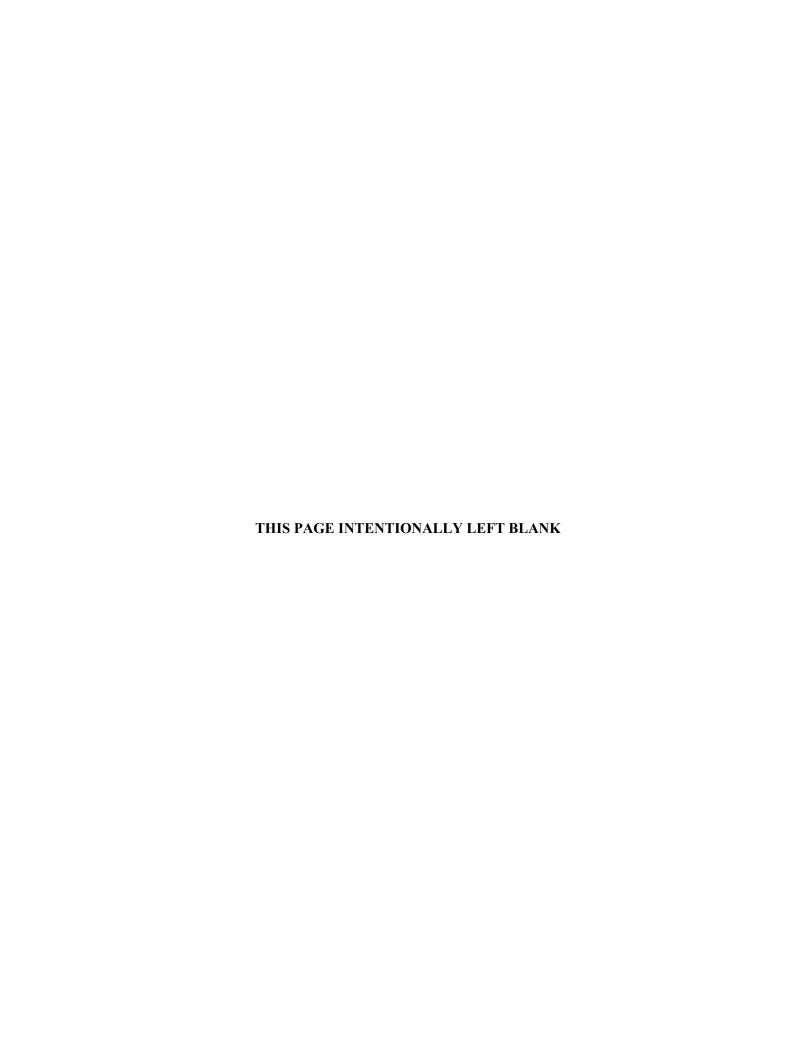
LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

		WIII DIX BIHIL				(00:11	<u> </u>						_
Monitoring Po	oin	t (KPDES Discharge Number, c	or "1	UPSTREAM" or	"DOWNSTREAM")	L150 AT SI	TE	L154 UPSTR	EAM	L351 DOWNST	REAM		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	
S0145	1	Specific Conductance	Т	µmho/cm	Field	175		88		147			17
s0270	0	Total Suspended Solids	т	mg/L	160.2	13700		28.8		29			T
s0266	0	Total Dissolved Solids	т	mg/L	160.1	870	В	173	В	137	В	\ /	
s0269	0	Total Solids	т	mg/L	SM-2540 B 17	13800	*	121	*	140	*	\ /	
s0296	0	рН	т	Units	Field	7.47		7.24		6.45			
7440-61-1		Uranium	т	mg/L	200.8	0.00844		0.00124		0.00479			
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	453	*	2.99	*	7.84	*	\	
12587-47-2		Gross Beta (β)	Т	pCi/L	9310	336	*	13.9	*	19	*	V	
												\bigwedge	L
	_												L
													L
			-										L
	-												L
	+												L
													A
													Ľ
	╀		-										H
	╀		-										F
	╀		-										H
												1	l

RESIDENTIAL/CONTAINED - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045


Finds/Unit:	KY8-890-008-982 / 1
LAB ID:	None
For Official U	se Only

SURFACE WATER WRITTEN COMMENTS

Monitori Point	ing Facility Sample ID	Constituent	Flag	Description
L150	L150US4-19	Flow Rate		Analysis of constituent not required and not performed
		Chloride	W	Post-digestion spike recovery out of control limits.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity		TPU is 99.4. Rad error is 64.1.
		Beta activity		TPU is 65.7. Rad error is 31.6.
L154	L154US4-19	Flow Rate		Analysis of constituent not required and not performed
		Chloride	W	Post-digestion spike recovery out of control limits.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.19. Rad error is 5.17.
		Beta activity		TPU is 7.73. Rad error is 7.4.
L351	L351US4-19	Flow Rate		Analysis of constituent not required and not performed
		Chloride	W	Post-digestion spike recovery out of control limits.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Total Solids	*	Duplicate analysis not within control limits.
		Alpha activity		TPU is 4.54. Rad error is 4.33.
		Beta activity		TPU is 7.17. Rad error is 6.45.

APPENDIX J ANALYTICAL LABORATORY CERTIFICATION

From: <u>Valerie Davis</u>
To: <u>Crabtree, Lisa</u>

Subject: Fwd: Fwd: Extension of A2LA Certificate 2567.01 **Date:** Tuesday, November 19, 2019 2:16:52 PM

Hi Lisa,

I am forwarding the email notification we received regarding our A2LA extension.

Thanks,

Valerie

----- Forwarded Message ------

Subject: Extension of A2LA Certificate 2567.01 Date: Thu, 27 Jun 2019 15:43:33 -0400 (EDT)

From: srippeon@A2LA.org

To:rlp@gel.com, srippeon@A2LA.org

The certificate listed below has been extended. An extended certificate has been placed on our website. Please feel free to print a copy of the certificate and scope directly from the <u>website</u>. Please contact your assigned Accreditation Officer (AcO) if you need further clarification.

Name: Pullano, Robert

Company: GEL Laboratories, LLC

Email: rlp@gel.com

Certificate Number: 2567.01

Expires: 06/30/2019 Field: Environmental

Extended Until: 07/31/2019 Ac0: Rippeon, Stephanie

AcO Email: srippeon@A2LA.org

CONFIDENTIALITY NOTICE: This e-mail and any files transmitted with it are the property of The GEL Group, Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this e-mail or any files transmitted with it is prohibited and disclaimed by The GEL Group, Inc. and its affiliates.

http://www.gellaboratories.com

Accredited Laboratory

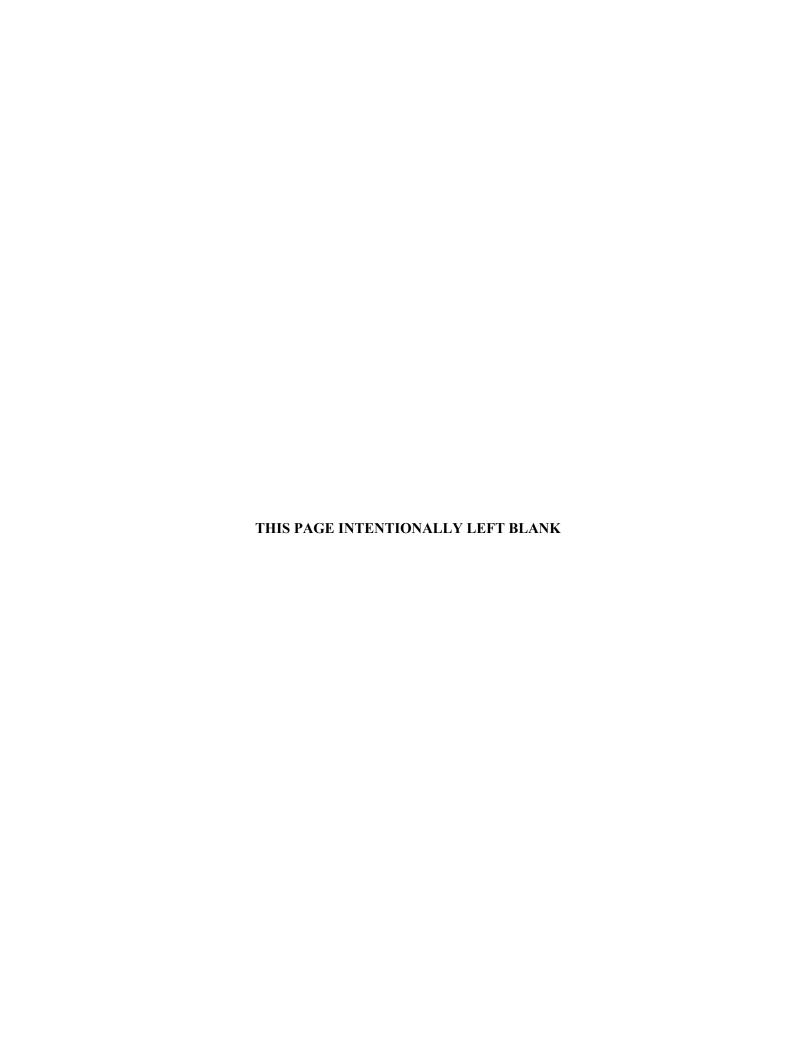
A2I A has accredited

GEL LABORATORIES, LLC

Charleston, SC

for technical competence in the field of

Environmental Testing


In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2017, the 2009 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DOD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.3 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

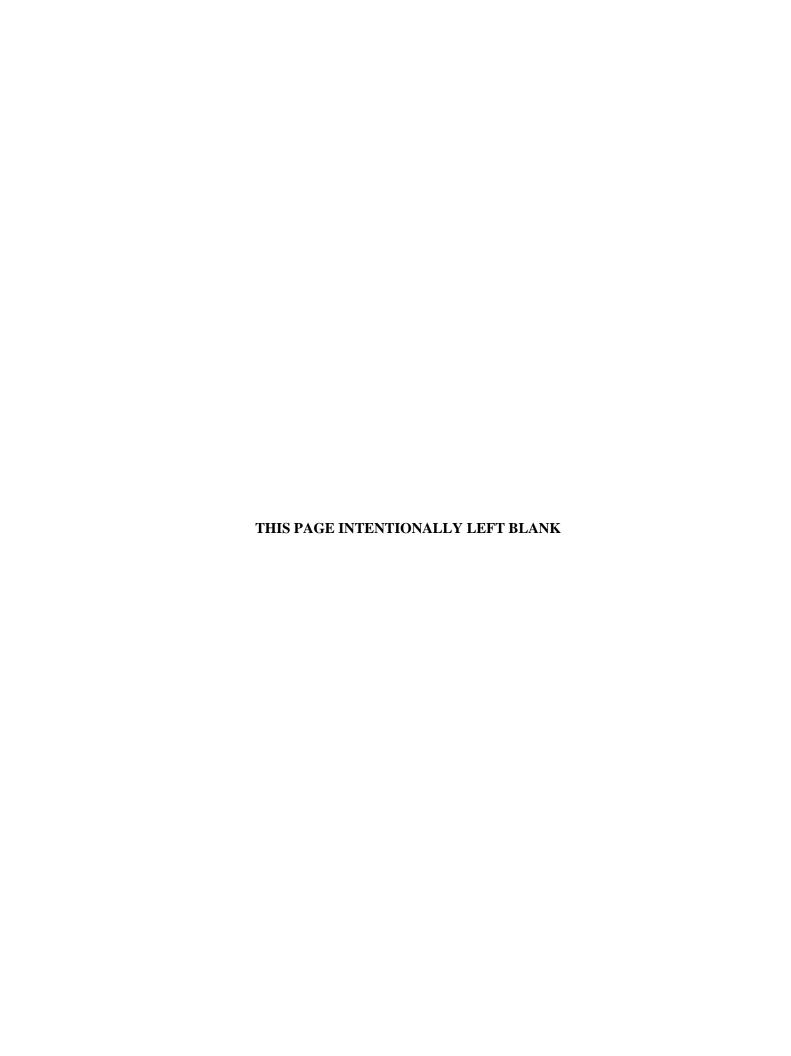
Presented this 15th day of July 2019.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2021

APPENDIX K LABORATORY ANALYTICAL METHODS

LABORATORY ANALYTICAL METHODS

Analytical Method	Preparation Method	Product
SW846 8260B		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and 1,2,3-
		Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 3535A/8082	SW846 3535A	Analysis of The Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0/SW846 9320 Modified		904.0Mod, Ra228, Liquid
EPA 900.0/SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified/DOE RP501 Rev. 1 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid



APPENDIX L MICRO-PURGING STABILITY PARAMETERS

Micro-Purge Stability Parameters for the C-746-U Contained Landfill

			The state of the s		And or de la la la la la la la la la la la la la	\circ /			July British	a /	Ed of Spirit
				olcit.		» / /				2× /	
		Codi Codi	Jin		And Child			Conduc	Jini		ST OFFICE TO STATE OF THE STATE
		130	Jedini S	Till !	(of)		/	is 1	igited deligit	iii	0426
		50 ¹⁰	gira /	8 ⁵⁰ / ₂			1.5		ita /		
	Certif	COND	183	ر المجاد	Caton		Certify	Condi	150	15501	Caron Caron
MW357	7 %	70	<u> </u>	<u> </u>	/ ^`	DAWASO	<u> </u>		/ 🌣	<u> </u>	/ 💎
Date Collected: 7/10/2019						MW358 Date Collected: 7/10/2019					
904	64.8	426	6.18	4.96	4.70	0954	65.5	503	6.11	3.12	8.00
		_	_								
9907	65.1	428	6.13	4.87	4.10	0957	66.2	506	6.12	2.11	8.50
910	65.6	427	6.10	4.72	4.50	1000	66.7	505	6.11	2.01	9.30
IW359						MW360					
Date Collected: 7/10/2019						Date Collected: 7/10/2019					
041	63.3	224	6.00	3.71	4.7	0651	61.5	403	6.18	1.93	17.0
)44	64.7	225	5.93	3.36	3.9	0654	62.0	403	6.16	1.62	14.5
)47	65.8	224	5.89	3.40	5.1	0657	62.1	402	6.16	1.51	12.4
AW361						MW362					
Pate Collected: 7/10/2019			ļ			Date Collected: 7/10/2019			ļ		
737	61.6	493	6.02	2.95	2.1	0819	61.7	730	7.01	4.54	4.5
740	62.2	493	6.05	2.90	3.3	0822	61.9	732	6.95	4.47	4.8
743	62.6	492	6.02	2.89	3.0	0825	62.2	733	6.93	4.48	4.5
IW363						MW364					
ate Collected: 7/10/2019						Date Collected: 7/10/2019					
125	68.2	414	6.09	1.07	3.2	1210	64.1	484	6.10	3.26	3.7
28	69.4	412	6.07	0.86	2.0	1213	65.5	484	6.04	3.19	5.2
31	69.9	412	6.07	0.78	2.4	1216	66.3	485	6.01	3.23	6.6
W365						MW366					
ate Collected: 7/10/2019						Date Collected: 7/11/2019					
253	64.4	431	6.28	3.25	1.6	0659	62.5	472	6.06	2.97	2.0
56	65.1	431	6.24	2.83	2.5	0702	63.0	472	6.04	2.95	1.5
259	65.8	430	6.20	2.74	3.1	0705	63.2	471	6.03	2.99	1.6
IW367	00.10	10.0		=77.1		MW368		., .	0.00		-10
ate Collected: 7/11/2019						Date Collected: 7/11/2019					
52	62.4	403	5.85	2.61	2.5	0842	61.8	726	6.54	3.98	14.1
55	62.9	401	5.80	2.35	2.3	0845	62.7	731	6.46	4.06	7.7
758	63.2	400	5.79	2.23	2.1	0848	63.3	733	6.42	4.17	6.4
IW369	05.2	700	3.13	2.23	2.1	MW370	05.5	133	0.42	7.17	0.4
ate Collected: 7/15/2019						Date Collected: 7/15/2019					
705	62.6	374	6.26	3.20	4.0	0752	62.5	420	6.16	4.50	0.1
708	62.7	373	6.26	3.11	2.8	0755	62.8	419	6.15	4.21	0.1
708 711	62.7	373	6.25	3.09	2.6	0758	63.0	419	6.15	4.21	0.7
IW371	02.7	3/3	0.23	3.09	2.0	MW372	05.0	421	0.13	4.09	0.8
Date Collected: 7/15/2019						Date Collected: 7/11/2019					
	61.0	504	6.55	4.75	04.5		64.0	641	6.12	2.07	0.0
836	61.8	524	6.55	4.75	84.5	0929	64.2	641	6.13	3.97	0.8
839	62.2	525	6.56	4.69	66.3	0932	64.9	641	6.09	3.76	
842	62.7	523	6.56	4.60	61.4	0935	65.2	640	6.08	3.63	1.6
W373						MW374					
Pate Collected: 7/11/2019	1	700	5.05	2.75	\sqcup	Date Collected: 7/11/2019				2.05	1.0
014	65.6	780	6.06	2.75	1.4	1100	64.3	665	6.55	2.87	1.9
017	65.9	782	6.04	2.54	1.3	1103	64.9	662	6.58	2.46	2.4
020	66.4	785	6.03	2.36	0.8	1106	65.3	661	6.54	2.23	3.1
AW375											
Pate Collected: 7/11/2019											
144	62.8	335	6.33	1.30	3.6						
144 147 150	62.8 63.3 63.9	335 335 335	6.33 6.28 6.27	1.30 1.28 1.21	3.6 2.4 3.1						

