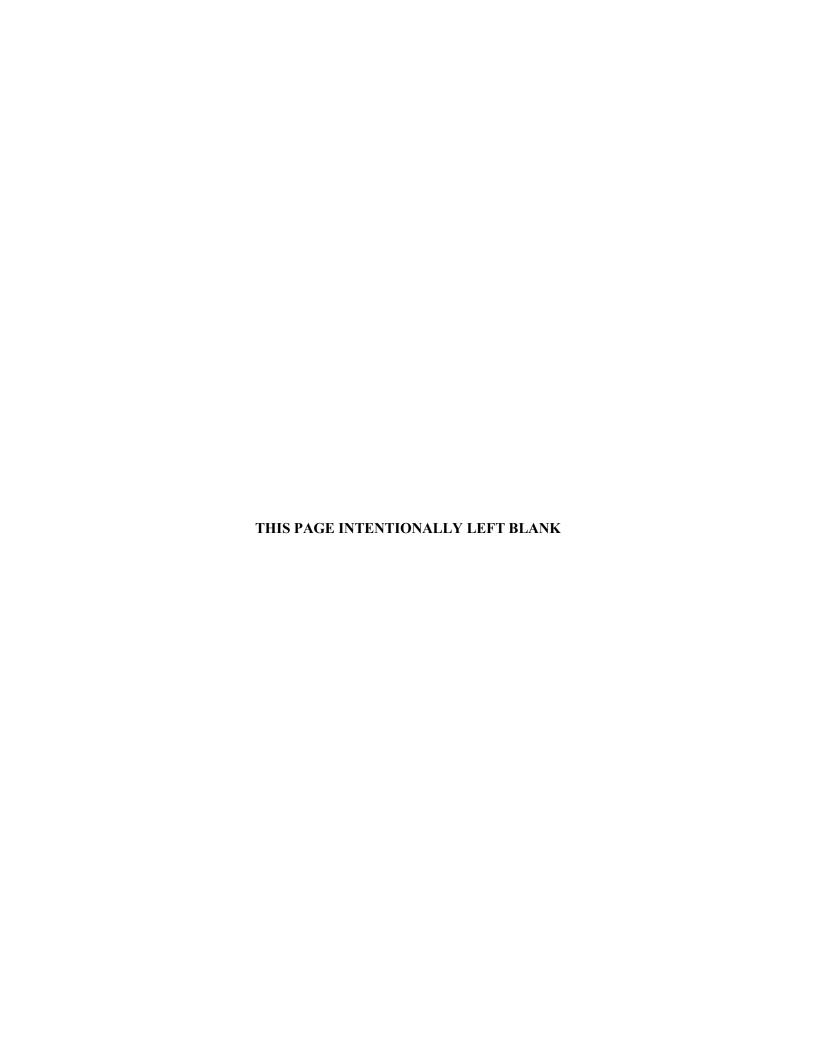
C-746-U Contained Landfill
First Quarter Calendar Year 2019
(January–March)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

This document is approved for public release per review by:

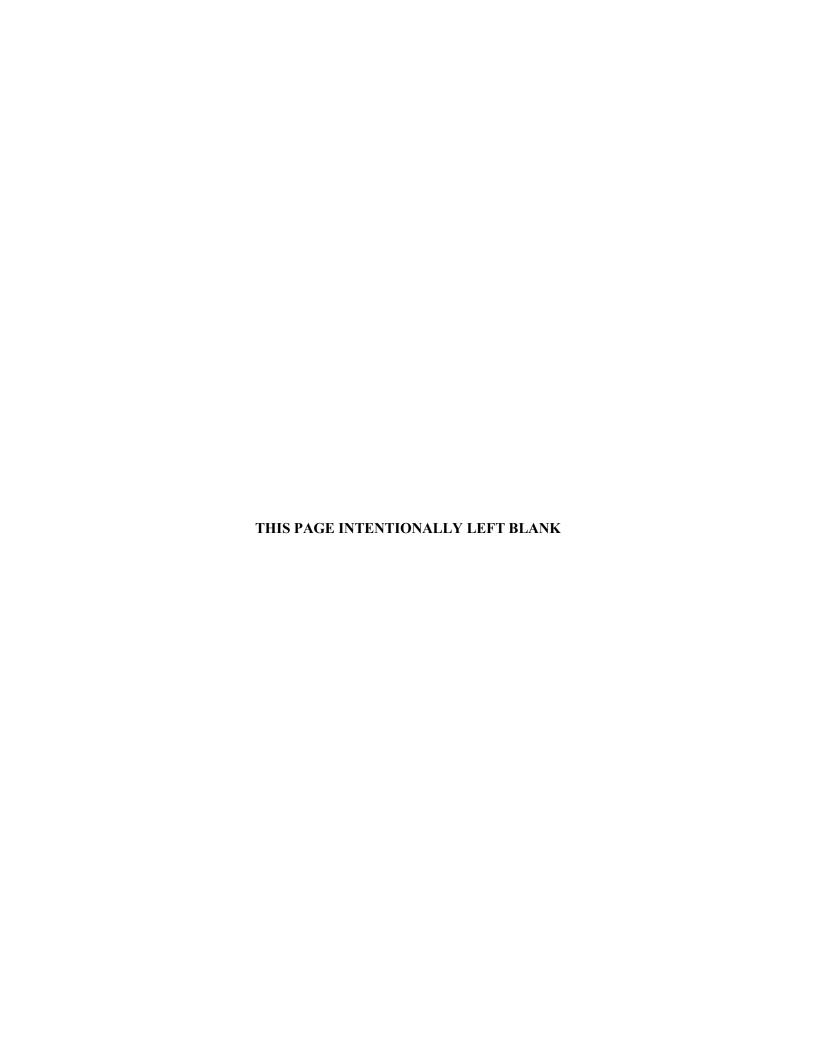
FRNP Classification Support

5-23-19

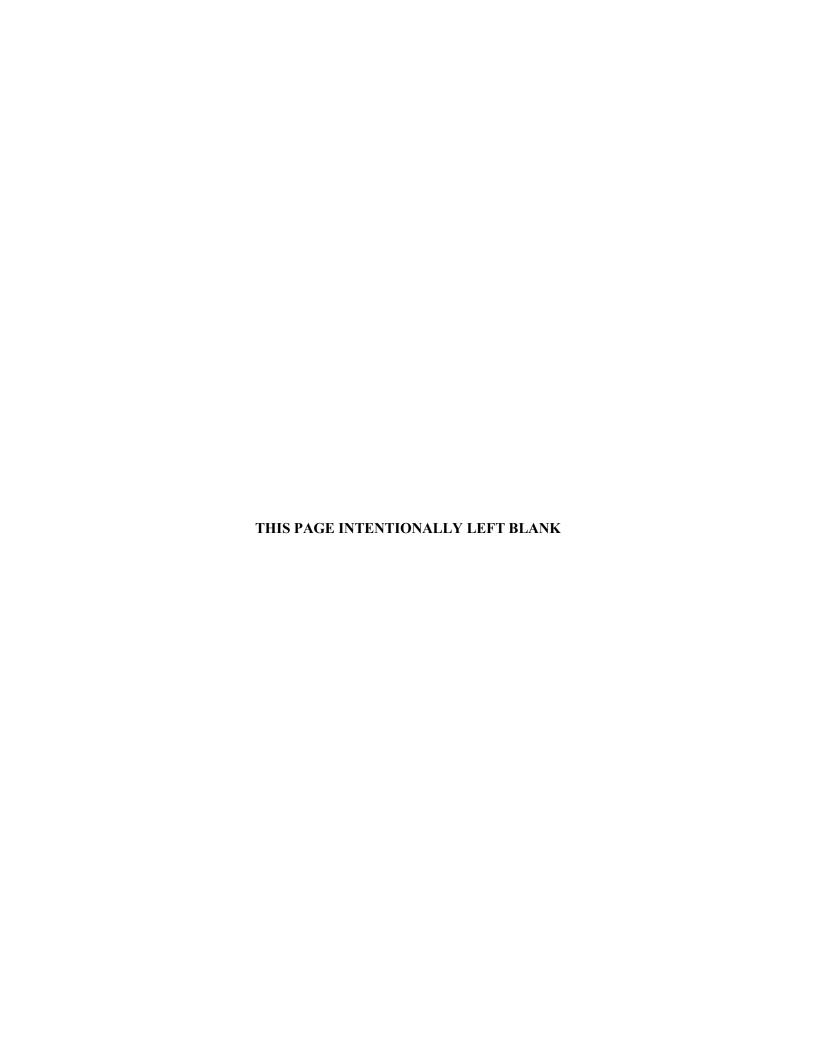

Date

C-746-U Contained Landfill
First Quarter Calendar Year 2019
(January–March)
Compliance Monitoring Report
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—May 2019


U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895


CONTENTS

FI	GURES		v
TA	ABLES		v
Α(CRONYMS		vii
1.	INTRODUC	CTION	1
		KGROUND	
	1.2 MON	ITORING PERIOD ACTIVITIES	1
	1.2.1	Groundwater Monitoring	
	1.2.2	Methane Monitoring	
	1.2.3	Surface Water Monitoring	
	1.3 KEY	RESULTS	5
2.	DATA EVA	LUATION/STATISTICAL SYNOPSIS	7
		ISTICAL ANALYSIS OF GROUNDWATER DATA	
	2.1.1	Upper Continental Recharge System	8
	2.1.2	Upper Regional Gravel Aquifer	
		Lower Regional Gravel Aquifer	8
	2.2 DATA	A VERIFICATION AND VALIDATION	9
3.	PROFESSIO	ONAL GEOLOGIST AUTHORIZATION	11
4.	REFERENC	CES	13
Αŀ	PPENDIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE	. 1
		MONITORING SAMPLE DATA REPORTING FORM	A-1
Αŀ	PPENDIX B:	FACILITY INFORMATION SHEET	B-1
ΑĪ	PPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
Αŀ	PPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
Αŀ	PPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
Αŀ	PPENDIX F:	NOTIFICATIONS	F-1
Αŀ	PPENDIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
Αŀ	PPENDIX H:	METHANE MONITORING DATA	H-1
Αŀ	PPENDIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1

FIGURES

1.	C-746-U Landfill Groundwater Monitoring Well Network	2
2.	C-746-U Landfill Surface Water Monitoring Locations	4
	TABLES	
1.	Summary of MCL Exceedances	5
2.	Exceedances of Statistically Derived Historical Background Concentrations	5
	Exceedances of Current Background UTL in Downgradient UCRS Wells	
4.	Monitoring Wells Included in Statistical Analysis	8

ACRONYMS

CFR Code of Federal Regulations

CY calendar year

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit


MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

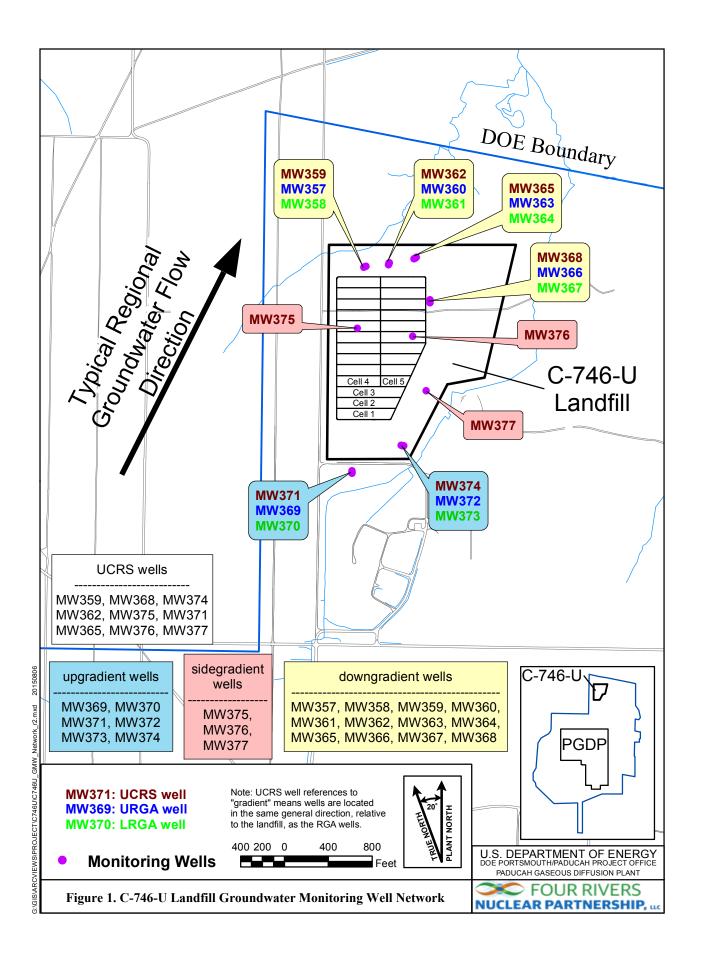
UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-U Contained Landfill First Quarter Calendar Year 2019 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of MCL exceedances and exceedances of the historical background UTL that have occurred, beginning in the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-U Landfill Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I.

1.1 BACKGROUND


The C-746-U Landfill is an operating solid waste landfill located north of the Paducah Site and north of the C-746-S&T Landfills. Construction and operation of the C-746-U Landfill were permitted in November 1996. The operation is regulated under Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045. The permitted C-746-U Landfill area covers about 60 acres and includes a liner and leachate collection system. C-746-U Landfill currently is operating in Phases 4 and 5. Phases 1, 2, and 3 have long-term cover. Phases 6 through 23 have not been constructed.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 21 monitoring wells (MWs) under permit for the C-746-U Landfill: 9 UCRS wells, 6 URGA wells, and 6 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs were sampled this quarter except MW376 and MW377 (all screened in the UCRS), which had an insufficient amount of water to obtain samples; therefore, there are no laboratory analysis results for these locations.

Consistent with the approved *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills* (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, (Groundwater Monitoring Plan) UCRS wells are included in the monitoring program (LATA Kentucky 2014). Groundwater flow gradients are downward through the UCRS, but flow in the underlying Regional Gravel Aquifer (RGA) is lateral. Groundwater flow in the

RGA typically is in a northeasterly direction in the vicinity of the C-746-U Landfill. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills.

Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the first quarter 2019 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. The analytical laboratory used U.S. Environmental Protection Agency-approved methods, as applicable. Appropriate sample containers and preservatives were used. The parameters specified in Permit Condition GSTR0001, Special Condition 1, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on January 29, 2019, in MWs of the C-746-U Landfill (see Table E.1), in MWs of the C-746-S&T Landfills, and in MWs of the surrounding region (shown on Figure E.4). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During January, RGA groundwater flow in the area of the landfill was oriented northeastward to eastward. The hydraulic gradient for the RGA in the vicinity of the C-746-U Landfill in January was 1.77×10^{-4} ft/ft. The hydraulic gradients for the URGA and LRGA at the C-746-U Landfill were 1.83×10^{-4} ft/ft and 1.62×10^{-4} ft/ft, respectively. Calculated groundwater flow rates (average linear velocity) at the C-746-U Landfill range from 0.311 to 0.531 ft/day for the URGA and 0.275 to 0.469 ft/day for the LRGA (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application Attachment 12, of the Solid Waste Landfill permit. Landfill operations staff monitored for the occurrence of methane in four on-site building locations and four locations along the landfill boundary on February 26, 2019. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-U Landfill Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was monitored, as specified in 401 *KAR* 48:300 § 2, and the approved *Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (PRS 2008), which is Technical Application Attachment 24, of the Solid Waste Landfill Permit. Sampling was performed at three locations (see Figure 2) monitored for the C-746-U Landfill. The C-746-U Landfill has an upstream location, L154; a downstream location, L351;

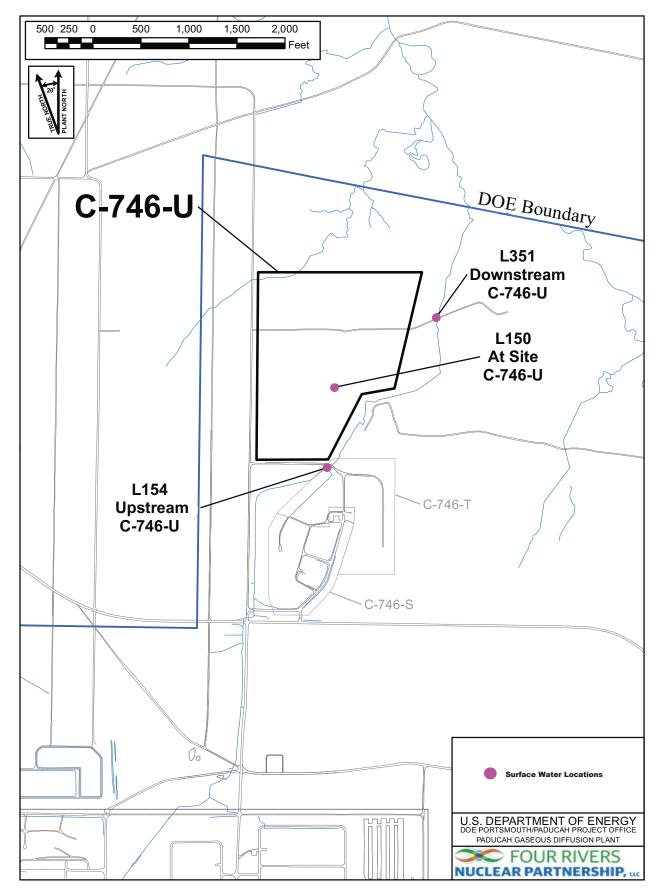


Figure 2. C-746-U Landfill Surface Water Monitoring Locations

and a location capturing runoff from the landfill surface, L150. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), which is Technical Application, Attachment 25, of the Solid Waste Landfill Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were evaluated further against their historical background UTL. Table 2 identifies parameters (that do not have MCLs) with concentrations that exceeded the statistically derived historical background UTL¹ during the first quarter 2019, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient.

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW366: Trichloroethene	MW361: Trichloroethene
	MW372: Trichloroethene	MW364: Trichloroethene
		MW367: Trichloroethene
		MW370: Beta activity

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW359: Dissolved oxygen,	MW357: Oxidation-reduction	MW358: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential
MW362: Dissolved oxygen,	MW360: Oxidation-reduction	MW361: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential
MW365: Dissolved oxygen,	MW363: Oxidation-reduction	MW364: Oxidation-reduction
oxidation-reduction potential, sulfate	potential	potential
MW368: Oxidation-reduction	MW366: Oxidation-reduction	MW367: Oxidation-reduction
potential, sulfate	potential	potential, technetium-99
MW371: Dissolved oxygen,	MW369: Oxidation-reduction	MW370: Beta activity,
oxidation-reduction potential	potential	oxidation-reduction potential,
		technetium-99
MW374: Oxidation-reduction	MW372: Oxidation-reduction	MW373: Oxidation-reduction
potential	potential	potential
MW375: Oxidation-reduction		
potential, sulfate		

^{*}Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Downgradient wells: MW357, MW358, MW359, MW360, MW361, MW362, MW363, MW364, MW365, MW366, MW367, MW368 Upgradient wells: MW369, MW370, MW371, MW372, MW373, MW374

The notification of parameters that exceeded the MCL was submitted electronically to the KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

Sidegradient wells: MW375, MW376, MW377

¹ The UTL comparison for pH uses a two-sided test, for both UTLs and LTLs. For the purposes of this report, the reference to "UTL exceedances" also includes the LTL for pH.

The constituents that exceeded their MCL in a downgradient well were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW361, MW364, MW366, and MW367 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-U Landfill.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0001, Standard Requirement 5; and 401 *KAR* 48:300 § 7.

The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTLs that were developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. For those constituents present in downgradient RGA wells with historical UTL exceedances, there were no current background UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

The statistical evaluation of current UCRS concentrations against the current UCRS background UTL identified UCRS well, MW368 with a sulfate value that exceeds both the historical and current backgrounds (Table 3). Because UCRS wells are not hydrogeologically downgradient of the C-746-U Landfill, the exceedance is not attributable to C-746-U sources and is considered to be a Type 1 exceedance.

Table 3. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS								
MW368: Sulfate								
	Ü							

^{*}In the same direction (relative to the landfill) as RGA wells.

All MCL and UTL exceedances reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-U Landfill.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the first quarter 2019 groundwater data collected from the C-746-U Landfill MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report use data from the first eight quarters that were sampled for each parameter, beginning with the baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfill. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were evaluated further using the Mann-Kendall test for trend. If there was no statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfill).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both a UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 4.

Table 4. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW359	MW357	MW358
MW362	MW360	MW361
MW365	MW363	MW364
MW368	MW366	MW367
MW371**	MW369 (upgradient)	MW370 (upgradient)
MW374**	MW372 (upgradient)	MW373 (upgradient)
MW375	, 10	, 10
MW376***		
MW377***		

^{*}A map showing the monitoring well locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrogeological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values.

2.1.1 Upper Continental Recharge System

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the UCRS. During the first quarter, dissolved oxygen, oxidation-reduction potential, and sulfate displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Sulfate exceeded the current background UTL and is included in Table 3.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the URGA. During the first quarter, oxidation-reduction potential displayed concentrations that exceeded the respective historical UTL and is listed in Table 2. There were no exceedances of the current background UTL for any downgradient wells.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the LRGA. During the first quarter, beta activity, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. There were no exceedences of the current background UTL for any downgradient wells.

^{**}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

^{***}Well had insufficient water to permit a water sample for laboratory analysis.


2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against a set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-U Contained Landfill

First Quarter Calendar Year 2019 (January–March)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

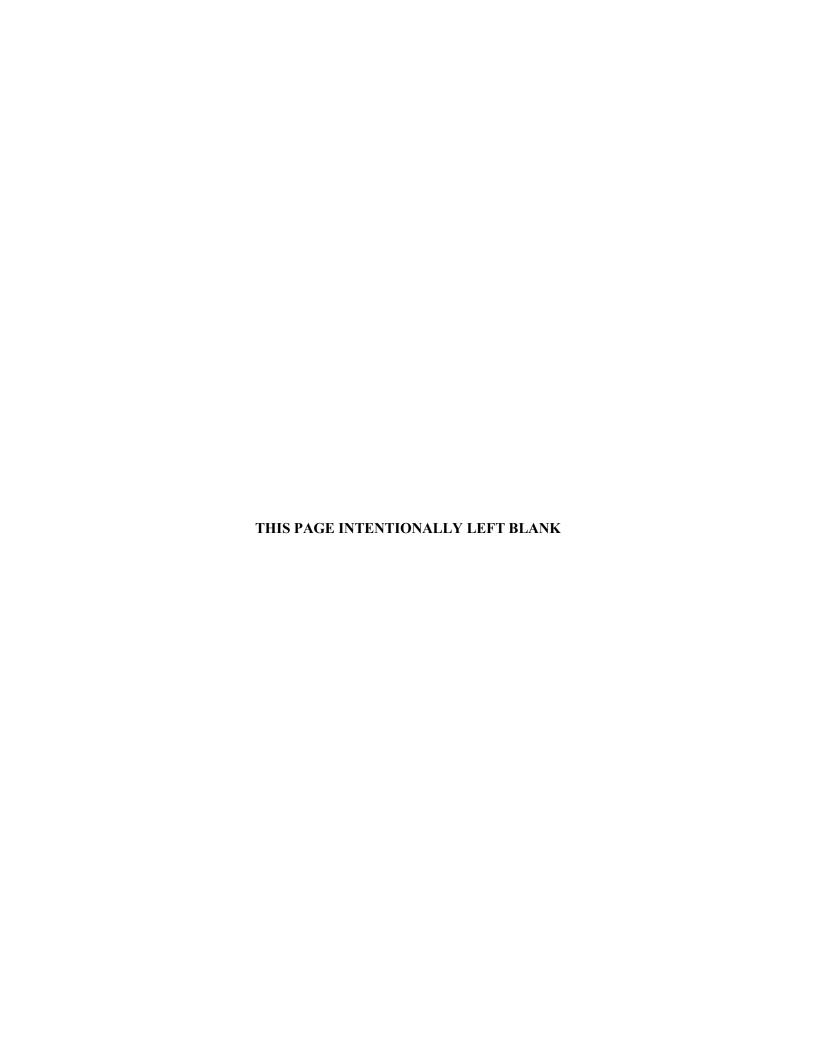
Paducah, Kentucky (FRNP-RPT-0087/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.


Resident of the Police of the

Kenneth R. Davis

Kenneth R. Davis

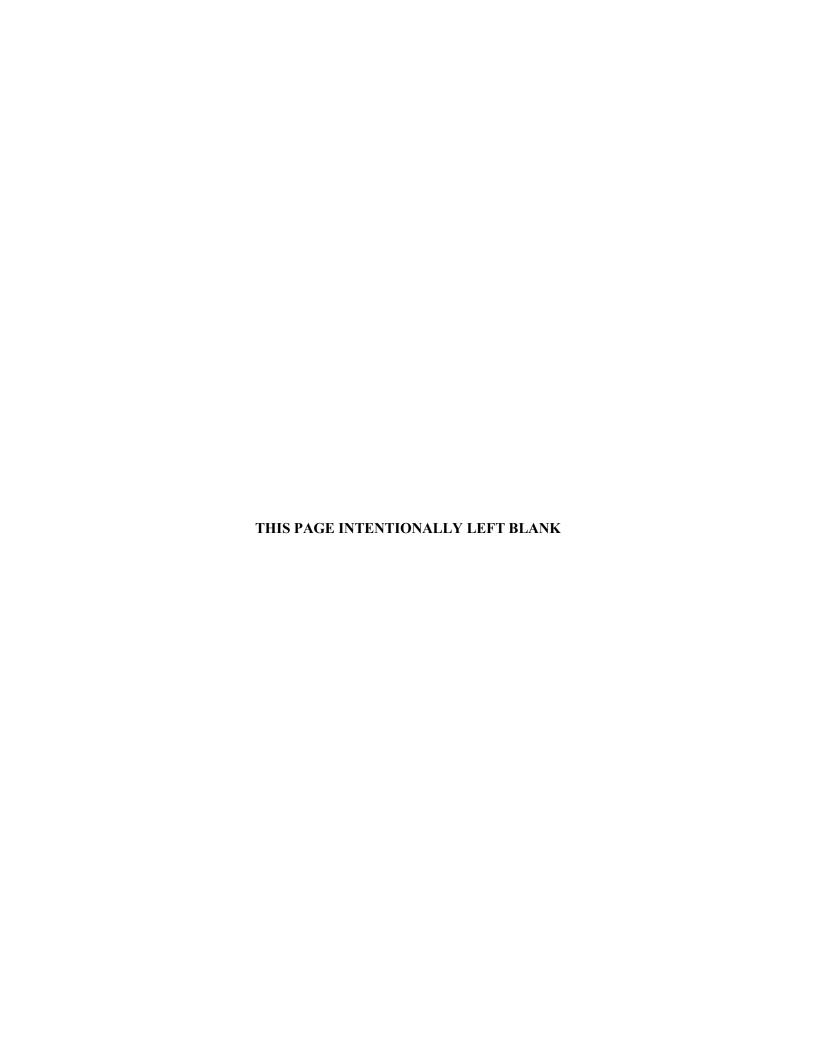

PG113927

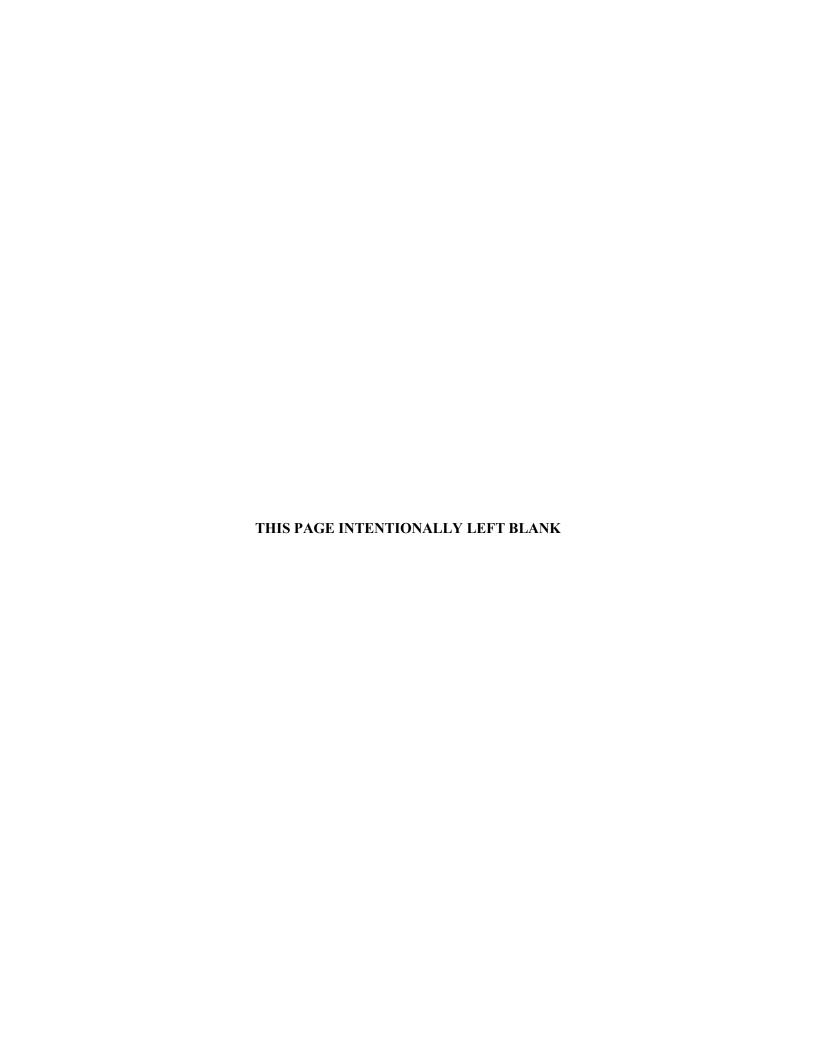
May 21, 2019
Date


4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-U Contained Landfill Permit Number KY-073-00045, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A


GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM


GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. DOE-Paducah Ga: (As officially shown on					Activity:	C-746-1	-U Contained Landfill	
Permit No:	SW07300014, SW07300015, SW07300045		Fine	Finds/Unit No:		& Year	1st Qtr. CY 2019		
Please check the	following o	as appli	cable:						
Charact	erization	X	Quart	erly _	Semiannual	Ann	ual	Assessment	
Please check app	olicable sub	mittal(s): _	X	Groundwater	X	Surfac	e Water	
					Leachate	X	_ Metha	ne Monitoring	
45:160) or by statu jurisdiction of the (48) hours of ma Submitting the lal instruction pages. I certify under per accordance with a Based on my inquithe best of my kno	nalty of law system design of the per wledge and	y Revise Waste etermin OT cons that the gned to son or p belief, to	ed Statue Manage ation u sidered is documassure tersons do cue, accu	es Chaptement. Y sing stanotificatement and chat qualificate grate, and	er 224) to conduct group ou must report any is tistical analyses, direction. Instructions for conduct all attachments were iffed personnel properly esponsible for gathering	andwater and andication of ect comparison prepared under gather and eag the information that there are	surface wa contamina on, or oth orm are att der my dir evaluate the on, the inf	ons-401 KAR 48:300 and ter monitoring under the ation within forty-eight ter similar techniques. ached. Do not submit the ection or supervision in the information submitted to the penalties for submitting	
Myrna E. Redfi Four Rivers Nu				lanager]	Date \		
Jennifer Wooda			Lead			ī	5/2 Date	8 19	



APPENDIX B FACILITY INFORMATION SHEET



FACILITY INFORMATION SHEET

S	Groundwater: January 2019 Gurface water: January 2019 Methane: February 2019	County:	McCracken	Permit Nos.	SW07300014, SW07300015, SW07300045
Facility Name: <u>U</u>	J.S. DOE—Paducah Gaseous D				
	(As officially sho	wn on DWM Permit Face)		
Site Address:	5600 Hobbs Road	Kevil, Kentucky		42053	
	Street	City/State		Zip	
Phone No: (270)	441-6800 Latitude:	N 37° 07' 45"	Longi	tude: W	88° 47' 55"
	OWN	NER INFORMATION			
Facility Owner:	U.S. DOE, Robert E. Edwards	III. Manager	Phone No:	(859) 227	7-5020
Contact Person:	David Hutchison	,8-	Phone No:		
-	Director, Environmental	Services	1 110110 1 (0.	(2,0)	
Contact Person Title	E: Four Rivers Nuclear Part	enership, LLC			
Mailing Address:	5511 Hobbs Road	Kevil, Kentucky		42053	
	Street	City/State		Zip	
Company: GEO Contact Person:		PLING PERSONNEL N LANDFILL OR LABO	Phone No:	(270) 44	.1-6755
Mailing Address:	199 Kentucky Avenue	Kevil, Kentucky	THORE IVE.	42053	1 0/00
maning radioss.	Street	City/State		Zip	
	LABO	RATORY RECORD #1			
Laboratory GEL	Laboratories, LLC	Lab	ID No: <u>KY90</u>	129	
Contact Person:	Valerie Davis		Phone No:	(843) 769	9-7391
Mailing Address:	2040 Savage Road	Charleston, South Car	rolina	2940	
	Street	City/State		Ziţ	p
	LABO	RATORY RECORD #2			
Laboratory: N/A		Lab II	D No: N/A		
Contact Person:	N/A		Phone No:	N/A	
Mailing Address:	N/A				
	Street	City/State			Zip
	LABO	RATORY RECORD #3			
Laboratory: N/A		Lab II	D No: N/A		
Contact Person:	N/A		Phone No:	N/A	
Mailing Address:	N/A				
<u> </u>	Street	City/State		7	Zip

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ , Facility Well/Spring Number						3	8004-4799		8004-0981		8004-4800	
Facility's Loc	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						358		359		360	
Sample Sequenc	Sample Sequence #						1		1		1	
If sample is a l	If sample is a Blank, specify Type: (F)ield, (T)rip, (M)ethod, or (E)quipment						NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/15/2019 07	7:48	1/15/2019	09:52	1/15/2019	09:02	1/14/2019 1	0:02
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW357UG2	-19	MW358U	G2-19	MW359U0	G2-19	MW360UG	2-19
Laboratory San	mple ID Number (if applicable)				46905600	1	469056	003	4690560	005	468901003	
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	e Or	ganics Anal	ysis.	1/21/2019)	1/21/2019		1/21/2019		1/17/2019	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	WN, SIDE, UNKNOWN)		DOWN		DOWN		DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.38		0.481		<0.2		0.152	*J
16887-00-6	Chloride(s)	т	mg/L	9056	31		36.3		1.11		9.37	
16984-48-8	Fluoride	т	mg/L	9056	0.289		0.299		0.311		0.211	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.25		0.858		1.06		0.543	
14808-79-8	Sulfate	т	mg/L	9056	45.1		66.5		51.1		12.1	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.32		30.34		30.34		30.44	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	422		502		230		404	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,		8004-4798		8004-4799		8004-0981		8004-4800				
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, B				F, etc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	326.22		326.23		338.45		326.02	
N238	Dissolved Oxygen	Т	mg/L	Field	3.49		0.77		3.87		1.39	
s0266	Total Dissolved Solids	Т	mg/L	160.1	283	*	324	*	219	*	211	
s0296	рн	Т	Units	Field	5.85		6.08		5.93		5.84	
NS215	Eh	Т	mV	Field	434		242		454		403	
s0907	Temperature	Т	ပ	Field	11.39		13.44		12.72		12.17	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.0202	J	0.0666		0.0724	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		0.00373	J	0.00309	J	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.0694		0.0572		0.0283		0.192	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.387		0.436		0.00744	J	0.0201	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	26.7		33.5		6.1		18.6	
7440-47-3	Chromium	т	mg/L	6020	<0.01		0.00668	J	<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.00515		<0.001		0.00145	
7440-50-8	Copper	Т	mg/L	6020	0.00178		0.00432		0.00251		0.00278	
7439-89-6	Iron	Т	mg/L	6020	<0.1		1.87		0.0702	J	0.251	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	11.3		16.5		3.77		8.13	
7439-96-5	Manganese	Т	mg/L	6020	0.0108		0.335		0.00136	J	0.0235	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8004-479	8	8004-479	99	8004-098	31	8004-480	0
Facility's	Local Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005		0.000489	J	<0.0005		<0.0005	
7440-02-0	Nickel	Т	mg/L	6020	<0.002		0.0372		0.00107	J	0.001	J
7440-09-7	Potassium	Т	mg/L	6020	1.63		2.57		<0.3		0.697	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	42.5		42.8		40.7		65.5	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.000094	BJ	<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		0.00359	J	0.0054	J
7440-66-6	Zinc	Т	mg/L	6020	<0.01		0.00563	J	<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003	*	<0.003	*	<0.003	*	<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4798		8004-479	9	8004-09	81	8004-48	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	cc.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00457		0.0032		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	8	8004-4799	9	8004-098	81	8004-48	00
Facility's Loc	cal Well or Spring Number (e.g., N	4W-1	L, MW-2, et	.c.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000196		<0.0000195		<0.0000201		<0.000019	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
1336-36-3	PCB,Total	т	ug/L	8082	<0.0971		<0.0943		<0.0952		<0.0952	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0971		<0.0943		<0.0952		<0.0952	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0971		<0.0943		<0.0952		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0971		<0.0943		<0.0952		<0.0952	
53469-21-9	PCB-1242	т	ug/L	8082	<0.0971		<0.0943		<0.0952		<0.0952	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0971		<0.0943		<0.0952		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4798		8004-4799		8004-098	1	8004-480)0
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	te.)	357		358		359		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0971		<0.0943		<0.0952		<0.0952	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0971		<0.0943		<0.0952		<0.0952	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0971		<0.0943		<0.0952		<0.0952	
12587-46-1	Gross Alpha	T	pCi/L	9310	1.79	*	1.3	*	0.576	*	-0.149	*
12587-47-2	Gross Beta	Т	pCi/L	9310	16.9	*	32.2	*	3.49	*	1.59	*
10043-66-0	Iodine-131	T	pCi/L			*		*		*		*
13982-63-3	Radium-226	T	pCi/L	AN-1418	0.338	*	0.203	*	0.203	*	0.727	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-3.75	*	-1.01	*	-0.607	*	0.0641	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	23	*	30.3	*	0.303	*	-2.23	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.0595	*	1.08	*	0.0139	*	0.385	*
10028-17-8	Tritium	T	pCi/L	906.0	62	*	-10.3	*	11.7	*	-98.2	*
s0130	Chemical Oxygen Demand	T	mg/L	410.4	<20		<20		<20		<20	*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	T	mg/L	300.0	<0.5		0.237	J	<0.5		<0.5	
S0268	Total Organic Carbon	Т	mg/L	9060	0.757	J	2.07		0.793	J	1.29	J
s0586	Total Organic Halides	T	mg/L	9020	0.00956	J	<0.01		<0.01		0.00476	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-09	986	8004-47	'96	8004-479	97
Facility's Loc	cal Well or Spring Number (e.g., N	∕w-1	., MW-2, etc	.)	361		362		363		364	
Sample Sequenc	ce #				1		1		1		1	
If sample is a H	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		1/14/2019 12	2:34	1/14/2019	13:47	1/15/2019	10:41	1/15/2019 1	2:14
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW361UG2	<u>?</u> -19	MW362U	G2-19	MW363U0	G2-19	MW364UG	2-19
Laboratory Sam	mple ID Number (if applicable)		46890100	5	468901	007	469056	007	46905600	09		
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ysis	1/17/2019)	1/21/20	19	1/21/20	19	1/21/201	9		
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOWN		DOW	N	DOW	N	DOWN	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.417	*	0.106	*J	0.128	J	0.454	
16887-00-6	Chloride(s)	т	mg/L	9056	32.9		5.4		26.8		34.8	
16984-48-8	Fluoride	mg/L	9056	0.16		0.378		0.392		0.276		
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.11		0.623		5.61		1.06	
14808-79-8	Sulfate	Т	mg/L	9056	62.3		20.2		36.5		73.3	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.4		30.38		30.35		30.32	
S0145	Specific Conductance	Т	μ M H0/cm	Field	465		668		418		479	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-4796		8004-4797	
Facility's Loc	cal Well or Spring Number (e.g., MW	r-1, 1	MW-2, BLANK-	F, etc.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.13		337.34		326.11		325.4	
N238	Dissolved Oxygen	т	mg/L	Field	3.18		4.34		1.14		2.18	
s0266	Total Dissolved Solids	Т	mg/L	160.1	267		381		306	*	327	*
S0296	рн	Т	Units	Field	6.12		6.83		6.11		5.99	
NS215	Eh	т	mV	Field	407		411		273		359	
s0907	Temperature	т	°C	Field	11.11		11.72		14		13.61	
7429-90-5	Aluminum	т	mg/L	6020	<0.05		0.209		<0.05		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	0.00204	J	<0.005		0.00352	J	0.00219	J
7440-39-3	Barium	Т	mg/L	6020	0.056		0.109		0.156		0.0708	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.388		0.0174		0.0247		0.0183	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	29.6		17.8		25.7		31.6	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		0.00113		0.000335	J
7440-50-8	Copper	Т	mg/L	6020	0.00162		0.00227		0.00166		0.00179	
7439-89-6	Iron	Т	mg/L	6020	<0.1		0.136		0.0362	J	0.117	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	13.3		8.07		11.1		14.2	
7439-96-5	Manganese	т	mg/L	6020	0.00168	J	0.00225	J	0.314		0.0205	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number		8004-479	5	8004-098	36	8004-479	6	8004-479	97		
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	361		362		363		364	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7		Molybdenum	T	mg/L	6020	<0.0005		0.000836		<0.0005		0.000717	
7440-02-0		Nickel	T	mg/L	6020	<0.002		0.000897	J	0.00186	J	0.000937	J
7440-09-7		Potassium	T	mg/L	6020	1.9		0.306		1.3		2	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	Т	mg/L	6020	46.1		134		44.6		44.7	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		0.00409		<0.0002		<0.0002	
7440-62-2		Vanadium	т	mg/L	6020	<0.01		0.00373	J	<0.01		<0.01	
7440-66-6		Zinc	T	mg/L	6020	0.00653	J	<0.01		<0.01		0.0388	
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7		Xylenes	T	mg/L	8260	<0.003		<0.003		<0.003	*	<0.003	*
100-42-5		Styrene	T	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	*
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-4795		8004-0986	6	8004-479	96	8004-479	97
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00624		0.00082	J	0.0007	J	0.00709	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	5	8004-0986	6	8004-479	96	8004-47	97
Facility's Loc	al Well or Spring Number (e.g., N	1W−1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	*
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000191	*	<0.0000187	*	<0.0000196		<0.0000201	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001	*	<0.001	*
1336-36-3	PCB,Total	т	ug/L	8082	<0.0962		<0.0943		<0.0971		<0.0952	
12674-11-2	PCB-1016	т	ug/L	8082	<0.0962		<0.0943		<0.0971		<0.0952	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0962		<0.0943		<0.0971		<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0962		<0.0943		<0.0971		<0.0952	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0962		<0.0943		<0.0971		<0.0952	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0962		<0.0943		<0.0971		<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4795		8004-0986		8004-479	6	8004-479	97
Facility's Loc	cal Well or Spring Number (e.g., N	MW−1	L, MW-2, et	.c.)	361		362		363		364	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0962		<0.0943		<0.0971		<0.0952	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0962		<0.0943		<0.0971		<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0962		<0.0943		<0.0971		<0.0952	
12587-46-1	Gross Alpha	Т	pCi/L	9310	5.31	*	1.98	*	5.74	*	-2.35	*
12587-47-2	Gross Beta	Т	pCi/L	9310	29.6	*	-3.23	*	7.94	*	28.8	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.0734	*	0.305	*	0.304	*	0.482	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	4.15	*	2.17	*	1.01	*	1.56	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	22.8	*	0.91	*	2.5	*	39	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	-0.303	*	0.0432	*	0.282	*	-0.34	*
10028-17-8	Tritium	т	pCi/L	906.0	-31.3	*	-120	*	-8.19	*	-17.7	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20	*	<20	*	<20		<20	
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		0.258	J	<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	0.692	J	2.18		1.06	J	0.848	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00676	J	0.0157		0.00652	J	0.012	

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-09	84	8004-	0982	8004-4	4793	8004-0	983
Facility's Lo	cal Well or Spring Number (e.g., N	MW−1	., MW-2, etc	:.)	365		36	6	36	7	368	,
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/15/2019	11:27	1/16/201	9 09:49	1/16/201	9 08:11	1/16/2019	08:59
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW365UG	32-19	MW366	JG2-19	MW3671	JG2-19	MW368U	G2-19
Laboratory San	mple ID Number (if applicable)			4690560)11	46913	1001	46913	1003	469131	005	
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	e 01	ganics Anal	ysis	1/21/20	19	1/23/2	2019	1/23/2	2019	1/23/20)19
Gradient with	respect to Monitored Unit (UP, DO	, NW C	SIDE, UNKN	IOWN)	DOW	١	DO	ΝN	DOV	٧N	DOW	N
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	<0.2		0.429		0.416		<0.2	
16887-00-6	Chloride(s)	т	mg/L	9056	2.97		38.3	*	35.8	*	4.78	*
16984-48-8	Fluoride	Т	mg/L	9056	0.503		0.161		0.178		0.305	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.13		0.726		0.446	J	<1	
14808-79-8	Sulfate	T	mg/L	9056	66.8		54		52		105	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.35		30.27		30.25		30.26	
S0145	Specific Conductance	T	μ MH 0/cm	Field	421		485		456		664	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-0984	4	8004-0982	2	8004-4793		8004-0983	3
Facility's Lo	ocal Well or Spring Number (e.g., MV	i-1, i	MW-2, BLANK-	F, etc.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	335.55		326.29		326.24		351.46	
N238	Dissolved Oxygen	т	mg/L	Field	5.02		2.47		1.86		1.83	
s0266	Total Dissolved Solids	т	mg/L	160.1	341	*	293	В	287	В	420	В
s0296	рн	Т	Units	Field	6.13		6.3		5.84		6.42	
NS215	Eh	Т	mV	Field	321		437		422		426	
S0907	Temperature	Т	°C	Field	13.56		13.94		12.72		13.22	
7429-90-5	Aluminum	T	mg/L	6020	0.0252	J	<0.05		<0.05		0.703	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	0.0029	J	0.00222	J	0.00487	J	0.00612	
7440-39-3	Barium	Т	mg/L	6020	0.111		0.117		0.17		0.0345	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.00889	J	0.182		0.0778		0.00903	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	22.2		31.1		27.4		54.5	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00163		<0.001		0.00112		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00357		0.00211		0.00208		0.00237	
7439-89-6	Iron	т	mg/L	6020	<0.1		0.114		1.98		0.426	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	10.6		13.3		13.1		15.4	
7439-96-5	Manganese	Т	mg/L	6020	0.0183		0.00502		0.333		0.00975	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number		8004-098	4	8004-098	32	8004-479	3	8004-098	33		
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	365		366		367		368	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		0.00115	
7440-02-0		Nickel	Т	mg/L	6020	0.00467		<0.002		0.00136	J	0.000949	J
7440-09-7		Potassium	Т	mg/L	6020	0.239	J	1.99		3.09		0.774	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	Т	mg/L	6020	58		48.3	*	39	*	69.1	*
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	0.00023	В	<0.0002		<0.0002		0.000289	
7440-62-2		Vanadium	Т	mg/L	6020	<0.01		<0.01		0.00683	J	0.00554	J
7440-66-6		Zinc	Т	mg/L	6020	0.00477	J	<0.01		0.00596	J	0.00517	J
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
1330-20-7		Xylenes	Т	mg/L	8260	<0.003	*	<0.003	*	<0.003	*	<0.003	*
100-42-5		Styrene	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982	2	8004-479	93	8004-098	33
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005	*	<0.005	*	<0.005	*
75-00-3	Chloroethane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
79-01-6	Ethene, Trichloro-	T	mg/L	8260	<0.001		0.0059		0.0068		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number			8004-098	4	8004-0982	2	8004-47	93	8004-09	83	
Facility's Loc	al Well or Spring Number (e.g., M	1W-1	1, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005	*	<0.005	*	<0.005	*
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005	*	<0.005	*	<0.005	*
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000199		<0.000198		<0.00002		<0.00002	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	*
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	*
1336-36-3	PCB, Total	Т	ug/L	8082	<0.0971		<0.0962		<0.0962		<0.0962	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0971		<0.0962		<0.0962		<0.0962	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0971		<0.0962		<0.0962		<0.0962	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0971		<0.0962		<0.0962		<0.0962	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0971		<0.0962		<0.0962		<0.0962	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0971		<0.0962		<0.0962		<0.0962	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0984		8004-0982		8004-479	3	8004-098	33
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	365		366		367		368	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0971		<0.0962		<0.0962		<0.0962	
11096-82-5	PCB-1260	т	ug/L	8082	<0.0971		<0.0962		<0.0962		<0.0962	
11100-14-4	PCB-1268	т	ug/L	8082	<0.0971		<0.0962		<0.0962		<0.0962	
12587-46-1	Gross Alpha	т	pCi/L	9310	2.79	*	-0.254	*	0.0636	*	-0.582	*
12587-47-2	Gross Beta	т	pCi/L	9310	-2.17	*	46.8	*	39.1	*	1.67	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.559	*	0.658	*	-0.0832	*	0.381	*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.25	*	-0.204	*	-0.00563	*	1.2	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	-11.2	*	45.7	*	55.7	*	-6.88	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC	0.304	*	0.574	*	0.0164	*	0.0694	*
10028-17-8	Tritium	т	pCi/L	906.0	60.9	*	56.5	*	151	*	75.6	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	<20		20.1		18.4	J	13.3	J
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	т	mg/L	9060	1.33	J	0.981	J	0.926	J	1.64	J
s0586	Total Organic Halides	т	mg/L	9020	0.0177		0.00482	J	0.0119		0.00836	J

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1
LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-48	320	8004-	4818	8004-4	4819	8004-4	808
Facility's Loc	cal Well or Spring Number (e.g., b	4W−1	, MW-2, etc	:.)	369		37	0	37	1	372	2
Sample Sequenc	ce #				1		1		1		1	
If sample is a D	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/16/2019	11:04	1/16/201	9 13:03	1/16/201	9 12:16	1/17/2019	08:33
Duplicate ("Y'	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW369U0	32-19	MW370	JG2-19	MW3711	JG2-19	MW372U	G2-19
Laboratory San	mple ID Number (if applicable)		4691310	007	46913	1009	46913	1011	469349	001		
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ysis.	1/23/20	19	1/23/2	2019	1/23/2	2019	1/24/20	019		
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	UP		U	Р	U)	UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.318		0.371		<0.2		0.482	
16887-00-6	Chloride(s)	т	mg/L	9056	31.6	*	33.8	*	0.487	*	40.9	
16984-48-8	Fluoride	Т	mg/L	9056	0.209		0.136		0.244		0.195	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.308	J	0.766		<0.5		0.474	
14808-79-8	Sulfate	т	mg/L	9056	6.59		23		10.1		71.7	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.29		30.26		30.26		30.04	
S0145	Specific Conductance	Т	μ M H0/cm	Field	386		458		333		613	

¹AKGWA # is 0000-0000 for any type of blank.

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS: * = See Comments

J = Estimated Value

B = Analyte found in blank

A = Average value

N = Presumptive ID

D = Concentration from analysis of a secondary dilution

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

For Official Use Only

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820	0	8004-4818	3	8004-4819		8004-4808	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	369		370		371		372	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.36		326.41		342.24		326.43	
N238	Dissolved Oxygen	т	mg/L	Field	1.26		3.52		8.02		0.78	
S0266	Total Dissolved Solids	т	mg/L	160.1	224	В	257	В	253	В	394	
S0296	рн	т	Units	Field	6.29		6.17		6.73		6.1	
NS215	Eh	т	mV	Field	432		440		396		393	
s0907	Temperature	т	°C	Field	15.11		14.11		14.61		13.72	
7429-90-5	Aluminum	Т	mg/L	6020	0.0567		<0.05		7.7		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00252	J	0.00347	J	0.00617		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.422		0.225		0.0626		0.055	*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		0.000292	J	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0165		0.0342		0.00794	J	0.872	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	16.3		29.1		40		46.8	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		0.00829	J	<0.01	
7440-48-4	Cobalt	т	mg/L	6020	0.00505		0.000351	J	0.00133		0.000795	J
7440-50-8	Copper	Т	mg/L	6020	0.00366		0.00263		0.00692		0.00192	
7439-89-6	Iron	Т	mg/L	6020	0.0841	J	0.0448	J	4.4		0.139	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		0.00292		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	7.17		12.9		9.38		18.9	
7439-96-5	Manganese	Т	mg/L	6020	0.017		0.00212	J	0.0398		0.00722	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-482	0	8004-481	18	8004-481	9	8004-480	8
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	369		370		371		372	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7		Molybdenum	Т	mg/L	6020	<0.0005		<0.0005		0.000927		0.000358	J
7440-02-0		Nickel	Т	mg/L	6020	0.0057		0.000651	J	0.00422		0.00125	J
7440-09-7		Potassium	Т	mg/L	6020	0.545		2.58		1.01		2.19	
7440-16-6		Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2		Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5		Sodium	т	mg/L	6020	53.1	*	46	*	17.9	*	46.2	
7440-25-7		Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0		Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1		Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.000798		<0.0002	
7440-62-2		Vanadium	Т	mg/L	6020	0.00516	J	0.00438	J	0.0203		<0.01	
7440-66-6		Zinc	Т	mg/L	6020	0.00361	J	0.00371	J	0.0128		<0.01	
108-05-4		Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1		Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8		Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
1330-20-7		Xylenes	Т	mg/L	8260	<0.003	*	<0.003	*	<0.003	*	<0.003	
100-42-5		Styrene	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
108-88-3		Toluene	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4820		8004-4818	3	8004-48	19	8004-48	08
Facility's Loc	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	cc.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00119		0.00085	J	<0.001		0.00516	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-482	0	8004-4818	3	8004-48	19	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005	*	<0.005	*	<0.005	*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000198		<0.0000198		<0.00002		<0.0000203	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001	*	<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.0943	
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.0943	
11104-28-2	PCB-1221	т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.0943	
11141-16-5	PCB-1232	т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.0943	
53469-21-9	PCB-1242	Т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.0943	
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.0943	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-4820		8004-4818		8004-481	9	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	369		370		371		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.0943	
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.0943	
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0962		<0.0952		<0.0962		<0.0943	
12587-46-1	Gross Alpha	Т	pCi/L	9310	3.18	*	-1.91	*	10.4	*	5.89	*
12587-47-2	Gross Beta	Т	pCi/L	9310	22.5	*	75.8	*	5.26	*	25.4	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	T	pCi/L	AN-1418	0.746	*	1.1	*	0.453	*	0.519	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.0182	*	0.969	*	-0.673	*	2.42	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	39.1	*	94.3	*	-4.06	*	35	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.0747	*	0.404	*	0.272	*	0.037	*
10028-17-8	Tritium	Т	pCi/L	906.0	86.7	*	94.4	*	25.1	*	47.3	*
s0130	Chemical Oxygen Demand	T	mg/L	410.4	18.4	J	28.6		11.6	J	<20	*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	T	mg/L	300.0	<0.5		<0.5		<0.5		0.236	J
S0268	Total Organic Carbon	Т	mg/L	9060	1.36	J	1.07	J	1.45	J	2.37	
s0586	Total Organic Halides	Т	mg/L	9020	0.022		0.00792	J	<0.01		0.0121	В

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-09	990	8004-09	85	8004-098	8
Facility's Loc	cal Well or Spring Number (e.g., b	4W−1	., MW-2, etc	.)	373		374		375		376	
Sample Sequenc	ce #				1		1		1		1	
If sample is a 1	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/17/2019 10	0:01	1/17/2019	09:15	1/17/2019	10:49	NA	
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG2	2-19	MW374U	G2-19	MW375U0	32-19	NA	
Laboratory San	mple ID Number (if applicable)			46934900	13	469349	005	4693490	007	NA		
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ganics Anal	ysis	1/24/2019)	1/24/20	19	1/24/20	19	NA		
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	UP		UP		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.697	*	0.907	*	<0.2			*
16887-00-6	Chloride(s)	т	mg/L	9056	42.8		65.5		3.93			*
16984-48-8	Fluoride	Т	mg/L	9056	0.168		0.203		0.293			*
s0595	Nitrate & Nitrite	т	mg/L	9056	0.765	*	<0.1	*	1.11			*
14808-79-8	Sulfate	т	mg/L	9056	121		6.8		24.1			*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.06		30.04		30.06			*
S0145	Specific Conductance	Т	μ M H0/cm	Field	741		678		340			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792	2	8004-0990)	8004-0985		8004-0988	}
Facility's Lo	ocal Well or Spring Number (e.g., M	ī-1, i	MW-2, BLANK-	F, etc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.67		336.76		342.89			*
N238	Dissolved Oxygen	Т	mg/L	Field	1.07		0.67		0.54			*
s0266	Total Dissolved Solids	т	mg/L	160.1	386		300		163			*
s0296	рн	т	Units	Field	6.16		6.67		6.47			*
NS215	Eh	т	mV	Field	336		254		349			*
s0907	Temperature	Т	°C	Field	14.56		14.56		14.72			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0694			*
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020	0.00288	J	0.00286	J	<0.005			*
7440-39-3	Barium	т	mg/L	6020	0.0396	*	0.153	*	0.163	*		*
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020	1.1		0.0118	J	0.0168			*
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001			*
7440-70-2	Calcium	T	mg/L	6020	64.4		21.8		11.8			*
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020	0.000376	J	0.00132		0.000579	J		*
7440-50-8	Copper	т	mg/L	6020	0.00457		0.00176		0.00184			*
7439-89-6	Iron	Т	mg/L	6020	<0.1		1.17		0.185			*
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002			*
7439-95-4	Magnesium	т	mg/L	6020	24.2		5.63		5.33			*
7439-96-5	Manganese	т	mg/L	6020	0.0223		0.2		0.00818			*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-479	2	8004-099	90	8004-098	35	8004-098	38
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		374		375		376	
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7		Molybdenum	T	mg/L	6020	<0.0005		0.000323	J	<0.0005			*
7440-02-0		Nickel	T	mg/L	6020	0.00182	J	0.000847	J	0.000932	J		*
7440-09-7		Potassium	T	mg/L	6020	2.91		0.496		0.271	J		*
7440-16-6		Rhodium	T	mg/L	6020	<0.005		<0.005		<0.005			*
7782-49-2		Selenium	T	mg/L	6020	<0.005		<0.005		0.00269	J		*
7440-22-4		Silver	Т	mg/L	6020	<0.001		<0.001		0.000599	J		*
7440-23-5		Sodium	T	mg/L	6020	53.6		129		52			*
7440-25-7		Tantalum	T	mg/L	6020	<0.005		<0.005		<0.005			*
7440-28-0		Thallium	T	mg/L	6020	<0.002		<0.002		<0.002			*
7440-61-1		Uranium	T	mg/L	6020	0.000084	J	0.000159	J	<0.0002			*
7440-62-2		Vanadium	T	mg/L	6020	0.00344	BJ	<0.01		0.00403	BJ		*
7440-66-6		Zinc	T	mg/L	6020	<0.01		<0.01		<0.01			*
108-05-4		Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			*
67-64-1		Acetone	T	mg/L	8260	<0.005		<0.005		<0.005			*
107-02-8		Acrolein	T	mg/L	8260	<0.005		<0.005		<0.005			*
107-13-1		Acrylonitrile	T	mg/L	8260	<0.005		<0.005		<0.005			*
71-43-2		Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-90-7		Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1330-20-7		Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003			*
100-42-5		Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
108-88-3		Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-97-5		Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	Facility Well/Spring Number				8004-4792		8004-099)	8004-09	85	8004-09	88
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005			*
75-15-0	Carbon disulfide	T	mg/L	8260	<0.005		<0.005		<0.005			*
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
107-06-2	1,2-Dichloroethane	T	mg/L	8260	<0.001		<0.001		<0.001			*
75-35-4	1,1-Dichloroethylene	T	mg/L	8260	<0.001		<0.001		<0.001			*
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001			*
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001			*
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
79-01-6	Ethene, Trichloro-	T	mg/L	8260	0.00457		0.00041	J	<0.001			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-0990)	8004-09	85	8004-09	88
Facility's Loc	al Well or Spring Number (e.g., M	1W −1	1, MW-2, et	.c.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			*
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005			*
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			*
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001			*
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			*
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005			*
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.0000197		<0.00002			*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001			*
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			*
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001			*
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			*
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001			*
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001			*
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			*
1336-36-3	PCB,Total	т	ug/L	8082	<0.0943		<0.0962		<0.0962			*
12674-11-2	PCB-1016	Т	ug/L	8082	<0.0943		<0.0962		<0.0962			*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0943		<0.0962		<0.0962			*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0943		<0.0962		<0.0962			*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0943		<0.0962		<0.0962			*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0943		<0.0962		<0.0962			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-0990		8004-098	35	8004-098	38
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	cc.)	373		374		375		376	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0943		<0.0962		<0.0962			*
11096-82-5	PCB-1260	т	ug/L	8082	<0.0943		<0.0962		<0.0962			*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0943		<0.0962		<0.0962			*
12587-46-1	Gross Alpha	Т	pCi/L	9310	3.23	*	3.77	*	8.71	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	17.4	*	2.11	*	3.06	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	-0.0147	*	0.188	*	-0.256	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.71	*	4.47	*	-2.94	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	28.4	*	4.19	*	-3.03	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.648	*	0.47	*	0.317	*		*
10028-17-8	Tritium	т	pCi/L	906.0	56.8	*	27.5	*	109	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20	*	<20	*	9.72	*J		*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	Т	mg/L	300.0	<0.5		0.234	J	<0.5			*
S0268	Total Organic Carbon	Т	mg/L	9060	1.37	J	2.43		0.837	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.0137	В	0.0184	В	0.0147			*

Division of Waste Management Solid Waste Branch 14 Reilly Road

Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-00	00	0000-000	00	0000-000	0
Facility's Loca	al Well or Spring Number (e.g., M	1W −1	1, MW-2, etc	:.)	377		E. BLAN	ΙK	F. BLAN	K	T. BLANK	ί1
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) ∈	ethod, or (E)	quipment	NA		Е		F		Т	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		NA		1/14/2019	09:35	1/14/2019 1	0:10	1/14/2019 0	9:30
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sample	e ID Number (if applicable)				NA		RI1UG2-	19	FB1UG2-	19	TB1UG2-	19
Laboratory Samp	ple ID Number (if applicable)				NA		4689010	10	4689010	09	46890101	11
Date of Analys:	e of Analysis (Month/Day/Year) For Volatile Organics Analysis						1/21/20	19	1/21/201	9	1/21/201	9
Gradient with	respect to Monitored Unit (UP, DC	NWO,	, SIDE, UNKN	IOWN)	SIDE		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHO D	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	Т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	т	μ MH 0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8004-0989	9	0000-0000)	0000-0000		0000-0000)
Facility's Lo	ocal Well or Spring Number (e.g., M	ī-1,	MW-2, BLANK-	F, etc.)	377		E. BLANK	(F. BLANK		T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рн	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020		*	<0.05		<0.05			*
7440-36-0	Antimony	Т	mg/L	6020		*	<0.003		<0.003			*
7440-38-2	Arsenic	т	mg/L	6020		*	<0.005		<0.005			*
7440-39-3	Barium	т	mg/L	6020		*	<0.002		<0.002			*
7440-41-7	Beryllium	т	mg/L	6020		*	<0.0005		<0.0005			*
7440-42-8	Boron	т	mg/L	6020		*	<0.015		<0.015			*
7440-43-9	Cadmium	Т	mg/L	6020		*	<0.001		<0.001			*
7440-70-2	Calcium	т	mg/L	6020		*	<0.2		<0.2			*
7440-47-3	Chromium	т	mg/L	6020		*	<0.01		<0.01			*
7440-48-4	Cobalt	т	mg/L	6020		*	<0.001		<0.001			*
7440-50-8	Copper	Т	mg/L	6020		*	0.00167		0.00177			*
7439-89-6	Iron	Т	mg/L	6020		*	<0.1		<0.1			*
7439-92-1	Lead	Т	mg/L	6020		*	<0.002		<0.002			*
7439-95-4	Magnesium	Т	mg/L	6020		*	<0.03		<0.03			*
7439-96-5	Manganese	Т	mg/L	6020		*	<0.005		<0.005			*
7439-97-6	Mercury	т	mg/L	7470		*	<0.0002		<0.0002			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ ,	Facility Well/Spring Number				8004-098	9	0000-000	00	0000-000	0	0000-000	00
Facility's	Loc	al Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	377		E. BLAN	K	F. BLAN	K	T. BLANK	:1
CAS RN ⁴		CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7		Molybdenum	Т	mg/L	6020		*	<0.0005		<0.0005			*
7440-02-0		Nickel	Т	mg/L	6020		*	<0.002		<0.002			*
7440-09-7		Potassium	Т	mg/L	6020		*	<0.3		<0.3			*
7440-16-6		Rhodium	T	mg/L	6020		*	<0.005		<0.005			*
7782-49-2		Selenium	Т	mg/L	6020		*	<0.005		<0.005			*
7440-22-4		Silver	Т	mg/L	6020		*	<0.001		<0.001			*
7440-23-5		Sodium	T	mg/L	6020		*	<0.25		<0.25			*
7440-25-7		Tantalum	T	mg/L	6020		*	<0.005		<0.005			*
7440-28-0		Thallium	T	mg/L	6020		*	<0.002		<0.002			*
7440-61-1		Uranium	T	mg/L	6020		*	<0.0002		<0.0002			*
7440-62-2		Vanadium	T	mg/L	6020		*	0.00648	J	0.00708	J		*
7440-66-6		Zinc	T	mg/L	6020		*	<0.01		<0.01			*
108-05-4		Vinyl acetate	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
67-64-1		Acetone	T	mg/L	8260		*	0.00338	J	0.0113		0.00236	J
107-02-8		Acrolein	T	mg/L	8260		*	<0.005		<0.005		<0.005	
107-13-1		Acrylonitrile	T	mg/L	8260		*	<0.005		<0.005		<0.005	
71-43-2		Benzene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-90-7		Chlorobenzene	Т	mg/L	8260	_	*	<0.001		<0.001		<0.001	
1330-20-7		Xylenes	Т	mg/L	8260		*	<0.003		<0.003		<0.003	
100-42-5		Styrene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
108-88-3		Toluene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-97-5		Chlorobromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-0989		0000-0000)	0000-000	00	0000-000	00
Facility's Loc	cal Well or Spring Number (e.g., N	MW-1	L, MW-2, et	:c.)	377		E. BLAN	(F. BLAN	IK	T. BLAN	< 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
75-27-4	Bromodichloromethane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260		*	<0.005		0.0106		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	T	mg/L	8260		*	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260		*	<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-098	9	0000-0000)	0000-00	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., N	1 ₩−1	l, MW-2, et	.c.)	377		E. BLAN	(F. BLAN	IK	T. BLAN	K 1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260		*	<0.005		0.00167	J	<0.005	
74-88-4	Iodomethane	Т	mg/L	8260		*	<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260		*	<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260		*	<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011		*	<0.000192	*	<0.0000186	*	<0.0000189	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260		*	<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260		*	<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260		*	<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260		*	<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*	<0.0952		<0.0962			*
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.0952		<0.0962			*
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0952		<0.0962			*
11141-16-5	PCB-1232	т	ug/L	8082		*	<0.0952		<0.0962			*
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0952		<0.0962			*
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.0952		<0.0962			*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8004-0989		0000-0000		0000-000	0	0000-0000)		
Facility's Loc	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	377		E. BLANK		F. BLAN	<	T. BLANK	1
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.0952		<0.0962			*
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.0952		<0.0962			*
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0952		<0.0962			*
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	-3.89	*	2.36	*		*
12587-47-2	Gross Beta	Т	pCi/L	9310		*	-1.39	*	-2.3	*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*	-0.035	*	0.509	*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	-3.79	*	2.73	*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*	-1.72	*	-6.31	*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	-0.0583	*	-0.113	*		*
10028-17-8	Tritium	Т	pCi/L	906.0		*	162	*	-41.8	*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	Т	mg/L	300.0		*	<0.5		<0.5			*
S0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

Facility: US DOE - Paducah Gaseous Diffusion Plant

RESIDENTIAL/CONTAINED-OUARTERLY

Permit Number: SW07300014, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER1	, Facility Well/Spring Number				0000-000	00	0000-00	00	0000-00	00	8004-4800	
Facility's Lo	cal Well or Spring Number (e.g., h	4W −1	L, MW-2, etc	:.)	T. BLAN	(2	T. BLAN	K 3	T. BLAN	< 4	360	
Sample Sequen	ce #				1		1		1		2	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	Т		Т		Т		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/15/2019 0	7:15	1/16/2019	07:30	1/17/2019 (07:30	1/14/2019 10	:02
Duplicate ("Y	" or "N") ²				N		N		N		Υ	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				TB2UG2-	19	TB3UG2	-19	TB4UG2-	-19	MW360DUG	2-19
Laboratory Sa	oratory Sample ID Number (if applicable)						4691310)13	4693490	09	46890100)1
Date of Analy	sis (Month/Day/Year) For <u>Volatil</u> e	ysis.	1/21/201	9	1/23/20	19	1/24/201	19	1/17/201	9		
Gradient with	respect to Monitored Unit (UP, DO	NWC,	, SIDE, UNKN	IOWN)	NA		NA		NA		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056							0.12	*
16887-00-6	Chloride(s)	Т	mg/L	9056							9.33	
16984-48-8	Fluoride	т	mg/L	9056							0.219	
s0595	Nitrate & Nitrite	Т	mg/L	9056		*		*		*	0.549	
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*	12.1	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	Т	μ MH 0/cm	Field		*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				0000-0000)	0000-0000)	0000-0000		8004-4800)
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	T. BLANK	2	T. BLANK	3	T. BLANK 4	1	360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*	224	
s0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020		*		*		*	0.0809	
7440-36-0	Antimony	т	mg/L	6020		*		*		*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020		*		*		*	<0.005	
7440-39-3	Barium	т	mg/L	6020		*		*		*	0.193	
7440-41-7	Beryllium	т	mg/L	6020		*		*		*	<0.0005	
7440-42-8	Boron	т	mg/L	6020		*		*		*	0.0213	
7440-43-9	Cadmium	Т	mg/L	6020		*		*		*	<0.001	
7440-70-2	Calcium	т	mg/L	6020		*		*		*	19	
7440-47-3	Chromium	т	mg/L	6020		*		*		*	<0.01	
7440-48-4	Cobalt	т	mg/L	6020		*		*		*	0.00143	
7440-50-8	Copper	T	mg/L	6020		*		*		*	0.00198	
7439-89-6	Iron	T	mg/L	6020		*		*		*	0.233	
7439-92-1	Lead	Т	mg/L	6020		*		*		*	<0.002	
7439-95-4	Magnesium	T	mg/L	6020		*		*		*	8.22	
7439-96-5	Manganese	T	mg/L	6020		*		*		*	0.023	
7439-97-6	Mercury	т	mg/L	7470		*		*		*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBE	AKGWA NUMBER ¹ , Facility Well/Spring Number						0000-000	00	0000-000	0	8004-480	00
Facility's	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						T. BLANK 3		T. BLANK	4	360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020		*		*		*	0.000225	J
7440-02-0	Nickel	Т	mg/L	6020		*		*		*	0.000985	J
7440-09-7	Potassium	Т	mg/L	6020		*		*		*	0.719	
7440-16-6	Rhodium	Т	mg/L	6020		*		*		*	<0.005	
7782-49-2	Selenium	Т	mg/L	6020		*		*		*	<0.005	
7440-22-4	Silver	Т	mg/L	6020		*		*		*	<0.001	
7440-23-5	Sodium	Т	mg/L	6020		*		*		*	66.5	
7440-25-7	Tantalum	Т	mg/L	6020		*		*		*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020		*		*		*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020		*		*		*	<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020		*		*		*	<0.01	
7440-66-6	Zinc	Т	mg/L	6020		*		*		*	0.00353	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	0.00357	J	<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003	*	<0.003	*	<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				0000-0000		0000-000)	0000-00	00	8004-4800	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	cc.)	T. BLANK 2	2	T. BLANK	3	T. BLANI	< 4	360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number						0000-0000)	0000-000	00	8004-4800	
Facility's Loc	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)						T. BLANK	3	T. BLAN	< 4	360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005	*	<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000201		<0.0000197		<0.0000198		<0.000019	*
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001	*	<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001	*	<0.001	*	<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*	<0.0952	
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*	<0.0952	
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*	<0.0952	
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*	<0.0952	
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*	<0.0952	
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*	<0.0952	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000		0000-0000		0000-0000		8004-4800	
Facility's Loc	al Well or Spring Number (e.g., N	4W −1	L, MW-2, et	.c.)	T. BLANK 2	2	T. BLANK 3		T. BLANK 4		360	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*	<0.0952	
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*	<0.0952	
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*	<0.0952	
12587-46-1	Gross Alpha	Т	pCi/L	9310		*		*		*	4.12	*
12587-47-2	Gross Beta	Т	pCi/L	9310		*		*		*	8.09	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*		*		*	0.469	*
10098-97-2	Strontium-90	т	pCi/L	905.0		*		*		*	-4.18	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC		*		*		*	-3.4	*
14269-63-7	Thorium-230	т	pCi/L	Th-01-RC		*		*		*	0.187	*
10028-17-8	Tritium	Т	pCi/L	906.0		*		*		*	-33.1	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*	<20	*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0		*		*		*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*	1.14	J
s0586	Total Organic Halides	т	mg/L	9020		*		*		*	0.0103	

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: KY8-890-008-982 / 1

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4798 MW357	MW357UG2-19	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 5.62. Rad error is 5.61.
		Gross beta		TPU is 7.34. Rad error is 6.78.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.622. Rad error is 0.621.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.71. Rad error is 3.71.
		Technetium-99		TPU is 12.9. Rad error is 12.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.689. Rad error is 0.688.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 125. Rad error is 124.
04-4799 MW358	MW358UG2-19	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.69. Rad error is 6.69.
		Gross beta		TPU is 10.6. Rad error is 9.15.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.78. Rad error is 0.62.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.6. Rad error is 2.6.
		Technetium-99		TPU is 11.8. Rad error is 11.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.04. Rad error is 1.01.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 118. Rad error is 118.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring	Facility	0 "		B
Point	Sample ID	Constituent	Flag *	Description
4-0981 MW359	MW359UG2-19	Total Dissolved Solids		Duplicate analysis not within control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 4.07. Rad error is 4.07.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 4.03. Rad error is 3.99.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.73. Rad error is 0.499.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.22. Rad error is 3.22.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 12.4. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.594. Rad error is 0.594.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 122. Rad error is 122.
4-4800 MW360	MW360UG2-19	Bromide	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane		MS/MSD recovery outside acceptance criteria and MS/MSD R outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 5.31. Rad error is 5.31.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.91. Rad error is 6.9.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.543. Rad error is 0.54.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 4.39. Rad error is 4.39.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 11.7. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.765. Rad error is 0.759.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 127. Rad error is 127.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4795 MW361	MW361UG2-19	Bromide	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RP outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 5.94. Rad error is 5.86.
		Gross beta		TPU is 9.15. Rad error is 7.79.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 0.366. Rad error is 0.366.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. Tf 4.13. Rad error is 4.07.
		Technetium-99		TPU is 12.7. Rad error is 12.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. The 0.332. Rad error is 0.332.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. To 123. Rad error is 123.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
004-0986 MW362	MW362UG2-19	Bromide	W	Post-digestion spike recovery out of control limits.
		1,2-Dibromo-3-chloropropane	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RF outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 7.56. Rad error is 7.55.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TF 5.9. Rad error is 5.9.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 0.389. Rad error is 0.386.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TI 4.33. Rad error is 4.32.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. The 10.6. Rad error is 10.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. To 0.695. Rad error is 0.694.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. To 123. Rad error is 123.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4796 MW363	MW363UG2-19	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 7.15. Rad error is 7.07.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 6.85. Rad error is 6.72.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 2.55. Rad error is 0.657.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.42. Rad error is 3.41.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 11.8. Rad error is 11.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.719. Rad error is 0.716.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 114. Rad error is 114.
004-4797 MW364	MW364UG2-19	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 4.13. Rad error is 4.13.
		Gross beta		TPU is 10.7. Rad error is 9.64.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.94. Rad error is 0.627.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 3.37. Rad error is 3.36.
		Technetium-99		TPU is 12.7. Rad error is 11.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.802. Rad error is 0.796.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 127. Rad error is 127.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0984 MW365	MW365UG2-19	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.74. Rad error is 6.72.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 8.48. Rad error is 8.48.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 4.54. Rad error is 0.671.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.42. Rad error is 2.42.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 12.9. Rad error is 12.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.672. Rad error is 0.668.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. I 127. Rad error is 126.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description																									
004-0982 MW366	•	Chloride	W	Post-digestion spike recovery out of control limits.																									
		Sodium	Е	Result estimated due to matrix interferences.																									
		Benzene	Y1	MS/MSD recovery outside acceptance criteria																									
		Chlorobenzene	Y1	MS/MSD recovery outside acceptance criteria																									
		Xylenes	Y1	MS/MSD recovery outside acceptance criteria																									
		Styrene	Y1	MS/MSD recovery outside acceptance criteria																									
		Toluene	Y1	MS/MSD recovery outside acceptance criteria																									
		Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria																									
		1,2-Dibromoethane	Y1	MS/MSD recovery outside acceptance criteria																									
		1,1,2-Trichloroethane	Y1	MS/MSD recovery outside acceptance criteria																									
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria																									
		Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria																									
		Ethylbenzene	Y1	MS/MSD recovery outside acceptance criteria																									
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria																									
		Dichloromethane	Y1	MS/MSD recovery outside acceptance criteria																									
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria																									
		1,2-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria																									
		1,4-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria																									
																											Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 5.95. Rad error is 5.95.
		Gross beta		TPU is 12. Rad error is 9.28.																									
		lodine-131		Analysis of constituent not required and not performed.																									
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.803. Rad error is 0.802.																									
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I 1.7. Rad error is 1.7.																									
		Technetium-99		TPU is 12.6. Rad error is 11.5.																									
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 0.819. Rad error is 0.809.																									
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 129. Rad error is 129.																									

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description																						
04-4793 MW367	MW367UG2-19	Chloride	W	Post-digestion spike recovery out of control limits.																						
		Sodium	E	Result estimated due to matrix interferences.																						
		Benzene	Y1	MS/MSD recovery outside acceptance criteria																						
		Chlorobenzene	Y1	MS/MSD recovery outside acceptance criteria																						
		Xylenes	Y1	MS/MSD recovery outside acceptance criteria																						
		Styrene	Y1	MS/MSD recovery outside acceptance criteria																						
		Toluene	Y1	MS/MSD recovery outside acceptance criteria																						
		Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria																						
		1,2-Dibromoethane	Y1	MS/MSD recovery outside acceptance criteria																						
		1,1,2-Trichloroethane	Y1	MS/MSD recovery outside acceptance criteria																						
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria																						
		Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria																						
		Ethylbenzene	Y1	MS/MSD recovery outside acceptance criteria																						
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria																						
																				Dichloromethane	Y1	MS/MSD recovery outside acceptance criteria				
											trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria													
		1,2-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria																						
																								1,4-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		Gross beta		TPU is 10.9. Rad error is 8.84.																						
		lodine-131		Analysis of constituent not required and not performed.																						
																Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. To.432. Rad error is 0.432.								
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 1.41. Rad error is 1.41.																						
		Technetium-99		TPU is 12.1. Rad error is 10.4.																						
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 0.603. Rad error is 0.602.																						
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 137. Rad error is 134.																						

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None For Official Use Only

O04-0983 MW368 MW368UG2-19 Chloride Sodium E Result estimated due to matrix interferences. Benzene Y1 MS/MSD recovery outside acceptance criteria Chlorobenzene Y1 MS/MSD recovery outside acceptance criteria Xylenes Y1 MS/MSD recovery outside acceptance criteria Styrene Y1 MS/MSD recovery outside acceptance criteria Yylenes Y1 MS/MSD recovery outside acceptance criteria Toluene Y1 MS/MSD recovery outside acceptance criteria Toluene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dibromoethane Y1 MS/MSD recovery outside acceptance criteria 1,1,1,2-Trichloroethane Y1 MS/MSD recovery outside acceptance criteria 1,1,1,2-Trichloroethane Y1 MS/MSD recovery outside acceptance criteria Y2 MS/MSD recovery outside acceptance criteria Y3 MS/MSD recovery outside acceptance criteria Y4 MS/MSD recovery outside acceptance criteria Y4 MS/MSD recovery outside acceptance criteria Y5 MS/MSD recovery outside acceptance criteria Y6 MS/MSD recovery outside acceptance criteria Y7 MS/MSD recovery outside acceptance cri	Monitoring Point	Facility Sample ID	Constituent	Flag	Description
Benzene Y1 MS/MSD recovery outside acceptance criteria Chlorobenzene Y1 MS/MSD recovery outside acceptance criteria Xylenes Y1 MS/MSD recovery outside acceptance criteria Styrene Y1 MS/MSD recovery outside acceptance criteria Toluene Y1 MS/MSD recovery outside acceptance criteria Toluene Y1 MS/MSD recovery outside acceptance criteria Carbon disulfide Y1 MS/MSD recovery outside acceptance criteria 1,2-Dibromoethane Y1 MS/MSD recovery outside acceptance criteria 1,1,2-Trichloroethane Y1 MS/MSD recovery outside acceptance criteria 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Tetrachloroethene Y1 MS/MSD recovery outside acceptance criteria Ethylbenzene Y1 MS/MSD recovery outside acceptance criteria Iodomethane Y1 MS/MSD recovery outside acceptance criteria Iodomethane Y1 MS/MSD recovery outside acceptance criteria Trans-1,3-Dichloropropene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 Ms/MSD recovery outside acceptance criteria 1,5-Dichlorobenzene Y1 Ms/MSD recovery outside acceptance criteria 1,5-Dichlorobenzene Y1 Ms/MSD recovery outside acceptance criteria 1,6-9.4 Rad error is 6.594. Gross beta U Indicates analyte/nuclide was analyzed for, but not de 6.13. Rad error is 6.598. Indicates analyte/nuclide was analyzed for, but not de 0.599. Rad error is 0.598. Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631. Tritium U Indicates analyte/nuclide was analyzed for, but not de 0.632	004-0983 MW368	MW368UG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
Chlorobenzene Y1 MS/MSD recovery outside acceptance criteria Xylenes Y1 MS/MSD recovery outside acceptance criteria Styrene Y1 MS/MSD recovery outside acceptance criteria Toluene Y1 MS/MSD recovery outside acceptance criteria Carbon disulfide Y1 MS/MSD recovery outside acceptance criteria 1,2-Dibromoethane Y1 MS/MSD recovery outside acceptance criteria 1,1,2-Trichloroethane Y1 MS/MSD recovery outside acceptance criteria 1,1,1,2-Trichloroethane Y1 MS/MSD recovery outside acceptance criteria 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Tetrachloroethene Y1 MS/MSD recovery outside acceptance criteria Ethylbenzene Y1 MS/MSD recovery outside acceptance criteria lodomethane Y1 MS/MSD recovery outside acceptance criteria lodomethane Y1 MS/MSD recovery outside acceptance criteria trans-1,3-Dichloropropene Y1 MS/MSD recovery outside acceptance criteria trans-1,3-Dichloropropene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenze			Sodium	Е	Result estimated due to matrix interferences.
Xylenes Y1 MS/MSD recovery outside acceptance criteria Styrene Y1 MS/MSD recovery outside acceptance criteria Toluene Y1 MS/MSD recovery outside acceptance criteria Carbon disulfide Y1 MS/MSD recovery outside acceptance criteria 1,2-Dibromoethane Y1 MS/MSD recovery outside acceptance criteria 1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Tetrachloroethene Y1 MS/MSD recovery outside acceptance criteria Ethylbenzene Y1 MS/MSD recovery outside acceptance criteria lodomethane Y1 MS/MSD recovery outside acceptance criteria WS/MSD recovery outside acceptance criteria Us/MSD recovery outside acceptance criteria Unicates analyte/nuclide was analyzed for, but not de 6.94. Rad error is 6.94. Unicates analyte/nuclide was analyzed for, but not de 0.99. Rad error is 0.598. Strontium-90 Unicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 0.598. Strontium-90 Unicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 0.631. Tritium Unicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631. Tritium Unicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631. Tritium Unicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631.			Benzene	Y1	MS/MSD recovery outside acceptance criteria
Styrene Y1 MS/MSD recovery outside acceptance criteria Toluene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dibromoethane Y1 MS/MSD recovery outside acceptance criteria 1,2-Trichloroethane Y1 MS/MSD recovery outside acceptance criteria 1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Tetrachloroethene Y1 MS/MSD recovery outside acceptance criteria Ethylbenzene Y1 MS/MSD recovery outside acceptance criteria lodomethane Y1 MS/MSD recovery outside acceptance criteria Dichloromethane Y1 MS/MSD recovery outside acceptance criteria Tetras-1,3-Dichloropropene Y1 MS/MSD recovery outside acceptance criteria WS/MSD recovery outside acceptance criteria Us/MSD recovery outside acceptance criteria WS/MSD recovery outside acceptance criteria Us/MSD recovery outside acceptance criteria Us/MSD recovery outside acceptance criteria Unicates analyte/nuclide was analyzed for, but not de 6.94. Rad error is 6.94. Was derror is 6.94. Was derror is 6.95. Was derror is 0.598. Was derror is 0.599. Was d			Chlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
Toluene Y1 MS/MSD recovery outside acceptance criteria Carbon disulfide Y1 MS/MSD recovery outside acceptance criteria 1,2-Dibromoethane Y1 MS/MSD recovery outside acceptance criteria 1,1,2-Trichloroethane Y1 MS/MSD recovery outside acceptance criteria 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Tetrachloroethene Y1 MS/MSD recovery outside acceptance criteria Ethylbenzene Y1 MS/MSD recovery outside acceptance criteria lodomethane Y1 MS/MSD recovery outside acceptance criteria Dichloromethane Y1 MS/MSD recovery outside acceptance criteria trans-1,3-Dichloropropene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 Indicates analyte/nuclide was analyzed for, but not de 6.94. Rad error is 6.94. Rad error is 6.94. Gross beta U Indicates analyte/nuclide was analyzed for, but not de 0.599. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 10.1. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 10.1. Tritium U Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631.			Xylenes	Y1	MS/MSD recovery outside acceptance criteria
Carbon disulfide Y1 MS/MSD recovery outside acceptance criteria 1,2-Dibromoethane Y1 MS/MSD recovery outside acceptance criteria 1,1,2-Trichloroethane Y1 MS/MSD recovery outside acceptance criteria 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Tetrachloroethene Y1 MS/MSD recovery outside acceptance criteria Iodomethane Y1 MS/MSD recovery outside acceptance criteria Iodomethane Y1 MS/MSD recovery outside acceptance criteria Iodomethane Y1 MS/MSD recovery outside acceptance criteria Itrans-1,3-Dichloropropene Y1 MS/MSD recovery outside acceptance criteria I,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria I,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria I,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria I,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria Indicates analyte/nuclide was analyzed for, but not de 6.94. Rad error is 6.94. Gross beta U Indicates analyte/nuclide was analyzed for, but not de 6.13. Rad error is 6.12. Analysis of constituent not required and not performer Indicates analyte/nuclide was analyzed for, but not de 0.599. Rad error is 0.598. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 1.0.1. Rad error is 1.0.1. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 1.0.631. Tritium U Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 1.0.631.			Styrene	Y1	MS/MSD recovery outside acceptance criteria
1,2-Dibromoethane Y1 MS/MSD recovery outside acceptance criteria 1,1,2-Trichloroethane Y1 MS/MSD recovery outside acceptance criteria 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Tetrachloroethene Y1 MS/MSD recovery outside acceptance criteria Ethylbenzene Y1 MS/MSD recovery outside acceptance criteria lodomethane Y1 MS/MSD recovery outside acceptance criteria lodomethane Y1 MS/MSD recovery outside acceptance criteria Dichloromethane Y1 MS/MSD recovery outside acceptance criteria trans-1,3-Dichloropropene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 Indicates analyte/nuclide was analyzed for, but not de 6.94. Rad error is 6.94. Gross beta U Indicates analyte/nuclide was analyzed for, but not de 6.13. Rad error is 6.12. Analysis of constituent not required and not performer Radium-226 U Indicates analyte/nuclide was analyzed for, but not de 0.599. Rad error is 0.598. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 1.1. Rad error is 1.0.1. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631. Tritium U Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631.			Toluene	Y1	MS/MSD recovery outside acceptance criteria
1,1,2-Trichloroethane Y1 MS/MSD recovery outside acceptance criteria 1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Tetrachloroethene Y1 MS/MSD recovery outside acceptance criteria Ethylbenzene Y1 MS/MSD recovery outside acceptance criteria lodomethane Y1 MS/MSD recovery outside acceptance criteria Dichloromethane Y1 MS/MSD recovery outside acceptance criteria Trans-1,3-Dichloropropene Y1 MS/MSD recovery outside acceptance criteria Indicates analyte/nuclide was analyzed for, but not de 6.94. Rad error is 6.94. Gross alpha U Indicates analyte/nuclide was analyzed for, but not de 6.13. Rad error is 6.94. Indicates analyte/nuclide was analyzed for, but not de 0.599. Rad error is 0.598. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 1.0.1. Rad error is 10.51. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631.			Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria
1,1,1,2-Tetrachloroethane Y1 MS/MSD recovery outside acceptance criteria Tetrachloroethene Y1 MS/MSD recovery outside acceptance criteria Ethylbenzene Y1 MS/MSD recovery outside acceptance criteria lodomethane Y1 MS/MSD recovery outside acceptance criteria Dichloromethane Y1 MS/MSD recovery outside acceptance criteria trans-1,3-Dichloropropene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not de 6.94. Rad error is 6.94. Gross beta U Indicates analyte/nuclide was analyzed for, but not de 6.13. Rad error is 0.12. Iodine-131 Analysis of constituent not required and not performer Analysis of constituent not required and not performer Description of the folial part of the foli			1,2-Dibromoethane	Y1	MS/MSD recovery outside acceptance criteria
Tetrachloroethene Y1 MS/MSD recovery outside acceptance criteria Ethylbenzene Y1 MS/MSD recovery outside acceptance criteria Iodomethane Y1 MS/MSD recovery outside acceptance criteria Dichloromethane Y1 MS/MSD recovery outside acceptance criteria trans-1,3-Dichloropropene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not de 6.94. Rad error is 6.94. Gross beta U Indicates analyte/nuclide was analyzed for, but not de 6.13. Rad error is 6.12. Analysis of constituent not required and not performer Analysis of constituent not required and not performer in 1.85. Rad error is 0.598. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 10.1. Rad error is 10.1. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not de 10.1. Rad error is 0.631. Tritium U Indicates analyte/nuclide was analyzed for, but not de 10.632. Rad error is 0.631.			1,1,2-Trichloroethane	Y1	MS/MSD recovery outside acceptance criteria
Ethylbenzene Y1 MS/MSD recovery outside acceptance criteria lodomethane Y1 MS/MSD recovery outside acceptance criteria Pichloromethane Y1 MS/MSD recovery outside acceptance criteria trans-1,3-Dichloropropene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene 1,4-Dichlorobenzene Criteria 1,4-Dichlorobenzene			1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
lodomethane Y1 MS/MSD recovery outside acceptance criteria Dichloromethane Y1 MS/MSD recovery outside acceptance criteria trans-1,3-Dichloropropene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria MS/MSD recovery outside acceptance criteria Indicates analyte/nuclide was analyzed for, but not de 6.94. Rad error is 6.94. Gross alpha U Indicates analyte/nuclide was analyzed for, but not de 6.13. Rad error is 6.12. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not de 0.599. Rad error is 0.598. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84.			Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria
Dichloromethane Y1 MS/MSD recovery outside acceptance criteria trans-1,3-Dichloropropene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene 1,4-Dichlor			Ethylbenzene	Y1	MS/MSD recovery outside acceptance criteria
trans-1,3-Dichloropropene Y1 MS/MSD recovery outside acceptance criteria 1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not de 6.94. Rad error is 6.94. Gross beta U Indicates analyte/nuclide was analyzed for, but not de 6.13. Rad error is 6.12. Iodine-131 Analysis of constituent not required and not performed variable. Radium-226 U Indicates analyte/nuclide was analyzed for, but not de 0.599. Rad error is 0.598. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 10.1. Rad error is 10.1. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631. Tritium U Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631.			lodomethane	Y1	MS/MSD recovery outside acceptance criteria
1,2-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria 1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not de 6.94. Rad error is 6.94. Gross beta U Indicates analyte/nuclide was analyzed for, but not de 6.13. Rad error is 6.12. Iodine-131 Analysis of constituent not required and not performed Radium-226 U Indicates analyte/nuclide was analyzed for, but not de 0.599. Rad error is 0.598. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 10.1. Rad error is 10.1. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631. Tritium U Indicates analyte/nuclide was analyzed for, but not de 10.632. Rad error is 0.631.			Dichloromethane	Y1	MS/MSD recovery outside acceptance criteria
1,4-Dichlorobenzene Y1 MS/MSD recovery outside acceptance criteria Gross alpha U Indicates analyte/nuclide was analyzed for, but not de 6.94. Rad error is 6.94. Gross beta U Indicates analyte/nuclide was analyzed for, but not de 6.13. Rad error is 6.12. Iodine-131 Analysis of constituent not required and not performed Radium-226 U Indicates analyte/nuclide was analyzed for, but not de 0.599. Rad error is 0.598. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 10.1. Rad error is 10.1. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631. Tritium U Indicates analyte/nuclide was analyzed for, but not de 1.852. Rad error is 0.631.			trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
Gross alpha U Indicates analyte/nuclide was analyzed for, but not de 6.94. Rad error is 6.94. Gross beta U Indicates analyte/nuclide was analyzed for, but not de 6.13. Rad error is 6.12. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not de 0.599. Rad error is 0.598. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 10.1. Rad error is 10.1. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631. Tritium U Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631.			1,2-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
6.94. Rad error is 6.94. Gross beta U Indicates analyte/nuclide was analyzed for, but not de 6.13. Rad error is 6.12. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not de 0.599. Rad error is 0.598. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 10.1. Rad error is 10.1. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631. Tritium U Indicates analyte/nuclide was analyzed for, but not de 10.1. Indicates analyte/nuclide was analyzed for, but not de 10.1. Indicates analyte/nuclide was analyzed for, but not de 10.632. Rad error is 0.631.			1,4-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
6.13. Rad error is 6.12. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not de 0.599. Rad error is 0.598. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 10.1. Rad error is 10.1. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631. Tritium U Indicates analyte/nuclide was analyzed for, but not de 10.1. Indicates analyte/nuclide was analyzed for, but not de 10.632. Rad error is 0.631.			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.94. Rad error is 6.94.
Radium-226 U Indicates analyte/nuclide was analyzed for, but not de 0.599. Rad error is 0.598. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 10.1. Rad error is 10.1. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631. Tritium U Indicates analyte/nuclide was analyzed for, but not de 10.632. Rad error is 0.631.			Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.13. Rad error is 6.12.
0.599. Rad error is 0.598. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 10.1. Rad error is 10.1. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631. Tritium U Indicates analyte/nuclide was analyzed for, but not de 1.85. Rad error is 0.631.			lodine-131		Analysis of constituent not required and not performed.
1.85. Rad error is 1.84. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not de 10.1. Rad error is 10.1. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631. Tritium U Indicates analyte/nuclide was analyzed for, but not de 10.632.			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.599. Rad error is 0.598.
Thorium-230 Thorium-230 Tritium 10.1. Rad error is 10.1. Indicates analyte/nuclide was analyzed for, but not de 0.632. Rad error is 0.631. Tritium U Indicates analyte/nuclide was analyzed for, but not de			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 1.85. Rad error is 1.84.
0.632. Rad error is 0.631. Tritium U Indicates analyte/nuclide was analyzed for, but not de			Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 10.1. Rad error is 10.1.
			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.632. Rad error is 0.631.
133. Rad error is 132.			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 133. Rad error is 132.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4820 MW369	MW369UG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sodium	Е	Result estimated due to matrix interferences.
		Benzene	Y1	MS/MSD recovery outside acceptance criteria
		Chlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		Xylenes	Y1	MS/MSD recovery outside acceptance criteria
		Styrene	Y1	MS/MSD recovery outside acceptance criteria
		Toluene	Y1	MS/MSD recovery outside acceptance criteria
		Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria
		1,2-Dibromoethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,2-Trichloroethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Ethylbenzene	Y1	MS/MSD recovery outside acceptance criteria
		Iodomethane	Y1	MS/MSD recovery outside acceptance criteria
		Dichloromethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		1,2-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,4-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. Ti 5.59. Rad error is 5.56.
		Gross beta		TPU is 9. Rad error is 8.18.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. Ti 0.803. Rad error is 0.794.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. To 1.68. Rad error is 1.68.
		Technetium-99		TPU is 11.7. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.474. Rad error is 0.473.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 137. Rad error is 136.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4818 MW370	•	Chloride	W	Post-digestion spike recovery out of control limits.
		Sodium	Е	Result estimated due to matrix interferences.
		Benzene	Y1	MS/MSD recovery outside acceptance criteria
		Chlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		Xylenes	Y1	MS/MSD recovery outside acceptance criteria
		Styrene	Y1	MS/MSD recovery outside acceptance criteria
		Toluene	Y1	MS/MSD recovery outside acceptance criteria
		Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria
		1,2-Dibromoethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,2-Trichloroethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Ethylbenzene	Y1	MS/MSD recovery outside acceptance criteria
		lodomethane	Y1	MS/MSD recovery outside acceptance criteria
		Dichloromethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		1,2-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,4-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 4.06. Rad error is 4.06.
		Gross beta		TPU is 17.1. Rad error is 11.6.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.949. Rad error is 0.925.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 2.24. Rad error is 2.23.
		Technetium-99		TPU is 17. Rad error is 13.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.739. Rad error is 0.733.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 135. Rad error is 134.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: $\underline{KY8-890-008-982/1}$

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4819 MW371	MW371UG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sodium	Е	Result estimated due to matrix interferences.
		Benzene	Y1	MS/MSD recovery outside acceptance criteria
		Chlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		Xylenes	Y1	MS/MSD recovery outside acceptance criteria
		Styrene	Y1	MS/MSD recovery outside acceptance criteria
		Toluene	Y1	MS/MSD recovery outside acceptance criteria
		Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria
		1,2-Dibromoethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,2-Trichloroethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Ethylbenzene	Y1	MS/MSD recovery outside acceptance criteria
		Iodomethane	Y1	MS/MSD recovery outside acceptance criteria
		Dichloromethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		1,2-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,4-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 8.54. Rad error is 8.37.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 6.03. Rad error is 5.93.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 0.619. Rad error is 0.611.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 2.2. Rad error is 2.2.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 9.88. Rad error is 9.88.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 0.855. Rad error is 0.852.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 127. Rad error is 127.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4808 MW372	MW372UG2-19	Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.89. Rad error is 6.82.
		Gross beta		TPU is 10.2. Rad error is 9.25.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.728. Rad error is 0.728.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.66. Rad error is 2.63.
		Technetium-99		TPU is 10.7. Rad error is 9.93.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.55. Rad error is 0.549.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 115. Rad error is 115.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
004-4792 MW373	MW373UG2-19	Bromide	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 6.64. Rad error is 6.62.
		Gross beta		TPU is 10. Rad error is 9.56.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.528. Rad error is 0.528.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.85. Rad error is 2.82.
		Technetium-99		TPU is 10.1. Rad error is 9.57.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.859. Rad error is 0.848.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 104. Rad error is 104.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits
004-0990 MW374	MW374UG2-19	Bromide	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 5.78. Rad error is 5.74.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 5.07. Rad error is 5.06.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.56. Rad error is 0.559.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 3.74. Rad error is 3.68.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 9.41. Rad error is 9.39.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 0.868. Rad error is 0.861.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL 101. Rad error is 101.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description						
004-0985 MW375	MW375UG2-19	Barium	N	Sample spike (MS/MSD) recovery not within control limits						
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 7.31. Rad error is 7.17.						
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 4.43. Rad error is 4.4.						
		lodine-131		Analysis of constituent not required and not performed.						
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.31. Rad error is 0.309.						
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 2.81. Rad error is 2.81.						
									Technetium-99	U
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 0.763. Rad error is 0.758.						
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU 112. Rad error is 110.						
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits						

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well went dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well went dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.
		рH		During sampling, the well went dry; therefore, no sample wa collected.
		Eh		During sampling, the well went dry; therefore, no sample wa collected.
		Temperature		During sampling, the well went dry; therefore, no sample we collected.
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.
		Antimony		During sampling, the well went dry; therefore, no sample was collected.
		Arsenic		During sampling, the well went dry; therefore, no sample was collected.
		Barium		During sampling, the well went dry; therefore, no sample was collected.
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.
		Chromium		During sampling, the well went dry; therefore, no sample wa
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.
		Copper		During sampling, the well went dry; therefore, no sample wa collected.
		Iron		During sampling, the well went dry; therefore, no sample wa collected.
		Lead		During sampling, the well went dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well went dry; therefore, no sample wa collected.
		Manganese		During sampling, the well went dry; therefore, no sample wa collected.
		Mercury		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample was collected.
		Rhodium		During sampling, the well went dry; therefore, no sample war collected.
		Selenium		During sampling, the well went dry; therefore, no sample wa collected.
		Silver		During sampling, the well went dry; therefore, no sample wa collected.
		Sodium		During sampling, the well went dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well went dry; therefore, no sample wa collected.
		Thallium		During sampling, the well went dry; therefore, no sample wa collected.
		Uranium		During sampling, the well went dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well went dry; therefore, no sample wa collected.
		Zinc		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample wa collected.
		Acetone		During sampling, the well went dry; therefore, no sample wa collected.
		Acrolein		During sampling, the well went dry; therefore, no sample wa collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample wa collected.
		Benzene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample wa collected.
		Xylenes		During sampling, the well went dry; therefore, no sample wa collected.
		Styrene		During sampling, the well went dry; therefore, no sample wa collected.
		Toluene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0988 MW376	•	Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Trichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample we collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample we collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample we collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample we collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample woollected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample wollected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0988 MW376	•	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample was collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample was collected.
		Gross beta		During sampling, the well went dry; therefore, no sample was collected.
		lodine-131		During sampling, the well went dry; therefore, no sample was collected.
		Radium-226		During sampling, the well went dry; therefore, no sample was collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample was collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample was collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample was collected.
		Tritium		During sampling, the well went dry; therefore, no sample was collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample was collected.
		Cyanide		During sampling, the well went dry; therefore, no sample was collected.
		lodide		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample was collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

LAB ID:None

For Official Use Only

Finds/Unit: <u>KY8-890-008-982 / 1</u>

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377	•	Bromide		During sampling, the well went dry; therefore, no sample was collected.
		Chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well went dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well went dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well went dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well went dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well went dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well went dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well went dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well went dry; therefore, no sample wa collected.
		рH		During sampling, the well went dry; therefore, no sample wa collected.
		Eh		During sampling, the well went dry; therefore, no sample wa collected.
		Temperature		During sampling, the well went dry; therefore, no sample was collected.
		Aluminum		During sampling, the well went dry; therefore, no sample wa collected.
		Antimony		During sampling, the well went dry; therefore, no sample wa collected.
		Arsenic		During sampling, the well went dry; therefore, no sample we collected.
		Barium		During sampling, the well went dry; therefore, no sample wa collected.
		Beryllium		During sampling, the well went dry; therefore, no sample wa collected.
		Boron		During sampling, the well went dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well went dry; therefore, no sample wa collected.
		Calcium		During sampling, the well went dry; therefore, no sample wa collected.
		Chromium		During sampling, the well went dry; therefore, no sample wa collected.
		Cobalt		During sampling, the well went dry; therefore, no sample wa collected.
		Copper		During sampling, the well went dry; therefore, no sample wa collected.
		Iron		During sampling, the well went dry; therefore, no sample wa collected.
		Lead		During sampling, the well went dry; therefore, no sample wa collected.
		Magnesium		During sampling, the well went dry; therefore, no sample wa collected.
		Manganese		During sampling, the well went dry; therefore, no sample wa collected.
		Mercury		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-0989 MW377		Molybdenum		During sampling, the well went dry; therefore, no sample was collected.
		Nickel		During sampling, the well went dry; therefore, no sample was collected.
		Potassium		During sampling, the well went dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well went dry; therefore, no sample wa collected.
		Selenium		During sampling, the well went dry; therefore, no sample wa collected.
		Silver		During sampling, the well went dry; therefore, no sample wa collected.
		Sodium		During sampling, the well went dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well went dry; therefore, no sample wa collected.
		Thallium		During sampling, the well went dry; therefore, no sample wa collected.
		Uranium		During sampling, the well went dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well went dry; therefore, no sample wa collected.
		Zinc		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl acetate		During sampling, the well went dry; therefore, no sample wa collected.
		Acetone		During sampling, the well went dry; therefore, no sample wa collected.
		Acrolein		During sampling, the well went dry; therefore, no sample wa collected.
		Acrylonitrile		During sampling, the well went dry; therefore, no sample wa collected.
		Benzene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobenzene		During sampling, the well went dry; therefore, no sample we collected.
		Xylenes		During sampling, the well went dry; therefore, no sample wa collected.
		Styrene		During sampling, the well went dry; therefore, no sample wa collected.
		Toluene		During sampling, the well went dry; therefore, no sample wa collected.
		Chlorobromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well went dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon disulfide		During sampling, the well went dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377	•	Chloroform		During sampling, the well went dry; therefore, no sample was collected.
		Methyl chloride		During sampling, the well went dry; therefore, no sample was collected.
		cis-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample was collected.
		Methylene bromide		During sampling, the well went dry; therefore, no sample war collected.
		1,1-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1-Dichloroethylene		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromoethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,2-Trichloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well went dry; therefore, no sample wa collected.
		Vinyl chloride		During sampling, the well went dry; therefore, no sample wa collected.
		Tetrachloroethene		During sampling, the well went dry; therefore, no sample wa
		Trichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Ethylbenzene		During sampling, the well went dry; therefore, no sample wa collected.
		2-Hexanone		During sampling, the well went dry; therefore, no sample wa collected.
		Iodomethane		During sampling, the well went dry; therefore, no sample wa collected.
		Dibromochloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Carbon tetrachloride		During sampling, the well went dry; therefore, no sample wa
		Dichloromethane		During sampling, the well went dry; therefore, no sample wa collected.
		Methyl Isobutyl Ketone		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2-Dichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		cis-1,3-Dichloropropene		During sampling, the well went dry; therefore, no sample wa collected.
		trans-1,2-Dichloroethene		During sampling, the well went dry; therefore, no sample wa collected.
		Trichlorofluoromethane		During sampling, the well went dry; therefore, no sample wa collected.
		1,2,3-Trichloropropane		During sampling, the well went dry; therefore, no sample wa collected.
				ooncolou.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-0989 MW377	•	1,2-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well went dry; therefore, no sample was collected.
		PCB, Total		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well went dry; therefore, no sample was collected.
		PCB-1260		During sampling, the well went dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well went dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well went dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well went dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well went dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well went dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well went dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well went dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well went dry; therefore, no sample wa collected.
		Tritium		During sampling, the well went dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well went dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well went dry; therefore, no sample wa collected.
		lodide		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well went dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well went dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-0000 QC	RI1UG2-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD Routside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 3.11. Rad error is 3.11.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 4.16. Rad error is 4.16.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. 0.243. Rad error is 0.242.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 3.67. Rad error is 3.67.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 10.5. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 0.656. Rad error is 0.656.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 141. Rad error is 138.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-0000 QC	FB1UG2-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		pН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD Routside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 4.86. Rad error is 4.85.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 4.39. Rad error is 4.38.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. 0.495. Rad error is 0.485.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. 3.79. Rad error is 3.76.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 10.5. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 0.49. Rad error is 0.489.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. 7 124. Rad error is 124.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1UG2-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1UG2-19	Zinc		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD RPI outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u> LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-0000 QC	TB2UG2-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2UG2-19	Zinc	_	Analysis of constituent not required and not performed.
		Xylenes	Y2	MS/MSD RPD outside acceptance criteria
		Styrene	Y2	MS/MSD RPD outside acceptance criteria
		Ethylbenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,2-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		1,4-Dichlorobenzene	Y2	MS/MSD RPD outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG2-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3UG2-19	Zinc		Analysis of constituent not required and not performed.
		Benzene	Y1	MS/MSD recovery outside acceptance criteria
		Chlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		Xylenes	Y1	MS/MSD recovery outside acceptance criteria
		Styrene	Y1	MS/MSD recovery outside acceptance criteria
		Toluene	Y1	MS/MSD recovery outside acceptance criteria
		Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria
		1,2-Dibromoethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,2-Trichloroethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Ethylbenzene	Y1	MS/MSD recovery outside acceptance criteria
		Iodomethane	Y1	MS/MSD recovery outside acceptance criteria
		Dichloromethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		1,2-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,4-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4UG2-19	Bromide	_	Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.
		Vanadium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only


Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-0000 QC	TB4UG2-19	Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>
LAB ID:None
For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4800 MW360	MW360DUG2-19	Bromide	W	Post-digestion spike recovery out of control limits.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		pH		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		1,2-Dibromo-3-chloropropane	Y1Y2	MS/MSD recovery outside acceptance criteria and MS/MSD Ri outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T 6.71. Rad error is 6.67.
		Gross beta		TPU is 5.56. Rad error is 5.39.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.447. Rad error is 0.446.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T 3.75. Rad error is 3.75.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T 10.5. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T 0.684. Rad error is 0.681.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T 132. Rad error is 132.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-980-008-982/1</u> LAB ID: <u>None</u> For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the first quarter 2019 groundwater data collected from the C-746-U Landfill monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The first quarter 2019 data used to conduct the statistical analyses were collected in January 2019. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that had exceeded the historical background (using the last eight quarters). The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Type	Groundwater Unit
MW357	TW	URGA
MW358	TW	LRGA
MW359 ^a	TW	UCRS
MW360	TW	URGA
MW361	TW	LRGA
MW362 ^a	TW	UCRS
MW363	TW	URGA
MW364	TW	LRGA
MW365 ^a	TW	UCRS
MW366	TW	URGA
MW367	TW	LRGA
MW368 ^a	TW	UCRS
MW369	BG	URGA
MW370	BG	LRGA
MW371 ^a	BG	UCRS
MW372	BG	URGA
MW373	BG	LRGA
MW374 ^a	BG	UCRS
MW375 ^a	SG	UCRS
MW376 ^{a,b}	SG	UCRS
MW377 ^{a,b}	SG	UCRS

^a The gradients in UCRS wells are downward and, hydrogeologically, UCRS wells are not considered upgradient, downgradient, or sidegradient from the C-746-U Landfill. The UCRS wells identified as upgradient, sidegradient, or downgradient are those wells located in the same general direction as the RGA wells considered to be upgradient, sidegradient, or downgradient.

BG: upgradient or background wells **TW:** downgradient or test wells

SG: sidegradient wells

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has an exceedance of the statistically derived current background concentration.

^b Well was dry this quarter, and a groundwater sample could not be collected.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters, if required).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be lognormally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-U Contained Landfill. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations), by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, first quarter 2019. The observations are representative of the current quarter data. Background data are presented in Attachments D1 and D2. The sampling dates associated with background data are listed next to the result in Attachments D1 and D2. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data.

lower $TL = X - (K \times S)$

D-5

_

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations:

upper $TL = X + (K \times S)$

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters
Aluminum
Beryllium
Beta Activity
Boron
Bromide
Calcium
Chemical Oxygen Demand (COD)
Chloride
Cobalt
Conductivity
Copper
Dissolved Oxygen
Dissolved Solids
Iodide
Iron
Magnesium
Manganese
Molybdenum
Nickel
Oxidation-Reduction Potential
pH*
Potassium
Radium-226
Sodium
Sulfate
Technetium-99
Total Organic Carbon (TOC)
Total Organic Halides (TOX)
Trichloroethene
Vanadium
Zinc

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	1	6	Yes
	7	7	0	No
Antimony Beryllium	7	6	1	Yes
Boron	7		5	
		2		Yes
Bromide	7	5	2	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	4	3	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	7	0	No
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	3	4	Yes
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	6	1	Yes
Iodomethane	7	7	0	No
Iron	7	1	6	Yes
Magnesium	7	0	7	Yes
Manganese	7	2	5	Yes
	7	7	0	No
Methylene chloride	/	/	U	INO

Exhibit D.3. Summary of Censored, and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
PCB, Total	7	7	0	No
PCB-1016	7	7	0	No
PCB-1221	7	7	0	No
PCB-1232	7	7	0	No
PCB-1242	7	7	0	No
PCB-1248	7	7	0	No
PCB-1254	7	7	0	No
PCB-1260	7	7	0	No
PCB-1268	7	7	0	No
рН	7	0	7	Yes
Potassium	7	1	6	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	7	0	No
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	2	5	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichlorofluoromethane	7	7	0	No
Vanadium	7	2	5	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	4	3	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	4	2	Yes
Antimony	6	6	0	No
Beryllium	6	6	0	No
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	4	2	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	2	4	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Oxygen Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	4	2	Yes
Iodomethane	6	6	0	No
Iron	6	1	5	Yes
Magnesium	6	0	6	Yes
magnesium			6	
Manganese		()		
Manganese Methylene chloride	6	6	0	Yes No

Exhibit D.4. Summary of Censored, and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Nickel	6	2	4	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
pН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	5	1	Yes
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	2	4	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	0	6	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	1	5	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	4	2	Yes
Vinyl Acetate	6	6	0	No
Zinc	6	4	2	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored, and Uncensored Data—LRGA

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
1,1,1,2-Tetrachloroethane	6	6	0	No
1,1,2,2-Tetrachloroethane	6	6	0	No
1,1,2-Trichloroethane	6	6	0	No
1,1-Dichloroethane	6	6	0	No
1,2,3-Trichloropropane	6	6	0	No
1,2-Dibromo-3-chloropropane	6	6	0	No
1,2-Dibromoethane	6	6	0	No
1,2-Dichlorobenzene	6	6	0	No
1,2-Dichloropropane	6	6	0	No
2-Butanone	6	6	0	No
2-Hexanone	6	6	0	No
4-Methyl-2-pentanone	6	6	0	No
Acetone	6	6	0	No
Acrolein	6	6	0	No
Acrylonitrile	6	6	0	No
Aluminum	6	5	1	Yes
Antimony	6	6	0	No
Beryllium	6	6	0	No
Beta activity	6	0	6	Yes
Boron	6	0	6	Yes
Bromide	6	0	6	Yes
Bromochloromethane	6	6	0	No
Bromodichloromethane	6	6	0	No
Bromoform	6	6	0	No
Bromomethane	6	6	0	No
Calcium	6	0	6	Yes
Carbon disulfide	6	6	0	No
Chemical Oxygen Demand (COD)	6	4	2	Yes
Chloride	6	0	6	Yes
Chlorobenzene	6	6	0	No
Chloroethane	6	6	0	No
Chloroform	6	6	0	No
Chloromethane	6	6	0	No
cis-1,2-Dichloroethene	6	6	0	No
cis-1,3-Dichloropropene	6	6	0	No
Cobalt	6	1	5	Yes
Conductivity	6	0	6	Yes
Copper	6	0	6	Yes
Cyanide	6	6	0	No
Dibromochloromethane	6	6	0	No
Dibromomethane	6	6	0	No
Dimethylbenzene, Total	6	6	0	No
Dissolved Oxygen	6	0	6	Yes
Dissolved Solids	6	0	6	Yes
Ethylbenzene	6	6	0	No
Iodide	6	5	1	Yes
Iodomethane	6	6	0	No
Iron	6	2	4	Yes
Magnesium	6	0	6	Yes
Manganese	6	2	4	Yes
Methylene chloride	6	6	0	No

Exhibit D.5. Tests Summary for Qualified Parameters—LRGA (Continued)

Parameters	Observations	Censored	Uncensored	Statistical
		Observation	Observation	Analysis?
Molybdenum	6	4	2	Yes
Nickel	6	1	5	Yes
Oxidation-Reduction Potential	6	0	6	Yes
PCB, Total	6	6	0	No
PCB-1016	6	6	0	No
PCB-1221	6	6	0	No
PCB-1232	6	6	0	No
PCB-1242	6	6	0	No
PCB-1248	6	6	0	No
PCB-1254	6	6	0	No
PCB-1260	6	6	0	No
PCB-1268	6	6	0	No
pН	6	0	6	Yes
Potassium	6	0	6	Yes
Radium-226	6	6	0	No
Rhodium	6	6	0	No
Sodium	6	0	6	Yes
Styrene	6	6	0	No
Sulfate	6	0	6	Yes
Tantalum	6	6	0	No
Technetium-99	6	0	6	Yes
Tetrachloroethene	6	6	0	No
Thallium	6	6	0	No
Thorium-230	6	6	0	No
Toluene	6	6	0	No
Total Organic Carbon (TOC)	6	0	6	Yes
Total Organic Halides (TOX)	6	1	5	Yes
trans-1,2-Dichloroethene	6	6	0	No
trans-1,3-Dichloropropene	6	6	0	No
trans-1,4-Dichloro-2-Butene	6	6	0	No
Trichloroethene	6	0	6	Yes
Trichlorofluoromethane	6	6	0	No
Vanadium	6	4	2	Yes
Vinyl Acetate	6	6	0	No
Zinc	6	1	5	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval test calculated using historical background and are presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 27, 29, and 29 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified historical background exceedances for dissolved oxygen, oxidation-reduction potential, and sulfate.

URGA

This quarter's results identified historical background exceedances for oxidation-reduction potential.

LRGA

This quarter's results identified historical background exceedances for beta activity, oxidation-reduction potential, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA in comparison to historical data are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW359: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW357: Oxidation-Reduction Potential	MW358: Oxidation-Reduction Potential
MW362: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW360: Oxidation-Reduction Potential	MW361: Oxidation-Reduction Potential
MW365: Dissolved Oxygen, Oxidation-Reduction Potential, Sulfate	MW363: Oxidation-Reduction Potential	MW364: Oxidation-Reduction Potential
MW368: Oxidation-Reduction Potential, Sulfate	MW366: Oxidation-Reduction Potential	MW367: Oxidation-Reduction Potential, Technetium-99
MW371: Dissolved Oxygen, Oxidation-Reduction Potential	MW369: Oxidation-Reduction Potential	MW370: Beta activity, Oxidation-Reduction Potential, Technetium-99
MW374: Oxidation-Reduction Potential	MW372: Oxidation-Reduction Potential	MW373: Oxidation-Reduction Potential
MW375: Oxidation-Reduction Potential, Sulfate		

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.08	No exceedance of statistically derived historical background concentration.
Beryllium	Tolerance Interval	1.12	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.97	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.31	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.45	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.55	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, and MW371.
Dissolved Solids	Tolerance Interval	0.42	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.89	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Tests Summary for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.65	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	3.54	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, MW371, MW374, and MW375.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.49	Current results exceed statistically derived historical background concentration in MW359, MW362, MW365, MW368, and MW375.
Total Organic Carbon (TOC)	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	1.08	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	1.32	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.38	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.10	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	0.84	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.27	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.66	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	0.91	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Tests Summary for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	1.26	Current results exceed statistically derived historical background concentration in MW357, MW360, MW363, MW366, MW369, and MW372.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.29	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	2.61	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.75	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.87	No exceedance of statistically derived historical background concentration.
Total Organic Carbon (TOC)	Tolerance Interval	1.23	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.64	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

A tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	2.78	No exceedance of statistically derived historical background concentration.
Beta activity ¹	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370.
Boron	Tolerance Interval	0.68	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.31	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.16	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.16	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.26	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.83	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.96	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.34	No exceedance of statistically derived historical background concentration.
Manganese	Tolerance Interval	0.62	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Tests Summary for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Nickel	Tolerance Interval	0.90	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	1.31	Current results exceed statistically derived historical background concentration in MW358, MW361, MW364, MW367, MW370, and MW373.
рН	Tolerance Interval	0.03	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.18	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	1.59	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	1.73	Current results exceed statistically derived historical background concentration in MW367 and MW370.
Total Organic Carbon (TOC)	Tolerance Interval	1.96	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.98	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.32	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.67	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

A tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the results of the one-sided tolerance interval test compared to current background, and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 1, and 3 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted, however, that sulfate in MW368 exceeded the current TL this quarter.

URGA

This quarter's results showed no exceedances in wells located downgradient of the landfill.

LRGA

This quarter's results showed no exceedances in wells located downgradient of the landfill.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.10, Exhibit D.11, and Exhibit D.12, respectively.

Exhibit D.10. Test Summaries for Qualified Parameters for Current Background—UCRS

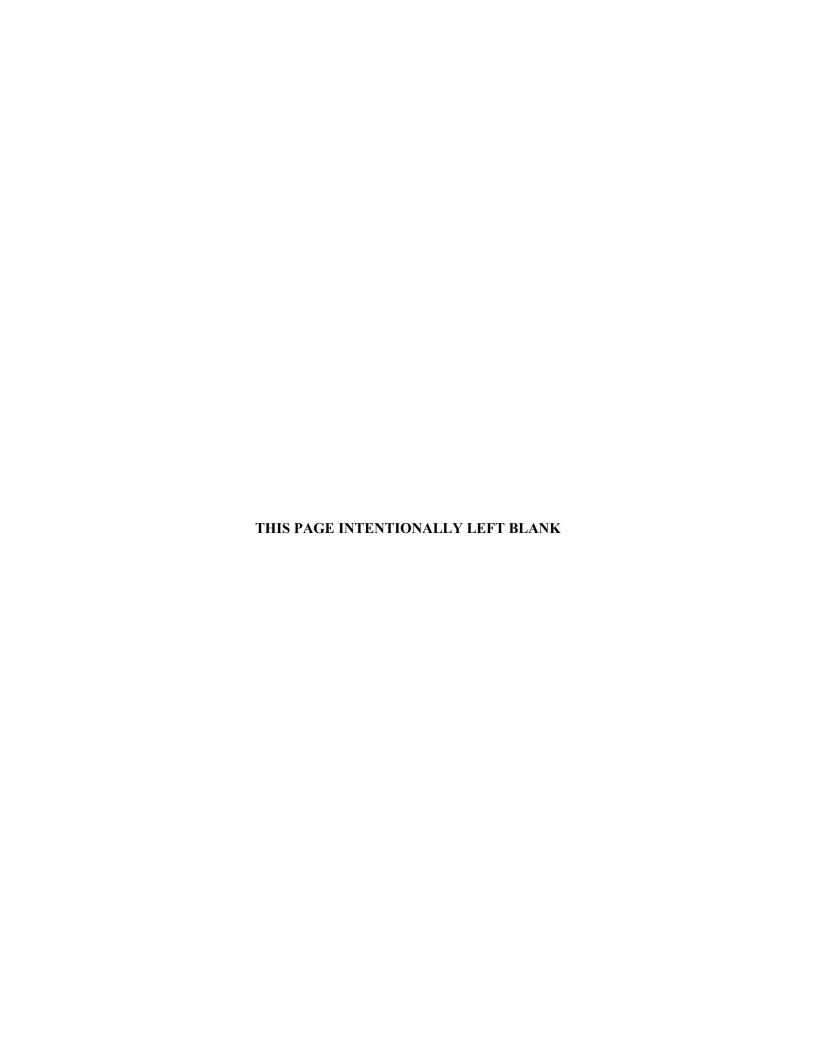
Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Dissolved Oxygen	Tolerance Interval	0.78	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgreadeint UCRS wells. However, MW371 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.28	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	1.31	Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgreadeint UCRS wells. However, MW368 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.15	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

CV: coefficient of variation


Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test	Results of Tolerance Interval Test Conducted
Beta activity	Tolerance Interval	0.68	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Oxidation-Reduction Potential	Tolerance Interval	0.14	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	0.74	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.

CV: coefficient of variation

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** Aluminum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.300

S= 6.859

CV(1)=2.078

K factor=** 2.523

TL(1)= 20.604

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.371 S = 1.678 CV(2) = -4.521

K factor**= 2.523

TL(2) = 3.863

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.24	0.806
4/22/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.059
Date Collected	Result	
Date Collected 10/8/2002	Result 21.3	3.059
Date Collected 10/8/2002 1/7/2003	Result 21.3 20	3.059 2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 21.3 20 4.11	3.059 2.996 1.413
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 21.3 20 4.11 1.41	3.059 2.996 1.413 0.344
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 21.3 20 4.11 1.41 1.09	3.059 2.996 1.413 0.344 0.086

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.0666	N/A	-2.709	NO
MW362	Downgradient	Yes	0.209	N/A	-1.565	NO
MW365	Downgradient	Yes	0.0252	N/A	-3.681	NO
MW368	Downgradient	Yes	0.703	N/A	-0.352	NO
MW371	Upgradient	Yes	7.7	N/A	2.041	NO
MW374	Upgradient	No	0.05	N/A	-2.996	N/A
MW375	Sidegradient	Yes	0.0694	N/A	-2.668	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-3

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Beryllium** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.002

S = 0.003

CV(1)=1.125

K factor=** 2.523

TL(1)= 0.009

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.462 S = 0.812

CV(2) = -0.126

K factor**= 2.523

TL(2) = -4.413

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.005	-5.298
4/22/2002	0.005	-5.298
7/15/2002	0.005	-5.298
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -4.605
Date Collected	Result	` ′
Date Collected 10/8/2002	Result 0.01	-4.605
Date Collected 10/8/2002 1/7/2003	Result 0.01 0.001	-4.605 -6.908
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.01 0.001 0.001	-4.605 -6.908 -6.908
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.01 0.001 0.001 0.001	-4.605 -6.908 -6.908 -6.908
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.01 0.001 0.001 0.001 0.001	-4.605 -6.908 -6.908 -6.908

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0005	N/A	-7.601	N/A
MW362	Downgradient	No	0.0005	N/A	-7.601	N/A
MW365	Downgradient	No	0.0005	N/A	-7.601	N/A
MW368	Downgradient	No	0.0005	N/A	-7.601	N/A
MW371	Upgradient	Yes	0.00029	2 N/A	-8.139	NO
MW374	Upgradient	No	0.0005	N/A	-7.601	N/A
MW375	Sidegradient	No	0.0005	N/A	-7.601	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-4

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Boron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.805

CV(1)=1.238

K factor=** 2.523

TL(1) = 2.681

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.030

CV(2) = -0.996

K factor**= 2.523

TL(2) = 1.564

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 10/8/2002	Result 2	0.693
Date Collected 10/8/2002 1/7/2003	Result 2 0.2	0.693 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2 0.2 0.2	0.693 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2 0.2 0.2 0.2	0.693 -1.609 -1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2 0.2 0.2 0.2 0.2 0.2	0.693 -1.609 -1.609 -1.609

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00744	N/A	-4.901	NO
MW362	Downgradient	Yes	0.0174	N/A	-4.051	NO
MW365	Downgradient	Yes	0.00889	N/A	-4.723	NO
MW368	Downgradient	No	0.00903	N/A	-4.707	N/A
MW371	Upgradient	No	0.00794	N/A	-4.836	N/A
MW374	Upgradient	Yes	0.0118	N/A	-4.440	NO
MW375	Sidegradient	Yes	0.0168	N/A	-4.086	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-5

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L UCRS

S = 0.474

S = 0.332

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.394

CV(1)=0.340

K factor**= 2.523

TL(1) = 2.590

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.279

CV(2) = 1.190

K factor=** 2.523

TL(2) = 1.118

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/22/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.742
Date Collected	Result	
Date Collected 10/8/2002	Result 2.1	0.742
Date Collected 10/8/2002 1/7/2003	Result 2.1 2.1	0.742 0.742
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2.1 2.1 1.9	0.742 0.742 0.642
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2.1 2.1 1.9 1	0.742 0.742 0.642 0.000
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2.1 2.1 1.9 1 1.9	0.742 0.742 0.642 0.000 0.642

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

|--|

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.2	N/A	-1.609	N/A
MW362	Downgradient	Yes	0.106	NO	-2.244	N/A
MW365	Downgradient	No	0.2	N/A	-1.609	N/A
MW368	Downgradient	No	0.2	N/A	-1.609	N/A
MW371	Upgradient	No	0.2	N/A	-1.609	N/A
MW374	Upgradient	Yes	0.907	NO	-0.098	N/A
MW375	Sidegradient	No	0.2	N/A	-1.609	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-6

C-746-U First Quarter 2019 Statistical Analysis Calcium UNITS: mg/L

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 34.100 S = 13.637 CV(1) = 0.400

K factor=** 2.523

TL(1)= 68.505

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.466S = 0.356 CV(2) = 0.103

K factor=** 2.523

TL(2) = 4.364

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	17.2	2.845
4/22/2002	22.4	3.109
7/15/2002	25.5	3.239
10/8/2002	26.4	3.273
1/8/2003	27.2	3.303
4/3/2003	30.3	3.411
7/9/2003	25.9	3.254
10/6/2003	27	3.296
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.209
Date Collected	Result	
Date Collected 10/8/2002	Result 67.3	4.209
Date Collected 10/8/2002 1/7/2003	Result 67.3 60.6	4.209 4.104
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 67.3 60.6 47.2	4.209 4.104 3.854
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 67.3 60.6 47.2 34.7	4.209 4.104 3.854 3.547
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 67.3 60.6 47.2 34.7 37.1	4.209 4.104 3.854 3.547 3.614

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient

Current Quarter Data

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Butu					
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	6.1	NO	1.808	N/A
MW362	Downgradient	Yes	17.8	NO	2.879	N/A
MW365	Downgradient	Yes	22.2	NO	3.100	N/A
MW368	Downgradient	Yes	54.5	NO	3.998	N/A

MW371 Upgradient Yes 40 NO 3.689 N/A MW374 Upgradient 21.8 N/A Yes NO 3.082 MW375 Sidegradient Yes 11.8 NO 2.468 N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-7

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 72.938 S = 70.749 CV(1) = 0.970

K factor=** 2.523

TL(1)= 251.437 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.000S = 0.702

CV(2) = 0.175

K factor**= 2.523

TL(2) = 5.770

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	35	3.555
4/22/2002	35	3.555
7/15/2002	35	3.555
10/8/2002	35	3.555
1/8/2003	35	3.555
4/3/2003	35	3.555
7/9/2003	35	3.555
10/6/2003	35	3.555
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.561
Date Collected	Result	,
Date Collected 10/8/2002	Result 260	5.561
Date Collected 10/8/2002 1/7/2003	Result 260 214	5.561 5.366
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 260 214 147	5.561 5.366 4.990
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 260 214 147 72	5.561 5.366 4.990 4.277
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 260 214 147 72 56	5.561 5.366 4.990 4.277 4.025

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW359	Downgradient	No	20	N/A	2.996	N/A	
MW362	Downgradient	No	20	N/A	2.996	N/A	
MW365	Downgradient	No	20	N/A	2.996	N/A	
MW368	Downgradient	Yes	13.3	NO	2.588	N/A	
MW371	Upgradient	Yes	11.6	NO	2.451	N/A	
MW374	Upgradient	No	20	N/A	2.996	N/A	
MW375	Sidegradient	Yes	9.72	NO	2. 274	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-8

C-746-U First Quarter 2019 Statistical Analysis Chloride UNITS: mg/L

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 91.300 S = 86.959 CV(1) = 0.952

K factor=** 2.523

TL(1)= 310.697 **LL(1)=**N/A

Statistics-Transformed Background Data

S= 1.590 X = 3.620

CV(2) = 0.439

K factor**= 2.523

TL(2) = 7.631

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
7/15/2002	8.3	2.116
10/8/2002	7.6	2.028
1/8/2003	7.7	2.041
4/3/2003	8.8	2.175
7/9/2003	8.1	2.092
10/6/2003	8.6	2.152
1/7/2004	7.6	2.028
4/6/2004	7.6	2.028
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.294
Date Collected	Result	, ,
Date Collected 10/8/2002	Result 199.2	5.294
Date Collected 10/8/2002 1/7/2003	Result 199.2 199.7	5.294 5.297
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 199.2 199.7 171.8	5.294 5.297 5.146
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 199.2 199.7 171.8 178.7	5.294 5.297 5.146 5.186
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 199.2 199.7 171.8 178.7 175.6	5.294 5.297 5.146 5.186 5.168

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	1.11	NO	0.104	N/A
MW362	Downgradient	Yes	5.4	NO	1.686	N/A
MW365	Downgradient	Yes	2.97	NO	1.089	N/A
MW368	Downgradient	Yes	4.78	NO	1.564	N/A
MW371	Upgradient	Yes	0.487	NO	-0.719	N/A
MW374	Upgradient	Yes	65.5	NO	4.182	N/A
MW375	Sidegradient	Yes	3.93	NO	1.369	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-9

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison**

Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.009

CV(1)=1.314

K factor=** 2.523

TL(1) = 0.031

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.843 S = 1.392

CV(2) = -0.238

K factor**= 2.523

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -4.605
Date Collected	Result	
Date Collected 10/8/2002	Result 0.01	-4.605
Date Collected 10/8/2002 1/7/2003	Result 0.01 0.01	-4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.01 0.01 0.01	-4.605 -4.605 -4.605
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.01 0.01 0.01 0.001 0.00161	-4.605 -4.605 -4.605 -6.432
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.01 0.01 0.01 0.00161 0.001	-4.605 -4.605 -4.605 -6.432 -6.908

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.001	N/A	-6.908	N/A
MW362	Downgradient	No	0.001	N/A	-6.908	N/A
MW365	Downgradient	Yes	0.00163	N/A	-6.419	NO
MW368	Downgradient	No	0.001	N/A	-6.908	N/A
MW371	Upgradient	Yes	0.00133	N/A	-6.623	NO
MW374	Upgradient	Yes	0.00132	N/A	-6.630	NO
MW375	Sidegradient	Yes	0.00057	9 N/A	-7.454	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-10

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Conductivity** UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 918.744 S = 417.257 CV(1) = 0.454

K factor=** 2.523

TL(1)= 1971.483 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.705 S = 0.550 CV(2) = 0.082

K factor**= 2.523

TL(2) = 8.092

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371		
Date Collected	Result	LN(Result)	
3/18/2002	541	6.293	
4/22/2002	643	6.466	
7/15/2002	632	6.449	
10/8/2002	631	6.447	
1/8/2003	680	6.522	
4/3/2003	749	6.619	
7/9/2003	734	6.599	
10/6/2003	753	6.624	
Well Number:	MW374		
Well Number: Date Collected		LN(Result)	
		LN(Result) 6.915	
Date Collected	Result	, ,	
Date Collected 3/18/2002	Result 1007	6.915	
Date Collected 3/18/2002 10/8/2002	Result 1007 1680	6.915 7.427	
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 1007 1680 1715.9	6.915 7.427 7.448	
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 1007 1680 1715.9 172	6.915 7.427 7.448 5.147	
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1007 1680 1715.9 172 1231	6.915 7.427 7.448 5.147 7.116	

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient

MW375 Sidegradient

Yes

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

5.829

N/A

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	230	NO	5.438	N/A
MW362	Downgradient	Yes	668	NO	6.504	N/A
MW365	Downgradient	Yes	421	NO	6.043	N/A
MW368	Downgradient	Yes	664	NO	6.498	N/A
MW371	Upgradient	Yes	333	NO	5.808	N/A
MW374	Upgradient	Yes	678	NO	6.519	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

340

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-11

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.056

S = 0.072

CV(1) = 1.275

K factor=** 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.395 S = 0.915

CV(2) = -0.270

K factor**= 2.523

TL(2) = -1.086

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371		
Date Collected	Result	LN(Result)	
3/18/2002	0.025	-3.689	
4/22/2002	0.025	-3.689	
7/15/2002	0.05	-2.996	
10/8/2002	0.02	-3.912	
1/8/2003	0.02	-3.912	
4/3/2003	0.02	-3.912	
7/9/2003	0.02	-3.912	
10/6/2003	0.02	-3.912	
Well Number:	MW374		
Well Number: Date Collected	MW374 Result	LN(Result)	
		LN(Result) -1.609	
Date Collected	Result		
Date Collected 10/8/2002	Result 0.2	-1.609	
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609	
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912	

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00251	N/A	-5.987	NO
MW362	Downgradient	Yes	0.00227	N/A	-6.088	NO
MW365	Downgradient	Yes	0.00357	N/A	-5.635	NO
MW368	Downgradient	Yes	0.00237	N/A	-6.045	NO
MW371	Upgradient	Yes	0.00692	N/A	-4.973	NO
MW374	Upgradient	Yes	0.00176	N/A	-6.342	NO
MW375	Sidegradient	Yes	0.00184	N/A	-6.298	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-12

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.138 S = 0.621

CV(1)=0.546

K factor**= 2.523

TL(1) = 2.704

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.013 S = 0.577

CV(2) = -43.069

K factor=** 2.523

TL(2) = 1.441

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2.26	0.815
4/22/2002	1.15	0.140
7/15/2002	0.94	-0.062
10/8/2002	0.74	-0.301
1/8/2003	2.62	0.963
4/3/2003	1.5	0.405
7/9/2003	1.66	0.507
10/6/2003	1.28	0.247
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.511
Date Collected	Result	` ,
Date Collected 3/18/2002	Result 0.6	-0.511
Date Collected 3/18/2002 10/8/2002	Result 0.6 0.67	-0.511 -0.400
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 0.6 0.67 0.23	-0.511 -0.400 -1.470
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 0.6 0.67 0.23 0.65	-0.511 -0.400 -1.470 -0.431
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.6 0.67 0.23 0.65 0.92	-0.511 -0.400 -1.470 -0.431 -0.083

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	3.87	YES	1.353	N/A
MW362	Downgradient	Yes	4.34	YES	1.468	N/A
MW365	Downgradient	Yes	5.02	YES	1.613	N/A
MW368	Downgradient	Yes	1.83	NO	0.604	N/A
MW371	Upgradient	Yes	8.02	YES	2.082	N/A
MW374	Upgradient	Yes	0.67	NO	-0.400	N/A
MW375	Sidegradient	Yes	0.54	NO	-0.616	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW362 MW365

MW371

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-13

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 590.000 S = 248.068 CV(1) = 0.420

K factor=** 2.523

TL(1)= 1215.876 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.308

S = 0.383 CV(2) = 0.061

K factor**= 2.523

TL(2) = 7.274

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	274	5.613
4/22/2002	409	6.014
7/15/2002	418	6.035
10/8/2002	424	6.050
1/8/2003	431	6.066
4/3/2003	444	6.096
7/9/2003	445	6.098
10/6/2003	438	6.082
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 7.035
Date Collected	Result	,
Date Collected 10/8/2002	Result 1136	7.035
Date Collected 10/8/2002 1/7/2003	Result 1136 1101	7.035 7.004
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 1136 1101 863	7.035 7.004 6.760
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 1136 1101 863 682	7.035 7.004 6.760 6.525
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 1136 1101 863 682 589	7.035 7.004 6.760 6.525 6.378

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient

MW375 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	219	NO	5.389	N/A
MW362	Downgradient	Yes	381	NO	5.943	N/A
MW365	Downgradient	Yes	341	NO	5.832	N/A
MW368	Downgradient	Yes	420	NO	6.040	N/A
MW371	Upgradient	Yes	253	NO	5.533	N/A
MW374	Upgradient	Yes	300	NO	5.704	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

5.094

N/A

163

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-14

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.000

S = 0.000

CV(1)=0.000

K factor=** 2.523

TL(1) = 2.000

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.693

S = 0.000

CV(2) = 0.000

K factor=** 2.523

TL(2) = 0.693

1, assume normal distribution and

Because CV(1) is less than or equal to

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	2	0.693
1/8/2003	2	0.693
4/3/2003	2	0.693
7/9/2003	2	0.693
10/6/2003	2	0.693
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	` '
Date Collected 10/8/2002	Result 2	0.693
Date Collected 10/8/2002 1/7/2003	Result 2 2	0.693 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 2 2 2	0.693 0.693 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 2 2 2 2	0.693 0.693 0.693 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 2 2 2 2 2 2	0.693 0.693 0.693 0.693

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient continue with statistical analysis utilizing TL(1).

T	
	Current Quarter Data
	(iirrent (liigrter Hata

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.5	N/A	-0.693	N/A
MW362	Downgradient	No	0.5	N/A	-0.693	N/A
MW365	Downgradient	No	0.5	N/A	-0.693	N/A
MW368	Downgradient	No	0.5	N/A	-0.693	N/A
MW371	Upgradient	No	0.5	N/A	-0.693	N/A
MW374	Upgradient	Yes	0.234	NO	-1.452	N/A
MW375	Sidegradient	No	0.5	N/A	-0.693	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-15

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.612

S= 6.487 **CV(1)**=0.981

K factor=** 2.523

TL(1)= 22.979

LL(1)=N/A

Statistics-Transformed Background Data

X= 1.363

S= 1.147 **CV(2)**= 0.841

K factor=** 2.523

TL(2) = 4.256

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	1.31	0.270
4/22/2002	0.913	-0.091
7/15/2002	0.881	-0.127
10/8/2002	3.86	1.351
1/8/2003	1.88	0.631
4/3/2003	3.18	1.157
7/9/2003	0.484	-0.726
10/6/2003	2.72	1.001
Well Number:	MW374	
Well Number: Date Collected		LN(Result)
		LN(Result) 3.135
Date Collected	Result	
Date Collected 10/8/2002	Result 23	3.135
Date Collected 10/8/2002 1/7/2003	Result 23 13.9	3.135 2.632
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 23 13.9 14	3.135 2.632 2.639
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 23 13.9 14 14.2	3.135 2.632 2.639 2.653
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 23 13.9 14 14.2 7.92	3.135 2.632 2.639 2.653 2.069

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.0702	NO	-2.656	N/A
MW362	Downgradient	Yes	0.136	NO	-1.995	N/A
MW365	Downgradient	No	0.1	N/A	-2.303	N/A
MW368	Downgradient	Yes	0.426	NO	-0.853	N/A
MW371	Upgradient	Yes	4.4	NO	1.482	N/A
MW374	Upgradient	Yes	1.17	NO	0.157	N/A
MW375	Sidegradient	Yes	0.185	NO	-1.687	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-16

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.347 **S**= 3.019

CV(1)=0.266

K factor**= 2.523

TL(1)= 18.963

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.401 S = 0.237

CV(2) = 0.099

K factor**= 2.523

TL(2) = 2.999

LL(2)=N/A

N/A

N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	7.1	1.960
4/22/2002	9.77	2.279
7/15/2002	10.4	2.342
10/8/2002	10.2	2.322
1/8/2003	10.7	2.370
4/3/2003	11.9	2.477
7/9/2003	10.8	2.380
10/6/2003	10.9	2.389
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 2.996
Date Collected	Result	
Date Collected 10/8/2002	Result 20	2.996
Date Collected 10/8/2002 1/7/2003	Result 20 16.1	2.996 2.779
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 20 16.1 13.1	2.996 2.779 2.573
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 20 16.1 13.1 10.3	2.996 2.779 2.573 2.332
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 20 16.1 13.1 10.3 11.1	2.996 2.779 2.573 2.332 2.407

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Current Quarter Data

Upgradient

MW375 Sidegradient

MW374

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

1.728

1.673

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	3.77	NO	1.327	N/A
MW362	Downgradient	Yes	8.07	NO	2.088	N/A
MW365	Downgradient	Yes	10.6	NO	2.361	N/A
MW368	Downgradient	Yes	15.4	NO	2.734	N/A
MW371	Upgradient	Yes	9.38	NO	2.239	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

NO

5.63

5.33

Yes

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-17

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.248 S = 0.222

CV(1) = 0.894

K factor=** 2.523

TL(1) = 0.809

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.873 **S**= 1.068

CV(2) = -0.570

K factor=** 2.523

TL(2)= 0.821

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.063	-2.765
4/22/2002	0.067	-2.703
7/15/2002	0.074	-2.604
10/8/2002	0.0521	-2.955
1/8/2003	0.0385	-3.257
4/3/2003	0.0551	-2.899
7/9/2003	0.0546	-2.908
10/6/2003	0.0543	-2.913
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -0.518
Date Collected	Result	` ,
Date Collected 10/8/2002	Result 0.596	-0.518
Date Collected 10/8/2002 1/7/2003	Result 0.596 0.565	-0.518 -0.571
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.596 0.565 0.675	-0.518 -0.571 -0.393
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.596 0.565 0.675 0.397	-0.518 -0.571 -0.393 -0.924
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.596 0.565 0.675 0.397 0.312	-0.518 -0.571 -0.393 -0.924 -1.165

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.00136	N/A	-6.600	N/A
MW362	Downgradient	No	0.00225	N/A	-6.097	N/A
MW365	Downgradient	Yes	0.0183	NO	-4.001	N/A
MW368	Downgradient	Yes	0.00975	NO	-4.630	N/A
MW371	Upgradient	Yes	0.0398	NO	-3.224	N/A
MW374	Upgradient	Yes	0.2	NO	-1.609	N/A
MW375	Sidegradient	Yes	0.00818	NO	-4.806	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-18

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** Molybdenum UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.006

S= 0.010

CV(1) = 1.650

K factor=** 2.523

TL(1) = 0.030

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.108 S = 1.239

CV(2) = -0.203

K factor**= 2.523

TL(2) = -2.983

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.00121	-6.717
4/3/2003	0.001	-6.908
7/9/2003	0.00111	-6.803
10/6/2003	0.001	-6.908
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -6.110
Date Collected	Result	
Date Collected 10/8/2002	Result 0.00222	-6.110
Date Collected 10/8/2002 1/7/2003	Result 0.00222 0.00201	-6.110 -6.210
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.00222 0.00201 0.00159	-6.110 -6.210 -6.444
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.00222 0.00201 0.00159 0.00242	-6.110 -6.210 -6.444 -6.024
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.00222 0.00201 0.00159 0.00242 0.001	-6.110 -6.210 -6.444 -6.024 -6.908

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.0005	N/A	-7.601	N/A
MW362	Downgradient	Yes	0.00083	6 N/A	-7.087	NO
MW365	Downgradient	No	0.0005	N/A	-7.601	N/A
MW368	Downgradient	Yes	0.00115	N/A	-6.768	NO
MW371	Upgradient	Yes	0.00092	7 N/A	-6.984	NO
MW374	Upgradient	Yes	0.000323	3 N/A	-8.038	NO
MW375	Sidegradient	No	0.0005	N/A	-7.601	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-19

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** Nickel UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.023

S = 0.022

CV(1)=0.980

K factor=** 2.523

TL(1)= 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.349 S = 1.109

CV(2) = -0.255

K factor**= 2.523

TL(2) = -1.552

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.0124	-4.390
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/9/2003	0.005	-5.298
10/6/2003	0.005	-5.298
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 10/8/2002	Result 0.05	-2.996
Date Collected 10/8/2002 1/7/2003	Result 0.05 0.05	-2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.05 0.05 0.05 0.00794	-2.996 -2.996 -2.996 -4.836
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.05 0.05 0.05 0.005 0.00794 0.005	-2.996 -2.996 -2.996 -4.836 -5.298

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient MW377 Sidegradient utilizing TL(1).

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis

Curren	t Quarter Data
--------	----------------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00107	NO	-6.840	N/A
MW362	Downgradient	Yes	0.00089	7 NO	-7.016	N/A
MW365	Downgradient	Yes	0.00467	NO	-5.367	N/A
MW368	Downgradient	Yes	0.00094	9 NO	-6.960	N/A
MW371	Upgradient	Yes	0.00422	NO	-5.468	N/A
MW374	Upgradient	Yes	0.00084	7 NO	-7.074	N/A
MW375	Sidegradient	Yes	0.00093	2 NO	-6.978	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-20

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS: mV**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 22.281 S = 78.889 CV(1) = 3.541

K factor=** 2.523

TL(1)= 221.319 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.642S = 1.729

CV(2) = 0.475

K factor**= 2.523

TL(2) = 5.106

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	75	4.317
4/22/2002	165	5.106
7/15/2002	65	4.174
4/3/2003	-19	#Func!
7/9/2003	114	4.736
10/6/2003	-22	#Func!
1/7/2004	20.5	3.020
4/6/2004	113	4.727
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.905
Date Collected	Result	
Date Collected 3/18/2002	Result 135	4.905
Date Collected 3/18/2002 4/2/2003	Result 135 -56	4.905 #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003	Result 135 -56 -68	4.905 #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003	Result 135 -56 -68 -50	4.905 #Func! #Func! #Func!
Date Collected 3/18/2002 4/2/2003 7/9/2003 10/7/2003 1/6/2004	Result 135 -56 -68 -50 -85	4.905 #Func! #Func! #Func!

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	454	N/A	6.118	YES
MW362	Downgradient	Yes	411	N/A	6.019	YES
MW365	Downgradient	Yes	321	N/A	5.771	YES
MW368	Downgradient	Yes	426	N/A	6.054	YES
MW371	Upgradient	Yes	396	N/A	5.981	YES
MW374	Upgradient	Yes	254	N/A	5.537	YES
MW375	Sidegradient	Yes	349	N/A	5.855	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

	Wells	with	Exceedances
--	-------	------	-------------

MW359 MW362 MW365 MW368

MW371

MW374

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

D1-21

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 6.619

S = 0.295 CV

CV(1)=0.045 K factor**= 2.904

TL(1) = 7.475

75 **LL(1)=**5.7635

Statistics-Transformed Background Data

X= 1.889 **S**= 0.046

CV(2) = 0.024

K factor=** 2.904

TL(2) = 2.023

LL(2)=1.7548

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	6.3	1.841
4/22/2002	6.5	1.872
7/15/2002	6.5	1.872
10/8/2002	6.6	1.887
1/8/2003	6.6	1.887
4/3/2003	6.9	1.932
7/9/2003	6.7	1.902
10/6/2003	7	1.946
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 1.749
Date Collected	Result	
Date Collected 3/18/2002	Result 5.75	1.749
Date Collected 3/18/2002 10/8/2002	Result 5.75 6.6	1.749 1.887
Date Collected 3/18/2002 10/8/2002 1/7/2003	Result 5.75 6.6 6.82	1.749 1.887 1.920
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003	Result 5.75 6.6 6.82 6.86	1.749 1.887 1.920 1.926
Date Collected 3/18/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5.75 6.6 6.82 6.86 6.7	1.749 1.887 1.920 1.926 1.902

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW359	Downgradien	t Yes	5.93	NO	1.780	N/A
MW362	Downgradien	t Yes	6.83	NO	1.921	N/A
MW365	Downgradien	t Yes	6.13	NO	1.813	N/A
MW368	Downgradien	t Yes	6.42	NO	1.859	N/A
MW371	Upgradient	Yes	6.73	NO	1.907	N/A
MW374	Upgradient	Yes	6.67	NO	1.898	N/A
MW375	Sidegradient	Yes	6.47	NO	1.867	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-22

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison

Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.262

S = 0.907

CV(1)=0.718

K factor=** 2.523

TL(1) = 3.549

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.023 S = 0.752

CV(2)=-32.218

8 K

K factor**= 2.523

TL(2) = 1.874

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	2	0.693
4/22/2002	2	0.693
7/15/2002	2	0.693
10/8/2002	0.408	-0.896
1/8/2003	0.384	-0.957
4/3/2003	0.368	-1.000
7/9/2003	0.587	-0.533
10/6/2003	0.382	-0.962
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 10/8/2002	Result 3.04	1.112
Date Collected 10/8/2002 1/7/2003	Result 3.04 2.83	1.112 1.040
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 3.04 2.83 2	1.112 1.040 0.693
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 3.04 2.83 2 1.09	1.112 1.040 0.693 0.086
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 3.04 2.83 2 1.09 0.802	1.112 1.040 0.693 0.086 -0.221

Dry/Partially Dry Wells

Well No. Gradient
MW376 Sidegradient
MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.3	N/A	-1.204	N/A
MW362	Downgradient	Yes	0.306	NO	-1.184	N/A
MW365	Downgradient	Yes	0.239	NO	-1.431	N/A
MW368	Downgradient	Yes	0.774	NO	-0.256	N/A
MW371	Upgradient	Yes	1.01	NO	0.010	N/A
MW374	Upgradient	Yes	0.496	NO	-0.701	N/A
MW375	Sidegradient	Yes	0.271	NO	-1.306	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-23

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 183.063 S = 73.222 CV(1) = 0.400

K factor=** 2.523

TL(1)= 367.800 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.146 S = 0.356 CV(2) = 0.069

K factor=** 2.523

TL(2) = 6.044

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	129	4.860
4/22/2002	131	4.875
7/15/2002	127	4.844
10/8/2002	123	4.812
1/8/2003	128	4.852
4/3/2003	144	4.970
7/9/2003	126	4.836
10/6/2003	120	4.787
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 5.817
Date Collected	Result	
Date Collected 10/8/2002	Result 336	5.817
Date Collected 10/8/2002 1/7/2003	Result 336 329	5.817 5.796
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 336 329 287	5.817 5.796 5.659
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 336 329 287 181	5.817 5.796 5.659 5.198
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 336 329 287 181 182	5.817 5.796 5.659 5.198 5.204

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient

MW375 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	40.7	NO	3.706	N/A
MW362	Downgradient	Yes	134	NO	4.898	N/A
MW365	Downgradient	Yes	58	NO	4.060	N/A
MW368	Downgradient	Yes	69.1	NO	4.236	N/A
MW371	Upgradient	Yes	17.9	NO	2.885	N/A
MW374	Upgradient	Yes	129	NO	4.860	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

3.951

N/A

52

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-24

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.469

S = 3.153 C

CV(1) = 0.487

K factor=** 2.523

TL(1)= 14.423

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.794

S = 0.357

CV(2) = 0.199

K factor=** 2.523

TL(2) = 2.694

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	16.3	2.791
4/22/2002	8.6	2.152
7/15/2002	6.7	1.902
10/8/2002	5	1.609
1/8/2003	5	1.609
4/3/2003	5	1.609
7/9/2003	5	1.609
10/6/2003	5	1.609
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 10/8/2002	Result 5	1.609
Date Collected 10/8/2002 1/7/2003	Result 5	1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 5 5 5 5	1.609 1.609 1.609
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 5 5 5 5 5 6	1.609 1.609 1.609 1.723
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 5 5 5 5 5 5 5 5 5	1.609 1.609 1.609 1.723 1.609

Dry/Partially Dry Wells

Well No. Gradient

MW376 Sidegradient

MW377 Sidegradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	51.1	YES	3.934	N/A
MW362	Downgradient	Yes	20.2	YES	3.006	N/A
MW365	Downgradient	Yes	66.8	YES	4.202	N/A
MW368	Downgradient	Yes	105	YES	4.654	N/A
MW371	Upgradient	Yes	10.1	NO	2.313	N/A
MW374	Upgradient	Yes	6.8	NO	1.917	N/A
MW375	Sidegradient	Yes	24.1	YES	3.182	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW359 MW362 MW365

MW368

MW375

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-25

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Total Organic Carbon (TOC)** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 17.631 S = 24.314 CV(1) = 1.379

K factor=** 2.523

TL(1)= 78.977

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.318 S = 0.979 CV(2) = 0.422

K factor=** 2.523

TL(2) = 4.788

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	11.1	2.407
4/22/2002	7	1.946
7/15/2002	4.1	1.411
10/8/2002	6	1.792
1/8/2003	5.3	1.668
4/3/2003	5.3	1.668
7/9/2003	2.9	1.065
10/6/2003	3.2	1.163
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	
Date Collected 10/8/2002	Result 90	4.500
Date Collected 10/8/2002 1/7/2003	Result 90 64	4.500 4.159
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 90 64 25	4.500 4.159 3.219
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 90 64 25 16	4.500 4.159 3.219 2.773
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 90 64 25 16 13	4.500 4.159 3.219 2.773 2.565

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Cur	rent (Juart	er D	ata

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.793	N/A	-0.232	NO
MW362	Downgradient	Yes	2.18	N/A	0.779	NO
MW365	Downgradient	Yes	1.33	N/A	0.285	NO
MW368	Downgradient	Yes	1.64	N/A	0.495	NO
MW371	Upgradient	Yes	1.45	N/A	0.372	NO
MW374	Upgradient	Yes	2.43	N/A	0.888	NO
MW375	Sidegradient	Yes	0.837	N/A	-0.178	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-26

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 214.094 S = 231.089 CV(1) = 1.079

K factor**= 2.523

TL(1)= 797.131 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.867 S = 1.065 CV(2) = 0.219

K factor**= 2.523 **TL(2)**= 7.554

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	105	4.654
7/15/2002	70	4.248
10/8/2002	52	3.951
1/8/2003	20.2	3.006
4/3/2003	104	4.644
7/9/2003	34.2	3.532
10/6/2003	46.1	3.831
Well Number:	MW374	
Well Number: Date Collected	MW374 Result	LN(Result)
		LN(Result) 6.806
Date Collected	Result	
Date Collected 10/8/2002	Result 903	6.806
Date Collected 10/8/2002 1/7/2003	Result 903 539	6.806 6.290
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 903 539 295	6.806 6.290 5.687
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 903 539 295 272	6.806 6.290 5.687 5.606
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 903 539 295 272 197	6.806 6.290 5.687 5.606 5.283

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Qualter Data	
W-11 N.	Gradient	

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	10	N/A	2.303	N/A
MW362	Downgradient	Yes	15.7	N/A	2.754	NO
MW365	Downgradient	Yes	17.7	N/A	2.874	NO
MW368	Downgradient	Yes	8.36	N/A	2.123	NO
MW371	Upgradient	No	10	N/A	2.303	N/A
MW374	Upgradient	Yes	18.4	N/A	2.912	NO
MW375	Sidegradient	Yes	14.7	N/A	2.688	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-27

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** Vanadium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.055

S = 0.072

CV(1)=1.319

K factor=** 2.523

TL(1) = 0.237

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.438 S = 0.912

CV(2) = -0.265

K factor**= 2.523

TL(2) = -1.138

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371		
Date Collected	Result	LN(Result)	
3/18/2002	0.025	-3.689	
4/22/2002	0.025	-3.689	
7/15/2002	0.025	-3.689	
10/8/2002	0.02	-3.912	
1/8/2003	0.02	-3.912	
4/3/2003	0.02	-3.912	
7/9/2003	0.02	-3.912	
10/6/2003	0.02	-3.912	
Well Number:	MW374		
Well Number: Date Collected	MW374 Result	LN(Result)	
		LN(Result)	
Date Collected	Result		
Date Collected 10/8/2002	Result 0.2	-1.609	
Date Collected 10/8/2002 1/7/2003	Result 0.2 0.2	-1.609 -1.609	
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.2 0.2 0.2	-1.609 -1.609 -1.609	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.2 0.2 0.2 0.2 0.02	-1.609 -1.609 -1.609 -3.912	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.2 0.2 0.2 0.02 0.02	-1.609 -1.609 -1.609 -3.912 -3.912	

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	Yes	0.00359	N/A	-5.630	NO
MW362	Downgradient	Yes	0.00373	N/A	-5.591	NO
MW365	Downgradient	No	0.01	N/A	-4.605	N/A
MW368	Downgradient	Yes	0.00554	N/A	-5.196	NO
MW371	Upgradient	Yes	0.0203	N/A	-3.897	NO
MW374	Upgradient	No	0.01	N/A	-4.605	N/A
MW375	Sidegradient	Yes	0.00403	N/A	-5.514	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-28

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.060

S = 0.083

CV(1) = 1.380

K factor=** 2.523

TL(1) = 0.270

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.259 S = 0.840

CV(2) = -0.258

K factor**= 2.523

TL(2) = -1.140

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW371		
Date Collected	Result	LN(Result)	
3/18/2002	0.1	-2.303	
4/22/2002	0.1	-2.303	
7/15/2002	0.1	-2.303	
10/8/2002	0.025	-3.689	
1/8/2003	0.035	-3.352	
4/3/2003	0.035	-3.352	
7/9/2003	0.0376	-3.281	
10/6/2003	0.02	-3.912	
Well Number:	MW374		
Well Number: Date Collected	MW374 Result	LN(Result)	
		LN(Result) -3.689	
Date Collected	Result		
Date Collected 10/8/2002	Result 0.025	-3.689	
Date Collected 10/8/2002 1/7/2003	Result 0.025 0.35	-3.689 -1.050	
Date Collected 10/8/2002 1/7/2003 4/2/2003	Result 0.025 0.35 0.035	-3.689 -1.050 -3.352	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 0.025 0.35 0.035 0.02	-3.689 -1.050 -3.352 -3.912	
Date Collected 10/8/2002 1/7/2003 4/2/2003 7/9/2003 10/7/2003	Result 0.025 0.35 0.035 0.02 0.02	-3.689 -1.050 -3.352 -3.912 -3.912	

Dry/Partially Dry Wells

Well No. Gradient MW376 Sidegradient MW377 Sidegradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	: Quarte	er Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradient	No	0.01	N/A	-4.605	N/A
MW362	Downgradient	No	0.01	N/A	-4.605	N/A
MW365	Downgradient	Yes	0.00477	N/A	-5.345	NO
MW368	Downgradient	Yes	0.00517	N/A	-5.265	NO
MW371	Upgradient	Yes	0.0128	N/A	-4.358	NO
MW374	Upgradient	No	0.01	N/A	-4.605	N/A
MW375	Sidegradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-29

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Aluminum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.625 S = 0.774 CV(1) = 1.239 K factor** = 2.523 TL(1) = 2.578

Statistics-Transformed Background Data

X=-0.973 **S**= 0.935 **CV(2)**=-0.961

K factor**= 2.523

TL(2)= 1.386

LL(2)=N/A

LL(1)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.255 -1.3664/22/2002 0.2 -1.6097/15/2002 0.322 -1.133 10/8/2002 0.2 -1.609 1/8/2003 0.2 -1.6094/3/2003 0.2 -1.6097/8/2003 0.2 -1.609 10/6/2003 0.689 -0.373Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2.61 0.959 4/23/2002 0.2 -1.6097/16/2002 0.131 1.14 10/8/2002 0.862 -0.1491/7/2003 2.32 0.8424/2/2003 0.2 -1.6097/9/2003 0.2 -1.60910/7/2003 0.2 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.05	N/A	-2.996	N/A
MW360	Downgradient	Yes	0.0809	N/A	-2.515	NO
MW363	Downgradient	No	0.05	N/A	-2.996	N/A
MW366	Downgradient	No	0.05	N/A	-2.996	N/A
MW369	Upgradient	Yes	0.0567	N/A	-2.870	NO
MW372	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-30

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Boron** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 0.985S = 0.825CV(1)=0.838**K factor**=** 2.523 TL(1) = 3.067Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background**

Data

X = -0.430 S = 0.990CV(2) = -2.302 **K factor**=** 2.523 TL(2) = 2.068

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 0.693 4/22/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.2 -1.6091/8/2003 0.2 -1.6094/3/2003 0.2 -1.6097/8/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 0.693 2 10/8/2002 0.492 -0.7091/7/2003 0.492-0.7094/2/2003 0.6 -0.5117/9/2003 0.57 -0.56210/7/2003 0.604 -0.504

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.387	NO	-0.949	N/A
MW360	Downgradient	Yes	0.0213	NO	-3.849	N/A
MW363	Downgradient	Yes	0.0247	NO	-3.701	N/A
MW366	Downgradient	Yes	0.182	NO	-1.704	N/A
MW369	Upgradient	Yes	0.0165	NO	-4.104	N/A
MW372	Upgradient	Yes	0.872	NO	-0.137	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-31

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Bromide** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 1.000S = 0.000CV(1)=0.000**K factor**=** 2.523 **TL(1)=** 1.000 Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background** X = 0.000S = 0.000

Data

CV(2)=#Num!

K factor=** 2.523

TL(2) = 0.000

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 0.000 4/22/2002 1 0.000 7/15/2002 1 0.000 10/8/2002 1 0.000 1/8/2003 1 0.000 4/3/2003 1 0.000 7/8/2003 1 0.000 10/6/2003 1 0.000Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.000 4/23/2002 1 0.000 7/16/2002 0.000 10/8/2002 0.000 1/7/2003 0.0001 4/2/2003 0.000 7/9/2003 0.000 10/7/2003 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.38	NO	-0.968	N/A
MW360	Downgradient	Yes	0.152	NO	-1.884	N/A
MW363	Downgradient	Yes	0.128	NO	-2.056	N/A
MW366	Downgradient	Yes	0.429	NO	-0.846	N/A
MW369	Upgradient	Yes	0.318	NO	-1.146	N/A
MW372	Upgradient	Yes	0.482	NO	-0.730	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-32

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 32.763 **S**= 9.391 **CV(1)**= 0.287

K factor=** 2.523

TL(1)= 56.456 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.449 S = 0.299 CV(2) = 0.087

K factor**= 2.523

TL(2) = 4.202

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	29.5	3.384
4/22/2002	29.8	3.395
7/15/2002	25.3	3.231
10/8/2002	21.9	3.086
1/8/2003	20.9	3.040
4/3/2003	22.2	3.100
7/8/2003	22.9	3.131
10/6/2003	21.7	3.077
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.726
Date Collected	Result	,
Date Collected 3/19/2002	Result 41.5	3.726
Date Collected 3/19/2002 4/23/2002	Result 41.5 43.6	3.726 3.775
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 41.5 43.6 40.4	3.726 3.775 3.699
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 41.5 43.6 40.4 38.8	3.726 3.775 3.699 3.658
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 41.5 43.6 40.4 38.8 41.1	3.726 3.775 3.699 3.658 3.716

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current						
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW357	Downgradient	Yes	26.7	NO	3.285	N/A
	MW360	Downgradient	Yes	19	NO	2.944	N/A
	MW363	Downgradient	Yes	25.7	NO	3.246	N/A
	MW366	Downgradient	Yes	31.1	NO	3.437	N/A
	MW369	Upgradient	Yes	16.3	NO	2.791	N/A
	MW372	Upgradient	Yes	46.8	NO	3.846	N/A
							_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-33

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 35.938 **S**= 3.750

CV(1)=0.104

K factor**= 2.523

TL(1)= 45.399

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.578 S = 0.089

CV(2) = 0.025

K factor**= 2.523

TL(2) = 3.803

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369		
Date Collected	Result	LN(Result)	
3/18/2002	35	3.555	
4/22/2002	35	3.555	
7/15/2002	35	3.555	
10/8/2002	50	3.912	
1/8/2003	35	3.555	
4/3/2003	35	3.555	
7/8/2003	35	3.555	
10/6/2003	35	3.555	
Well Number:	MW372		
Well Number: Date Collected	MW372 Result	LN(Result)	
		LN(Result) 3.555	
Date Collected	Result		
Date Collected 3/19/2002	Result 35	3.555	
Date Collected 3/19/2002 4/23/2002	Result 35 35	3.555 3.555	
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 35 35 35	3.555 3.555 3.555	
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 35 35 35 35	3.555 3.555 3.555 3.555	
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 35 35 35 35 35	3.555 3.555 3.555 3.555 3.555	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW357	Downgradient	No	20	N/A	2.996	N/A
	MW360	Downgradient	No	20	N/A	2.996	N/A
	MW363	Downgradient	No	20	N/A	2.996	N/A
	MW366	Downgradient	Yes	20.1	NO	3.001	N/A
	MW369	Upgradient	Yes	18.4	NO	2.912	N/A
	MW372	Upgradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-34

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X=44.119 S= 4.554

CV(1)=0.103

K factor=** 2.523 **TL(1)=** 55.607

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.782 **S**= 0.099

CV(2) = 0.026

K factor=** 2.523

TL(2) = 4.033

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
7/15/2002	48.3	3.877
10/8/2002	47.7	3.865
1/8/2003	45.7	3.822
4/3/2003	47.4	3.859
7/8/2003	55.9	4.024
10/6/2003	47.4	3.859
1/7/2004	45.5	3.818
4/7/2004	43.4	3.770
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.684
Date Collected	Result	
Date Collected 7/16/2002	Result 39.8	3.684
Date Collected 7/16/2002 10/8/2002	Result 39.8 41	3.684 3.714
Date Collected 7/16/2002 10/8/2002 1/7/2003	Result 39.8 41 39.4	3.684 3.714 3.674
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003	Result 39.8 41 39.4 39.2	3.684 3.714 3.674 3.669
Date Collected 7/16/2002 10/8/2002 1/7/2003 4/2/2003 7/9/2003	Result 39.8 41 39.4 39.2 39.8	3.684 3.714 3.674 3.669 3.684

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
Downgradient	Yes	31	NO	3.434	N/A				
Downgradient	Yes	9.37	NO	2.238	N/A				
Downgradient	Yes	26.8	NO	3.288	N/A				
Downgradient	Yes	38.3	NO	3.645	N/A				
Upgradient	Yes	31.6	NO	3.453	N/A				
Upgradient	Yes	40.9	NO	3.711	N/A				
	Gradient Downgradient Downgradient Downgradient Downgradient Upgradient	Gradient Detected? Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Upgradient Yes	Gradient Detected? Result Downgradient Yes 31 Downgradient Yes 9.37 Downgradient Yes 26.8 Downgradient Yes 38.3 Upgradient Yes 31.6	Gradient Detected? Result Result >TL(1)? Downgradient Yes 31 NO Downgradient Yes 9.37 NO Downgradient Yes 26.8 NO Downgradient Yes 38.3 NO Upgradient Yes 31.6 NO	Gradient Detected? Result Result >TL(1)? LN(Result) Downgradient Yes 31 NO 3.434 Downgradient Yes 9.37 NO 2.238 Downgradient Yes 26.8 NO 3.288 Downgradient Yes 38.3 NO 3.645 Upgradient Yes 31.6 NO 3.453				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-35

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.025

S = 0.021

CV(1) = 0.845

K factor**= 2.523

TL(1) = 0.077

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.090 S = 1.006

CV(2) = -0.246

K factor=** 2.523

TL(2) = -1.553

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.689 4/22/2002 0.025 -3.6897/15/2002 0.025 -3.689 10/8/2002 0.00938-4.669 1/8/2003 0.00548 -5.207 4/3/2003 0.00587 -5.1387/8/2003 0.0541 -2.917 0.0689 10/6/2003 -2.675Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.025 -3.689 4/23/2002 0.025 -3.6897/16/2002 0.025 -3.68910/8/2002 0.00158 -6.4501/7/2003 0.0147-4.220 -4.457 4/2/2003 0.0116 7/9/2003 0.0653 -2.72910/7/2003 0.00788 -4.843

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	No	0.001	N/A	-6.908	N/A			
MW360	Downgradient	Yes	0.00145	NO	-6.536	N/A			
MW363	Downgradient	Yes	0.00113	NO	-6.786	N/A			
MW366	Downgradient	No	0.001	N/A	-6.908	N/A			
MW369	Upgradient	Yes	0.00505	NO	-5.288	N/A			
MW372	Upgradient	Yes	0.00079	5 NO	-7.137	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-36

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 482.856 S = 57.603 CV(1) = 0.119

K factor**= 2.523

TL(1)= 628.189 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 6.173 S = 0.123 CV(2) = 0.020

K factor=** 2.523

TL(2) = 6.484

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 5.961 388 4/22/2002 404 6.001 7/15/2002 394 5.976 10/8/2002 403 5.999 1/8/2003 520 6.254 4/3/2003 487 6.188 7/8/2003 478 6.170 10/6/2003 476 6.165 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 508 6.230 4/23/2002 501 6.217 7/16/2002 6.229 507 10/8/2002 495 6.205 1/7/2003 508.7 6.232 4/2/2003 515 6.244 7/9/2003 576 6.356 10/7/2003 565 6.337

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	422	NO	6.045	N/A			
MW360	Downgradient	Yes	404	NO	6.001	N/A			
MW363	Downgradient	Yes	418	NO	6.035	N/A			
MW366	Downgradient	Yes	485	NO	6.184	N/A			
MW369	Upgradient	Yes	386	NO	5.956	N/A			
MW372	Upgradient	Yes	613	NO	6.418	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-37

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.025

S = 0.010CV(1) = 0.400 **K factor**=** 2.523

TL(1) = 0.050

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.742 S = 0.307 CV(2) = -0.082

K factor**= 2.523

TL(2) = -2.967

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.05	-2.996
10/8/2002	0.02	-3.912
1/8/2003	0.02	-3.912
4/3/2003	0.02	-3.912
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	
Well Number: Date Collected		LN(Result)
	MW372	
Date Collected	MW372 Result	LN(Result)
Date Collected 3/19/2002	MW372 Result 0.025	LN(Result) -3.689
Date Collected 3/19/2002 4/23/2002	MW372 Result 0.025 0.025	LN(Result) -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	MW372 Result 0.025 0.025 0.05	LN(Result) -3.689 -3.689 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	MW372 Result 0.025 0.025 0.05 0.02	LN(Result) -3.689 -3.689 -2.996 -3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	MW372 Result 0.025 0.025 0.05 0.02 0.02	LN(Result) -3.689 -3.689 -2.996 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	0.00178	NO	-6.331	N/A			
MW360	Downgradient	Yes	0.00278	NO	-5.885	N/A			
MW363	Downgradient	Yes	0.00166	NO	-6.401	N/A			
MW366	Downgradient	Yes	0.00211	NO	-6.161	N/A			
MW369	Upgradient	Yes	0.00366	NO	-5.610	N/A			
MW372	Upgradient	Yes	0.00192	NO	-6.255	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-38

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Oxygen UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.781 S = 1.351 CV(1) = 0.759 K factor**= 2.523 TL(1) = 5.190 LL(1) = N/A Statistics-Transformed Background X = 0.228 S = 1.065 CV(2) = 4.665 K factor**= 2.523 TL(2) = 2.915 LL(2) = N/A Data

Historical Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 5.41 1.688 4/22/2002 1.57 0.451 7/15/2002 -0.2230.8 10/8/2002 1.09 0.086 1/8/2003 2.69 0.990 4/3/2003 2.04 0.713 7/8/2003 1.19 0.174 10/6/2003 1.78 0.577 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 3.89 1.358 4/23/2002 0.05 -2.9967/16/2002 0.285 1.33 10/8/2002 2.66 0.978 1/7/2003 0.4 -0.916 -0.094 4/2/2003 0.91 7/9/2003 1.42 0.351 10/7/2003 1.26 0.231

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	3.49	NO	1.250	N/A			
MW360	Downgradient	Yes	1.39	NO	0.329	N/A			
MW363	Downgradient	Yes	1.14	NO	0.131	N/A			
MW366	Downgradient	Yes	2.47	NO	0.904	N/A			
MW369	Upgradient	Yes	1.26	NO	0.231	N/A			
MW372	Upgradient	Yes	0.78	NO	-0.248	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-39

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 285.188 **S**= 44.908 **CV(1)**=0.157

K factor=** 2.523

TL(1)= 398.489 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.640 S = 0.175 CV(2) = 0.031

K factor**= 2.523

TL(2) = 6.080

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 173 5.153 4/22/2002 246 5.505 7/15/2002 232 5.447 10/8/2002 275 5.617 1/8/2003 5.595 269 4/3/2003 250 5.521 7/8/2003 295 5.687 10/6/2003 276 5.620 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 295 5.687 4/23/2002 322 5.775 7/16/2002 329 5.796 10/8/2002 290 5.670 1/7/2003 316 5.756 4/2/2003 311 5.740 7/9/2003 347 5.849 10/7/2003 337 5.820

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	283	NO	5.645	N/A			
MW360	Downgradient	Yes	224	NO	5.412	N/A			
MW363	Downgradient	Yes	306	NO	5.724	N/A			
MW366	Downgradient	Yes	293	NO	5.680	N/A			
MW369	Upgradient	Yes	224	NO	5.412	N/A			
MW372	Upgradient	Yes	394	NO	5.976	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-40

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 2.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523
 TL(1) = 2.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 0.693 S = 0.000 CV(2) = 0.000 K factor**= 2.523
 TL(2) = 0.693 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 0.693 4/22/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 2 0.693 1/8/2003 2 0.693 2 4/3/2003 0.693 7/8/2003 2 0.693 2 10/6/2003 0.693 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 2 0.693 10/8/2002 2 0.693 2 1/7/2003 0.693 2 4/2/2003 0.693 7/9/2003 2 0.693 10/7/2003 0.693

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	No	0.5	N/A	-0.693	N/A			
MW360	Downgradient	No	0.5	N/A	-0.693	N/A			
MW363	Downgradient	Yes	0.258	NO	-1.355	N/A			
MW366	Downgradient	No	0.5	N/A	-0.693	N/A			
MW369	Upgradient	No	0.5	N/A	-0.693	N/A			
MW372	Upgradient	Yes	0.236	NO	-1.444	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-41

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **URGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 7.385**S**= 6.991 CV(1)=0.947**K factor**=** 2.523 **TL(1)=** 25.024 Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background** X = 1.358 S = 1.323 CV(2) = 0.974TL(2) = 4.697LL(2)=N/A

Data

K factor**= 2.523

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.656 -0.4224/22/2002 0.695 -0.3647/15/2002 1.960 7.1 10/8/2002 21.5 3.068 1/8/2003 2.918 18.5 4/3/2003 14.9 2.701 7/8/2003 11.3 2.425 10/6/2003 14.9 2.701 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 5.95 1.783 4/23/2002 0.792 -0.2337/16/2002 0.577 1.78 10/8/2002 0.776 -0.2541/7/2003 3.55 1.267 4/2/2003 5.02 1.613 7/9/2003 10 2.303 10/7/2003 0.733 -0.311

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	No	0.1	N/A	-2.303	N/A			
MW360	Downgradient	Yes	0.251	NO	-1.382	N/A			
MW363	Downgradient	Yes	0.0362	NO	-3.319	N/A			
MW366	Downgradient	Yes	0.114	NO	-2.172	N/A			
MW369	Upgradient	Yes	0.0841	NO	-2.476	N/A			
MW372	Upgradient	Yes	0.139	NO	-1.973	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-42

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** Magnesium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 12.864 S = 3.505

CV(1)=0.272

K factor=** 2.523

TL(1) = 21.707

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.517 S = 0.290 CV(2) = 0.115

K factor**= 2.523

TL(2) = 3.248

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	11.4	2.434
4/22/2002	12	2.485
7/15/2002	10	2.303
10/8/2002	8.62	2.154
1/8/2003	7.89	2.066
4/3/2003	7.97	2.076
7/8/2003	10.3	2.332
10/6/2003	9.14	2.213
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 2.754
Date Collected	Result	
Date Collected 3/19/2002	Result 15.7	2.754
Date Collected 3/19/2002 4/23/2002	Result 15.7 16.6	2.754 2.809
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 15.7 16.6 15.4	2.754 2.809 2.734
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 15.7 16.6 15.4 15.8	2.754 2.809 2.734 2.760
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 15.7 16.6 15.4 15.8	2.754 2.809 2.734 2.760 2.760

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW357	Downgradient	Yes	11.3	NO	2.425	N/A			
MW360	Downgradient	Yes	8.22	NO	2.107	N/A			
MW363	Downgradient	Yes	11.1	NO	2.407	N/A			
MW366	Downgradient	Yes	13.3	NO	2.588	N/A			
MW369	Upgradient	Yes	7.17	NO	1.970	N/A			
MW372	Upgradient	Yes	18.9	NO	2.939	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-43

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** Manganese UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.413S = 0.274 CV(1)=0.664

K factor=** 2.523

TL(1)=1.105

LL(1)=N/A

Statistics-Transformed Background Data

X=-1.226 S= 1.008 CV(2)=-0.822

K factor**= 2.523

TL(2) = 1.317

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.034	-3.381
4/22/2002	0.062	-2.781
7/15/2002	0.436	-0.830
10/8/2002	0.867	-0.143
1/8/2003	0.828	-0.189
4/3/2003	0.672	-0.397
7/8/2003	0.321	-1.136
10/6/2003	0.714	-0.337

Well Number:	MW372	
		LN(Result)
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
Well Number: Date Collected 3/19/2002	MW372 Result 0.205	LN(Result) -1.585
Well Number: Date Collected 3/19/2002 4/23/2002	MW372 Result 0.205 0.345	LN(Result) -1.585 -1.064
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002	MW372 Result 0.205 0.345 0.21	LN(Result) -1.585 -1.064 -1.561
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	MW372 Result 0.205 0.345 0.21 0.0539	LN(Result) -1.585 -1.064 -1.561 -2.921
Well Number: Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	MW372 Result 0.205 0.345 0.21 0.0539 0.537	LN(Result) -1.585 -1.064 -1.561 -2.921 -0.622

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.0108	NO	-4.528	N/A
MW360	Downgradient	Yes	0.0235	NO	-3.751	N/A
MW363	Downgradient	Yes	0.314	NO	-1.158	N/A
MW366	Downgradient	Yes	0.00502	NO	-5.294	N/A
MW369	Upgradient	Yes	0.017	NO	-4.075	N/A
MW372	Upgradient	Yes	0.00722	NO	-4.931	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-44

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Molybdenum UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.010 S = 0.012

CV(1)=1.199

K factor**= 2.523

TL(1)= 0.040

LL(1)=N/A

Statistics-Transformed Background Data

X=-5.698 **S**= 1.607

CV(2) = -0.282

K factor=** 2.523

TL(2) = -1.643

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.025	-3.689
4/22/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.001	-6.908
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/8/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 3/19/2002	Result 0.025	-3.689
Date Collected 3/19/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.001	-3.689 -3.689 -3.689 -6.908
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.001 0.001	-3.689 -3.689 -3.689 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW357	Downgradient	No	0.0005	N/A	-7.601	N/A	
MW360	Downgradient	No	0.0005	N/A	-7.601	N/A	
MW363	Downgradient	No	0.0005	N/A	-7.601	N/A	
MW366	Downgradient	No	0.0005	N/A	-7.601	N/A	
MW369	Upgradient	No	0.0005	N/A	-7.601	N/A	
MW372	Upgradient	Yes	0.00035	8 N/A	-7.935	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-45

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Nickel** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.024

S = 0.021

CV(1) = 0.910

K factor**= 2.523

TL(1) = 0.078

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.246 S = 1.075 CV(2) = -0.253

K factor**= 2.523

TL(2) = -1.535

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.05	-2.996
4/22/2002	0.05	-2.996
7/15/2002	0.05	-2.996
10/8/2002	0.005	-5.298
1/8/2003	0.005	-5.298
4/3/2003	0.005	-5.298
7/8/2003	0.013	-4.343
10/6/2003	0.0104	-4.566
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 3/19/2002	Result 0.05	-2.996
Date Collected 3/19/2002 4/23/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.05 0.05 0.05	-2.996 -2.996 -2.996
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.05 0.05 0.05 0.005	-2.996 -2.996 -2.996 -5.298
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.05 0.05 0.05 0.005 0.005	-2.996 -2.996 -2.996 -5.298 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.002	N/A	-6.215	N/A
MW360	Downgradient	Yes	0.001	NO	-6.908	N/A
MW363	Downgradient	Yes	0.00186	NO	-6.287	N/A
MW366	Downgradient	No	0.002	N/A	-6.215	N/A
MW369	Upgradient	Yes	0.0057	NO	-5.167	N/A
MW372	Upgradient	Yes	0.00125	NO	-6.685	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-46

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS: mV URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 74.563 S = 94.243 CV(1) = 1.264

K factor=** 2.523

TL(1)= 312.337 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.554 S = 0.784 CV(2) = 0.172

K factor**= 2.523

TL(2) = 5.371

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	215	5.371
4/22/2002	110	4.700
7/15/2002	20	2.996
1/8/2003	-5	#Func!
4/3/2003	-18	#Func!
7/8/2003	-67	#Func!
10/6/2003	-1	#Func!
1/7/2004	55	4.007
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.347
Date Collected	Result	` '
Date Collected 3/19/2002	Result 210	5.347
Date Collected 3/19/2002 4/23/2002	Result 210 65	5.347 4.174
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 210 65 215	5.347 4.174 5.371
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 210 65 215 185	5.347 4.174 5.371 5.220
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 210 65 215 185 45	5.347 4.174 5.371 5.220 3.807

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	434	N/A	6.073	YES
MW360	Downgradient	Yes	403	N/A	5.999	YES
MW363	Downgradient	Yes	273	N/A	5.609	YES
MW366	Downgradient	Yes	437	N/A	6.080	YES
MW369	Upgradient	Yes	432	N/A	6.068	YES
MW372	Upgradient	Yes	393	N/A	5.974	YES

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW357 MW360

MW363 MW366

MW369

MW372

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

D1-47

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** pН **UNITS: Std Unit URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.194CV(1) = 0.031K factor**= 2.904 TL(1) = 6.837Statistics-Background Data X = 6.274LL(1)=5.7114 **Statistics-Transformed Background**

Data

X = 1.836S = 0.031CV(2) = 0.017 K factor**= 2.904

TL(2) = 1.925

LL(2)=1.7467

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 1.808 6.1 4/22/2002 6.1 1.808 7/15/2002 1.808 6.1 10/8/2002 6.5 1.872 1/8/2003 6.5 1.872 4/3/2003 6.6 1.887 7/8/2003 6.5 1.872 10/6/2003 6.5 1.872 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 6.1 1.808 4/23/2002 6.12 1.812 7/16/2002 6.1 1.808 10/8/2002 6.06 1.802 1/7/2003 6.26 1.834 4/2/2003 6.15 1.816 7/9/2003 6.3 1.841 10/7/2003 6.4 1.856

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>` /</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	` /	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
	MW357	Downgradien	t Yes	5.85	NO	1.766	N/A
	MW360	Downgradien	t Vec	5.84	NO	1 765	N/A

Downgradient 1.765 N/A MW363 Downgradient Yes 6.11 NO 1.810 N/A Downgradient Yes 1.841 MW366 6.3 NO N/A MW369 Upgradient 6.29 1.839 Yes NO N/A MW372 Upgradient Yes 6.1 NO 1.808 N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-48

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Potassium** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.488CV(1)=0.293**K factor**=** 2.523 TL(1) = 2.895Statistics-Background Data X = 1.663LL(1)=N/A **Statistics-Transformed Background** X = 0.456CV(2) = 0.794S = 0.362**K factor**=** 2.523 TL(2) = 1.368LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 0.693 0.793 4/22/2002 2.21 7/15/2002 2 0.693 10/8/2002 0.966 -0.035 1/8/2003 0.727 -0.3194/3/2003 0.8 -0.2237/8/2003 1.62 0.482 0.131 10/6/2003 1.14 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 2.04 0.713 4/23/2002 2.03 0.708 7/16/2002 0.693 10/8/2002 1.54 0.432 1/7/2003 1.88 0.631 4/2/2003 2.09 0.737 7/9/2003 1.78 0.577 10/7/2003 1.79 0.582

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	1.63	NO	0.489	N/A
MW360	Downgradient	Yes	0.719	NO	-0.330	N/A
MW363	Downgradient	Yes	1.3	NO	0.262	N/A
MW366	Downgradient	Yes	1.99	NO	0.688	N/A
MW369	Upgradient	Yes	0.545	NO	-0.607	N/A
MW372	Upgradient	Yes	2.19	NO	0.784	N/A
37/4 D	1. 11 .10 1 31	r			1 . 11 1	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-49

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Radium-226 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 3.398
 S= 8.854
 CV(1)=2.605
 K factor**= 2.523
 TL(1)= 25.736
 LL(1)=N/A

 Statistics-Transformed Background
 X= -0.836
 S= 1.704
 CV(2)=-2.039
 K factor**= 2.523
 TL(2)= 3.346
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 7/15/2002 3.346 28.4 -1.79010/8/2002 0.167 1/8/2003 -1.7540.173 10/6/2003 0.168 -1.7841/7/2004 0.702 -0.3544/7/2004 0.195 -1.6357/13/2004 0.256 -1.36310/7/2004 0.228 -1.478Well Number: MW372 Date Collected Result LN(Result) 7/16/2002 23.5 3.157 10/8/2002 0.195 -1.635 -0.844#Func! 1/7/2003 10/7/2003 0.349 -1.053-1.431 1/5/2004 0.239 -1.178 4/5/2004 0.308 7/14/2004 0.147 -1.91710/7/2004 0.188 -1.671

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.338	N/A	-1.085	N/A
MW360	Downgradient	Yes	0.727	N/A	-0.319	NO
MW363	Downgradient	No	0.304	N/A	-1.191	N/A
MW366	Downgradient	No	0.658	N/A	-0.419	N/A
MW369	Upgradient	No	0.746	N/A	-0.293	N/A
MW372	Upgradient	No	0.519	N/A	-0.656	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 45.100 S = 11.875 CV(1) = 0.263

K factor=** 2.523

TL(1)= 75.061 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.780 S = 0.242 CV(2) = 0.064

K factor=** 2.523

TL(2) = 4.390

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 35.7 3.575 4/22/2002 37.6 3.627 7/15/2002 42.4 3.747 10/8/2002 66.9 4.203 1/8/2003 67.9 4.218 4/3/2003 61.8 4.124 7/8/2003 45.6 3.820 4.079 10/6/2003 59.1 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 37.2 3.616 4/23/2002 38.6 3.653 7/16/2002 35.6 3.572 10/8/2002 37.5 3.624 1/7/2003 34.1 3.529 4/2/2003 34.4 3.538 7/9/2003 44.1 3.786 10/7/2003 43.1 3.764

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	42.5	NO	3.750	N/A
MW360	Downgradient	Yes	66.5	NO	4.197	N/A
MW363	Downgradient	Yes	44.6	NO	3.798	N/A
MW366	Downgradient	Yes	48.3	NO	3.877	N/A
MW369	Upgradient	Yes	53.1	NO	3.972	N/A
MW372	Upgradient	Yes	46.2	NO	3.833	N/A
						_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-51

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 45.031 S = 33.919 CV(1) = 0.753

K factor**= 2.523

TL(1)= 130.609 LI

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.420 S = 0.981 CV

CV(2) = 0.287

K factor=** 2.523

TL(2) = 5.894

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 2.741 15.5 4/22/2002 15.8 2.760 7/15/2002 2.625 13.8 10/8/2002 6.9 1.932 1/8/2003 10.5 2.351 4/3/2003 10.5 2.351 7/8/2003 10.9 2.389 10/6/2003 16.3 2.791 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 71.7 4.272 4/23/2002 74.7 4.313 7/16/2002 4.305 74.1 10/8/2002 70.5 4.256 1/7/2003 75.8 4.328 4/2/2003 81.8 4.404 7/9/2003 83.6 4.426 10/7/2003 4.478 88.1

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	45.1	NO	3.809	N/A
MW360	Downgradient	Yes	12.1	NO	2.493	N/A
MW363	Downgradient	Yes	36.5	NO	3.597	N/A
MW366	Downgradient	Yes	54	NO	3.989	N/A
MW369	Upgradient	Yes	6.59	NO	1.886	N/A
MW372	Upgradient	Yes	71.7	NO	4.272	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-52

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Technetium-99 UNITS: pCi/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X=20.821 S= 18.044 CV(1)=0.867

K factor=** 2.523

TL(1)= 66.344

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.770 S = 1.150 CV(2) = 0.415

K factor**= 2.523

TL(2) = 3.972

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	41.7	3.731
4/22/2002	53.1	3.972
7/15/2002	18.1	2.896
10/8/2002	16.4	2.797
1/8/2003	3.49	1.250
4/3/2003	9.34	2.234
7/8/2003	17.5	2.862
10/6/2003	17	2.833
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 3.802
Date Collected	Result	
Date Collected 3/19/2002	Result 44.8	3.802
Date Collected 3/19/2002 4/23/2002	Result 44.8 0.802	3.802 -0.221
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 44.8 0.802 19.8	3.802 -0.221 2.986
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 44.8 0.802 19.8 46.1	3.802 -0.221 2.986 3.831
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 44.8 0.802 19.8 46.1 -0.973	3.802 -0.221 2.986 3.831 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	23	NO	3.135	N/A
MW360	Downgradient	No	-2.23	N/A	#Error	N/A
MW363	Downgradient	No	2.5	N/A	0.916	N/A
MW366	Downgradient	Yes	45.7	NO	3.822	N/A
MW369	Upgradient	Yes	39.1	NO	3.666	N/A
MW372	Upgradient	Yes	35	NO	3.555	N/A
NT/A D	1	r			1 1 1 1	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-53

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Total Organic Carbon (TOC)** UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 3.513S = 4.307CV(1)=1.226**K factor**=** 2.523 **TL(1)=** 14.378 Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background**

Data

X = 0.851 S = 0.828 CV(2) = 0.973

K factor=** 2.523 TL(2) = 2.940 LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 0.531 1.7 4/22/2002 1.6 0.470 7/15/2002 3.1 1.131 10/8/2002 17.7 2.874 1/8/2003 9 2.197 4/3/2003 4 1.386 7/8/2003 4.9 1.589 10/6/2003 2.4 0.875 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 1 0.000 4/23/2002 1.2 0.182 7/16/2002 0.000 1 10/8/2002 1 0.000 1/7/2003 1.6 0.470 4/2/2003 1.5 0.405 7/9/2003 3 1.099 10/7/2003 1.5 0.405

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	0.757	N/A	-0.278	NO
MW360	Downgradient	Yes	1.29	N/A	0.255	NO
MW363	Downgradient	Yes	1.06	N/A	0.058	NO
MW366	Downgradient	Yes	0.981	N/A	-0.019	NO
MW369	Upgradient	Yes	1.36	N/A	0.307	NO
MW372	Upgradient	Yes	2.37	N/A	0.863	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-54

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 67.963 S = 64.316 CV(1) = 0.946

K factor**= 2.523

TL(1) = 230.231LL(1)=N/A

Statistics-Transformed Background Data

X = 3.772 S = 1.023 CV(2) = 0.271

K factor**= 2.523

TL(2) = 6.353

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	50	3.912
4/22/2002	50	3.912
7/15/2002	81	4.394
10/8/2002	202	5.308
1/8/2003	177	5.176
4/3/2003	93.1	4.534
7/8/2003	17.5	2.862
10/6/2003	37.5	3.624
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) 5.215
Date Collected	Result	
Date Collected 3/19/2002	Result 184	5.215
Date Collected 3/19/2002 4/23/2002	Result 184 50	5.215 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 184 50 50	5.215 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 184 50 50 50	5.215 3.912 3.912 3.912
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 184 50 50 50	5.215 3.912 3.912 3.912 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	9.56	NO	2.258	N/A
MW360	Downgradient	Yes	10.3	NO	2.332	N/A
MW363	Downgradient	Yes	6.52	NO	1.875	N/A
MW366	Downgradient	Yes	4.82	NO	1.573	N/A
MW369	Upgradient	Yes	22	NO	3.091	N/A
MW372	Upgradient	Yes	12.1	NO	2.493	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-55

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Trichloroethene** UNITS: ug/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S= 3.594 CV(1)=0.639**K factor**=** 2.523 **TL(1)=** 14.693 Statistics-Background Data X = 5.625LL(1)=N/A **Statistics-Transformed Background** X = 1.571 S = 0.565 CV(2) = 0.360LL(2)=N/A

Data

K factor**= 2.523

TL(2) = 2.995

Historical Background Data from **Upgradient Wells with Transformed Result**

MW369 Well Number: Date Collected Result LN(Result) 3/18/2002 2.398 4/22/2002 16 2.773 7/15/2002 8 2.079 10/8/2002 3 1.099 1/8/2003 2 0.693 4/3/2003 3 1.099 7/8/2003 3 1.099 2 10/6/2003 0.693 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 5 1.609 4/23/2002 5 1.609 7/16/2002 4 1.386 10/8/2002 6 1.792 5 1/7/2003 1.609 1.792 4/2/2003 6 7/9/2003 5 1.609 10/7/2003 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	Yes	4.57	N/A	1.520	N/A
MW360	Downgradient	No	1	N/A	0.000	N/A
MW363	Downgradient	Yes	0.7	N/A	-0.357	N/A
MW366	Downgradient	Yes	5.9	NO	1.775	N/A
MW369	Upgradient	Yes	1.19	N/A	0.174	N/A
MW372	Upgradient	Yes	5.16	NO	1.641	N/A
						_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** Vanadium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.006CV(1)=0.259**K factor**=** 2.523 TL(1) = 0.039**Statistics-Background Data** X = 0.024LL(1)=N/A **Statistics-Transformed Background** X = -3.771 S = 0.223CV(2) = -0.059

Data

K factor=** 2.523

TL(2) = -3.208

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW369 Date Collected Result LN(Result) 3/18/2002 0.025 -3.689 4/22/2002 0.027 -3.6127/15/2002 0.025 -3.689 10/8/2002 0.02 -3.912 1/8/2003 0.02 -3.912 -3.912 4/3/2003 0.02 7/8/2003 0.02 -3.912 -3.912 10/6/2003 0.02 Well Number: MW372 Date Collected Result LN(Result) 3/19/2002 0.039 -3.2444/23/2002 0.037 -3.2977/16/2002 0.025 -3.68910/8/2002 0.02 -3.912 0.02 -3.912 1/7/2003 -3.912 4/2/2003 0.02 7/9/2003 0.02 -3.912 10/7/2003 0.02 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.01	N/A	-4.605	N/A
MW360	Downgradient	Yes	0.0054	NO	-5.221	N/A
MW363	Downgradient	No	0.01	N/A	-4.605	N/A
MW366	Downgradient	No	0.01	N/A	-4.605	N/A
MW369	Upgradient	Yes	0.00516	NO	-5.267	N/A
MW372	Upgradient	No	0.01	N/A	-4.605	N/A
						_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-57

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.173CV(1)=1.490X = 0.116

K factor**= 2.523

TL(1) = 0.552LL(1)=N/A

Statistics-Transformed Background Data

X = -2.729 S = 1.014 CV(2) = -0.371

K factor=** 2.523

TL(2) = -0.172

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW369	
Date Collected	Result	LN(Result)
3/18/2002	0.1	-2.303
4/22/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/8/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW372	
Well Number: Date Collected	MW372 Result	LN(Result)
		LN(Result) -0.322
Date Collected	Result	
Date Collected 3/19/2002	Result 0.725	-0.322
Date Collected 3/19/2002 4/23/2002	Result 0.725 0.1	-0.322 -2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002	Result 0.725 0.1 0.1	-0.322 -2.303 -2.303
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.725 0.1 0.1 0.025	-0.322 -2.303 -2.303 -3.689
Date Collected 3/19/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.725 0.1 0.1 0.025 0.035	-0.322 -2.303 -2.303 -3.689 -3.352

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradient	No	0.01	N/A	-4.605	N/A
MW360	Downgradient	Yes	0.00353	N/A	-5.646	NO
MW363	Downgradient	No	0.01	N/A	-4.605	N/A
MW366	Downgradient	No	0.01	N/A	-4.605	N/A
MW369	Upgradient	Yes	0.00361	N/A	-5.624	NO
MW372	Upgradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-58

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Aluminum** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

CV(1)=2.777X = 2.026S = 5.626

K factor**= 2.523

TL(1)= 16.219 LL(1)=N/A

Statistics-Transformed Background Data

X = -0.803 S = 1.380 CV(2) = -1.718

K factor**= 2.523

TL(2) = 2.678

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.66	1.539
4/23/2002	0.2	-1.609
7/15/2002	0.2	-1.609
10/8/2002	0.2	-1.609
1/8/2003	0.2	-1.609
4/3/2003	0.2	-1.609
7/9/2003	0.2	-1.609
10/6/2003	0.2	-1.609
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.122
Date Collected	Result	
Date Collected 3/18/2002	Result 22.7	3.122
Date Collected 3/18/2002 4/23/2002	Result 22.7 1.46	3.122 0.378
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 22.7 1.46 0.253	3.122 0.378 -1.374
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 22.7 1.46 0.253 0.482	3.122 0.378 -1.374 -0.730
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 22.7 1.46 0.253 0.482 0.608	3.122 0.378 -1.374 -0.730 -0.498

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0202	N/A	-3.902	NO
MW361	Downgradient	No	0.05	N/A	-2.996	N/A
MW364	Downgradient	No	0.05	N/A	-2.996	N/A
MW367	Downgradient	No	0.05	N/A	-2.996	N/A
MW370	Upgradient	No	0.05	N/A	-2.996	N/A
MW373	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-59

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: pCi/L Beta activity LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 9.815**S**= 7.838 CV(1)=0.799**K factor**=** 2.523 **TL(1)=** 29.591 **Statistics-Background Data** LL(1)=N/A **Statistics-Transformed Background**

Data

X = 2.072 S = 0.630 CV(2) = 0.304

K factor=** 2.523

TL(2) = 3.662LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 2.313 10.1 4/23/2002 4.46 1.495 7/15/2002 1.884 6.58 10/8/2002 4.9 1.589 1/8/2003 4.47 1.497 4/3/2003 8.65 2.158 7/9/2003 1.297 3.66 10/6/2003 5.38 1.683 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 15.1 2.715 4/23/2002 6.26 1.834 7/16/2002 6.22 1.828 10/8/2002 4.06 1.401 1/7/2003 11.2 2.416

18.5

13.3

34.2

4/2/2003

7/9/2003

10/7/2003

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	32.2	N/A	3.472	N/A
MW361	Downgradient	Yes	29.6	N/A	3.388	N/A
MW364	Downgradient	Yes	28.8	N/A	3.360	N/A
MW367	Downgradient	Yes	39.1	N/A	3.666	N/A
MW370	Upgradient	Yes	75.8	YES	4.328	N/A
MW373	Upgradient	Yes	17.4	N/A	2.856	N/A
NI/A D	L :1 CC 1 3	T D ()	1 . 11	1 .	1.7 11.1.2	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.918

2.588

3.532

Wells with Exceedances

MW370

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- LL Lower Tolerance Limit, LL = X (K * S)Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-60

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Boron** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.780CV(1)=0.684**K factor**=** 2.523 TL(1) = 3.108Statistics-Background Data X = 1.140LL(1)=N/A **Statistics-Transformed Background** X = -0.235 S = 1.006 CV(2) = -4.287**K factor**=** 2.523 TL(2) = 2.303LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

MW370 Well Number: Date Collected Result LN(Result) 3/17/2002 0.693 4/23/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 0.2 -1.6091/8/2003 0.2 -1.6094/3/2003 0.2 -1.6097/9/2003 0.2 -1.609 10/6/2003 0.2 -1.609Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 0.693 2 10/8/2002 0.79 -0.2361/7/2003 0.807 -0.2144/2/2003 1.13 0.122 7/9/2003 1.28 0.247 10/7/2003 0.215 1.24

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
_	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW358	Downgradient	Yes	0.436	NO	-0.830	N/A
	MW361	Downgradient	Yes	0.388	NO	-0.947	N/A
	MW364	Downgradient	Yes	0.0183	NO	-4.001	N/A
	MW367	Downgradient	Yes	0.0778	NO	-2.554	N/A
	MW370	Upgradient	Yes	0.0342	NO	-3.376	N/A
	MW373	Upgradient	Yes	1.1	NO	0.095	N/A
	NI/A D	14 11 416 1 3	T D ()	1 1 1 1	1 .	1.7 11.1.7	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Bromide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A

Data

Upgradient Wells with Transformed Result

Historical Background Data from

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	1	0.000
4/23/2002	1	0.000
7/15/2002	1	0.000
10/8/2002	1	0.000
1/8/2003	1	0.000
4/3/2003	1	0.000
7/9/2003	1	0.000
10/6/2003	1	0.000
Well Number:	MW373	
Date Collected	Result	LN(Result)
3/18/2002	1	0.000
4/23/2002	1	0.000
7/16/2002	1	0.000
10/8/2002	1	0.000
1/7/2003	1	0.000
4/2/2003	1	0.000

7/9/2003

10/7/2003

Current Quarter Data										
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)				
MW358	Downgradient	Yes	0.481	NO	-0.732	N/A				
MW361	Downgradient	Yes	0.417	NO	-0.875	N/A				
MW364	Downgradient	Yes	0.454	NO	-0.790	N/A				
MW367	Downgradient	Yes	0.416	NO	-0.877	N/A				
MW370	Upgradient	Yes	0.371	NO	-0.992	N/A				
MW373	Upgradient	Yes	0.697	NO	-0.361	N/A				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-62

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** Calcium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 43.413 S = 13.444 CV(1) = 0.310

K factor**= 2.523

TL(1) = 77.331LL(1)=N/A

Statistics-Transformed Background Data

X = 3.723 S = 0.323 CV(2) = 0.087

K factor**= 2.523

TL(2) = 4.539

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	34.8	3.550
4/23/2002	43.4	3.770
7/15/2002	33.2	3.503
10/8/2002	29.2	3.374
1/8/2003	31.3	3.444
4/3/2003	32.4	3.478
7/9/2003	22.9	3.131
10/6/2003	28 3.332	
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
Date Collected	Result	LN(Result)
Date Collected 3/18/2002	Result 61.9	LN(Result) 4.126
Date Collected 3/18/2002 4/23/2002	Result 61.9 59.2	LN(Result) 4.126 4.081
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 61.9 59.2 47.6	LN(Result) 4.126 4.081 3.863
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 61.9 59.2 47.6 46.1	LN(Result) 4.126 4.081 3.863 3.831
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 61.9 59.2 47.6 46.1 49.2	LN(Result) 4.126 4.081 3.863 3.831 3.896

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	33.5	NO	3.512	N/A
MW361	Downgradient	Yes	29.6	NO	3.388	N/A
MW364	Downgradient	Yes	31.6	NO	3.453	N/A
MW367	Downgradient	Yes	27.4	NO	3.311	N/A
MW370	Upgradient	Yes	29.1	NO	3.371	N/A
MW373	Upgradient	Yes	64.4	NO	4.165	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-63

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Chemical Oxygen Demand (COD)** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.938 S = 24.732 CV(1) = 0.590

K factor**= 2.523

TL(1)= 104.336 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.658 S = 0.339 CV(2) = 0.093

K factor**= 2.523

TL(2) = 4.512

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

MW370 Well Number: Date Collected Result LN(Result) 3/17/2002 3.555 4/23/2002 134 4.898 7/15/2002 35 3.555 10/8/2002 35 3.555 1/8/2003 35 3.555 4/3/2003 35 3.555 7/9/2003 35 3.555 10/6/2003 35 3.555 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 35 3.555 47 4/23/2002 3.850 7/16/2002 35 3.555 10/8/2002 35 3.555 35 1/7/2003 3.555 4/2/2003 35 3.555 7/9/2003 35 3.555 10/7/2003 35 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	20	N/A	2.996	N/A
MW361	Downgradient	No	20	N/A	2.996	N/A
MW364	Downgradient	No	20	N/A	2.996	N/A
MW367	Downgradient	Yes	18.4	NO	2.912	N/A
MW370	Upgradient	Yes	28.6	NO	3.353	N/A
MW373	Upgradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Chloride UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 45.919 S= 7.524 CV(1)=0.164 K factor**= 2.523 TL(1)=64.901 LL(1)=N/A

Statistics-Transformed Background Data

X= 3.814 **S**= 0.165 **CV(2)**= 0.043

K factor**= 2.523

TL(2) = 4.231 L1

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 7/15/2002 55.5 4.016 10/8/2002 53.6 3.982 1/8/2003 52.9 3.968 4/3/2003 53.6 3.982 7/9/2003 51.9 3.949 10/6/2003 53 3.970 1/7/2004 53 3.970 3.944 4/7/2004 51.6 Well Number: MW373 Date Collected Result LN(Result) 7/16/2002 40.6 3.704 10/8/2002 38.8 3.658 39 1/7/2003 3.664 4/2/2003 38.4 3.648 7/9/2003 38.1 3.640 10/7/2003 38 3.638 1/6/2004 37.9 3.635 4/7/2004 38.8 3.658

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	36.3	NO	3.592	N/A
MW361	Downgradient	Yes	32.9	NO	3.493	N/A
MW364	Downgradient	Yes	34.8	NO	3.550	N/A
MW367	Downgradient	Yes	35.8	NO	3.578	N/A
MW370	Upgradient	Yes	33.8	NO	3.520	N/A
MW373	Upgradient	Yes	42.8	NO	3.757	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-65

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Cobalt UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.027 S= 0.032 CV(1)=1.165 K factor**= 2.523

factor=** 2.523 **TL(1)=** 0.108 **LL(1)=**N/A

Statistics-Transformed Background Data

X = -4.058 S = 1.011 CV(2) = -0.249

K factor**= 2.523

TL(2) = -1.507

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.689 4/23/2002 0.025 -3.6897/15/2002 0.025 -3.689 10/8/2002 0.0174 -4.051 1/8/2003 0.0105 -4.556 0.00931 4/3/2003 -4.6777/9/2003 0.137 -1.9880.0463 10/6/2003 -3.073Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.025 -3.689 4/23/2002 0.034 -3.381 7/16/2002 0.025 -3.68910/8/2002 0.00411-5.494 1/7/2003 0.00344-5.672 -5.605 4/2/2003 0.00368 7/9/2003 0.0405 -3.20610/7/2003 0.00843 -4.776

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result R	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00515	N/A	-5.269	NO
MW361	Downgradient	No	0.001	N/A	-6.908	N/A
MW364	Downgradient	Yes	0.000335	N/A	-8.001	NO
MW367	Downgradient	Yes	0.00112	N/A	-6.794	NO
MW370	Upgradient	Yes	0.000351	N/A	-7.955	NO
MW373	Upgradient	Yes	0.000376	N/A	-7.886	NO
3.7/4 B	1. 11 .10 1 3	r				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-66

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Conductivity** UNITS: umho/cm **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 608.719 S = 156.157 CV(1) = 0.257

K factor**= 2.523

TL(1)= 1002.702 LL(1)=N/A

Statistics-Transformed Background Data

X = 6.380 S = 0.260 CV(2) = 0.041

K factor**= 2.523

TL(2) = 7.036

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	406	6.006
4/23/2002	543	6.297
7/15/2002	476	6.165
10/8/2002	441	6.089
1/8/2003	486	6.186
4/3/2003	466	6.144
7/9/2003	479	6.172
10/6/2003	435	6.075
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.494
Date Collected	Result	
Date Collected 3/18/2002	Result 661	6.494
Date Collected 3/18/2002 4/23/2002	Result 661 801	6.494 6.686
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 661 801 774	6.494 6.686 6.652
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 661 801 774 680	6.494 6.686 6.652 6.522
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 661 801 774 680 686.5	6.494 6.686 6.652 6.522 6.532

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	502	NO	6.219	N/A
MW361	Downgradient	Yes	465	NO	6.142	N/A
MW364	Downgradient	Yes	479	NO	6.172	N/A
MW367	Downgradient	Yes	456	NO	6.122	N/A
MW370	Upgradient	Yes	458	NO	6.127	N/A
MW373	Upgradient	Yes	741	NO	6.608	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-67

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.025 S = 0.010 CV(1) = 0.399 K factor**= 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.739 S = 0.308 CV(2) = -0.082 K factor**= 2.523
 TL(2) = -2.963 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.025 -3.689 4/23/2002 0.025 -3.6897/15/2002 0.05 -2.996 10/8/2002 0.02 -3.912 1/8/2003 0.02 -3.912 -3.912 4/3/2003 0.02 7/9/2003 0.02 -3.912 -3.912 10/6/2003 0.02 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.026 -3.650 4/23/2002 0.025 -3.6897/16/2002 0.05 -2.99610/8/2002 0.02 -3.9120.02 -3.912 1/7/2003 0.02 -3.912 4/2/2003 7/9/2003 0.02 -3.912 10/7/2003 0.02 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.00432	NO	-5.444	N/A
MW361	Downgradient	Yes	0.00162	NO	-6.425	N/A
MW364	Downgradient	Yes	0.00179	NO	-6.326	N/A
MW367	Downgradient	Yes	0.00208	NO	-6.175	N/A
MW370	Upgradient	Yes	0.00263	NO	-5.941	N/A
MW373	Upgradient	Yes	0.00457	NO	-5.388	N/A
NT/A D	1, 11, 20, 1, 3	T D	1 1 1 1		1.1.1.1	1

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-68

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Dissolved Oxygen** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 1.153X = 1.387

CV(1) = 0.831

K factor**= 2.523

TL(1) = 4.295

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.115 S = 1.207 CV(2) = -10.514

K factor=** 2.523

TL(2) = 2.930

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	4.32	1.463
4/23/2002	1.24	0.215
7/15/2002	0.75	-0.288
10/8/2002	0.94	-0.062
1/8/2003	3.08	1.125
4/3/2003	1.45	0.372
7/9/2003	1.22	0.199
10/6/2003	1.07	0.068
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
Date Collected	Result	LN(Result)
Date Collected 3/18/2002	Result 3.04	LN(Result)
Date Collected 3/18/2002 4/23/2002	Result 3.04 0.03	LN(Result) 1.112 -3.507
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 3.04 0.03 0.23	LN(Result) 1.112 -3.507 -1.470
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 3.04 0.03 0.23 0.86	LN(Result) 1.112 -3.507 -1.470 -0.151
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 3.04 0.03 0.23 0.86 0.21	LN(Result) 1.112 -3.507 -1.470 -0.151 -1.561

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.77	NO	-0.261	N/A
MW361	Downgradient	Yes	3.18	NO	1.157	N/A
MW364	Downgradient	Yes	2.18	NO	0.779	N/A
MW367	Downgradient	Yes	1.86	NO	0.621	N/A
MW370	Upgradient	Yes	3.52	NO	1.258	N/A
MW373	Upgradient	Yes	1.07	NO	0.068	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-69

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Dissolved Solids** UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 356.188 S = 106.752 CV(1) = 0.300

K factor=** 2.523

TL(1)= 625.523 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.831 S = 0.311 CV(2) = 0.053

K factor**= 2.523

TL(2) = 6.616

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	236	5.464
4/23/2002	337	5.820
7/15/2002	266	5.583
10/8/2002	240	5.481
1/8/2003	282	5.642
4/3/2003	238	5.472
7/9/2003	248	5.513
10/6/2003	224	5.412
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 6.057
Date Collected	Result	
Date Collected 3/18/2002	Result 427	6.057
Date Collected 3/18/2002 4/23/2002	Result 427 507	6.057 6.229
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 427 507 464	6.057 6.229 6.140
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 427 507 464 408	6.057 6.229 6.140 6.011
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 427 507 464 408 404	6.057 6.229 6.140 6.011 6.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	324	NO	5.781	N/A
MW361	Downgradient	Yes	267	NO	5.587	N/A
MW364	Downgradient	Yes	327	NO	5.790	N/A
MW367	Downgradient	Yes	287	NO	5.659	N/A
MW370	Upgradient	Yes	257	NO	5.549	N/A
MW373	Upgradient	Yes	386	NO	5.956	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-70

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Iodide UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 2.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523
 TL(1) = 2.000 LL(1) = N/A

 Statistics-Transformed Background Data
 X = 0.693 S = 0.000 CV(2) = 0.000 K factor**= 2.523
 TL(2) = 0.693 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW370 Well Number: Date Collected Result LN(Result) 3/17/2002 0.693 4/23/2002 2 0.693 7/15/2002 2 0.693 10/8/2002 2 0.693 1/8/2003 2 0.693 2 4/3/2003 0.693 7/9/2003 2 0.693 2 10/6/2003 0.693 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 2 0.693 4/23/2002 2 0.693 7/16/2002 2 0.693 10/8/2002 2 0.693 2 1/7/2003 0.693 2 4/2/2003 0.693 7/9/2003 2 0.693 10/7/2003 0.693

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.237	NO	-1.440	N/A
MW361	Downgradient	No	0.5	N/A	-0.693	N/A
MW364	Downgradient	No	0.5	N/A	-0.693	N/A
MW367	Downgradient	No	0.5	N/A	-0.693	N/A
MW370	Upgradient	No	0.5	N/A	-0.693	N/A
MW373	Upgradient	No	0.5	N/A	-0.693	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-71

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **LRGA** Iron

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.230**S**= 8.841 CV(1)=0.958

K factor=** 2.523

TL(1)= 31.535

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.942 S = 0.713 CV(2) = 0.367

K factor=** 2.523

TL(2) = 3.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 9.34 2.234 4/23/2002 4.33 1.466 7/15/2002 1.258 3.52 10/8/2002 7.45 2.008 1/8/2003 7.04 1.952 4/3/2003 4.64 1.535 7/9/2003 15.8 2.760 10/6/2003 6.49 1.870 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 37.6 3.627 4/23/2002 19 2.944 7/16/2002 10.7 2.370 10/8/2002 3.75 1.322 1/7/2003 3.87 1.353 4/2/2003 3.5 1.253 7/9/2003 7.72 2.044 10/7/2003 1.075 2.93

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	1.87	NO	0.626	N/A
MW361	Downgradient	No	0.1	N/A	-2.303	N/A
MW364	Downgradient	Yes	0.117	NO	-2.146	N/A
MW367	Downgradient	Yes	1.98	NO	0.683	N/A
MW370	Upgradient	Yes	0.0448	NO	-3.106	N/A
MW373	Upgradient	No	0.1	N/A	-2.303	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-72

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** Magnesium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 17.544 S = 5.911CV(1) = 0.337

K factor**= 2.523

TL(1) = 32.458

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.810 S = 0.343 CV(2) = 0.122

K factor**= 2.523

TL(2) = 3.676

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	12.1	2.493
4/23/2002	15.1	2.715
7/15/2002	12.4	2.518
10/8/2002	12.2	2.501
1/8/2003	11.5	2.442
4/3/2003	12.3	2.510
7/9/2003	10	2.303
10/6/2003	12.1	2.493
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.211
Date Collected	Result	
Date Collected 3/18/2002	Result 24.8	3.211
Date Collected 3/18/2002 4/23/2002	Result 24.8 22.7	3.211 3.122
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 24.8 22.7 18.8	3.211 3.122 2.934
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 24.8 22.7 18.8 21.1	3.211 3.122 2.934 3.049
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 24.8 22.7 18.8 21.1 19.9	3.211 3.122 2.934 3.049 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	16.5	NO	2.803	N/A
MW361	Downgradient	Yes	13.3	NO	2.588	N/A
MW364	Downgradient	Yes	14.2	NO	2.653	N/A
MW367	Downgradient	Yes	13.1	NO	2.573	N/A
MW370	Upgradient	Yes	12.9	NO	2.557	N/A
MW373	Upgradient	Yes	24.2	NO	3.186	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-73

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** Manganese UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.674X = 1.080

CV(1)=0.624

K factor=** 2.523

TL(1) = 2.780

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.114 S = 0.658 CV(2) = -5.762

K factor**= 2.523

TL(2) = 1.547

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.244	-1.411
4/23/2002	1.82	0.599
7/15/2002	1.22	0.199
10/8/2002	0.988	-0.012
1/8/2003	0.729	-0.316
4/3/2003	0.637	-0.451
7/9/2003	2.51	0.920
10/6/2003	1.05	0.049
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -1.036
Date Collected	Result	,
Date Collected 3/18/2002	Result 0.355	-1.036
Date Collected 3/18/2002 4/23/2002	Result 0.355 2.16	-1.036 0.770
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.355 2.16 1.39	-1.036 0.770 0.329
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.355 2.16 1.39 0.717	-1.036 0.770 0.329 -0.333
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.355 2.16 1.39 0.717 0.587	-1.036 0.770 0.329 -0.333 -0.533

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.335	NO	-1.094	N/A
MW361	Downgradient	No	0.00168	N/A	-6.389	N/A
MW364	Downgradient	Yes	0.0205	NO	-3.887	N/A
MW367	Downgradient	Yes	0.333	NO	-1.100	N/A
MW370	Upgradient	No	0.00212	N/A	-6.156	N/A
MW373	Upgradient	Yes	0.0223	NO	-3.803	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-74

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** Molybdenum UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.010S = 0.012 CV(1)=1.198

K factor=** 2.523

TL(1) = 0.040

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.693 S = 1.604 CV(2) = -0.282

K factor**= 2.523

TL(2) = -1.647

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.025	-3.689
4/23/2002	0.025	-3.689
7/15/2002	0.025	-3.689
10/8/2002	0.00113	-6.786
1/8/2003	0.001	-6.908
4/3/2003	0.001	-6.908
7/9/2003	0.001	-6.908
10/6/2003	0.001	-6.908
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 3/18/2002	Result 0.025	-3.689
Date Collected 3/18/2002 4/23/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.025 0.025 0.025	-3.689 -3.689 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.025 0.025 0.025 0.001	-3.689 -3.689 -3.689 -6.908
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.025 0.025 0.025 0.001 0.001	-3.689 -3.689 -3.689 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result R	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.000489	N/A	-7.623	NO
MW361	Downgradient	No	0.0005	N/A	-7.601	N/A
MW364	Downgradient	Yes	0.000717	N/A	-7.240	NO
MW367	Downgradient	No	0.0005	N/A	-7.601	N/A
MW370	Upgradient	No	0.0005	N/A	-7.601	N/A
MW373	Upgradient	No	0.0005	N/A	-7.601	N/A
						_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-75

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** Nickel UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.022CV(1) = 0.901**K factor**=** 2.523 **TL(1)=** 0.078 Statistics-Background Data X = 0.024LL(1)=N/A **Statistics-Transformed Background**

Data

X = -4.239 S = 1.087CV(2) = -0.256 **K factor**=** 2.523

TL(2) = -1.497LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.05 -2.9960.05 4/23/2002 -2.9967/15/2002 0.05 -2.99610/8/2002 0.005 -5.298 -5.298 1/8/2003 0.005 4/3/2003 0.005 -5.2987/9/2003 0.0264 -3.634 10/6/2003 0.00971 -4.635 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.05 -2.996 4/23/2002 0.05 -2.9967/16/2002 0.05 -2.99610/8/2002 0.005 -5.2981/7/2003 0.005-5.298 0.005 -5.298 4/2/2003 7/9/2003 0.0112 -4.492 10/7/2003 0.005 -5.298

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	0.0372	NO	-3.291	N/A
MW361	Downgradient	No	0.002	N/A	-6.215	N/A
MW364	Downgradient	Yes	0.00093	7 NO	-6.973	N/A
MW367	Downgradient	Yes	0.00136	NO	-6.600	N/A
MW370	Upgradient	Yes	0.00065	1 NO	-7.337	N/A
MW373	Upgradient	Yes	0.00182	NO	-6.309	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-76

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Oxidation-Reduction Potential UNITS: mV LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 46.688 S = 60.986 CV(1) = 1.306

K factor=** 2.523

TL(1) = 200.555LL(1)=N/A

Statistics-Transformed Background Data

X = 3.829 S = 1.151 CV(2) = 0.301

K factor**= 2.523

TL(2) = 4.942

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	140	4.942
4/23/2002	-15	#Func!
7/15/2002	5	1.609
4/3/2003	49	3.892
7/9/2003	-35	#Func!
10/6/2003	40	3.689
1/7/2004	101	4.615
4/7/2004	105	4.654
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.942
Date Collected	Result	` /
Date Collected 3/18/2002	Result 140	4.942
Date Collected 3/18/2002 4/23/2002	Result 140 -20	4.942 #Func!
Date Collected 3/18/2002 4/23/2002 10/8/2002	Result 140 -20 10	4.942 #Func! 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003	Result 140 -20 10	4.942 #Func! 2.303 2.303
Date Collected 3/18/2002 4/23/2002 10/8/2002 1/7/2003 4/2/2003	Result 140 -20 10 10 67	4.942 #Func! 2.303 2.303 4.205

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	242	N/A	5.489	YES
MW361	Downgradient	Yes	407	N/A	6.009	YES
MW364	Downgradient	Yes	359	N/A	5.883	YES
MW367	Downgradient	Yes	422	N/A	6.045	YES
MW370	Upgradient	Yes	440	N/A	6.087	YES
MW373	Upgradient	Yes	336	N/A	5.817	YES
37/4 B	1. 11 .10 1 31					

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW358 MW361

MW364

MW367

MW370

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.283 S = 0.159 CV(1) = 0.025 K factor**= 2.904
 TL(1) = 6.745 LL(1) = 5.8202

 Statistics-Transformed Background Data
 X = 1.837 X = 0.025 X = 0.025</th

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 1.841 6.3 4/23/2002 6.4 1.856 7/15/2002 6.3 1.841 10/8/2002 6.3 1.841 1/8/2003 6.4 1.856 4/3/2003 6.5 1.872 7/9/2003 6.3 1.841 10/6/2003 6.5 1.872 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 6 1.792 4/23/2002 6.3 1.841 7/16/2002 6.45 1.864 10/8/2002 6.18 1.821 1/7/2003 6.35 1.848 4/2/2003 6.14 1.815 7/9/2003 6.1 1.808 10/7/2003 6 1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW358	Downgradien	t Yes	6.08	NO	1.805	N/A
MW361	Downgradien	t Yes	6.12	NO	1.812	N/A
MW364	Downgradien	t Yes	5.99	NO	1.790	N/A
MW367	Downgradien	t Yes	5.84	NO	1.765	N/A
MW370	Upgradient	Yes	6.17	NO	1.820	N/A
MW373	Upgradient	Yes	6.16	NO	1.818	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D1-78

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Potassium** UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.522CV(1)=0.185**K factor**=** 2.523 TL(1) = 4.139Statistics-Background Data X = 2.823LL(1)=N/A **Statistics-Transformed Background** X = 1.024 S = 0.167CV(2) = 0.163TL(2) = 1.445LL(2)=N/A

Data

K factor=** 2.523

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 3.22 1.169 4/23/2002 3.43 1.233 7/15/2002 2.98 1.092 10/8/2002 2.46 0.900 1/8/2003 2.41 0.880 4/3/2003 2.43 0.888 7/9/2003 2.44 0.892 0.908 10/6/2003 2.48 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 4.34 1.468 4/23/2002 3.04 1.112 7/16/2002 2.93 1.075 10/8/2002 2.3 0.8331/7/2003 2.45 0.896 0.993 4/2/2003 2.7 7/9/2003 0.986 2.68 10/7/2003 2.88 1.058

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	2.57	NO	0.944	N/A
MW361	Downgradient	Yes	1.9	NO	0.642	N/A
MW364	Downgradient	Yes	2	NO	0.693	N/A
MW367	Downgradient	Yes	3.09	NO	1.128	N/A
MW370	Upgradient	Yes	2.58	NO	0.948	N/A
MW373	Upgradient	Yes	2.91	NO	1.068	N/A
						_

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-79

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** Sodium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.544 S = 15.227 CV(1) = 0.295

K factor=** 2.523

TL(1)= 89.962 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.906 S = 0.272 CV(2) = 0.070

K factor**= 2.523

TL(2) = 4.592

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 3.459 31.8 4/23/2002 50 3.912 7/15/2002 44.7 3.800 10/8/2002 40 3.689 1/8/2003 44.6 3.798 4/3/2003 41.9 3.735 7/9/2003 40 3.689 10/6/2003 38.1 3.640 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 43.4 3.770 4/23/2002 79.8 4.380 7/16/2002 4.474 87.7 10/8/2002 61.6 4.121 1/7/2003 59.3 4.083 4/2/2003 62.1 4.129 7/9/2003 50.1 3.914 10/7/2003 3.904 49.6

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	42.8	NO	3.757	N/A
MW361	Downgradient	Yes	46.1	NO	3.831	N/A
MW364	Downgradient	Yes	44.7	NO	3.800	N/A
MW367	Downgradient	Yes	39	NO	3.664	N/A
MW370	Upgradient	Yes	46	NO	3.829	N/A
MW373	Upgradient	Yes	53.6	NO	3.982	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-80

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Sulfate UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 122.381 **S**= 195.095 **CV(1)**=1.594

K factor**= 2.523

TL(1)= 614.606 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.985 S = 1.323 CV(2) = 0.332

K factor=** 2.523

TL(2) = 7.322

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	17.4	2.856
4/23/2002	37.9	3.635
7/15/2002	15.7	2.754
10/8/2002	13.4	2.595
1/8/2003	14.4	2.667
4/3/2003	18.1	2.896
7/9/2003	9.6	2.262
10/6/2003	16.5	2.803
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 5.096
Date Collected	Result	
Date Collected 3/18/2002	Result 163.3	5.096
Date Collected 3/18/2002 4/23/2002	Result 163.3 809.6	5.096 6.697
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 163.3 809.6 109.4	5.096 6.697 4.695
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 163.3 809.6 109.4 110.6	5.096 6.697 4.695 4.706
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 163.3 809.6 109.4 110.6 113.7	5.096 6.697 4.695 4.706 4.734

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Quarter Data					
Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
Downgradient	Yes	66.5	N/A	4.197	NO
Downgradient	Yes	62.3	N/A	4.132	NO
Downgradient	Yes	73.3	N/A	4.295	NO
Downgradient	Yes	52	N/A	3.951	NO
Upgradient	Yes	23	N/A	3.135	NO
Upgradient	Yes	121	N/A	4.796	NO
	Gradient Downgradient Downgradient Downgradient Downgradient Upgradient	Gradient Detected? Downgradient Yes Downgradient Yes Downgradient Yes Downgradient Yes Upgradient Yes	Gradient Detected? Result Downgradient Yes 66.5 Downgradient Yes 62.3 Downgradient Yes 73.3 Downgradient Yes 52 Upgradient Yes 23	Gradient Detected? Result Result >TL(1)? Downgradient Yes 66.5 N/A Downgradient Yes 62.3 N/A Downgradient Yes 73.3 N/A Downgradient Yes 52 N/A Upgradient Yes 23 N/A	Gradient Detected? Result Result >TL(1)? LN(Result) Downgradient Yes 66.5 N/A 4.197 Downgradient Yes 62.3 N/A 4.132 Downgradient Yes 73.3 N/A 4.295 Downgradient Yes 52 N/A 3.951 Upgradient Yes 23 N/A 3.135

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Technetium-99** UNITS: pCi/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S= 13.274 **CV(1)**=1.734 **K factor**=** 2.523 **TL(1)=** 41.146 **Statistics-Background Data** X = 7.655LL(1)=N/A **Statistics-Transformed Background** X = 1.946 S = 0.939 CV(2) = 0.483TL(2) = 3.833

Data

K factor**= 2.523

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	10.8	2.380
4/23/2002	8.53	2.144
7/15/2002	5.09	1.627
10/8/2002	4.78	1.564
1/8/2003	-5.12	#Func!
4/3/2003	5.11	1.631
7/9/2003	4.25	1.447
10/6/2003	6.54	1.878
Well Number:	MW373	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.803
Date Collected	Result	,
Date Collected 3/18/2002	Result 16.5	2.803
Date Collected 3/18/2002 4/23/2002	Result 16.5 3.49	2.803 1.250
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 16.5 3.49 1.42	2.803 1.250 0.351
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 16.5 3.49 1.42 -6.06	2.803 1.250 0.351 #Func!
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 16.5 3.49 1.42 -6.06 -8.41	2.803 1.250 0.351 #Func!

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

	Current Quarter Data							
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
•	MW358	Downgradient	Yes	30.3	N/A	3.411	NO	
	MW361	Downgradient	Yes	22.8	N/A	3.127	NO	
	MW364	Downgradient	Yes	39	N/A	3.664	NO	
	MW367	Downgradient	Yes	55.7	N/A	4.020	YES	
	MW370	Upgradient	Yes	94.3	N/A	4.546	YES	
	MW373	Upgradient	Yes	28.4	N/A	3.346	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW367 MW370

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-82

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** UNITS: mg/L **Total Organic Carbon (TOC)** LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S= 12.072 **CV(1)**=1.957 X = 6.169

K factor=** 2.523

TL(1)= 36.626 LL(1)=N/A

Statistics-Transformed Background Data

X = 1.069 $S= 1.014 \quad CV(2)=0.948$

K factor**= 2.523

TL(2) = 3.626

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	1.2	0.182
4/23/2002	4.3	1.459
7/15/2002	2.6	0.956
10/8/2002	2.3	0.833
1/8/2003	3	1.099
4/3/2003	1.2	0.182
7/9/2003	2.6	0.956
10/6/2003	1.7	0.531
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 0.095
Date Collected	Result	
Date Collected 3/18/2002	Result 1.1	0.095
Date Collected 3/18/2002 4/23/2002	Result 1.1 17.5	0.095 2.862
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 1.1 17.5 49	0.095 2.862 3.892
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 1.1 17.5 49 2.9	0.095 2.862 3.892 1.065
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 1.1 17.5 49 2.9 3.9	0.095 2.862 3.892 1.065 1.361

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	Yes	2.07	N/A	0.728	NO	
MW361	Downgradient	Yes	0.692	N/A	-0.368	NO	
MW364	Downgradient	Yes	0.848	N/A	-0.165	NO	
MW367	Downgradient	Yes	0.926	N/A	-0.077	NO	
MW370	Upgradient	Yes	1.07	N/A	0.068	NO	
MW373	Upgradient	Yes	1.37	N/A	0.315	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Total Organic Halides (TOX)** UNITS: ug/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 79.819 S = 78.470 CV(1) = 0.983

K factor**= 2.523

TL(1)= 277.798 LL(1)=N/A

Statistics-Transformed Background Data

X = 3.971 S = 0.950 CV(2) = 0.239

K factor**= 2.523

TL(2) = 6.368

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	50	3.912
4/23/2002	228	5.429
7/15/2002	88	4.477
10/8/2002	58	4.060
1/8/2003	72.4	4.282
4/3/2003	26.6	3.281
7/9/2003	16.4	2.797
10/6/2003	31.1	3.437
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	
Date Collected 3/18/2002	Result 50	3.912
Date Collected 3/18/2002 4/23/2002	Result 50 276	3.912 5.620
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 50 276 177	3.912 5.620 5.176
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 50 276 177 76	3.912 5.620 5.176 4.331
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 50 276 177 76 45.9	3.912 5.620 5.176 4.331 3.826

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW358	Downgradient	No	10	N/A	2.303	N/A	
MW361	Downgradient	Yes	6.76	NO	1.911	N/A	
MW364	Downgradient	Yes	12	NO	2.485	N/A	
MW367	Downgradient	Yes	11.9	NO	2.477	N/A	
MW370	Upgradient	Yes	7.92	NO	2.069	N/A	
MW373	Upgradient	Yes	13.7	NO	2.617	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison Trichloroethene** UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 $X = 12.188 \quad S = 6.950$ CV(1)=0.570**K factor**=** 2.523 **TL(1)=** 29.721 Statistics-Background Data LL(1)=N/A **Statistics-Transformed Background** LL(2)=N/A

Data

X = 2.305 S = 0.687CV(2) = 0.298 **K** factor**= 2.523

TL(2) = 4.039

Historical Background Data from

Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 19 2.944 4/23/2002 17 2.833 7/15/2002 15 2.708 10/8/2002 18 2.890 17 1/8/2003 2.833 4/3/2003 18 2.890 7/9/2003 15 2.708

11712003	13	2.700
10/6/2003	16	2.773
Well Number:	MW373	
Date Collected	Result	LN(Result)
3/18/2002	5	1.609
4/23/2002	25	3.219
7/16/2002	3	1.099
10/8/2002	4	1.386
1/7/2003	6	1.792
4/2/2003	5	1.609
7/9/2003	6	1.792
10/7/2003	6	1.792

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	3.2	N/A	1.163	N/A
MW361	Downgradient	Yes	6.24	NO	1.831	N/A
MW364	Downgradient	Yes	7.09	NO	1.959	N/A
MW367	Downgradient	Yes	6.8	NO	1.917	N/A
MW370	Upgradient	Yes	0.85	N/A	-0.163	N/A
MW373	Upgradient	Yes	4.57	N/A	1.520	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

LL Lower Tolerance Limit, LL = X - (K * S)Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-85

C-746-U First Quarter 2019 Statistical Analysis Historical Background Comparison Vanadium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.024 S = 0.008 CV(1) = 0.324 K factor**= 2.523
 TL(1) = 0.044 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.749 S = 0.265 CV(2) = -0.071 K factor**= 2.523
 TL(2) = -3.080 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 3/17/2002 0.035 -3.352 0.033 4/23/2002 -3.4117/15/2002 0.025 -3.689 10/8/2002 0.02 -3.912 1/8/2003 0.02 -3.912 -3.912 4/3/2003 0.02 7/9/2003 0.02 -3.912 -3.912 10/6/2003 0.02 Well Number: MW373 Date Collected Result LN(Result) 3/18/2002 0.048-3.0374/23/2002 0.025 -3.6897/16/2002 0.025 -3.68910/8/2002 0.02 -3.912 0.02 -3.912 1/7/2003 0.02 -3.912 4/2/2003 7/9/2003 0.02 -3.912 10/7/2003 0.02 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	No	0.01	N/A	-4.605	N/A
MW361	Downgradient	No	0.01	N/A	-4.605	N/A
MW364	Downgradient	No	0.01	N/A	-4.605	N/A
MW367	Downgradient	Yes	0.00683	NO	-4.986	N/A
MW370	Upgradient	Yes	0.00438	NO	-5.431	N/A
MW373	Upgradient	No	0.00344	N/A	-5.672	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

D1-86

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-U First Quarter 2019 Statistical Analysis **Historical Background Comparison** Zinc UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

S = 0.037X = 0.055

CV(1) = 0.673

K factor**= 2.523

TL(1) = 0.147

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.131 S = 0.691 CV(2) = -0.221

K factor**= 2.523

TL(2) = -1.388

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW370	
Date Collected	Result	LN(Result)
3/17/2002	0.1	-2.303
4/23/2002	0.1	-2.303
7/15/2002	0.1	-2.303
10/8/2002	0.025	-3.689
1/8/2003	0.035	-3.352
4/3/2003	0.035	-3.352
7/9/2003	0.02	-3.912
10/6/2003	0.02	-3.912
Well Number:	MW373	
Well Number: Date Collected	MW373 Result	LN(Result)
		LN(Result) -2.303
Date Collected	Result	
Date Collected 3/18/2002	Result 0.1	-2.303
Date Collected 3/18/2002 4/23/2002	Result 0.1 0.1	-2.303 -2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002	Result 0.1 0.1 0.1	-2.303 -2.303 -2.303
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002	Result 0.1 0.1 0.1 0.1 0.025	-2.303 -2.303 -2.303 -3.689
Date Collected 3/18/2002 4/23/2002 7/16/2002 10/8/2002 1/7/2003	Result 0.1 0.1 0.1 0.025 0.035	-2.303 -2.303 -2.303 -3.689 -3.352

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current	Quarter Data					
	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
•	MW358	Downgradient	Yes	0.00563	NO	-5.180	N/A
	MW361	Downgradient	Yes	0.00653	NO	-5.031	N/A
	MW364	Downgradient	Yes	0.0388	NO	-3.249	N/A
	MW367	Downgradient	Yes	0.00596	NO	-5.123	N/A
	MW370	Upgradient	Yes	0.00371	NO	-5.597	N/A
	MW373	Upgradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

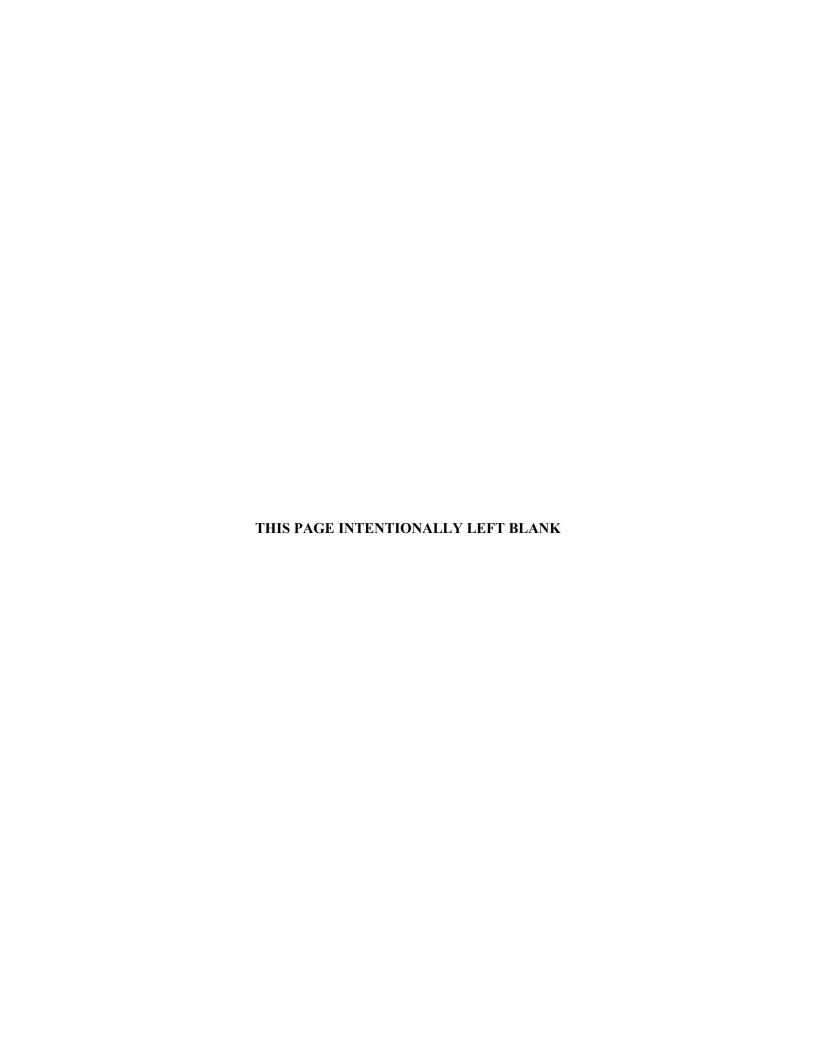
None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)


Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-87

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

Current Background Comparison

Dissolved Oxygen UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

X = 2.384

S= 1.857 CV(1)=0.779 K factor**= 2.523

TL(1)= 7.069

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.639

S = 0.688

CV(2) = 1.077

K factor**= 2.523

TL(2) = 2.375

LL(2)=N/A

Current Background Data from Upgradient

Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
1/18/2017	2.41	0.880
4/18/2017	3.43	1.233
7/20/2017	3.51	1.256
10/3/2017	1.82	0.599
1/22/2018	2.8	1.030
4/12/2018	7.85	2.061
7/18/2018	4.89	1.587
10/10/2018	0.96	-0.041
Well Number:	MW374	
Date Collected	Result	LN(Result)

1/22/2010	2.0	1.050
4/12/2018	7.85	2.061
7/18/2018	4.89	1.587
10/10/2018	0.96	-0.041
Well Number:	MW374	
Date Collected	Result	LN(Result)
1/19/2017	1.43	0.358
4/18/2017	1.52	0.419
7/20/2017	1.95	0.668
10/3/2017	1.12	0.113
1/22/2018	1.39	0.329
4/12/2018	1.67	0.513
7/18/2018	0.52	-0.654
10/10/2018	0.88	-0.128

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	3.87	NO	1.353	N/A
MW362	Downgradien	t Yes	4.34	NO	1.468	N/A
MW365	Downgradien	t Yes	5.02	NO	1.613	N/A
MW371	Upgradient	Yes	8.02	YES	2.082	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW371

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-3

Current Background Comparison

Oxidation-Reduction Potential

UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

UNITS: mV

Statistics-Background Data

X = 285.375 S = 79.171 CV(1) = 0.277

K factor**= 2.523

TL(1)= 485.125 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.616S = 0.289CV(2) = 0.051 K factor**= 2.523

TL(2) = 6.345

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW371 Date Collected Result LN(Result) 1/18/2017 410 6.016 4/18/2017 5.549 257

7/20/2017 364 5.897 10/3/2017 375 5.927 1/22/2018 339 5.826 4/12/2018 365 5.900 7/18/2018 342 5.835

328

Well Number: MW374

10/10/2018

10/10/2018

Date Collected Result LN(Result) 1/19/2017 187 5.231 4/18/2017 193 5.263 7/20/2017 188 5.236 10/3/2017 194 5.268 1/22/2018 206 5.328 4/12/2018 331 5.802 5.595 7/18/2018 269

218

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	454	NO	6.118	N/A
MW362	Downgradien	t Yes	411	NO	6.019	N/A
MW365	Downgradien	t Yes	321	NO	5.771	N/A
MW368	Downgradien	t Yes	426	NO	6.054	N/A
MW371	Upgradient	Yes	396	NO	5.981	N/A
MW374	Upgradient	Yes	254	NO	5.537	N/A
MW375	Sidegradient	Yes	349	NO	5.855	N/A

Conclusion of Statistical Analysis on Current Data

5.384

5.793

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CVCoefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-4

Current Background Comparison

UCRS Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 17.169 S = 22.432 CV(1) = 1.307

K factor**= 2.523

TL(1) = 73.765

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.427

S = 0.807

CV(2) = 0.333

K factor**= 2.523

TL(2) = 4.464

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW371	
Date Collected	Result	LN(Result)
1/18/2017	13.1	2.573
4/18/2017	13.9	2.632
7/20/2017	14	2.639
10/3/2017	10	2.303
1/22/2018	11	2.398
4/12/2018	91.6	4.517
7/18/2018	47.7	3.865
10/10/2018	21.9	3.086
Well Number:	MW374	
Date Collected	Result	LN(Result)
1/19/2017	4.83	1.575

1/18/2017	13.1	2.573
4/18/2017	13.9	2.632
7/20/2017	14	2.639
10/3/2017	10	2.303
1/22/2018	11	2.398
4/12/2018	91.6	4.517
7/18/2018	47.7	3.865
10/10/2018	21.9	3.086
Well Number:	MW374	
Date Collected	Result	LN(Result)
Date Collected 1/19/2017	Result 4.83	LN(Result) 1.575
		,
1/19/2017	4.83	1.575
1/19/2017 4/18/2017	4.83 5.71	1.575 1.742
1/19/2017 4/18/2017 7/20/2017	4.83 5.71 6.31	1.575 1.742 1.842
1/19/2017 4/18/2017 7/20/2017 10/3/2017	4.83 5.71 6.31 6.78	1.575 1.742 1.842 1.914
1/19/2017 4/18/2017 7/20/2017 10/3/2017 1/22/2018	4.83 5.71 6.31 6.78 6.34	1.575 1.742 1.842 1.914 1.847

landfill.

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW359	Downgradien	t Yes	51.1	N/A	3.934	NO
MW362	Downgradien	t Yes	20.2	N/A	3.006	NO
MW365	Downgradien	t Yes	66.8	N/A	4.202	NO
MW368	Downgradien	t Yes	105	N/A	4.654	YES
MW375	Sidegradient	Yes	24.1	N/A	3.182	NO

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW368

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-5

Current Background Comparison

Oxidation-Reduction Potential

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

UNITS: mV

Statistics-Background Data

X = 332.188 S = 48.796 CV(1) = 0.147

K factor**= 2.523

TL(1)= 455.301

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.795S = 0.152CV(2) = 0.026 K factor**= 2.523

TL(2) = 6.177

LL(2)=N/A

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW369 Date Collected Result LN(Result) 1/18/2017 381 5.943 4/18/2017 271 5.602 7/20/2017 5.930 376 399 5.989 10/3/2017 1/22/2018 346 5.846 4/11/2018 397 5.984 7/18/2018 338 5.823 10/9/2018 5.832 341 Well Number: MW372 Date Collected Result LN(Result)

1/19/2017 263 5.572 4/18/2017 256 5.545 7/20/2017 300 5.704 10/3/2017 358 5.881 1/22/2018 275 5.617 4/12/2018 348 5.852 5.916 7/18/2018 371 10/10/2018 295 5.687

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW357	Downgradien	t Yes	434	NO	6.073	N/A
MW360	Downgradien	t Yes	403	NO	5.999	N/A
MW363	Downgradien	t Yes	273	NO	5.609	N/A
MW366	Downgradien	t Yes	437	NO	6.080	N/A
MW369	Upgradient	Yes	432	NO	6.068	N/A
MW372	Upgradient	Yes	393	NO	5.974	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-6

Current Background Comparison

LRGA Beta activity UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 44.943 S = 30.403 CV(1) = 0.676

K factor**= 2.523

TL(1)= 121.650 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 3.528

S= 0.840

CV(2) = 0.238

K factor**= 2.523

TL(2) = 5.649

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
1/18/2017	44.8	3.802
4/18/2017	65.7	4.185
7/20/2017	84.6	4.438
10/3/2017	69	4.234
1/22/2018	71.9	4.275
4/11/2018	50	3.912
7/18/2018	102	4.625
10/9/2018	81.7	4.403

10/9/2018	81.7	4.403
Well Number:	MW373	
Date Collected	Result	LN(Result)
1/19/2017	15.6	2.747
4/18/2017	14.6	2.681
7/20/2017	16.7	2.815
10/3/2017	20.6	3.025
1/22/2018	23.5	3.157
4/12/2018	4.99	1.607
7/18/2018	30.6	3.421
10/10/2018	22.8	3.127

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

V	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW370	Ungradient	Yes	75.8	NO	4.328	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-7

Current Background Comparison

Oxidation-Reduction Potential UNITS: mV

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 346.000 **S**= 49.659 **CV(1)**=0.144

K factor**= 2.523

TL(1)= 471.289 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 5.837 S = 0.146 CV(2) = 0.025

K factor**= 2.523

TL(2) = 6.206

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW370 Date Collected Result LN(Result) 1/18/2017 412 6.021 4/18/2017 278 5.628 7/20/2017 343 5.838 5.971 10/3/2017 392 1/22/2018 334 5.811 4/11/2018 368 5.908

7/18/2018 369 5.911 10/9/2018 346 5.846

Well Number: MW373 Date Collected Result LN(Result) 1/19/2017 279 5.631 4/18/2017 260 5.561 7/20/2017 309 5.733 10/3/2017 5.849 347 5.974 1/22/2018 393 4/12/2018 350 5.858

318

438

7/18/2018

10/10/2018

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW358	Downgradient	Yes	242	NO	5.489	N/A
MW361	Downgradient	Yes	407	NO	6.009	N/A
MW364	Downgradient	Yes	359	NO	5.883	N/A
MW367	Downgradient	Yes	422	NO	6.045	N/A
MW370	Upgradient	Yes	440	NO	6.087	N/A
MW373	Upgradient	Yes	336	NO	5.817	N/A

Conclusion of Statistical Analysis on Current Data

5.762

6.082

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

 \overline{CV} Coefficient-of-Variation, $\overline{CV} = S/X$ If \overline{CV} is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

D2-8

Current Background Comparison

Technetium-99 UNITS: pCi/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 59.626 S = 43.914 CV(1) = 0.736

K factor**= 2.523

TL(1)= 170.422

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.915 S = 0.808 CV(2) = 0.206

K factor**= 2.523

TL(2) = 4.787

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW370	
Date Collected	Result	LN(Result)
1/18/2017	82.8	4.416
4/18/2017	99.1	4.596
7/20/2017	120	4.787
10/3/2017	103	4.635
1/22/2018	73.9	4.303
4/11/2018	107	4.673
7/18/2018	96.2	4.566
10/9/2018	114	4.736
Well Number	MW373	

10/9/2010		,50
Well Number:	MW373	
Date Collected	Result	LN(Result)
1/19/2017	33.1	3.500
4/18/2017	26.8	3.288
7/20/2017	9.12	2.210
10/3/2017	29.6	3.388
1/22/2018	24.8	3.211
4/12/2018	30.2	3.408
7/18/2018	-15.9	#Func!
10/10/2018	20.3	3.011

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW367	Downgradien	t Yes	55.7	NO	4.020	N/A
MW370	Upgradient	Yes	94.3	NO	4.546	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

- $\overline{\text{CV}}$ Coefficient-of-Variation, $\overline{\text{CV}} = S/X$ If $\overline{\text{CV}}$ is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

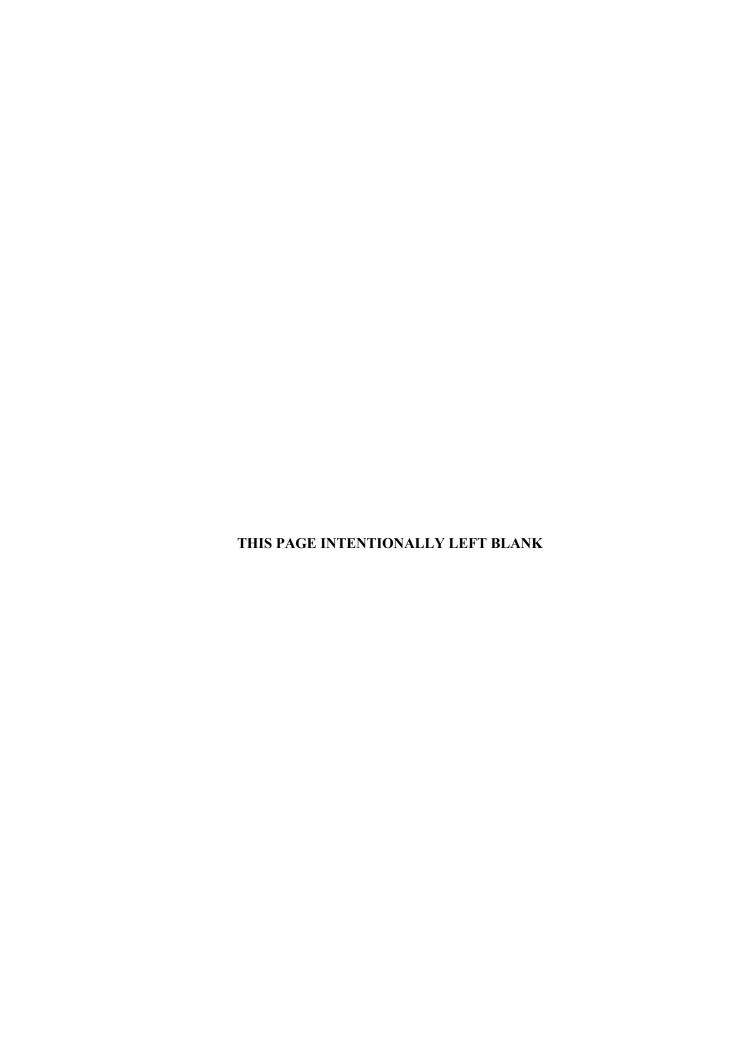
Four Rivers Nuclear Partnership, LLC

5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

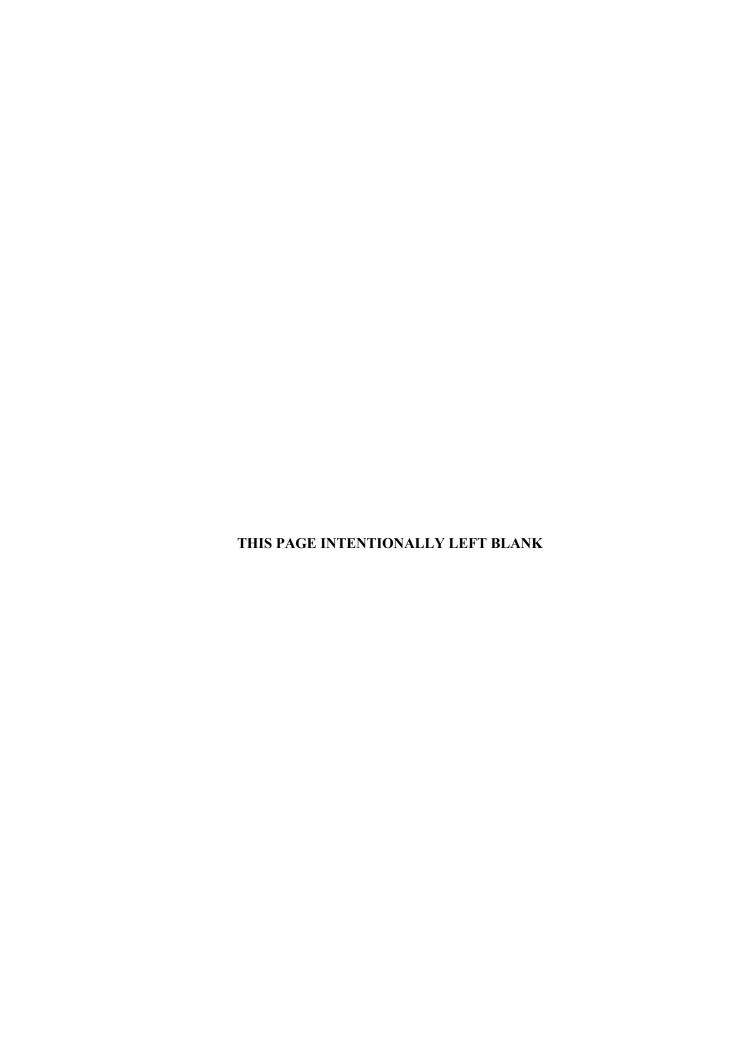
April 16, 2019

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Layne:


This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As an Environmental Scientist, with a bachelor's degree in science, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Four Rivers Nuclear Partnership, LLC.


For this project, the statistical analyses conducted on the first quarter 2019 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Jennifer R. Watson

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

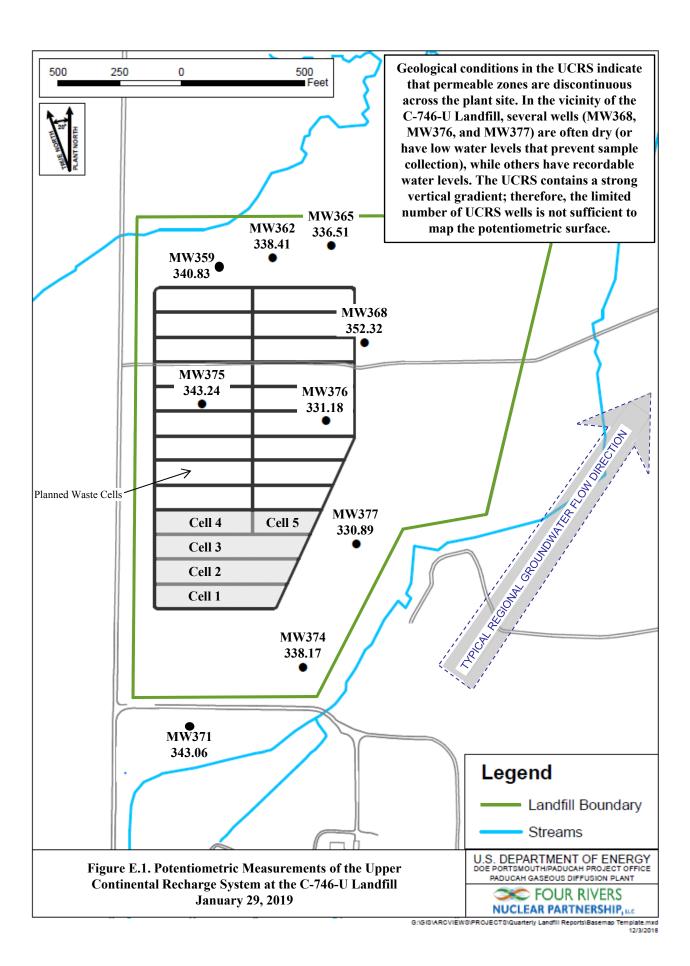
RESIDENTIAL/CONTAINED—QUARTERLY, 1st CY 2019

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045 Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION


Determination of groundwater flow rate and direction of flow in the uppermost aquifer whenever the monitoring wells (MWs) are sampled is a requirement of 401 KAR 48.300, Section 11. The uppermost aquifer below the C-746-U Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the first quarter 2019 and determine groundwater flow rate and direction.

Water levels during this reporting period were measured on January 29, 2019. As shown on Figure E.1, all Upper Continental Recharge System (UCRS) wells had sufficient water to permit water level measurement during this reporting period. UCRS wells MW376 and MW377 had insufficient water to permit sampling for laboratory analysis.

The UCRS has a strong vertical hydraulic gradient; therefore, the available UCRS wells screened over different elevations are not sufficient for mapping the potentiometric surface. As shown in Table E.1, the RGA data were converted to elevations to plot the potentiometric surfaces within the Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA). (At the request of the Commonwealth of Kentucky, the RGA is differentiated into two zones, the URGA and LRGA.) Based on the potentiometric maps (Figures E.2 and E.3), the hydraulic gradients for the URGA and LRGA at the C-746-U Landfill, as measured along the defined groundwater flow directions, were 1.83×10^{-4} ft/ft and 1.62×10^{-4} ft/ft, respectively. Water level measurements in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), along with the C-746-S&T Landfill wells, were used to contour the general RGA potentiometric surface (Figure E.4). The hydraulic gradient for the RGA, as a whole, in the vicinity of the C-746-U Landfill was 1.77×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. SW07300045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA (both URGA and LRGA) effective porosity is assumed to be 25%. Flow velocities were calculated for the URGA and LRGA using the low and high values for hydraulic conductivity, as shown in the Table E.3.

Groundwater flow beneath the C-746-U Landfill typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric maps for January 2019, the groundwater flow direction in the immediate area of the landfill was northeastward to eastward.

E-4

Table E.1. C-746-U Landfill First Quarter 2019 (January) Water Levels

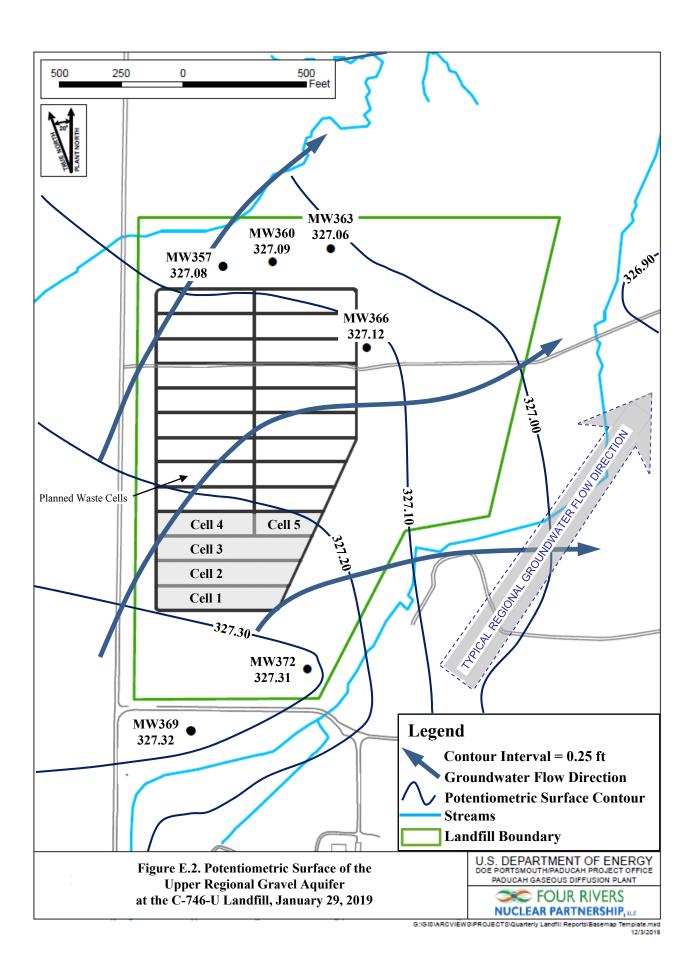
			C-74	6-U Landfill (Ja	anuary 20	19) Water L	evels			
							Rav	w Data	*Corro	ected Data
Date	Time	Well	Aquifer	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
2		****		(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
1/29/2019	8:18	MW357	URGA	368.99	30.24	0.02	41.89	327.10	41.91	327.08
1/29/2019	8:20	MW358	LRGA	369.13	30.24	0.02	42.02	327.11	42.04	327.09
1/29/2019	8:22	MW359	UCRS	369.11	30.24	0.02	28.26	340.85	28.28	340.83
1/29/2019	8:13	MW360	URGA	362.30	30.24	0.02	35.19	327.11	35.21	327.09
1/29/2019	8:15	MW361	LRGA	361.54	30.24	0.02	34.44	327.10	34.46	327.08
1/29/2019	8:16	MW362	UCRS	362.04	30.24	0.02	23.61	338.43	23.63	338.41
1/29/2019	14:37	MW363	URGA	368.84	30.15	0.12	41.66	327.18	41.78	327.06
1/29/2019	14:39	MW364	LRGA	368.45	30.15	0.12	41.35	327.10	41.47	326.98
1/29/2019	8:30	MW365	UCRS	368.37	30.24	0.02	31.84	336.53	31.86	336.51
1/29/2019	8:33	MW366	URGA	369.27	30.24	0.02	42.13	327.14	42.15	327.12
1/29/2019	8:34	MW367	LRGA	369.66	30.24	0.02	42.56	327.10	42.58	327.08
1/29/2019	8:36	MW368	UCRS	369.27	30.24	0.02	16.93	352.34	16.95	352.32
1/29/2019	9:00	MW369	URGA	364.48	30.26	0.00	37.16	327.32	37.16	327.32
1/29/2019	9:02	MW370	LRGA	365.35	30.26	0.00	38.05	327.30	38.05	327.30
1/29/2019	9:03	MW371	UCRS	364.88	30.26	0.00	21.82	343.06	21.82	343.06
1/29/2019	8:54	MW372	URGA	359.66	30.26	0.00	32.35	327.31	32.35	327.31
1/29/2019	8:55	MW373	LRGA	359.95	30.26	0.00	32.68	327.27	32.68	327.27
1/29/2019	8:57	MW374	UCRS	359.71	30.26	0.00	21.54	338.17	21.54	338.17
1/29/2019	8:45	MW375	UCRS	370.53	30.24	0.02	27.27	343.26	27.29	343.24
1/29/2019	8:48	MW376	UCRS	370.61	30.24	0.02	39.41	331.20	39.43	331.18
1/29/2019	8:51	MW377	UCRS	365.92	30.24	0.02	35.01	330.91	35.03	330.89
Initial Baror	netric Pr	essure	30.26							

Elev = elevation

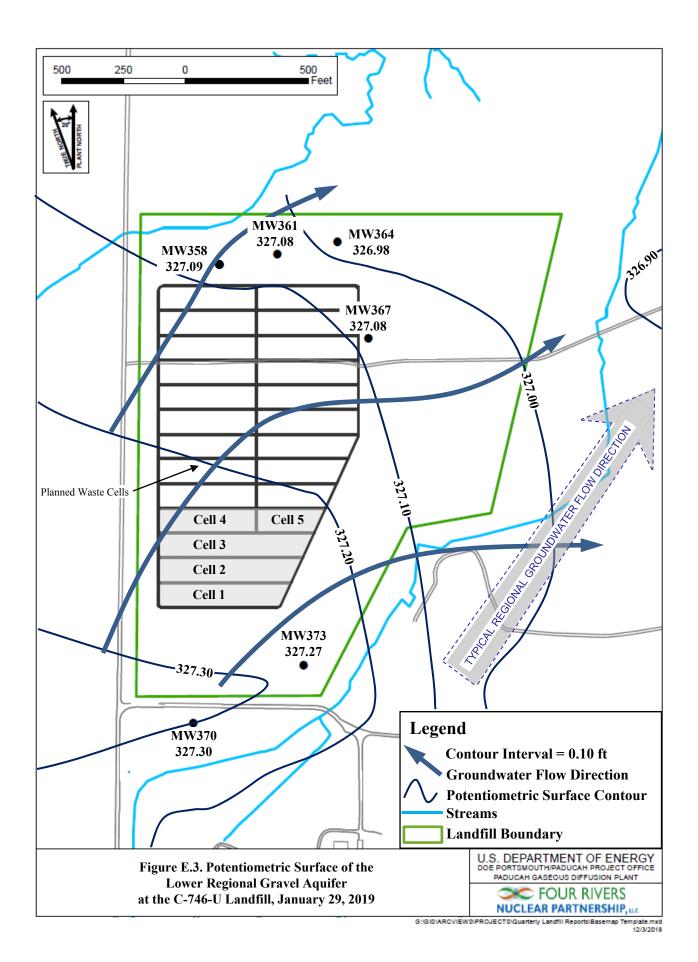
amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum


URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer


UCRS = Upper Continental Recharge System

ND = No Data acquired

*Assumes a barometric efficiency of 1.0

E-6

E-7

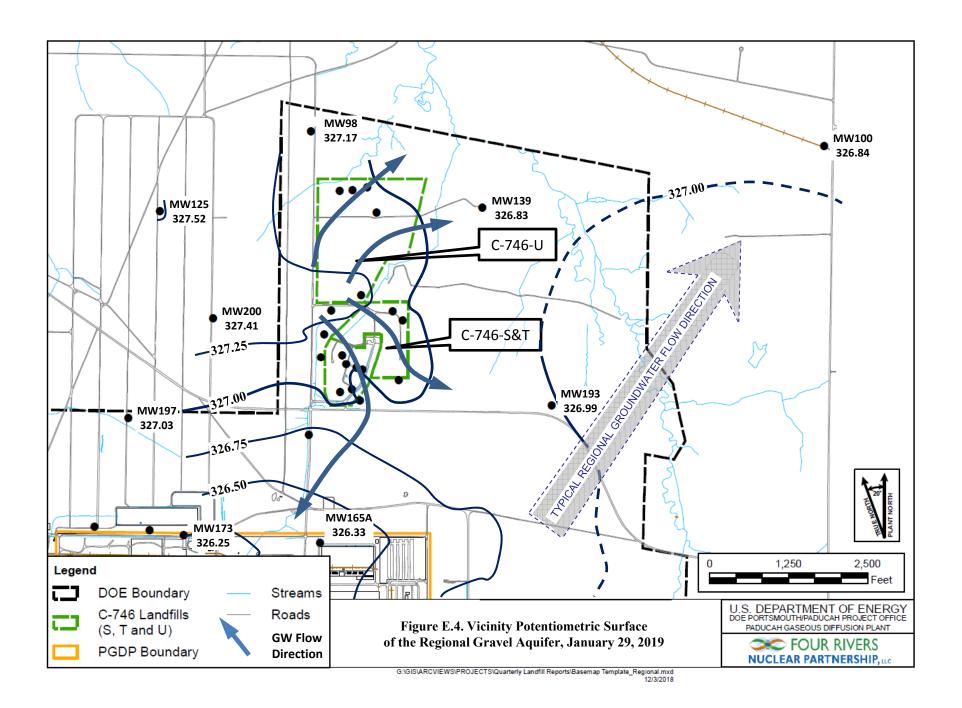



Table E.2. C-746-U Landfill Hydraulic Gradients


	ft/ft
Beneath Landfill—Upper RGA	1.83×10^{-4}
Beneath Landfill—Lower RGA	1.62×10^{-4}
Vicinity	1.77 × 10 ⁻⁴

Table E.3. C-746-U Landfill Groundwater Flow Rate

Hydraulic Co	nductivity (K)	Specific	c Discharge (q)	Average Linear Velocity (v)					
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s				
Upper RGA									
725	0.256	0.133	4.68×10^{-5}	0.531	1.87×10^{-4}				
425	0.150	0.0778	2.74×10^{-5}	0.311	1.10×10^{-4}				
Lower RGA									
725	0.256	0.117	4.14×10^{-5}	0.469	1.66×10^{-4}				
425	0.150	0.0687	2.42×10^{-5}	0.275	9.70×10^{-5}				

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters submitted are listed on page F-4. The notification for parameters that do not have MCLs, but had statistically significant increased concentrations relative to historical background concentrations, is provided below.

Statistical Analysis of Parameters Notification

The statistical analyses conducted on the first quarter 2019 groundwater data collected from the C-746-U Landfill monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

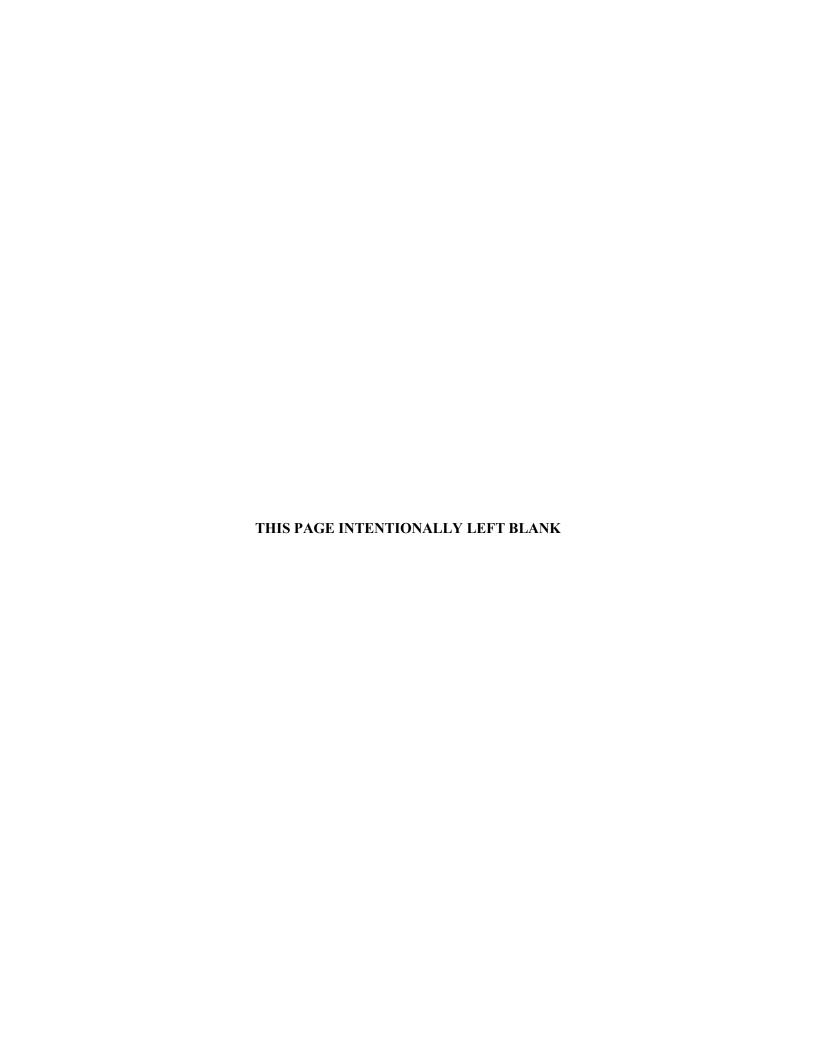
The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	None	
Upper Regional Gravel Aquifer	None	
Lower Regional Gravel Aquifer	Technetium-99	MW367, MW370

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

2/26/2019

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-U LANDFILL


SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4795	MW361	Trichloroethene	8260B	6.24	ug/L	5
8004-4797	MW364	Trichloroethene	8260B	7.09	ug/L	5
8004-0982	MW366	Trichloroethene	8260B	5.9	ug/L	5
8004-4793	MW367	Trichloroethene	8260B	6.8	ug/L	5
8004-4818	MW370	Beta activity	9310	75.8	pCi/L	50
8004-4808	MW372	Trichloroethene	8260B	5.16	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill

Groundwater Flow System	UCRS					URGA					LRGA										
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
ACETONE																					
Quarter 3, 2002										*	*	*									
Quarter 4, 2002										*	*	*									
Quarter 1, 2003											*	*									
Quarter 2, 2003											*	*									
Quarter 3, 2003	*						*			*	*	*			*			*			
Quarter 4, 2003						*	*				*			*							
Quarter 3, 2004						*										*					
Quarter 3, 2005						*															
Quarter 4, 2005						*															
ALPHA ACTIVITY																					
Quarter 1, 2004																					
Quarter 2, 2004						•															
Quarter 3, 2009						•															
ALUMINUM																					
Quarter 3, 2003	_										*										
BETA ACTIVITY																					
Quarter 1, 2004																					_
Quarter 2, 2004	1		<u> </u>						<u> </u>						-			<u> </u>	<u> </u>	igspace	
Quarter 3, 2004	1—		<u> </u>						<u> </u>						-	<u> </u>		<u> </u>	<u> </u>	\vdash	\vdash
Quarter 4, 2004	1		<u> </u>						<u> </u>					<u> </u>				<u> </u>	<u> </u>	igspace	\vdash
Quarter 4, 2005	_																			igspace	_
Quarter 1, 2006	1		<u> </u>						<u> </u>					<u> </u>				<u> </u>	<u> </u>	igspace	_
Quarter 2, 2006	1																				_
Quarter 3, 2006	1		<u> </u>						<u> </u>						-			<u> </u>	<u> </u>	igspace	
Quarter 4, 2006	_									_										igspace	_
Quarter 1, 2007															▝						
Quarter 2, 2007	_																			igspace	
Quarter 3, 2007	_									▝										igspace	_
Quarter 4, 2007	_									▝										igspace	
Quarter 1, 2008	_													_		<u> </u>				igspace	
Quarter 2, 2008	_									_					_				_		
Quarter 3, 2008	_									▝											
Quarter 4, 2008	_									▝										igspace	
Quarter 1, 2009	_									•						<u> </u>	_			igspace	
Quarter 2, 2009	_									_					-						
Quarter 3, 2009	_									▝											
Quarter 4, 2009	_																				
Quarter 1, 2010	_									_						_					
Quarter 2, 2010	-									•										-	
Quarter 3, 2010	-														_					-	
Quarter 4, 2010	-									_						_				-	
Quarter 2, 2011	_														_						
Quarter 4, 2011	-									_										-	
Quarter 1, 2012	_									▝								00000			
Quarter 2, 2012	-														_			Marille.		-	
Quarter 3, 2012	Ͱ	<u> </u>	•	-	-	-			!	<u> </u>	<u> </u>	<u> </u>									
Quarter 4, 2012	Ͱ	<u> </u>	-	-	-		-	!	<u> </u>	<u> </u>	<u> </u>	\vdash									
Quarter 1, 2013	Ͱ	<u> </u>	-	-	-	-			!	<u> </u>	<u> </u>	<u> </u>		-							
Quarter 3, 2013	_																				
Quarter 4, 2013	_																				
Quarter 1, 2014	Ͱ	<u> </u>	-	-	-	-			!	<u> </u>	<u> </u>	<u> </u>	\vdash	├							
Quarter 4, 2014	Ͱ	<u> </u>	-	-	-	-		=	!	<u> </u>	<u> </u>	<u> </u>		├							
Quarter 1, 2015	Ͱ	<u> </u>	-	-	-	-			!	<u> </u>	<u> </u>	<u> </u>		├							
Quarter 2, 2015	1		<u> </u>						<u> </u>						-			<u> </u>	-	igspace	<u> </u>
Quarter 4, 2015	Ͱ	<u> </u>	-	-	-	-			!	<u> </u>	<u> </u>		-	├							
Quarter 3, 2016	Ͱ	<u> </u>	-	-	-	-	-	<u> </u>	!	<u> </u>	<u> </u>	<u> </u>		├							
Quarter 4, 2016	Ͱ	<u> </u>	-	-	-	-		<u> </u>	!	<u> </u>	<u> </u>	<u> </u>	_	├							
Quarter 2, 2017	Ͱ	<u> </u>	-	-	-	-		<u> </u>	!	<u> </u>	<u> </u>	<u> </u>	-	├							
Quarter 3, 2017	1—		<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>		-	-	-		-		<u> </u>	<u> </u>	<u> </u>	-	—
Quarter 4, 2017	1—		<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>		-	-	-				<u> </u>	<u> </u>	! _	-	—
Quarter 1, 2018	1		<u> </u>						<u> </u>		-	-	-	-	<u> </u>	<u> </u>		<u> </u>			├
Quarter 2, 2018	1—		<u> </u>						<u> </u>	-	-	-	-		<u> </u>	!		<u> </u>	<u> </u>	⊢	ऻ—
Quarter 3, 2018	1										<u> </u>	<u> </u>	<u> </u>		L_					•	<u> </u>
Quarter 4, 2018	1		<u> </u>						<u> </u>					<u> </u>				<u> </u>	<u> </u>	•	<u> </u>
Quarter 1, 2019	_																			_	
BROMIDE																					
Quarter 2, 2004	<u> </u>		Ц_					Щ.	<u> </u>				*	Ц_	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>

Chart of MCL and Historical UTL Exceedances for the C-746-U Contained Landfill (Continued)

Transleme D S S S D D U U D D D U U D D	Groundwater Flow System	I			UCR	S							URG	Ā					LRG	A		
Description	Gradient		S		S							D						D	D	D		U
Quarter 2, 2005	Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 2, 2006																						
Damer 2, 2006 Damer 3, 2006 Damer 4, 2007 Damer 5, 2008 Damer 5, 2008 Damer 5, 2009 Damer 6, 2007 Damer 6, 200		 									*											3E
Descript 2, 2008		1														*						*
Jounter 1, 2009		t																				
Damer 2010	Quarter 3, 2009	1																				
Danter 2, 2010 Danter 3, 2010 Danter 1, 2011 Danter 3, 2011 Danter 3, 2011 Danter 3, 2011 Danter 4, 2011 Danter 4, 2011 Danter 4, 2011 Danter 4, 2015 Danter 4, 2016 Danter 4, 2015 Danter 4, 2016 Danter 4, 2015 Danter 4, 2016 Danter 4, 2016 Danter 4, 2017 Danter 4, 2018 Danter 4, 2018 Danter 4, 2018 Danter 4, 2019 Dant	Quarter 4, 2009																					
Dameter 3, 2010 Dameter 4, 2011 Dameter 4, 2011 Dameter 4, 2015 Dameter 4, 2016 Dameter 4, 2016 Dameter 4, 2016 Dameter 4, 2016 Dameter 4, 2005 Dameter 4, 2005 Dameter 4, 2005 Dameter 4, 2006 Dameter 4, 2006 Dameter 4, 2000 Dameter 4, 200	Quarter 1, 2010																					
Quarter 1, 2011	Quarter 2, 2010	<u> </u>																				
Quarter 2, 2011		1																				
Quarter 1, 2011		1																				
Damber 2012		1														т.						*
\$\particle{\pa	Quarter 4, 2011	1														*						
\$\particle{\pa	Quarter 1, 2012															*						*
Dauter 2,012 Dauter 2,013 Dauter 2,013 Dauter 2,013 Dauter 2,013 Dauter 2,013 Dauter 2,013 Dauter 2,014 Dauter 2,014 Dauter 2,014 Dauter 2,014 Dauter 2,014 Dauter 2,014 Dauter 2,015 Dauter 2,015 Dauter 2,015 Dauter 2,015 Dauter 2,016 Dauter 2,016 Dauter 2,017 Dauter 2,017 Dauter 2,017 Dauter 2,017 Dauter 2,017 Dauter 2,018 Dauter 2,019 Dauter 2,010 Dauter 2,000 Daut	Quarter 2, 2012																					
Daurter 1, 2013	Quarter 3, 2012																					*
Duarter 2, 2013		-																				***
Daurter 1, 2013		1																				*
Quarter 4, 2013		+									-			_					_	_		*
Daurter 1, 2014		1																				т
Quarter 4, 2014 Quarter 3, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Region Quarter 3, 2018 Region Quarter 3, 2003 Region Quarter 3, 2005 Region Quarter 4, 2005 Region Quarter 3, 2006 Region Region Quarter 4, 2001 Region R	Quarter 2, 2014	1																				*
Quarter 2, 2015	Quarter 3, 2014															*						*
Quarter 1, 2016	Quarter 4, 2014																					
Quarter 1, 2016	Quarter 2, 2015																					
Quarter 1, 2016		-																				
Quarter 2, 2016		1																				
Quarter 1, 2018		1																				
Quarter 1, 2018		*														Τ						
Quarter 3, 2018		_																				
Quarter 3, 2003 Quarter 2, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 3, 2000 Quarter 4, 2010 Quarter 4, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2001 Quarter 1, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 3, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2014 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2006 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2006 Quarter 2, 2016 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2006 Quarter 5, 2006 Quarter 6, 2006 Quarter 6, 2007 Quarter 6, 200	Quarter 3, 2018																					
* *	CARBON DISULFIDE																					
Quarter 3, 2005	Quarter 3, 2003										*											
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2002 Quarter 3, 2002 Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 5, 2000 Quarter 6, 2000 Quarter 7, 2000 Quarter 9, 2000 Quarter 1, 2000		-						*														
Squarter 1, 2006		 																				
Quarter 2, 2006		1																				
Quarter 3, 2010	-	+																				
Quarter 4, 2010		1	*									*										
CHEMICAL OXYGEN DEMAND	Quarter 4, 2010														*							
Quarter 3, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2006 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2016 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2003 Quarter 4, 2004	Quarter 1, 2011															*						
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2017 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003 ** ** ** ** ** ** ** ** **		AND																				
Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2017 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2003 Quarter 4, 2016 Quarter 3, 2003 Quarter 4, 2016 Quarter 3, 2003 Quarter 4, 2016 Quarter 3, 2003 Quarter 4, 2004 Quarter 3, 2003 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2003 Quarter 4, 2004 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2003 Quarter 4, 2004 Quarter 4, 2004 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004													*	*	*	*						
Quarter 2, 2003 Quarter 3, 2003		-																				
Quarter 3, 2003	` '	+											<u>ж</u>									
Quarter 4, 2003 Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2016 Quarter 1, 2017 CHLORIDE Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2014 Quarter 3, 2003 X X X X X X X X X X X X X X X X X X	-	*											~				*					
Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2017 CHLORIDE Quarter 1, 2006 Quarter 2, 2014 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2004 Quarter 2, 2003 Quarter 3, 2003 X X X X X X X X X X X X X X X X X X	Quarter 4, 2003	1					*															
Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2016 Quarter 1, 2017 CHLORIDE Quarter 2, 2014 COBALT Quarter 3, 2003 Quarter 1, 2004 Quarter 1, 2006 Quarter 1, 2004 Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003 X X X X X X X X X X X X X X X X X X	Quarter 3, 2004	1																				
Quarter 1, 2006 Quarter 4, 2016 Quarter 1, 2017 Quarter 1, 2007 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2003 Quarter 2, 2016 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2003 Quarter 1, 2004 Q	Quarter 3, 2005										*					*	*					
Quarter 4, 2016 Quarter 1, 2017 CHLORIDE Quarter 2, 2014 Quarter 3, 2003 Quarter 1, 2004 Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 3, 2004 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2002 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2004 Quarter	Quarter 4, 2005						*												*			
Quarter 1, 2017		1												<u> </u>			<u> </u>		<u></u>	*		
COBALT COBBLET		1	<u> </u>		<u> </u>						-	*	<u> </u>					<u> </u>	*			
Quarter 1, 2006 Quarter 2, 2014 COBALT Quarter 3, 2003												*										
Quarter 2, 2014																					*	
COBALT	Quarter 2, 2014	t														*						
Quarter 1, 2004 * Quarter 2, 2016 * CONDUCTIVITY * Quarter 4, 2002 * Quarter 1, 2003 * Quarter 2, 2003 * Quarter 4, 2003 * Quarter 4, 2004 *	COBALT																					
Quarter 2, 2016 CONDUCTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2004 ** Quarter 4, 2004 ** Quarter 4, 2004	Quarter 3, 2003	*						*			*	*		*		*	*	*	*		*	
CONDUCTIVITY	Quarter 1, 2004	1	<u> </u>		<u> </u>							<u> </u>	<u> </u>					<u> </u>				
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 1, 2004 * * *															*							
Quarter 1, 2003 * Quarter 2, 2003 * Quarter 4, 2003 * Quarter 1, 2004 *											*											
Quarter 2, 2003 * * Quarter 4, 2003 * Quarter 1, 2004 *		1	-		-							-	-	-				-	-	-		
Quarter 4, 2003	` '	+				 		 				*										
Quarter 1, 2004 *		t										<u> </u>										
	Quarter 1, 2004	1																				
	Quarter 2, 2004																					

Groundwater Flow System				UCR	S							URG	GA					LRG	Ā		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
CONDUCTIVITY																					
Quarter 3, 2004										*											
Quarter 1, 2005															*						
Quarter 2, 2005															*						
Quarter 3, 2005						*													*		
Quarter 4, 2005															*			*			
Quarter 1, 2006															*						
Quarter 2, 2006															*						
Quarter 3, 2006															*						
Quarter 1, 2007															*						
Quarter 2, 2007															*						
Quarter 3, 2007															*						
Quarter 4, 2007															*						
Quarter 1, 2008															*						
Quarter 2, 2008															*						
Quarter 3, 2008															*						
Quarter 4, 2008															*						
Quarter 1, 2009															*						
Quarter 2, 2009															*						
Quarter 3, 2009								L	<u> </u>		<u> </u>	<u> </u>	<u> </u>		*		<u> </u>	<u> </u>	<u> </u>		L
Quarter 4, 2009															*						
Quarter 1, 2010															*		<u> </u>				
Quarter 2, 2010															*						
Quarter 3, 2010															*						
Quarter 4, 2010															*						
Quarter 1, 2011															*						
Quarter 2, 2011															*						
Quarter 3, 2011															*						
Quarter 4, 2011															*						
Quarter 1, 2012														*	*						
Quarter 2, 2012															*						
Quarter 3, 2012															*						
Quarter 4, 2012															*						
Quarter 1, 2013															*						
Quarter 2, 2013															*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 1, 2014															*						
Quarter 2, 2014															*						
Quarter 3, 2014															*						
Quarter 4, 2014															*						
Quarter 1, 2015															*						
Quarter 2, 2015															*						
Quarter 3, 2015															*						
Quarter 4, 2015															*						
Quarter 1, 2016															*						
Quarter 2, 2016															*						
Quarter 3, 2016															*						
DISSOLVED OXYGEN																					
Quarter 1, 2003					*	*				*											
Quarter 3, 2003					*					*											
Quarter 4, 2003					*																
Quarter 1, 2004					*																
Ouarter 2, 2004								*								*					
Quarter 1, 2005	1				*			<u> </u>								<u> </u>					
Quarter 2, 2005	1				-			*													
Quarter 1, 2006	1				*						1	1	1				1	1			
Quarter 1, 2006 Quarter 2, 2006	1	 	 	 	*	 	 	*	\vdash	—	 	 	 	 		—	 	 	\vdash		
Quarter 3, 2006	1				*			*	1		 	 	 				 	 	1		-
Quarter 4, 2006	1				*			-	*								-				
Quarter 4, 2006 Quarter 2, 2007	1				*			*	Ψ.		 	 	 			-	 	 			
	-	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	*	<u> 14</u>	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>		-	-	<u> </u>	-		<u> </u>
Quarter 3, 2007 Quarter 1, 2008	 				*			不	*		<u> </u>	<u> </u>	<u> </u>				_	-	*		
Quarter 1, 2008 Quarter 2, 2008	 				*			*	*		<u> </u>	<u> </u>	<u> </u>				_	-	*		
	 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	*	*	-	 	 	 	<u> </u>		—	 	<u> </u>	-		<u> </u>
Quarter 3, 2008	 	-	-	-	-	-		ᅏ	-	-	 	 	 	-		-	 	 	-		-
Quarter 1, 2009	—						*		*	—	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	-		<u> </u>
Quarter 2, 2009	<u> </u>				*			*	*		<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>			
Quarter 3, 2009						*		*	*								<u> </u>				
Quarter 1, 2010					*		*	L_													
Quarter 2, 2010					*	*		*	*											*	*
Quarter 3, 2010					*	*															
Quarter 4, 2010	L	L	L	L	L	L	*	L	LT	L	L	*	L	L		L	L	L	L	*	L
Quarter 1, 2011						*															
Quarter 2, 2011					*	*	*	*	*					*							
									_												

DISSONIVED ONXGEN	Groundwater Flow System				UCR	S							URG	Ā					LRG	A		
DISSOLUTED OXYGEN																						U
Quarter 2, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2018 Quarter 2, 2019 Quarter 2, 2019 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 201	_	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
Quarter 1, 2012							.			3												
Ounter 2, 2012 Ounter 4, 2012 Ounter 4, 2012 Ounter 4, 2013 Ounter 2, 2014 Ounter 2, 2014 Ounter 2, 2015 Ounter 2, 2015 Ounter 2, 2016 Ounter 2, 2017 Ounter 2, 2018 Ounter 2, 2019 Ounter 2, 2019 Ounter 2, 2010 Ounter 2, 2007 Ounter 3, 2007 Ounter							*	.														\vdash
Quarter 2012		*			*	*	*	不	*													
Ounter 4, 2012 Ounter 9, 2013 Ounter 4, 2013 Ounter 4, 2013 Ounter 4, 2013 Ounter 2, 2014 Ounter 2, 2015 Ounter 2, 2015 Ounter 3, 2016 Ounter 3, 2016 Ounter 3, 2016 Ounter 2, 2017 Ounter 2, 2016 Ounter 2, 2017 Ounter 2, 2018 Ounter 2, 2019 Ounter 2, 2010 Ounter	` /	~			~	Ψ.			~	•												
Quarter 2, 2013							•••			*												
Quarter 2, 2013							*															
Quarter 2, 2014								*		*												
Owanter 2, 2014 Owanter 4, 2014 Owanter 4, 2014 Owanter 2, 2015 Owanter 2, 2015 Owanter 3, 2015 Owanter 2, 2015 Owanter 2, 2015 Owanter 3, 2015 Owanter 2, 2016 Owanter 2, 2017 Owanter 2, 2018 Owanter 2, 2019 Owanter 2, 2000 Owanter 2, 2007 Owanter 2, 2009 Owanter 2, 2001 Owanter 2, 2003 Owante	Quarter 3, 2013	*				*		*	*	*												
Owaner 3, 2014 Owaner 2, 2015 Owaner 4, 2015 Owaner 3, 2016 Owaner 2, 2016 Owaner 3, 2016 Owaner 3, 2017 Owaner 2, 2017 Owaner 2, 2017 Owaner 3, 2018 Owaner 3, 2018										*											*	
Outster 4, 2014 Outster 3, 2015 Outster 3, 2015 Outster 3, 2015 Outster 1, 2016 Outster 1, 2016 Outster 3, 2017 Outster 3, 2018 Outster 4, 2002 Outster 4, 2003 Outster 4, 2006 Outster 3, 2007 Outster 3, 2007 Outster 3, 2009 Outster 4, 2009 Outster 3, 2009 Outster 4, 2009 Outster 3, 2009 Outster 4, 2009 Outster 4, 2009 Outster 3, 2009 Outster 4, 200									*	*									*			
Ouarier 2, 2015 Ouarier 4, 2015 Ouarier 4, 2015 Ouarier 2, 2016 Ouarier 3, 2016 Ouarier 3, 2017 Ouarier 2, 2017 Ouarier 3, 2017 Ouarier 3, 2017 Ouarier 4, 2017 Ouarier 3, 2018 Ouarier 4, 2018 Ouarier 4, 2018 Ouarier 3, 2018 Ouarier 4, 2018 Ouarier 3, 2018 Ouarier 4, 2018 Ouarier 3, 2018 Ouarier 4, 2018 Ouarier 3, 2009 Ouarier 4, 2018 Ouarier 4, 2018 Ouarier 4, 2018 Ouarier 4, 2019 Ouarier 4, 2019 Ouarier 4, 2018 Ouarier 4, 2019 Ouarier 4, 2019 Ouarier 4, 2010 Ouarier 3, 2010 Ouarier 3, 2010 Ouarier 4, 2010 Ouarier 4, 2010 Ouarier 3, 2010 Ouarier 4, 2010 Ouarier 3, 2010 Ouarier 3, 2010 Ouarier 4, 2010 Ouarier 3, 2010 Ouarier 3, 2010 Ouarier 3, 2010 Ouarier 3, 2010 Ouarier 4, 2011 Ouarier 3, 2011 Ouarier 4, 20		*				*		*														L
Ounter 3, 2015						-14		-14														\vdash
Ounter 4, 2015		-	-		-			*					-	-				-				\vdash
Quarter 1, 2016		*				木		ж	*													\vdash
Ounter 2, 2016 Ounter 4, 2016 Ounter 4, 2016 Ounter 4, 2016 Ounter 4, 2016 Ounter 2, 2017 Ounter 3, 2017 Ounter 4, 2016 Ounter 4, 2017 Ounter 2, 2018 Ounter 3, 2018 Ounter 4, 2018 Ounter 3, 2018 Ounter 4, 2018 Ounter 4, 2002 Ounter 4, 2002 Ounter 4, 2003 Ounter 4, 2003 Ounter 4, 2003 Ounter 4, 2004 Ounter 1, 2007 Ounter 2, 2007 Ounter 1, 2007 Ounter 2, 2007 Ounter 2, 2007 Ounter 2, 2007 Ounter 1, 2009 Ounter 1, 2009 Ounter 1, 2009 Ounter 1, 2010 Ounter 2, 2010 Ounter 2, 2010 Ounter 2, 2010 Ounter 2, 2010 Ounter 3, 2010 Ounter 4, 2010 Ounter 4, 2008 Ounter 1, 2010 Ounter 2, 2011 Ounter 3, 2010 Ounter 4, 2011 Ounter 2, 2011 Ounter 2, 2011 Ounter 3, 2010 Ounter 2, 2011 Ounter 3, 2010 Ounter 4, 2010 Ounter 2, 2011 Ounter 3, 2010 Ounter 4, 2010 Ounter 4, 2010 Ounter 5, 2011 Ounter 6, 2012 Ounter 6, 2013 Ounter 6, 2013						*	不															\vdash
Ouarter 3, 2016 Ouarter 1, 2017 Ouarter 2, 2017 Ouarter 3, 2018 Ouarter 4, 2019 DISSOUVED SOLIDS Ouarter 1, 2003 Ouarter 3, 2003 Ouarter 4, 2008 Ouarter 4, 2008 Ouarter 4, 2008 Ouarter 4, 2008 Ouarter 4, 2009 Ouarter 2, 2009 Ouarter 2, 2009 Ouarter 3, 2001 Ouarter 3, 2001 Ouarter 3, 2009 Ouarter 3, 2001 Ouarter 3, 2009 Ouarter 3, 2001 Ouarter 3, 2009 Ouarter 3, 2001 Ouarter 4, 2001 Ouarter 3, 2001 Ouarter 3, 2001 Ouarter 4, 2001 Ouarter 2, 2001 Ouarter 3, 2001 Ouarter 3, 2001 Ouarter 4, 2001 Ouarter 4, 2001 Ouarter 3, 2001 Ouarter 4, 2001 Ouarter 4, 2001 Ouarter 5, 2001 Ouarter 6, 2001 Ouart			*				*	-	*	*											*	*
Quarter 4, 2016		***												*							-11	<u></u>
Oussier 2, 2017						-		-		*				-								
Ouarter 2, 2017								*						*								
Ouarter 3, 2017	` '	*				*	*		*													
Quarter 4, 2017 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2009 Quarter 4, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 4, 2001 Quarter 4, 2000 Quarter 4, 200		*	*						*										*			
Ouarter 2, 2018																			*			
Quarter 3, 2018	Quarter 1, 2018					*	*	*	*												*	
Quarter 4, 2018 Quarter 1, 2019 Quarter 4, 2002 Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 4, 2006 Quarter 1, 2007 Quarter 4, 2008 Quarter 2, 2007 Quarter 4, 2008 Quarter 2, 2007 Quarter 4, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2019 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 2010 Quarter 7, 2010 Quarter 9, 2010 Quarter 9, 2010 Quarter 9, 201																						
Duarter 1, 2019		*				*	*	*	*													
DISSOLVED SOLIDS																						
Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2001 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 5, 2012 Quarter 6, 2013 Quarter 7, 2012 Quarter 7, 2012 Quarter 9, 2013 Quarter 9, 2014 Quarter 9, 2015 Quarter 9, 2016 Quarter 9, 2017 Quarter 9, 2018 Quarter 9, 201						*	*	*	*													
Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 4, 2006 Quarter 1, 2007 Quarter 4, 2008 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2013 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 5, 2012 Quarter 7, 2012 Quarter 7, 2013 Quarter 7, 2014 Quarter 7, 2013 Quarter 7, 2014 Quarter 7, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 1, 2016 DOINEE Quarter 2, 2003 Quarter 3, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarte																						
Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 1, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 2, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 5, 2011 Quarter 6, 2011 Quarter 7, 2012 Quarter 7, 2012 Quarter 7, 2013 Quarter 8, 2014 Quarter 9, 2013 Quarter 9, 2013 Quarter 9, 2014 Quarter 1, 2015 Quarter 1, 2016 DOIDEE Quarter 2, 2003 Quarter 4, 2003 Quarter 9, 2003 ** ** ** ** ** ** ** ** ** ** ** ** *																						\vdash
Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 4, 2011 Quarter 5, 2011 Quarter 6, 2011 Quarter 7, 2011 Quarter 7, 2012 Quarter 9, 2012 Quarter 9, 2013 Quarter 9, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2016 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2013 Quarter 4, 2014 Quarter 2, 2015 Quarter 2, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 1, 2016 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2001 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 5, 200		_																				\vdash
Quarter 4, 2005 * Quarter 1, 2007 * Quarter 1, 2007 * Quarter 2, 2007 * Quarter 4, 2008 * Quarter 2, 2009 * Quarter 2, 2009 * Quarter 3, 2009 * Quarter 3, 2009 * Quarter 4, 2010 * Quarter 2, 2010 * Quarter 3, 2010 * Quarter 4, 2010 * Quarter 4, 2010 * Quarter 4, 2011 * Quarter 3, 2011 * Quarter 4, 2012 * Quarter 4, 2012 * Quarter 3, 2012 * Quarter 4, 2012 * Quarter 4, 2013 * Quarter 4, 2013 * Quarter 4, 2014 *<		-	-		-			4				.	-	-				-				\vdash
Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2000 Quarter 4, 2016 Quarter 4, 2015 Quarter 4, 2000 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2015 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 2016 Quarter 4, 2000 Quarter 3, 2000 ** ** ** ** ** ** ** ** **		-	-		-			*				*	-	-				-				\vdash
Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 3, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2019 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2003 Quarter 3, 2003 ** ** ** ** * ** ** ** ** ** ** ** **							*				不											\vdash
Quarter I, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2008 Quarter 1, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2019 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2013 Quarter 3, 2014 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2019 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2010 Quarter 7, 2010 Quarter 7, 2010 Quarter 7, 2010 Quarter 3, 2010 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 5, 2000 ** ** ** ** ** ** ** ** **							不									*						\vdash
Quarter 2, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 1, 2015 Quarter 4, 2010 Quarter 4, 2011 Quarter 1, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 3, 2015 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 20015 Quarter 3, 2003 Quarter 3, 2000 Quarter 4, 20																						
Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 1, 2011 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2001 Quarter 4, 2000 Quarter 4, 200																						
Quarter 1, 2009	` /																					
Quarter 2, 2009																						
Quarter 3, 2009																*						
Quarter 1, 2010 * * Quarter 2, 2010 * * Quarter 3, 2010 * * Quarter 4, 2010 * * Quarter 1, 2011 * * Quarter 2, 2011 * * Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 3, 2012 * * Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 4, 2012 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 4, 2013 * * Quarter 2, 2014 * * Quarter 2, 2014 * * Quarter 2, 2015 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 3, 2003 * * Quarter 3, 2003 * * Quarter 3, 2000 * * <td< td=""><td>Quarter 3, 2009</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Quarter 3, 2009															*						
Quarter 2, 2010	Quarter 4, 2009															*						
Quarter 3, 2010 ** ** Quarter 4, 2010 ** ** Quarter 1, 2011 ** * Quarter 2, 2011 ** * Quarter 3, 2011 ** * Quarter 4, 2011 ** * Quarter 1, 2012 ** * Quarter 2, 2012 ** * Quarter 3, 2012 ** * Quarter 4, 2012 ** * Quarter 1, 2013 ** * Quarter 2, 2013 ** * Quarter 3, 2013 ** * Quarter 4, 2013 ** * Quarter 2, 2013 ** * Quarter 2, 2014 ** * Quarter 2, 2014 ** * Quarter 2, 2015 ** * Quarter 4, 2015 ** * Quarter 4, 2015 ** * Quarter 3, 2003 ** * Quarter 3, 2003 ** * Quarter 3, 2000 ** * Quarter 3, 2000 ** *	Quarter 1, 2010															*						
Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 3, 2015 Quarter 4, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2003 Quarter 3, 2000 Quarter 3, 200																						
Quarter 1, 2011 # Quarter 2, 2011 # Quarter 3, 2011 # Quarter 4, 2011 # Quarter 1, 2012 # Quarter 2, 2012 # Quarter 3, 2012 # Quarter 4, 2012 # Quarter 4, 2013 # Quarter 3, 2013 # Quarter 4, 2013 # Quarter 4, 2013 # Quarter 4, 2014 # Quarter 4, 2014 # Quarter 4, 2015 # Quarter 4, 2015 # Quarter 1, 2016 # IODIDE # Quarter 3, 2003 # Quarter 3, 2010 #																						
Quarter 2, 2011 # Quarter 3, 2011 # Quarter 4, 2011 # Quarter 1, 2012 # Quarter 2, 2012 # Quarter 3, 2012 # Quarter 4, 2012 # Quarter 1, 2013 # Quarter 2, 2013 # Quarter 3, 2013 # Quarter 4, 2013 # Quarter 4, 2014 # Quarter 2, 2014 # Quarter 2, 2015 # Quarter 3, 2015 # Quarter 1, 2016 # IODIDE # Quarter 3, 2003 # Quarter 4, 2003 # Quarter 3, 2010 #	1																					Ш
Quarter 3, 2011 * * Quarter 4, 2011 * * Quarter 1, 2012 * * Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 2, 2015 * * Quarter 4, 2015 * * Quarter 4, 2015 * * Quarter 2, 2003 * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * *																						L
Quarter 4, 2011 *																						<u> </u>
Quarter 1, 2012 ** ** Quarter 2, 2012 ** ** Quarter 3, 2012 ** ** Quarter 4, 2012 ** ** Quarter 1, 2013 ** ** Quarter 2, 2013 ** ** Quarter 3, 2013 ** ** Quarter 4, 2013 ** ** Quarter 1, 2014 ** ** Quarter 2, 2014 ** ** Quarter 4, 2014 ** ** Quarter 2, 2015 ** ** Quarter 3, 2015 ** ** Quarter 4, 2015 ** ** Quarter 1, 2016 ** ** IODIDE ** ** Quarter 4, 2003 ** ** Quarter 4, 2003 ** ** Quarter 3, 2010 ** ** IODINE-131 ** **		_																				
Quarter 2, 2012 * * Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 2, 2015 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 1, 2016 * * IODIDE * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * *		-													*							\vdash
Quarter 3, 2012 * * Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 1, 2016 * * IODIDE * * Quarter 2, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *															*							*
Quarter 4, 2012 * * Quarter 1, 2013 * * Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 3, 2015 * * Quarter 3, 2015 * * Quarter 4, 2016 * * Quarter 2, 2003 * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *																						*
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2010 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2010 ** ** ** ** ** ** ** ** **																						<u>~</u>
Quarter 2, 2013 * * Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 2, 2015 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 1, 2016 * * IODIDE * * Quarter 2, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131																						
Quarter 3, 2013 * * Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 3, 2015 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 1, 2016 * * Quarter 2, 2003 * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *																						
Quarter 4, 2013 * * Quarter 1, 2014 * * Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 2, 2015 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 1, 2016 * * IODIDE * * Quarter 2, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *																*						
Quarter 2, 2014 * * Quarter 4, 2014 * * Quarter 2, 2015 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 1, 2016 * * IODIDE * * Quarter 2, 2003 * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *																*						
Quarter 4, 2014 * * Quarter 2, 2015 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 1, 2016 * * IODIDE * * Quarter 2, 2003 * * Quarter 4, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *	Quarter 1, 2014															*						
Quarter 2, 2015 * * Quarter 3, 2015 * * Quarter 4, 2015 * * Quarter 1, 2016 * * IODIDE * * Quarter 2, 2003 * * Quarter 3, 2003 * * Quarter 4, 2003 * * Quarter 3, 2010 * * IODINE-131 * *	Quarter 2, 2014																					
Quarter 3, 2015 * Quarter 4, 2015 * Quarter 1, 2016 * IODIDE * Quarter 2, 2003 * Quarter 3, 2003 * Quarter 4, 2003 * Quarter 3, 2010 * * * IODINE-131 *																						
Quarter 4, 2015 * Quarter 1, 2016 * IODIDE * Quarter 2, 2003 * Quarter 3, 2003 * Quarter 4, 2003 * Quarter 3, 2010 * * * IODINE-131 *																						
Quarter 1, 2016 * IODIDE * Quarter 2, 2003 * Quarter 3, 2003 * Quarter 4, 2003 * Quarter 3, 2010 * * * IODINE-131 *																						Ь
Color Colo			<u> </u>		<u> </u>								<u> </u>	<u> </u>				<u> </u>	<u> </u>			Ь—
Quarter 2, 2003 * Quarter 3, 2003 * Quarter 4, 2003 * Quarter 3, 2010 * * * * * * * * * * * * * * * * * * * * * * * * * * *																*						
Quarter 3, 2003 * Quarter 4, 2003 * Quarter 3, 2010 * * * * * * *																	33 -					
Quarter 4, 2003 * Quarter 3, 2010 * * * IODINE-131 *		ىد	<u> </u>		<u> </u>						٠,	-	<u> </u>	<u> </u>			*	<u> </u>	<u> </u>			<u> </u>
Quarter 3, 2010		*	-	-	-			.			*		-	-	-	-		-	-	—		
IODINE-131		1	 		 		*	*	34c		-	-	 	JE.				JE.	-	 		—
							不		*					*				*				
*VIIII																						
	Quarter 3, 2010																_					

Groundwater Flow System	I			UCF	RS							URG	iΑ			<u> </u>		LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
IODOMETHANE						-14															
Quarter 4, 2003	-					*															_
IRON Quarter 4, 2002						*															
Quarter 3, 2003	1					~										*					
Quarter 4, 2003										*						*					
Quarter 1, 2004	1									*						*					
Quarter 2, 2004										*											
Quarter 3, 2004										*											
Quarter 3, 2005																*					
MAGNESIUM																					
Quarter 2, 2005	1														*						*
Quarter 3, 2005	 				-	*					-	-			*		-	-			*
Quarter 2, 2006 Quarter 3, 2006	1-														*						不
Quarter 1, 2007	1-														*						
Quarter 2, 2008	1														*						
Quarter 2, 2009	1														*						
Quarter 3, 2009	1														*						
Quarter 4, 2009	L														*						
Quarter 1, 2010															*						
Quarter 2, 2010															*						
Quarter 3, 2010															*						$ldsymbol{ldsymbol{eta}}$
Quarter 1, 2011	<u> </u>														*						<u> </u>
Quarter 2, 2011	1	ļ			-						<u> </u>	<u> </u>	ļ		*	!	<u> </u>	<u> </u>			igwdapsilon
Quarter 3, 2011	1														*						لـــــا
Quarter 4, 2011	1														*						
Quarter 1, 2012 Quarter 2, 2012	1														*						\vdash
Quarter 3, 2012	1														*						\vdash
Quarter 4, 2012	1														*						
Quarter 1, 2013	1														*						
Quarter 2, 2013	1														*						
Quarter 3, 2013															*						
Quarter 4, 2013															*						
Quarter 2, 2014															*						
Quarter 4, 2014															*						
Quarter 2, 2015	1														*						Щ.
Quarter 3, 2015	1														*						\vdash
Quarter 4, 2015	1														*						
Quarter 1, 2016 Quarter 2, 2016	1														*						\vdash
Quarter 3, 2016	*														~						\vdash
Quarter 4, 2016	*																				
Quarter 2, 2017	*																				
Quarter 3, 2017	*																				
Quarter 1, 2018	*																				
Quarter 3, 2018	*																				
MANGANESE																					
Quarter 3, 2002										*		*									
Quarter 4, 2002	1	*				*	*			*		*		*							\vdash
Quarter 2, 2003	1									*		*	JL.				*	*	*		\vdash
Quarter 3, 2003 Quarter 4, 2003	1									*	*	*	*			*	*	*	不		\vdash
Quarter 1, 2004	1-									*	*	*	Τ			*	*	*			
Quarter 2, 2004	1						*			*	*	*				***		*			
Quarter 3, 2004	1						*			*	*	*				*					
Quarter 4, 2004	1									*		*				*					
Quarter 1, 2005										*		*									
Quarter 2, 2005										*		*									
Quarter 3, 2005										*		*				*					
Quarter 4, 2005	1		ļ	ļ					ļ	*	ļ	ļ		ļ	ļ	*	ļ	ļ	ļ		
Quarter 1, 2006	1—									*	<u> </u>		<u> </u>		<u> </u>	!	<u> </u>	<u> </u>			<u> </u>
Quarter 2, 2006	1	-					*			*		*	-			,L					\vdash
Quarter 3, 2006	1-		-	-		ļ	-		-	*	 	 	-	-	 	*	 	 	-		\vdash
Quarter 4, 2006	1	-	_	_	-	_	-	_	_	*	<u> </u>	<u> </u>	 	_	<u> </u>	 	<u> </u>	<u> </u>	_		
Quarter 1, 2007 Quarter 2, 2007	1						*			*	 	 			 	1	 	 			
Quarter 3, 2007	1	 			1	-	*			-			\vdash			1					
Quarter 3, 2008	1						*														
Quarter 4, 2008	1						*									1					
,								_												_	_

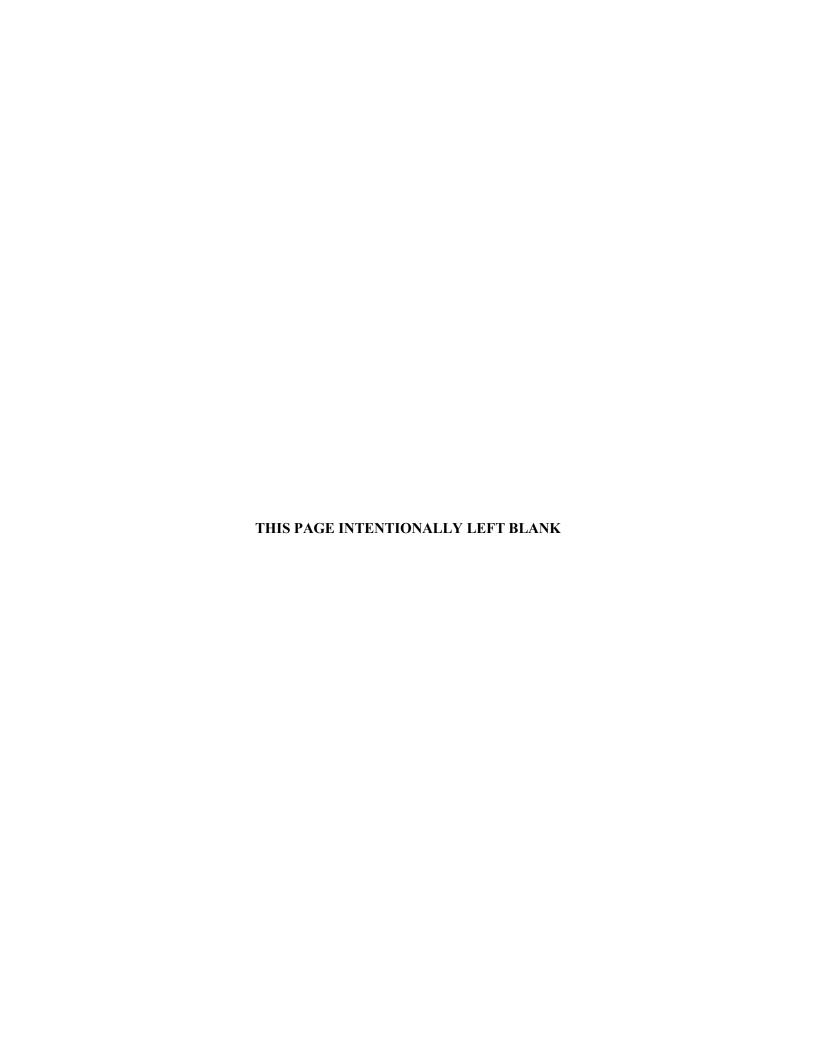
Groundwater Flow System	Γ			UCR	S							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
MANGANESE																					
Quarter 3, 2009							*														
Quarter 3, 2011							*														
Quarter 2, 2016														*							
Quarter 3, 2016									*												
NICKEL																					
Quarter 3, 2003										*											
OXIDATION-REDUCTION P	OTE	NTIA	L																		
Quarter 4, 2002																	*		*		
Quarter 1, 2003																	*		*		
Quarter 2, 2003																			*		
Quarter 3, 2003	*																				
Quarter 4, 2003					*																
Quarter 2, 2004													*				*				*
Quarter 3, 2004					*			*					*	*	*		*			*	*
Quarter 4, 2004												*									*
Quarter 1, 2005																	*			*	*
Quarter 2, 2005								*					*				*			*	
Quarter 3, 2005					*	*		*			*	*	*				*		*	*	*
Quarter 4, 2005		*						*					*				*			*	
Quarter 1, 2006					*			*	*								*				*
Quarter 2, 2006					*		*	*					*				*			*	
Quarter 3, 2006					*			*					*				*			*	
Quarter 4, 2006					*		*			*		*	*				*			*	*
Quarter 1, 2007		*			*			*					*				*			*	*
Quarter 2, 2007					*								*				*			*	*
Quarter 3, 2007					*			*									*			*	
Quarter 4, 2007																	*			*	*
Quarter 1, 2008					*			*				*	*						*	*	
Quarter 2, 2008					*			*		*			*	*				*		*	*
Quarter 3, 2008					*		*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2008								*		*		*	*				*	*		*	*
Quarter 1, 2009							*	*		*		*	*					*		*	
Quarter 2, 2009					*		*	*		*		*	*				*	*		*	*
Quarter 3, 2009		*			*	*	*	*	*	*		*	*	*			*	*	*	*	*
Quarter 4, 2009		*				*	*	*	*	*		*	*				*	*	*	*	*
Quarter 1, 2010		*			*		*	*		*			*			*	*	*		*	
Quarter 2, 2010					*	*		*		*	*	*	*			*	*	*	*	*	*
Quarter 3, 2010		*			*	*	*	*	*	*	*		*	*	*		*	*	*	*	*
Quarter 4, 2010		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2011						*		*		*	*	*	*	*		*	*	*	*	*	
Quarter 2, 2011		*			*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2011		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2011		*				*		*	*	*	*	*	*	*		*	*	*		*	*
Quarter 1, 2012		*				*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 2, 2012	*	*		*	*	*	*	*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 3, 2012		*				*		*		*		*	*	*		*	*	*	*	*	*
Quarter 4, 2012		*				*		*	*	*	*	*	*	*		*	*	*	*	*	*
Quarter 1, 2013		*				*		*	*	*	*	*	*	*		*	*	*		*	
Quarter 2, 2013		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2013	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2013		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2014		*						*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2014	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2014	*	*			*	*	*	*	*	*		*	*	*		*	*	*	*	*	*
Quarter 4, 2014		*				*		*	*	*		*	*	*		*	*	*	*	*	*
Quarter 1, 2015		*				*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015		*			*	*		*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*	*			*		*	*		*		*	*	*	*	*	*	*	*	*	*
Quarter 2, 2016	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
Quarter 3, 2016	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2016	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2017	*	*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2017	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2017	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*
Quarter 4, 2017		*				*	*	*	*	*		*	*	*	*		*	*		*	*
Quarter 1, 2018	*	*			*	*	*	*	*	*		*	*	*	*	*	*	*		*	*
Quarter 2, 2018	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 3, 2018	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2018		*				*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 1, 2019	*	*			*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*

Groundwater Flow System	I			UCR	S							URC	iΑ					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
PCB, TOTAL																					
Quarter 4, 2003	-											4					*				
Quarter 3, 2004 Quarter 3, 2005	1						*					*									
Quarter 2, 2006	1						*														
Quarter 3, 2006	t						*														
Quarter 1, 2007	1						*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 1, 2008							*														
Quarter 2, 2008	-						*														
Quarter 4, 2008	1						*														
Quarter 3, 2009 Quarter 1, 2010	1						*														
Quarter 2, 2010	1						*														
Quarter 4, 2010	t						*														
PCB-1016							-														
Quarter 3, 2004												*									
Quarter 2, 2006							*					*									
Quarter 1, 2007							*														
Quarter 2, 2007	1						*														
Quarter 3, 2007							*														
Quarter 2, 2008	1						*						-	-							
Quarter 4, 2008 Quarter 3, 2009	1	 	 				*	-	-	-	 	-	-	-	 			 	 	 	
Quarter 3, 2009 Quarter 1, 2010	1						*														
Quarter 1, 2010 Quarter 2, 2010	1						*														
Quarter 4, 2010	1						*														
PCB-1242																					
Quarter 3, 2006							*					*									
Quarter 4, 2006										*											
Quarter 1, 2008							*														
Quarter 2, 2012							*														
PCB-1248							-11														
Quarter 2, 2008							*														
PCB-1260							*														
Quarter 2, 2006 pH							不														
Quarter 3, 2002										*											
Quarter 4, 2002	1									*											
Quarter 1, 2003	1									*											
Quarter 2, 2003										*											
Quarter 3, 2003	*						*			*											
Quarter 4, 2003							*									*					
Quarter 1, 2004	1						*									*					
Quarter 3, 2005	1					*												*	*	<u> </u>	
Quarter 4, 2005	1					*							-	-		ىد			*		
Quarter 3, 2006	1	 	 					-	-	-	 	-	-	*	 	*		 	 	 	
Quarter 2, 2011 Quarter 3, 2011	1	 	 								 			*	 			 	 	 	
Quarter 4, 2011	1	1	1								1		1	*	1			1	1	1	
Quarter 1, 2012	t													Ė		*	*				
Quarter 2, 2012	t											*									
Quarter 1, 2013	L									*		*				*					
Quarter 3, 2015																	*				
Quarter 2, 2016																				*	*
Quarter 3, 2016	1	<u> </u>	<u> </u>								<u> </u>		<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>	*	
Quarter 2, 2017	1	<u> </u>	<u> </u>		JL.					طر	<u> </u>	طو	-	-	<u> </u>		*	٠,	ىد ا	<u> </u>	
Quarter 3, 2018	1	 	 		*			-	-	*	 	*	-	-	 	*	*	*	*	-	
Quarter 4, 2018 POTASSIUM																*		*			
Quarter 1, 2014																*					
RADIUM-228																					
Quarter 2, 2005																					
Quarter 4, 2005	t																				
SELENIUM																					
Quarter 4, 2003																					

Groundwater Flow System	I			UCR	S							URG	ĜA			I		LRG	À		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SODIUM																					
Quarter 3, 2002										*	*		*								
Quarter 4, 2002										*	*			*							
Quarter 1, 2003										*											
Quarter 2, 2003										*	*										
Quarter 3, 2003											*										
Quarter 1, 2007											*										
Quarter 1, 2012														*							
Quarter 1, 2014															*						
Quarter 3, 2014											*										
Quarter 4, 2014											*										
Quarter 4, 2015											*										
Quarter 1, 2016											*										
Quarter 2, 2016											*										
Quarter 3, 2016											*										
Quarter 4, 2016											*										
Quarter 1, 2017											*										
Quarter 2, 2017											*										
Quarter 3, 2017											*										
Quarter 4, 2017											*										
Quarter 1, 2018	1		1	1			1	1			*		1	1	1	1			1		
Quarter 3, 2018	1	\vdash	 	\vdash	—	*	\vdash	 	 	 	1	\vdash	\vdash	 	 	\vdash					
STRONTIUM-90											_										
Quarter 4, 2008																					
SULFATE																					
							*														
Quarter 1, 2003	1		 	 		*	*	 			 		 	 	 	1			 		
Quarter 2, 2003 Quarter 3, 2003	*	-	<u> </u>	<u> </u>	<u> </u>	*	*	_	-	-	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>	1	-	-	<u> </u>	<u> </u>	
	不				4	不															
Quarter 4, 2003					*		*														
Quarter 1, 2004					*	*	*														
Quarter 2, 2004					*	*	*														
Quarter 3, 2004					*	*	*														
Quarter 1, 2005					*	*			*												
Quarter 2, 2005					*	- 14	*		*						*						
Quarter 3, 2005					*	*	*								- 114						
Quarter 4, 2005															*						<u> </u>
Quarter 1, 2006					*				*												<u> </u>
Quarter 2, 2006						*	*		*						*						<u> </u>
Quarter 3, 2006							*														
Quarter 1, 2007							*														
Quarter 2, 2007							*														
Quarter 3, 2007							*														
Quarter 4, 2007		*																			
Quarter 1, 2008		*			*		*		*												
Quarter 2, 2008		*			*	*	*														
Quarter 3, 2008		*			*	*	*														
Quarter 4, 2008		*				*	*														
Quarter 1, 2009		*					*	L	匚			$ldsymbol{oxed}$				L	$ldsymbol{oxed}$	匚			
Quarter 2, 2009		*			*	*	*														
Quarter 3, 2009		*		L	*	*	*						L		*	L			L		
Quarter 4, 2009		*			*	*		L	匚			$ldsymbol{oxed}$			*	L	$ldsymbol{oxed}$	匚			
Quarter 1, 2010		*			*	*	*								*	L					
Quarter 2, 2010		*			*	*	*	Ĺ				Ĺ			*		Ĺ				
Quarter 3, 2010		*			*	*	*					Ĺ			*		Ĺ				
Quarter 4, 2010		*				*	*								*						
Quarter 1, 2011		*																			
Quarter 2, 2011		*			*	*	*								*						
Quarter 3, 2011		*				*	*	*							*						
Quarter 4, 2011		*				*									*						
Quarter 1, 2012		*					*	*							*						
Quarter 2, 2012	*	*		*	*	*	*	*	*						*						
Quarter 3, 2012		*				*									*						
Quarter 4, 2012		*													*						
Quarter 1, 2013		*				*									*						\vdash
Quarter 2, 2013		*													*						
Quarter 3, 2013	*	*		*	*	*	*								*	1					
Quarter 4, 2013	Ť	*	1	٠,			-	1			1		1	1	*	1			1		
Quarter 4, 2013 Quarter 1, 2014	1	*	<u> </u>	 	 	\vdash	 	<u> </u>	\vdash	—	<u> </u>	\vdash	 	<u> </u>	*	1	\vdash	\vdash	 	 	
Quarter 1, 2014 Quarter 2, 2014	*	*			*		*	*							*	1					\vdash
Quarter 3, 2014 Quarter 3, 2014	*	*	 	 	*	*	*	*	\vdash	—	 	\vdash	 	 	*	1	\vdash	\vdash	 	 	\vdash
Quarter 4, 2014 Quarter 4, 2014	▔	*	<u> </u>	 	-	*	<u> </u>	<u> </u>	\vdash	—	<u> </u>	\vdash	<u> </u>	<u> </u>	<u> </u>	1	\vdash	\vdash	<u> </u>	 	\vdash
	1	*	 	 		*	 	-	-		 	-	 	 	 	1	-	-	 		
Quarter 1, 2015	_	_ · ·	_	_			_	_	_	_	_	_	_	_	_	_	_	_	_		_

Groundwater Flow System	I			UCF	RS							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
SULFATE Opertor 2, 2015	*	*			*		*								*						
Quarter 2, 2015 Quarter 3, 2015	*	*			*	*	*	*							*						
Quarter 4, 2015	*	*			-11	*	*	*													
Quarter 1, 2016	*	*			*	*	*														
Quarter 2, 2016	*	*			*	*	*														
Quarter 3, 2016	*	*			*	*	*	*													
Quarter 4, 2016	*	*				*	*	*													
Quarter 1, 2017	*	*				*	*														
Quarter 2, 2017	*	*			*	*	*														
Quarter 3, 2017 Quarter 4, 2017	-	*			~	*	*														
Quarter 1, 2018	*	*			*	*	*														
Quarter 2, 2018	*	*			*	*	*	*													
Quarter 3, 2018	*	*			*	*	*	*													
Quarter 4, 2018		*				*	*	*													
Quarter 1, 2019	*	*			*	*	*														
TECHNETIUM-99																					
Quarter 4, 2002																	*	*	*		
Quarter 2, 2003							*						*			*	*	*	*		*
Quarter 3, 2003	1	 	-	<u> </u>	-				-		 	 					*	 			*
Quarter 4, 2003 Quarter 1, 2004	1	1	1	1	-				1		 	 			*		*	 			*
Quarter 1, 2004 Quarter 2, 2004	1	 	†				 		†						*						*
Quarter 3, 2004	t	t													*						*
Quarter 4, 2004	T	t													*		*				*
Quarter 3, 2005	Ī																*				
Quarter 1, 2006															*						*
Quarter 2, 2006		*							*												*
Quarter 3, 2006																					*
Quarter 4, 2006															*						*
Quarter 1, 2007																					*
Quarter 2, 2007													*		*					*	
Quarter 3, 2007	1									*					*		*	*	*		*
Quarter 4, 2007 Quarter 1, 2008										不					*				*	*	*
Quarter 2, 2008							*	*						*	<u> </u>	*			*	•	_
Quarter 3, 2008															*						
Quarter 4, 2008										*							*		*		
Quarter 1, 2009										*											
Quarter 2, 2009																		*			
Quarter 3, 2009								*		*					*						
Quarter 4, 2009										*					*			*	*		
Quarter 2, 2010										*						*	*	*	*		
Quarter 3, 2010										*					*			14			
Quarter 4, 2010	-										-	-						*			-
Quarter 1, 2011 Ouarter 2, 2011	1	*								*	-	-				*	*	*	*		
Quarter 1, 2012																不	*	*	*		
Quarter 2, 2012								*									-	*			
Quarter 3, 2012	1	1		1				Ė			1						*	*			
Quarter 4, 2012	Ī														*			*			*
Quarter 1, 2013																		*			*
Quarter 2, 2013																					*
Quarter 3, 2013	1									*							<u> </u>				*
Quarter 4, 2013	<u> </u>	<u> </u>		<u> </u>							<u> </u>	<u> </u>			*		*	*			*
Quarter 1, 2014	1	 	<u> </u>		-		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>			*	<u> </u>	*	*	<u> </u>		\vdash
Quarter 2, 2014 Quarter 3, 2014	1	+	-	<u> </u>	-				-		 	 					*	*	*		\vdash
Quarter 3, 2014 Quarter 4, 2014	1	\vdash	\vdash		1		-		\vdash						*		*	*	*		H
Quarter 4, 2014 Quarter 1, 2015	1	1		1				-			 	 			*			*			
Quarter 2, 2015	1	 						<u> </u>								*		<u> </u>			
Quarter 3, 2015	1	1		1														*	*	*	
Quarter 4, 2015	L	L	L						L						*		*			*	
Quarter 1, 2016																*	*	*	*		*
Quarter 2, 2016																*	*	*	*	*	
Quarter 3, 2016																	*		*	*	
Quarter 4, 2016	1	<u> </u>						<u> </u>		*				*			*	*	L_		ш
Quarter 1, 2017	1	 	<u> </u>		-		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>	*	<u> </u>	*	*	┢
Quarter 2, 2017	1-	1	-	-			-		-		 	-						4		*	
Quarter 3, 2017	1	+	-	<u> </u>	-				-		 	 		*	*		*	*		*	\vdash
Quarter 4, 2017 Quarter 1, 2018	1	 	 		1		-		 					*	*		*	*	-	*	H
Quarter 1, 2018 Quarter 2, 2018	1	\vdash	1		1		-	 	1			1		*		*	—		—	*	H
- ~	+	+		<u> </u>							1				*			1		*	
Quarter 3, 2018 Quarter 4, 2018															*		*	*	*	*	
Quarter 3, 2018																*	*	*	*	*	

Groundwater Flow System	I			UCR	S					1		URG	A			I		LRG	A		\neg
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
THORIUM-230																					
Quarter 4, 2015																*					
Quarter 2, 2016										*											
Quarter 4, 2016	*											*				*			*		
Quarter 4, 2017													*								
Quarter 2, 2018										*			*								
TOLUENE																					
Quarter 2, 2014										*				*							
TOTAL ORGANIC CARBON	_	_								-14	-14	114		34							- 14
Quarter 3, 2002										*	*	*		*							*
Quarter 4, 2002										*	*			*							
Quarter 1, 2003											*					L					
Quarter 3, 2003	*									*	*					*					
Quarter 4, 2003										*	*										
Quarter 1, 2004						- 14				- 14	*				- 14	- 14			- 14		
Quarter 3, 2005						*				*					*	*		-14	*		
Quarter 4, 2005						*												*	*		
Quarter 1, 2006	<u> </u>																		*		
TOTAL ORGANIC HALIDES										٠,٠											
Quarter 4, 2002	<u> </u>	-	<u> </u>	<u> </u>				<u> </u>	<u> </u>	*	<u> </u>	-		-		<u> </u>	<u> </u>	-	<u> </u>		oxdot
Quarter 1, 2003			<u> </u>	<u> </u>				<u> </u>		*	<u> </u>						<u> </u>				Ш
Quarter 2, 2003			<u> </u>	<u> </u>				<u> </u>		*	<u> </u>						<u> </u>				Ш
Quarter 1, 2004																*					
TRICHLOROETHENE																					
Quarter 3, 2002	!		<u> </u>	<u> </u>				<u> </u>			<u> </u>				L_	!	<u> </u>			-	Ш
Quarter 4, 2002															•						
Quarter 1, 2003																					
Quarter 2, 2003																					
Quarter 3, 2003																					
Quarter 4, 2003																					
Quarter 1, 2004																					
Quarter 2, 2004																					
Quarter 3, 2004																					
Quarter 4, 2004																					
Quarter 1, 2005																					
Quarter 2, 2005																					
Quarter 3, 2005																					
Quarter 4, 2005																					
Quarter 1, 2006																					
Quarter 2, 2006																					
Quarter 3, 2006																					
Quarter 4, 2006																					
Quarter 1, 2007																					
Quarter 2, 2007																					
Quarter 3, 2007																					
Quarter 4, 2007																					
Quarter 1, 2008																					
Quarter 2, 2008																					
Quarter 3, 2008															•						
Quarter 4, 2008																					
Quarter 1, 2009	L															L					
Quarter 2, 2009	L															L					
Quarter 3, 2009																					
Quarter 4, 2009																					
Quarter 1, 2010																					
Quarter 2, 2010																					
Quarter 3, 2010		L										L			•						
Quarter 4, 2010	L															L					
Quarter 2, 2011		L								Ĺ		L									
Quarter 3, 2011																					
Quarter 4, 2011																					
Quarter 1, 2012																					
Quarter 2, 2012																					
Quarter 3, 2012																					
Quarter 4, 2012																					
Quarter 1, 2013																					
Quarter 2, 2013																					
Quarter 3, 2013																					
Quarter 4, 2013																					
Quarter 1, 2014																					
Quarter 2, 2014																					


Groundwater Flow System	T			UCR	S							URG	A					LRG	A		
Gradient	D	S	S	S	D	D	D	U	U	D	D	D	D	U	U	D	D	D	D	U	U
Monitoring Well	368	375	376	377	359	362	365	371	374	366	360	363	357	369	372	367	361	364	358	370	373
TRICHLOROETHENE																					
Quarter 3, 2014																					
Quarter 4, 2014	1																				
Quarter 1, 2015	1																				
Quarter 2, 2015	1				•										•						
Quarter 3, 2015																					
Quarter 4, 2015																					
Quarter 1, 2016																					
Quarter 2, 2016																					
Quarter 3, 2016																					
Quarter 4, 2016																					
Quarter 1, 2017																					
Quarter 2, 2017																					
Quarter 3, 2017																					
Quarter 4, 2017																					
Quarter 1, 2018																					
Quarter 2, 2018																					
Quarter 3, 2018																					
Quarter 4, 2018																					
Quarter 1, 2019										•					•						
TURBIDITY																					
Quarter 1, 2003										*											
URANIUM																					
Quarter 4, 2002		*			*	*	*			*	*	*	*	*	*	*		*	*	*	*
Quarter 4, 2006																					*
ZINC																					
Quarter 3, 2005																			*		
* Statistical test results indicate an eleva	ted conc	entratio	on (i.e.,	a stati:	stical e	xceedar	nce).														
■ MCL Exceedance																					
Previously reported as an MCL exc		; howev	er, resu	ılt was	equal t	o MCL	, –														
UCRS Upper Continental Recharge Syste	m																				

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

LRGA Lower Regional Gravel Aquifer

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F04 - C-746-U LANDFILL METHANE MONITORING REPORT

PADUCAH GASEOUS DIFFUSION PLANT

Permit #: <u>073-00045</u>

McCracken County, Kentucky

Date:	02/26/19	Time:	0000	Monitor:	Robe	ert Kirby
Weather Co	onditions: Sunny, Cool	, Slight	Wind, and 44 [Degrees		
Monitoring	Equipment:: RAE Syste	ems, M	ulti-RAE Serial	#7970		
		itoring Lo				Reading (% LEL)
C-746-U1	Checked at floo	r level				0
C-746-U2	Checked at floo	r level				0
C-746-U-T-14	Checked at floo	r level				0
C-746-U15	Checked at floo	r level				0
MG1	Dry casing					0
MG2	Dry casing	M - M		11111		0
MG3	Dry casing					0
MG4	Dry casing	74.1				0
Suspect or Problem Ar		noted	,		•	0
Remarks:	VA					
,						
	•					
Performed I	oy:	1/1	7	0	14/2	24/19
	Signa	ture			1	Date

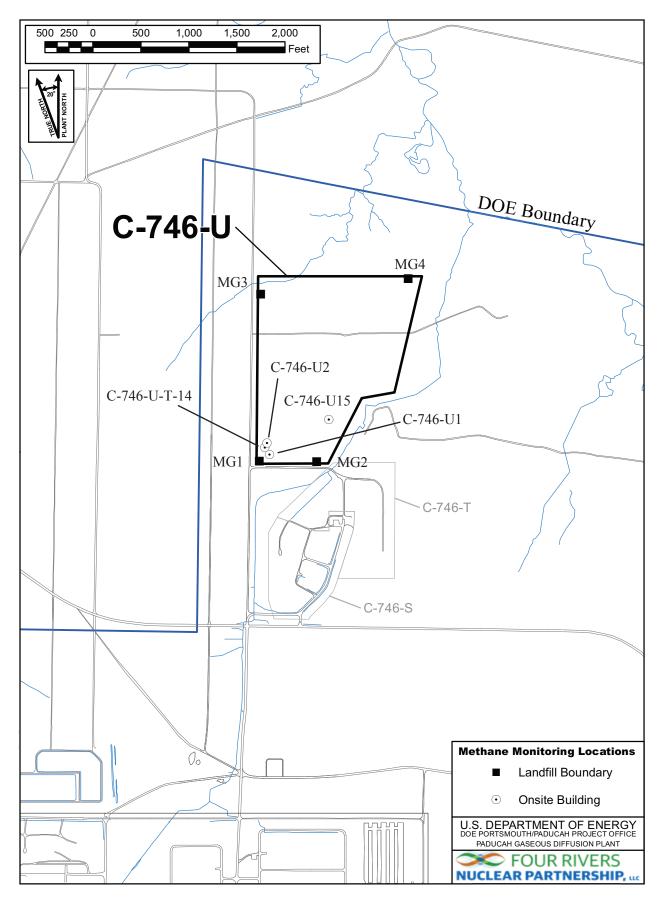
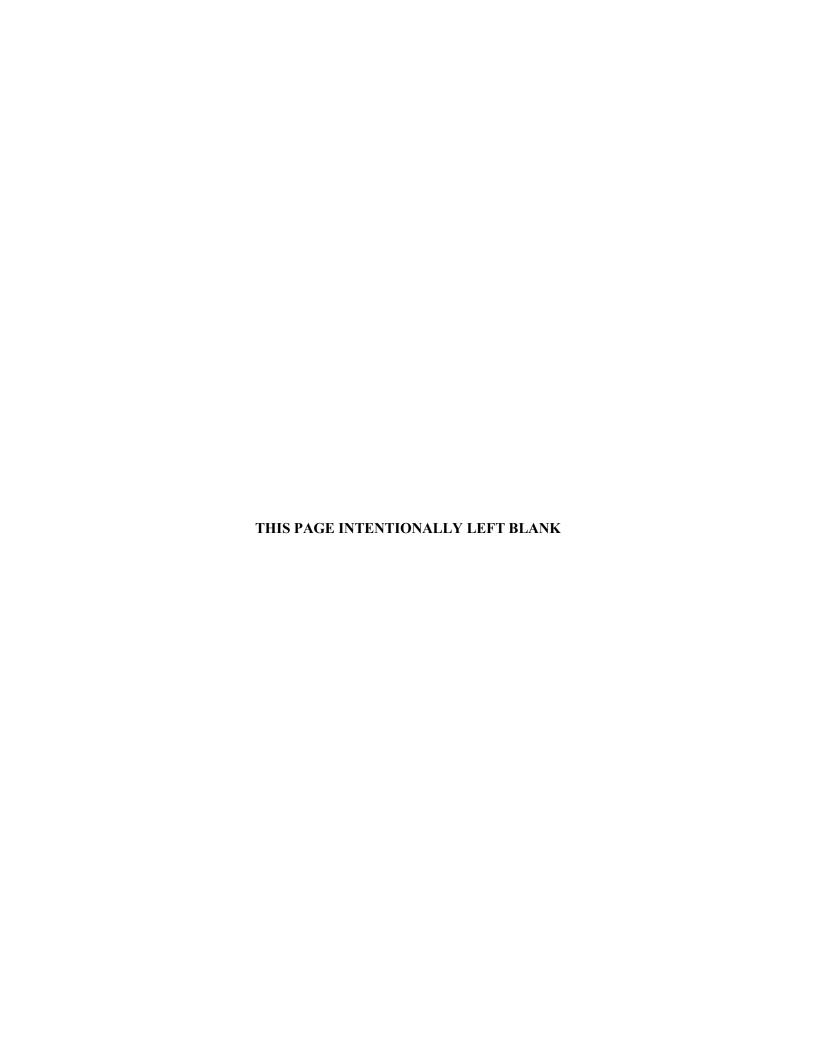



Figure H.1. C-746-U Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (S)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "Do	OWNSTREAM")	L150 AT SITI	Ξ	L154 UPSTRE	AM	L351 DOWNSTR	REAM		
Sample Sequer	ıce	#				1		1		1			
If sample is a	a Bl	ank, specify Type: (F)ield, (T) ri	p, (M) ethod	, or (E)quipment	NA		NA		NA			
Sample Date a	ind	Time (Month/Day/Year hour: m	inu	tes)		1/23/2019 08:	13	1/23/2019 08:	28	1/23/2019 07	:56		
Duplicate ("Y	?" c	or "N") ¹				N		N		N			
Split ('Y' or	: "N	"") ²				N		N		N			7
Facility Samp	le	ID Number (if applicable)				L150US2-19)	L154US2-1	9	L351US2-1	9		7
Laboratory Sa	mpl	e ID Number (if applicable)				469687001		469687002		469687003	3	\ /	
Date of Analy	sis	(Month/Day/Year)				2/14/2019		2/14/2019		2/14/2019			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL	F L A G
A200-00-0	0	Flow	Т	MGD	Field		*		*		*		$\sqrt{}$
16887-00-6	2	Chloride(s)	Т	mg/L	300.0	0.597		2.01		2.41			
14808-79-8	0	Sulfate	Т	mg/L	300.0	2.27		2.47		2.79			
7439-89-6	0	Iron	Т	mg/L	200.8	4.14		2.24		3.65			
7440-23-5	0	Sodium	т	mg/L	200.8	1.08		1.97		2.23			\Box
s0268	0	Organic Carbon ⁶	Т	mg/L	9060	3.61		8.24		7.4			\Box
s0097	0	BOD ⁶	Т	mg/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	Т	mg/L	410.4	13.2	*J	25.2	*	23.5	*		1

¹Respond "Y" if the sample was a duplicate of another sample in this report

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300015, SW07300015, SW07300045

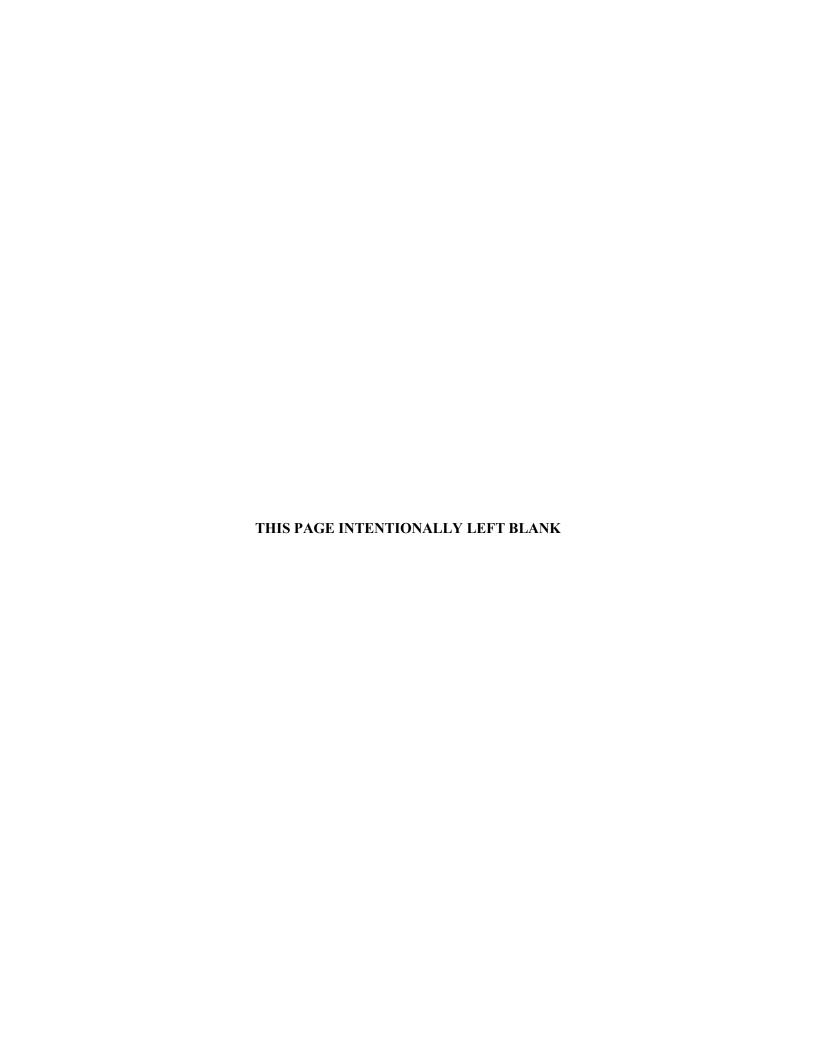
FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

		WIII DIN SIMIL				(0011	<u> </u>						
Monitoring Po	oin'	t (KPDES Discharge Number, o	r "1	UPSTREAM" or	"DOWNSTREAM")	L150 AT SI	TE	L154 UPSTR	EAM	L351 DOWNST	'REAM		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A
S0145	1	Specific Conductance	Т	µmho/cm	Field	59		30		33			Γ
s0270	0	Total Suspended Solids	Т	mg/L	160.2	67.6		35.6		117			T
S0266	0	Total Dissolved Solids	Т	mg/L	160.1	249		127		123		\ /	
s0269	0	Total Solids	Т	mg/L	SM-2540 B 17	144		102		220		\	
s0296	0	рН	Т	Units	Field	6.41		6.31		5.69		\	
7440-61-1		Uranium	Т	mg/L	200.8	0.000978		0.000924		0.00297			
12587-46-1		Gross Alpha (α)	Т	pCi/L	9310	-1.11	*	0.595	*	9.88	*	\	
12587-47-2		Gross Beta (eta)	Т	pCi/L	9310	4.44	*	7.12	*	10.8	*	V	
												Λ	
												/\	
												/ \	
													1
													\prod
													Ц
													Ц
													\Box
												/	

RESIDENTIAL/CONTAINED - QUARTERLY


Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00045

Finds/Unit:	KY8-890-008-982 / 1				
LAB ID:	None				
For Official Use Only					

SURFACE WATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
L150 L150US2-19		Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control lim
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.69. Rad error is 4.68.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.21. Rad error is 7.17.
L154 L154US2-19	Flow Rate		Analysis of constituent not required and not performed.	
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control lim
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.12. Rad error is 4.12.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.58. Rad error is 7.49.
L351 L351US2-	L351US2-19	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control lim
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.74. Rad error is 7.55.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 8.07. Rad error is 7.87.

