FRNP-RPT-0087/V2

C-746-U Contained Landfill Second Quarter Calendar Year 2019 (April–June) Compliance Monitoring Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

FRNP Classification Support

8-20-19 Date

FRNP-RPT-0087/V2

C-746-U Contained Landfill Second Quarter Calendar Year 2019 (April–June) Compliance Monitoring Report Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—August 2019

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FOUR RIVERS NUCLEAR PARTNERSHIP, LLC, managing the Deactivation and Remediation Project at the Paducah Gaseous Diffusion Plant under Contract DE-EM0004895

FIC	GURE	S		v
TA	BLES			v
AC	RON	YMS		vii
1.	INTF 1.1 1.2 1.3	BACKG MONITO 1.2.1 0 1.2.2 M 1.2.3 S	ON ROUND DRING PERIOD ACTIVITIES Groundwater Monitoring Methane Monitoring Surface Water Monitoring SULTS	1 1 3 3
2.		A EVALU STATIS 2.1.1 U 2.1.2 U 2.1.3 I	JATION/STATISTICAL SYNOPSIS IICAL ANALYSIS OF GROUNDWATER DATA Jpper Continental Recharge System Jpper Regional Gravel Aquifer Lower Regional Gravel Aquifer ERIFICATION AND VALIDATION	9 10 10 10 10
3.	PRO	FESSION	AL GEOLOGIST AUTHORIZATION	13
4.	REF	ERENCES	5	15
AP	PEND	DIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
AP	PENE	DIX B:	FACILITY INFORMATION SHEET	B-1
AP	PEND	DIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
AP	PENE	DIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
AP	PEND	DIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
AP	PEND	DIX F:	NOTIFICATIONS	F-1
AP	PEND	DIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
AP	PEND	DIX H:	METHANE MONITORING DATA	H-1
AP	PENE	DIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1
AP	PEND	DIX J:	ANALYTICAL LABORATORY CERTIFICATION	J-1

CONTENTS

APPENDIX K:	LABORATORY ANALYTICAL METHODSK-1
APPENDIX L:	MICRO-PURGING STABILITY PARAMETERS L-1

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	.2
2.	C-746-U Landfill Surface Water Monitoring Locations	.4

TABLES

1.	Summary of MCL Exceedances	5
	Exceedances of Statistically Derived Historical Background Concentrations	
3.	Exceedances of Current Background UTL in Downgradient Wells	6
4.	C-746-U Landfill Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	7
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	7
6.	Monitoring Wells Included in Statistical Analysis	. 10

ACRONYMS

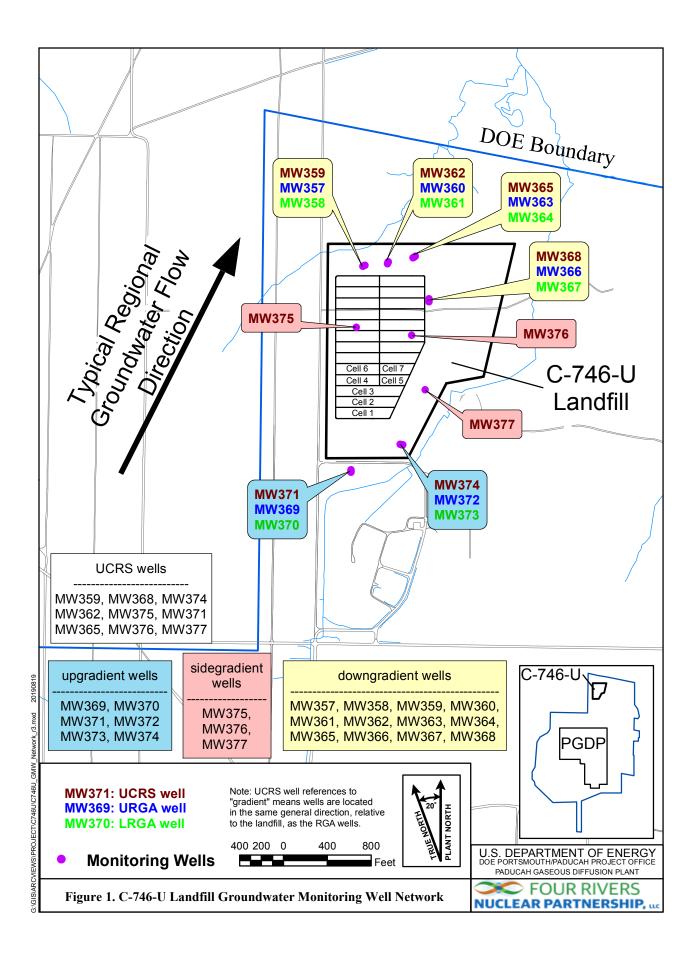
CFR CY	Code of Federal Regulations calendar year
KAR	Kentucky Administrative Regulations
KDWM	Kentucky Division of Waste Management
KRS	Kentucky Revised Statutes
LEL	lower explosive limit
LRGA	Lower Regional Gravel Aquifer
LTL	lower tolerance limit
MCL	maximum contaminant level
MW	monitoring well
RGA	Regional Gravel Aquifer
UCRS	Upper Continental Recharge System
URGA	Upper Regional Gravel Aquifer
UTL	upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill Second Quarter Calendar Year 2019 (April–June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of MCL exceedances and exceedances of the historical background UTL that have occurred, beginning in the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I. Analytical laboratory certification is provided in Appendix J. Laboratory analytical methods used to analyze the included data set are provided in Appendix K. Micro-purging stability parameter results are provided in Appendix L.

1.1 BACKGROUND


The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Site and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. The C-746-U Landfill currently is operating in Phases 4 and 5. Phases 1, 2, and 3 have long-term cover. Phases 6 and 7 are under construction. Phases 8 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and MW377 (both screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no laboratory analysis results for these locations.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, (Groundwater Monitoring Plan) UCRS wells are included

in the monitoring program (LATA Kentucky 2014). Groundwater flow gradients are downward through the UCRS, but flow in the underlying Regional Gravel Aquifer (RGA) is lateral. Groundwater flow in the RGA typically is in a northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills.

Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the second quarter 2019 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on April 23, 2019, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During April, RGA groundwater flow in the area of the landfill was oriented north to north-northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-U Landfill in April was 5.08×10^4 ft/ft. The hydraulic gradients for the URGA and LRGA at the C-746-U Landfill were 6.45×10^{-4} ft/ft and 6.42×10^{-4} ft/ft, respectively. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 1.10 to 1.87 ft/day for the URGA and 1.09 to 1.86 ft/day for the LRGA (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application Attachment 12, of the Solid Waste Landfill permit. Landfill operations staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on May 30, 2019. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water sampling was performed at three locations (see Figure 2) monitored for the C-746-U Landfill: (1) upstream location, L154; (2) downstream location, L351; and (3) location L150 capturing

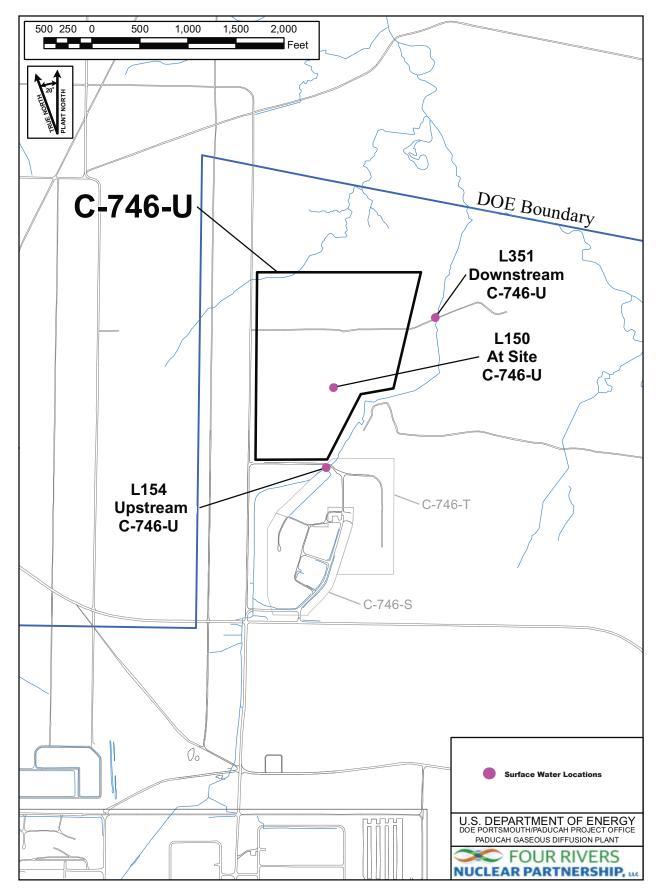


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

runoff from the landfill surface. Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved *Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (PRS 2008), which is Technical Application Attachment 24, of the Solid Waste Landfill Permit. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Landfill Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (that do not have MCLs) with concentrations that exceeded the statistically derived historical background UTL¹ during the second quarter 2019, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

UCRS	URGA	LRGA
None	MW366: Trichloroethene	MW361: Trichloroethene
	MW369: Beta activity	MW364: Trichloroethene
		MW367: Trichloroethene
		MW370: Beta activity
		MW373: Trichloroethene

Table 2. Exceedances	of Statistically Derived	Historical Background	Concentrations
	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		• • • • • • • • • • • • • • • • • • • •

UCRS*	URGA	LRGA
MW359: Dissolved oxygen,	MW357: Oxidation-reduction	MW358: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential
MW362: Dissolved oxygen,	MW360: Oxidation-reduction	MW361: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential
MW365: Oxidation-reduction	MW363: Chemical oxygen	MW364: Oxidation-reduction
potential, sulfate	demand, oxidation-reduction	potential
	potential	
MW368: Oxidation-reduction	MW366: Oxidation-reduction	MW367: Oxidation-reduction
potential, sulfate	potential	potential
MW371: Dissolved oxygen,	MW369: Beta activity,	MW370: Beta activity,
oxidation-reduction potential, sulfate	oxidation-reduction potential,	oxidation-reduction potential,
	technetium-99	technetium-99
MW374: Oxidation-reduction	MW372: Chemical oxygen	MW373: Oxidation-reduction
potential	demand, conductivity,	potential
	oxidation-reduction potential	
MW375: Oxidation-reduction		
potential, sulfate		

¹ The UTL comparison for pH uses a two-sided test, for both UTLs and LTLs. For the purposes of this report, the reference to "UTL exceedances" also includes the LTL for pH.

Table 2. Exceedance of Statoistically Derived historical Background Concentrations (Continued)

*Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW375, MW376, MW377

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368 Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW357: Oxidation-reduction potential	MW361: Oxidation-reduction potential
MW363: Chemical oxygen demand	

The notification of parameters that exceeded the MCL was submitted electronically to the KDWM, in accordance with 401 *KAR* 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL in a downgradient well were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW361, MW364, MW366, and MW367 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0001, Standard Requirement 5; and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTLs that were developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient RGA wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan. To evaluate the preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4.

The Mann-Kendall statistical test indicates that there is an increasing trend of oxidation-reduction potential in MW357 and MW361 and chemical oxygen demand for MW363 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, these are considered a Type 2 exceedance (source unknown). The source of the trends, which are indicative of improving groundwater quality, is believed to be unrelated to the C-746-U Landfill. The oxidation-reduction potential and chemical oxygen demand levels will continue to be evaluated.

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S ³	Decision ⁴
	MW357	Oxidation-reduction potential	8	0.05	0.007	20	Increasing Trend
C-746-U Landfill	MW361	Oxidation-reduction potential	8	0.05	0.007	20	Increasing Trend
Lundin	MW363	Chemical oxygen demand	8	0.05	0.016	19	Increasing Trend

Table 4. C-746-U Landfill Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Footnotes:

¹ An alpha of 0.05 represents a 95% confidence interval.

² The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 4 The Mann-Kendall decision operates on two hypotheses, the H₀ and H_a. H₀ assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

Note: Statistics generated using ProUCL.

The statistical evaluation of current UCRS concentrations against the current UCRS background UTL identified UCRS well, MW359 with an oxidation-reduction potential value that exceeds both the historical and current backgrounds (Table 5). Because UCRS wells are not hydrogeologically downgradient of the C-746-U Landfill, the exceedance is not attributable to C-746-U sources and is considered to be a Type 1 exceedance.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS
MW359: Oxidation-reduction potential
*In the same direction (relative to the landfill) as RGA wells.

All MCL and UTL exceedances, except oxidation-reduction potential in MW357 and MW361 and chemical oxygen demand in MW363, reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill. The increasing trends for oxidation-reduction potential in MW357 and MW361 and chemical oxygen demand in MW363 do not appear to be landfill related. These three trends will continue to be evaluated.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the second quarter 2019 groundwater data collected from the C-746-U Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 *KAR* 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance—an exceedance not exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance was noted as a Type 2 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both a UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371**	MW369 (upgradient)	MW370 (upgradient)
MW374**	MW372 (upgradient)	MW373 (upgradient)
MW375		
MW376***		
MW377***		

Table 6. Monitoring Wells Included in Statistical Analysis*

*A map showing the monitoring well locations is shown on Figure 1.

**In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

***Well had insufficient water to permit a water sample for laboratory analysis.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the UCRS. During the second quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Oxidation-reduction potential exceeded the current background UTL and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the URGA. During the second quarter, beta activity, chemical oxygen demand, conductivity, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Chemical oxygen demand and oxidation-reduction potential exceeded the current background UTL and are included in Table 3.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 28 parameters, including those with MCLs, required statistical analysis in the LRGA. During the second quarter, beta activity, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Oxidation-reduction potential exceeded the current background UTL and is included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

.

C-746-U Contained Landfill Second Quarter Calendar Year 2019 (April–June) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FRNP-RPT-0087/V2)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

Kenneth R. Davis

Kenneth R. Davis

PG113927

August 19, 2019 Date

13

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:		Baseous Diffusion Plant	Activity: C-746-	U Contained Landfill	
	(As officially shown	on DWM Permit Face)			
Permit No:	SW07300014, SW07300015, SW07300045	Finds/Unit No:	Quarter & Year	2nd Qtr. CY 2019	
Please check the following as applicable:					
Charact	erization <u>X</u> Quar	terly Semiannual	Annual	Assessment	
Please check app	plicable submittal(s):	X Groundwater	X Surfac	ce Water	
		Leachate	X Metha	me Monitoring	

This form is to be utilized by those sites required by regulation (Kentucky Waste Management Regulations-401 KAR 48:300 and 45:160) or by statute (Kentucky Revised Statues Chapter 224) to conduct groundwater and surface water monitoring under the jurisdiction of the Division of Waste Management. You must report any indication of contamination within forty-eight (48) hours of making the determination using statistical analyses, direct comparison, or other similar techniques. Submitting the lab report is <u>NOT</u> considered notification. Instructions for completing the form are attached. Do not submit the instruction pages.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for such violations.

Myrna E. Redfield, Deputy Program Manager Four Rivers Nuclear Partnership, LLC

Jennifer Woodard, Paducah Site Lead U.S. Department of Energy

A-3

APPENDIX B

FACILITY INFORMATION SHEET

FACILITY	INFORMATION	SHEET
----------	--------------------	-------

Sampling Date:	Groundwater Surface wate Methane: Ma	•	County:	_McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045
Facility Name: U.S. DOE—Paducah Gaseous Diffusion Plant (As officially shown on DWM Permit Face)						
Site Address:	5600	Hobbs Road	Kevil, Kentucky	,	42053	}
Street Phone No: (270) 441-6800 Latitude:		City/State N 37° 07' 45"	Zip Longitude: W 88° 47' 55"		88° 47' 55"	
OWNER INFORMATION						
Facility Owner: U.S. DOE, Robert E. Edwards III, Manager		III, Manager	Phone No: (859) 227-5020			
Contact Person: David Hutchison			Phone No: (270) 441-5929			
Director, Environmental ServicesContact Person Title:Four Rivers Nuclear Partnership, LLC						
Mailing Address:	551	1 Hobbs Road	Kevil, Kentucky		42053	3

SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)

Street

City/State

Zip

Company: <u>GEO C</u>	Consultants, LLC			
Contact Person:	Jason Boulton	Phone No: (270) 816-3415		
Mailing Address:	199 Kentucky Avenue	Kevil, Kentucky	42053	
	Street	City/State	Zip	
	LAB	ORATORY RECORD #1		
Laboratory <u>GEL L</u>	aboratories, LLC	Lab ID No:	KY90129	
Contact Person:	Valerie Davis	Pho	ne No: (843) 769-7391	
Mailing Address:	2040 Savage Road	Charleston, South Carolina	29407	
	Street	City/State	Zip	
	LAB	ORATORY RECORD #2		
Laboratory: <u>N/A</u>		Lab ID No:	N/A	
Contact Person:	N/A	Phone No: N/A		
Mailing Address:	N/A			
	Street	City/State	Zip	
LABORATORY RECORD #3				
Laboratory: N/A		Lab ID No:	N/A	
Contact Person:	N/A	Phone No: N/A		
Mailing Address:	N/A			
	Street	City/State	Zip	

APPENDIX C

GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER¹, Facility Well/Spring Number 8004-4798 8004-4799 8004-0981 8004-4800 357 359 360 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 358 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA NA NA NA 4/10/2019 09:46 4/10/2019 11:11 4/10/2019 07:09 4/10/2019 10:28 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν N Ν Split ("Y" or "N")³ Ν Ν N Ν MW357UG3-19 MW358UG3-19 MW359UG3-19 MW360UG3-19 Facility Sample ID Number (if applicable) 476083003 476083005 476083007 476083001 Laboratory Sample ID Number (if applicable) 4/15/2019 4/15/2019 4/15/2019 4/15/2019 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis DOWN DOWN DOWN DOWN Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) CAS RN⁴ CONSTITUENT т Unit METHOD DETECTED F DETECTED DETECTED DETECTED F F F D OF VALUE L VALUE L VALUE L VALUE L 5 MEASURE OR А OR А OR А OR А POL⁶ POL⁶ POL⁶ POL⁶ G G G G S^7 s s s 0.365 0.442 <0.2 0.2 J 24959-67-9 Bromide т mg/L 9056 33 5 36.4 0.81 159 16887-00-6 т 9056 Chloride(s) mg/L 0 1 1 8 0 1 1 7 <01 0 221 16984-48-8 Fluoride т 9056 mg/L 1.06 0.422 0.769 0.821 s0595- -Nitrate & Nitrite т ma/L 9056 64.2 63.2 48.8 16.1 14808-79-8 т 9056 Sulfate ma/L 29.85 29.86 29.86 29.88 NS1894 Barometric Pressure Reading T Inches/Hg Field 437 515 234 454 S0145- т Specific Conductance µMH0/cm Field

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER1	, Facility Well/Spring Number				8004-4798	3	8004-4799)	8004-0981		8004-4800	
	Facility's Lo	ocal Well or Spring Number (e.g., M	N −1,	MW-2, BLANK-	F, etc.)	357		358		359		360	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
ľ	s0906	Static Water Level Elevation	т	Ft. MSL	Field	331.53		331.54		344.07		331.54	
ľ	N238	Dissolved Oxygen	т	mg/L	Field	3.18		1.67		2.66		0.84	
ľ	S0266	Total Dissolved Solids	т	mg/L	160.1	251		296		174		257	
ľ	S0296	рH	т	Units	Field	6.3		6.22		6.03		6.38	
	NS215	Eh	т	mV	Field	342		94		215		360	
	S0907	Temperature	т	°C	Field	16.22		15.83		16.28		14.11	
	7429-90-5	Aluminum	т	mg/L	6020	0.0202	J	0.0262	J	0.074		0.111	
	7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
	7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00262	J	<0.005		<0.005	
	7440-39-3	Barium	т	mg/L	6020	0.0884		0.0496		0.0245		0.185	
	7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
	7440-42-8	Boron	т	mg/L	6020	0.457		0.525		0.00771	J	0.0443	
ľ	7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
ľ	7440-70-2	Calcium	т	mg/L	6020	27.1		33.2		5.92		23.4	
	7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
	7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00312		<0.001		0.00909	
ľ	7440-50-8	Copper	т	mg/L	6020	0.00196	J	0.00232		0.0025		0.00199	J
ľ	7439-89-6	Iron	т	mg/L	6020	0.0361	J	1.51		0.0639	J	0.443	
	7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	7439-95-4	Magnesium	т	mg/L	6020	11.3		14.5		3.44		8.75	
	7439-96-5	Manganese	т	mg/L	6020	0.00905		0.256		0.00124	J	0.107	
	7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	8	8004-479	99	8004-098	81	8004-480	00
	Facility's Lo	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	357		358		359		360	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.000297	BJ	<0.001		0.000426	BJ
	7440-02-0	Nickel	т	mg/L	6020	<0.002		0.00671		0.000934	J	0.00212	
	7440-09-7	Potassium	т	mg/L	6020	1.64		2.37		<0.3		0.764	
	7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
Ģ	7440-23-5	Sodium	т	mg/L	6020	43.1		43		39.1		62.1	
ن ن	7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
	7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.000093	J	0.000245	
	7440-62-2	Vanadium	т	mg/L	6020	0.00486	BJ	0.00885	BJ	0.0154	BJ	0.00383	BJ
	7440-66-6	Zinc	т	mg/L	6020	0.00332	J	0.00517	J	<0.02		0.0034	J
	108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	108-90-7	Chlorobenzene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
	1330-20-7	Xylenes	т	mg/L	8260	<0.003	*	<0.003	*	<0.003	*	<0.003	*
	100-42-5	Styrene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
	108-88-3	Toluene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
	74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	R ¹ , Facility Well/Spring Number				8004-4798	;	8004-479	9	8004-09	81	8004-48	00
Facility's 1	Local Well or Spring Number (e.g.,	MW-1	L, MW-2, et)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00396	*	0.00448	*	<0.001	*	0.00083	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-479	9	8004-09	81	8004-48	00
Facility's Loo	cal Well or Spring Number (e.g., M	1 W-1	1, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000191		<0.0000193		<0.0000194		<0.0000193	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
1336-36-3	PCB,Total	т	ug/L	8082	<0.1		<0.099		<0.098		<0.1	
12674-11-2	PCB-1016	т	ug/L	8082	<0.1		<0.099		<0.098		<0.1	
11104-28-2	PCB-1221	т	ug/L	8082	<0.1		<0.099		<0.098		<0.1	
11141-16-5	PCB-1232	т	ug/L	8082	<0.1		<0.099		<0.098		<0.1	
53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.099		<0.098		<0.1	
12672-29-6	PCB-1248	т	ug/L	8082	<0.1		<0.099		<0.098		<0.1	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-480)0
Facility's Loo	cal Well or Spring Number (e.g.	, MW-1	1, MW-2, et)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.1		<0.099		<0.098		<0.1	
11096-82-5	PCB-1260	т	ug/L	8082	<0.1		<0.099		<0.098		<0.1	
11100-14-4	PCB-1268	т	ug/L	8082	<0.1		<0.099		<0.098		<0.1	
12587-46-1	Gross Alpha	т	pCi/L	9310	4.07	*	6.34	*	1.39	*	-0.997	*
12587-47-2	Gross Beta	т	pCi/L	9310	16.2	*	23.5	*	0.142	*	3.17	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.25	*	0.621	*	0.431	*	0.186	*
10098-97-2	Strontium-90	т	pCi/L	905.0	1.18	*	-0.918	*	2.82	*	0.258	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	26.2	*	39.5	*	-4.92	*	1.48	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.288	*	0.322	*	-0.411	*	0.586	*
10028-17-8	Tritium	т	pCi/L	906.0	-30.4	*	-76.7	*	28	*	126	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	28.5		30.3		67.8		39.2	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	0.973	J	2.11		0.769	J	1.26	J
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	796	8004-479	97
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	, MW-2, etc	:.)	361		362		363		364	
Sample Sequen	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		4/10/2019 08	8:03	4/10/2019	09:03	4/10/2019	12:05	4/10/2019 1	2:47
Duplicate ("Y	" or "N") ²				N		N		N		Ν	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW361UG3	8-19	MW362U	G3-19	MW363U0	G3-19	MW364UG	3-19
Laboratory Sa	mple ID Number (if applicable)				47608301	1	476083	013	476083	015	4760830	17
Date of Analy:	sis (Month/Day/Year) For <u>Volatile</u>	e Or	ganics Anal	ysis	4/15/2019	9	4/15/20)19	4/15/20	19	4/15/201	9
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	0.404		<0.2		<0.2		0.425	
16887-00-6	Chloride(s)	т	mg/L	9056	33.3	*	4.79	*	18.4	*	34.3	*
16984-48-8	Fluoride	т	mg/L	9056	0.0959	J	0.341		0.199		0.103	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.04	*	0.416		4.69		0.902	
14808-79-8	Sulfate	т	mg/L	9056	64.4		31.4		40.5		70.8	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.86		29.86		29.86		29.83	
s0145	Specific Conductance	т	µMH0/cm	Field	435		743		421		433	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-4796	;	8004-4797	
Facility's Lo	cal Well or Spring Number (e.g., MW	1-1, 1	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	331.54		341.93		331.43		330.84	
N238	Dissolved Oxygen	т	mg/L	Field	2.98		4.69		1.51		2.5	
S0266	Total Dissolved Solids	т	mg/L	160.1	277		459		261		309	
S0296	рН	т	Units	Field	6.21		7.09		6.22		6.15	
NS215	Eh	т	mV	Field	350		289		307		299	
S0907	Temperature	т	°c	Field	15		15.06		17.28		17	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		3.75		0.0232	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00345	J	<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.056		0.113		0.134		0.0627	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.357		0.0255		0.0232		0.0225	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	31.9		23.7		24.8		32.6	
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.005	J	<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.0014		0.0012		0.000481	J
7440-50-8	Copper	т	mg/L	6020	0.00171	J	0.00635		0.00178	J	0.00195	J
7439-89-6	Iron	т	mg/L	6020	0.0361	J	2.01		0.0842	J	0.0891	J
7439-92-1	Lead	т	mg/L	6020	<0.002		0.00185	J	<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	12.9		9.81		9.81		13.4	
7439-96-5	Manganese	т	mg/L	6020	0.0106		0.012		0.268		0.0176	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	5	8004-098	36	8004-479	6	8004-479	97
Ĩ	Facility's L	ocal Well or Spring Number (e.g	ј., МW -	1, MW-2, e	tc.)	361		362		363		364	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
Ī	7439-98-7	Molybdenum	т	mg/L	6020	<0.001		0.00102	В	<0.001		0.000627	BJ
	7440-02-0	Nickel	т	mg/L	6020	<0.002		0.00288		0.00293		0.000991	J
	7440-09-7	Potassium	т	mg/L	6020	1.84		0.566		1.27		1.98	
	7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
Ģ	7440-23-5	Sodium	т	mg/L	6020	45.6		145		42		46.1	
	7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
	7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	7440-61-1	Uranium	т	mg/L	6020	<0.0002		0.00518		<0.0002		<0.0002	
	7440-62-2	Vanadium	т	mg/L	6020	0.00731	BJ	0.0151	BJ	0.00764	BJ	0.00705	BJ
	7440-66-6	Zinc	т	mg/L	6020	<0.02		0.00836	J	<0.02		0.0279	
	108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	108-90-7	Chlorobenzene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
	1330-20-7	Xylenes	т	mg/L	8260	<0.003	*	<0.003	*	<0.003	*	<0.003	*
	100-42-5	Styrene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
	108-88-3	Toluene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
	74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4795		8004-098	6	8004-47	96	8004-479	97
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	tc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00558	*	<0.001	*	0.00037	*	0.00698	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-479	5	8004-098	6	8004-47	96	8004-47	97
	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	, MW-2, et	.c.)	361		362		363		364	
	CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
ľ	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
ĺ	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
ĺ	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
Ģ	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
13	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000191		<0.0000194		<0.0000192		<0.0000195	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
	1336-36-3	PCB,Total	т	ug/L	8082	<0.0952		<0.0971		<0.1		<0.098	
	12674-11-2	PCB-1016	т	ug/L	8082	<0.0952		<0.0971		<0.1		<0.098	
	11104-28-2	PCB-1221	т	ug/L	8082	<0.0952		<0.0971		<0.1		<0.098	
	11141-16-5	PCB-1232	т	ug/L	8082	<0.0952		<0.0971		<0.1		<0.098	
	53469-21-9	PCB-1242	т	ug/L	8082	<0.0952		<0.0971		<0.1		<0.098	
	12672-29-6	PCB-1248	т	ug/L	8082	<0.0952		<0.0971		<0.1		<0.098	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479] 7
Facility's Lo	cal Well or Spring Number (e.g.,	, MW -1	1, MW-2, et)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Ч Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.0952		<0.0971		<0.1		<0.098	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0952		<0.0971		<0.1		<0.098	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0952		<0.0971		<0.1		<0.098	
12587-46-1	Gross Alpha	т	pCi/L	9310	10.2	*	6.14	*	2.88	*	-0.444	*
12587-47-2	Gross Beta	т	pCi/L	9310	31.7	*	10	*	-4.91	*	39.5	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.0552	*	0.279	*	-0.15	*	0.123	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.799	*	2.86	*	-0.694	*	1.55	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	29.4	*	-5.63	*	2.93	*	41.2	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.0708	*	-0.52	*	0.597	*	-0.0742	*
10028-17-8	Tritium	т	pCi/L	906.0	19.9	*	7.45	*	-76.1	*	-70.3	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	41		39.2		53.5		60.7	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	0.813	J	2.64		1.1	J	0.824	J
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1	, Facility Well/Spring Number				8004-0984	4	8004-09	982	8004-47	793	8004-098	33
Facility's Lo	cal Well or Spring Number (e.g., M	W-1	, MW-2, etc	:.)	365		366		367		368	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		4/10/2019 13	3:26	4/11/2019	06:56	4/11/2019	07:38	4/11/2019 0)8:18
Duplicate ("Y	" or "N") ²				Ν		N		N		Ν	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW365UG3	8-19	MW366U	G3-19	MW367U	G3-19	MW368UG	3-19
Laboratory Sa	mple ID Number (if applicable)				47608301	9	476239	001	476239	003	4762390	05
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	Or	rganics Anal	ysis	4/15/2019)	4/16/20)19	4/17/20	19	4/17/201	9
Gradient with	respect to Monitored Unit (UP, DC	WN,	SIDE, UNKN	IOWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056	<0.2		0.49		0.498		<0.2	
16887-00-6	Chloride(s)	т	mg/L	9056	2.54	*	39.2	*	39.9	*	1.51	*
16984-48-8	Fluoride	т	mg/L	9056	0.195		0.192		0.184		0.245	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.29		0.938		0.277		<0.1	
14808-79-8	Sulfate	т	mg/L	9056	62.2		60.8	*	64.6	*	33.7	*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.79		29.62		29.64		29.69	
S0145	Specific Conductance	т	µMH0/cm	Field	435		505		432		410	

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984	1	8004-0982	2	8004-4793		8004-0983	
Facility's Lo	cal Well or Spring Number (e.g., MW	v-1 , 1	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	338.56		331.74		331.7		358.24	
N238	Dissolved Oxygen	т	mg/L	Field	2.49		1.32		0.98		0.86	
S0266	Total Dissolved Solids	т	mg/L	160.1	270		286	*	236	*	179	*
S0296	рН	т	Units	Field	6.28		6.11		6.1		6.59	
NS215	Eh	т	mV	Field	291		441		399		394	
S0907	Temperature	т	°c	Field	16.44		16.39		16.28		16.06	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		<0.05		0.124	
7440-36-0	Antimony	т	mg/L	6020	<0.003		0.00118	J	<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00239	J	0.0026	J	0.00277	J	0.00365	J
7440-39-3	Barium	т	mg/L	6020	0.109		0.109		0.145		0.0234	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0101	J	0.192		0.0746		0.00615	J
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	22.7		33.4		31.1		46.3	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00174		<0.001		0.000528	J	<0.001	
7440-50-8	Copper	т	mg/L	6020	0.004		0.000345	J	0.00191	J	0.00176	J
7439-89-6	Iron	т	mg/L	6020	<0.1		0.0528	J	0.241		0.0837	J
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.7		13.5		12.8		11.4	
7439-96-5	Manganese	т	mg/L	6020	0.0354		0.00671		0.069		0.003	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

Ī	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-098	4	8004-098	32	8004-479	3	8004-098	33
	Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	365		366		367		368	
	CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
Î	7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001		<0.001		0.000572	J
	7440-02-0	Nickel	т	mg/L	6020	0.00511		<0.002		0.000819	J	<0.002	
	7440-09-7	Potassium	т	mg/L	6020	0.26	J	1.89		2.89		0.317	
	7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
	7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
Ċ	7440-23-5	Sodium	т	mg/L	6020	52.4		46.6		41.3		19.7	
7	7440-25-7	Tantalum	т	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	
	7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
	7440-61-1	Uranium	т	mg/L	6020	0.000163	J	<0.0002		<0.0002		0.000266	
	7440-62-2	Vanadium	т	mg/L	6020	0.0127	BJ	0.00794	BJ	0.0069	BJ	0.00902	BJ
	7440-66-6	Zinc	т	mg/L	6020	0.00667	J	0.00427	J	0.00434	J	0.00339	J
	108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	108-90-7	Chlorobenzene	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
	1330-20-7	Xylenes	т	mg/L	8260	<0.003	*	<0.003		<0.003		<0.003	
	100-42-5	Styrene	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
	108-88-3	Toluene	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
	74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

Ĩ	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984		8004-098	2	8004-47	93	8004-09	83
	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	L, MW-2, et		365		366		367		368	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
Î	75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
ľ	75-25-2	Tribromomethane	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
Î	74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
	78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005	*	<0.005	*	<0.005	*
C-18	75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
×	67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-87-3	Methyl chloride	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
	156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
	106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
ſ	75-01-4	Vinyl chloride	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
ſ	127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
ľ	79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001	*	0.00544		0.00603		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ĺ	AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-479	93	8004-09	83
	Facility's Lo	ocal Well or Spring Number (e.g., M	W-1	, MW-2, et	.c.)	365		366		367		368	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
ĺ	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
ĺ	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
	74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005	*	<0.005	*	<0.005	*
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
Ģ	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
9	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000193		<0.0000195		<0.0000195		<0.0000193	
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
ĺ	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	
	1336-36-3	PCB,Total	т	ug/L	8082	0.0737	J	<0.0943		<0.0962		<0.098	
	12674-11-2	PCB-1016	т	ug/L	8082	<0.103		<0.0943		<0.0962		<0.098	
ĺ	11104-28-2	PCB-1221	т	ug/L	8082	<0.103		<0.0943		<0.0962		<0.098	
	11141-16-5	PCB-1232	т	ug/L	8082	<0.103		<0.0943		<0.0962		<0.098	
	53469-21-9	PCB-1242	т	ug/L	8082	0.0737	J	<0.0943		<0.0962		<0.098	
	12672-29-6	PCB-1248	т	ug/L	8082	<0.103		<0.0943		<0.0962		<0.098	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982		8004-479	3	8004-098	33
Facility's Loo	cal Well or Spring Number (e.g.,	, MW-1	L, MW-2, et)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.103		<0.0943		<0.0962		<0.098	
11096-82-5	PCB-1260	т	ug/L	8082	<0.103		<0.0943		<0.0962		<0.098	
11100-14-4	PCB-1268	т	ug/L	8082	<0.103		<0.0943		<0.0962		<0.098	
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.0375	*	1.96	*	0.233	*	3.22	*
12587-47-2	Gross Beta	т	pCi/L	9310	18.4	*	46.7	*	39.3	*	8.73	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.226	*	0.454	*	0.436	*	0.447	*
10098-97-2	Strontium-90	т	pCi/L	905.0	3.1	*	-1.21	*	-2.28	*	-0.953	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-5.47	*	39.6	*	26.4	*	-0.513	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.0273	*	-0.0936	*	-0.235	*	-0.408	*
10028-17-8	Tritium	т	pCi/L	906.0	-38.9	*	-0.594	*	56.9	*	-14.9	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	21.4		<20		17.4	J	<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
S0268	Total Organic Carbon	т	mg/L	9060	1.55	J	0.819	J	0.891	J	1.25	J
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-OUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (5)

AKGWA NUMBER¹, Facility Well/Spring Number 8004-4820 8004-4818 8004-4819 8004-4808 369 370 371 372 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA NA NA NA 4/15/2019 07:37 4/15/2019 09:02 4/11/2019 09:04 4/15/2019 08:17 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν N Ν Split ("Y" or "N")³ Ν Ν N Ν MW371UG3-19 MW372UG3-19 MW369UG3-19 MW370UG3-19 Facility Sample ID Number (if applicable) 476577001 476577003 476577005 476239007 Laboratory Sample ID Number (if applicable) 4/20/2019 4/20/2019 4/20/2019 4/17/2019 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis UP UP UP UP Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) CAS RN⁴ CONSTITUENT т Unit METHOD DETECTED F DETECTED DETECTED DETECTED F F F D OF VALUE L VALUE L VALUE L VALUE L 5 MEASURE OR А OR А OR А OR А POL⁶ POL⁶ POL⁶ POL⁶ G G G G S^7 s s s 0.404 0.415 <0.2 0.586 24959-67-9 Bromide т mg/L 9056 34 7 34.8 1 02 46 2 16887-00-6 т 9056 Chloride(s) mg/L 0 184 0 157 0 122 0 198 16984-48-8 Fluoride т 9056 mg/L 0.544 0.993 < 0.1 0.676 s0595- -Nitrate & Nitrite т ma/L 9056 14.6 20.7 59.1 71.3 14808-79-8 т 9056 Sulfate ma/L 30.06 30.09 30.09 297 NS1894 Barometric Pressure Reading T Inches/Hg Field 439 458 354 632 S0145- т Specific Conductance µMH0/cm Field

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

C-2

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-482	0	8004-481	3	8004-4819		8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., MW	1-1 , 1	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	332.24		332.22		347.14		332.9	
N238	Dissolved Oxygen	т	mg/L	Field	0.71		2.99		5.06		0.95	
S0266	Total Dissolved Solids	т	mg/L	160.1	261	В	237	В	237	В	309	*
S0296	рн	т	Units	Field	6.21		6.18		6.37		6.25	
NS215	Eh	т	mV	Field	372		379		388		383	
S0907	Temperature	т	°c	Field	15.11		15.72		15.33		17.5	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		4.43		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		0.00125	J
7440-38-2	Arsenic	т	mg/L	6020	0.00215	J	0.00259	J	0.00292	J	0.00347	J
7440-39-3	Barium	т	mg/L	6020	0.412		0.207		0.0619		0.052	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0187		0.0319		0.00827	J	0.86	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	20		26.5		43.3		49.7	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		0.00514	J	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.0033		0.000377	J	0.000937	J	0.000571	J
7440-50-8	Copper	т	mg/L	6020	0.00247		0.00192	J	0.00574		0.00058	J
7439-89-6	Iron	т	mg/L	6020	0.149		0.0351	J	3.04		0.236	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		0.00176	J	<0.002	
7439-95-4	Magnesium	т	mg/L	6020	9.06		12.1		7.86		18.2	
7439-96-5	Manganese	т	mg/L	6020	0.0201		0.00749		0.0497		0.0049	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBEI	R ¹ , Facility Well/Spring Number				8004-482	0	8004-481	8	8004-481	9	8004-480)8
Facility's	Local Well or Spring Number (e.g.,	, MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001		<0.001		0.000389	J
7440-02-0	Nickel	т	mg/L	6020	0.00656		0.000761	J	0.00486		0.00125	J
7440-09-7	Potassium	т	mg/L	6020	0.825		2.46		0.603		2.1	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	51.1		45.1		8.48		47.4	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		0.000427		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	0.0103	BJ	0.00499	BJ	0.0131	BJ	0.00669	BJ
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		0.00971	J	0.00375	J
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		0.00455	J	0.00418	J	<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4820		8004-481	8	8004-48	19	8004-48	08
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00052	J	0.00055	J	<0.001		0.00478	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482)	8004-481	8	8004-48	19	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000192		<0.0000192		<0.0000194		<0.0000193	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	*
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.1		<0.098		<0.103		<0.0971	
12674-11-2	PCB-1016	т	ug/L	8082	<0.1		<0.098		<0.103		<0.0971	
11104-28-2	PCB-1221	т	ug/L	8082	<0.1		<0.098		<0.103		<0.0971	
11141-16-5	PCB-1232	т	ug/L	8082	<0.1		<0.098		<0.103		<0.0971	
53469-21-9	PCB-1242	т	ug/L	8082	<0.1		<0.098		<0.103		<0.0971	
12672-29-6	PCB-1248	т	ug/L	8082	<0.1		<0.098		<0.103		<0.0971	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480)8
Facility's Loo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	tc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.1		<0.098		<0.103		<0.0971	
11096-82-5	PCB-1260	т	ug/L	8082	<0.1		<0.098		<0.103		<0.0971	
11100-14-4	PCB-1268	т	ug/L	8082	<0.1		<0.098		<0.103		<0.0971	
12587-46-1	Gross Alpha	т	pCi/L	9310	5.69	*	0.212	*	11.3	*	3.12	*
12587-47-2	Gross Beta	т	pCi/L	9310	83.7	*	61	*	3.99	*	41	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.366	*	0.21	*	0.418	*	0.316	*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.59	*	-1.44	*	0.266	*	0.353	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	70.8	*	111	*	3.38	*	59.4	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.0643	*	-0.198	*	-0.582	*	-0.358	*
10028-17-8	Tritium	т	pCi/L	906.0	-60.7	*	-17.3	*	16.3	*	17.1	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	17.4	J	<20		<20		52.6	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.19	J	0.964	J	1.55	J	1.1	J
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

8004-4792 8004-0988 AKGWA NUMBER¹, Facility Well/Spring Number 8004-0990 8004-0985 373 374 375 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 376 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA NA NA NA 4/11/2019 09:47 4/11/2019 10:22 4/11/2019 11:06 NA Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν Ν Ν Split ("Y" or "N")³ N Ν Ν Ν MW373UG3-19 MW374UG3-19 MW375UG3-19 Facility Sample ID Number (if applicable) NA 476239009 476239011 476239013 NA Laboratory Sample ID Number (if applicable) 4/17/2019 4/17/2019 4/17/2019 NA Date of Analysis (Month/Day/Year) For Volatile Organics Analysis UP UP SIDE Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) SIDE CAS RN⁴ CONSTITUENT т METHOD DETECTED DETECTED DETECTED DETECTED Unit F F F F D 5 OF VALUE VALUE VALUE VALUE г L L L MEASURE OR А OR А OR А OR А PQL⁶ POL⁶ POL⁶ POL⁶ G G G G s^7 s s s 0.572 0.723 <0.2 24959-67-9 Bromide т mg/L 9056 43 6 63.3 4 22 т 16887-00-6 Chloride(s) 9056 mq/L 0 262 0 257 0 363 т 16984-48-8 Fluoride mg/L 9056 0.944 0.162 1.06 S0595- т Nitrate & Nitrite mg/L 9056 8.28 * 126 26.1 14808-79-8 т Sulfate ma/L 9056 297 29.69 29.69 * NS1894 Barometric Pressure Reading T Inches/Hg Field 730 701 358 * т S0145- -Specific Conductance uMH0/cm Field

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

C-27

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-0990	C	8004-0985		8004-0988	3
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field	332.89		342.14		345.7			*
N238	Dissolved Oxygen	т	mg/L	Field	1.49		1.52		0.62			*
s0266	Total Dissolved Solids	т	mg/L	160.1	401	*	320	*	177	*		*
S0296	рн	т	Units	Field	6.21		6.83		6.53			*
NS215	Eh	т	mV	Field	387		353		346			*
s0907	Temperature	т	°c	Field	17.22		17.61		17.22			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0338	J		*
7440-36-0	Antimony	т	mg/L	6020	0.00125	J	0.00121	J	0.00116	J		*
7440-38-2	Arsenic	т	mg/L	6020	0.00338	J	0.00283	J	0.00207	J		*
7440-39-3	Barium	т	mg/L	6020	0.0368		0.127		0.162			*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	1.32		0.0106	J	0.00667	J		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020	64		21.5		13.5			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	0.000473	J	0.000371	J	0.000885	J		*
7440-50-8	Copper	т	mg/L	6020	0.000479	J	0.0007	J	0.000475	J		*
7439-89-6	Iron	т	mg/L	6020	0.178		0.758		0.209			*
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020	23.7		5.22		5.26			*
7439-96-5	Manganese	т	mg/L	6020	0.0177		0.0466		0.0117			*
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	5	8004-098	38
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-02-0	Nickel	т	mg/L	6020	0.000916	J	0.000848	J	0.00091	J		*
7440-09-7	Potassium	т	mg/L	6020	2.43		0.378		0.265	J		*
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		0.00211	J		*
7440-22-4	Silver	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-23-5	Sodium	т	mg/L	6020	51.4		123		53.7			*
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1	Uranium	т	mg/L	6020	<0.0002		0.000119	J	<0.0002			*
7440-62-2	Vanadium	т	mg/L	6020	0.00646	BJ	0.00448	BJ	0.00572	BJ		*
7440-66-6	Zinc	т	mg/L	6020	<0.02		<0.02		0.00391	J		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-0990		8004-0985		8004-0988	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*		*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*		*
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*		*
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0052		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

	AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-4792	2	8004-099	8004-0985		8004-0988				
	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-3	1, MW-2, et	tc.)	373		374		375		376	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
	74-88-4	Iodomethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*		*
	124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
	56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001			*
	75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
וב	108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005			*
1	96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000193		<0.0000193		<0.0000195			*
	78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
	10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
	156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*		*
	75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001			*
	96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			*
	95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
	106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
	1336-36-3	PCB, Total	т	ug/L	8082	<0.099		<0.101		<0.099			*
	12674-11-2	PCB-1016	т	ug/L	8082	<0.099		<0.101		<0.099			*
	11104-28-2	PCB-1221	т	ug/L	8082	<0.099		<0.101		<0.099			*
	11141-16-5	PCB-1232	т	ug/L	8082	<0.099		<0.101		<0.099			*
	53469-21-9	PCB-1242	т	ug/L	8082	<0.099		<0.101		<0.099			*
Γ	12672-29-6	PCB-1248	т	ug/L	8082	<0.099		<0.101		<0.099			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-0990		8004-0985		8004-0988	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082	<0.099		<0.101		<0.099			*
11096-82-5	PCB-1260	т	ug/L	8082	<0.099		<0.101		<0.099			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.099		<0.101		<0.099			*
12587-46-1	Gross Alpha	т	pCi/L	9310	-0.109	*	1.81	*	4.96	*		*
12587-47-2	Gross Beta	т	pCi/L	9310	13.7	*	0.603	*	3.52	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.213	*	0.301	*	0.18	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	0.966	*	-0.743	*	-2.15	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	22.7	*	-0.102	*	-3.66	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.561	*	-0.0388	*	0.279	*		*
10028-17-8	Tritium	т	pCi/L	906.0	46.7	*	12.5	*	-20.4	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	43.8		14.4	J	40.9			*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5			*
s0268	Total Organic Carbon	т	mg/L	9060	1.28	J	2.27		1.05	J		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

8004-0989 0000-0000 AKGWA NUMBER¹, Facility Well/Spring Number 0000-0000 0000-0000 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 377 F BLANK F BLANK T. BLANK 1 Sample Sequence # 1 1 1 1 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA Е F Т NA 4/10/2019 06:04 4/10/2019 08:10 4/10/2019 05:50 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν Ν Ν Split ("Y" or "N")³ Ν Ν Ν Ν TB1UG3-19 Facility Sample ID Number (if applicable) NA RI1UG3-19 FB1UG3-19 NA 476083022 476083021 476083023 Laboratory Sample ID Number (if applicable) Date of Analysis (Month/Day/Year) For Volatile Organics Analysis NA 4/15/2019 4/15/2019 4/15/2019 Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) SIDE NA NA NA CAS RN⁴ CONSTITUENT т Unit METHO DETECTED F DETECTED F DETECTED F DETECTED F D OF р VALUE L VALUE L VALUE L VALUE L 5 MEASURE OR А OR А OR А OR А PQL⁶ G POL⁶ G PQL⁶ G PQL⁶ G s^7 s s s * * т mg/L 24959-67-9 Bromide 9056 * 16887-00-6 т Chloride(s) mg/L 9056 * * * т 16984-48-8 Fluoride mg/L 9056 * * * * S0595- -Nitrate & Nitrite т mg/L 9056 * * * 14808-79-8 Sulfate т mg/L 9056 * * * NS1894 Barometric Pressure Reading т Inches/Hq Field * * т S0145- -Specific Conductance Field uMH0/cm

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

* = See Comments

J = Estimated Value

- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0989)	0000-0000)	0000-0000		0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1,	MW-2, BLANK-	F, etc.)	377		E. BLANK		F. BLANK		T. BLANK 1	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
S0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рН	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°c	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	0.00211	J	0.00237	J		*
7440-39-3	Barium	т	mg/L	6020		*	<0.004		<0.004			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	т	mg/L	6020		*	0.002		0.00187	J		*
7439-89-6	Iron	т	mg/L	6020		*	0.0375	J	<0.1			*
7439-92-1	Lead	т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	00	0000-0000	
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	377		E. BLAN	К	F. BLANK		T. BLANK 1	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020		*	<0.001		<0.001			*
7440-02-0	Nickel	т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7	Potassium	т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6	Rhodium	т	mg/L	6020		*	<0.005		<0.005			*
7782-49-2	Selenium	т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4	Silver	т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5	Sodium	т	mg/L	6020		*	<0.25		<0.25			*
7440-25-7	Tantalum	т	mg/L	6020		*	<0.005	*	<0.005	*		*
7440-28-0	Thallium	т	mg/L	6020		*	<0.002		<0.002			*
7440-61-1	Uranium	т	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2	Vanadium	т	mg/L	6020		*	0.0131	BJ	0.0153	BJ		*
7440-66-6	Zinc	т	mg/L	6020		*	<0.02		<0.02			*
108-05-4	Vinyl acetate	т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260		*	0.0046	J	0.00316	J	0.00449	J
107-02-8	Acrolein	т	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	*
1330-20-7	Xylenes	т	mg/L	8260		*	<0.003	*	<0.003	*	<0.003	*
100-42-5	Styrene	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	*
108-88-3	Toluene	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	*
74-97-5	Chlorobromomethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

ſ	AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-0989		0000-000	0	0000-0000		0000-0000			
Ī	Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1	, MW-2, et)	377		E. BLANI	<	F. BLANK		T. BLANK 1	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S
	75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	75-25-2	Tribromomethane	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	*
	74-83-9	Methyl bromide	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	*
	78-93-3	Methyl ethyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
	110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260		*	<0.005		<0.005		<0.005	
	75-15-0	Carbon disulfide	т	mg/L	8260		*	<0.005		<0.005		<0.005	
C-36	75-00-3	Chloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
2	67-66-3	Chloroform	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	74-87-3	Methyl chloride	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	*
	156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	74-95-3	Methylene bromide	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	75-34-3	1,1-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	107-06-2	1,2-Dichloroethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	75-35-4	1,1-Dichloroethylene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
	630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	*
	75-01-4	Vinyl chloride	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	*
	127-18-4	Ethene, Tetrachloro-	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	*
	79-01-6	Ethene, Trichloro-	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-0000		0000-0000		0000-0000	
Facility's Loo	cal Well or Spring Number (e.g., 1	MW-1	L, MW-2, et		377		E. BLANK		F. BLANK		T. BLANK 1	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	*
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	*
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.0000193		<0.0000192		<0.0000193	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*	<0.001	*	<0.001	*	<0.001	*
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.101		<0.0935			*
12674-11-2	PCB-1016	т	ug/L	8082		*	<0.101		<0.0935			*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.101		<0.0935			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.101		<0.0935			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.101		<0.0935			*
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.101		<0.0935			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000		0000-000	0	0000-0000	
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et)	377		E. BLANK		F. BLANK		T. BLANK 1	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.101		<0.0935			*
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.101		<0.0935			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.101		<0.0935			*
12587-46-1	Gross Alpha	т	pCi/L	9310		*	5.73	*	3.07	*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*	5.18	*	-1.1	*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418		*	0.245	*	-0.00987	*		*
10098-97-2	Strontium-90	т	pCi/L	905.0		*	-0.174	*	2.02	*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*	-4.88	*	-4.95	*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*	0.0224	*	0.148	*		*
10028-17-8	Tritium	т	pCi/L	906.0		*	64.7	*	-35.4	*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*	<0.5		<0.5			*
s0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management

Solid Waste Branch

14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1

GROUNDWATER SAMPLE ANALYSIS (S)

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-00	00	8004-4795	
Facility's Loca	al Well or Spring Number (e.g., M	IW-1	L, MW-2, etc	2.)	T. BLANK	٢2	T. BLAN	K 3	T. BLAN	< 4	361	
Sample Sequence	e #				1		1		1		2	
If sample is a Bl	lank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	Т		Т		Т		NA	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		4/10/2019 0)5:53	4/11/2019	05:50	4/15/2019 (06:00	4/10/2019 08	:03
Duplicate ("Y"	or "N") ²				N		N		N		Y	
Split ("Y" or '	"N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)				TB2UG3-	19	TB3UG3	-19	TB4UG3	-19	MW361DUG3	-19
Laboratory Sam	ple ID Number (if applicable)				4760830	24	4762390)15	4765770	07	476083009	
Date of Analysi	is (Month/Day/Year) For <u>Volatile</u>	e 01	rganics Anal	ysis	4/15/201	9	4/17/20	19	4/20/201	19	4/15/2019	
Gradient with 1	respect to Monitored Unit (UP, DC	WN ,	, SIDE, UNKN	IOWN)	NA		NA		NA		DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*	0.41	
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*	30.5	*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*	0.111	
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*	1.06	*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*	41.6	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	µMH0/cm	Field		*		*		*		*

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

	AKGWA NUMBER ¹	¹ , Facility Well/Spring Number				0000-0000)	0000-0000		0000-0000		8004-4795	,
	Facility's Lo	ocal Well or Spring Number (e.g., M	V-1,	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	T. BLANK 4	1	361	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
	S0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
	N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
	S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*	291	
	S0296	рн	т	Units	Field		*		*		*		*
	NS215	Eh	т	mV	Field		*		*		*		*
	S0907	Temperature	т	°c	Field		*		*		*		*
C-40	7429-90-5	Aluminum	т	mg/L	6020		*		*		*	<0.05	
Ō	7440-36-0	Antimony	т	mg/L	6020		*		*		*	<0.003	
	7440-38-2	Arsenic	т	mg/L	6020		*		*		*	<0.005	
	7440-39-3	Barium	т	mg/L	6020		*		*		*	0.0565	
	7440-41-7	Beryllium	т	mg/L	6020		*		*		*	<0.0005	
	7440-42-8	Boron	т	mg/L	6020		*		*		*	0.337	
	7440-43-9	Cadmium	т	mg/L	6020		*		*		*	<0.001	
	7440-70-2	Calcium	т	mg/L	6020		*		*		*	31.6	
	7440-47-3	Chromium	т	mg/L	6020		*		*		*	<0.01	
	7440-48-4	Cobalt	т	mg/L	6020		*		*		*	<0.001	
	7440-50-8	Copper	т	mg/L	6020		*		*		*	0.00188	J
	7439-89-6	Iron	т	mg/L	6020		*		*		*	0.0542	J
	7439-92-1	Lead	т	mg/L	6020		*		*		*	<0.002	
	7439-95-4	Magnesium	т	mg/L	6020		*		*		*	12.9	
	7439-96-5	Manganese	т	mg/L	6020		*		*		*	0.0193	
	7439-97-6	Mercury	т	mg/L	7470		*		*		*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				0000-000	0	0000-000	00	0000-000	0	8004-4795	
Facility's I	local Well or Spring Number (e.g.	., MW-	1, MW-2, e	tc.)	T. BLANK	2	T. BLANK	T. BLANK 3		T. BLANK 4		
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
7439-98-7	Molybdenum	т	mg/L	6020		*		*		*	<0.001	
7440-02-0	Nickel	т	mg/L	6020		*		*		*	<0.002	
7440-09-7	Potassium	т	mg/L	6020		*		*		*	1.85	
7440-16-6	Rhodium	т	mg/L	6020		*		*		*	<0.005	
7782-49-2	Selenium	т	mg/L	6020		*		*		*	<0.005	
7440-22-4	Silver	т	mg/L	6020		*		*		*	<0.001	
7440-23-5	Sodium	т	mg/L	6020		*		*		*	44.2	
7440-25-7	Tantalum	т	mg/L	6020		*		*		*	<0.005	*
7440-28-0	Thallium	т	mg/L	6020		*		*		*	<0.002	
7440-61-1	Uranium	т	mg/L	6020		*		*		*	<0.0002	
7440-62-2	Vanadium	т	mg/L	6020		*		*		*	0.0069	BJ
7440-66-6	Zinc	т	mg/L	6020		*		*		*	<0.02	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	0.00271	J	<0.005		0.00284	J	<0.005	
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	*
1330-20-7	Xylenes	т	mg/L	8260	<0.003	*	<0.003		<0.003		<0.003	*
100-42-5	Styrene	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	*
108-88-3	Toluene	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	*
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-0000	0	0000-00	00	8004-47	95
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	tc.)	T. BLANK 2	2	T. BLANK 3		T. BLANK 4		361	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	*
74-83-9	Methyl bromide	т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	*
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	*
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	*
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	*
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001	*	<0.001		<0.001		0.00557	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000)	0000-0000		0000-0000		8004-4795	
Facility's Loo	cal Well or Spring Number (e.g., M	4W-:	1, MW-2, et		T. BLANK	2	T. BLANK	T. BLANK 3		< 4	361	
CAS RN ⁴	CONSTITUENT	Т Д₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	*
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000193		<0.0000194		<0.0000194		<0.0000194	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001	*	<0.001		<0.001		<0.001	*
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*	<0.098	
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*	<0.098	
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*	<0.098	
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*	<0.098	
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*	<0.098	
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*	<0.098	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-0000		0000-0000	C	8004-4795	
Facility's Loc	al Well or Spring Number (e.g.,	MW-1	1, MW-2, et)	T. BLANK	2	T. BLANK 3		T. BLANK	4	361	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*	<0.098	
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*	<0.098	
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*	<0.098	
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*		*	2.53	*
12587-47-2	Gross Beta	т	pCi/L	9310		*		*		*	30.9	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418		*		*		*	0.27	*
10098-97-2	Strontium-90	т	pCi/L	905.0		*		*		*	-1.13	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*		*	29.9	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*		*		*	0.392	*
10028-17-8	Tritium	т	pCi/L	906.0		*		*		*	-5.72	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*	49.9	
57-12-5	Cyanide	т	mg/L	9012		*		*		*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0		*		*		*	<0.5	
S0268	Total Organic Carbon	т	mg/L	9060		*		*		*	0.769	J
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-4798 MW357	MW357UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	н	Analysis performed outside holding time requirement
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Toluene	Y2	MS/MSD RPD outside acceptance criteria
		Tribromomethane	Y2	MS/MSD RPD outside acceptance criteria
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RF outside acceptance criteria
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y2	MS/MSD RPD outside acceptance criteria
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Trichloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		Dibromochloromethane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. Tf 6.52. Rad error is 6.48.
		Gross beta		TPU is 9.54. Rad error is 9.16.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 0.443. Rad error is 0.442.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 2.01. Rad error is 2.
		Technetium-99		TPU is 7.73. Rad error is 7.17.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 0.796. Rad error is 0.791.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 140. Rad error is 140.
		Total Organic Halides		See resample.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
	MW358UG3-19	Chloride	W Flag	Post-digestion spike recovery out of control limits.
004-4755 100050	WW000000-10	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Toluene	Y2	MS/MSD RPD outside acceptance criteria
		Tribromomethane	Y2	MS/MSD RPD outside acceptance criteria
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD R outside acceptance criteria
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y2	MS/MSD RPD outside acceptance criteria
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Trichloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		Dibromochloromethane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 5.76. Rad error is 5.66.
		Gross beta		TPU is 9.42. Rad error is 8.56.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.772. Rad error is 0.77.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.61. Rad error is 2.61.
		Technetium-99		TPU is 8.68. Rad error is 7.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.785. Rad error is 0.78.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 136. Rad error is 136.
		Total Organic Halides		See resample.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0981 MW3		Chloride	W Flag	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Toluene	Y2	MS/MSD RPD outside acceptance criteria
		Tribromomethane	Y2	MS/MSD RPD outside acceptance criteria
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RI outside acceptance criteria
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y2	MS/MSD RPD outside acceptance criteria
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Trichloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		Dibromochloromethane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.7. Rad error is 3.7.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.63. Rad error is 6.62.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.466. Rad error is 0.462.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.09. Rad error is 3.06.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.34. Rad error is 6.34.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.572. Rad error is 0.571.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 141. Rad error is 141.
		Total Organic Halides		See resample.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4800 MW360	MW360UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Toluene	Y2	MS/MSD RPD outside acceptance criteria
		Tribromomethane	Y2	MS/MSD RPD outside acceptance criteria
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RP outside acceptance criteria
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y2	MS/MSD RPD outside acceptance criteria
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Trichloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		Dibromochloromethane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 4.22. Rad error is 4.22.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 7.16. Rad error is 7.14.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.33. Rad error is 0.329.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 2.5. Rad error is 2.5.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 6.53. Rad error is 6.53.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 1.12. Rad error is 1.11.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 146. Rad error is 144.
		Total Organic Halides		See resample.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-4795 MW361	MW361UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	н	Analysis performed outside holding time requirement
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Toluene	Y2	MS/MSD RPD outside acceptance criteria
		Tribromomethane	Y2	MS/MSD RPD outside acceptance criteria
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RP outside acceptance criteria
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y2	MS/MSD RPD outside acceptance criteria
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Trichloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		Dibromochloromethane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. Tf 8.36. Rad error is 8.17.
		Gross beta		TPU is 10.6. Rad error is 9.25.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. Tf 0.388. Rad error is 0.388.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 1.93. Rad error is 1.93.
		Technetium-99		TPU is 7.46. Rad error is 6.71.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. Tf 0.794. Rad error is 0.793.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. The 136. Rad error is 136.
		Total Organic Halides		See resample.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Doint	Facility	Constituent	Flor	Description
Point 004-0986 MW362	Sample ID MW362UG3-19	Constituent Chloride	Flag W	Description Post-digestion spike recovery out of control limits.
04-0900 10100302	10100302003-19	Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
			Y2	MS/MSD RPD outside acceptance criteria
		Xylenes Styrene	12 Y2	MS/MSD RPD outside acceptance criteria
		5	12 Y2	·
		Toluene		MS/MSD RPD outside acceptance criteria
		Tribromomethane	Y2	MS/MSD RPD outside acceptance criteria
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD R outside acceptance criteria
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y2	MS/MSD RPD outside acceptance criteria
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Trichloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		Dibromochloromethane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 8.27. Rad error is 8.21.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 7.3. Rad error is 7.11.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.394. Rad error is 0.389.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.8. Rad error is 2.77.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.34. Rad error is 6.34.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.583. Rad error is 0.58.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 139. Rad error is 139.
		Total Organic Halides		See resample.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4796 MW363		Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Toluene	Y2	MS/MSD RPD outside acceptance criteria
		Tribromomethane	Y2	MS/MSD RPD outside acceptance criteria
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RF outside acceptance criteria
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y2	MS/MSD RPD outside acceptance criteria
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Trichloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		Dibromochloromethane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 5.13. Rad error is 5.11.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 7.19. Rad error is 7.19.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.172. Rad error is 0.171.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.95. Rad error is 1.95.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 7.11. Rad error is 7.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.875. Rad error is 0.865.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 133. Rad error is 133.
		Total Organic Halides		See resample.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4797 MW364	MW364UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Toluene	Y2	MS/MSD RPD outside acceptance criteria
		Tribromomethane	Y2	MS/MSD RPD outside acceptance criteria
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RI outside acceptance criteria
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y2	MS/MSD RPD outside acceptance criteria
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Trichloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		Dibromochloromethane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 5. Rad error is 5.
		Gross beta		TPU is 11.4. Rad error is 9.44.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.535. Rad error is 0.534.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.33. Rad error is 3.32.
		Technetium-99		TPU is 8.89. Rad error is 7.64.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.02. Rad error is 1.02.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 139. Rad error is 139.
		Total Organic Halides		See resample.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
04-0984 MW365	MW365UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Toluene	Y2	MS/MSD RPD outside acceptance criteria
		Tribromomethane	Y2	MS/MSD RPD outside acceptance criteria
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD R outside acceptance criteria
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y2	MS/MSD RPD outside acceptance criteria
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Trichloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		Dibromochloromethane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 5.67. Rad error is 5.67.
		Gross beta		TPU is 9.92. Rad error is 9.44.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.693. Rad error is 0.689.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.02. Rad error is 2.98.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 8.28. Rad error is 8.28.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.723. Rad error is 0.722.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 135. Rad error is 135.
		Total Organic Halides		See resample.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0982 MW366	MW366UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria
		1,1-Dichloroethylene	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,2-Dichloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.22. Rad error is 4.21.
		Gross beta		TPU is 12.6. Rad error is 10.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.465. Rad error is 0.464.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.86. Rad error is 3.86.
		Technetium-99		TPU is 10.1. Rad error is 9.08.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.694. Rad error is 0.692.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 140. Rad error is 140.
		Total Organic Halides		See resample.
04-4793 MW367	MW367UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Chlorobromomethane	L	LCS or LCSD recovery outside of control limits
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria
		1,1-Dichloroethylene	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		trans-1,2-Dichloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 2.27. Rad error is 2.27.
		Gross beta		TPU is 11.2. Rad error is 9.29.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.761. Rad error is 0.761.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.51. Rad error is 3.51.
		Technetium-99		TPU is 9.34. Rad error is 8.88.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 1.14. Rad error is 1.13.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 141. Rad error is 141.
		Total Organic Halides		See resample.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0983 MW368	MW368UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Chlorobromomethane	L	LCS or LCSD recovery outside of control limits
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria
		1,1-Dichloroethylene	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		trans-1,2-Dichloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 6.23. Rad error is 6.2.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 7.19. Rad error is 7.05.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.449. Rad error is 0.446.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.76. Rad error is 1.76.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 8.85. Rad error is 8.85.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.675. Rad error is 0.674.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 139. Rad error is 139.
		Total Organic Halides		See resample.
004-4820 MW369	MW369UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 6.1. Rad error is 5.97.
		Gross beta		TPU is 18. Rad error is 11.9.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.484. Rad error is 0.482.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.48. Rad error is 2.48.
		Technetium-99		TPU is 13.4. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 1.01. Rad error is 1.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 132. Rad error is 132.
		Total Organic Halides		See resample.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Point		Constituent	Flag	Description
3004-4818 MW370	Sample ID MW370UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.6. Rad error is 6.59.
		Gross beta		TPU is 15. Rad error is 11.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.641. Rad error is 0.64.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.39. Rad error is 2.39.
		Technetium-99		TPU is 17.5. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.572. Rad error is 0.571.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 134. Rad error is 134.
		Total Organic Halides		See resample.
004-4819 MW371	MW371UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 8.59. Rad error is 8.38.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.11. Rad error is 6.07.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.421. Rad error is 0.416.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.18. Rad error is 3.18.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.39. Rad error is 6.38.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.655. Rad error is 0.654.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 135. Rad error is 135.
		Total Organic Halides		See resample.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring	Facility										
Point	Sample ID	Constituent	Flag	Description							
8004-4808 MW372	MW372UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.							
		Sulfate	W	Post-digestion spike recovery out of control limits.							
		Total Dissolved Solids	*	Duplicate analysis not within control limits.							
		Chlorobromomethane	L	LCS or LCSD recovery outside of control limits							
		Methyl bromide	L	LCS or LCSD recovery outside of control limits							
		Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria							
		1,1-Dichloroethylene	Y1	MS/MSD recovery outside acceptance criteria							
		lodomethane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria							
		trans-1,2-Dichloroethene	Y1	MS/MSD recovery outside acceptance criteria							
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 6.74. Rad error is 6.72.							
		Gross beta		TPU is 11.5. Rad error is 9.3.							
		lodine-131		Analysis of constituent not required and not performed.							
									Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.476. Rad error is 0.474.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 2.62. Rad error is 2.62.							
		Technetium-99		TPU is 11.7. Rad error is 9.68.							
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.538. Rad error is 0.537.							
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 134. Rad error is 134.							
		Total Organic Halides		See resample.							

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring	Facility	-								
Point	Sample ID	Constituent	Flag	Description						
8004-4792 MW373	MW373UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.						
		Sulfate	W	Post-digestion spike recovery out of control limits.						
		Total Dissolved Solids	*	Duplicate analysis not within control limits.						
		Chlorobromomethane	L	LCS or LCSD recovery outside of control limits						
		Methyl bromide	L	LCS or LCSD recovery outside of control limits						
		Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria						
		1,1-Dichloroethylene	Y1	MS/MSD recovery outside acceptance criteria						
		lodomethane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria						
		trans-1,2-Dichloroethene	Y1	MS/MSD recovery outside acceptance criteria						
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 4.76. Rad error is 4.76.						
		Gross beta		TPU is 7.69. Rad error is 7.36.						
		lodine-131		Analysis of constituent not required and not performed.						
								Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.415. Rad error is 0.414.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 3.03. Rad error is 3.03.						
		Technetium-99		TPU is 9.14. Rad error is 8.8.						
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.788. Rad error is 0.786.						
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 139. Rad error is 138.						
		Total Organic Halides		See resample.						

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring	Facility								
Point	Sample ID	Constituent	Flag	Description					
8004-0990 MW374	MW374UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.					
		Sulfate	W	Post-digestion spike recovery out of control limits.					
		Total Dissolved Solids	*	Duplicate analysis not within control limits.					
		Chlorobromomethane	L	LCS or LCSD recovery outside of control limits					
		Methyl bromide	L	LCS or LCSD recovery outside of control limits					
		Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria					
		1,1-Dichloroethylene	Y1	MS/MSD recovery outside acceptance criteria					
		lodomethane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria					
		trans-1,2-Dichloroethene	Y1	MS/MSD recovery outside acceptance criteria					
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.36. Rad error is 6.35.					
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.97. Rad error is 5.97.					
		lodine-131		Analysis of constituent not required and not performed.					
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.427. Rad error is 0.423.					
							Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 2.05. Rad error is 2.05.
					Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.06. Rad error is 8.06.		
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.455. Rad error is 0.454.					
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 136. Rad error is 136.					
		Total Organic Halides		See resample.					

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring	Facility			
Point	Sample ID	Constituent	Flag	Description
8004-0985 MW375	MW375UG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Chlorobromomethane	L	LCS or LCSD recovery outside of control limits
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria
		1,1-Dichloroethylene	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSD recovery outside acceptance criteria
		trans-1,2-Dichloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 5.93. Rad error is 5.87.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 6.44. Rad error is 6.41.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.4. Rad error is 0.398.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 1.78. Rad error is 1.78.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 8.87. Rad error is 8.87.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 0.702. Rad error is 0.697.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU i 138. Rad error is 138.
		Total Organic Halides		See resample.

RESIDENTIAL/CONTAINED – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376		Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample was collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample was collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample was collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample was collected.
		рН		During sampling, the well went dry; therefore, no sample was collected.
		Eh		During sampling, the well went dry; therefore, no sample wa collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.
		Antimony		During sampling, the well went dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well went dry; therefore, no sample wa collected.
		Barium		During sampling, the well went dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well went dry; therefore, no sample was collected.
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.
		Calcium		During sampling, the well went dry; therefore, no sample was collected.
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.
		Copper		During sampling, the well went dry; therefore, no sample was collected.
		Iron		During sampling, the well went dry; therefore, no sample was collected.
		Lead		During sampling, the well went dry; therefore, no sample was collected.
		Magnesium		During sampling, the well went dry; therefore, no sample was collected.
		Manganese		During sampling, the well went dry; therefore, no sample was collected.
		Mercury		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376	·	Molybdenum		During sampling, the well went dry; therefore, no sample was
		Nickel		collected. During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.
		lodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0988 MW376	·	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

RESIDENTIAL/CONTAINED – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377	•	Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample was collected.
		Fluoride		During sampling, the well went dry; therefore, no sample was collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample was collected.
		Sulfate		During sampling, the well went dry; therefore, no sample was collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.
		рН		During sampling, the well went dry; therefore, no sample wa collected.
		Eh		During sampling, the well went dry; therefore, no sample wa collected.
		Temperature		During sampling, the well went dry; therefore, no sample wa collected.
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.
		Antimony		During sampling, the well went dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well went dry; therefore, no sample wa collected.
		Barium		During sampling, the well went dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.
		Copper		During sampling, the well went dry; therefore, no sample wa collected.
		Iron		During sampling, the well went dry; therefore, no sample wa collected.
		Lead		During sampling, the well went dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well went dry; therefore, no sample wa collected.
		Manganese		During sampling, the well went dry; therefore, no sample wa collected.
		Mercury		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377	•	Molybdenum		During sampling, the well went dry; therefore, no sample was
		Nickel		collected. During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample was collected.
		Selenium		During sampling, the well went dry; therefore, no sample was collected.
		Silver		During sampling, the well went dry; therefore, no sample was collected.
		Sodium		During sampling, the well went dry; therefore, no sample was collected.
		Tantalum		During sampling, the well went dry; therefore, no sample was collected.
		Thallium		During sampling, the well went dry; therefore, no sample was collected.
		Uranium		During sampling, the well went dry; therefore, no sample was collected.
		Vanadium		During sampling, the well went dry; therefore, no sample was collected.
		Zinc		During sampling, the well went dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample was collected.
		Acetone		During sampling, the well went dry; therefore, no sample was collected.
		Acrolein		During sampling, the well went dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample was collected.
		Benzene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		Xylenes		During sampling, the well went dry; therefore, no sample was collected.
		Styrene		During sampling, the well went dry; therefore, no sample was collected.
		Toluene		During sampling, the well went dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample was collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample was collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring _Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.
		lodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample wa collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-0989 MW377		1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1UG3-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
	Fluoride		Analysis of constituent not required and not performed.	
	Nitrate & Nitrite		Analysis of constituent not required and not performed.	
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Toluene	Y2	MS/MSD RPD outside acceptance criteria
		Tribromomethane	Y2	MS/MSD RPD outside acceptance criteria
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RP outside acceptance criteria
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y2	MS/MSD RPD outside acceptance criteria
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Trichloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		Dibromochloromethane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 5.05. Rad error is 4.96.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 5.95. Rad error is 5.88.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.637. Rad error is 0.63.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 4.21. Rad error is 4.21.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 6.57. Rad error is 6.57.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.818. Rad error is 0.817.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 144. Rad error is 143.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring _Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1UG3-19	Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1UG3-19	Bromide		Analysis of constituent not required and not performed.
	Chloride		Analysis of constituent not required and not performed.	
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рH		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Toluene	Y2	MS/MSD RPD outside acceptance criteria
		Tribromomethane	Y2	MS/MSD RPD outside acceptance criteria
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPI outside acceptance criteria
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y2	MS/MSD RPD outside acceptance criteria
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Trichloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		Dibromochloromethane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 4.89. Rad error is 4.86.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.88. Rad error is 3.88.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 0.355. Rad error is 0.353.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 3.03. Rad error is 3.01.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPI 6.16. Rad error is 6.16.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.967. Rad error is 0.965.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 139. Rad error is 139.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1UG3-19	Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG3-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.
		C-73		

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1UG3-19	Zinc		Analysis of constituent not required and not performed.
		Chlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Toluene	Y2	MS/MSD RPD outside acceptance criteria
		Tribromomethane	Y2	MS/MSD RPD outside acceptance criteria
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RI outside acceptance criteria
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y2	MS/MSD RPD outside acceptance criteria
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Trichloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		Dibromochloromethane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG3-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
				Analysis of constituent not required and not performed.
		Vanadium		randigolo of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2UG3-19	Zinc		Analysis of constituent not required and not performed.
		Chlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Toluene	Y2	MS/MSD RPD outside acceptance criteria
		Tribromomethane	Y2	MS/MSD RPD outside acceptance criteria
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD R outside acceptance criteria
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y2	MS/MSD RPD outside acceptance criteria
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Trichloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		Dibromochloromethane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3UG3-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG3-19	Zinc		Analysis of constituent not required and not performed.
		Chlorobromomethane	L	LCS or LCSD recovery outside of control limits
		Methyl bromide	L	LCS or LCSD recovery outside of control limits
		Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria
		1,1-Dichloroethylene	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	LY1	LCS or LCSD recovery outside of control limits AND MS/MSI recovery outside acceptance criteria
		trans-1,2-Dichloroethene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

	Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4UG3-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flog	Description
0000-0000 QC	TB4UG3-19	Zinc	Flag	Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254 PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
				· · ·

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4795 MW361	MW361DUG3-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	Ν	Sample spike (MS/MSD) recovery not within control limits
		Chlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Toluene	Y2	MS/MSD RPD outside acceptance criteria
		Tribromomethane	Y2	MS/MSD RPD outside acceptance criteria
		Methyl bromide	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RP outside acceptance criteria
		Methyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y2	MS/MSD RPD outside acceptance criteria
		Vinyl chloride	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Trichloroethene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		Dibromochloromethane	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 5.31. Rad error is 5.29.
		Gross beta		TPU is 10.2. Rad error is 8.91.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.358. Rad error is 0.356.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 2.12. Rad error is 2.12.
		Technetium-99		TPU is 8.39. Rad error is 7.71.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP 0.982. Rad error is 0.977.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 139. Rad error is 139.
		Total Organic Halides		See resample.

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-47	98	8004-479	19	8004-098	31	8004-4800)
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, etc	2.)	357		358		359		360	
Sample Sequen	ce #				3		3		3		3	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		5/28/2019 0	9:00	5/28/2019 ()9:38	5/28/2019	09:17	5/28/2019 07	:55
Duplicate ("Y	" or "N") ²				N		N		N		Ν	
Split ("Y" or	· "N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW357UG3	3-19R	MW358UG	3-19R	MW359UG3-	19R	MW360UG3-1	9R
Laboratory Sa	mple ID Number (if applicable)				4804040	001	4804040	02	48040400)3	480404004	
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e Organics Analysis			6/6/2019		6/6/2019		6/6/2019		6/6/2019	
Gradient with	respect to Monitored Unit (UP, DC	WN, SIDE, UNKNOWN)			DOWN		DOWN		DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.87		29.87		29.87		29.86	
s0145	Specific Conductance	т	µMH0/cm	Field	427		488		224		411	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798	3	8004-4799	9	8004-0981		8004-4800)
Facility's Lo	ocal Well or Spring Number (e.g., MW	1-1,	MW-2, BLANK-	F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	331.19		331.2		343.08		331.22	
N238	Dissolved Oxygen	т	mg/L	Field	3.19		1.79		3.29		1.19	
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рН	т	Units	Field	6.16		6.15		5.95		6.27	
NS215	Eh	т	mV	Field	484		171		486		421	
S0907	Temperature	т	°c	Field	17.22		18.22		17		18	
7429-90-5	Aluminum	т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	т	mg/L	6020		*		*		*		*
7440-39-3	Barium	т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	т	mg/L	6020		*		*		*		*
7440-42-8	Boron	т	mg/L	6020		*		*		*		*
7440-43-9	Cadmium	т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	т	mg/L	6020		*		*		*		*
7440-47-3	Chromium	т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	т	mg/L	6020		*		*		*		*
7440-50-8	Copper	т	mg/L	6020		*		*		*		*
7439-89-6	Iron	т	mg/L	6020		*		*		*		*
7439-92-1	Lead	т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	т	mg/L	6020		*		*		*		*
7439-96-5	Manganese	т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-480)0
Facility's Loc	al Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418		*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0		*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*		*		*		*
10028-17-8	Tritium	т	pCi/L	906.0		*		*		*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*		*		*		*
S0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
S0586	Total Organic Halides	т	mg/L	9020	0.00646	J	0.0071	BJ	<0.01		0.00726	BJ

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1,	, Facility Well/Spring Number				8004-47	95	8004-098	6	8004-479	96	8004-4797	7
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, etc	.)	361		362		363		364	
Sample Sequen	ce #				3		3		3		3	
If sample is a :	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		5/28/2019 0	8:37	5/28/2019 (08:18	5/28/2019 ⁻	10:02	5/28/2019 10):42
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				Ν		N		N		N	
Facility Samp	le ID Number (if applicable)				MW361UG3	3-19R	MW362UG	3-19R	MW363UG3-	19R	MW364UG3-1	9R
Laboratory Sa	mple ID Number (if applicable)				4804040	006	4804040	07	48040400)8	480404009)
Date of Analy:	sis (Month/Day/Year) For <u>Volatile</u>	e Organics Analysis			6/7/2019		6/5/2019		6/5/2019		6/7/2019	
Gradient with	respect to Monitored Unit (UP, DC	WN, SIDE, UNKNOWN)			DOWN		DOWN		DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.86		29.86		29.86		29.86	
S0145	Specific Conductance	т	µMH0/cm	Field	481		731		409		479	

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

	AKGWA NUMBER1	, Facility Well/Spring Number				8004-4795	5	8004-0986	6	8004-4796		8004-4797	,
	Facility's Lo	ocal Well or Spring Number (e.g., M	V-1,	MW-2, BLANK-	F, etc.)	361		362		363		364	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	S0906	Static Water Level Elevation	т	Ft. MSL	Field	331.22		342.26		331.14		330.38	
	N238	Dissolved Oxygen	т	mg/L	Field	2.97		5.14		0.69		1.94	
	S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
	s0296	рН	т	Units	Field	6.1		7.09		6.21		6.08	
	NS215	Eh	т	mV	Field	493		459		322		391	
	S0907	Temperature	т	°c	Field	16		16.22		18.56		17.44	
C-86	7429-90-5	Aluminum	т	mg/L	6020		*		*		*		*
6	7440-36-0	Antimony	т	mg/L	6020		*		*		*		*
	7440-38-2	Arsenic	т	mg/L	6020		*		*		*		*
	7440-39-3	Barium	т	mg/L	6020		*		*		*		*
	7440-41-7	Beryllium	т	mg/L	6020		*		*		*		*
	7440-42-8	Boron	т	mg/L	6020		*		*		*		*
	7440-43-9	Cadmium	т	mg/L	6020		*		*		*		*
	7440-70-2	Calcium	т	mg/L	6020		*		*		*		*
	7440-47-3	Chromium	т	mg/L	6020		*		*		*		*
	7440-48-4	Cobalt	т	mg/L	6020		*		*		*		*
	7440-50-8	Copper	т	mg/L	6020		*		*		*		*
	7439-89-6	Iron	т	mg/L	6020		*		*		*		*
	7439-92-1	Lead	т	mg/L	6020		*		*		*		*
	7439-95-4	Magnesium	т	mg/L	6020		*		*		*		*
	7439-96-5	Manganese	т	mg/L	6020		*		*		*		*
	7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479)7
Facility's Loc	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)				361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418		*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0		*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*		*		*		*
10028-17-8	Tritium	т	pCi/L	906.0		*		*		*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*		*		*		*
S0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
S0586	Total Organic Halides	т	mg/L	9020	0.00624	BJ	0.028		0.0121		0.0137	В

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER¹, Facility Well/Spring Number 8004-0984 8004-0982 8004-4793 8004-0983 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 365 366 367 368 Sample Sequence # 3 3 3 3 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA NA NA NA 5/28/2019 10:20 5/28/2019 12:07 5/28/2019 12:46 5/28/2019 12:25 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν Ν Ν Split ("Y" or "N")³ Ν Ν Ν Ν MW367UG3-19R Facility Sample ID Number (if applicable) MW365UG3-19R MW366UG3-19R MW368UG3-19R 480404011 480404012 480404013 480404010 Laboratory Sample ID Number (if applicable) 6/6/2019 6/7/2019 6/5/2019 5/30/2019 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis DOWN DOWN DOWN DOWN Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) CAS RN⁴ CONSTITUENT т Unit METHOD DETECTED F DETECTED DETECTED DETECTED F F F D OF VALUE L VALUE L VALUE L VALUE L 5 MEASURE OR А OR А OR А OR А POL⁶ POL⁶ POL⁶ POL⁶ G G G G S^7 s s s * * 24959-67-9 Bromide т mg/L 9056 * 16887-00-6 т Chloride(s) 9056 mg/L * * * 16984-48-8 Fluoride т 9056 mg/L * * * * s0595- -Nitrate & Nitrite т ma/L 9056 * * * 14808-79-8 т Sulfate ma/L 9056 29.86 29.86 29.86 29.86 NS1894 Barometric Pressure Reading T Inches/Hg Field 417 491 438 567 S0145- т Specific Conductance µMH0/cm Field

 1 AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

 3 Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-0984	1	8004-0982	2	8004-4793		8004-0983	3
Facility's Lo	cal Well or Spring Number (e.g., Mw	-1, 1	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
S0906	Static Water Level Elevation	т	Ft. MSL	Field	338.75		331.34		331.35		350.18	
N238	Dissolved Oxygen	т	mg/L	Field	1.7		1.6		0.49		0.58	
S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
S0296	рН	т	Units	Field	6.25		6.13		6		6.57	
NS215	Eh	т	mV	Field	360		395		361		355	
S0907	Temperature	т	°c	Field	18.67		20.11		19.94		19.39	
7429-90-5	Aluminum	т	mg/L	6020		*		*		*		*
7440-36-0	Antimony	т	mg/L	6020		*		*		*		*
7440-38-2	Arsenic	т	mg/L	6020		*		*		*		*
7440-39-3	Barium	т	mg/L	6020		*		*		*		*
7440-41-7	Beryllium	т	mg/L	6020		*		*		*		*
7440-42-8	Boron	т	mg/L	6020		*		*		*		*
7440-43-9	Cadmium	т	mg/L	6020		*		*		*		*
7440-70-2	Calcium	т	mg/L	6020		*		*		*		*
7440-47-3	Chromium	т	mg/L	6020		*		*		*		*
7440-48-4	Cobalt	т	mg/L	6020		*		*		*		*
7440-50-8	Copper	т	mg/L	6020		*		*		*		*
7439-89-6	Iron	т	mg/L	6020		*		*		*		*
7439-92-1	Lead	т	mg/L	6020		*		*		*		*
7439-95-4	Magnesium	т	mg/L	6020		*		*		*		*
7439-96-5	Manganese	т	mg/L	6020		*		*		*		*
7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982		8004-479	3	8004-098	33
Facility's Loc	al Well or Spring Number (e.g., 1	MW-1	1, MW-2, et		365		366		367		368	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418		*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0		*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*		*		*		*
10028-17-8	Tritium	т	pCi/L	906.0		*		*		*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*		*		*		*
S0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020	0.0134		0.015	В	0.00872	J	0.00402	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-OUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER¹, Facility Well/Spring Number 8004-4820 8004-4818 8004-4819 8004-4808 Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.) 369 370 371 372 Sample Sequence # 3 3 3 3 If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment NA NA NA NA 5/28/2019 13:31 5/28/2019 14:07 5/28/2019 13:48 5/28/2019 14:29 Sample Date and Time (Month/Day/Year hour: minutes) Duplicate ("Y" or "N")² Ν Ν Ν Ν Split ("Y" or "N")³ N Ν Ν Ν MW371UG3-19R Facility Sample ID Number (if applicable) MW369UG3-19R MW370UG3-19R MW372UG3-19R 480404015 480404016 480404017 480404014 Laboratory Sample ID Number (if applicable) 5/30/2019 6/7/2019 5/31/2019 5/31/2019 Date of Analysis (Month/Day/Year) For Volatile Organics Analysis UP UP UP UP Gradient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN) CAS RN⁴ CONSTITUENT т Unit METHOD DETECTED F DETECTED DETECTED DETECTED F F F D OF VALUE L VALUE L VALUE L VALUE L 5 MEASURE OR А OR А OR А OR А POL⁶ POL⁶ POL⁶ POL⁶ G G G G S^7 s s s * * 24959-67-9 Bromide т mg/L 9056 * 16887-00-6 Chloride(s) т 9056 mg/L * * * 16984-48-8 Fluoride т 9056 mg/L * * * * s0595- -Nitrate & Nitrite т ma/L 9056 * * * 14808-79-8 т Sulfate ma/L 9056 29.84 29.81 29.84 29.81 NS1894 Barometric Pressure Reading T Inches/Hg Field 387 436 500 628 S0145- т Specific Conductance µMH0/cm Field

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

	AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-4820)	8004-4818	3	8004-4819		8004-4808	3
	Facility's Lo	ocal Well or Spring Number (e.g., M	N−1,	MW-2, BLANK-	F, etc.)	369		370		371		372	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
	s0906	Static Water Level Elevation	т	Ft. MSL	Field	332.7		332.67		347.27		332.76	
	N238	Dissolved Oxygen	т	mg/L	Field	3.59		3.46		5.2		2.13	
	S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
	S0296	рн	т	Units	Field	6.4		6.11		6.52		6.22	
	NS215	Eh	т	mV	Field	309		400		363		400	
	S0907	Temperature	т	°C	Field	18.89		20.11		19.94		20.44	
C 0 7	7429-90-5	Aluminum	т	mg/L	6020		*		*		*		*
5	7440-36-0	Antimony	т	mg/L	6020		*		*		*		*
	7440-38-2	Arsenic	т	mg/L	6020		*		*		*		*
	7440-39-3	Barium	т	mg/L	6020		*		*		*		*
	7440-41-7	Beryllium	т	mg/L	6020		*		*		*		*
	7440-42-8	Boron	т	mg/L	6020		*		*		*		*
	7440-43-9	Cadmium	т	mg/L	6020		*		*		*		*
	7440-70-2	Calcium	т	mg/L	6020		*		*		*		*
	7440-47-3	Chromium	т	mg/L	6020		*		*		*		*
	7440-48-4	Cobalt	т	mg/L	6020		*		*		*		*
	7440-50-8	Copper	т	mg/L	6020		*		*		*		*
	7439-89-6	Iron	т	mg/L	6020		*		*		*		*
	7439-92-1	Lead	т	mg/L	6020		*		*		*		*
	7439-95-4	Magnesium	т	mg/L	6020		*		*		*		*
	7439-96-5	Manganese	т	mg/L	6020		*		*		*		*
	7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480	8
Facility's Loc	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)				369		370		371		372	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418		*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0		*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*		*		*		*
10028-17-8	Tritium	т	pCi/L	906.0		*		*		*		*
s0130	Chemical Oxygen Demand	т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0		*		*		*		*
s0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020	0.0143		0.00514	BJ	0.0041	J	0.0075	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

Frankfort, KY 40601 (502)564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1	, Facility Well/Spring Number				8004-47	92	8004-099	90	8004-098	35	8004-479	5
Facility's Lo	cal Well or Spring Number (e.g., M	1W-1	L, MW-2, etc	2.)	373		374		375		361	
Sample Sequen	ce #				3		3		3		4	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		5/28/2019 1	5:09	5/28/2019 ⁻	14:47	5/28/2019 ⁻	13:09	5/28/2019 08	3:37
Duplicate ("Y	" or "N") ²				N		N		N		Y	
Split ("Y" or	"N") ³				Ν		N		N		Ν	
Facility Samp	le ID Number (if applicable)				MW373UG	3-19R	MW374UG	3-19R	MW375UG3-	19R	MW361DUG3	-19R
Laboratory Sa	mple ID Number (if applicable)				4804040	018	4804040)19	48040402	20	480404005	5
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	e 01	rganics Anal	ysis	6/7/20 ⁻	19	5/31/20	19	6/7/2019)	6/6/2019	
Gradient with	respect to Monitored Unit (UP, DC	WN,	, SIDE, UNKN	IOWN)	UP		UP		SIDE		DOWN	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S ⁷	DETECTED VALUE OR FQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L G S
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.8		29.81		29.84			*
S0145	Specific Conductance	т	µMH0/cm	Field	767		671		344			*

¹AKGWA # is 0000-0000 for any type of blank.

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page." STANDARD FLAGS:

* = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis
 of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

	AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-4792	2	8004-0990)	8004-0985		8004-4795	;
İ	Facility's L	ocal Well or Spring Number (e.g., M	W-1,	MW-2, BLANK-	F, etc.)	373		374		375		361	
	CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
ľ	S0906	Static Water Level Elevation	т	Ft. MSL	Field	332.76		342.93		347.38			*
ľ	N238	Dissolved Oxygen	т	mg/L	Field	1.28		1.49		1.05			*
Ì	S0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
Ì	S0296	рн	т	Units	Field	6.21		6.78		6.47			*
Î	NS215	Eh	т	mV	Field	374		355		352			*
Î	S0907	Temperature	т	°C	Field	18.72		20.39		21.39			*
C-02	7429-90-5	Aluminum	т	mg/L	6020		*		*		*		*
א	7440-36-0	Antimony	т	mg/L	6020		*		*		*		*
	7440-38-2	Arsenic	т	mg/L	6020		*		*		*		*
	7440-39-3	Barium	т	mg/L	6020		*		*		*		*
	7440-41-7	Beryllium	т	mg/L	6020		*		*		*		*
	7440-42-8	Boron	т	mg/L	6020		*		*		*		*
	7440-43-9	Cadmium	т	mg/L	6020		*		*		*		*
	7440-70-2	Calcium	т	mg/L	6020		*		*		*		*
	7440-47-3	Chromium	т	mg/L	6020		*		*		*		*
	7440-48-4	Cobalt	т	mg/L	6020		*		*		*		*
	7440-50-8	Copper	т	mg/L	6020		*		*		*		*
	7439-89-6	Iron	т	mg/L	6020		*		*		*		*
	7439-92-1	Lead	т	mg/L	6020		*		*		*		*
	7439-95-4	Magnesium	т	mg/L	6020		*		*		*		*
	7439-96-5	Manganese	т	mg/L	6020		*		*		*		*
	7439-97-6	Mercury	т	mg/L	7470		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792		8004-0990		8004-098	5	8004-479	95
Facility's Loc	Facility's Local Well or Spring Number (e.g., MW-1, M				373		374		375		361	
CAS RN ⁴	CONSTITUENT	Т Д 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L G S						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310		*		*		*		*
12587-47-2	Gross Beta	т	pCi/L	9310		*		*		*		*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*		*		*		*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*		*		*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0		*		*		*		*
S0268	Total Organic Carbon	т	mg/L	9060		*		*		*		*
S0586	Total Organic Halides	Т	mg/L	9020	0.0105	В	0.0135		0.016	В	0.00846	BJ

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent Fla	g Description
004-4798 MW357	MW357UG3-19R	Bromide	Analysis of constituent not required and not performed.
		Chloride	Analysis of constituent not required and not performed.
		Fluoride	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	Analysis of constituent not required and not performed.
		Sulfate	Analysis of constituent not required and not performed.
		Total Dissolved Solids	Analysis of constituent not required and not performed.
		Aluminum	Analysis of constituent not required and not performed.
		Antimony	Analysis of constituent not required and not performed.
		Arsenic	Analysis of constituent not required and not performed.
		Barium	Analysis of constituent not required and not performed.
		Beryllium	Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed.
		Cadmium	Analysis of constituent not required and not performed.
		Calcium	Analysis of constituent not required and not performed.
		Chromium	Analysis of constituent not required and not performed.
		Cobalt	Analysis of constituent not required and not performed.
		Copper	Analysis of constituent not required and not performed.
		Iron	Analysis of constituent not required and not performed.
		Lead	Analysis of constituent not required and not performed.
		Magnesium	Analysis of constituent not required and not performed.
		Manganese	Analysis of constituent not required and not performed.
		Mercury	Analysis of constituent not required and not performed.
		PCB-1254	Analysis of constituent not required and not performed.
		PCB-1260	Analysis of constituent not required and not performed.
		PCB-1268	Analysis of constituent not required and not performed.
		Gross Alpha	Analysis of constituent not required and not performed.
		Gross Beta	Analysis of constituent not required and not performed.
		lodine-131	Analysis of constituent not required and not performed.
		Radium-226	Analysis of constituent not required and not performed.
		Strontium-90	Analysis of constituent not required and not performed.
		Technetium-99	Analysis of constituent not required and not performed.
		Thorium-230	Analysis of constituent not required and not performed.
		Tritium	Analysis of constituent not required and not performed.
		Chemical Oxygen Demand	Analysis of constituent not required and not performed.
		Cyanide	Analysis of constituent not required and not performed.
		lodide	Analysis of constituent not required and not performed.
		Total Organic Carbon	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent Flag	g Description
004-4799 MW358	MW358UG3-19R	Bromide	Analysis of constituent not required and not performed.
		Chloride	Analysis of constituent not required and not performed.
		Fluoride	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	Analysis of constituent not required and not performed.
		Sulfate	Analysis of constituent not required and not performed.
		Total Dissolved Solids	Analysis of constituent not required and not performed.
		Aluminum	Analysis of constituent not required and not performed.
		Antimony	Analysis of constituent not required and not performed.
		Arsenic	Analysis of constituent not required and not performed.
		Barium	Analysis of constituent not required and not performed.
		Beryllium	Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed.
		Cadmium	Analysis of constituent not required and not performed.
		Calcium	Analysis of constituent not required and not performed.
		Chromium	Analysis of constituent not required and not performed.
		Cobalt	Analysis of constituent not required and not performed.
		Copper	Analysis of constituent not required and not performed.
		Iron	Analysis of constituent not required and not performed.
		Lead	Analysis of constituent not required and not performed.
		Magnesium	Analysis of constituent not required and not performed.
		Manganese	Analysis of constituent not required and not performed.
		Mercury	Analysis of constituent not required and not performed.
		PCB-1254	Analysis of constituent not required and not performed.
		PCB-1260	Analysis of constituent not required and not performed.
		PCB-1268	Analysis of constituent not required and not performed.
		Gross Alpha	Analysis of constituent not required and not performed.
		Gross Beta	Analysis of constituent not required and not performed.
		lodine-131	Analysis of constituent not required and not performed.
		Radium-226	Analysis of constituent not required and not performed.
		Strontium-90	Analysis of constituent not required and not performed.
		Technetium-99	Analysis of constituent not required and not performed.
		Thorium-230	Analysis of constituent not required and not performed.
		Tritium	Analysis of constituent not required and not performed.
		Chemical Oxygen Demand	Analysis of constituent not required and not performed.
		Cyanide	Analysis of constituent not required and not performed.
		lodide	Analysis of constituent not required and not performed.
		Total Organic Carbon	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitor Point	ing	Facility Sample ID	Constituent Flag	Description
004-0981	MW359	MW359UG3-19R	Bromide	Analysis of constituent not required and not performed.
			Chloride	Analysis of constituent not required and not performed.
			Fluoride	Analysis of constituent not required and not performed.
			Nitrate & Nitrite	Analysis of constituent not required and not performed.
			Sulfate	Analysis of constituent not required and not performed.
			Total Dissolved Solids	Analysis of constituent not required and not performed.
			Aluminum	Analysis of constituent not required and not performed.
			Antimony	Analysis of constituent not required and not performed.
			Arsenic	Analysis of constituent not required and not performed.
			Barium	Analysis of constituent not required and not performed.
			Beryllium	Analysis of constituent not required and not performed.
			Boron	Analysis of constituent not required and not performed.
			Cadmium	Analysis of constituent not required and not performed.
			Calcium	Analysis of constituent not required and not performed.
			Chromium	Analysis of constituent not required and not performed.
			Cobalt	Analysis of constituent not required and not performed.
			Copper	Analysis of constituent not required and not performed.
			Iron	Analysis of constituent not required and not performed.
			Lead	Analysis of constituent not required and not performed.
			Magnesium	Analysis of constituent not required and not performed.
			Manganese	Analysis of constituent not required and not performed.
			Mercury	Analysis of constituent not required and not performed.
			PCB-1254	Analysis of constituent not required and not performed.
			PCB-1260	Analysis of constituent not required and not performed.
			PCB-1268	Analysis of constituent not required and not performed.
			Gross Alpha	Analysis of constituent not required and not performed.
			Gross Beta	Analysis of constituent not required and not performed.
			lodine-131	Analysis of constituent not required and not performed.
			Radium-226	Analysis of constituent not required and not performed.
			Strontium-90	Analysis of constituent not required and not performed.
			Technetium-99	Analysis of constituent not required and not performed.
			Thorium-230	Analysis of constituent not required and not performed.
			Tritium	Analysis of constituent not required and not performed.
			Chemical Oxygen Demand	Analysis of constituent not required and not performed.
			Cyanide	Analysis of constituent not required and not performed.
			lodide	Analysis of constituent not required and not performed.
			Total Organic Carbon	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent Flag	Description
004-4800 MW360	MW360UG3-19R	Bromide	Analysis of constituent not required and not performed.
		Chloride	Analysis of constituent not required and not performed.
		Fluoride	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	Analysis of constituent not required and not performed.
		Sulfate	Analysis of constituent not required and not performed.
		Total Dissolved Solids	Analysis of constituent not required and not performed.
		Aluminum	Analysis of constituent not required and not performed.
		Antimony	Analysis of constituent not required and not performed.
		Arsenic	Analysis of constituent not required and not performed.
		Barium	Analysis of constituent not required and not performed.
		Beryllium	Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed.
		Cadmium	Analysis of constituent not required and not performed.
		Calcium	Analysis of constituent not required and not performed.
		Chromium	Analysis of constituent not required and not performed.
		Cobalt	Analysis of constituent not required and not performed.
		Copper	Analysis of constituent not required and not performed.
		Iron	Analysis of constituent not required and not performed.
		Lead	Analysis of constituent not required and not performed.
		Magnesium	Analysis of constituent not required and not performed.
		Manganese	Analysis of constituent not required and not performed.
		Mercury	Analysis of constituent not required and not performed.
		PCB-1254	Analysis of constituent not required and not performed.
		PCB-1260	Analysis of constituent not required and not performed.
		PCB-1268	Analysis of constituent not required and not performed.
		Gross Alpha	Analysis of constituent not required and not performed.
		Gross Beta	Analysis of constituent not required and not performed.
		lodine-131	Analysis of constituent not required and not performed.
		Radium-226	Analysis of constituent not required and not performed.
		Strontium-90	Analysis of constituent not required and not performed.
		Technetium-99	Analysis of constituent not required and not performed.
		Thorium-230	Analysis of constituent not required and not performed.
		Tritium	Analysis of constituent not required and not performed.
		Chemical Oxygen Demand	Analysis of constituent not required and not performed.
		Cyanide	Analysis of constituent not required and not performed.
		lodide	Analysis of constituent not required and not performed.
		Total Organic Carbon	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent Flag	g Description
3004-4795 MW361	MW361UG3-19R	Bromide	Analysis of constituent not required and not performed.
		Chloride	Analysis of constituent not required and not performed.
		Fluoride	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	Analysis of constituent not required and not performed.
		Sulfate	Analysis of constituent not required and not performed.
		Total Dissolved Solids	Analysis of constituent not required and not performed.
		Aluminum	Analysis of constituent not required and not performed.
		Antimony	Analysis of constituent not required and not performed.
		Arsenic	Analysis of constituent not required and not performed.
		Barium	Analysis of constituent not required and not performed.
		Beryllium	Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed.
		Cadmium	Analysis of constituent not required and not performed.
		Calcium	Analysis of constituent not required and not performed.
		Chromium	Analysis of constituent not required and not performed.
		Cobalt	Analysis of constituent not required and not performed.
		Copper	Analysis of constituent not required and not performed.
		Iron	Analysis of constituent not required and not performed.
		Lead	Analysis of constituent not required and not performed.
		Magnesium	Analysis of constituent not required and not performed.
		Manganese	Analysis of constituent not required and not performed.
		Mercury	Analysis of constituent not required and not performed.
		PCB-1254	Analysis of constituent not required and not performed.
		PCB-1260	Analysis of constituent not required and not performed.
		PCB-1268	Analysis of constituent not required and not performed.
		Gross Alpha	Analysis of constituent not required and not performed.
		Gross Beta	Analysis of constituent not required and not performed.
		lodine-131	Analysis of constituent not required and not performed.
		Radium-226	Analysis of constituent not required and not performed.
		Strontium-90	Analysis of constituent not required and not performed.
		Technetium-99	Analysis of constituent not required and not performed.
		Thorium-230	Analysis of constituent not required and not performed.
		Tritium	Analysis of constituent not required and not performed.
		Chemical Oxygen Demand	Analysis of constituent not required and not performed.
		Cyanide	Analysis of constituent not required and not performed.
		lodide	Analysis of constituent not required and not performed.
		Total Organic Carbon	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent Fla	g Description
004-0986 MW362	MW362UG3-19R	Bromide	Analysis of constituent not required and not performed.
		Chloride	Analysis of constituent not required and not performed.
		Fluoride	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	Analysis of constituent not required and not performed.
		Sulfate	Analysis of constituent not required and not performed.
		Total Dissolved Solids	Analysis of constituent not required and not performed.
		Aluminum	Analysis of constituent not required and not performed.
		Antimony	Analysis of constituent not required and not performed.
		Arsenic	Analysis of constituent not required and not performed.
		Barium	Analysis of constituent not required and not performed.
		Beryllium	Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed.
		Cadmium	Analysis of constituent not required and not performed.
		Calcium	Analysis of constituent not required and not performed.
		Chromium	Analysis of constituent not required and not performed.
		Cobalt	Analysis of constituent not required and not performed.
		Copper	Analysis of constituent not required and not performed.
		Iron	Analysis of constituent not required and not performed.
		Lead	Analysis of constituent not required and not performed.
		Magnesium	Analysis of constituent not required and not performed.
		Manganese	Analysis of constituent not required and not performed.
		Mercury	Analysis of constituent not required and not performed.
		PCB-1254	Analysis of constituent not required and not performed.
		PCB-1260	Analysis of constituent not required and not performed.
		PCB-1268	Analysis of constituent not required and not performed.
		Gross Alpha	Analysis of constituent not required and not performed.
		Gross Beta	Analysis of constituent not required and not performed.
		lodine-131	Analysis of constituent not required and not performed.
		Radium-226	Analysis of constituent not required and not performed.
		Strontium-90	Analysis of constituent not required and not performed.
		Technetium-99	Analysis of constituent not required and not performed.
		Thorium-230	Analysis of constituent not required and not performed.
		Tritium	Analysis of constituent not required and not performed.
		Chemical Oxygen Demand	Analysis of constituent not required and not performed.
		Cyanide	Analysis of constituent not required and not performed.
		lodide	Analysis of constituent not required and not performed.
		Total Organic Carbon	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent Flag	Description
004-4796 MW363	MW363UG3-19R	Bromide	Analysis of constituent not required and not performed.
		Chloride	Analysis of constituent not required and not performed.
		Fluoride	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	Analysis of constituent not required and not performed.
		Sulfate	Analysis of constituent not required and not performed.
		Total Dissolved Solids	Analysis of constituent not required and not performed.
		Aluminum	Analysis of constituent not required and not performed.
		Antimony	Analysis of constituent not required and not performed.
		Arsenic	Analysis of constituent not required and not performed.
		Barium	Analysis of constituent not required and not performed.
		Beryllium	Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed.
		Cadmium	Analysis of constituent not required and not performed.
		Calcium	Analysis of constituent not required and not performed.
		Chromium	Analysis of constituent not required and not performed.
		Cobalt	Analysis of constituent not required and not performed.
		Copper	Analysis of constituent not required and not performed.
		Iron	Analysis of constituent not required and not performed.
		Lead	Analysis of constituent not required and not performed.
		Magnesium	Analysis of constituent not required and not performed.
		Manganese	Analysis of constituent not required and not performed.
		Mercury	Analysis of constituent not required and not performed.
		PCB-1254	Analysis of constituent not required and not performed.
		PCB-1260	Analysis of constituent not required and not performed.
		PCB-1268	Analysis of constituent not required and not performed.
		Gross Alpha	Analysis of constituent not required and not performed.
		Gross Beta	Analysis of constituent not required and not performed.
		lodine-131	Analysis of constituent not required and not performed.
		Radium-226	Analysis of constituent not required and not performed.
		Strontium-90	Analysis of constituent not required and not performed.
		Technetium-99	Analysis of constituent not required and not performed.
		Thorium-230	Analysis of constituent not required and not performed.
		Tritium	Analysis of constituent not required and not performed.
		Chemical Oxygen Demand	Analysis of constituent not required and not performed.
		Cyanide	Analysis of constituent not required and not performed.
		lodide	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitori Point	ing	Facility Sample ID	Constituent Fla	g Description
004-4797	MW364	MW364UG3-19R	Bromide	Analysis of constituent not required and not performed.
			Chloride	Analysis of constituent not required and not performed.
			Fluoride	Analysis of constituent not required and not performed.
			Nitrate & Nitrite	Analysis of constituent not required and not performed.
			Sulfate	Analysis of constituent not required and not performed.
			Total Dissolved Solids	Analysis of constituent not required and not performed.
			Aluminum	Analysis of constituent not required and not performed.
			Antimony	Analysis of constituent not required and not performed.
			Arsenic	Analysis of constituent not required and not performed.
			Barium	Analysis of constituent not required and not performed.
			Beryllium	Analysis of constituent not required and not performed.
			Boron	Analysis of constituent not required and not performed.
			Cadmium	Analysis of constituent not required and not performed.
			Calcium	Analysis of constituent not required and not performed.
			Chromium	Analysis of constituent not required and not performed.
			Cobalt	Analysis of constituent not required and not performed.
			Copper	Analysis of constituent not required and not performed.
			Iron	Analysis of constituent not required and not performed.
			Lead	Analysis of constituent not required and not performed.
			Magnesium	Analysis of constituent not required and not performed.
			Manganese	Analysis of constituent not required and not performed.
			Mercury	Analysis of constituent not required and not performed.
			PCB-1254	Analysis of constituent not required and not performed.
			PCB-1260	Analysis of constituent not required and not performed.
			PCB-1268	Analysis of constituent not required and not performed.
			Gross Alpha	Analysis of constituent not required and not performed.
			Gross Beta	Analysis of constituent not required and not performed.
			lodine-131	Analysis of constituent not required and not performed.
			Radium-226	Analysis of constituent not required and not performed.
			Strontium-90	Analysis of constituent not required and not performed.
			Technetium-99	Analysis of constituent not required and not performed.
			Thorium-230	Analysis of constituent not required and not performed.
			Tritium	Analysis of constituent not required and not performed.
			Chemical Oxygen Demand	Analysis of constituent not required and not performed.
			Cyanide	Analysis of constituent not required and not performed.
			lodide	Analysis of constituent not required and not performed.
			Total Organic Carbon	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent Flag	Description
004-0984 MW364	MW365UG3-19R	Bromide	Analysis of constituent not required and not performed.
		Chloride	Analysis of constituent not required and not performed.
		Fluoride	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	Analysis of constituent not required and not performed.
		Sulfate	Analysis of constituent not required and not performed.
		Total Dissolved Solids	Analysis of constituent not required and not performed.
		Aluminum	Analysis of constituent not required and not performed.
		Antimony	Analysis of constituent not required and not performed.
		Arsenic	Analysis of constituent not required and not performed.
		Barium	Analysis of constituent not required and not performed.
		Beryllium	Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed.
		Cadmium	Analysis of constituent not required and not performed.
		Calcium	Analysis of constituent not required and not performed.
		Chromium	Analysis of constituent not required and not performed.
		Cobalt	Analysis of constituent not required and not performed.
		Copper	Analysis of constituent not required and not performed.
		Iron	Analysis of constituent not required and not performed.
		Lead	Analysis of constituent not required and not performed.
		Magnesium	Analysis of constituent not required and not performed.
		Manganese	Analysis of constituent not required and not performed.
		Mercury	Analysis of constituent not required and not performed.
		PCB-1254	Analysis of constituent not required and not performed.
		PCB-1260	Analysis of constituent not required and not performed.
		PCB-1268	Analysis of constituent not required and not performed.
		Gross Alpha	Analysis of constituent not required and not performed.
		Gross Beta	Analysis of constituent not required and not performed.
		lodine-131	Analysis of constituent not required and not performed.
		Radium-226	Analysis of constituent not required and not performed.
		Strontium-90	Analysis of constituent not required and not performed.
		Technetium-99	Analysis of constituent not required and not performed.
		Thorium-230	Analysis of constituent not required and not performed.
		Tritium	Analysis of constituent not required and not performed.
		Chemical Oxygen Demand	Analysis of constituent not required and not performed.
		Cyanide	Analysis of constituent not required and not performed.
		lodide	Analysis of constituent not required and not performed.
		Total Organic Carbon	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent Flag	Description
004-0982 MW366	MW366UG3-19R	Bromide	Analysis of constituent not required and not performed.
		Chloride	Analysis of constituent not required and not performed.
		Fluoride	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	Analysis of constituent not required and not performed.
		Sulfate	Analysis of constituent not required and not performed.
		Total Dissolved Solids	Analysis of constituent not required and not performed.
		Aluminum	Analysis of constituent not required and not performed.
		Antimony	Analysis of constituent not required and not performed.
		Arsenic	Analysis of constituent not required and not performed.
		Barium	Analysis of constituent not required and not performed.
		Beryllium	Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed.
		Cadmium	Analysis of constituent not required and not performed.
		Calcium	Analysis of constituent not required and not performed.
		Chromium	Analysis of constituent not required and not performed.
		Cobalt	Analysis of constituent not required and not performed.
		Copper	Analysis of constituent not required and not performed.
		Iron	Analysis of constituent not required and not performed.
		Lead	Analysis of constituent not required and not performed.
		Magnesium	Analysis of constituent not required and not performed.
		Manganese	Analysis of constituent not required and not performed.
		Mercury	Analysis of constituent not required and not performed.
		PCB-1254	Analysis of constituent not required and not performed.
		PCB-1260	Analysis of constituent not required and not performed.
		PCB-1268	Analysis of constituent not required and not performed.
		Gross Alpha	Analysis of constituent not required and not performed.
		Gross Beta	Analysis of constituent not required and not performed.
		lodine-131	Analysis of constituent not required and not performed.
		Radium-226	Analysis of constituent not required and not performed.
		Strontium-90	Analysis of constituent not required and not performed.
		Technetium-99	Analysis of constituent not required and not performed.
		Thorium-230	Analysis of constituent not required and not performed.
		Tritium	Analysis of constituent not required and not performed.
		Chemical Oxygen Demand	Analysis of constituent not required and not performed.
		Cyanide	Analysis of constituent not required and not performed.
		lodide	Analysis of constituent not required and not performed.
		Total Organic Carbon	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent Fla	g Description
004-4793 MW367		Bromide	Analysis of constituent not required and not performed.
		Chloride	Analysis of constituent not required and not performed.
		Fluoride	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	Analysis of constituent not required and not performed.
		Sulfate	Analysis of constituent not required and not performed.
		Total Dissolved Solids	Analysis of constituent not required and not performed.
		Aluminum	Analysis of constituent not required and not performed.
		Antimony	Analysis of constituent not required and not performed.
		Arsenic	Analysis of constituent not required and not performed.
		Barium	Analysis of constituent not required and not performed.
		Beryllium	Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed.
		Cadmium	Analysis of constituent not required and not performed.
		Calcium	Analysis of constituent not required and not performed.
		Chromium	Analysis of constituent not required and not performed.
		Cobalt	Analysis of constituent not required and not performed.
		Copper	Analysis of constituent not required and not performed.
		Iron	Analysis of constituent not required and not performed.
		Lead	Analysis of constituent not required and not performed.
		Magnesium	Analysis of constituent not required and not performed.
		Manganese	Analysis of constituent not required and not performed.
		Mercury	Analysis of constituent not required and not performed.
		PCB-1254	Analysis of constituent not required and not performed.
		PCB-1260	Analysis of constituent not required and not performed.
		PCB-1268	Analysis of constituent not required and not performed.
		Gross Alpha	Analysis of constituent not required and not performed.
		Gross Beta	Analysis of constituent not required and not performed.
		lodine-131	Analysis of constituent not required and not performed.
		Radium-226	Analysis of constituent not required and not performed.
		Strontium-90	Analysis of constituent not required and not performed.
		Technetium-99	Analysis of constituent not required and not performed.
		Thorium-230	Analysis of constituent not required and not performed.
		Tritium	Analysis of constituent not required and not performed.
		Chemical Oxygen Demand	Analysis of constituent not required and not performed.
		Cyanide	Analysis of constituent not required and not performed.
		lodide	Analysis of constituent not required and not performed.
		Total Organic Carbon	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent Flag	Description
004-0983 MW368	MW368UG3-19R	Bromide	Analysis of constituent not required and not performed.
		Chloride	Analysis of constituent not required and not performed.
		Fluoride	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	Analysis of constituent not required and not performed.
		Sulfate	Analysis of constituent not required and not performed.
		Total Dissolved Solids	Analysis of constituent not required and not performed.
		Aluminum	Analysis of constituent not required and not performed.
		Antimony	Analysis of constituent not required and not performed.
		Arsenic	Analysis of constituent not required and not performed.
		Barium	Analysis of constituent not required and not performed.
		Beryllium	Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed.
		Cadmium	Analysis of constituent not required and not performed.
		Calcium	Analysis of constituent not required and not performed.
		Chromium	Analysis of constituent not required and not performed.
		Cobalt	Analysis of constituent not required and not performed.
		Copper	Analysis of constituent not required and not performed.
		Iron	Analysis of constituent not required and not performed.
		Lead	Analysis of constituent not required and not performed.
		Magnesium	Analysis of constituent not required and not performed.
		Manganese	Analysis of constituent not required and not performed.
		Mercury	Analysis of constituent not required and not performed.
		PCB-1254	Analysis of constituent not required and not performed.
		PCB-1260	Analysis of constituent not required and not performed.
		PCB-1268	Analysis of constituent not required and not performed.
		Gross Alpha	Analysis of constituent not required and not performed.
		Gross Beta	Analysis of constituent not required and not performed.
		lodine-131	Analysis of constituent not required and not performed.
		Radium-226	Analysis of constituent not required and not performed.
		Strontium-90	Analysis of constituent not required and not performed.
		Technetium-99	Analysis of constituent not required and not performed.
		Thorium-230	Analysis of constituent not required and not performed.
		Tritium	Analysis of constituent not required and not performed.
		Chemical Oxygen Demand	Analysis of constituent not required and not performed.
		Cyanide	Analysis of constituent not required and not performed.
		lodide	Analysis of constituent not required and not performed.
		Total Organic Carbon	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent Fla	g Description
004-4820 MW369	MW369UG3-19R	Bromide	Analysis of constituent not required and not performed.
		Chloride	Analysis of constituent not required and not performed.
		Fluoride	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	Analysis of constituent not required and not performed.
		Sulfate	Analysis of constituent not required and not performed.
		Total Dissolved Solids	Analysis of constituent not required and not performed.
		Aluminum	Analysis of constituent not required and not performed.
		Antimony	Analysis of constituent not required and not performed.
		Arsenic	Analysis of constituent not required and not performed.
		Barium	Analysis of constituent not required and not performed.
		Beryllium	Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed.
		Cadmium	Analysis of constituent not required and not performed.
		Calcium	Analysis of constituent not required and not performed.
		Chromium	Analysis of constituent not required and not performed.
		Cobalt	Analysis of constituent not required and not performed.
		Copper	Analysis of constituent not required and not performed.
		Iron	Analysis of constituent not required and not performed.
		Lead	Analysis of constituent not required and not performed.
		Magnesium	Analysis of constituent not required and not performed.
		Manganese	Analysis of constituent not required and not performed.
		Mercury	Analysis of constituent not required and not performed.
		PCB-1254	Analysis of constituent not required and not performed.
		PCB-1260	Analysis of constituent not required and not performed.
		PCB-1268	Analysis of constituent not required and not performed.
		Gross Alpha	Analysis of constituent not required and not performed.
		Gross Beta	Analysis of constituent not required and not performed.
		lodine-131	Analysis of constituent not required and not performed.
		Radium-226	Analysis of constituent not required and not performed.
		Strontium-90	Analysis of constituent not required and not performed.
		Technetium-99	Analysis of constituent not required and not performed.
		Thorium-230	Analysis of constituent not required and not performed.
		Tritium	Analysis of constituent not required and not performed.
		Chemical Oxygen Demand	Analysis of constituent not required and not performed.
		Cyanide	Analysis of constituent not required and not performed.
		lodide	Analysis of constituent not required and not performed.
		Total Organic Carbon	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent Flag	g Description
004-4818 MW370	MW370UG3-19R	Bromide	Analysis of constituent not required and not performed.
		Chloride	Analysis of constituent not required and not performed.
		Fluoride	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	Analysis of constituent not required and not performed.
		Sulfate	Analysis of constituent not required and not performed.
		Total Dissolved Solids	Analysis of constituent not required and not performed.
		Aluminum	Analysis of constituent not required and not performed.
		Antimony	Analysis of constituent not required and not performed.
		Arsenic	Analysis of constituent not required and not performed.
		Barium	Analysis of constituent not required and not performed.
		Beryllium	Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed.
		Cadmium	Analysis of constituent not required and not performed.
		Calcium	Analysis of constituent not required and not performed.
		Chromium	Analysis of constituent not required and not performed.
		Cobalt	Analysis of constituent not required and not performed.
		Copper	Analysis of constituent not required and not performed.
		Iron	Analysis of constituent not required and not performed.
		Lead	Analysis of constituent not required and not performed.
		Magnesium	Analysis of constituent not required and not performed.
		Manganese	Analysis of constituent not required and not performed.
		Mercury	Analysis of constituent not required and not performed.
		PCB-1254	Analysis of constituent not required and not performed.
		PCB-1260	Analysis of constituent not required and not performed.
		PCB-1268	Analysis of constituent not required and not performed.
		Gross Alpha	Analysis of constituent not required and not performed.
		Gross Beta	Analysis of constituent not required and not performed.
		lodine-131	Analysis of constituent not required and not performed.
		Radium-226	Analysis of constituent not required and not performed.
		Strontium-90	Analysis of constituent not required and not performed.
		Technetium-99	Analysis of constituent not required and not performed.
		Thorium-230	Analysis of constituent not required and not performed.
		Tritium	Analysis of constituent not required and not performed.
		Chemical Oxygen Demand	Analysis of constituent not required and not performed.
		Cyanide	Analysis of constituent not required and not performed.
		lodide	Analysis of constituent not required and not performed.
		Total Organic Carbon	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent Fla	ag Description
004-4819 MW371	MW371UG3-19R	Bromide	Analysis of constituent not required and not performed.
		Chloride	Analysis of constituent not required and not performed.
		Fluoride	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	Analysis of constituent not required and not performed.
		Sulfate	Analysis of constituent not required and not performed.
		Total Dissolved Solids	Analysis of constituent not required and not performed.
		Aluminum	Analysis of constituent not required and not performed.
		Antimony	Analysis of constituent not required and not performed.
		Arsenic	Analysis of constituent not required and not performed.
		Barium	Analysis of constituent not required and not performed.
		Beryllium	Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed.
		Cadmium	Analysis of constituent not required and not performed.
		Calcium	Analysis of constituent not required and not performed.
		Chromium	Analysis of constituent not required and not performed.
		Cobalt	Analysis of constituent not required and not performed.
		Copper	Analysis of constituent not required and not performed.
		Iron	Analysis of constituent not required and not performed.
		Lead	Analysis of constituent not required and not performed.
		Magnesium	Analysis of constituent not required and not performed.
		Manganese	Analysis of constituent not required and not performed.
		Mercury	Analysis of constituent not required and not performed.
		PCB-1254	Analysis of constituent not required and not performed.
		PCB-1260	Analysis of constituent not required and not performed.
		PCB-1268	Analysis of constituent not required and not performed.
		Gross Alpha	Analysis of constituent not required and not performed.
		Gross Beta	Analysis of constituent not required and not performed.
		lodine-131	Analysis of constituent not required and not performed.
		Radium-226	Analysis of constituent not required and not performed.
		Strontium-90	Analysis of constituent not required and not performed.
		Technetium-99	Analysis of constituent not required and not performed.
		Thorium-230	Analysis of constituent not required and not performed.
		Tritium	Analysis of constituent not required and not performed.
		Chemical Oxygen Demand	Analysis of constituent not required and not performed.
		Cyanide	Analysis of constituent not required and not performed.
		lodide	Analysis of constituent not required and not performed.
		Total Organic Carbon	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent Fla	g Description
004-4808 MW372	MW372UG3-19R	Bromide	Analysis of constituent not required and not performed.
		Chloride	Analysis of constituent not required and not performed.
		Fluoride	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	Analysis of constituent not required and not performed.
		Sulfate	Analysis of constituent not required and not performed.
		Total Dissolved Solids	Analysis of constituent not required and not performed.
		Aluminum	Analysis of constituent not required and not performed.
		Antimony	Analysis of constituent not required and not performed.
		Arsenic	Analysis of constituent not required and not performed.
		Barium	Analysis of constituent not required and not performed.
		Beryllium	Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed.
		Cadmium	Analysis of constituent not required and not performed.
		Calcium	Analysis of constituent not required and not performed.
		Chromium	Analysis of constituent not required and not performed.
		Cobalt	Analysis of constituent not required and not performed.
		Copper	Analysis of constituent not required and not performed.
		Iron	Analysis of constituent not required and not performed.
		Lead	Analysis of constituent not required and not performed.
		Magnesium	Analysis of constituent not required and not performed.
		Manganese	Analysis of constituent not required and not performed.
		Mercury	Analysis of constituent not required and not performed.
		PCB-1254	Analysis of constituent not required and not performed.
		PCB-1260	Analysis of constituent not required and not performed.
		PCB-1268	Analysis of constituent not required and not performed.
		Gross Alpha	Analysis of constituent not required and not performed.
		Gross Beta	Analysis of constituent not required and not performed.
		lodine-131	Analysis of constituent not required and not performed.
		Radium-226	Analysis of constituent not required and not performed.
		Strontium-90	Analysis of constituent not required and not performed.
		Technetium-99	Analysis of constituent not required and not performed.
		Thorium-230	Analysis of constituent not required and not performed.
		Tritium	Analysis of constituent not required and not performed.
		Chemical Oxygen Demand	Analysis of constituent not required and not performed.
		Cyanide	Analysis of constituent not required and not performed.
		lodide	Analysis of constituent not required and not performed.
		Total Organic Carbon	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent Flag	g Description
004-4792 MW373	MW373UG3-19R	Bromide	Analysis of constituent not required and not performed.
		Chloride	Analysis of constituent not required and not performed.
		Fluoride	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	Analysis of constituent not required and not performed.
		Sulfate	Analysis of constituent not required and not performed.
		Total Dissolved Solids	Analysis of constituent not required and not performed.
		Aluminum	Analysis of constituent not required and not performed.
		Antimony	Analysis of constituent not required and not performed.
		Arsenic	Analysis of constituent not required and not performed.
		Barium	Analysis of constituent not required and not performed.
		Beryllium	Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed.
		Cadmium	Analysis of constituent not required and not performed.
		Calcium	Analysis of constituent not required and not performed.
		Chromium	Analysis of constituent not required and not performed.
		Cobalt	Analysis of constituent not required and not performed.
		Copper	Analysis of constituent not required and not performed.
		Iron	Analysis of constituent not required and not performed.
		Lead	Analysis of constituent not required and not performed.
		Magnesium	Analysis of constituent not required and not performed.
		Manganese	Analysis of constituent not required and not performed.
		Mercury	Analysis of constituent not required and not performed.
		PCB-1254	Analysis of constituent not required and not performed.
		PCB-1260	Analysis of constituent not required and not performed.
		PCB-1268	Analysis of constituent not required and not performed.
		Gross Alpha	Analysis of constituent not required and not performed.
		Gross Beta	Analysis of constituent not required and not performed.
		lodine-131	Analysis of constituent not required and not performed.
		Radium-226	Analysis of constituent not required and not performed.
		Strontium-90	Analysis of constituent not required and not performed.
		Technetium-99	Analysis of constituent not required and not performed.
		Thorium-230	Analysis of constituent not required and not performed.
		Tritium	Analysis of constituent not required and not performed.
		Chemical Oxygen Demand	Analysis of constituent not required and not performed.
		Cyanide	Analysis of constituent not required and not performed.
		lodide	Analysis of constituent not required and not performed.
		Total Organic Carbon	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent Flag	Description
004-0990 MW374		Bromide	Analysis of constituent not required and not performed.
		Chloride	Analysis of constituent not required and not performed.
		Fluoride	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	Analysis of constituent not required and not performed.
		Sulfate	Analysis of constituent not required and not performed.
		Total Dissolved Solids	Analysis of constituent not required and not performed.
		Aluminum	Analysis of constituent not required and not performed.
		Antimony	Analysis of constituent not required and not performed.
		Arsenic	Analysis of constituent not required and not performed.
		Barium	Analysis of constituent not required and not performed.
		Beryllium	Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed.
		Cadmium	Analysis of constituent not required and not performed.
		Calcium	Analysis of constituent not required and not performed.
		Chromium	Analysis of constituent not required and not performed.
		Cobalt	Analysis of constituent not required and not performed.
		Copper	Analysis of constituent not required and not performed.
		Iron	Analysis of constituent not required and not performed.
		Lead	Analysis of constituent not required and not performed.
		Magnesium	Analysis of constituent not required and not performed.
		Manganese	Analysis of constituent not required and not performed.
		Mercury	Analysis of constituent not required and not performed.
		PCB-1254	Analysis of constituent not required and not performed.
		PCB-1260	Analysis of constituent not required and not performed.
		PCB-1268	Analysis of constituent not required and not performed.
		Gross Alpha	Analysis of constituent not required and not performed.
		Gross Beta	Analysis of constituent not required and not performed.
		lodine-131	Analysis of constituent not required and not performed.
		Radium-226	Analysis of constituent not required and not performed.
		Strontium-90	Analysis of constituent not required and not performed.
		Technetium-99	Analysis of constituent not required and not performed.
		Thorium-230	Analysis of constituent not required and not performed.
		Tritium	Analysis of constituent not required and not performed.
		Chemical Oxygen Demand	Analysis of constituent not required and not performed.
		Cyanide	Analysis of constituent not required and not performed.
		lodide	Analysis of constituent not required and not performed.
		Total Organic Carbon	Analysis of constituent not required and not performed.

Finds/Unit: KY8-890-008-982 / 1

LAB ID:<u>None</u> For Official Use Only

Monitoring Point	Facility Sample ID	Constituent Flag	g Description
004-0985 MW375	MW375UG3-19R	Bromide	Analysis of constituent not required and not performed.
		Chloride	Analysis of constituent not required and not performed.
		Fluoride	Analysis of constituent not required and not performed.
		Nitrate & Nitrite	Analysis of constituent not required and not performed.
		Sulfate	Analysis of constituent not required and not performed.
		Total Dissolved Solids	Analysis of constituent not required and not performed.
		Aluminum	Analysis of constituent not required and not performed.
		Antimony	Analysis of constituent not required and not performed.
		Arsenic	Analysis of constituent not required and not performed.
		Barium	Analysis of constituent not required and not performed.
		Beryllium	Analysis of constituent not required and not performed.
		Boron	Analysis of constituent not required and not performed.
		Cadmium	Analysis of constituent not required and not performed.
		Calcium	Analysis of constituent not required and not performed.
		Chromium	Analysis of constituent not required and not performed.
		Cobalt	Analysis of constituent not required and not performed.
		Copper	Analysis of constituent not required and not performed.
		Iron	Analysis of constituent not required and not performed.
		Lead	Analysis of constituent not required and not performed.
		Magnesium	Analysis of constituent not required and not performed.
		Manganese	Analysis of constituent not required and not performed.
		Mercury	Analysis of constituent not required and not performed.
		PCB-1254	Analysis of constituent not required and not performed.
		PCB-1260	Analysis of constituent not required and not performed.
		PCB-1268	Analysis of constituent not required and not performed.
		Gross Alpha	Analysis of constituent not required and not performed.
		Gross Beta	Analysis of constituent not required and not performed.
		lodine-131	Analysis of constituent not required and not performed.
		Radium-226	Analysis of constituent not required and not performed.
		Strontium-90	Analysis of constituent not required and not performed.
		Technetium-99	Analysis of constituent not required and not performed.
		Thorium-230	Analysis of constituent not required and not performed.
		Tritium	Analysis of constituent not required and not performed.
		Chemical Oxygen Demand	Analysis of constituent not required and not performed.
		Cyanide	Analysis of constituent not required and not performed.
		lodide	Analysis of constituent not required and not performed.
		Total Organic Carbon	Analysis of constituent not required and not performed.

RESIDENTIAL/CONTAINED – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Sample ID	Constituent	Flag	Description
MW361DUG3-19R	Bromide		Analysis of constituent not required and not performed.
	Chloride		Analysis of constituent not required and not performed.
	Fluoride		Analysis of constituent not required and not performed.
	Nitrate & Nitrite		Analysis of constituent not required and not performed.
	Sulfate		Analysis of constituent not required and not performed.
	Barometric Pressure Reading		Analysis of constituent not required and not performed.
	Specific Conductance		Analysis of constituent not required and not performed.
	Static Water Elevation		Analysis of constituent not required and not performed.
	Dissolved Oxygen		Analysis of constituent not required and not performed.
	Total Dissolved Solids		Analysis of constituent not required and not performed.
	рН		Analysis of constituent not required and not performed.
	Eh		Analysis of constituent not required and not performed.
	Aluminum		Analysis of constituent not required and not performed.
	Antimony		Analysis of constituent not required and not performed.
	Arsenic		Analysis of constituent not required and not performed.
	Barium		Analysis of constituent not required and not performed.
	Beryllium		Analysis of constituent not required and not performed.
	Boron		Analysis of constituent not required and not performed.
	Cadmium		Analysis of constituent not required and not performed.
	Calcium		Analysis of constituent not required and not performed.
	Chromium		Analysis of constituent not required and not performed.
	Cobalt		Analysis of constituent not required and not performed.
	Copper		Analysis of constituent not required and not performed.
	Iron		Analysis of constituent not required and not performed.
	Lead		Analysis of constituent not required and not performed.
	Magnesium		Analysis of constituent not required and not performed.
	Manganese		Analysis of constituent not required and not performed.
	Mercury		Analysis of constituent not required and not performed.
	PCB-1254		Analysis of constituent not required and not performed.
	PCB-1260		Analysis of constituent not required and not performed.
	PCB-1268		Analysis of constituent not required and not performed.
	Gross Alpha		Analysis of constituent not required and not performed.
	Gross Beta		Analysis of constituent not required and not performed.
	lodine-131		Analysis of constituent not required and not performed.
	Radium-226		Analysis of constituent not required and not performed.
	Strontium-90		Analysis of constituent not required and not performed.
	Technetium-99		Analysis of constituent not required and not performed.
	Thorium-230		Analysis of constituent not required and not performed.
	Tritium		Analysis of constituent not required and not performed.
	Chemical Oxygen Demand		Analysis of constituent not required and not performed.
	Cyanide		Analysis of constituent not required and not performed.
	lodide		Analysis of constituent not required and not performed.
	Total Organic Carbon		Analysis of constituent not required and not performed.
		FluorideNitrate & NitriteSulfateBarometric Pressure ReadingSpecific ConductanceStatic Water ElevationDissolved OxygenTotal Dissolved SolidspHEhAluminumAntimonyArsenicBariumBerylliumBoronCadmiumCalciumCobaltCopperIronLeadMagnesiumManganeseMercuryPCB-1260PCB-1268Gross Alpha	Chloride Fluoride Nitrate & Nitrite Sulfate Barometric Pressure Reading Specific Conductance Static Water Elevation Dissolved Oxygen Total Dissolved Solids pH Eh Aluminum Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury PCB-1254 PCB-1260 PCB-1254 PCB-1260 PCB-1268 Gross Alpha Gross Beta Iodine-131 Radium-20 Strontium-90 Technetium-99 Thorium-230 Tritium

APPENDIX D

STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/CONTAINED—QUARTERLY, 2nd CY 2019Finds/Unit: KY8-980-008-982/1Facility: U.S. DOE—Paducah Gaseous Diffusion PlantLAB ID: NonePermit Number: SW07300014, SW07300015, SW07300045For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the second quarter 2019 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The second quarter 2019 data used to conduct the statistical analyses were collected in April and May 2019. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that had exceeded the historical background (using the last eight quarters). The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Station	Туре	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362 ^a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368 ^a	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376 ^{a,b}	SG	UCRS
MW377 ^{a,b}	SG	UCRS

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

^a The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

^b Well was dry this quarter, and a groundwater sample could not be collected.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

 $TL = X + (K \times S)$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, second quarter 2019. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

Parameters	
Acetone	_
Aluminum	
Antimony	
Beta Activity	
Boron	
Bromide	
Calcium	
Chemical Oxygen Demand (COD)	
Chloride	
Cobalt	
Conductivity	
Copper	
Dissolved Oxygen	
Dissolved Solids	
Iron	
Magnesium	
Manganese	
Molybdenum	
Nickel	
Oxidation-Reduction Potential	
PCB, Total	
PCB-1242	
pH*	
Potassium	
Sodium	
Sulfate	
Technetium-99	
Total Organic Carbon (TOC)	
Total Organic Halides (TOX)	
Trichloroethene	
Zinc	

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	6	1	Yes
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	2	5	Yes
Antimony	7	5	2	Yes
Beryllium	7	7	0	No
Boron	7	0	7	Yes
Bromide	7	6	1	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	2	5	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	7	0	No
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	2	5	Yes
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Oxygen Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodide	7	7	0	No
Iron	7	1	<u>6</u>	Yes
Iron Magnesium	7	0		Yes
	7	2	5	
Manganese Mathulana aklarida	7			Yes
Methylene chloride		7	0	No
Molybdenum	7	5	2	Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Nickel	7	1	6	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	6	1	Yes
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	6	1	Yes
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
PCB-1268	7	7	0	No
рН	7	0	7	Yes
Potassium	7	1	6	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	7	0	No
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	1	6	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichlorofluoromethane	7	7	0	No
Vanadium	7	7	0	No
Vinyl Acetate	7	7	0	No
Zinc	7	2	5	Yes

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	3	3	Yes
Antimony	6	4	2	Yes
Beryllium	6	6	0	No
Beta activity	6	2	4	Yes
Boron	6	0	6	Yes
Bromide	6	1	5	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	1	5	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	2	4	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	<u> </u>	6	Yes
Magnesium	6	0	6	Yes
Manganese	6	1	5	Yes
Methylene chloride	6	6	0	No

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Molybdenum	6	5	1	Yes
Nickel	6	2	4	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	1	5	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	2	4	Yes

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	5	1	Yes
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	5	1	Yes
Antimony	6	5	1	Yes
Beryllium	6	6	0	No
Beta activity	6	0	6	Yes
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	1	5	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	1	5	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	
Dibromocnioromethane	6	6	0	No
		6		No
Dimethylbenzene, Total	6		0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	6	0	No
Iodomethane	6	6	0	No
Iron	6	0	6	Yes
Magnesium	6	0	6	Yes
Manganese	6	0	6	Yes
Methylene chloride	6	6	0	No

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Molybdenum	6	6	0	No
Nickel	6	1	5	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
рН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	0	6	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	3	3	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	6	0	No
Vinyl Acetate	6	6	0	No
Zinc	6	3	3	Yes

Exhibit D.5. Tests Summary for Qualified Parameters—LRGA (Continued)

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 28, 28, and 28 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

<u>UCRS</u>

This quarter's results identified historical background exceedances for dissolved oxygen, oxidation-reduction potential, and sulfate.

<u>URGA</u>

This quarter's results identified historical background exceedances for beta activity, chemical oxygen demand (COD), conductivity, oxidation-reduction potential, and technetium-99.

LRGA

This quarter's results identified historical background exceedances for beta activity, oxidation-reduction potential, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW359: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW357: Oxidation-Reduction Potential	MW358: Oxidation-Reduction Potential
MW362: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW360: Oxidation-Reduction Potential	MW361: Oxidation-Reduction Potential
MW365: Oxidation-Reduction Potential, Sulfate	MW363: Chemical oxygen demand (COD), Oxidation-Reduction Potential	MW364: Oxidation-Reduction Potential
MW368: Oxidation-Reduction Potential, Sulfate	MW366: Oxidation-Reduction Potential	MW367: Oxidation-Reduction Potential
MW371: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW369: Beta activity, Oxidation- Reduction Potential, Technetium-99	MW370: Beta activity, Oxidation- Reduction Potential, Technetium-99
MW374: Oxidation-Reduction Potential	MW372: Chemical oxygen demand (COD), Conductivity, Oxidation-	MW373: Oxidation-Reduction Potential
MW375: Oxidation-Reduction Potential, Sulfate	Reduction Potential	

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	2.24	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration.
Antimony	Tolerance Interval	1.89	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW359, MW362, and MW371.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, MW374, and MW375.
PCB, Total	Tolerance Interval	0.92	No exceedance of statistically derived historical background concentration.
PCB-1242	Tolerance Interval	1.41	No exceedance of statistically derived historical background concentration.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, and MW375.
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Tests Summary for Qualified Parameters for Historical Background—UCRS (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Antimony	Tolerance Interval	1.25	No exceedance of statistically derived historical background concentration.
Beta activity ¹	Tolerance Interval	0.74	Current results exceed statistically derived historical background concentration in MW369.
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	Current results exceed statistically derived historical background concentration in MW363 and MW372.
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.75	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.87	Current results exceed statistically derived historical background concentration in MW369.
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.64	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Tests Summary for Qualified Parameters for Historical Background—URGA (Continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ A tolerance interval was calculated based on an MCL exceedance.

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Acetone	Tolerance Interval	2.67	No exceedance of statistically derived historical background concentration.
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration.
Antimony	Tolerance Interval	1.25	No exceedance of statistically derived historical background concentration.
Beta activity ¹	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370.
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.83	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, MW370, and MW373.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.18	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW370.
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Tests Summary fo	r Qualified Parameters for Historical	Background—LRGA (Continued)
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Bathground Broon (continued)

CV: coefficient of variation *If CV > 1.0, used log-transformed data. ¹ A tolerance interval was calculated based on an MCL exceedance.

#### Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the results of the one-sided tolerance interval test compared to current background, and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 5, and 3 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (in Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
MW357: Oxidation-Reduction Potential MW363: Chemical Oxygen Demand (COD)	MW361: Oxidation-Reduction Potential

#### <u>UCRS</u>

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted, however, that oxidation-reduction potential in MW359 exceeded the current TL this quarter.

#### <u>URGA</u>

This quarter's results showed an exceedance of chemical oxygen demand (COD) in MW363 and oxidation-reduction potential in MW357; these wells are located downgradient of the landfill.

#### <u>LRGA</u>

This quarter's results showed an exceedance of oxidation-reduction potential in MW361; this well is located downgradient of the landfill.

#### **Statistical Summary**

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Dissolved Oxygen	Tolerance Interval	0.88	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.26	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. However, MW359 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	1.31	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

#### Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.98	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.40	MW363 and MW372 exceeded the upper TL, which is evidence of a difference in concentration with respect to current background data
Conductivity	Tolerance Interval	0.24	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.15	MW357 exceeded the upper TL, which is evidence of a difference in concentration with respect to current background data
Technetium-99	Tolerance Interval	0.91	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

#### Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

CV: coefficient of variation

Parameter	Performed Test	CV Normality Test	<b>Results of Tolerance Interval</b> <b>Test Conducted</b>
Beta activity	Tolerance Interval	0.66	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.14	MW361 exceeded the upper TL, which is evidence of a difference in concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.74	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

#### Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

CV: coefficient of variation

## ATTACHMENT D1

## COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

#### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison UNITS: ug/L Acetone UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**X**=49.938 **S**= 111.751 **CV(1)**=2.238 **K factor**=** 2.523 TL(1)= 331.886 LL(1)=N/A **Statistics-Background Data K factor**=** 2.523 **TL(2)=** 5.746 LL(2)=N/A

**Statistics-Transformed Background X**=2.847 **S**= 1.149 **CV(2)**=0.404 Data

kground Da ells with Tra	ta from ansformed Result
MW371	
Result	LN(Result)
18	2.890
10	2.303
10	2.303
15	2.708
10	2.303
10	2.303
10	2.303
10	2.303
MW374	
Result	LN(Result)
200	5.298
26	3.258
10	2.303
10	2.303
430	6.064
10	2.303
10	2.303
10	2.303
	Answer         Answer <thanswe< th=""> <thanswe< th="">         Answe</thanswe<></thanswe<>

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated

utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	5	N/A	1.609	N/A
MW362	Downgradient	No	5	N/A	1.609	N/A
MW365	Downgradient	No	5	N/A	1.609	N/A
MW368	Downgradient	No	5	N/A	1.609	N/A
MW371	Upgradient	Yes	4.18	N/A	1.430	NO
MW374	Upgradient	No	5	N/A	1.609	N/A
MW375	Sidegradient	No	5	N/A	1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)Х

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 3.300	<b>S</b> = 6.859	<b>CV(1)=</b> 2.078	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 20.604	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -0.371	<b>S=</b> 1.678	<b>CV(2)</b> =-4.521	<b>K factor**=</b> 2.523	TL(2)= 3.863	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Re					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	2.24	0.806			
4/22/2002	0.2	-1.609			
7/15/2002	0.2	-1.609			
10/8/2002	0.2	-1.609			
1/8/2003	0.2	-1.609			
4/3/2003	0.2	-1.609			
7/9/2003	0.2	-1.609			
10/6/2003	0.2	-1.609			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	21.3	3.059			
1/7/2003	20	2.996			
4/2/2003	4.11	1.413			
7/9/2003	1.41	0.344			
10/7/2003	1.09	0.086			
1/6/2004	0.854	-0.158			
4/7/2004	0.2	-1.609			
7/14/2004	0.2	-1.609			

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.074	N/A	-2.604	NO
MW362	Downgradient	Yes	3.75	N/A	1.322	NO
MW365	Downgradient	No	0.05	N/A	-2.996	N/A
MW368	Downgradient	Yes	0.124	N/A	-2.087	NO
MW371	Upgradient	Yes	4.43	N/A	1.488	NO
MW374	Upgradient	No	0.05	N/A	-2.996	N/A
MW375	Sidegradient	Yes	0.0338	N/A	-3.387	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Antimony UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> =0.042	<b>S</b> = 0.079	<b>CV(1)=</b> 1.891	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 0.240	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -4.607	<b>S=</b> 1.487	<b>CV(2)</b> =-0.323	<b>K factor**=</b> 2.523	TL(2)= -0.855	<b>LL(2)=</b> N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.2	-1.609
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.005	-5.298
1/7/2003	0.005	-5.298
4/2/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/7/2003	0.005	-5.298
1/6/2004	0.005	-5.298
4/7/2004	0.005	-5.298
7/14/2004	0.005	-5.298

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t No	0.003	N/A	-5.809	N/A
MW362	Downgradient	t No	0.003	N/A	-5.809	N/A
MW365	Downgradient	t No	0.003	N/A	-5.809	N/A
MW368	Downgradient	t No	0.003	N/A	-5.809	N/A
MW371	Upgradient	No	0.003	N/A	-5.809	N/A
MW374	Upgradient	Yes	0.00121	N/A	-6.717	NO
MW375	Sidegradient	Yes	0.00116	6 N/A	-6.759	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

# C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> =0.650	<b>S</b> = 0.805	<b>CV(1)=</b> 1.238	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 2.681	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -1.034	<b>S</b> = 1.030	<b>CV(2)</b> =-0.996	<b>K factor**=</b> 2.523	<b>TL(2)=</b> 1.564	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	2	0.693			
4/22/2002	2	0.693			
7/15/2002	2	0.693			
10/8/2002	0.2	-1.609			
1/8/2003	0.2	-1.609			
4/3/2003	0.2	-1.609			
7/9/2003	0.2	-1.609			
10/6/2003	0.2	-1.609			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	2	0.693			
1/7/2003	0.2	-1.609			
4/2/2003	0.2	-1.609			
7/9/2003	0.2	-1.609			
10/7/2003	0.2	-1.609			
1/6/2004	0.2	-1.609			
4/7/2004	0.2	-1.609			
7/14/2004	0.2	-1.609			

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	0.00771	N/A	-4.865	NO	
MW362	Downgradient	Yes	0.0255	N/A	-3.669	NO	
MW365	Downgradient	Yes	0.0101	N/A	-4.595	NO	
MW368	Downgradient	Yes	0.00615	N/A	-5.091	NO	
MW371	Upgradient	Yes	0.00827	N/A	-4.795	NO	
MW374	Upgradient	Yes	0.0106	N/A	-4.547	NO	
MW375	Sidegradient	Yes	0.00667	N/A	-5.010	NO	
N/A - Rest	N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not						

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 1.394	<b>S=</b> 0.474	<b>CV(1)=</b> 0.340	<b>K factor**=</b> 2.523	TL(1)= 2.590	<b>LL(1)=</b> N/A
Statistics-Transformed Background	<b>X=</b> 0.279	<b>S=</b> 0.332	<b>CV(2)=</b> 1.190	<b>K factor**=</b> 2.523	TL(2)= 1.118	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Res				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	1	0.000		
4/22/2002	1	0.000		
7/15/2002	1	0.000		
10/8/2002	1	0.000		
1/8/2003	1	0.000		
4/3/2003	1	0.000		
7/9/2003	1	0.000		
10/6/2003	1	0.000		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	2.1	0.742		
1/7/2003	2.1	0.742		
4/2/2003	1.9	0.642		
7/9/2003	1	0.000		
10/7/2003	1.9	0.642		
1/6/2004	1.9	0.642		
4/7/2004	1.8	0.588		

1.6

Data

7/14/2004

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.2	N/A	-1.609	N/A
MW362	Downgradient	No	0.2	N/A	-1.609	N/A
MW365	Downgradient	No	0.2	N/A	-1.609	N/A
MW368	Downgradient	No	0.2	N/A	-1.609	N/A
MW371	Upgradient	No	0.2	N/A	-1.609	N/A
MW374	Upgradient	Yes	0.723	NO	-0.324	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A
N7/4 D	1. 1.1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

0.470

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

#### C-746-U Second Quarter 2019 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**X**=34.100 **S**= 13.637 **CV(1)**=0.400 **K factor**=** 2.523 TL(1)= 68.505 **Statistics-Background Data** LL(1)=N/A **K factor**=** 2.523 TL(2)= 4.364 LL(2)=N/A

**Statistics-Transformed Background X=**3.466 S= 0.356 CV(2)=0.103Data

i		
Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	17.2	2.845
4/22/2002	22.4	3.109
7/15/2002	25.5	3.239
10/8/2002	26.4	3.273
1/8/2003	27.2	3.303
4/3/2003	30.3	3.411
7/9/2003	25.9	3.254
10/6/2003	27	3.296
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	67.3	4.209
1/7/2003	60.6	4.104
4/2/2003	47.2	3.854
7/9/2003	34.7	3.547
10/7/2003	37.1	3.614
1/6/2004	37.7	3.630
4/7/2004	32.2	3.472
7/14/2004	26.9	3.292

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and

continue with statistical analysis

Sidegradient					
Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Downgradient	Yes	5.92	NO	1.778	N/A
Downgradient	Yes	23.7	NO	3.165	N/A
Downgradient	Yes	22.7	NO	3.122	N/A
Downgradient	Yes	46.3	NO	3.835	N/A
Upgradient	Yes	43.3	NO	3.768	N/A
Upgradient	Yes	21.5	NO	3.068	N/A
Sidegradient	Yes	13.5	NO	2.603	N/A
	Quarter Data Gradient Downgradient Downgradient Downgradient Upgradient Upgradient	Quarter DataGradientDetected?DowngradientYesDowngradientYesDowngradientYesDowngradientYesUpgradientYesUpgradientYesUpgradientYes	Quarter DataGradientDetected?ResultDowngradientYes5.92DowngradientYes23.7DowngradientYes22.7DowngradientYes46.3UpgradientYes43.3UpgradientYes21.5	Quarter DataGradientDetected?ResultResult >TL(1)?DowngradientYes5.92NODowngradientYes23.7NODowngradientYes22.7NODowngradientYes46.3NOUpgradientYes43.3NOUpgradientYes21.5NO	Quarter DataGradientDetected?ResultResult >TL(1)?LN(Result)DowngradientYes5.92NO1.778DowngradientYes23.7NO3.165DowngradientYes22.7NO3.122DowngradientYes46.3NO3.835UpgradientYes43.3NO3.768UpgradientYes21.5NO3.068

utilizing TL(1).

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)Х

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=72.938
 S= 70.749
 CV(1)=0.970
 K factor**=2.523
 TL(1)=251.437
 LL(1)=N/A

 Statistics-Transformed Background
 X=4.000
 S= 0.702
 CV(2)=0.175
 K factor**=2.523
 TL(2)=5.770
 LL(2)=N/A

Historical Bac Upgradient W		ta from Insformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	260	5.561
1/7/2003	214	5.366
4/2/2003	147	4.990
7/9/2003	72	4.277
10/7/2003	56	4.025
1/6/2004	68	4.220
4/7/2004	35	3.555
7/14/2004	35	3.555

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	67.8	NO	4.217	N/A
MW362	Downgradient	Yes	39.2	NO	3.669	N/A
MW365	Downgradient	Yes	21.4	NO	3.063	N/A
MW368	Downgradient	t No	20	N/A	2.996	N/A
MW371	Upgradient	No	20	N/A	2.996	N/A
MW374	Upgradient	Yes	14.4	NO	2.667	N/A
MW375	Sidegradient	Yes	40.9	NO	3.711	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=91.300
 S=
 86.959
 CV(1)=0.952
 K factor**=2.523
 TL(1)=310.697
 LL(1)=N/A

 Statistics-Transformed Background
 X=3.620
 S=
 1.590
 CV(2)=0.439
 K factor**=2.523
 TL(2)=7.631
 LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	8.3	2.116
10/8/2002	7.6	2.028
1/8/2003	7.7	2.041
4/3/2003	8.8	2.175
7/9/2003	8.1	2.092
10/6/2003	8.6	2.152
1/7/2004	7.6	2.028
4/6/2004	7.6	2.028
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	199.2	5.294
1/7/2003	199.7	5.297
4/2/2003	171.8	5.146
7/9/2003	178.7	5.186
10/7/2003	175.6	5.168
1/6/2004	170.4	5.138
4/7/2004	156.4	5.052
7/14/2004	144.7	4.975

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	0.81	NO	-0.211	N/A
MW362	Downgradient	t Yes	4.79	NO	1.567	N/A
MW365	Downgradient	t Yes	2.54	NO	0.932	N/A
MW368	Downgradient	t Yes	1.51	NO	0.412	N/A
MW371	Upgradient	Yes	1.02	NO	0.020	N/A
MW374	Upgradient	Yes	63.3	NO	4.148	N/A
MW375	Sidegradient	Yes	4.22	NO	1.440	N/A
N7/4 D	1 1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data				<b>K factor**=</b> 2.523		LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -5.843	<b>S</b> = 1.392	<b>CV(2)</b> =-0.238	<b>K factor**=</b> 2.523	TL(2)= -2.331	<b>LL(2)=</b> N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	0.025	-3.689			
4/22/2002	0.025	-3.689			
7/15/2002	0.025	-3.689			
10/8/2002	0.001	-6.908			
1/8/2003	0.001	-6.908			
4/3/2003	0.001	-6.908			
7/9/2003	0.001	-6.908			
10/6/2003	0.001	-6.908			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	0.01	-4.605			
1/7/2003	0.01	-4.605			
4/2/2003	0.01	-4.605			
7/9/2003	0.00161	-6.432			
10/7/2003	0.001	-6.908			
1/6/2004	0.001	-6.908			
4/7/2004	0.001	-6.908			
7/14/2004	0.001	-6.908			

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.001	N/A	-6.908	N/A
MW362	Downgradient	Yes	0.0014	N/A	-6.571	NO
MW365	Downgradient	Yes	0.00174	N/A	-6.354	NO
MW368	Downgradient	No	0.001	N/A	-6.908	N/A
MW371	Upgradient	Yes	0.00093	7 N/A	-6.973	NO
MW374	Upgradient	Yes	0.00037	1 N/A	-7.899	NO
MW375	Sidegradient	Yes	0.00088	5 N/A	-7.030	NO
N/A - Rest	ults identified as N	Non-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 918.744 S= 417.257 CV(1)=0.454
 K factor**= 2.523
 TL(1)= 1971.483 LL(1)=N/A

Statistics-Transformed Background X=6.705 S= 0.550 CV(2)=0.082 Data

-		
Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	541	6.293
4/22/2002	643	6.466
7/15/2002	632	6.449
10/8/2002	631	6.447
1/8/2003	680	6.522
4/3/2003	749	6.619
7/9/2003	734	6.599
10/6/2003	753	6.624
Well Number:	MW374	
Date Collected	Result	LN(Result)
3/18/2002	1007	6.915
10/8/2002	1680	7.427
1/7/2003	1715.9	7.448
4/2/2003	172	5.147
7/9/2003	1231	7.116
10/7/2003	1214	7.102
1/6/2004	1172	7.066
4/7/2004	1145	7.043

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

K factor**= 2.523 TL(2)= 8.092 LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	234	NO	5.455	N/A	
MW362	Downgradient	Yes	743	NO	6.611	N/A	
MW365	Downgradient	Yes	435	NO	6.075	N/A	
MW368	Downgradient	Yes	567	NO	6.340	N/A	
MW371	Upgradient	Yes	500	NO	6.215	N/A	
MW374	Upgradient	Yes	701	NO	6.553	N/A	
MW375	Sidegradient	Yes	358	NO	5.881	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 0.056	<b>S</b> = 0.072	<b>CV(1)=</b> 1.275	<b>K factor**=</b> 2.523	TL(1)= 0.237	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -3.395	<b>S</b> = 0.915	<b>CV(2)</b> =-0.270	<b>K factor**=</b> 2.523	TL(2)= -1.086	<b>LL(2)=</b> N/A

Historical Bac Ungradient W		ta from ansformed Resul
opgradient ()		
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.2	-1.609
1/7/2003	0.2	-1.609
4/2/2003	0.2	-1.609
7/9/2003	0.02	-3.912
10/7/2003	0.02	-3.912
1/6/2004	0.02	-3.912
4/7/2004	0.02	-3.912
7/14/2004	0.02	-3.912

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.0025	N/A	-5.991	NO
MW362	Downgradient	Yes	0.00635	N/A	-5.059	NO
MW365	Downgradient	Yes	0.004	N/A	-5.521	NO
MW368	Downgradient	Yes	0.00176	N/A	-6.342	NO
MW371	Upgradient	Yes	0.00574	N/A	-5.160	NO
MW374	Upgradient	Yes	0.0007	N/A	-7.264	NO
MW375	Sidegradient	Yes	0.00047	5 N/A	-7.652	NO
N/A - Resu	Its identified as N	Non-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=1.138
 S= 0.621
 CV(1)=0.546 K factor**= 2.523
 TL(1)=2.704 LL(1)=N/A 

 Statistics-Transformed Background
 X=-0.013
 S= 0.577
 CV(2)=-43.069 K factor**= 2.523
 TL(2)=1.441 LL(2)=N/A 

Upgradient W	kground Da ells with Tr	
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.26	0.815
4/22/2002	1.15	0.140
7/15/2002	0.94	-0.062
10/8/2002	0.74	-0.301
1/8/2003	2.62	0.963
4/3/2003	1.5	0.405
7/9/2003	1.66	0.507
10/6/2003	1.28	0.247
Well Number:	MW374	
Date Collected	Result	LN(Result)
3/18/2002	0.6	-0.511
10/8/2002	0.67	-0.400
1/7/2003	0.23	-1.470
4/2/2003	0.65	-0.431
7/9/2003	0.92	-0.083
10/7/2003	0.99	-0.010
1/6/2004	1.11	0.104
4/7/2004	0.88	-0.128

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	3.29	YES	1.191	N/A
MW362	Downgradient	Yes	5.14	YES	1.637	N/A
MW365	Downgradient	Yes	2.49	NO	0.912	N/A
MW368	Downgradient	Yes	0.86	NO	-0.151	N/A
MW371	Upgradient	Yes	5.2	YES	1.649	N/A
MW374	Upgradient	Yes	1.52	NO	0.419	N/A
MW375	Sidegradient	Yes	1.05	NO	0.049	N/A
			U	oratory analysis or		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

```
Wells with Exceedances
MW359
MW362
MW371
```

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X= 590.000 S= 248.068 CV(1)=0.420 K factor**= 2.523 TL(1)= 1215.876 LL(1)=N/A

Statistics-Transformed Background X=6.308 S= 0.383 CV(2)=0.061 Data

Historical Bac Upgradient W		ta from ansformed Resu
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	274	5.613
4/22/2002	409	6.014
7/15/2002	418	6.035
10/8/2002	424	6.050
1/8/2003	431	6.066
4/3/2003	444	6.096
7/9/2003	445	6.098
10/6/2003	438	6.082
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	1136	7.035
1/7/2003	1101	7.004
4/2/2003	863	6.760
7/9/2003	682	6.525
10/7/2003	589	6.378
1/6/2004	603	6.402
4/7/2004	601	6.399
7/14/2004	582	6.366

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

K factor**= 2.523 TL(2)= 7.274 LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	174	NO	5.159	N/A
MW362	Downgradient	Yes	459	NO	6.129	N/A
MW365	Downgradient	Yes	270	NO	5.598	N/A
MW368	Downgradient	Yes	179	NO	5.187	N/A
MW371	Upgradient	Yes	237	NO	5.468	N/A
MW374	Upgradient	Yes	320	NO	5.768	N/A
MW375	Sidegradient	Yes	177	NO	5.176	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 6.612	<b>S=</b> 6.487	<b>CV(1)=</b> 0.981	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 22.979	LL(1)=N/A
Statistics-Transformed Background	<b>X=</b> 1.363	<b>S=</b> 1.147	<b>CV(2)=</b> 0.841	<b>K factor**=</b> 2.523	TL(2)= 4.256	LL(2)=N/A

r		
Historical Bac		
Upgradient W	ells with Tra	ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1.31	0.270
4/22/2002	0.913	-0.091
7/15/2002	0.881	-0.127
10/8/2002	3.86	1.351
1/8/2003	1.88	0.631
4/3/2003	3.18	1.157
7/9/2003	0.484	-0.726
10/6/2003	2.72	1.001
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	23	3.135
1/7/2003	13.9	2.632
4/2/2003	14	2.639
7/9/2003	14.2	2.653
10/7/2003	7.92	2.069
1/6/2004	7.86	2.062
4/7/2004	4.82	1.573
7/14/2004	4.87	1.583

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.0639	NO	-2.750	N/A
MW362	Downgradient	Yes	2.01	NO	0.698	N/A
MW365	Downgradient	t No	0.1	N/A	-2.303	N/A
MW368	Downgradient	Yes	0.0837	NO	-2.481	N/A
MW371	Upgradient	Yes	3.04	NO	1.112	N/A
MW374	Upgradient	Yes	0.758	NO	-0.277	N/A
MW375	Sidegradient	Yes	0.209	NO	-1.565	N/A
N/A Pasi	lts identified as l	Non Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=11.347
 S= 3.019
 CV(1)=0.266
 K factor**=2.523
 TL(1)=18.963
 LL(1)=N/A

 Statistics-Transformed Background
 X=2.401
 S= 0.237
 CV(2)=0.099
 K factor**=2.523
 TL(2)=2.999
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW371						
Date Collected	Result	LN(Result)					
3/18/2002	7.1	1.960					
4/22/2002	9.77	2.279					
7/15/2002	10.4	2.342					
10/8/2002	10.2	2.322					
1/8/2003	10.7	2.370					
4/3/2003	11.9	2.477					
7/9/2003	10.8	2.380					
10/6/2003	10.9	2.389					
Well Number:	MW374						
Date Collected	Result	LN(Result)					
10/8/2002	20	2.996					
1/7/2003	16.1	2.779					
4/2/2003	13.1	2.573					
7/9/2003	10.3	2.332					
10/7/2003	11.1	2.407					
1/6/2004	11	2.398					
4/7/2004	9.69	2.271					
7/14/2004	8.49	2.139					

Data

Dry/Partially Dry Wells				
Well No.	Gradient			
MW376	Sidegradient			
MW377	Sidegradient			

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	3.44	NO	1.235	N/A
MW362	Downgradient	t Yes	9.81	NO	2.283	N/A
MW365	Downgradient	t Yes	10.7	NO	2.370	N/A
MW368	Downgradient	t Yes	11.4	NO	2.434	N/A
MW371	Upgradient	Yes	7.86	NO	2.062	N/A
MW374	Upgradient	Yes	5.22	NO	1.652	N/A
MW375	Sidegradient	Yes	5.26	NO	1.660	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data						
Statistics-Transformed Background	<b>X</b> =-1.873	<b>S=</b> 1.068	<b>CV(2)</b> =-0.570	<b>K factor**=</b> 2.523	TL(2)= 0.821	LL(2)=N/A

Historical Bac		ta from ansformed Resul
Opgradient w	ens with 11	ansiormeu Kesu
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.063	-2.765
4/22/2002	0.067	-2.703
7/15/2002	0.074	-2.604
10/8/2002	0.0521	-2.955
1/8/2003	0.0385	-3.257
4/3/2003	0.0551	-2.899
7/9/2003	0.0546	-2.908
10/6/2003	0.0543	-2.913
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.596	-0.518
1/7/2003	0.565	-0.571
4/2/2003	0.675	-0.393
7/9/2003	0.397	-0.924
10/7/2003	0.312	-1.165
1/6/2004	0.299	-1.207
4/7/2004	0.329	-1.112
7/14/2004	0.342	-1.073

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t No	0.00124	N/A	-6.693	N/A
MW362	Downgradient	Yes	0.012	NO	-4.423	N/A
MW365	Downgradient	Yes	0.0354	NO	-3.341	N/A
MW368	Downgradient	t No	0.003	N/A	-5.809	N/A
MW371	Upgradient	Yes	0.0497	NO	-3.002	N/A
MW374	Upgradient	Yes	0.0466	NO	-3.066	N/A
MW375	Sidegradient	Yes	0.0117	NO	-4.448	N/A
N/A Dogu	Its identified as I	Jon Dataata	during lab	oratory analysis or	data validatio	n and wara not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> =0.006	<b>S</b> = 0.010	<b>CV(1)=</b> 1.650	<b>K factor**=</b> 2.523	TL(1)= 0.030	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -6.108	<b>S</b> = 1.239	<b>CV(2)</b> =-0.203	<b>K factor**=</b> 2.523	TL(2)= -2.983	<b>LL(2)=</b> N/A

Historical Background Data from Upgradient Wells with Transformed Rest				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	0.025	-3.689		
4/22/2002	0.025	-3.689		
7/15/2002	0.025	-3.689		
10/8/2002	0.001	-6.908		
1/8/2003	0.00121	-6.717		
4/3/2003	0.001	-6.908		
7/9/2003	0.00111	-6.803		
10/6/2003	0.001	-6.908		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
10/8/2002	0.00222	-6.110		
1/7/2003	0.00201	-6.210		
4/2/2003	0.00159	-6.444		
7/9/2003	0.00242	-6.024		
10/7/2003	0.001	-6.908		
1/6/2004	0.001	-6.908		
4/7/2004	0.001	-6.908		
7/14/2004	0.001	-6.908		

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.001	N/A	-6.908	N/A
MW362	Downgradient	Yes	0.00102	N/A	-6.888	NO
MW365	Downgradient	No	0.001	N/A	-6.908	N/A
MW368	Downgradient	Yes	0.00057	2 N/A	-7.466	NO
MW371	Upgradient	No	0.001	N/A	-6.908	N/A
MW374	Upgradient	No	0.001	N/A	-6.908	N/A
MW375	Sidegradient	No	0.001	N/A	-6.908	N/A
M/A Dogu	lts identified as N	Jon Dataata	during lab	oratory analysis or	data validation	n and wara not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> =0.023	<b>S</b> = 0.022	<b>CV(1)=</b> 0.980	<b>K factor**=</b> 2.523	TL(1)= 0.078	LL(1)=N/A
Statistics-Transformed Background	<b>X</b> =-4 349	<b>S</b> = 1 109	<b>CV(2)</b> =-0.255	<b>K factor**=</b> 2 523	TL(2)= -1 552	LL(2)=N/A

Historical Bac	karound Dat	ta from
		insformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.0124	-4.390
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.05	-2.996
1/7/2003	0.05	-2.996
4/2/2003	0.05	-2.996
7/9/2003	0.00794	-4.836
10/7/2003	0.005	-5.298
1/6/2004	0.005	-5.298
4/7/2004	0.005	-5.298
7/14/2004	0.005	-5.298

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	0.000934	4 NO	-6.976	N/A	
MW362	Downgradient	Yes	0.00288	NO	-5.850	N/A	
MW365	Downgradient	Yes	0.00511	NO	-5.277	N/A	
MW368	Downgradient	No	0.002	N/A	-6.215	N/A	
MW371	Upgradient	Yes	0.00486	NO	-5.327	N/A	
MW374	Upgradient	Yes	0.000848	8 NO	-7.073	N/A	
MW375	Sidegradient	Yes	0.00091	NO	-7.002	N/A	
N/A - Resu	lts identified as N	Non-Detects	during labo	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

#### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison **Oxidation-Reduction Potential UNITS: mV** UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

**X**=22.281 **S**= 78.889 **CV(1)**=3.541 **K factor**=** 2.523 TL(1)= 221.319 LL(1)=N/A **Statistics-Background Data K factor**=** 2.523 TL(2)= 5.106 LL(2)=N/A

**Statistics-Transformed Background** X=3.642 S= 1.729 CV(2)=0.475 Data

Г

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	75	4.317			
4/22/2002	165	5.106			
7/15/2002	65	4.174			
4/3/2003	-19	#Func!			
7/9/2003	114	4.736			
10/6/2003	-22	#Func!			
1/7/2004	20.5	3.020			
4/6/2004	113	4.727			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
3/18/2002	135	4.905			
4/2/2003	-56	#Func!			
7/9/2003	-68	#Func!			
10/7/2003	-50	#Func!			
1/6/2004	-85	#Func!			
4/7/2004	6	1.792			
7/14/2004	-38	#Func!			
10/7/2004	1	0.000			

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

**#Because the natural log was not** possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	486	N/A	6.186	YES
MW362	Downgradient	Yes	459	N/A	6.129	YES
MW365	Downgradient	Yes	360	N/A	5.886	YES
MW368	Downgradient	Yes	394	N/A	5.976	YES
MW371	Upgradient	Yes	388	N/A	5.961	YES
MW374	Upgradient	Yes	355	N/A	5.872	YES
MW375	Sidegradient	Yes	352	N/A	5.864	YES
N/A Dogu	Its identified as N	Ion Dataata	during lab	oratory analysis or	data validation	and wara not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
	MW359
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW362
concentration with respect to historical background data.	MW365
	MW368
	MW371
	MW374
	MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)Х

# C-746-U Second Quarter 2019 Statistical AnalysisHistorical Background ComparisonPCB, TotalUNITS: UG/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> =0.224	<b>S</b> = 0.207	<b>CV(1)=</b> 0.922	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 0.746	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -1.647	<b>S=</b> 0.440	<b>CV(2)</b> =-0.267	<b>K factor**=</b> 2.523	TL(2)= -0.537	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Re				
Well Number:	MW371			
Date Collected	Result	LN(Result)		
3/18/2002	1	0.000		
4/22/2002	0.17	-1.772		
7/15/2002	0.17	-1.772		
7/9/2003	0.17	-1.772		
10/6/2003	0.17	-1.772		
7/13/2004	0.18	-1.715		
7/25/2005	0.17	-1.772		
4/5/2006	0.18	-1.715		
Well Number:	MW374			
Date Collected	Result	LN(Result)		
7/9/2003	0.17	-1.772		
10/7/2003	0.17	-1.772		
7/14/2004	0.18	-1.715		
7/26/2005	0.17	-1.772		
4/6/2006	0.18	-1.715		
7/10/2006	0.17	-1.772		
10/12/2006	0.17	-1.772		
1/8/2007	0.17	-1.772		

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.098	N/A	-2.323	N/A
MW362	Downgradient	No	0.0971	N/A	-2.332	N/A
MW365	Downgradient	Yes	0.0737	NO	-2.608	N/A
MW368	Downgradient	No	0.098	N/A	-2.323	N/A
MW371	Upgradient	No	0.103	N/A	-2.273	N/A
MW374	Upgradient	No	0.101	N/A	-2.293	N/A
MW375	Sidegradient	No	0.099	N/A	-2.313	N/A
NT/A D	1. 1	TDI	1 . 11	, <u>1</u> ·	1.7 1.1.7	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

# C-746-U Second Quarter 2019 Statistical AnalysisHistorical Background ComparisonPCB-1242UNITS: UG/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 0.159	<b>S</b> = 0.224	<b>CV(1)=</b> 1.409	<b>K factor**=</b> 2.523	TL(1)= 0.726	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -2.134	<b>S</b> = 0.579	<b>CV(2)</b> =-0.272	<b>K factor**=</b> 2.523	TL(2)= -0.672	<b>LL(2)=</b> N/A

kground Dat ells with Tra	a from nsformed Result
MW371	
Result	LN(Result)
1	0.000
0.11	-2.207
0.11	-2.207
0.13	-2.040
0.09	-2.408
0.1	-2.303
0.09	-2.408
0.1	-2.303
MW374	
Result	LN(Result)
0.13	-2.040
0.09	-2.408
0.1	-2.303
0.1	-2.303
0.1	-2.303
0.1	-2.303
0.1	-2.303
0.1	-2.303
	MW371           Result           1           0.11           0.13           0.09           0.1           MW374           Result           0.13           0.09           0.1           0.13           0.09           0.1           0.13           0.109           0.1           0.13           0.09           0.1           0.1           0.1           0.1           0.1

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t No	0.098	N/A	-2.323	N/A
MW362	Downgradient	t No	0.0971	N/A	-2.332	N/A
MW365	Downgradient	Yes	0.0737	N/A	-2.608	NO
MW368	Downgradient	t No	0.098	N/A	-2.323	N/A
MW371	Upgradient	No	0.103	N/A	-2.273	N/A
MW374	Upgradient	No	0.101	N/A	-2.293	N/A
MW375	Sidegradient	No	0.099	N/A	-2.313	N/A
NI/A Dam	. 14	Tan Data da	J		J	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 6.619	<b>S=</b> 0.295	<b>CV(1)=</b> 0.045	<b>K factor**=</b> 2.904	<b>TL(1)=</b> 7.475	LL(1)=5.7635
Statistics-Transformed Background	<b>X</b> =1.889	<b>S</b> = 0.046	<b>CV(2)=</b> 0.024	<b>K factor**=</b> 2.904	TL(2)= 2.023	LL(2)=1.7548

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	6.3	1.841
4/22/2002	6.5	1.872
7/15/2002	6.5	1.872
10/8/2002	6.6	1.887
1/8/2003	6.6	1.887
4/3/2003	6.9	1.932
7/9/2003	6.7	1.902
10/6/2003	7	1.946
Well Number:	MW374	
Date Collected	Result	LN(Result)
3/18/2002	5.75	1.749
10/8/2002	6.6	1.887
1/7/2003	6.82	1.920
4/2/2003	6.86	1.926
7/9/2003	6.7	1.902
10/7/2003	6.6	1.887
1/6/2004	6.9	1.932
4/7/2004	6.58	1.884

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) &gt;TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>	
MW359	Downgradient	Yes	6.03	NO	1.797	N/A	
MW362	Downgradient	Yes	7.09	NO	1.959	N/A	
MW365	Downgradient	Yes	6.28	NO	1.837	N/A	
MW368	Downgradient	Yes	6.59	NO	1.886	N/A	
MW371	Upgradient	Yes	6.52	NO	1.875	N/A	
MW374	Upgradient	Yes	6.83	NO	1.921	N/A	
MW375	Sidegradient	Yes	6.53	NO	1.876	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data			<b>CV(1)=</b> 0.718	<b>K factor**=</b> 2.523		
Statistics-Transformed Background	<b>X</b> =-0.023	<b>S</b> = 0.752	<b>CV(2)=</b> -32.218	<b>K factor**=</b> 2.523	<b>TL(2)=</b> 1.874	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Rest					
Well Number:	MW371				
Date Collected	Result	LN(Result)			
3/18/2002	2	0.693			
4/22/2002	2	0.693			
7/15/2002	2	0.693			
10/8/2002	0.408	-0.896			
1/8/2003	0.384	-0.957			
4/3/2003	0.368	-1.000			
7/9/2003	0.587	-0.533			
10/6/2003	0.382	-0.962			
Well Number:	MW374				
Date Collected	Result	LN(Result)			
10/8/2002	3.04	1.112			
1/7/2003	2.83	1.040			
4/2/2003	2	0.693			
7/9/2003	1.09	0.086			
10/7/2003	0.802	-0.221			
1/6/2004	0.897	-0.109			
4/7/2004	0.689	-0.373			
7/14/2004	0.716	-0.334			

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377 Sidegradient						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t No	0.3	N/A	-1.204	N/A
MW362	Downgradient	Yes	0.566	NO	-0.569	N/A
MW365	Downgradient	Yes	0.26	NO	-1.347	N/A
MW368	Downgradient	Yes	0.317	NO	-1.149	N/A
MW371	Upgradient	Yes	0.603	NO	-0.506	N/A
MW374	Upgradient	Yes	0.378	NO	-0.973	N/A
MW375	Sidegradient	Yes	0.265	NO	-1.328	N/A
M/A Dage	lta identified on l	Jan Dataata	durin a lak	oratory analysis or	data validatio	n and wars not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

#### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X=183.063 S= 73.222 CV(1)=0.400 **K factor**=** 2.523 TL(1)= 367.800 LL(1)=N/A **Statistics-Background Data K factor**=** 2.523 TL(2)= 6.044 LL(2)=N/A

**Statistics-Transformed Background** X=5.146 S= 0.356 CV(2)=0.069 Data

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	129	4.860
4/22/2002	131	4.875
7/15/2002	127	4.844
10/8/2002	123	4.812
1/8/2003	128	4.852
4/3/2003	144	4.970
7/9/2003	126	4.836
10/6/2003	120	4.787
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	336	5.817
1/7/2003	329	5.796
4/2/2003	287	5.659
7/9/2003	181	5.198
10/7/2003	182	5.204
1/6/2004	206	5.328
4/7/2004	182	5.204
7/14/2004	198	5.288

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377 Sidegradient						

Because CV(1) is less than or equal to 1, assume normal distribution and

continue with statistical analysis

utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	39.1	NO	3.666	N/A
MW362	Downgradient	Yes	145	NO	4.977	N/A
MW365	Downgradient	Yes	52.4	NO	3.959	N/A
MW368	Downgradient	Yes	19.7	NO	2.981	N/A
MW371	Upgradient	Yes	8.48	NO	2.138	N/A
MW374	Upgradient	Yes	123	NO	4.812	N/A
MW375	Sidegradient	Yes	53.7	NO	3.983	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)Х

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 6.469	<b>S</b> = 3.153	<b>CV(1)=</b> 0.487	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 14.423	LL(1)=N/A
Statistics-Transformed Background	<b>X=</b> 1.794	<b>S=</b> 0.357	<b>CV(2)=</b> 0.199	<b>K factor**=</b> 2.523	TL(2)= 2.694	LL(2)=N/A

r		
Historical Bac Upgradient W		ta from insformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	16.3	2.791
4/22/2002	8.6	2.152
7/15/2002	6.7	1.902
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	5	1.609
1/7/2003	5	1.609
4/2/2003	5	1.609
7/9/2003	5.6	1.723
10/7/2003	5	1.609
1/6/2004	5	1.609
4/7/2004	11.3	2.425
7/14/2004	5	1.609

Data

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	Yes	48.8	YES	3.888	N/A	
MW362	Downgradient	Yes	31.4	YES	3.447	N/A	
MW365	Downgradient	Yes	62.2	YES	4.130	N/A	
MW368	Downgradient	Yes	33.7	YES	3.517	N/A	
MW371	Upgradient	Yes	59.1	YES	4.079	N/A	
MW374	Upgradient	Yes	8.28	NO	2.114	N/A	
MW375	Sidegradient	Yes	26.1	YES	3.262	N/A	
N/A - Resu	lts identified as I	Non-Detects	during lab	oratory analysis or	data validation	n and were not	

N/A - Results identified as Non-Defects during laboratory analysis of data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.       MW359         MW365       MW368	Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
concentration with respect to historical background data.		MW359
MW 303		MW362
MW368		MW365
		MW368
MW371		MW371
MW375		MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

# C-746-U Second Quarter 2019 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LUCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=17.631
 S= 24.314
 CV(1)=1.379
 K factor**=2.523
 TL(1)=78.977
 LL(1)=N/A

 Statistics-Transformed Background
 X=2.318
 S= 0.979
 CV(2)=0.422
 K factor**=2.523
 TL(2)=4.788
 LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	11.1	2.407
4/22/2002	7	1.946
7/15/2002	4.1	1.411
10/8/2002	6	1.792
1/8/2003	5.3	1.668
4/3/2003	5.3	1.668
7/9/2003	2.9	1.065
10/6/2003	3.2	1.163
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	90	4.500
1/7/2003	64	4.159
4/2/2003	25	3.219
7/9/2003	16	2.773
10/7/2003	13	2.565
1/6/2004	10	2.303
4/7/2004	7.2	1.974
7/14/2004	12	2.485

Data

Dry/Partially Dry Wells						
Well No.	Gradient					
MW376	Sidegradient					
MW377	Sidegradient					

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t Yes	0.769	N/A	-0.263	NO
MW362	Downgradient	Yes	2.64	N/A	0.971	NO
MW365	Downgradient	Yes	1.55	N/A	0.438	NO
MW368	Downgradient	Yes	1.25	N/A	0.223	NO
MW371	Upgradient	Yes	1.55	N/A	0.438	NO
MW374	Upgradient	Yes	2.27	N/A	0.820	NO
MW375	Sidegradient	Yes	1.05	N/A	0.049	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 214.094 S= 231.089 CV(1)=1.079
 K factor**= 2.523
 TL(1)= 797.131
 LL(1)=N/A

Statistics-Transformed Background X=4.867 S= 1.065 CV(2)=0.219 Data

Historical Bac Upgradient W		
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	105	4.654
7/15/2002	70	4.248
10/8/2002	52	3.951
1/8/2003	20.2	3.006
4/3/2003	104	4.644
7/9/2003	34.2	3.532
10/6/2003	46.1	3.831
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	903	6.806
1/7/2003	539	6.290
4/2/2003	295	5.687
7/9/2003	272	5.606
10/7/2003	197	5.283
1/6/2004	330	5.799
4/7/2004	183	5.209
7/14/2004	225	5.416

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

**K factor**=** 2.523 **TL(2)=** 7.554 **LL(2)=**N/A

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	t No	10	N/A	2.303	N/A
MW362	Downgradient	Yes	28	N/A	3.332	NO
MW365	Downgradient	Yes	13.4	N/A	2.595	NO
MW368	Downgradient	Yes	4.02	N/A	1.391	NO
MW371	Upgradient	Yes	4.1	N/A	1.411	NO
MW374	Upgradient	Yes	13.5	N/A	2.603	NO
MW375	Sidegradient	Yes	16	N/A	2.773	NO
11111270	Sidegradient	105	10	14/11	2.775	110

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> =0.060	<b>S</b> = 0.083	<b>CV(1)=</b> 1.380	<b>K factor**=</b> 2.523	TL(1)= 0.270	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -3.259	<b>S</b> = 0.840	<b>CV(2)</b> =-0.258	<b>K factor**=</b> 2.523	<b>TL(2)=</b> -1.140	<b>LL(2)=</b> N/A

Historical Bac		ta from ansformed Result
opgrautent w	chi with 11	ansioi meu resul
Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.0376	-3.281
10/6/2003	0.02	-3.912
Well Number:	MW374	
Date Collected	Result	LN(Result)
10/8/2002	0.025	-3.689
1/7/2003	0.35	-1.050
4/2/2003	0.035	-3.352
7/9/2003	0.02	-3.912
10/7/2003	0.02	-3.912
1/6/2004	0.02	-3.912
4/7/2004	0.02	-3.912
7/14/2004	0.02	-3.912

Dry/Partially Dry Wells					
Well No.	Gradient				
MW376	Sidegradient				
MW377	Sidegradient				

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.02	N/A	-3.912	N/A
MW362	Downgradient	Yes	0.00836	N/A	-4.784	NO
MW365	Downgradient	Yes	0.00667	N/A	-5.010	NO
MW368	Downgradient	Yes	0.00339	N/A	-5.687	NO
MW371	Upgradient	Yes	0.00971	N/A	-4.635	NO
MW374	Upgradient	No	0.02	N/A	-3.912	N/A
MW375	Sidegradient	Yes	0.00391	N/A	-5.544	NO
N/A - Resu	lts identified as N	Non-Detects	during lab	oratory analysis or	data validation	n and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 0.625	<b>S=</b> 0.774	<b>CV(1)=</b> 1.239	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 2.578	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -0.973	<b>S=</b> 0.935	<b>CV(2)</b> =-0.961	<b>K factor**=</b> 2.523	<b>TL(2)=</b> 1.386	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW369			
Date Collected	Result	LN(Result)		
3/18/2002	0.255	-1.366		
4/22/2002	0.2	-1.609		
7/15/2002	0.322	-1.133		
10/8/2002	0.2	-1.609		

0.2

0.2

0.2

0.689

Result

2.61

0.2

1.14

0.862

2.32

0.2

0.2

0.2

MW372

1/8/2003 4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.0202	N/A	-3.902	NO
MW360	Downgradient	Yes	0.111	N/A	-2.198	NO
MW363	Downgradient	Yes	0.0232	N/A	-3.764	NO
MW366	Downgradient	No	0.05	N/A	-2.996	N/A
MW369	Upgradient	No	0.05	N/A	-2.996	N/A
MW372	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

-1.609

-1.609

-1.609

-0.373

0.959

-1.609

0.131

-0.149

0.842

-1.609

-1.609

-1.609

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Antimony UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 0.078	<b>S=</b> 0.098	<b>CV(1)=</b> 1.248	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 0.324	<b>LL(1)=</b> N/A
Statistics-Transformed Background Data	<b>X=</b> -3.915	<b>S=</b> 1.844	<b>CV(2)=-</b> 0.471	<b>K factor**=</b> 2.523	TL(2)= 0.739	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

MW360

Well Number

Well Number:	MW 369	
Date Collected	Result	LN(Result)
3/18/2002	0.2	-1.609
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 3/19/2002	Result 0.2	-1.609
Date Collected 3/19/2002 4/23/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.2 0.2 0.2 0.005	-1.609 -1.609 -1.609 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.2 0.2 0.2 0.005 0.005	-1.609 -1.609 -1.609 -5.298 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.02 0.005 0.005 0.005	-1.609 -1.609 -1.609 -5.298 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.003	N/A	-5.809	N/A
MW360	Downgradient	No	0.003	N/A	-5.809	N/A
MW363	Downgradient	No	0.003	N/A	-5.809	N/A
MW366	Downgradient	Yes	0.00118	N/A	-6.742	NO
MW369	Upgradient	No	0.003	N/A	-5.809	N/A
MW372	Upgradient	Yes	0.00125	N/A	-6.685	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 15.996	<b>S=</b> 11.899	<b>CV(1)=</b> 0.744	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 46.017	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 2.497	<b>S</b> = 0.783	<b>CV(2)=</b> 0.314	<b>K factor**=</b> 2.523	<b>TL(2)=</b> 4.473	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	32.5	3.481
4/22/2002	35.4	3.567
7/15/2002	12.9	2.557
10/8/2002	7.59	2.027
1/8/2003	9.58	2.260
4/3/2003	6.69	1.901
7/8/2003	9.1	2.208
10/6/2003	7.31	1.989
Well Number:	MW372	
Date Collected	Result	LN(Result)
3/19/2002	28.5	3.350
4/23/2002	5.37	1.681
7/16/2002	19.9	2.991
10/8/2002	38.7	3.656
1/7/2003	13	2.565
4/2/2003	3.94	1.371
7/9/2003	3.56	1.270

21.9

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	t Yes	16.2	N/A	2.785	N/A
MW360	Downgradient	t No	3.17	N/A	1.154	N/A
MW363	Downgradient	t No	-4.91	N/A	#Error	N/A
MW366	Downgradient	Yes	46.7	N/A	3.844	N/A
MW369	Upgradient	Yes	83.7	YES	4.427	N/A
MW372	Upgradient	Yes	41	N/A	3.714	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

3.086

Wells with Exceedances MW369

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 0.985	<b>S=</b> 0.825	<b>CV(1)=</b> 0.838	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 3.067	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -0.430	<b>S=</b> 0.990	<b>CV(2)</b> =-2.302	<b>K factor**=</b> 2.523	TL(2)= 2.068	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
3/18/2002	2	0.693					
4/22/2002	2	0.693					
7/15/2002	2	0.693					
10/8/2002	0.2	-1.609					
1/8/2003	0.2	-1.609					
4/3/2003	0.2	-1.609					
7/8/2003	0.2	-1.609					
10/6/2003	0.2	-1.609					
Well Number:	MW372						
Date Collected	Result	LN(Result)					
3/19/2002	2	0.693					
4/23/2002	2	0.693					
7/16/2002	2	0.693					

0.492

0.492

0.6

0.57

0.604

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.457	NO	-0.783	N/A	
MW360	Downgradient	Yes	0.0443	NO	-3.117	N/A	
MW363	Downgradient	Yes	0.0232	NO	-3.764	N/A	
MW366	Downgradient	Yes	0.192	NO	-1.650	N/A	
MW369	Upgradient	Yes	0.0187	NO	-3.979	N/A	
MW372	Upgradient	Yes	0.86	NO	-0.151	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

-0.709

-0.709

-0.511

-0.562 -0.504

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 1.000	<b>S</b> = 0.000	CV(1)=0.000	<b>K factor**=</b> 2.523	TL(1)= 1.000	LL(1)=N/A
Statistics-Transformed Background Data	<b>X</b> =0.000	<b>S</b> = 0.000	<b>CV(2)=</b> #Num!	<b>K factor**=</b> 2.523	TL(2)= 0.000	<b>LL(2)=</b> N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					

Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/8/2003	1	0.000
10/6/2003	1	0.000
XX7 11 X 7 1		
Well Number:	MW372	
Well Number:           Date Collected	MW372 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	. ,
Date Collected 3/19/2002	Result 1	0.000
Date Collected 3/19/2002 4/23/2002	Result 1 1	0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.365	NO	-1.008	N/A	
MW360	Downgradient	Yes	0.2	NO	-1.609	N/A	
MW363	Downgradient	No	0.2	N/A	-1.609	N/A	
MW366	Downgradient	Yes	0.49	NO	-0.713	N/A	
MW369	Upgradient	Yes	0.404	NO	-0.906	N/A	
MW372	Upgradient	Yes	0.586	NO	-0.534	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> =32.763 <b>S</b> = 9.391	<b>CV(1)=</b> 0.287	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 56.456	LL(1)=N/A
Statistics-Transformed Background Data	<b>X</b> =3.449 <b>S</b> = 0.299	<b>CV(2)=</b> 0.087	<b>K factor**=</b> 2.523	TL(2)= 4.202	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
3/18/2002	29.5	3.384					
4/22/2002	29.8	3.395					
7/15/2002	25.3	3.231					
10/8/2002	21.9	3.086					
1/8/2003	20.9	3.040					
4/3/2003	22.2	3.100					
7/8/2003	22.9	3.131					
10/6/2003	21.7	3.077					
Well Number:	MW372						
Date Collected	Result	LN(Result)					
3/19/2002	41.5	3.726					
4/23/2002	43.6	3.775					
7/16/2002	40.4	3.699					
10/8/2002	38.8	3.658					

41.1

42.9

35.1

46.6

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	27.1	NO	3.300	N/A	
MW360	Downgradient	Yes	23.4	NO	3.153	N/A	
MW363	Downgradient	Yes	24.8	NO	3.211	N/A	
MW366	Downgradient	Yes	33.4	NO	3.509	N/A	
MW369	Upgradient	Yes	20	NO	2.996	N/A	
MW372	Upgradient	Yes	49.7	NO	3.906	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

3.716

3.759

3.558

3.842

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> =35.938 <b>S</b> = 3.750	<b>CV(1)=</b> 0.104	<b>K factor**=</b> 2.523	TL(1)= 45.399	LL(1)=N/A
Statistics-Transformed Background Data	<b>X</b> =3.578 <b>S</b> = 0.089	<b>CV(2)=</b> 0.025	<b>K factor**=</b> 2.523	TL(2)= 3.803	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	50	3.912
1/8/2003	35	3.555
4/3/2003	35	3.555
7/8/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW372	
Date Collected	Result	LN(Result)
3/19/2002	35	3.555
1/22/2002	25	

Date Collected	Result	LN(Result)
3/19/2002	35	3.555
4/23/2002	35	3.555
7/16/2002	35	3.555
10/8/2002	35	3.555
1/7/2003	35	3.555
4/2/2003	35	3.555
7/9/2003	35	3.555
10/7/2003	35	3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	28.5	NO	3.350	N/A
MW360	Downgradient	Yes	39.2	NO	3.669	N/A
MW363	Downgradient	Yes	53.5	YES	3.980	N/A
MW366	Downgradient	No	20	N/A	2.996	N/A
MW369	Upgradient	Yes	17.4	NO	2.856	N/A
MW372	Upgradient	Yes	52.6	YES	3.963	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances MW363 MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> =44.119 <b>S</b>	<b>S=</b> 4.554	<b>CV(1)=</b> 0.103	<b>K factor**=</b> 2.523	TL(1)= 55.607	<b>LL(1)=</b> N/A
Statistics-Transformed Background Data	<b>X</b> =3.782 <b>S</b>	<b>S</b> = 0.099	<b>CV(2)=</b> 0.026	<b>K factor**=</b> 2.523	TL(2)= 4.033	LL(2)=N/A

Historical Bac Upgradient W		ta from ansformed Result
Well Number:	MW369	
Date Collected	Result	LN(Result)
7/15/2002	48.3	3.877
10/8/2002	47.7	3.865
1/8/2003	45.7	3.822
4/3/2003	47.4	3.859
7/8/2003	55.9	4.024
10/6/2003	47.4	3.859
1/7/2004	45.5	3.818
4/7/2004	43.4	3.770
Well Number:	MW372	
Date Collected	Result	LN(Result)
7/16/2002	39.8	3.684
10/8/2002	41	3.714
1/7/2003	39.4	3.674
4/2/2003	39.2	3.669
7/9/2003	39.8	3.684

40

42

43.4

10/7/2003

1/5/2004

4/5/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	33.5	NO	3.512	N/A
MW360	Downgradient	Yes	15.9	NO	2.766	N/A
MW363	Downgradient	Yes	18.4	NO	2.912	N/A
MW366	Downgradient	Yes	39.2	NO	3.669	N/A
MW369	Upgradient	Yes	34.7	NO	3.547	N/A
MW372	Upgradient	Yes	46.2	NO	3.833	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

3.689

3.770

3.738

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 0.025	<b>S</b> = 0.021	<b>CV(1)=</b> 0.845	<b>K factor**=</b> 2.523	TL(1)= 0.077	<b>LL(1)=</b> N/A
Statistics-Transformed Background Data	<b>X=</b> -4.090	<b>S</b> = 1.006	<b>CV(2)</b> =-0.246	<b>K factor**=</b> 2.523	TL(2)= -1.553	<b>LL(2)=</b> N/A

Historical Bac Upgradient W		ita from ansformed Result
Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00938	-4.669
1/8/2003	0.00548	-5.207
4/3/2003	0.00587	-5.138

0.0541

0.0689

MW372

Result

0.025

0.025

0.025

0.00158

0.0147

0.0116

0.0653

0.00788

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.001	N/A	-6.908	N/A
MW360	Downgradient	Yes	0.00909	NO	-4.701	N/A
MW363	Downgradient	Yes	0.0012	NO	-6.725	N/A
MW366	Downgradient	No	0.001	N/A	-6.908	N/A
MW369	Upgradient	Yes	0.0033	NO	-5.714	N/A
MW372	Upgradient	Yes	0.00057	1 NO	-7.468	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

-2.917

-2.675

-3.689

-3.689

-3.689

-6.450

-4.220 -4.457

-2.729

-4.843

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> =482.856 <b>S</b> = 57.603	<b>CV(1)=</b> 0.119	<b>K factor**=</b> 2.523	TL(1)= 628.189	LL(1)=N/A
Statistics-Transformed Background Data	<b>X</b> =6.173 <b>S</b> = 0.123	<b>CV(2)=</b> 0.020	<b>K factor**=</b> 2.523	TL(2)= 6.484	<b>LL(2)=</b> N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1011200

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	388	5.961
4/22/2002	404	6.001
7/15/2002	394	5.976
10/8/2002	403	5.999
1/8/2003	520	6.254
4/3/2003	487	6.188
7/8/2003	478	6.170
10/6/2003	476	6.165
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 6.230
Date Collected	Result	,
Date Collected 3/19/2002	Result 508	6.230
Date Collected 3/19/2002 4/23/2002	Result 508 501	6.230 6.217
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 508 501 507	6.230 6.217 6.229
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 508 501 507 495	6.230 6.217 6.229 6.205
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 508 501 507 495 508.7	6.230 6.217 6.229 6.205 6.232
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 508 501 507 495 508.7 515	6.230 6.217 6.229 6.205 6.232 6.244

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	437	NO	6.080	N/A	
MW360	Downgradient	Yes	454	NO	6.118	N/A	
MW363	Downgradient	Yes	421	NO	6.043	N/A	
MW366	Downgradient	Yes	505	NO	6.225	N/A	
MW369	Upgradient	Yes	439	NO	6.084	N/A	
MW372	Upgradient	Yes	632	YES	6.449	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

Wells with Exceedances MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 0.025	<b>S=</b> 0.010	<b>CV(1)=</b> 0.400	<b>K factor**=</b> 2.523	TL(1)= 0.050	<b>LL(1)=</b> N/A
Statistics-Transformed Background Data	<b>X=</b> -3.742	<b>S=</b> 0.307	<b>CV(2)</b> =-0.082	<b>K factor**=</b> 2.523	<b>TL(2)=</b> -2.967	<b>LL(2)=</b> N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			
3/18/2002	0.025	-3.689			
4/22/2002	0.025	-3.689			
7/15/2002	0.05	-2.996			
10/8/2002	0.02	-3.912			
1/8/2003	0.02	-3.912			
4/3/2003	0.02	-3.912			
7/8/2003	0.02	-3.912			
10/6/2003	0.02	-3.912			
Well Number:	MW372				
Date Collected	Result	LN(Result)			
3/19/2002	0.025	-3.689			
4/23/2002	0.025	-3.689			
7/16/2002	0.05	-2.996			
10/8/2002	0.02	-3.912			
1/7/2003	0.02	-3.912			

0.02

0.02

0.02

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	0.00196	NO	-6.235	N/A	
MW360	Downgradient	Yes	0.00199	NO	-6.220	N/A	
MW363	Downgradient	Yes	0.00178	NO	-6.331	N/A	
MW366	Downgradient	Yes	0.00034	5 NO	-7.972	N/A	
MW369	Upgradient	Yes	0.00247	NO	-6.004	N/A	
MW372	Upgradient	Yes	0.00058	NO	-7.452	N/A	
NI/A D	1. 1	T D ( )	1 . 11		1.4 1.1.4	1 (	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

-3.912

-3.912

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 1.781	<b>S=</b> 1.351	<b>CV(1)=</b> 0.759	<b>K factor**=</b> 2.523	TL(1)= 5.190	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 0.228	<b>S</b> = 1.065	<b>CV(2)=</b> 4.665	<b>K factor**=</b> 2.523	TL(2)= 2.915	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW369			
Date Collected	Result	LN(Result)		
3/18/2002	5.41	1.688		
4/22/2002	1.57	0.451		
7/15/2002	0.8	-0.223		
10/8/2002	1.09	0.086		
1/8/2003	2.69	0.990		
4/3/2003	2.04	0.713		
7/8/2003	1.19	0.174		
10/6/2003	1.78	0.577		
Well Number:	MW372			
Date Collected	Result	LN(Result)		
2/10/2002	2 80	1 259		

Date Collected	Result	LN(Result)
3/19/2002	3.89	1.358
4/23/2002	0.05	-2.996
7/16/2002	1.33	0.285
10/8/2002	2.66	0.978
1/7/2003	0.4	-0.916
4/2/2003	0.91	-0.094
7/9/2003	1.42	0.351
10/7/2003	1.26	0.231

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	3.19	NO	1.160	N/A	
MW360	Downgradient	Yes	1.19	NO	0.174	N/A	
MW363	Downgradient	Yes	1.51	NO	0.412	N/A	
MW366	Downgradient	Yes	1.6	NO	0.470	N/A	
MW369	Upgradient	Yes	3.59	NO	1.278	N/A	
MW372	Upgradient	Yes	2.13	NO	0.756	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> =285.188 <b>S</b> = 44.908	<b>CV(1)=</b> 0.157	<b>K factor**=</b> 2.523	TL(1)= 398.489	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 5.640 <b>S=</b> 0.175	<b>CV(2)=</b> 0.031	<b>K factor**=</b> 2.523	TL(2)= 6.080	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resul					
Well Number:	MW369				

wen runder.	101 00 507	
Date Collected	Result	LN(Result)
3/18/2002	173	5.153
4/22/2002	246	5.505
7/15/2002	232	5.447
10/8/2002	275	5.617
1/8/2003	269	5.595
4/3/2003	250	5.521
7/8/2003	295	5.687
10/6/2003	276	5.620
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.687
Date Collected	Result	
Date Collected 3/19/2002	Result 295	5.687
Date Collected 3/19/2002 4/23/2002	Result 295 322	5.687 5.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 295 322 329	5.687 5.775 5.796
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 295 322 329 290	5.687 5.775 5.796 5.670
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 295 322 329 290 316	5.687 5.775 5.796 5.670 5.756
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 295 322 329 290 316 311	5.687 5.775 5.796 5.670 5.756 5.740

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	251	NO	5.525	N/A
MW360	Downgradient	Yes	257	NO	5.549	N/A
MW363	Downgradient	Yes	261	NO	5.565	N/A
MW366	Downgradient	Yes	286	NO	5.656	N/A
MW369	Upgradient	Yes	261	NO	5.565	N/A
MW372	Upgradient	Yes	309	NO	5.733	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 7.385	<b>S=</b> 6.991	<b>CV(1)=</b> 0.947	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 25.024	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 1.358	<b>S</b> = 1.323	<b>CV(2)=</b> 0.974	<b>K factor**=</b> 2.523	<b>TL(2)=</b> 4.697	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			

-0.422

-0.364

1.960

3.068

2.918

2.701

2.425

2.701

1.783

-0.233

0.577

-0.254

1.267

1.613

2.303

-0.311

LN(Result)

0.656

0.695

7.1

21.5

18.5

14.9

11.3

14.9

MW372

Result

5.95

0.792

1.78

0.776

3.55

5.02

0.733

10

3/18/2002

4/22/2002

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.0361	NO	-3.321	N/A
MW360	Downgradient	Yes	0.443	NO	-0.814	N/A
MW363	Downgradient	Yes	0.0842	NO	-2.475	N/A
MW366	Downgradient	Yes	0.0528	NO	-2.941	N/A
MW369	Upgradient	Yes	0.149	NO	-1.904	N/A
MW372	Upgradient	Yes	0.236	NO	-1.444	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 12.864 <b>S=</b> 3.505	<b>CV(1)=</b> 0.272	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 21.707	LL(1)=N/A
Statistics-Transformed Background Data	<b>X</b> =2.517 <b>S</b> = 0.290	<b>CV(2)=</b> 0.115	<b>K factor**=</b> 2.523	<b>TL(2)=</b> 3.248	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW369				
Date Collected	Result	LN(Result)			
3/18/2002	11.4	2.434			
4/22/2002	12	2.485			
7/15/2002	10	2.303			
10/8/2002	8.62	2.154			
1/8/2003	7.89	2.066			
4/3/2003	7.97	2.076			
7/8/2003	10.3	2.332			
10/6/2003	9.14	2.213			
Well Number:	MW372				
Date Collected	Result	LN(Result)			
3/19/2002	15.7	2.754			
4/23/2002	16.6	2.809			
7/16/2002	15.4	2.734			

15.8

15.8

16.4

15.2

17.6

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	11.3	NO	2.425	N/A
MW360	Downgradient	Yes	8.75	NO	2.169	N/A
MW363	Downgradient	Yes	9.81	NO	2.283	N/A
MW366	Downgradient	Yes	13.5	NO	2.603	N/A
MW369	Upgradient	Yes	9.06	NO	2.204	N/A
MW372	Upgradient	Yes	18.2	NO	2.901	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

2.760

2.760

2.797

2.721

2.868

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 0.413	<b>S=</b> 0.274	<b>CV(1)=</b> 0.664	<b>K factor**=</b> 2.523	TL(1)= 1.105	<b>LL(1)=</b> N/A
Statistics-Transformed Background Data	<b>X=</b> -1.226	<b>S=</b> 1.008	<b>CV(2)=</b> -0.822	<b>K factor**=</b> 2.523	<b>TL(2)=</b> 1.317	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	0.034	-3.381				
4/22/2002	0.062	-2.781				
7/15/2002	0.436	-0.830				
10/8/2002	0.867	-0.143				
1/8/2003	0.828	-0.189				
4/3/2003	0.672	-0.397				
7/8/2003	0.321	-1.136				
10/6/2003	0.714	-0.337				

MW372

Result

0.205

0.345

0.21

0.0539

0.537

0.415

0.654

0.254

Well Number: Date Collected

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00905	NO	-4.705	N/A
MW360	Downgradient	Yes	0.107	NO	-2.235	N/A
MW363	Downgradient	Yes	0.268	NO	-1.317	N/A
MW366	Downgradient	Yes	0.00671	NO	-5.004	N/A
MW369	Upgradient	Yes	0.0201	NO	-3.907	N/A
MW372	Upgradient	No	0.0049	N/A	-5.319	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

LN(Result)

-1.585

-1.064

-1.561

-2.921

-0.622

-0.879

-0.425

-1.370

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 0.010	<b>S=</b> 0.012	<b>CV(1)=</b> 1.199	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 0.040	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -5.698	<b>S=</b> 1.607	<b>CV(2)</b> =-0.282	<b>K factor**=</b> 2.523	<b>TL(2)=</b> -1.643	<b>LL(2)=</b> N/A

	kground Data from Yells with Transformed Result
Well Number	MW369

wen number.	101 00 509	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/8/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.001	-3.689 -3.689 -3.689 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -3.689 -6.908 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.001	N/A	-6.908	N/A
MW360	Downgradient	No	0.00042	6 N/A	-7.761	N/A
MW363	Downgradient	No	0.001	N/A	-6.908	N/A
MW366	Downgradient	No	0.001	N/A	-6.908	N/A
MW369	Upgradient	No	0.001	N/A	-6.908	N/A
MW372	Upgradient	Yes	0.000389	9 N/A	-7.852	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

#### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 0.024	<b>S=</b> 0.021	<b>CV(1)=</b> 0.910	<b>K factor**=</b> 2.523	TL(1)= 0.078	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -4.246	<b>S</b> = 1.075	<b>CV(2)</b> =-0.253	<b>K factor**=</b> 2.523	TL(2)= -1.535	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.013	-4.343
10/6/2003	0.0104	-4.566
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	· · · · ·
Date Collected 3/19/2002	Result 0.05	-2.996
Date Collected 3/19/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.002	N/A	-6.215	N/A
MW360	Downgradient	Yes	0.00212	NO	-6.156	N/A
MW363	Downgradient	Yes	0.00293	NO	-5.833	N/A
MW366	Downgradient	No	0.002	N/A	-6.215	N/A
MW369	Upgradient	Yes	0.00656	NO	-5.027	N/A
MW372	Upgradient	Yes	0.00125	NO	-6.685	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S), TL

Mean, X = (sum of background results)/(count of background results)Х

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 74.563	<b>S=</b> 94.243	<b>CV(1)=</b> 1.264	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 312.337	<b>LL(1)=</b> N/A
Statistics-Transformed Background Data	<b>X</b> =4.554	<b>S=</b> 0.784	<b>CV(2)=</b> 0.172	<b>K factor**=</b> 2.523	<b>TL(2)=</b> 5.371	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.347
Date Collected	Result	
Date Collected 3/19/2002	Result 210	5.347
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

**#Because the natural log was not** possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	484	N/A	6.182	YES
MW360	Downgradient	Yes	421	N/A	6.043	YES
MW363	Downgradient	Yes	322	N/A	5.775	YES
MW366	Downgradient	Yes	441	N/A	6.089	YES
MW369	Upgradient	Yes	372	N/A	5.919	YES
MW372	Upgradient	Yes	400	N/A	5.991	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated	MW357
	MW360
concentration with respect to historical background data.	MW363
	MW366
	MW369
	MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

# C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 6.274	<b>S=</b> 0.194	<b>CV(1)=</b> 0.031	<b>K factor**=</b> 2.904	TL(1)= 6.837	<b>LL(1)=</b> 5.7114
Statistics-Transformed Background Data	<b>X=</b> 1.836	<b>S</b> = 0.031	<b>CV(2)=</b> 0.017	<b>K factor**=</b> 2.904	TL(2)= 1.925	<b>LL(2)=</b> 1.7467

	Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369							

Date Collected	Result	LN(Result)
3/18/2002	6.1	1.808
4/22/2002	6.1	1.808
7/15/2002	6.1	1.808
10/8/2002	6.5	1.872
1/8/2003	6.5	1.872
4/3/2003	6.6	1.887
7/8/2003	6.5	1.872
10/6/2003	6.5	1.872
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 1.808
Date Collected	Result	( )
Date Collected 3/19/2002	Result 6.1	1.808
Date Collected 3/19/2002 4/23/2002	Result 6.1 6.12	1.808 1.812
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 6.1 6.12 6.1	1.808 1.812 1.808
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 6.1 6.12 6.1 6.06	1.808 1.812 1.808 1.802
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 6.1 6.12 6.1 6.06 6.26	1.808 1.812 1.808 1.802 1.834
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 6.1 6.12 6.1 6.06 6.26 6.15	1.808 1.812 1.808 1.802 1.834 1.816

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) &gt;TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>	
MW357	Downgradien	t Yes	6.3	NO	1.841	N/A	
MW360	Downgradien	t Yes	6.38	NO	1.853	N/A	
MW363	Downgradien	t Yes	6.22	NO	1.828	N/A	
MW366	Downgradien	t Yes	6.13	NO	1.813	N/A	
MW369	Upgradient	Yes	6.4	NO	1.856	N/A	
MW372	Upgradient	Yes	6.25	NO	1.833	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 1.663	<b>S=</b> 0.488	<b>CV(1)=</b> 0.293	<b>K factor**=</b> 2.523	TL(1)= 2.895	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 0.456	<b>S</b> = 0.362	<b>CV(2)=</b> 0.794	<b>K factor**=</b> 2.523	TL(2)= 1.368	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	2	0.693				
4/22/2002	2.21	0.793				
7/15/2002	2	0.693				
10/8/2002	0.966	-0.035				
1/8/2003	0.727	-0.319				
4/3/2003	0.8	-0.223				
7/8/2003	1.62	0.482				
10/6/2003	1.14	0.131				
Well Number:	MW372					
Date Collected	Result	LN(Result)				
3/19/2002	2.04	0.713				
4/23/2002	2.03	0.708				
7/16/2002	2	0.693				
10/8/2002	1.54	0.432				
1/7/2003	1.88	0.631				
4/2/2003	2.09	0.737				
7/9/2003	1.78	0.577				

1.79

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	1.64	NO	0.495	N/A	
MW360	Downgradient	Yes	0.764	NO	-0.269	N/A	
MW363	Downgradient	Yes	1.27	NO	0.239	N/A	
MW366	Downgradient	Yes	1.89	NO	0.637	N/A	
MW369	Upgradient	Yes	0.825	NO	-0.192	N/A	
MW372	Upgradient	Yes	2.1	NO	0.742	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

0.582

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 45.100	<b>S=</b> 11.875	<b>CV(1)=</b> 0.263	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 75.061	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 3.780	<b>S</b> = 0.242	<b>CV(2)=</b> 0.064	<b>K factor**=</b> 2.523	TL(2)= 4.390	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Resu							
MW369							
Result	LN(Result)						
35.7	3.575						
37.6	3.627						
42.4	3.747						
66.9	4.203						
67.9	4.218						
61.8	4.124						
45.6	3.820						
59.1	4.079						
MW372							
Result	LN(Result)						
37.2	3.616						
38.6	3.653						
35.6	3.572						
37.5	3.624						
34.1	3.529						
34.4	3.538						
44.1	3.786						
	with Tr:           MW369           Result           35.7           37.6           42.4           66.9           67.9           61.8           45.6           59.1           MW372           Result           37.2           38.6           35.6           37.5           34.1           34.4						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	Yes	43.1	NO	3.764	N/A	
MW360	Downgradient	Yes	62.1	NO	4.129	N/A	
MW363	Downgradient	Yes	42	NO	3.738	N/A	
MW366	Downgradient	Yes	46.6	NO	3.842	N/A	
MW369	Upgradient	Yes	51.1	NO	3.934	N/A	
MW372	Upgradient	Yes	47.4	NO	3.859	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 45.031	<b>S=</b> 33.919	<b>CV(1)=</b> 0.753	<b>K factor**=</b> 2.523	TL(1)= 130.609	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 3.420	<b>S</b> = 0.981	<b>CV(2)=</b> 0.287	<b>K factor**=</b> 2.523	<b>TL(2)=</b> 5.894	<b>LL(2)=</b> N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
3/18/2002	15.5	2.741					
4/22/2002	15.8	2.760					
7/15/2002	13.8	2.625					
10/8/2002	6.9	1.932					
1/8/2003	10.5	2.351					
4/3/2003	10.5	2.351					
7/8/2003	10.9	2.389					
10/6/2003	16.3	2.791					
Well Number:	MW372						
Date Collected	Result	LN(Result)					
3/19/2002	71.7	4.272					
4/23/2002	74.7	4.313					
7/16/2002	74.1	4.305					

70.5

75.8

81.8

83.6

88.1

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	64.2	NO	4.162	N/A
MW360	Downgradient	Yes	16.1	NO	2.779	N/A
MW363	Downgradient	Yes	40.5	NO	3.701	N/A
MW366	Downgradient	Yes	60.8	NO	4.108	N/A
MW369	Upgradient	Yes	14.6	NO	2.681	N/A
MW372	Upgradient	Yes	71.3	NO	4.267	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

4.256

4.328

4.404

4.426

4.478

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 20.821	<b>S=</b> 18.044	<b>CV(1)=</b> 0.867	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 66.344	LL(1)=N/A
Statistics-Transformed Background	<b>X=</b> 2.770	<b>S=</b> 1.150	<b>CV(2)=</b> 0.415	<b>K factor**=</b> 2.523	TL(2)= 3.972	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW369							
Date Collected	Result	LN(Result)						
3/18/2002	41.7	3.731						
4/22/2002	53.1	3.972						
7/15/2002	18.1	2.896						
10/8/2002	16.4	2.797						
1/8/2003	3.49	1.250						
4/3/2003	9.34	2.234						
7/8/2003	17.5	2.862						
10/6/2003	17	2.833						
Well Number:	MW372							
Date Collected	Result	LN(Result)						
3/19/2002	44.8	3.802						
4/23/2002	0.802	-0.221						
7/16/2002	19.8	2.986						
10/8/2002	46.1	3.831						
1/7/2003	-0.973	#Func!						
4/2/2003	9.07	2.205						
7/9/2003	0	#Func!						
10/7/2003	36.9	3.608						

Data

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

**#Because the natural log was not** possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	26.2	NO	3.266	N/A
MW360	Downgradient	No	1.48	N/A	0.392	N/A
MW363	Downgradient	No	2.93	N/A	1.075	N/A
MW366	Downgradient	Yes	39.6	NO	3.679	N/A
MW369	Upgradient	Yes	70.8	YES	4.260	N/A
MW372	Upgradient	Yes	59.4	NO	4.084	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

Wells with Exceedances MW369

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

# C-746-U Second Quarter 2019 Statistical AnalysisHistorical Background ComparisonTotal Organic Carbon (TOC)UNITS: mg/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 3.513	<b>S=</b> 4.307	<b>CV(1)=</b> 1.226	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 14.378	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 0.851	<b>S</b> = 0.828	<b>CV(2)=</b> 0.973	<b>K factor**=</b> 2.523	<b>TL(2)=</b> 2.940	<b>LL(2)=</b> N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW369							
Date Collected	Result	LN(Result)						
3/18/2002	1.7	0.531						
4/22/2002	1.6	0.470						
7/15/2002	3.1	1.131						
10/8/2002	17.7	2.874						
1/8/2003	9	2.197						
4/3/2003	4	1.386						
7/8/2003	4.9	1.589						
10/6/2003	2.4	0.875						
Well Number:	MW372							
Date Collected	Result	LN(Result)						
3/19/2002	1	0.000						
4/23/2002	1.2	0.182						
7/16/2002	1	0.000						
10/8/2002	1	0.000						
1/7/2003	1.6	0.470						
4/2/2003	1.5	0.405						
7/9/2003	3	1.099						

1.5

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.973	N/A	-0.027	NO
MW360	Downgradient	Yes	1.26	N/A	0.231	NO
MW363	Downgradient	Yes	1.1	N/A	0.095	NO
MW366	Downgradient	Yes	0.819	N/A	-0.200	NO
MW369	Upgradient	Yes	1.19	N/A	0.174	NO
MW372	Upgradient	Yes	1.1	N/A	0.095	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

0.405

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

# C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 67.963	<b>S=</b> 64.316	<b>CV(1)=</b> 0.946	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 230.231	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 3.772	<b>S=</b> 1.023	<b>CV(2)=</b> 0.271	<b>K factor**=</b> 2.523	TL(2)= 6.353	<b>LL(2)=</b> N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
3/18/2002	50	3.912					
4/22/2002	50	3.912					
7/15/2002	81	4.394					
10/8/2002	202	5.308					

177

93.1

17.5

37.5

MW372

Result

184

50

50

50

10

12.7

12.6

10

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	6.46	NO	1.866	N/A
MW360	Downgradient	No	7.26	N/A	1.982	N/A
MW363	Downgradient	Yes	12.1	NO	2.493	N/A
MW366	Downgradient	Yes	15	NO	2.708	N/A
MW369	Upgradient	Yes	14.3	NO	2.660	N/A
MW372	Upgradient	Yes	7.5	NO	2.015	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

5.176

4.534

2.862

3.624

5.215

3.912

3.912

3.912

2.303

2.542

2.303

2.534

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 5.625	<b>S=</b> 3.594	<b>CV(1)=</b> 0.639	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 14.693	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 1.571	<b>S</b> = 0.565	<b>CV(2)=</b> 0.360	<b>K factor**=</b> 2.523	TL(2)= 2.995	<b>LL(2)=</b> N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW369					
Date Collected	Result	LN(Result)				
3/18/2002	11	2.398				

2.773

2.079

1.099

0.693

1.099

1.099

0.693

1.609

1.609

1.386

1.792

1.609

1.792

1.609

1.792

LN(Result)

16

8

3

2

3

3

2

5

5

4

6 5

6

5

6

MW372

Result

4/22/2002

7/15/2002

10/8/2002

1/8/2003

4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	3.96	N/A	1.376	N/A
MW360	Downgradient	Yes	0.83	N/A	-0.186	N/A
MW363	Downgradient	Yes	0.37	N/A	-0.994	N/A
MW366	Downgradient	Yes	5.44	NO	1.694	N/A
MW369	Upgradient	Yes	0.52	N/A	-0.654	N/A
MW372	Upgradient	Yes	4.78	N/A	1.564	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 0.116	<b>S=</b> 0.173	<b>CV(1)=</b> 1.490	<b>K factor**=</b> 2.523	TL(1)= 0.552	<b>LL(1)=</b> N/A
Statistics-Transformed Background Data	<b>X=</b> -2.729	<b>S=</b> 1.014	<b>CV(2)</b> =-0.371	<b>K factor**=</b> 2.523	<b>TL(2)=</b> -0.172	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW369						
Date Collected	Result	LN(Result)					
3/18/2002	0.1	-2.303					
4/22/2002	0.1	-2.303					
7/15/2002	0.1	-2.303					

0.025

0.035

0.035

0.02

0.02

MW372

Result

0.725

0.1

0.1

0.025

0.035

0.035

0.2

0.2

10/8/2002

1/8/2003 4/3/2003

7/8/2003

10/6/2003

3/19/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.00332	N/A	-5.708	NO
MW360	Downgradient	Yes	0.0034	N/A	-5.684	NO
MW363	Downgradient	No	0.02	N/A	-3.912	N/A
MW366	Downgradient	Yes	0.00427	N/A	-5.456	NO
MW369	Upgradient	No	0.02	N/A	-3.912	N/A
MW372	Upgradient	Yes	0.00375	N/A	-5.586	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

-3.689

-3.352

-3.352

-3.912 -3.912

LN(Result)

-0.322

-2.303

-2.303

-3.689

-3.352

-3.352

-1.609

-1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Acetone UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 51.625	<b>S=</b> 137.818	8 CV(1)=2.670	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 399.340	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 2.777	<b>S=</b> 1.127	<b>CV(2)=</b> 0.406	<b>K factor**=</b> 2.523	<b>TL(2)=</b> 5.621	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	18	2.890				
4/23/2002	110	4.700				
7/15/2002	10	2.303				
10/8/2002	18	2.890				

10

10

10

10

9

560

10

10

10

10

10

11

MW373

Result

1/8/2003 4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	No	5	N/A	1.609	N/A	
MW361	Downgradient	No	5	N/A	1.609	N/A	
MW364	Downgradient	No	5	N/A	1.609	N/A	
MW367	Downgradient	No	5	N/A	1.609	N/A	
MW370	Upgradient	Yes	4.55	N/A	1.515	NO	
MW373	Upgradient	No	5	N/A	1.609	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

2.303

2.303

2.303

2.303

2.197

6.328

2.303

2.303

2.303

2.303

2.303

2.398

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 2.026	<b>S=</b> 5.626	<b>CV(1)=</b> 2.777	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 16.219	<b>LL(1)=</b> N/A
Statistics-Transformed Background Data	<b>X=</b> -0.803	<b>S=</b> 1.380	<b>CV(2)=-</b> 1.718	<b>K factor**=</b> 2.523	<b>TL(2)=</b> 2.678	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	4.66	1.539					
4/23/2002	0.2	-1.609					
7/15/2002	0.2	-1.609					

0.2

0.2

0.2

0.2

0.2

MW373

Result

22.7

1.46

0.253

0.482

0.608

0.446

0.2

0.2

10/8/2002

1/8/2003 4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0262	N/A	-3.642	NO
MW361	Downgradient	No	0.05	N/A	-2.996	N/A
MW364	Downgradient	No	0.05	N/A	-2.996	N/A
MW367	Downgradient	No	0.05	N/A	-2.996	N/A
MW370	Upgradient	No	0.05	N/A	-2.996	N/A
MW373	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

-1.609

-1.609

-1.609

-1.609

-1.609

3.122

0.378

-1.374

-0.730

-0.498

-0.807

-1.609

-1.609

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

#### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Antimony UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 0.078	<b>S=</b> 0.098	<b>CV(1)=</b> 1.248	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 0.324	<b>LL(1)=</b> N/A
Statistics-Transformed Background Data	<b>X=</b> -3.915	<b>S=</b> 1.844	<b>CV(2)=-</b> 0.471	<b>K factor**=</b> 2.523	TL(2)= 0.739	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.2	-1.609
4/23/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -1.609
Date Collected	Result	
Date Collected 3/18/2002	Result 0.2	-1.609
Date Collected 3/18/2002 4/23/2002	Result 0.2 0.2	-1.609 -1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.2 0.2 0.2 0.005	-1.609 -1.609 -1.609 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.2 0.2 0.2 0.005 0.005	-1.609 -1.609 -1.609 -5.298 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.003	N/A	-5.809	N/A
MW361	Downgradient	No	0.003	N/A	-5.809	N/A
MW364	Downgradient	No	0.003	N/A	-5.809	N/A
MW367	Downgradient	No	0.003	N/A	-5.809	N/A
MW370	Upgradient	No	0.003	N/A	-5.809	N/A
MW373	Upgradient	Yes	0.00125	5 N/A	-6.685	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)Х

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Beta activity UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 9.815	<b>S=</b> 7.838	<b>CV(1)=</b> 0.799	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 29.591	<b>LL(1)=</b> N/A
Statistics-Transformed Background Data	<b>X=</b> 2.072	<b>S</b> = 0.630	<b>CV(2)=</b> 0.304	<b>K factor**=</b> 2.523	TL(2)= 3.662	<b>LL(2)=</b> N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	10.1	2.313			
4/23/2002	4.46	1.495			
7/15/2002	6.58	1.884			
10/8/2002	4.9	1.589			
1/8/2003	4.47	1.497			
4/3/2003	8.65	2.158			
7/9/2003	3.66	1.297			
10/6/2003	5.38	1.683			
Well Number:	MW373				
Date Collected	Result	LN(Result)			
3/18/2002	15.1	2.715			
4/23/2002	6.26	1.834			
7/16/2002	6.22	1.828			
10/8/2002	4.06	1.401			
1/7/2003	11.2	2.416			
4/2/2003	18.5	2.918			
7/9/2003	13.3	2.588			

34.2

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	23.5	N/A	3.157	N/A
MW361	Downgradient	Yes	31.7	N/A	3.456	N/A
MW364	Downgradient	Yes	39.5	N/A	3.676	N/A
MW367	Downgradient	Yes	39.3	N/A	3.671	N/A
MW370	Upgradient	Yes	61	YES	4.111	N/A
MW373	Upgradient	Yes	13.7	N/A	2.617	N/A
37/4 B	1					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

3.532

Wells with Exceedances MW370

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 1.140	<b>S=</b> 0.780	<b>CV(1)=</b> 0.684	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 3.108	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -0.235	<b>S=</b> 1.006	<b>CV(2)</b> =-4.287	<b>K factor**=</b> 2.523	TL(2)= 2.303	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	2	0.693			
4/23/2002	2	0.693			
7/15/2002	2	0.693			
10/8/2002	0.2	-1.609			
1/8/2003	0.2	-1.609			

0.2

0.2

0.2

MW373

Result

2

2

2

0.79

0.807

1.13

1.28

1.24

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.525	NO	-0.644	N/A
MW361	Downgradient	Yes	0.357	NO	-1.030	N/A
MW364	Downgradient	Yes	0.0225	NO	-3.794	N/A
MW367	Downgradient	Yes	0.0746	NO	-2.596	N/A
MW370	Upgradient	Yes	0.0319	NO	-3.445	N/A
MW373	Upgradient	Yes	1.32	NO	0.278	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

-1.609

-1.609

-1.609

0.693

0.693

0.693

-0.236

-0.214

0.122

0.247

0.215

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 1.000	<b>S</b> = 0.000	CV(1)=0.000	<b>K factor**=</b> 2.523	TL(1)= 1.000	LL(1)=N/A
Statistics-Transformed Background Data	<b>X</b> =0.000	<b>S</b> = 0.000	<b>CV(2)=</b> #Num!	<b>K factor**=</b> 2.523	TL(2)= 0.000	<b>LL(2)=</b> N/A

Historical Background Data from Upgradient Wells with Transformed Result				
Well Number:	MW370			

Date Collected	Result	LN(Result)
3/17/2002	1	0.000
4/23/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MULTO	
wen number.	MW373	
Date Collected	Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	
Date Collected 3/18/2002	Result 1	0.000
Date Collected 3/18/2002 4/23/2002	Result 1 1	0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 1 1 1 1 1 1 1	0.000 0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	0.442	NO	-0.816	N/A	
MW361	Downgradient	Yes	0.41	NO	-0.892	N/A	
MW364	Downgradient	Yes	0.425	NO	-0.856	N/A	
MW367	Downgradient	Yes	0.498	NO	-0.697	N/A	
MW370	Upgradient	Yes	0.415	NO	-0.879	N/A	
MW373	Upgradient	Yes	0.572	NO	-0.559	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

#### C-746-U Second Quarter 2019 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 43.413	<b>S=</b> 13.444	<b>CV(1)=</b> 0.310	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 77.331	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 3.723	<b>S</b> = 0.323	<b>CV(2)=</b> 0.087	<b>K factor**=</b> 2.523	TL(2)= 4.539	LL(2)=N/A

Historical Background Data from								
Upgradient W	ells with Tra	ansformed Result						
Well Number:	MW370							
Date Collected	Result	LN(Result)						
3/17/2002	34.8	3.550						
4/23/2002	43.4	3.770						
7/15/2002	33.2	3.503						
10/8/2002	29.2	3.374						
1/8/2003	31.3	3.444						
4/3/2003	32.4	3.478						
7/9/2003	22.9	3.131						
10/6/2003	28	3.332						
Well Number:	MW373							
Date Collected	Result	LN(Result)						
3/18/2002	61.9	4.126						
4/23/2002	59.2	4.081						
7/16/2002	47.6	3.863						
10/8/2002	46.1	3.831						
1/7/2003	49.2	3.896						
4/2/2003	57.8	4.057						
7/9/2003	52.7	3.965						
10/7/2003	64.9	4.173						

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	33.2	NO	3.503	N/A	
MW361	Downgradient	Yes	31.9	NO	3.463	N/A	
MW364	Downgradient	Yes	32.6	NO	3.484	N/A	
MW367	Downgradient	Yes	31.1	NO	3.437	N/A	
MW370	Upgradient	Yes	26.5	NO	3.277	N/A	
MW373	Upgradient	Yes	64	NO	4.159	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)Х

# C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 41.938	<b>S=</b> 24.732	<b>CV(1)=</b> 0.590	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 104.336	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 3.658	<b>S</b> = 0.339	<b>CV(2)=</b> 0.093	<b>K factor**=</b> 2.523	<b>TL(2)=</b> 4.512	<b>LL(2)=</b> N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Well Number:	MW370							
Date Collected	Result	LN(Result)						
3/17/2002	35	3.555						
4/23/2002	134	4.898						
7/15/2002	35	3.555						
10/8/2002	35	3.555						
1/8/2003	35	3.555						

35

35

35

35

47

35

35

35

35

35

35

MW373

Result

4/3/2003

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	30.3	NO	3.411	N/A	
MW361	Downgradient	Yes	49.9	NO	3.910	N/A	
MW364	Downgradient	Yes	60.7	NO	4.106	N/A	
MW367	Downgradient	Yes	17.4	NO	2.856	N/A	
MW370	Upgradient	No	20	N/A	2.996	N/A	
MW373	Upgradient	Yes	43.8	NO	3.780	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

3.555

3.555

3.555

3.555

3.850

3.555

3.555

3.555

3.555

3.555

3.555

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> =45.919 <b>S</b> = 7.524	<b>CV(1)=</b> 0.164	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 64.901	LL(1)=N/A
Statistics-Transformed Background Data	<b>X</b> =3.814 <b>S</b> = 0.165	<b>CV(2)</b> =0.043	<b>K factor**=</b> 2.523	<b>TL(2)=</b> 4.231	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
7/15/2002	55.5	4.016					
10/8/2002	53.6	3.982					
1/8/2003	52.9	3.968					
4/3/2003	53.6	3.982					
7/9/2003	51.9	3.949					
10/6/2003	53	3.970					
1/7/2004	53	3.970					
4/7/2004	51.6	3.944					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
7/16/2002	40.6	3.704					
10/8/2002	38.8	3.658					

39

38.4

38.1

38

37.9

38.8

1/7/2003

4/2/2003

7/9/2003

10/7/2003

1/6/2004

4/7/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW358	Downgradient	Yes	36.4	NO	3.595	N/A		
MW361	Downgradient	Yes	33.3	NO	3.506	N/A		
MW364	Downgradient	Yes	34.3	NO	3.535	N/A		
MW367	Downgradient	Yes	39.9	NO	3.686	N/A		
MW370	Upgradient	Yes	34.8	NO	3.550	N/A		
MW373	Upgradient	Yes	43.6	NO	3.775	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

3.664

3.648

3.640

3.638

3.635

3.658

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 0.027	<b>S=</b> 0.032	<b>CV(1)=</b> 1.165	<b>K factor**=</b> 2.523	TL(1)= 0.108	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -4.058	<b>S=</b> 1.011	<b>CV(2)</b> =-0.249	<b>K factor**=</b> 2.523	<b>TL(2)=</b> -1.507	<b>LL(2)=</b> N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	0.025	-3.689				
4/23/2002	0.025	-3.689				
7/15/2002	0.025	-3.689				
10/8/2002	0.0174	-4.051				
1/8/2003	0.0105	-4.556				
4/3/2003	0.00931	-4.677				
7/9/2003	0.137	-1.988				
10/6/2003	0.0463	-3.073				
Well Number:	MW373					
Date Collected	Result	LN(Result)				
3/18/2002	0.025	-3 689				

3/18/2002	0.025	-3.689	
4/23/2002	0.034	-3.381	
7/16/2002	0.025	-3.689	
10/8/2002	0.00411	-5.494	
1/7/2003	0.00344	-5.672	
4/2/2003	0.00368	-5.605	
7/9/2003	0.0405	-3.206	
10/7/2003	0.00843	-4.776	

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00312	N/A	-5.770	NO
MW361	Downgradient	No	0.001	N/A	-6.908	N/A
MW364	Downgradient	Yes	0.00048	1 N/A	-7.640	NO
MW367	Downgradient	Yes	0.00052	8 N/A	-7.546	NO
MW370	Upgradient	Yes	0.00037	7 N/A	-7.883	NO
MW373	Upgradient	Yes	0.00047	3 N/A	-7.656	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=608.719 S= 156.157 CV(1)=0.257
 K factor**=2.523
 TL(1)=1002.702 LL(1)=N/A

 Statistics-Transformed Background
 X=6.380
 S= 0.260
 CV(2)=0.041
 K factor**=2.523
 TL(2)=7.036
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				

Data

Date Collected	Result	LN(Result)
3/17/2002	406	6.006
4/23/2002	543	6.297
7/15/2002	476	6.165
10/8/2002	441	6.089
1/8/2003	486	6.186
4/3/2003	466	6.144
7/9/2003	479	6.172
10/6/2003	435	6.075
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.494
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 661	6.494
Date Collected 3/18/2002 4/23/2002	Result 661 801	6.494 6.686
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 661 801 774	6.494 6.686 6.652
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 661 801 774 680	6.494 6.686 6.652 6.522
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 661 801 774 680 686.5	6.494 6.686 6.652 6.522 6.532

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	515	NO	6.244	N/A
MW361	Downgradient	Yes	481	NO	6.176	N/A
MW364	Downgradient	Yes	479	NO	6.172	N/A
MW367	Downgradient	Yes	438	NO	6.082	N/A
MW370	Upgradient	Yes	458	NO	6.127	N/A
MW373	Upgradient	Yes	767	NO	6.642	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 0.025	<b>S=</b> 0.010	<b>CV(1)=</b> 0.399	<b>K factor**=</b> 2.523	TL(1)= 0.050	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -3.739	<b>S</b> = 0.308	<b>CV(2)</b> =-0.082	<b>K factor**=</b> 2.523	TL(2)= -2.963	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	0.025	-3.689			
4/23/2002	0.025	-3.689			
7/15/2002	0.05	-2.996			
10/8/2002	0.02	-3.912			
1/8/2003	0.02	-3.912			
4/3/2003	0.02	-3.912			
7/9/2003	0.02	-3.912			
10/6/2003	0.02	-3.912			
Well Number:	MW373				
Date Collected	Result	LN(Result)			
3/18/2002	0.026	-3.650			
4/23/2002	0.025	-3.689			
7/16/2002	0.05	-2.996			
10/8/2002	0.02	-3.912			
1/7/2003	0.02	-3.912			
4/2/2003	0.02	-3.912			
7/9/2003	0.02	-3.912			

0.02

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00232	NO	-6.066	N/A
MW361	Downgradient	Yes	0.00188	NO	-6.276	N/A
MW364	Downgradient	Yes	0.00195	NO	-6.240	N/A
MW367	Downgradient	Yes	0.00191	NO	-6.261	N/A
MW370	Upgradient	Yes	0.00192	NO	-6.255	N/A
MW373	Upgradient	Yes	0.00047	9 NO	-7.644	N/A
NI/A D	1. 1	T D I I	1 . 11		1 . 1.1	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 1.387	<b>S=</b> 1.153	<b>CV(1)=</b> 0.831	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 4.295	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -0.115	<b>S=</b> 1.207	<b>CV(2)</b> =-10.514	<b>K factor**=</b> 2.523	TL(2)= 2.930	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	4.32	1.463				
4/23/2002	1.24	0.215				
7/15/2002	0.75	-0.288				
10/8/2002	0.94	-0.062				
1/8/2003	3.08	1.125				
4/3/2003	1.45	0.372				
7/9/2003	1.22	0.199				
10/6/2003	1.07	0.068				
Well Number:	MW373					
Date Collected	Result	LN(Result)				
3/18/2002	3.04	1.112				
4/23/2002	0.03	-3.507				
7/16/2002	0.23	-1.470				
10/8/2002	0.86	-0.151				

0.21

1.19

1.1

1.46

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	1.79	NO	0.582	N/A
MW361	Downgradient	Yes	2.98	NO	1.092	N/A
MW364	Downgradient	Yes	2.5	NO	0.916	N/A
MW367	Downgradient	Yes	0.98	NO	-0.020	N/A
MW370	Upgradient	Yes	3.46	NO	1.241	N/A
MW373	Upgradient	Yes	1.49	NO	0.399	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

-1.561

0.174

0.095

0.378

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X=356.188 S= 106.752 CV(1)=0.300
 K factor**=2.523
 TL(1)=625.523
 LL(1)=N/A

 Statistics-Transformed Background
 X=5.831
 S= 0.311
 CV(2)=0.053
 K factor**=2.523
 TL(2)=6.616
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
3/17/2002	236	5.464			

Data

3/17/2002	236	5.464
4/23/2002	337	5.820
7/15/2002	266	5.583
10/8/2002	240	5.481
1/8/2003	282	5.642
4/3/2003	238	5.472
7/9/2003	248	5.513
10/6/2003	224	5.412
Well Number:	MW373	
Date Collected	Result	LN(Result)
Date Collected 3/18/2002	Result 427	LN(Result) 6.057
3/18/2002	427	6.057
3/18/2002 4/23/2002	427 507	6.057 6.229
3/18/2002 4/23/2002 7/16/2002	427 507 464	6.057 6.229 6.140
3/18/2002 4/23/2002 7/16/2002 10/8/2002	427 507 464 408	6.057 6.229 6.140 6.011
3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	427 507 464 408 404	6.057 6.229 6.140 6.011 6.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	296	NO	5.690	N/A
MW361	Downgradient	Yes	291	NO	5.673	N/A
MW364	Downgradient	Yes	309	NO	5.733	N/A
MW367	Downgradient	Yes	236	NO	5.464	N/A
MW370	Upgradient	Yes	237	NO	5.468	N/A
MW373	Upgradient	Yes	401	NO	5.994	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 9.230	<b>S=</b> 8.841	<b>CV(1)=</b> 0.958	<b>K factor**=</b> 2.523	TL(1)= 31.535	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 1.942	<b>S=</b> 0.713	<b>CV(2)=</b> 0.367	<b>K factor**=</b> 2.523	<b>TL(2)=</b> 3.740	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	9.34	2.234					
4/23/2002	4.33	1.466					
7/15/2002	3.52	1.258					
10/8/2002	7.45	2.008					
1/8/2003	7.04	1.952					
4/3/2003	4.64	1.535					
7/9/2003	15.8	2.760					
10/6/2003	6.49	1.870					

MW373

Result

37.6

10.7

3.75

3.87

3.5

7.72

2.93

19

Well Number: Date Collected

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	1.51	NO	0.412	N/A
MW361	Downgradient	Yes	0.0542	NO	-2.915	N/A
MW364	Downgradient	Yes	0.0891	NO	-2.418	N/A
MW367	Downgradient	Yes	0.241	NO	-1.423	N/A
MW370	Upgradient	Yes	0.0351	NO	-3.350	N/A
MW373	Upgradient	Yes	0.178	NO	-1.726	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

LN(Result)

3.627

2.944

2.370

1.322

1.353

1.253

2.044 1.075

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> =17.544 <b>S</b> = 5.911	<b>CV(1)=</b> 0.337	<b>K factor**=</b> 2.523	TL(1)= 32.458	LL(1)=N/A
Statistics-Transformed Background Data	<b>X</b> =2.810 <b>S</b> = 0.343	<b>CV(2)=</b> 0.122	<b>K factor**=</b> 2.523	TL(2)= 3.676	<b>LL(2)=</b> N/A

Historical Background Data from Upgradient Wells with Transformed Resu						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	12.1	2.493				
4/23/2002	15.1	2.715				
7/15/2002	12.4	2.518				
10/8/2002	12.2	2.501				
1/8/2003	11.5	2.442				
4/3/2003	12.3	2.510				
7/9/2003	10	2.303				
10/6/2003	12.1	2.493				
Well Number:	MW373					
Date Collected	Result	LN(Result)				
3/18/2002	24.8	3.211				
4/23/2002	22.7	3.122				
7/16/2002	18.8	2.934				
10/8/2002	21.1	3.049				
1/7/2003	19.9	2.991				
4/2/2003	25.5	3.239				
7/9/2003	23.3	3.148				

26.9

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	14.5	NO	2.674	N/A
MW361	Downgradient	Yes	12.9	NO	2.557	N/A
MW364	Downgradient	Yes	13.4	NO	2.595	N/A
MW367	Downgradient	Yes	12.8	NO	2.549	N/A
MW370	Upgradient	Yes	12.1	NO	2.493	N/A
MW373	Upgradient	Yes	23.7	NO	3.165	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

3.292

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 1.080	<b>S=</b> 0.674	<b>CV(1)=</b> 0.624	<b>K factor**=</b> 2.523	TL(1)= 2.780	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=-</b> 0.114	<b>S</b> = 0.658	<b>CV(2)</b> =-5.762	<b>K factor**=</b> 2.523	TL(2)= 1.547	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	0.244	-1.411				
4/23/2002	1.82	0.599				
7/15/2002	1.22	0.199				
10/8/2002	0.988	-0.012				
1/8/2003	0.729	-0.316				
4/3/2003	0.637	-0.451				
7/9/2003	2.51	0.920				
10/6/2003	1.05	0.049				
Well Number:	MW373					
Date Collected	Result	LN(Result)				
3/18/2002	0.355	-1.036				
4/23/2002	2.16	0.770				
7/16/2002	1.39	0.329				
10/8/2002	0.717	-0.333				
1/7/2003	0.587	-0.533				
4/2/2003	0.545	-0.607				

1.76

0.57

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.256	NO	-1.363	N/A
MW361	Downgradient	Yes	0.0193	NO	-3.948	N/A
MW364	Downgradient	Yes	0.0176	NO	-4.040	N/A
MW367	Downgradient	Yes	0.069	NO	-2.674	N/A
MW370	Upgradient	Yes	0.00749	NO	-4.894	N/A
MW373	Upgradient	Yes	0.0177	NO	-4.034	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

0.565

-0.562

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Nickel UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 0.024	<b>S=</b> 0.022	<b>CV(1)=</b> 0.901	<b>K factor**=</b> 2.523	TL(1)= 0.078	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -4.239	<b>S=</b> 1.087	<b>CV(2)</b> =-0.256	<b>K factor**=</b> 2.523	<b>TL(2)=</b> -1.497	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result					
Well Number	MW370				

wen number.	IVI VV 570	
Date Collected	Result	LN(Result)
3/17/2002	0.05	-2.996
4/23/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.0264	-3.634
10/6/2003	0.00971	-4.635
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	. ,
Date Collected 3/18/2002	Result 0.05	-2.996
Date Collected 3/18/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05 0.005 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00671	NO	-5.004	N/A
MW361	Downgradient	No	0.002	N/A	-6.215	N/A
MW364	Downgradient	Yes	0.00099	1 NO	-6.917	N/A
MW367	Downgradient	Yes	0.00081	9 NO	-7.107	N/A
MW370	Upgradient	Yes	0.00076	1 NO	-7.181	N/A
MW373	Upgradient	Yes	0.00091	6 NO	-6.995	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 46.688	<b>S=</b> 60.986	<b>CV(1)=</b> 1.306	<b>K factor**=</b> 2.523	TL(1)= 200.555	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 3.829	<b>S=</b> 1.151	<b>CV(2)=</b> 0.301	<b>K factor**=</b> 2.523	TL(2)= 4.942	LL(2)=N/A

Historical Background Data from
Upgradient Wells with Transformed Result

1 1112270

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 4.942
Date Collected	Result	· · · · · ·
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 140 -20 10 10 67 -29	4.942 #Func! 2.303 2.303 4.205 #Func!

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

**#Because the natural log was not** possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	171	N/A	5.142	YES	
MW361	Downgradient	Yes	493	N/A	6.201	YES	
MW364	Downgradient	Yes	391	N/A	5.969	YES	
MW367	Downgradient	Yes	399	N/A	5.989	YES	
MW370	Upgradient	Yes	400	N/A	5.991	YES	
MW373	Upgradient	Yes	387	N/A	5.958	YES	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data	Wells with Exceedances
The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.	MW358
	MW361
	MW364 MW367
	MW307 MW370
	MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

# C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Quarter Data

Statistics-Background Data	<b>X=</b> 6.283	<b>S=</b> 0.159	<b>CV(1)=</b> 0.025	<b>K factor**=</b> 2.904	<b>TL(1)=</b> 6.745	LL(1)=5.8202
Statistics-Transformed Background Data	<b>X=</b> 1.837	<b>S</b> = 0.025	<b>CV(2)=</b> 0.014	<b>K factor**=</b> 2.904	TL(2)= 1.911	LL(2)=1.7634

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	6.3	1.841				
4/23/2002	6.4	1.856				
7/15/2002	6.3	1.841				
10/8/2002	6.3	1.841				
1/8/2003	6.4	1.856				
4/3/2003	6.5	1.872				
7/9/2003	6.3	1.841				
10/6/2003	6.5	1.872				
Well Number:	MW373					
Date Collected	Result	LN(Result)				

6

6.3

6.45

6.18

6.35

6.14

6.1

6

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

continue with st utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) &gt;TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW358	Downgradien	t Yes	6.22	NO	1.828	N/A
MW361	Downgradien	t Yes	6.21	NO	1.826	N/A
MW364	Downgradien	t Yes	6.15	NO	1.816	N/A
MW367	Downgradien	t Yes	6.1	NO	1.808	N/A
MW370	Upgradient	Yes	6.18	NO	1.821	N/A
MW373	Upgradient	Yes	6.21	NO	1.826	N/A

Because CV(1) is less than or equal to 1, assume normal distribution and

with statistical analysis

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

#### **Conclusion of Statistical Analysis on Historical Data**

1.792

1.841

1.864

1.821

1.848

1.815

1.808

1.792

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 2.823	<b>S=</b> 0.522	<b>CV(1)=</b> 0.185	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 4.139	<b>LL(1)=</b> N/A
Statistics-Transformed Background Data	<b>X=</b> 1.024	<b>S=</b> 0.167	<b>CV(2)=</b> 0.163	<b>K factor**=</b> 2.523	<b>TL(2)=</b> 1.445	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	3.22	1.169				
4/23/2002	3.43	1.233				
7/15/2002	2.98	1.092				
10/8/2002	2.46	0.900				
1/8/2003	2.41	0.880				
4/3/2003	2.43	0.888				
7/9/2003	2.44	0.892				
10/6/2003	2.48	0.908				
Well Number:	MW373					

Well Number:	MW373	
Date Collected	Result	LN(Result)
3/18/2002	4.34	1.468
4/23/2002	3.04	1.112
7/16/2002	2.93	1.075
10/8/2002	2.3	0.833
1/7/2003	2.45	0.896
4/2/2003	2.7	0.993
7/9/2003	2.68	0.986
10/7/2003	2.88	1.058

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	2.37	NO	0.863	N/A	
MW361	Downgradient	Yes	1.85	NO	0.615	N/A	
MW364	Downgradient	Yes	1.98	NO	0.683	N/A	
MW367	Downgradient	Yes	2.89	NO	1.061	N/A	
MW370	Upgradient	Yes	2.46	NO	0.900	N/A	
MW373	Upgradient	Yes	2.43	NO	0.888	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Sodium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 51.544	<b>S=</b> 15.227	<b>CV(1)=</b> 0.295	<b>K factor**=</b> 2.523	TL(1)= 89.962	LL(1)=N/A
Statistics-Transformed Background	<b>X=</b> 3.906	<b>S=</b> 0.272	<b>CV(2)=</b> 0.070	<b>K factor**=</b> 2.523	TL(2)= 4.592	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	31.8	3.459				
4/23/2002	50	3.912				
7/15/2002	44.7	3.800				
10/8/2002	40	3.689				
1/8/2003	44.6	3.798				
4/3/2003	41.9	3.735				
7/9/2003	40	3.689				
10/6/2003	38.1	3.640				
Well Number:	MW373					
Date Collected	Result	LN(Result)				
3/18/2002	43.4	3.770				
4/23/2002	79.8	4.380				
7/16/2002	87.7	4.474				
10/8/2002	61.6	4.121				

59.3

62.1

50.1

49.6

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	43	NO	3.761	N/A
MW361	Downgradient	Yes	45.6	NO	3.820	N/A
MW364	Downgradient	Yes	46.1	NO	3.831	N/A
MW367	Downgradient	Yes	41.3	NO	3.721	N/A
MW370	Upgradient	Yes	45.1	NO	3.809	N/A
MW373	Upgradient	Yes	51.4	NO	3.940	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

4.083

4.129

3.914

3.904

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> =122.381 <b>S</b> = 195.095	5 CV(1)=1.594	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 614.606	LL(1)=N/A
Statistics-Transformed Background Data	<b>X</b> =3.985 <b>S</b> = 1.323	<b>CV(2)=</b> 0.332	<b>K factor**=</b> 2.523	TL(2)= 7.322	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result						
Well Number:	MW370					
Date Collected	Result	LN(Result)				
3/17/2002	17.4	2.856				
4/23/2002	37.9	3.635				
7/15/2002	15.7	2.754				
10/8/2002	13.4	2.595				
1/8/2003	14.4	2.667				
4/3/2003	18.1	2.896				
7/9/2003	9.6	2.262				
10/(/2002	165	2 802				

10/6/2003	16.5	2.803
Well Number:	MW373	
Date Collected	Result	LN(Result)
3/18/2002	163.3	5.096
4/23/2002	809.6	6.697
7/16/2002	109.4	4.695
10/8/2002	110.6	4.706
1/7/2003	113.7	4.734
4/2/2003	133	4.890
7/9/2003	182.1	5.205
10/7/2003	193.4	5.265

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	63.2	N/A	4.146	NO
MW361	Downgradient	Yes	64.4	N/A	4.165	NO
MW364	Downgradient	Yes	70.8	N/A	4.260	NO
MW367	Downgradient	Yes	64.6	N/A	4.168	NO
MW370	Upgradient	Yes	20.7	N/A	3.030	NO
MW373	Upgradient	Yes	126	N/A	4.836	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S), TL

Mean, X = (sum of background results)/(count of background results)Х

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 7.655	<b>S=</b> 13.274	<b>CV(1)=</b> 1.734	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 41.146	<b>LL(1)=</b> N/A
Statistics-Transformed Background Data	<b>X=</b> 1.946	<b>S</b> = 0.939	<b>CV(2)=</b> 0.483	<b>K factor**=</b> 2.523	TL(2)= 3.833	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result								
Upgradient W	ells with Tra	ansformed Result						
Well Number:	MW370							
Date Collected	Result	LN(Result)						
3/17/2002	10.8	2.380						
4/23/2002	8.53	2.144						
7/15/2002	5.09	1.627						
10/8/2002	4.78	1.564						
1/8/2003	-5.12	#Func!						
4/3/2003	5.11	1.631						
7/9/2003	4.25	1.447						
10/6/2003	6.54	1.878						
Well Number:	MW373							
Date Collected	Result	LN(Result)						
3/18/2002	16.5	2.803						
4/23/2002	3.49	1.250						
7/16/2002	1.42	0.351						
10/8/2002	-6.06	#Func!						
1/7/2003	-8.41	#Func!						
4/2/2003	26.3	3.270						
7/9/2003	3.06	1.118						
10/7/2003	46.2	3.833						

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

**#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.** 

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	39.5	N/A	3.676	NO	
MW361	Downgradient	Yes	29.9	N/A	3.398	NO	
MW364	Downgradient	Yes	41.2	N/A	3.718	NO	
MW367	Downgradient	Yes	26.4	N/A	3.273	NO	
MW370	Upgradient	Yes	111	N/A	4.710	YES	
MW373	Upgradient	Yes	22.7	N/A	3.122	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

### **Conclusion of Statistical Analysis on Historical Data**

Wells with Exceedances MW370

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Total Organic Carbon (TOC) UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 6.169	<b>S</b> = 12.072	<b>CV(1)=</b> 1.957	<b>K factor**=</b> 2.523	TL(1)= 36.626	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 1.069	<b>S=</b> 1.014	<b>CV(2)=</b> 0.948	<b>K factor**=</b> 2.523	TL(2)= 3.626	<b>LL(2)=</b> N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	1.2	0.182					
4/23/2002	4.3	1.459					
7/15/2002	2.6	0.956					
10/8/2002	2.3	0.833					
1/8/2003	3	1.099					
4/3/2003	1.2	0.182					
7/9/2003	2.6	0.956					
10/6/2003	1.7	0.531					

MW373

Result

1.1

17.5

49

2.9

3.9

2.5

1.7

1.2

Well Number:

Date Collected

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	2.11	N/A	0.747	NO	
MW361	Downgradient	Yes	0.813	N/A	-0.207	NO	
MW364	Downgradient	Yes	0.824	N/A	-0.194	NO	
MW367	Downgradient	Yes	0.891	N/A	-0.115	NO	
MW370	Upgradient	Yes	0.964	N/A	-0.037	NO	
MW373	Upgradient	Yes	1.28	N/A	0.247	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

LN(Result)

0.095

2.862

3.892

1.065

1.361

0.916

0.531

0.182

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Total Organic Halides (TOX) UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 79.819	<b>S=</b> 78.470	<b>CV(1)=</b> 0.983	<b>K factor**=</b> 2.523	TL(1)= 277.798	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 3.971	<b>S</b> = 0.950	<b>CV(2)=</b> 0.239	<b>K factor**=</b> 2.523	<b>TL(2)=</b> 6.368	LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result							
MW370							
Result	LN(Result)						
50	3.912						
228	5.429						
88	4.477						
58	4.060						
72.4	4.282						
26.6	3.281						
16.4	2.797						
31.1	3.437						
MW373							
Result	LN(Result)						
50	3.912						
276	5.620						
177	5.176						
76	4.331						
	ells with Tra           MW370           Result           50           228           88           58           72.4           26.6           16.4           31.1           MW373           Result           50           276           177						

45.9

57.8

10

13.9

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	No	7.1	N/A	1.960	N/A	
MW361	Downgradient	No	8.46	N/A	2.135	N/A	
MW364	Downgradient	Yes	13.7	NO	2.617	N/A	
MW367	Downgradient	Yes	8.72	NO	2.166	N/A	
MW370	Upgradient	No	5.14	N/A	1.637	N/A	
MW373	Upgradient	Yes	10.5	NO	2.351	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

3.826

4.057

2.303

2.632

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Trichloroethene UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> =12.188 <b>S</b> = 6.9	950 CV(1	<b>)</b> =0.570 <b>K factor</b> **=	2.523 TL(1)= 29.72	1 <b>LL(1)=</b> N/A
Statistics-Transformed Background Data	<b>X</b> =2.305 <b>S</b> = 0.0	687 CV(2	<b>K factor</b> **=	2.523 TL(2)= 4.039	<b>LL(2)=</b> N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	19	2.944					
4/23/2002	17	2.833					
7/15/2002	15	2.708					
10/8/2002	18	2.890					
1/8/2003	17	2.833					
4/3/2003	18	2.890					
7/9/2003	15	2.708					
10/6/2003	16	2.773					
Well Number:	MW373						
Date Collected	Result	LN(Result)					
3/18/2002	5	1.609					
4/23/2002	25	3.219					
7/16/2002	3	1.099					
10/8/2002	4	1.386					

6

5

6

6

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	4.48	N/A	1.500	N/A	
MW361	Downgradient	Yes	5.58	NO	1.719	N/A	
MW364	Downgradient	Yes	6.98	NO	1.943	N/A	
MW367	Downgradient	Yes	6.03	NO	1.797	N/A	
MW370	Upgradient	Yes	0.55	N/A	-0.598	N/A	
MW373	Upgradient	Yes	5.2	NO	1.649	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

1.792

1.609

1.792

1.792

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Historical Background Comparison Zinc UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 0.055	<b>S=</b> 0.037	<b>CV(1)=</b> 0.673	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 0.147	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> -3.131	<b>S=</b> 0.691	<b>CV(2)</b> =-0.221	<b>K factor**=</b> 2.523	<b>TL(2)=</b> -1.388	<b>LL(2)=</b> N/A

Historical Background Data from Upgradient Wells with Transformed Result							
Well Number:	MW370						
Date Collected	Result	LN(Result)					
3/17/2002	0.1	-2.303					
4/23/2002	0.1	-2.303					
7/15/2002	0.1	-2.303					
10/8/2002	0.025	-3.689					
1/8/2003	0.035	-3.352					
4/3/2003	0.035	-3.352					

0.02

0.02

MW373

Result

0.1

0.1

0.1

0.025

0.035

0.035

0.0234

0.02

7/9/2003

10/6/2003

3/18/2002

4/23/2002

7/16/2002

10/8/2002

1/7/2003

4/2/2003

7/9/2003

10/7/2003

Well Number:

Date Collected

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW358	Downgradient	Yes	0.00517	NO	-5.265	N/A			
MW361	Downgradient	No	0.02	N/A	-3.912	N/A			
MW364	Downgradient	Yes	0.0279	NO	-3.579	N/A			
MW367	Downgradient	Yes	0.00434	NO	-5.440	N/A			
MW370	Upgradient	No	0.02	N/A	-3.912	N/A			
MW373	Upgradient	No	0.02	N/A	-3.912	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

## **Conclusion of Statistical Analysis on Historical Data**

-3.912

-3.912

-2.303

-2.303

-2.303

-3.689

-3.352

-3.352

-3.755

-3.912

LN(Result)

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## ATTACHMENT D2

## COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

THIS PAGE INTENTIONALLY LEFT BLANK

# C-746-U Second Quarter 2019 Statistical Analysis Current Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 2.688	<b>S=</b> 2.367	<b>CV(1)=</b> 0.881	<b>K factor**=</b> 2.523	TL(1)= 8.659	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 0.667	<b>S</b> = 0.821	<b>CV(2)</b> =1.232	<b>K factor**=</b> 2.523	TL(2)= 2.739	LL(2)=N/A

**Current Background Data from Upgradient** Wells with Transformed Result Well Number: MW371 Date Collected Result LN(Result) 4/18/2017 3.43 1.233 7/20/2017 3.51 1.256 10/3/2017 1.82 0.599 1/22/2018 2.8 1.030 4/12/2018 7.85 2.061 7/18/2018 4.89 1.587 10/10/2018 0.96 -0.0411/16/2019 8.02 2.082 Well Number: MW374 Date Collected Result LN(Result) 4/18/2017 1.52 0.419 7/20/2017 1.95 0.668 10/3/2017 1.12 0.113 1/22/2018 1.39 0.329 4/12/2018 1.67 0.513 7/18/2018 0.52 -0.654 -0.128 10/10/2018 0.88 1/17/2019 0.67 -0.400

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW359	Downgradien	t Yes	3.29	NO	1.191	N/A			
MW362	Downgradien	t Yes	5.14	NO	1.637	N/A			
MW371	Upgradient	Yes	5.2	NO	1.649	N/A			

## **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 $\overline{CV}$  Coefficient-of-Variation,  $\overline{CV} = S/X$  If  $\overline{CV}$  is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

### C-746-U Second Quarter 2019 Statistical Analysis **Current Background Comparison UNITS: mV** UCRS **Oxidation-Reduction Potential**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> =288.688 <b>S</b> = 73.874	<b>CV(1)=</b> 0.256	<b>K factor**=</b> 2.523	TL(1)= 475.070	LL(1)=N/A
Statistics-Transformed Background Data	<b>X</b> =5.633 <b>S</b> = 0.268	<b>CV(2)=</b> 0.048	<b>K factor**=</b> 2.523	TL(2)= 6.310	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW359	Downgradient	t Yes	486	YES	6.186	N/A			
MW362	Downgradient	Yes	459	NO	6.129	N/A			
MW365	Downgradient	Yes	360	NO	5.886	N/A			
MW368	Downgradient	Yes	394	NO	5.976	N/A			
MW371	Upgradient	Yes	388	NO	5.961	N/A			
MW374	Upgradient	Yes	355	NO	5.872	N/A			
MW375	Sidegradient	Yes	352	NO	5.864	N/A			

## **Conclusion of Statistical Analysis on Current Data**

**Current Background Data from Upgradient** 

LN(Result)

5.549

5.897

5.927

5.826

5.900

5.835

5.793

5.981

5.263

5.236

5.268

5.328

5.802

5.595

5.384

5.537

LN(Result)

MW371

Result

257

364

375

339

365

342

328

396

MW374

Result

193

188

194

206

331

269

218

254

Wells with Transformed Result

Well Number:

Date Collected

4/18/2017

7/20/2017

10/3/2017

1/22/2018

4/12/2018

7/18/2018

10/10/2018

1/16/2019

4/18/2017

7/20/2017

10/3/2017

1/22/2018

4/12/2018

7/18/2018

10/10/2018

1/17/2019

Well Number:

Date Collected

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results) Х

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-4

Wells with Exceedances MW359

# C-746-U Second Quarter 2019 Statistical Analysis Current Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 17.104	<b>S=</b> 22.415	<b>CV(1)=</b> 1.310	<b>K factor**=</b> 2.523	TL(1)= 73.658	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 2.433	<b>S</b> = 0.787	<b>CV(2)</b> =0.324	<b>K factor**=</b> 2.523	<b>TL(2)=</b> 4.419	<b>LL(2)=</b> N/A

**Current Background Data from Upgradient** Wells with Transformed Result Well Number: MW371 Date Collected Result LN(Result) 4/18/2017 13.9 2.632 7/20/2017 14 2.639 10 10/3/2017 2.303 1/22/2018 11 2.398 4/12/2018 91.6 4.517 7/18/2018 47.7 3.865 10/10/2018 21.9 3.086 1/16/2019 10.1 2.313 Well Number: MW374 Date Collected Result LN(Result) 4/18/2017 5.71 1.742 7/20/2017 6.31 1.842 10/3/2017 6.78 1.914 1/22/2018 1.847 6.34 7.24 4/12/2018 1.980 7/18/2018 7.69 2.040 10/10/2018 6.6 1.887 1/17/2019 6.8 1.917

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW359	Downgradien	t Yes	48.8	N/A	3.888	NO			
MW362	Downgradien	t Yes	31.4	N/A	3.447	NO			
MW365	Downgradien	t Yes	62.2	N/A	4.130	NO			
MW368	Downgradien	t Yes	33.7	N/A	3.517	NO			
MW371	Upgradient	Yes	59.1	N/A	4.079	NO			
MW375	Sidegradient	Yes	26.1	N/A	3.262	NO			

## **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

# C-746-U Second Quarter 2019 Statistical AnalysisCurrent Background ComparisonBeta activityUNITS: pCi/LURGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 40.701	<b>S=</b> 40.011	<b>CV(1)=</b> 0.983	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 141.648	<b>LL(1)=</b> N/A
Statistics-Transformed Background Data	<b>X=</b> 3.364	<b>S=</b> 0.806	<b>CV(2)=</b> 0.240	<b>K factor**=</b> 2.523	TL(2)= 5.398	<b>LL(2)=</b> N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
4/18/2017	9.12	2.210
7/20/2017	26.1	3.262
10/3/2017	40.7	3.706
1/22/2018	32	3.466
4/11/2018	102	4.625
7/18/2018	14.9	2.701
10/9/2018	23.2	3.144
1/16/2019	22.5	3.114
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 2.162
Date Collected	Result	
Date Collected 4/18/2017	Result 8.69	2.162
Date Collected 4/18/2017 7/20/2017	Result 8.69 21.3	2.162 3.059
Date Collected 4/18/2017 7/20/2017 10/3/2017	Result 8.69 21.3 132	2.162 3.059 4.883
Date Collected 4/18/2017 7/20/2017 10/3/2017 1/22/2018	Result 8.69 21.3 132 21.7	2.162 3.059 4.883 3.077
Date Collected 4/18/2017 7/20/2017 10/3/2017 1/22/2018 4/12/2018	Result 8.69 21.3 132 21.7 20.9	2.162 3.059 4.883 3.077 3.040

**Current Background Data from Upgradient** 

Wells with Transformed Result

Current Quarter Data		

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Upgradient	Yes	83.7	NO	4.427	N/A

## **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

## C-746-U Second Quarter 2019 Statistical Analysis Current Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> =18.982 <b>S</b> = 7.574	<b>CV(1)=</b> 0.399	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 38.091	LL(1)=N/A
Statistics-Transformed Background Data	<b>X</b> = 2.876 <b>S</b> = 0.375	<b>CV(2)=</b> 0.130	<b>K factor**=</b> 2.523	TL(2)= 3.822	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data	l				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW363	Downgradien	t Yes	53.5	YES	3.980	N/A
MW372	Upgradient	Yes	52.6	YES	3.963	N/A

## **Conclusion of Statistical Analysis on Current Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-7

wen runnoer.	101 (0 50)	
Date Collected	Result	LN(Result)
4/18/2017	20	2.996
7/20/2017	12.7	2.542
10/3/2017	9.71	2.273
1/22/2018	12.6	2.534
4/11/2018	24.7	3.207
7/18/2018	14.5	2.674
10/9/2018	21.4	3.063
1/16/2019	18.4	2.912
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.996
Date Collected	Result	
Date Collected 4/18/2017	Result 20	2.996
Date Collected 4/18/2017 7/20/2017	Result 20 12.7	2.996 2.542
Date Collected 4/18/2017 7/20/2017 10/3/2017	Result 20 12.7 21.5	2.996 2.542 3.068
Date Collected 4/18/2017 7/20/2017 10/3/2017 1/22/2018	Result 20 12.7 21.5 29.3	2.996 2.542 3.068 3.378
Date Collected 4/18/2017 7/20/2017 10/3/2017 1/22/2018 4/12/2018	Result 20 12.7 21.5 29.3 10.7	2.996 2.542 3.068 3.378 2.370

**Current Background Data from Upgradient** 

Wells with Transformed Result

Well Number: MW369

Wells with Exceedances MW363 MW372

#### C-746-U Second Quarter 2019 Statistical Analysis **Current Background Comparison** URGA Conductivity UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 496.68	8 <b>S</b> = 117.271	l CV(1)=0.236	<b>K factor**=</b> 2.523	TL(1)= 792.562	<b>LL(1)=</b> N/A
Statistics-Transformed Background	<b>X</b> = 6,181	<b>S</b> = 0.243	<b>CV(2)</b> =0.039	K factor**= 2.523	TL(2)= 6.794	LL(2)=N/A

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
4/18/2017	437	6.080
7/20/2017	367	5.905
10/3/2017	370	5.914
1/22/2018	351	5.861
4/11/2018	425	6.052
7/18/2018	372	5.919
10/9/2018	374	5.924
1/16/2019	386	5.956
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 6.390
Date Collected	Result	
Date Collected 4/18/2017	Result 596	6.390
Date Collected 4/18/2017 7/20/2017	Result 596 585	6.390 6.372
Date Collected 4/18/2017 7/20/2017 10/3/2017	Result 596 585 622	6.390 6.372 6.433
Date Collected 4/18/2017 7/20/2017 10/3/2017 1/22/2018	Result 596 585 622 620	6.390 6.372 6.433 6.430
Date Collected 4/18/2017 7/20/2017 10/3/2017 1/22/2018 4/12/2018	Result 596 585 622 620 614	6.390 6.372 6.433 6.430 6.420

**Current Background Data from Upgradient** 

Wells with Transformed Result

Data

Current	t Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Upgradient	Yes	632	NO	6.449	N/A

## **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results) Х

### C-746-U Second Quarter 2019 Statistical Analysis **Current Background Comparison UNITS: mV URGA Oxidation-Reduction Potential**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> = 343.500 <b>S</b> = 51.743	CV(1)=0.151	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 474.047	LL(1)=N/A
Statistics-Transformed Background Data	<b>X</b> = 5.828 <b>S</b> = 0.155	<b>CV(2)=</b> 0.027	<b>K factor**=</b> 2.523	TL(2)= 6.220	<b>LL(2)=</b> N/A

Current Backg Wells with Tra		l from Upgradient Result
Well Number:	MW369	
Date Collected	Result	LN(Result)
4/18/2017	271	5.602
7/20/2017	376	5.930
10/3/2017	399	5.989
1/22/2018	346	5.846
4/11/2018	397	5.984
7/18/2018	338	5.823
10/9/2018	341	5.832
1/16/2019	432	6.068
Well Number:	MW372	
Date Collected	Result	LN(Result)
4/18/2017	256	5.545
7/20/2017	300	5.704
10/3/2017	358	5.881
1/22/2018	275	5.617
4/12/2018	348	5.852
7/18/2018	371	5.916
10/10/2018	295	5.687
1/17/2019	393	5.974

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradien	t Yes	484	YES	6.182	N/A
MW360	Downgradien	t Yes	421	NO	6.043	N/A
MW363	Downgradien	t Yes	322	NO	5.775	N/A
MW366	Downgradien	t Yes	441	NO	6.089	N/A
MW369	Upgradient	Yes	372	NO	5.919	N/A
MW372	Upgradient	Yes	400	NO	5.991	N/A

## **Conclusion of Statistical Analysis on Current Data**

Wells with Exceedances MW357

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results) Х

#### C-746-U Second Quarter 2019 Statistical Analysis **Current Background Comparison Technetium-99** URGA **UNITS: pCi/L**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 60.817	<b>S=</b> 55.486	<b>CV(1)=</b> 0.912	<b>K factor**=</b> 2.523	TL(1)= 200.808	<b>LL(1)=</b> N/A
Statistics-Transformed Background Data	<b>X=</b> 3.751	<b>S</b> = 0.887	<b>CV(2)=</b> 0.236	<b>K factor**=</b> 2.523	TL(2)= 5.988	LL(2)=N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW369	
Date Collected	Result	LN(Result)
4/18/2017	9.22	2.221
7/20/2017	34.2	3.532
10/3/2017	70.8	4.260
1/22/2018	38.8	3.658
4/11/2018	142	4.956
7/18/2018	31.4	3.447
10/9/2018	55	4.007
1/16/2019	39.1	3.666
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 2.257
Date Collected	Result	
Date Collected 4/18/2017	Result 9.55	2.257
Date Collected 4/18/2017 7/20/2017	Result 9.55 30.2	2.257 3.408
Date Collected 4/18/2017 7/20/2017 10/3/2017	Result 9.55 30.2 195	2.257 3.408 5.273
Date Collected 4/18/2017 7/20/2017 10/3/2017 1/22/2018	Result 9.55 30.2 195 17.3	2.257 3.408 5.273 2.851
Date Collected 4/18/2017 7/20/2017 10/3/2017 1/22/2018 4/12/2018	Result 9.55 30.2 195 17.3 36.6	2.257 3.408 5.273 2.851 3.600

**Current Background Data from Upgradient** 

Wells with Transformed Result

Current	t Quarter Dat	a				
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Upgradient	Yes	70.8	NO	4.260	N/A

### **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)Х

#### C-746-U Second Quarter 2019 Statistical Analysis **Current Background Comparison** LRGA Beta activity **UNITS: pCi/L**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 46.993	<b>S=</b> 31.249	<b>CV(1)=</b> 0.665	<b>K factor**=</b> 2.523	TL(1)= 125.835	LL(1)=N/A
Statistics-Transformed Background Data	<b>X=</b> 3.568	<b>S</b> = 0.855	<b>CV(2)=</b> 0.240	<b>K factor**=</b> 2.523	TL(2)= 5.726	LL(2)=N/A

Because CV(1) is less than or equal to

Well Number:	MW370	
Date Collected	Result	LN(Result)
4/18/2017	65.7	4.185
7/20/2017	84.6	4.438
10/3/2017	69	4.234
1/22/2018	71.9	4.275
4/11/2018	50	3.912
7/18/2018	102	4.625
10/9/2018	81.7	4.403
1/16/2019	75.8	4.328
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 2.681
Date Collected	Result	. ,
Date Collected 4/18/2017	Result 14.6	2.681
Date Collected 4/18/2017 7/20/2017	Result 14.6 16.7	2.681 2.815
Date Collected 4/18/2017 7/20/2017 10/3/2017	Result 14.6 16.7 20.6	2.681 2.815 3.025
Date Collected 4/18/2017 7/20/2017 10/3/2017 1/22/2018	Result 14.6 16.7 20.6 23.5	2.681 2.815 3.025 3.157
Date Collected 4/18/2017 7/20/2017 10/3/2017 1/22/2018 4/12/2018	Result 14.6 16.7 20.6 23.5 4.99	2.681 2.815 3.025 3.157 1.607

**Current Background Data from Upgradient** 

Wells with Transformed Result

because $Cv(1)$ is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Upgradient	Yes	61	NO	4.111	N/A

## **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results) Х

# C-746-U Second Quarter 2019 Statistical AnalysisCurrent Background ComparisonOxidation-Reduction PotentialUNITS: mVLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X</b> =351.313 <b>S</b> = 49.416	<b>CV(1)=</b> 0.141	<b>K factor**=</b> 2.523	TL(1)= 475.990	LL(1)=N/A
Statistics-Transformed Background Data	<b>X</b> = 5.852 <b>S</b> = 0.142	<b>CV(2)=</b> 0.024	<b>K factor**=</b> 2.523	TL(2)= 6.212	<b>LL(2)=</b> N/A

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Wells with Exceedances

MW361

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradien	t Yes	171	NO	5.142	N/A	
MW361	Downgradien	t Yes	493	YES	6.201	N/A	
MW364	Downgradien	t Yes	391	NO	5.969	N/A	
MW367	Downgradien	t Yes	399	NO	5.989	N/A	
MW370	Upgradient	Yes	400	NO	5.991	N/A	
MW373	Upgradient	Yes	387	NO	5.958	N/A	

## **Conclusion of Statistical Analysis on Current Data**

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-12

4/18/2017	278	5.628
7/20/2017	343	5.838
10/3/2017	392	5.971
1/22/2018	334	5.811
4/11/2018	368	5.908
7/18/2018	369	5.911
10/9/2018	346	5.846
1/16/2019	440	6.087
Well Number:	MW373	
Date Collected	Result	LN(Result)
Date Collected 4/18/2017	Result 260	LN(Result) 5.561
		. ,
4/18/2017	260	5.561
4/18/2017 7/20/2017	260 309	5.561 5.733
4/18/2017 7/20/2017 10/3/2017	260 309 347	5.561 5.733 5.849
4/18/2017 7/20/2017 10/3/2017 1/22/2018	260 309 347 393	5.561 5.733 5.849 5.974
4/18/2017 7/20/2017 10/3/2017 1/22/2018 4/12/2018	260 309 347 393 350	5.561 5.733 5.849 5.974 5.858
4/18/2017 7/20/2017 10/3/2017 1/22/2018 4/12/2018 7/18/2018	260 309 347 393 350 318	5.561 5.733 5.849 5.974 5.858 5.762

**Current Background Data from Upgradient** 

LN(Result)

MW370

Result

Wells with Transformed Result

Well Number: Date Collected

# C-746-U Second Quarter 2019 Statistical AnalysisCurrent Background ComparisonTechnetium-99UNITS: pCi/LLRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data	<b>X=</b> 60.051	<b>S=</b> 44.617	<b>CV(1)=</b> 0.743	<b>K factor**=</b> 2.523	<b>TL(1)=</b> 172.621	<b>LL(1)=</b> N/A
Statistics-Transformed Background Data	<b>X=</b> 3.914	<b>S=</b> 0.821	<b>CV(2)=</b> 0.210	<b>K factor**=</b> 2.523	TL(2)= 4.787	LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result					
Well Number:	MW370				
Date Collected	Result	LN(Result)			
4/18/2017	99.1	4.596			
7/20/2017	120	4.787			
10/3/2017	103	4.635			
1/22/2018	73.9	4.303			
4/11/2018	107	4.673			
7/18/2018	96.2	4.566			
10/9/2018	114	4.736			
1/16/2019	94.3	4.546			
Well Number:	MW373				
Date Collected	Result	LN(Result)			
4/18/2017	26.8	3.288			
7/20/2017	9.12	2.210			
10/3/2017	29.6	3.388			
1/22/2018	24.8	3.211			
4/12/2018	30.2	3.408			
7/18/2018	-15.9	#Func!			
10/10/2018	20.3	3.011			
1/17/2019	28.4	3.346			

Because CV	V(1) is less than or equal to
1, assume n	ormal distribution and
continue w	ith statistical analysis
utilizing TI	L(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Upgradient	Yes	111	NO	4.710	N/A

### **Conclusion of Statistical Analysis on Current Data**

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation,  $S = [Sum ([(background result-X)^2]/[count of background results -1])]^{0.5}$ 

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

THIS PAGE INTENTIONALLY LEFT BLANK

## ATTACHMENT D3

# STATISTICIAN QUALIFICATION STATEMENT

THIS PAGE INTENTIONALLY LEFT BLANK



Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

July 2, 2019

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As an Environmental Scientist, with a bachelor's degree in science, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the second quarter 2019 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

okjvan

Jennifer R. Watson

THIS PAGE INTENTIONALLY LEFT BLANK

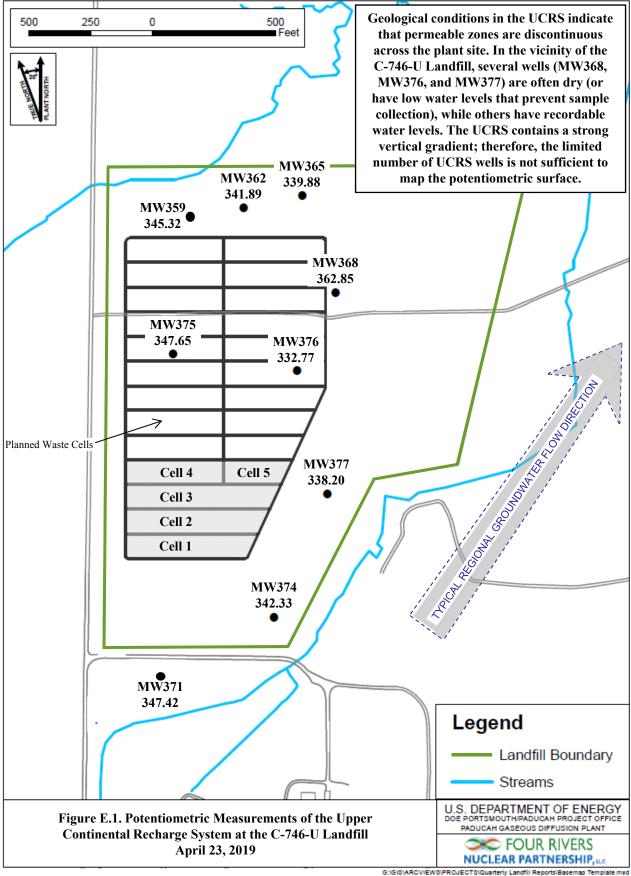
**APPENDIX E** 

**GROUNDWATER FLOW RATE AND DIRECTION** 

THIS PAGE INTENTIONALLY LEFT BLANK

RESIDENTIAL/CONTAINED—QUARTERLY, 2nd CY 2019 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982/1</u> LAB ID: <u>None</u> For Official Use Only

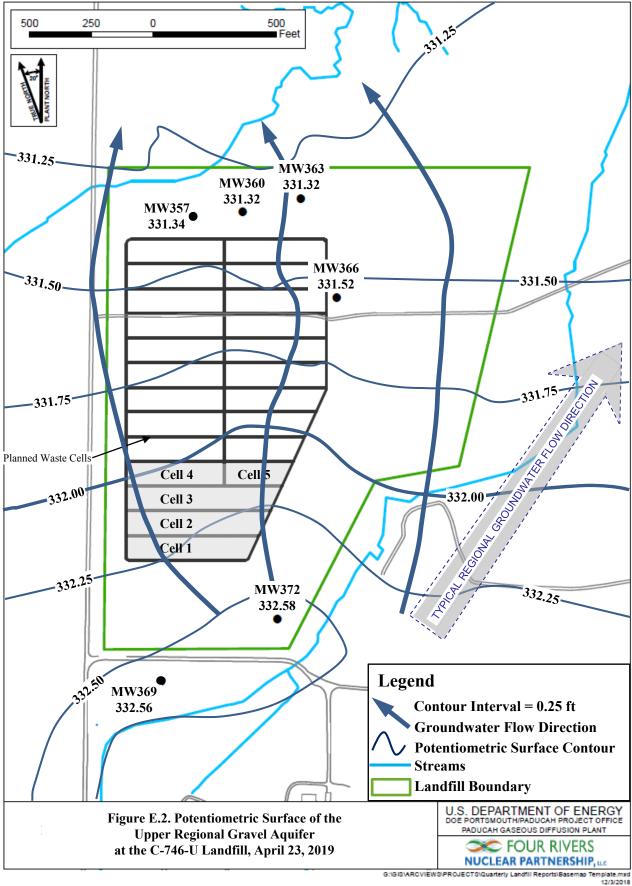
# GROUNDWATER FLOW RATE AND DIRECTION

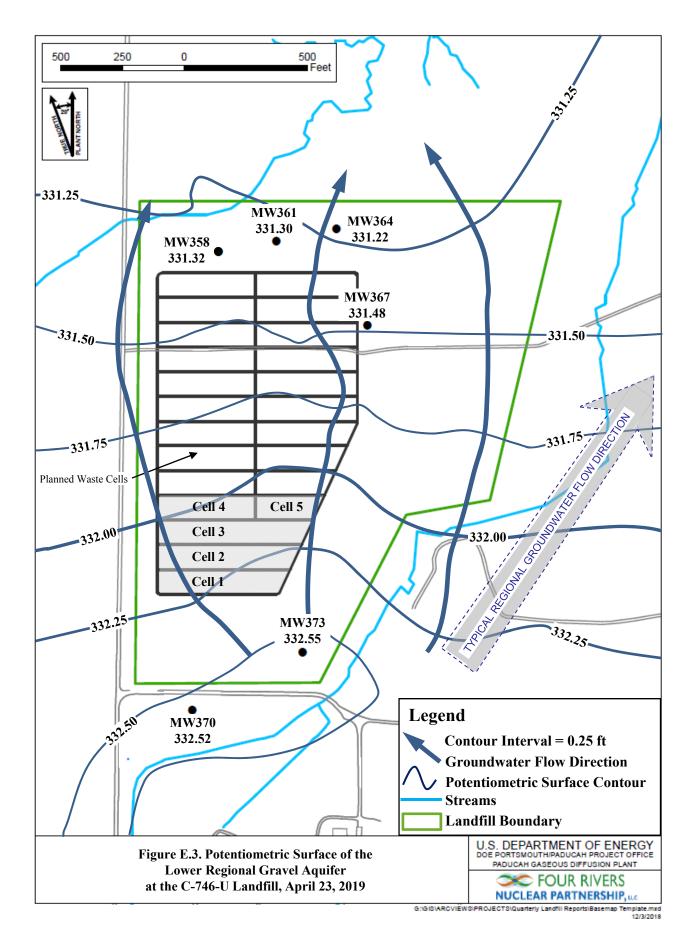

Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 *KAR* 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the second quarter 2019 and determine groundwater flow rate and direction.

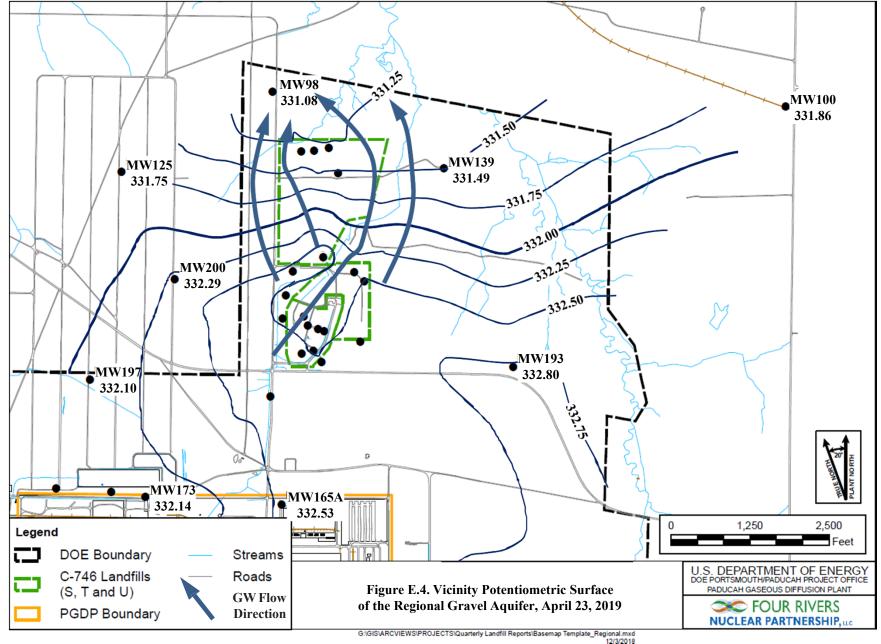
Water levels during this reporting period were measured on April 23, 2019. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. UCRS wells MW376 and MW377 had insufficient water to permit sampling for laboratory analysis.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill, as measured along the defined groundwater flow directions, were  $6.45 \times 10^{-4}$  ft/ft and  $6.42 \times 10^{-4}$  ft/ft, respectively. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was  $5.08 \times 10^{-4}$  ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.


Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric maps for April 2019, the groundwater flow direction in the immediate area of the landfill was to the north to north-northeast.





12/3/2018

C-746-U Landfill (April 2019) Water Levels											
					•				*Corr	*Corrected Data	
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev	
			-	(ft amsl)	(in Hg)	(ft H ₂ O)	(ft)	(ft amsl)	(ft)	(ft amsl)	
4/23/2019	13:22	MW357	URGA	368.99	30.02	0.00	37.65	331.34	37.65	331.34	
4/23/2019	13:23	MW358	LRGA	369.13	30.02	0.00	37.81	331.32	37.81	331.32	
4/23/2019	13:24	MW359	UCRS	369.11	30.02	0.00	23.79	345.32	23.79	345.32	
4/23/2019	13:18	MW360	URGA	362.30	30.02	0.00	30.98	331.32	30.98	331.32	
4/23/2019	13:20	MW361	LRGA	361.54	30.02	0.00	30.24	331.30	30.24	331.30	
4/23/2019	13:19	MW362	UCRS	362.04	30.02	0.00	20.15	341.89	20.15	341.89	
4/23/2019	13:30	MW363	URGA	368.84	30.02	0.00	37.52	331.32	37.52	331.32	
4/23/2019	13:31	MW364	LRGA	368.45	30.02	0.00	37.23	331.22	37.23	331.22	
4/23/2019	13:32	MW365	UCRS	368.37	30.02	0.00	28.49	339.88	28.49	339.88	
4/23/2019	13:26	MW366	URGA	369.27	30.02	0.00	37.75	331.52	37.75	331.52	
4/23/2019	13:27	MW367	LRGA	369.66	30.02	0.00	38.18	331.48	38.18	331.48	
4/23/2019	6:43	MW368	UCRS	369.27	30.02	0.00	6.42	362.85	6.42	362.85	
4/23/2019	13:51	MW369	URGA	364.48	30.02	0.00	31.92	332.56	31.92	332.56	
4/23/2019	13:53	MW370	LRGA	365.35	30.01	0.01	32.82	332.53	32.83	332.52	
4/23/2019	13:52	MW371	UCRS	364.88	30.02	0.00	17.46	347.42	17.46	347.42	
4/23/2019	13:47	MW372	URGA	359.66	30.02	0.00	27.08	332.58	27.08	332.58	
4/23/2019	13:48	MW373	LRGA	359.95	30.02	0.00	27.40	332.55	27.40	332.55	
4/23/2019	13:49	MW374	UCRS	359.71	30.02	0.00	17.38	342.33	17.38	342.33	
4/23/2019	13:40	MW375	UCRS	370.53	30.02	0.00	22.88	347.65	22.88	347.65	
4/23/2019	13:43	MW376	UCRS	370.61	30.02	0.00	37.84	332.77	37.84	332.77	
4/23/2019	13:45	MW377	UCRS	365.92	30.02	0.00	27.72	338.20	27.72	338.20	
Initial Barom	etric Pres	ssure	30.02								
Elev = elevat	tion										
amsl = above mean sea level											
BP = barometric pressure											
DTW = depth to water in feet below datum											
URGA = Upper Regional Gravel Aquifer											
LRGA = Lower Regional Gravel Aquifer											
UCRS = Upper Continental Recharge System											
ND = No Data acquired											
*Assumes a barometric efficiency of 1.0											

Table E.1. C-746-U Landfill Second Quarter 2019 (April) Water Levels







	ft/ft
Beneath Landfill—Upper RGA	$6.45  imes 10^{-4}$
Beneath Landfill—Lower RGA	$6.42 \times 10^{-4}$
Vicinity	$5.08  imes 10^{-4}$

## Table E.2. C-746-U Landfill Hydraulic Gradients

### Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	nductivity (K)	Specific	c Discharge (q)	Average Linear Velocity (v)		
ft/day	ft/day cm/s		cm/s	ft/day	cm/s	
Upper RGA						
725	0.256	0.467	$1.65 \times 10^{-4}$	1.87	$6.60 \times 10^{-4}$	
425	0.150	0.274	$9.67 \times 10^{-5}$	1.10	$3.87 \times 10^{-4}$	
Lower RGA						
725	0.256	0.465	$1.64 \times 10^{-4}$	1.86	$6.57 \times 10^{-4}$	
425	0.150	0.273	$9.62 \times 10^{-5}$	1.09	$3.85 \times 10^{-4}$	

THIS PAGE INTENTIONALLY LEFT BLANK

**APPENDIX F** 

NOTIFICATIONS

### **NOTIFICATIONS**

In accordance with 401 *KAR* 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations, is provided below.

#### **Statistical Analysis of Parameters Notification**

The statistical analyses conducted on the second quarter 2019 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 *CFR* § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

Parame	ter <u>Monitoring Well</u>
Upper Continental Recharge System None	
Upper Regional Gravel Aquifer Techneti	um-99 MW369
Lower Regional Gravel Aquifer Techneti	um-99 MW370

**NOTE**: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

#### 6/11/2019

#### Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method		Results	Units	MCL
8004-4795	MW361	Trichloroethene Trichloroethene	8260B 8260B	Y2 Y2		ug/L ug/L	5 5
8004-4797	MW364	Trichloroethene	8260B	Y2	6.98	ug/L	5
8004-0982	MW366	Trichloroethene	8260B		5.44	ug/L	5
8004-4793	MW367	Trichloroethene	8260B		6.03	ug/L	5
8004-4820	MW369	Beta activity	9310		83.7	pCi/L	50
8004-4818	MW370	Beta activity	9310		61	pCi/L	50
8004-4792	MW373	Trichloroethene	8260B		5.2	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

**APPENDIX G** 

CHART OF MCL AND UTL EXCEEDANCES

Groundwater Flow System	-	I -	_	UCR	-	-	-	x -	<b>T</b> -	-	T	URG	-	x		F	-	LRG	-		
Gradient	D	S	S	S	D	D	D	U 271	U 274	D	D	D	D	U	U	D	D	D	D	U 270	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	37.
ACETONE																					
Quarter 3, 2002	_									*	*	*									<u> </u>
Quarter 4, 2002										*	*	*									
Quarter 1, 2003											*	*									
Quarter 2, 2003											*	*									
Quarter 3, 2003	*						*			*	*	*			*			*			
Quarter 4, 2003						*	*				*			*							
Quarter 3, 2004						*										*					
Quarter 3, 2005						*															
Quarter 4, 2005						*															
ALPHA ACTIVITY						-															
Quarter 1, 2004																					
	-									-											-
Quarter 2, 2004	_																				
Quarter 3, 2009						•															
ALUMINUM																					
Quarter 3, 2003											*										
BETA ACTIVITY																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004	Ĩ																				
Quarter 4, 2004	1		1	1				1	1		1		1	1			1	1	1		F
Quarter 4, 2004	1	1				-			1			1									⊢
Quarter 1, 2005						-															
Quarter 2, 2006	-		L					L		L	L			L	-		L	L	L		
Quarter 3, 2006	_		L	L			L	L		L	L		L	L			L	L	L		
Quarter 4, 2006																					
Quarter 1, 2007																					
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																					-
	_									-				-	-	_					
Quarter 2, 2008	_									_					_				_		
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																					
Quarter 2, 2009																					
Quarter 3, 2009																					
Quarter 4, 2009																					-
Quarter 1, 2009										-											-
	_														_						-
Quarter 2, 2010	_									_						-					
Quarter 3, 2010																					
Quarter 4, 2010																					
Quarter 2, 2011																					
Quarter 4, 2011																					
Quarter 1, 2012																					
Quarter 2, 2012	1		1	1			1	1			1		1	1	1		1	W. U			F
Quarter 3, 2012	1	l —							<u> </u>			l —						un <del>a</del> lli			t
Quarter 4, 2012	-									-											
																					-
Quarter 1, 2013	_															I					
Quarter 3, 2013	_		L	L	L	L		L			L		L	L			L	L	L	L	
Quarter 4, 2013																					
Quarter 1, 2014																					L
Quarter 4, 2014	1																				
Quarter 1, 2015	1		1	1			1	1			1		1	1			1	1	1		F
Quarter 2, 2015	1	1				-			1			1									⊢
Quarter 4, 2015	-					-										-					⊢
	_									<u> </u>										_	⊢
Quarter 3, 2016	-		<u> </u>	L				<u> </u>		L	<u> </u>		L	-	L		<u> </u>	<u> </u>	<u> </u>		L
Quarter 4, 2016	_		L	L	L	L		L			L		L		L		L	L	L		⊢
Quarter 2, 2017																					
Quarter 3, 2017																					L
Quarter 4, 2017	1																				
Quarter 1, 2018	1		1	1			1	1			1		1	1	1		1	1			Γ
Quarter 2, 2018	1	<u> </u>	-	-			<b> </b>	-			-	<u> </u>	-		-		-	-	<u> </u>		F
Quarter 3, 2018		<del> </del>										<del> </del>									⊢
		<del> </del>							<b> </b>			<del> </del>			-						⊢
Quarter 4, 2018	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	L	<u> </u>	<u> </u>	L	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>		1
Quarter 1, 2019	_	L	L	L			L	L	I		L	L	L	L	L		L	L	L		⊢
Quarter 2, 2019																					L
BROMIDE																					
Quarter 2, 2004													*								Γ
																					·

Groundwater Flow System				UCR	s							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CALCIUM																					
Quarter 3, 2003										*											
Quarter 2, 2005																					*
Quarter 3, 2006															*						
Quarter 2, 2008															*						
Quarter 3, 2009															*						L
Quarter 4, 2009															*						
Quarter 1, 2010 Quarter 2, 2010															*						
Quarter 3, 2010 Quarter 3, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															-						*
Quarter 4, 2011															*						*
Quarter 1, 2012															*						*
Quarter 2, 2012															*						*
Quarter 3, 2012															*						*
Quarter 4, 2012															*						
Quarter 1, 2013															*						*
Quarter 2, 2013	1	1		1		1					1	1		1	*			İ 🗌	1	1	
Quarter 3, 2013	1	1		1		1					1	1		1	*			İ 🗌	1	1	*
Quarter 4, 2013	1	1		1		1					1	1		1	*			İ 🗌	1	1	
Quarter 2, 2014	1	İ –		İ –		İ –					İ –	İ –		İ –	*				İ –	İ –	*
Quarter 3, 2014	1	1		1		1					1	1		1	*			İ 🗌	1	1	*
Quarter 4, 2014	1														*						
Quarter 2, 2015	1														*						
Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016															*						
Quarter 2, 2017	*																				
Quarter 1, 2018	*																				
Quarter 3, 2018	*																				
CARBON DISULFIDE																					
Quarter 3, 2003										*											
Quarter 2, 2005							*														
Quarter 3, 2005						*															
Quarter 4, 2005						*															
Quarter 1, 2006						*															
Quarter 2, 2006						*															
Quarter 3, 2010		*									*										
Quarter 4, 2010														*							
Quarter 1, 2011															*						
CHEMICAL OXYGEN DEMA	ND																				
Quarter 3, 2002										*	*	*	*	*	*						
Quarter 4, 2002										*	*										
Quarter 1, 2003										*	*										
Quarter 2, 2003										*	*	*									
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003						*				*	*										$\vdash$
Quarter 3, 2004						L				*									L		$\vdash$
Quarter 3, 2005						*				*					*	*			*		$\vdash$
Quarter 4, 2005	I	L	L	L	L	*	L	L			L	L	L	L			L	*	*	L	
Quarter 1, 2006																			*		$\vdash$
Quarter 4, 2016											-							*			$\vdash$
Quarter 1, 2017											*										$\vdash$
Quarter 2, 2019										_		*			*	_					
CHLORIDE																				÷	
Quarter 1, 2006															*					*	
Quarter 2, 2014 COBALT															*						
	*						*			*	*		*	*	*	*	*	*		*	
Quarter 3, 2003	*						*			*	*		*	_	*	*	*	*		*	┝──┘
Quarter 1, 2004 Quarter 2, 2016														*							┝──┘
									-	-				*		-					$\vdash$
CONDUCTIVITY										*						-					
Quarter 4, 2002 Quarter 1, 2003										*				<u> </u>					<u> </u>		
Quarter 1, 2003 Quarter 2, 2003										*	*										┝──┘
Quarter 2, 2003 Quarter 4, 2003	<b> </b>			<u> </u>		<u> </u>			<u> </u>	*	*			—	<u> </u>				—		$\vdash$
Quarter 4, 2003 Quarter 1, 2004										*								<u> </u>			
Quarter 1, 2004 Quarter 2, 2004										*											
		<u> </u>		L		L				<u> </u>	L	<u> </u>		<u> </u>	<u> </u>	_			<u> </u>	<u> </u>	

Groundwater Flow System	1			UCR	s							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CONDUCTIVITY	-									¥						-					
Quarter 3, 2004										*					J.						
Quarter 1, 2005															*						
Quarter 2, 2005						*									*				*		
Quarter 3, 2005						*									J.			<b>.</b>	*		
Quarter 4, 2005															*			*			
Quarter 1, 2006 Quarter 2, 2006															*						
Quarter 3, 2006															*						
Quarter 1, 2007													-		*						
Quarter 1, 2007 Quarter 2, 2007															*						
· · ·													-		*						
Quarter 3, 2007 Quarter 4, 2007													-		*						
Quarter 1, 2007 Quarter 1, 2008															*						
Quarter 2, 2008													-		*						
Quarter 3, 2008													-		*						
															*						
Quarter 4, 2008 Quarter 1, 2009															*						
Quarter 2, 2009															*						
										<u> </u>					*	<u> </u>					
Quarter 3, 2009										<u> </u>					*	<u> </u>					
Quarter 4, 2009															*			<u> </u>			
Quarter 1, 2010															*						
Quarter 2, 2010 Quarter 3, 2010															*						
· · ·																					
Quarter 4, 2010															*						
Quarter 1, 2011										L				<u> </u>	*	L					
Quarter 2, 2011	<b> </b>									L				<u> </u>	*	L					
Quarter 3, 2011	I									—					*	—					
Quarter 4, 2011															* *						
Quarter 1, 2012														*	*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 1, 2014															*						
Quarter 2, 2014															*						
Quarter 3, 2014															*						
Quarter 4, 2014															*						
Quarter 1, 2015															*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016															*						
Quarter 3, 2016															*						
Quarter 2, 2019															*						
DISSOLVED OXYGEN																					
Quarter 1, 2003					*	*				*											
Quarter 3, 2003	L				*					*								L			
Quarter 4, 2003					*																
Quarter 1, 2004					*																
Quarter 2, 2004								*								*					
Quarter 1, 2005					*																
Quarter 2, 2005								*													
Quarter 1, 2006					*																
Quarter 2, 2006					*			*													
Quarter 3, 2006	L				*			*										L			
Quarter 4, 2006					*				*												
Quarter 2, 2007					*			*						L							
Quarter 3, 2007			Ĺ		*			*	*					Ĺ							
Quarter 1, 2008			L		*			L						Ĺ					*		
Quarter 2, 2008			Ĺ					*	*					Ĺ							
Quarter 3, 2008								*													
Quarter 1, 2009							*														
Quarter 2, 2009					*			*	*												
Quarter 3, 2009	1			1		*		*	*		1	1					1				
Quarter 1, 2010					*		*														
Quarter 2, 2010					*	*		*	*									[		*	*
Quarter 3, 2010	1				*	*															
Quarter 4, 2010	1						*					*						1		*	
Quarter 1, 2011	1			1		*					1	1					1	İ			
Quarter 2, 2011	1				*	*	*	*	*					*							
		-										L			_			-		_	

Croundwater Flow System	1			UCF						1		URG	۰ <u>۸</u>			1		LRG	۰ <b>۸</b>		
Groundwater Flow System Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371		366	360	363	357	369	372	367	361	364		370	373
DISSOLVED OXYGEN	500	515	570	511	557	502	505	571	574	500	500	505	551	507	512	507	501	504	550	570	515
Quarter 3, 2011	-					*			*							-					
Quarter 1, 2012						Ŧ	*		*												-
Quarter 2, 2012	*			*	*	*		*	*												
Quarter 3, 2012	Ŧ			Ŧ	т	*		Ŧ	Ŧ												_
Quarter 4, 2012						Ť			*												
Quarter 1, 2012 Quarter 1, 2013						*			*												_
Quarter 2, 2013						Ŧ	*		*												_
Quarter 3, 2013	*				*		*	*	*												_
Quarter 4, 2013	Ŧ				T		Ŧ	Ŧ	*											*	
Quarter 2, 2013	*				*	*	*	*	*									*		Ŧ	-
Quarter 3, 2014	*				*	*	*	Ŧ	Ŧ									Ŧ			
Quarter 4, 2014	Ŧ				т	*	Ŧ														
Quarter 2, 2015					*	*	*	*													-
Quarter 3, 2015					*	*		*													-
Quarter 4, 2015	*				т	*	*	Ŧ													
Quarter 1, 2015	*				*	Ť	*														-
Quarter 2, 2016	*	*			*	*	*	*	*											*	*
Quarter 3, 2016	Ť	T			*	*	*	*	Ŧ				*							Ŧ	Ť
Quarter 4, 2016					Ť	*	Ť	Ť	*				Ŧ								-
Quarter 1, 2017						т Т	*		*				*								
Quarter 2, 2017 Quarter 2, 2017	*				*	*	*	*	1				т Т								
Quarter 3, 2017 Quarter 3, 2017	*	*			*	*	*	*	1									*			
Quarter 3, 2017 Quarter 4, 2017	Ť.	*			<b>^</b>	*	*	<u>^</u>										*			
Quarter 1, 2017 Quarter 1, 2018					*	*	*	*										Ť		*	
Quarter 1, 2018 Quarter 2, 2018					*	*	*	*												Ŧ	
Quarter 2, 2018 Quarter 3, 2018	*		<u> </u>		*	*	*	*			<u> </u>		<u> </u>	<u> </u>		—	<u> </u>				
Quarter 3, 2018 Quarter 4, 2018	-		<u> </u>		*	*	*	*			<u> </u>	<u> </u>	<u> </u>	<u> </u>		—	—				
Quarter 1, 2019					*		*	*													
Quarter 1, 2019 Quarter 2, 2019			—		*	*	*	*			<u> </u>	<u> </u>	<u> </u>	<u> </u>		—	—				
					*	不		*		_											
DISSOLVED SOLIDS										*											
Quarter 4, 2002										*											
Quarter 1, 2003										*											
Quarter 2, 2003							÷			-	÷										
Quarter 3, 2003							*			*	*										
Quarter 4, 2003										*											
Quarter 3, 2005						*									J.						
Quarter 4, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2007															*						
Quarter 4, 2008															*						<u> </u>
Quarter 1, 2009															*						
Quarter 2, 2009															*						<u> </u>
Quarter 3, 2009															*						
Quarter 4, 2009															*						<u> </u>
Quarter 1, 2010															*						<u> </u>
Quarter 2, 2010															*						L
Quarter 3, 2010															*						L
Quarter 4, 2010	<b> </b>								<u> </u>						*	—					⊢ –
Quarter 1, 2011	I								<u> </u>						*	—					
Quarter 2, 2011	<b> </b>								<u> </u>						*						
Quarter 3, 2011															*						
Quarter 4, 2011	I								<u> </u>					-	* *	—					
Quarter 1, 2012	<b> </b>								<u> </u>					*	*	—					
Quarter 2, 2012	I								<u> </u>						*	—					*
Quarter 3, 2012	I								<u> </u>						*	—					*
Quarter 4, 2012	<b> </b>								<u> </u>						*	—					⊢ –
Quarter 1, 2013	I								<u> </u>						*	—					
Quarter 2, 2013	<b> </b>								<u> </u>						*						
Quarter 3, 2013	I								<u> </u>						* *						
Quarter 4, 2013	<b> </b>								<u> </u>						* *						
Quarter 1, 2014	I								<u> </u>						*	—					
Quarter 2, 2014	I								<u> </u>						*	—					
Quarter 4, 2014	<b> </b>								<u> </u>						*						
Quarter 2, 2015	I								<u> </u>						*	—					
Quarter 3, 2015	<b> </b>								<u> </u>						* *	—					⊢ –
Quarter 4, 2015	I								<u> </u>						*	—					
Quarter 1, 2016										_					*						
IODIDE																					
Quarter 2, 2003			L			L	L		<u> </u>		L	L	L	L		*	L				
Quarter 3, 2003	*		L	L	I	L	L	I	<u> </u>	*	L	L	L	L			L	I	I		
Quarter 4, 2003	I		L			_	*	-	<u> </u>		L	L		L			L				<u> </u>
Quarter 3, 2010						*		*					*				*				
IODINE-131																					
Quarter 3, 2010	L								L	L						L					

Groundwater Flow System	I			UCF	RS							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
IODOMETHANE																					
Quarter 4, 2003						*															
IRON																					
Quarter 4, 2002						*															
Quarter 3, 2003																*					
Quarter 4, 2003										*						*					
Quarter 1, 2004										*						*					
Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 3, 2005																*					
MAGNESIUM																					
Quarter 2, 2005															*						*
Quarter 3, 2005	1					*															*
Quarter 2, 2006															*						*
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2008															*						
Quarter 2, 2008 Quarter 2, 2009	1	<u> </u>													*						
															*						
Quarter 3, 2009	1		<u> </u>	<b> </b>									<b> </b>					<u> </u>	<u> </u>		
Quarter 4, 2009	<b>I</b>				I										* *						
Quarter 1, 2010	1	<u> </u>	I							L				<u> </u>	*						
Quarter 2, 2010	<u>I</u>		I			L	L	L	L	L	L	L		L	*		L			L	L
Quarter 3, 2010	I		L	L			L						L		*			L	L		
Quarter 1, 2011	1														*						
Quarter 2, 2011	L														*						
Quarter 3, 2011	1			L	L								L		*			L	L		
Quarter 4, 2011															*						
Quarter 1, 2012															*						
Quarter 2, 2012	1														*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2012 Quarter 1, 2013	-														*						
Quarter 2, 2013	-														*						
															*						
Quarter 3, 2013	-																				
Quarter 4, 2013	-														*						
Quarter 2, 2014	-														*						
Quarter 4, 2014															*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016															*						
Quarter 3, 2016	*																				
Quarter 4, 2016	*																				
Quarter 2, 2017	*																				
Quarter 3, 2017	*																				
Quarter 1, 2018	*																				
Quarter 3, 2018	*																				
MANGANESE	-																				
Quarter 3, 2002	1									*		*									
· · ·	-	*				*	*			*		*		*							
Quarter 4, 2002		<b>*</b>				*	*		<u> </u>	*		*		*							
Quarter 2, 2003	1		<u> </u>		I					*		*	*			*	*	*	*		
Quarter 3, 2003						<u> </u>			<u> </u>		ير					*		*	*		
Quarter 4, 2003	<b>I</b>									*	*	*	*			*	*	*			
Quarter 1, 2004	<b>I</b>			I						* *	*	*	I			*	*	*	I		
Quarter 2, 2004	I	L	I		I	L	*	L	L	*	*	*		L	L	L	L	*			L
Quarter 3, 2004							*			*	*	*				*					
Quarter 4, 2004	1									*		*				*					
Quarter 1, 2005										*		*									
Quarter 2, 2005										*		*									
Quarter 3, 2005										*		*				*					
Quarter 4, 2005					ſ					*						*					
Quarter 1, 2006	Ĭ	1				1			1	*	1	1					1				
Quarter 2, 2006	1	1	İ	İ	İ	1	*		1	*	1	*	İ				1	İ	İ	1	
Quarter 3, 2006	1	1								*						*					
x	1	1		-		-			-	*	-	-	-				-	-	-	-	
Quarter 4 2006	1				<u> </u>			-		*											-
Quarter 4, 2006 Quarter 1, 2007				1		L							I				L	<u> </u>	1		
Quarter 1, 2007							<u>+</u>														
Quarter 1, 2007 Quarter 2, 2007							* *			*											
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007							*			*											
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2008							*			*											
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007							*			*											

Groundwater Flow System				UCR	s							URG	ĞΑ					LRC	βA		
Gradient Monitoring Well	D 368	S 375	S 376	S 377	D 359	D 362	D 365	U 371	U 374	D 366	D 360	D 363	D 357	U 369	U 372	D 367	D 361	D 364	D 358	U 370	U 373
MANGANESE	500	515	570	511	557	502	505	571	574	500	500	505	551	507	572	507	501	504	550	570	515
Quarter 3, 2009							*														
Quarter 3, 2011							*														
Quarter 2, 2016														*							
Quarter 3, 2016									*												
NICKEL Quarter 3, 2003										*											
OXIDATION-REDUCTION P	OTE	NTIA	I.							*											
Quarter 4, 2002	Ĩ		Ĩ														*		*		
Quarter 1, 2003																	*		*		
Quarter 2, 2003																			*		
Quarter 3, 2003	*																				
Quarter 4, 2003					*								-				-				-
Quarter 2, 2004 Ouarter 3, 2004					*			*					*	*	*		*			*	*
Quarter 3, 2004 Quarter 4, 2004					Ŧ			*				*	*	*	*		*			*	* *
Quarter 1, 2004 Quarter 1, 2005												Ŧ					*			*	*
Quarter 2, 2005								*					*				*			*	-
Quarter 3, 2005					*	*		*			*	*	*				*		*	*	*
Quarter 4, 2005		*						*					*				*			*	
Quarter 1, 2006					*			*	*								*				*
Quarter 2, 2006					*		*	*					*				*			*	
Quarter 3, 2006	I	<u> </u>			* *		<u>.</u>	*		*	ļ	*	*	ļ			*	<u> </u>		*	*
Quarter 4, 2006 Quarter 1, 2007		*			*		*	*		*		*	*				*			*	*
Quarter 1, 2007 Quarter 2, 2007		*		<u> </u>	* *			*					*		<u> </u>		*			*	* *
Quarter 3, 2007 Quarter 3, 2007	-	1			*			*					*				*			*	
Quarter 4, 2007																	*			*	*
Quarter 1, 2008					*			*				*	*						*	*	
Quarter 2, 2008					*			*		*			*	*				*		*	*
Quarter 3, 2008					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008								*		*		*	*				*	*		*	*
Quarter 1, 2009					4		*	*		*		*	*				-	*		*	÷
Quarter 2, 2009 Quarter 3, 2009		*			* *	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009		*			Ŧ	*	*	*	*	*		*	*	Ŧ			*	*	*	*	*
Quarter 1, 2009		*			*		*	*		*			*			*	*	*		*	
Quarter 2, 2010					*	*		*		*	*	*	*			*	*	*	*	*	*
Quarter 3, 2010		*			*	*	*	*	*	*	*		*	*	*		*	*	*	*	*
Quarter 4, 2010		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011		-			-	*	-	*	-	*	*	*	*	*		*	*	*	*	*	-
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	* *
Quarter 3, 2011 Quarter 4, 2011		*				* *		*	*	*	*	*	*	*		*	*	*	不	*	*
Quarter 1, 2012		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*				*		*		*		*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*		*	
Quarter 2, 2013		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*			*	* *	*	*	*	*	*	*	*	*	*	*	*	*	*	*	**
Quarter 4, 2013 Quarter 1, 2014		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014 Ouarter 2, 2014	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2014	*	*	1	1	*	*	*	*	*	*	<u> </u>	*	*	*		*	*	*	*	*	*
Quarter 4, 2014		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 1, 2015		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	I	*	ļ	L	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
It mortor A (1015			1		*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	* *
Quarter 4, 2015	*	*					*	*	*	*		*	*	*	*	*	*	*	*	*	* *
Quarter 1, 2016	*	*				k	يعدر			*				*	*			不	不	*	¥
Quarter 1, 2016 Quarter 2, 2016	*	*			*	* *	*			*	*	*	*	¥	*	*	*	*	*	*	*
Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016	* *	* * *				* * *	*	*	*	* *	*	*	*	*	*	*	*	*	*	* *	* *
Quarter 1, 2016 Quarter 2, 2016	*	*			*	*				* * *	* *	* * *	* *	* *	* *	* *	* *	* *	* *	* * *	* * *
Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016	* * *	* * *			*	* *	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017	* * * *	* * * * * * * *			* *	* * * * *	* * * *	* * * *	* * * * *	* * * *	*	* * *	* * *	* * *	* * *	*	* * *	* * *	*	* * * *	* * * *
Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017	* * * * *	* * * * * * * * *			* * * *	* * * * * *	* * * * *	* * * * *	* * * * * *	* * * * *	*	* * * *	* * * *	* * * *	* * * *	* * *	* * * *	* * * *	* *	* * * * *	* * * * *
Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 7, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018	* * * * * * * *	* * * * * * * *			* * * * *	* * * * * * *	* * * * * *	* * * * * *	* * * * * * *	* * * * * *	* *	* * * * *	* * * * *	* * * * *	* * * * *	* * * *	* * * *	* * * * *	* * *	* * * * * *	* * * * * *
Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018	* * * * * * * * *	* * * * * * * *			* * * * *	* * * * * * *	* * * * * * *	* * * * * * *	* * * * * * * *	* * * * * * *	* *	* * * * * *	* * * * * *	* * * * * *	* * * * * *	* * * * *	* * * * *	* * * * * *	* * * *	* * * * * * *	* * * * * * *
Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018	* * * * * * * *	* * * * * * * * *			* * * * *	* * * * * * * * *	* * * * * * *	* * * * * * *	* * * * * * * * *	* * * * * * *	* * *	* * * * * *	* * * * * *	* * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * * * *	* * * *	* * * * * * *	* * * * * * *
Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 4, 2018	* * * * * * * * * *	* * * * * * * * * *			* * * * * *	* * * * * * * * *	* * * * * * * *	* * * * * * * *	* * * * * * * * *	* * * * * * * *	***	* * * * * * * * * *	* * * * * * *	* * * * * * *	* * * * * * *	* * * * * *	* * * * * * * * * *	* * * * * * *	* * * * * *	* * * * * * * * *	* * * * * * * *
Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2018 Quarter 3, 2018	* * * * * * * * *	* * * * * * * * *			* * * * *	* * * * * * * * *	* * * * * * *	* * * * * * *	* * * * * * * * *	* * * * * * *	* * *	* * * * * *	* * * * * *	* * * * * * *	* * * * * *	* * * * *	* * * * * *	* * * * * * *	* * * *	* * * * * * *	* * * * * * *

Groundwater Flow System				UCR	s							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
PCB, TOTAL																					
Quarter 4, 2003	_																*				Ĺ
Quarter 3, 2004	_											*									
Quarter 3, 2005	-						*														
Quarter 2, 2006	-						*														
Quarter 3, 2006 Quarter 1, 2007	-						*														
Quarter 2, 2007	-						*													-	
Quarter 3, 2007							*														
Quarter 1, 2008							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1016																					
Quarter 3, 2004												*									
Quarter 2, 2006							*					*									
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 2, 2008							*														
Quarter 4, 2008							*														
Quarter 3, 2009							*														
Quarter 1, 2010							*														
Quarter 2, 2010							*														
Quarter 4, 2010							*														
PCB-1242																					
Quarter 3, 2006							*					*									
Quarter 4, 2006										*											Ĺ
Quarter 1, 2008							*														
Quarter 2, 2012							*														
PCB-1248																					
Quarter 2, 2008							*														
PCB-1260	_																				
Quarter 2, 2006							*														
рН	_																				
Quarter 3, 2002	_									*											<u> </u>
Quarter 4, 2002	_									*											
Quarter 1, 2003	_									*											
Quarter 2, 2003	-						-			*											-
Quarter 3, 2003	*						*			*											-
Quarter 4, 2003	-						*									*					
Quarter 1, 2004	-					-	*									*		44	444		
Quarter 3, 2005	-					* *												*	*	$\vdash$	<b> </b>
Quarter 4, 2005	-					*										*			*	$\vdash$	<b> </b>
Quarter 3, 2006	+													*		*				──	<u> </u>
Quarter 2, 2011 Quarter 3, 2011	+													* *						<b>├</b> ──┤	<u> </u>
Quarter 3, 2011 Quarter 4, 2011	+													* *						<b>├</b> ──┤	<u> </u>
	+													*		*	*			<b>├</b> ──┤	<u> </u>
Quarter 1, 2012 Quarter 2, 2012	+											*				*	*			<b>├</b> ──┤	<u> </u>
Quarter 1, 2012 Quarter 1, 2013	+									*		*				*				┝──┤	
Quarter 1, 2013 Quarter 3, 2015	+									*		*				*	*				
Quarter 2, 2015	+	1																		*	*
Quarter 3, 2016	+	1																		*	Ŧ
Quarter 2, 2017	1																*			-17	-
Quarter 3, 2018	1	1			*	-				*		*	-	-			*	*	*		
Quarter 4, 2018	1															*		*			-
POTASSIUM																					
																*					
							-		-							- <b>T</b>					-
Quarter 1, 2014																					
Quarter 1, 2014 RADIUM-228																					
Quarter 1, 2014 <b>RADIUM-228</b> Quarter 2, 2005														•			_				
Quarter 1, 2014 <b>RADIUM-228</b> Quarter 2, 2005 Quarter 4, 2005														•							
Quarter 1, 2014 <b>RADIUM-228</b> Quarter 2, 2005						•								•							

Groundwater Flow System	1			UCR	s							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364		370	373
SODIUM																					
Quarter 3, 2002										*	*		*								
Quarter 4, 2002										*	*			*							
Quarter 1, 2003										*											
Quarter 2, 2003										*	*										L
Quarter 3, 2003											**										
Quarter 1, 2007 Quarter 1, 2012											*			*							
Quarter 1, 2012 Quarter 1, 2014			-											*	*						
Quarter 3, 2014											*				Ŧ						-
Quarter 4, 2014											*										
Quarter 4, 2015											*										
Quarter 1, 2016											*										
Quarter 2, 2016											*										
Quarter 3, 2016											*										
Quarter 4, 2016											*										
Quarter 1, 2017											*										
Quarter 2, 2017											*										
Quarter 3, 2017											*										
Quarter 4, 2017											*										L
Quarter 1, 2018											* *										
Quarter 3, 2018 STRONTIUM-90											*					_					
Quarter 4, 2008																					
SULFATE																					
Quarter 1, 2003							*														
Quarter 2, 2003	1			İ		*	*		İ				İ	İ			İ				
Quarter 3, 2003	*					*															
Quarter 4, 2003					*		*														
Quarter 1, 2004					*	*	*														
Quarter 2, 2004					*	*	*														
Quarter 3, 2004					*	*	*														
Quarter 1, 2005					*	*			*												
Quarter 2, 2005					*		*		*						*						
Quarter 3, 2005					*	*	*														
Quarter 4, 2005									-						*						
Quarter 1, 2006					*	J.	<u>т</u>		*						4						
Quarter 2, 2006						*	*		*						*						
Quarter 3, 2006 Quarter 1, 2007							*														-
Quarter 2, 2007							*														
Quarter 3, 2007							*														-
Quarter 4, 2007		*					-1-														
Quarter 1, 2008		*			*		*		*												
Quarter 2, 2008		*			*	*	*														
Quarter 3, 2008		*			*	*	*														
Quarter 4, 2008	1	*				*	*														
Quarter 1, 2009		*					*														
Quarter 2, 2009		*			*	*	*														
Quarter 3, 2009		*			*	*	*								*						
Quarter 4, 2009		*			*	*									*						
Quarter 1, 2010	I	*		L	*	*	*		L	L			L	L	*		L		L	L	
Quarter 2, 2010		*			*	*	*			L					*				L	L	$\vdash$
Quarter 3, 2010		* *			*	* *	* *								* *						<b>—</b>
Quarter 4, 2010		*				*	*								*						┝──┤
Quarter 1, 2011		*			*	*	*								*						<u> </u>
Quarter 2, 2011 Quarter 3, 2011		*			*	*	* *	*							* *						<b> </b>
Quarter 3, 2011 Quarter 4, 2011		*				*	*	*							* *						
Quarter 1, 2012		*			-		*	*		-	-				*				-	-	
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 3, 2012	- ·	*		-		*	· ·	-	-						*						
Quarter 4, 2012	l	*										1			*						
Quarter 1, 2013	1	*				*						1			*						
Quarter 2, 2013		*													*						
Quarter 3, 2013	*	*		*	*	*	*								*						
Quarter 4, 2013		*													*						
Quarter 1, 2014		*													*						
Quarter 2, 2014	*	*			*		*	*							*						
Quarter 3, 2014	*	*		L	*	*	*	*	L	L	L		L	L	*		L		L	L	
Quarter 4, 2014	I	*		L	L	*	L	L	L	L	L		L	L	L		L		L	L	<u> </u>
Quarter 1, 2015		*														_					

National work         184         37         187         38         38         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         39         32         33         33         33	Groundwater Flow System	ľ			UCR	s							URG	A					LRG	A		
NUP-NUC         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I        I         I         I </th <th>Gradient</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>-</th>	Gradient								-	-					-	-					-	-
Quarter 2, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2015         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4, 2017         Quarter 4,		368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 3. 2015         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image         Image		*	*			*		*								*						
Quarter 1, 2016         Image: Section 1, 2016         Image: Section 2, 2016         Image: Section 2, 2016         Image: Section 2, 2016         Image: Section 2, 2016         Image: Section 2, 2016         Image: Section 2, 2016         Image: Section 2, 2016         Image: Section 2, 2016         Image: Section 2, 2016         Image: Section 2, 2016         Image: Section 2, 2016         Image: Section 2, 2016         Image: Section 2, 2016         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017         Image: Section 2, 2017		*					*	*	*													
Outret 2, 2016         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •        <		*				Ť		*								Ť						
Quarter 2, 2016         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •						*																
Quarter 2, 2016         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •		_																				
Quarter 1, 2016         Image: Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sec									*													
Querter 1, 2017         Image: Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sec		*	*				*		*													
Operator 2, 2017	Quarter 1, 2017	*	*				*	*														
Quarter 1.2013         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *	Quarter 2, 2017	*	*			*	*	*														
Quarter 1.2018         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *	Quarter 3, 2017	*				*																
Quarter 2.2018         Image: Constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the cons	Quarter 4, 2017																					
Quarter 4. 2018         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •         •	Quarter 1, 2018																					
Quarter 1. 2018     Image: Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Applie Appli		_																				
Quarter 1, 2019         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *		*				*																
Quarter 2, 2019         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *						-			*													
iterative       iterative       iterative       iterative       iterative       iterative         Quarter 2, 2003       iterative       iterative       iterative       iterative       iterative         Quarter 4, 2003       iterative       iterative       iterative       iterative       iterative         Quarter 4, 2003       iterative       iterative       iterative       iterative       iterative         Quarter 2, 2004       iterative       iterative       iterative       iterative       iterative         Quarter 2, 2004       iterative       iterative       iterative       iterative       iterative       iterative         Quarter 2, 2004       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative       iterative		_				_			4													
Quarter 1, 2002         Image: Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sec		*	不			不	*	不	不													
Quarter 1, 2003         Quarter 4, 2003         Quarter 4, 2003         Quarter 4, 2003         Quarter 4, 2003         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4,																		*	*	*		
Quarter 1, 2003         Image: Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sec		1						*		1				*			*					*
Quarter 1, 2003         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N		1			<b> </b>	<b> </b>		*		1		<b> </b>		T			*		*	*		т
Quarter 1, 2004         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control         Control	· · ·	1					-								-	-		_				*
Quarter 2, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2007         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         Quarter 4, 2004         QUARTER 4, 2004         QUARTER 4, 2004         QUARTER 4, 2004         QUARTER 4, 2004         QUARTER 4, 2004         QUARTER 4, 2004         QUARTER 4, 2004         QUARTER 4, 2004         QUARTER 4, 2004         QUARTER 4, 2004         QUARTER 4, 2004         QUARTER 4, 2004         QUARTER 4, 2004         QUARTER 4, 2004         QUARTER 4, 2004         QUARTER 4, 2004         QUARTER 4, 2004         QUARTER 4, 2004         QUARTER 4, 2004         QUARTER 4,		1					-			1					-	*						
Quarter 4. 2004         Image: Constraint of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon		1	<u> </u>	<u> </u>						1	-						-					
Quarter 3, 2004     Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		1								1												
Quarter 1.2005         Quarter 2.2006         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X<	· · ·	1	1	1	İ –	İ –				1		İ –						*	İ –	İ –		
Quarter 1, 2006     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     * <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>· ·</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>		1	1	1						1						· ·		_				
Quarter 2, 2006         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X	Quarter 1, 2006	1	İ 🗌	İ 🗌	1	1				1		1				*		1	1	1		*
Quarter 1, 2006         Image: Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Se	Quarter 2, 2006	1	*							*												
Quarter 1, 2006         Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon										L												
Quarter 1, 2007         Image: Control of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	Quarter 4, 2006									L						*						*
Quarter 1, 2007       Quarter 4, 2007       Quarter 1, 2008       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *	Quarter 1, 2007																					*
Quarter 4, 2007         *        *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       * <t< td=""><td>Quarter 2, 2007</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td>*</td><td></td><td></td><td></td><td></td><td>*</td><td></td></t<>	Quarter 2, 2007													*		*					*	
Quarter 1, 2008         Quarter 2, 2008         Quarter 3, 2008         Quarter 4, 2008         Quarter 4, 2008         Quarter 4, 2008         Quarter 4, 2008         Quarter 4, 2008         Quarter 4, 2008         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4,	Quarter 3, 2007															*		*	*			
Quarter 2, 2008         Quarter 3, 2008         Quarter 4, 2008         Quarter 4, 2008         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2009         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4, 2010         Quarter 4,	Quarter 4, 2007										*									*		
Quarter 3, 2008         Quarter 4, 2008         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P         P	Quarter 1, 2008															*					*	*
Quarter 4, 2008       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *								*	*						*		*			*		
Quarter 1, 2009       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *																*						
Quarter 2, 2009       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *																		*		*		
Quarter 3, 2009       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *											*								-			
Quarter 4, 2009       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       Quarter 2, 2010       *       *       *       *       *       *       Quarter 4, 2010       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       Quarter 4, 2010       *       *       *       *       *       *       *       Quarter 1, 2012       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *									4		*					J.			*			
Quarter 2, 2010       *       *       *       *       *       *       *       *       *       *       *       Quarter 3, 2010									*											-		
Quarter 3, 2010       *       *       *       *       *       Quarter 4, 2010       *       *       Quarter 4, 2010       *       *       Quarter 4, 2010       *       *       Quarter 2, 2011       *       *       *       Quarter 2, 2011       *       *       *       *       Quarter 1, 2012       *       *       *       *       Quarter 2, 2012       *       *       *       *       Quarter 3, 2012       *       *       *       Quarter 4, 2012       *       *       *       *       *       *       Quarter 4, 2012       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *																*	J.	<u>ч</u>	_			
Quarter 1, 2010       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *																*	*	*	不	不		
Quarter 1, 2011       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *											*					Ŧ			*			
Quarter 2, 2011           *       *       *       *       *        Quarter 1, 2012         *         *       *        Quarter 2, 2012        *       *         *          *       *          *          *       *          *         *        *              *        *                                                                     <			*								*							*	*			
Quarter 1, 2012       *       *       *       *       *       *       *       Quarter 2, 2012       *       *       *       *       *       Quarter 3, 2012       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *			Ŧ								Ŧ						*		*	*		
Quarter 2, 2012       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *																	Ŧ			Ŧ		
Quarter 3, 2012       Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second		1							*	1								· ·				
Quarter 4, 2012          *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       * <t< td=""><td></td><td>1</td><td>1</td><td>1</td><td>İ –</td><td>İ –</td><td></td><td></td><td></td><td>1</td><td></td><td>İ –</td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td>İ –</td><td></td><td></td></t<>		1	1	1	İ –	İ –				1		İ –						*		İ –		
Quarter 1, 2013	Quarter 4, 2012	1	1	1						1						*						*
Quarter 2, 2013	Quarter 1, 2013	1	İ 🗌	İ 🗌	1	1				1		1						1		1		
Quarter 3, 2013       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       **       ** </td <td>Quarter 2, 2013</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td>	Quarter 2, 2013									L												*
Quarter 1, 2014	Quarter 3, 2013										*											
Quarter 2, 2014	Quarter 4, 2013																	_				*
Quarter 3, 2014       Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	Quarter 1, 2014															*		*				
Quarter 4, 2014       Image: Constraint of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the	Quarter 2, 2014																					
Quarter 1, 2015       Image: Constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of t		I			L	L	L	L		<u> </u>		L			L			*	*	*		
Quarter 1, 2015       Image: Constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of t		1	I	I	L	L		L		<u> </u>	l	L					l	L	L	L		
Quarter 3, 2015       Image: Constraint of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the		I														*			*			
Quarter 4, 2015		1															*					
Quarter 1, 2016       ************************************	· · ·	I								<u> </u>						-		-10	*	*		
Quarter 2, 2016       *****       ******       ******         Quarter 3, 2016       ******       **********         Quarter 4, 2016       ************************************		1														*	يىر		يلو	يتر	*	4
Quarter 3, 2016       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *		<u> </u>								<u> </u>			<u> </u>								*	*
Quarter 4, 2016     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     *     * <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td> </td> <td></td> <td><u> </u></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td> </td> <td> </td> <td>ボ</td> <td>_</td> <td>ボ</td> <td>_</td> <td></td> <td></td>		1								<u> </u>			<u> </u>				ボ	_	ボ	_		
Quarter 1, 2017       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *       *		1									*				*				*	*	*	
Quarter 2, 2017 <t< td=""><td></td><td>1</td><td></td><td></td><td><b> </b></td><td><b> </b></td><td></td><td></td><td></td><td>1</td><td>Ť</td><td><b> </b></td><td></td><td></td><td>- Ť</td><td></td><td></td><td></td><td><u> </u></td><td>*</td><td>*</td><td></td></t<>		1			<b> </b>	<b> </b>				1	Ť	<b> </b>			- Ť				<u> </u>	*	*	
Quarter 3, 2017     Image: Constraint of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the system of the s		1																-17-		-17-		
Quarter 4, 2017       *     *     *     *     *       Quarter 1, 2018          *     *       Quarter 2, 2018         *     *       Quarter 3, 2018        *     *       Quarter 1, 2018       *     *       Quarter 1, 2018       *     *       Quarter 1, 2019        *     *		1					-			1					-	-			*			
Quarter 1, 2018     *     *     *       Quarter 2, 2018     *     *     *       Quarter 3, 2018     *     *     *       Quarter 4, 2018     *     *     *       Quarter 1, 2019     *     *     *		1	-	-			-	-		1					*	*		*				
Quarter 2, 2018     *     *     *     *       Quarter 3, 2018     *     *     *     *       Quarter 4, 2018     *     *     *     *       Quarter 1, 2019     *     *     *     *		1	<u> </u>	<u> </u>						1	-				- · ·		-	<u> </u>	<u> </u>			
Quarter 3, 2018         *         *         *         *           Quarter 4, 2018         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *		1	1	1						1					*		*					
Quarter 4, 2018         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *         *		1	1	1						1					<u> </u>	*						
Quarter 1, 2019 * * *	Quarter 4, 2018	1	İ 🗌	İ 🗌	1	1				1		1						*	*	*		
		Ī	1	1						1							*					
	Quarter 2, 2019	L							L	L					*							

Groundwater Flow System	1			UCR		-	-	-				URG						LRG			
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
THORIUM-230																					
Quarter 4, 2015																*					
Quarter 2, 2016										*											
Quarter 4, 2016	*											*				*			*		
Quarter 4, 2017													*								
Quarter 2, 2018										*			*								
TOLUENE																					
Quarter 2, 2014										*				*							
TOTAL ORGANIC CARBON																					
Quarter 3, 2002										*	*	*		*							*
Quarter 4, 2002										*	*			*							
Quarter 1, 2003											*										
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003										*	*										
Quarter 1, 2004											*										
Quarter 3, 2005						*				*					*	*			*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2005						Ŧ												Ŧ	*		
TOTAL ORGANIC HALIDES	-	L																	*		
	1	1								يىر											
Quarter 4, 2002	I									*						L					
Quarter 1, 2003	<b> </b>									*						L					
Quarter 2, 2003	I		L		L	L	L	L		*				L			L	L			
Quarter 1, 2004																*					
TRICHLOROETHENE																					
Quarter 3, 2002																					
Quarter 4, 2002	1																				
Quarter 1, 2003			1					1						1			1	1			
Quarter 2, 2003	Í –	İ	1					1						1			1	1			
Quarter 3, 2003																					
Quarter 4, 2003							_													-	
· · ·													-								
Quarter 1, 2004																				_	
Quarter 2, 2004																					
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 1, 2005																					
Quarter 2, 2005																					
Quarter 3, 2005																					
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006																					
Quarter 3, 2006																					
Quarter 4, 2006																-				_	
Quarter 1, 2000																					
													-							-	
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007	I																				
Quarter 1, 2008	I		L		L	L	L	L						L			L	L			
Quarter 2, 2008																					
Quarter 3, 2008																					
Quarter 4, 2008																					
Quarter 1, 2009																					
Quarter 2, 2009	I																				
Quarter 3, 2009	l –		1					1						1			1	1			
Quarter 4, 2009	1											-				-				-	
Quarter 1, 2009	t –	1				-	-														
Quarter 2, 2010	1										-		-						-		
Quarter 3, 2010																					
Quarter 4, 2010	I		L					L								L					
Quarter 2, 2011	I												_								
Quarter 3, 2011	I	I	L					L						L			L	L			
Quarter 4, 2011	Į																				
Quarter 1, 2012																					
Quarter 2, 2012					L																
Quarter 3, 2012																					
Quarter 4, 2012			1					1									1	1			
Quarter 1, 2012	1																				
Quarter 2, 2013	t –	1																			
Quarter 3, 2013	1														-						
								<u> </u>							-	<u> </u>					
Quarter 4, 2013	I								$\left  - \right $												
Quarter 1, 2014	I																-				
0 · · · · · · · · · · · · · · · · · · ·									1					i.				i.			1
Quarter 2, 2014	L				_	_	_		_			_								_	

Groundwater Flow System				UCR	s							URG	A					LRC	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TRICHLOROETHENE																					
Quarter 3, 2014																					
Quarter 4, 2014																					
Quarter 1, 2015																					
Quarter 2, 2015																					
Quarter 3, 2015																					
Quarter 4, 2015																					
Quarter 1, 2016																					
Quarter 2, 2016																					
Quarter 3, 2016																					
Quarter 4, 2016																					
Quarter 1, 2017																					
Quarter 2, 2017																					
Quarter 3, 2017																					
Quarter 4, 2017																					
Quarter 1, 2018																					
Quarter 2, 2018																					
Quarter 3, 2018																					
Quarter 4, 2018																					
Quarter 1, 2019																					
Quarter 2, 2019																					
TURBIDITY																					
Quarter 1, 2003										*											
URANIUM																					
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC																					
Quarter 3, 2005																			*		
* Statistical test results indicate an eleva	ited cond	entrati	on (i.e.,	, a stati	stical e	xceedar	nce).														
<ul> <li>MCL Exceedance</li> </ul>																					
Previously reported as an MCL exc	eedance	; howe	ver, resi	ult was	equal t	o MCL	,														
UCRS Upper Continental Recharge Syste	m																				
URGA Upper Regional Gravel Aquifer																					-
LRGA Lower Regional Gravel Aquifer																					

**APPENDIX H** 

METHANE MONITORING DATA

### CP3-WM-0017-F04 - C-746-U LANDFILL METHANE MONITORING REPORT

PADUCAH GASEOUS DIFFUSION PLANT Permit #: 073-00045 McCracken County, Kentucky

Date:	05/3		Time:	0830-0945	Monitor:	Mich	ael Hideg
Weather Co	ondition	^{s:} Cloudy, Sligh	t Wind	and 70 Degree	es		
Monitoring	Equipn	^{nent::} RAE Syste	ms, Mı	ulti-RAE Serial	#4495		
			toring Lo				Reading (% LEL)
C-746-U1		Checked at floor	level				0
C-746-U2		Checked at floor	level				0
C-746-U-T-14	Ļ	Checked at floor	level				0
C-746-U15		Checked at floor	level				0
MG1		Dry casing					0
MG2		Dry casing					0
MG3		Dry casing					0
MG4		Dry casing					0
Suspect or Problem Ar	eas	No problems n	oted				NA
Remarks:	NA						
Performed b	^{by:} Mi	chael Hideg	11	NX		0	- 30-19
		Signat	ure	$\rightarrow$		2	Date

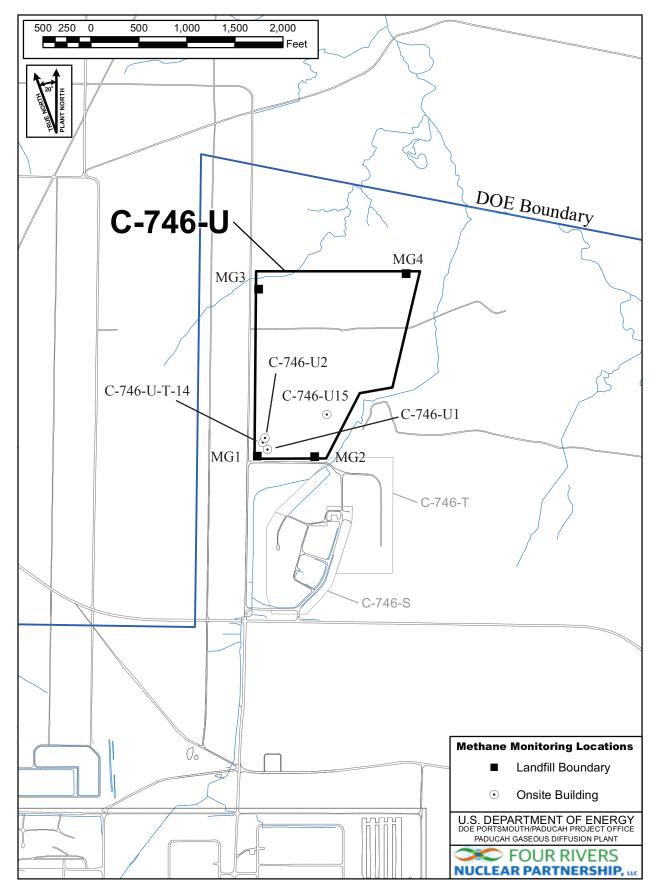



Figure H.1. C-746-U Methane Monitoring Locations

**APPENDIX I** 

SURFACE WATER ANALYSES AND WRITTEN COMMENTS

### Division of Waste Management RESIDENTIAL/CONTAINED-QUARTERLY Solid Waste Branch Facility: US DOE - Paducah Gaseous Diffusion Plant 14 Reilly Road Permit Number: SW07300014, SW07300015, SW07300045 Frankfort, KY 40601 (502)564-6716 FINDS/UNIT: KY8-890-008-982 / 1

### SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po	int	(KPDES Discharge Number, or "U	IPST	REAM", or "Do	OWNSTREAM")	L150 AT SITE	=	L154 UPSTRE	AM	L351 DOWNST	REAM	$\mathbf{h}$		
Sample Sequer	ice	#				1		1		1				
If sample is a	a B1	ank, specify Type: (F)ield, (	T)r:	ip, (M)ethod	, or (E)quipment	NA		NA		NA		$  \rangle$		
Sample Date a	nd	Time (Month/Day/Year hour: m	inu	tes)		5/2/2019 14:2	4	5/2/2019 14:3	36	5/2/2019 14:	10	$  \rangle$		
Duplicate ("Y	(" c	r "N") ¹				Ν		N		N			/	
Split ('Y' or	"N	") ²				Ν		N		N			/	
Facility Samp	ID Number (if applicable)	L150US3-19	)	L154US3-19	9	L351US3-1	9			/				
Laboratory Sample ID Number (if applicable)						478102001		478102002		478102003	3			
Date of Analy	sis	(Month/Day/Year)				5/28/2019		5/26/2019		5/26/2019				
CAS RN ³		CONSTITUENT	Т Д 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L A G S ⁷		TECTED VALUE OR PQL ⁵	F L G S ⁷
A200-00-0	0	Flow	т	MGD	Field		*		*		*			
16887-00-6	2	Chloride(s)	т	mg/L	300.0	2.3		0.597		0.656				
14808-79-8	0	Sulfate	т	mg/L	300.0	23.1		1.81		2.77			/	X
7439-89-6	0	Iron	т	mg/L	200.8	8.18		1.41		2.05				$ \rangle$
7440-23-5	0	Sodium	т	mg/L	200.8	3.38		0.899		1.22				$\left  \right\rangle$
S0268	0	Organic Carbon ⁶	т	mg/L	9060	6.56		14		13.3				
s0097	0	BOD ⁶	т	mg/L	not applicable		*		*		*	1/		
s0130	0	Chemical Oxygen Demand	т	mg/L	410.4	32.3	В	34.9	В	58	В	$\backslash$		

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by <u>separate</u> laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page. STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID

LAB ID: <u>None</u> For Official Use Only

Page 2 of 2

### SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant
Permit Number: SW07300015, SW07300015, SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u> / <u>1</u> LAB ID: None

For Official Use Only

### SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	int	(KPDES Discharge Number, or	- "T	JPSTREAM" or	"DOWNSTREAM")	L150 AT SI	TE	L154 UPSTR	EAM	L351 DOWNST	REAM		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	F L G S ⁷	DETECTED VALUE OR PQL ⁵	FIAC'S
S0145	1	Specific Conductance	т	µmho/cm	Field	139		72		77			/
s0270	0	Total Suspended Solids	т	mg/L	160.2	780	*	29.4	*	82.6	*		
S0266	0	Total Dissolved Solids	т	mg/L	160.1	504	*	117	*	160	*		
S0269	0	Total Solids	т	mg/L	SM-2540 B 17	1960		91		152			
S0296	0	рН	т	Units	Field	7.34		7.09		7.26			
7440-61-1		Uranium	т	mg/L	200.8	0.00227		0.000601		0.00202			
12587-46-1		Gross Alpha $(\alpha)$	т	pCi/L	9310	98.2	*	-0.408	*	0.361	*		
12587-47-2		Gross Beta $(\beta)$	т	pCi/L	9310	56.2	*	1.46	*	8.88	*	V	
												Λ	
												/ \	
													٨
													$\bot$
													$\square$
													$\square$
													$\square$
												/	\

**RESIDENTIAL/CONTAINED – QUARTERLY Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045** 

### Finds/Unit: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

### SURFACE WATER WRITTEN COMMENTS

Monitori Point	ng Facility Sample ID	Constituent	Flag	Description
L150	L150US3-19	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity		TPU is 29.5. Rad error is 24.2.
		Beta activity		TPU is 13.5. Rad error is 9.67.
L154	L154US3-19	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 3.01. Rad error is 3.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.39. Rad error is 4.39.
L351	L351US3-19	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Suspended Solids	*	Duplicate analysis not within control limits.
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.71. Rad error is 4.71.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.33. Rad error is 7.18.

**APPENDIX J** 

ANALYTICAL LABORATORY CERTIFICATION

# **Accredited Laboratory**

A2LA has accredited

# GEL LABORATORIES, LLC

Charleston, SC

for technical competence in the field of

### **Environmental Testing**

In recognition of the successful completion of the A2LA evaluation process that includes an assessment of the laboratory's compliance with ISO/IEC 17025:2005, the 2009 TNI Environmental Testing Laboratory Standard, the requirements of the Department of Defense Environmental Laboratory Accreditation Program (DoD ELAP), and the requirements of the Department of Energy Consolidated Audit Program (DOECAP) as detailed in Version 5.1.1 of the DoD/DOE Quality System Manual for Environmental Laboratories (QSM), accreditation is granted to this laboratory to perform recognized EPA methods as defined on the associated A2LA Environmental Scope of Accreditation. This accreditation demonstrates technical competence for this defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).



Presented this 30th day of August 2017.

President and CEO For the Accreditation Council Certificate Number 2567.01 Valid to June 30, 2019 Revised July 30, 2018

**APPENDIX K** 

LABORATORY ANALYTICAL METHODS

#### LABORATORY ANALYTICAL METHODS

Analytical Method	<b>Preparation Method</b>	Product
SW846 8260B		Volatile Organic Compounds (VOC) by Gas Chromatograph/Mass Spectrometer
SW846 8011	SW846 8011 PREP	Analysis of 1,2-Dibromoethane (EDB), 1,2-Dibromo-3-Chloropropane (DBCP) and 1,2,3-
		Trichloropropane in Water by GC/ECD Using Methods 504.1 or 8011
SW846 3535A/8082	SW846 3535A	Analysis of The Analysis of Polychlorinated Biphenyls by GC/ECD by ECD
SW846 6020	SW846 3005A	Determination of Metals by ICP-MS
SW846 7470A	SW846 7470A Prep	Mercury Analysis Using the Perkin Elmer Automated Mercury Analyzer
SW846 9060A		Carbon, Total Organic
SW846 9012B	SW846 9010C Distillation	Cyanide, Total
EPA 300.0		Ion Chromatography Iodide
SW846 9056		Ion Chromatography
EPA 160.1		Solids, Total Dissolved
EPA 410.4		COD
Eichrom Industries, AN-1418		AlphaSpec Ra226, Liquid
DOE EML HASL-300, Th-01-RC Modified		Th-01-RC M, Th Isotopes, Liquid
EPA 904.0/SW846 9320 Modified		904.0Mod, Ra228, Liquid
EPA 900.0/SW846 9310		9310, Alpha/Beta Activity, liquid
EPA 905.0 Modified/DOE RP501 Rev. 1 Modified		905.0Mod, Sr90, liquid
DOE EML HASL-300, Tc-02-RC Modified		Tc-02-RC-MOD, Tc99, Liquid
EPA 906.0 Modified		906.0M, Tritium Dist, Liquid

APPENDIX L

MICRO-PURGING STABILITY PARAMETERS

#### Micro-Purge Stability Parameters for the C-746-U Contained Landfill

		_									
			7	7	ed of the first	77			7	7	A OT AND THE
	10mp	course Condi	.8	/	43°5	/ /	Tours	sure conduct		/ /	1300
		Callin /	din l		red of the			atur je	awie /		dot.
	THE	, ndi	× /~	.50	120		27170	, million	15	:501	101C
MW357	<u> </u>	70	<u>s</u>	<u> </u>	$\overline{\sqrt{2}}$	MW358	<u>/~~</u>	70	<u>x</u>	$\sqrt{\gamma}$	$\overline{\langle \mathbf{x} \rangle}$
MW357 Date Collected: 4/10/2019						MW358 Date Collected: 4/10/2019	-				
0939	60.3	438	6.34	3.26	1.4	1021	60.2	515	6.21	1.93	0.6
0942	60.7	437	6.31	3.20	1.4	1021	60.4	516	6.22	1.70	0.0
)945	61.2	437	6.30	3.18	1.5	1024	60.5	515	6.22	1.67	0.4
MW359	01.2	-1 <i>J</i> /	0.50	5.10	1.5	MW360	00.5	515	0.22	1.07	0.7
Date Collected: 4/10/2019						Date Collected: 4/10/2019					
104	60.3	233	6.14	2.67	0.9	0702	57.9	454	6.37	0.83	6.2
1107	60.8	235	6.08	2.64	1.2	0705	57.7	455	6.37	0.82	5.3
1110	61.3	234	6.03	2.66	1.6	0708	57.4	454	6.38	0.84	5.2
MW361	0.210		0.00			MW362			0.00		¢ 1=
Date Collected: 4/10/2019						Date Collected: 4/10/2019	1				
)756	58.8	435	6.23	3.04	1.9	0856	58.7	742	6.99	4.64	323
0759	58.9	435	6.20	3.02	1.8	0859	59.1	744	7.06	4.63	293
0802	59.0	435	6.21	2.98	1.9	0902	59.1	743	7.09	4.69	287
MW363			_			MW364					
Date Collected: 4/10/2019						Date Collected: 4/10/2019					
158	61.5	420	6.22	1.77	0.5	1240	61.3	433	6.17	2.66	0
201	62.6	421	6.21	1.58	0.9	1243	61.9	433	6.16	2.49	0.1
204	63.1	421	6.22	1.51	0.7	1246	62.6	433	6.15	2.50	1.2
AW365						MW366					
ate Collected: 4/10/2019						Date Collected: 4/11/2019					
319	60.4	436	6.31	2.64	0	0649	60.9	505	6.10	1.34	0
22	61.1	435	6.27	2.52	0.3	0652	61.2	505	6.09	1.31	0.1
325	61.6	435	6.28	2.49	0.2	0655	61.5	505	6.11	1.32	0
1W367						MW368					
Date Collected: 4/11/2019						Date Collected: 4/11/2019					
731	60.6	432	6.13	1.05	9.7	0811	60.0	409	6.55	1.05	9.1
734	61.0	433	6.11	0.96	9.4	0814	60.6	410	6.58	0.88	6.1
737	61.3	432	6.10	0.98	9.2	0817	60.9	410	6.59	0.86	5.9
MW369						MW370 ¹					
Date Collected: 4/15/2019						Date Collected: 4/15/2019					
)730	59.4	439	6.20	0.70	1.3	0812	60.1	458	6.17	3.19	0
)733	59.3	439	6.20	0.70	0.9	0814	60.3	457	6.16	3.04	0
0736	59.2	439	6.21	0.71	0.5	0816	60.3	458	6.18	2.99	0
MW371						MW372					
Date Collected: 4/15/2019						Date Collected: 4/11/2019					
855	59.2	355	6.36	5.15	191	0857	62.8	633	6.26	1.08	3.1
858	59.3	354	6.40	5.03	127	0900	63.2	632	6.25	0.97	3.3
901	59.6	354	6.37	5.06	121	0903	63.5	632	6.25	0.95	3.3
AW373						MW374					
Date Collected: 4/11/2019	<u> </u>					Date Collected: 4/11/2019	L			<u> </u>	
940	62.2	731	6.23	1.57	5.3	1015	62.5	699	6.80	1.57	8.4
943	62.6	730	6.22	1.51	4.8	1018	63.2	700	6.82	1.55	8.6
)946	63.0	730	6.21	1.49	4.6	1021	63.7	701	6.83	1.52	8.9
MW375											
Date Collected: 4/11/2019											
1059	61.5	359	6.57	0.74	0						
1102	62.4	358	6.55	0.65	0						
105	63.0	358	6.53	0.62	0.1						

¹ Readings were collected at a frequency not consistent with procedure. Data was considered useable based on consistent stability of parameters.

### Micro-Purge Stability Parameters for the C-746-U Contained Landfill (Continued)

		_						_			
					ed oxyour	77					od other
	Toma	Condition of the Condition	1.8	/	43°		Tennet	sure conduc			450
		Callin /	jin l		ed of the	8		and S	ji ^{nit}		3 ²⁰ /.
	o THE	, mail		:50	J. JOI		o THE	ondu	1 ST	is sol	ed of the
MW357	<u>/~~</u>	70	$\overline{\sqrt{2}}$	<u> </u>	<u>/~`</u>	MW358	$\overline{\sqrt{2}}$	<u> </u>	$\overline{\sqrt{2}}$	<u> </u>	<u>/~~</u>
Date Collected: 5/28/2019						Date Collected: 5/28/2019	-				
0853	63.6	428	6.12	3.09	1	0931	65.3	490	6.25	3.84	0
0856	62.9	428	6.19	3.09	0	0934	64.6	490	6.20	1.81	0
)859	63.0	428	6.16	3.19	0.7	0937	64.8	483	6.15	1.79	0
MW359	03.0	427	0.10	5.19	0.7	MW360	04.0	400	0.15	1.79	0
Date Collected: 5/28/2019						Date Collected: 5/28/2019					
)910	63.1	225	6.00	3.63	0	0748	65.6	441	6.31	3.74	16.1
0913	62.7	226	5.89	3.35	0	0751	64.4	410	6.23	1.25	16.4
0916	62.6	220	5.95	3.29	0.4	0754	64.4	411	6.27	1.19	16.2
MW361	02.0		0.90	5.27	0.1	MW362	0		0.27	,	10.2
Date Collected: 5/28/2019						Date Collected: 5/28/2019					
0830	61.3	483	6.29	4.14	0	0808	66.1	587	6.42	2.19	11.7
0833	60.8	479	6.17	3.01	0	0811	63.6	721	7.10	4.57	2.9
0836	60.8	481	6.10	2.97	0	0814	61.6	731	7.08	5.10	2.1
MW363						0817	61.2	731	7.09	5.14	1.2
Date Collected: 5/28/2019						MW364					
)955	63.8	408	6.23	1.75	0	Date Collected: 5/28/2019					
958	65.2	406	6.17	0.74	0	1035	65.0	474	6.15	2.08	3.1
.001	65.4	409	6.21	0.69	0	1038	63.4	480	6.13	1.99	0
AW365						1041	63.4	479	6.08	1.94	0
Date Collected: 5/28/2019						MW366					
013	64.1	417	6.43	1.48	0	Date Collected: 5/28/2019					
016	65.3	417	6.27	1.64	0.3	1200	69.4	483	6.16	2.08	0
019	65.6	417	6.25	1.70	1	1203	68.4	492	6.12	1.57	0
MW367						1206	68.2	491	6.13	1.60	0
Date Collected: 5/28/2019						MW368					
1239	65.9	447	6.13	0.86	0.5	Date Collected: 5/28/2019					
242	67.7	442	6.04	0.51	0.6	1218	64.6	555	6.56	1.23	7.1
1245	67.9	438	6.00	0.49	1	1221	66.8	568	6.56	0.63	3.2
MW369						1224	66.9	567	6.57	0.58	2.5
Date Collected: 5/28/2019	<u> </u>					MW370					
1324	66.0	382	6.45	2.99	4.9	Date Collected: 5/28/2019	<u> </u>		<u> </u>	L	L
1327	65.9	387	6.44	3.53	0.8	1400	66.2	444	6.23	5.04	5.3
1330	66.0	387	6.40	3.59	0.8	1403	68.0	437	6.12	3.54	0
MW371						1406	68.2	436	6.11	3.46	0
Date Collected: 5/28/2019	(7.5	401	6.52	1.62	107	MW372					
341	67.5	491	6.52	4.62	106	Date Collected: 5/28/2019	(7.2	600	6.16	2.07	
344	67.8	491	6.54	5.12	72.5	1422	67.2	608	6.19	3.04	0
1347	67.9	500	6.52	5.20	71.9	1425	68.6	625	6.20	2.18	0.5
MW373						1428	68.8	628	6.22	2.13	0.4
Date Collected: 5/28/2019	(8.1	772	( 22	1.25	1.4	MW374					
502	68.1	772	6.23	1.35	1.4	Date Collected: 5/28/2019	667	(70	6.17	1.07	0.2
505	65.8	768	6.20	1.28	0.2	1440	66.7	672	6.67	1.96	0.3
1508	65.7	767	6.21	1.28	1.1	1443	69.1	674	6.77	1.58	1.8
MW375						1446	68.7	671	6.78	1.49	1.5
Date Collected: 5/28/2019	(77	257	6.41	0.05	0.5						
1302	67.7	357	6.41	0.95	0.5						
1305	70.2	343	6.43	1.01	1.1						
1308	70.5	344	6.47	1.05	0						