C-746-S&T Landfills
First Quarter Calendar Year 2019
(January–March)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

This document is approved for public release per review by:

FRNP Classification Support

5-23-19

Date

C-746-S&T Landfills
First Quarter Calendar Year 2019
(January–March)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—May 2019

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895

CONTENTS

FI	GURES		V
TA	ABLES		v
Α(CRONYMS.		vii
1.	INTRODU	CTION	1
		KGROUND	
	1.2 MON	NITORING PERIOD ACTIVITIES	1
	1.2.1	Groundwater Monitoring	1
	1.2.2		3
	1.2.3	Surface Water Monitoring	3
	1.3 KEY	RESULTS	
2.		ALUATION/STATISTICAL SYNOPSIS	
	2.1 STA	TISTICAL ANALYSIS OF GROUNDWATER DATA	10
	2.1.1	Upper Continental Recharge System	10
	2.1.2	Upper Regional Gravel Aquifer	10
	2.1.3		
	2.2 DAT	A VERIFICATION AND VALIDATION	11
3.	PROFESSI	ONAL GEOLOGIST AUTHORIZATION	13
4.	REFEREN	CES	15
ΑI	PPENDIX A	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
Αŀ	PPENDIX B:	FACILITY INFORMATION SHEET	B-1
Αŀ	PPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
Αŀ	PPENDIX D	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
Αŀ	PPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
Αŀ	PPENDIX F:	NOTIFICATIONS	F-1
Αŀ	PPENDIX G	CHART OF MCL AND UTL EXCEEDANCES	G-1
Αŀ	PPENDIX H	METHANE MONITORING DATA	H-1
Αŀ	PPENDIX I:	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	2
	C-746-S&T Landfills Surface Water Monitoring Locations	
	TABLES	
1.	Summary of MCL Exceedances	6
	Exceedances of Statistically Derived Historical Background Concentrations	
	Exceedances of Current Background UTL in Downgradient Wells	
	C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	7
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

CFR Code of Federal Regulations

CY calendar year

KAR Kentucky Administrative RegulationsKDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer

LTL lower tolerance limit

MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

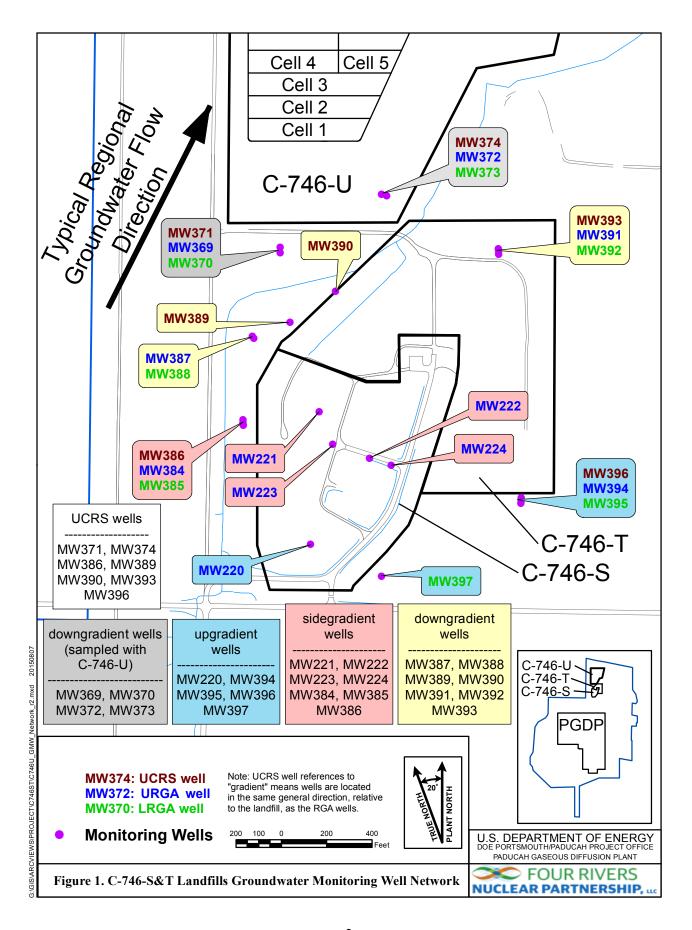
UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills First Quarter Calendar Year 2019 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), or both UTL and lower tolerance limit (LTL) for pH, as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I.

1.1 BACKGROUND


The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Site and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a final cover of compacted soil. The C-746-S Landfill was a sanitary landfill for the Paducah Gaseous Diffusion Plant operations. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a final cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from the Paducah Gaseous Diffusion Plant operations. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a water level measurement or sample; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, (Groundwater Monitoring Plan) (LATA Kentucky 2014), UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the first quarter 2019 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on January 29, 2019, in MWs of the C-746-S&T Landfills (see Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Typical regional flow in the RGA is northeastward, toward the Ohio River. During January, RGA groundwater flow in the area of the landfill was oriented primarily south to east. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in January was 1.77×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 2.45×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.301 to 0.711 ft/day (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 *KAR* 48:090 § 5 and the Solid Waste Landfill Permit. Landfill operations staff monitored for the occurrence of methane in one on-site building location, four locations along the landfill boundary, and 27 passive-gas vents located in Cells 1, 2, and 3 of the C-746-S Landfill on February 26, 2019. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified all locations to be compliant with the regulatory requirement of < 100% lower explosive limit (LEL) at boundary locations and < 25% LEL at all other locations. The results are documented on the C-746-S&T Landfills Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was monitored, as specified in 401 *KAR* 48:300 § 2, and the approved *Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (PRS 2008), which is Technical Application Attachment 24 of the Solid Waste Landfill Permit. Sampling was performed at the three locations (see Figure 2) monitored for the C-746-S&T Landfills. The landfills have an upstream location, L135; a

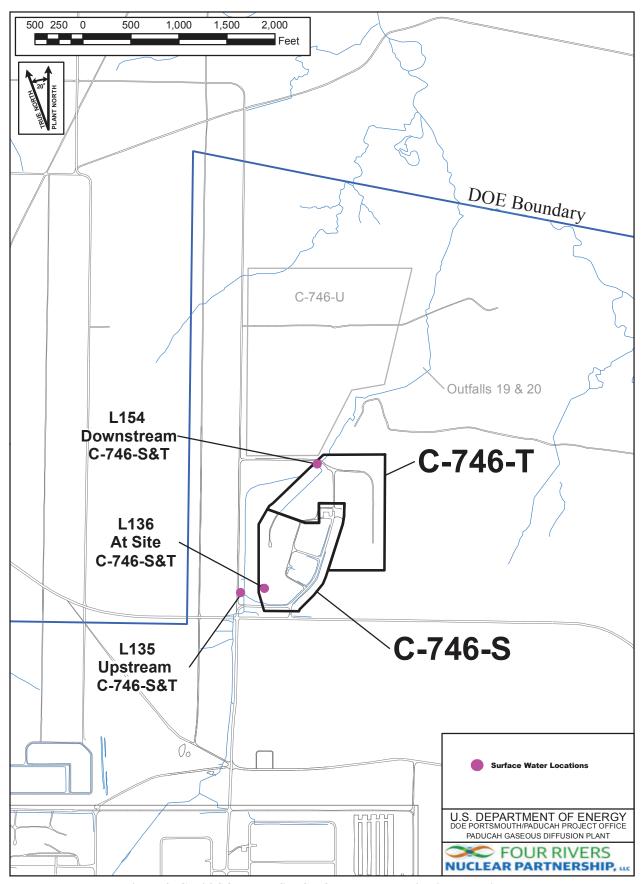


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

downstream location, L154; and a location capturing runoff from the landfill surface, L136. Surface water results are provided in Appendix I.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014) which is Technical Application, Attachment 25, of the Solid Waste Landfill Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were further evaluated against their historical background UTL. Table 2 identifies parameters (that do not have MCLs) with concentrations that exceeded the statistically derived historical background UTL¹ during the first quarter 2019, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW372, MW391, and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedances for beta activity in MW370, MW387, and MW388 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily they were considered to be Type 2 exceedances. To evaluate these preliminary Type 2 exceedances further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All of these wells had no increasing Mann-Kendall trend for beta activity and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 5, and 401 *KAR* 48:300 § 7.

The constituents listed in Table 2 that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL, developed using the most recent eight quarters of data from wells identified as upgradient, to identify if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

.

¹ The UTL comparison for pH uses a two-sided test, both UTL and LTL. For the purposes of this report, the reference to "UTL exceedances" also includes the LTL for pH.

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA
None	MW221: Chromium	MW370: Beta activity
	MW372: Trichloroethene	MW385: Beta activity
	MW384: Beta activity	MW388: Beta activity
	MW387: Beta activity	MW392: Trichloroethene
	MW391: Trichloroethene	

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW386: Oxidation-reduction	MW220: Sulfate	MW370: Beta activity, oxidation-
potential		reduction potential, sulfate,
		technetium-99
MW390: Oxidation-reduction	MW221: Chromium,	MW373: Calcium, conductivity,
potential, technetium-99	oxidation-reduction potential	dissolved solids, magnesium,
		oxidation-reduction potential, sulfate
MW393: Oxidation-reduction	MW222: Oxidation-reduction	MW385: Beta activity,
potential	potential	oxidation-reduction potential,
		sulfate, technetium-99
MW396: Oxidation-reduction	MW223: Oxidation-reduction	MW388: Beta activity,
potential	potential, sulfate	oxidation-reduction potential,
		sulfate, technetium-99
	MW369: Oxidation-reduction	MW392: Oxidation-reduction
	potential, technetium-99	potential
	MW372: Calcium, dissolved solids,	MW395: Oxidation-reduction
	magnesium, sulfate, technetium-99	potential
	MW384: Beta activity, sulfate,	MW397: Oxidation-reduction
	technetium-99	potential
	MW387: Beta activity, sodium,	
	sulfate, technetium-99	
	MW391: Magnesium, sulfate	

^{*}Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells. Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393 Upgradient wells: MW220, MW394, MW395, MW396, MW397

Table 3. Exceedances of Current Background UTL in **Downgradient Wells**

URGA	LRGA				
MW369: Technetium-99	MW370: Beta activity, sulfate, technetium-99				
MW372: Calcium, dissolved solids,	MW373: Calcium, conductivity, dissolved solids,				
magnesium, sulfate, technetium-99	magnesium, sulfate				
MW387: Beta activity, sodium, technetium-99	MW388: Beta activity, sulfate, technetium-99				
MW391: Magnesium, sulfate					

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S ³	Decision ⁴
	MW369	Technetium-99	8	0.05	0.193	8	No Trend
		Beta activity	8	0.05	0.268	6	No Trend
	MW370	Sulfate	8	0.05	0.0317	16	Increasing Trend
		Technetium-99	8	0.05	0.355	-4	No Trend
		Calcium	8	0.05	0.355	4	No Trend
		Dissolved Solids	8	0.05	0.0539	14	No Trend
	MW372	Magnesium	8	0.05	0.193	8	No Trend
		Sulfate	8	0.05	0.268	6	No Trend
		Technetium-99	8	0.05	0.133	10	No Trend
	MW373	Calcium	8	0.05	0.451	2	No Trend
C-746- S&T		Conductivity	8	0.05	0.451	2	No Trend
Landfill		Dissolved Solids	8	0.05	0.353	-4	No Trend
		Magnesium	8	0.05	0.268	6	No Trend
		Sulfate	8	0.05	0.548	0	No Trend
	MW387	Beta activity	8	0.05	0.355	-4	No Trend
		Sodium	8	0.05	0.133	10	No Trend
		Technetium-99	8	0.05	0.268	-6	No Trend
[Beta activity	8	0.05	0.193	-8	No Trend
	MW388	Sulfate	8	0.05	0.0868	12	No Trend
		Technetium-99	8	0.05	0.268	-6	No Trend
[MW201	Magnesium	8	0.05	0.5	-1	No Trend
	MW391	Sulfate	8	0.05	0.451	-2	No Trend

Footnotes:

Note: Statistics generated using ProUCL.

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan. To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. All but one of these preliminary Type 2 exceedances in downgradient wells—sulfate in MW370— did not have an increasing trend and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

¹ An alpha of 0.05 represents a 95% confidence interval.

² The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

 $^{^4}$ The Mann-Kendall decision operates on two hypotheses, the H_0 and H_a . H_0 assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend.

The Mann-Kendall statistical test indicates that there is an increasing trend of sulfate in MW370 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, this is considered a Type 2 exceedance (source unknown). The source of the trend is believed to be unrelated to the C-746-S&T Landfills because the shallower collocated URGA well, MW369, does not exceed the historical UTL for sulfate.

In accordance with Permit Condition GSTR0003, Special Condition 2, of the Solid Waste Landfill Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

The statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS well MW390 with a technetium-99 value that exceeds both the historical and current backgrounds (Table 5). Because this well is not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is not attributable to C-746-S&T sources and is considered to be a Type 1 exceedance.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS
MW390: Technetium-99

^{*}In the same direction (relative to the landfill) as RGA wells.

All MCL and UTL exceedances, except for sulfate in MW370, reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills. The increasing trend for sulfate in MW370 does not appear to be landfill-related. Sulfate in MW370 will continue to be evaluated in the context of this observation.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the first quarter 2019 groundwater data collected from the C-746-S&T Landfills MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both the UTL and LTL to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW386	MW220 (upgradient)	MW370
MW389**	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396***	MW224	MW392
	MW369	MW395 (upgradient)
	MW372	MW397 (upgradient)
	MW384	(10 /
	MW387	
	MW391	
	MW394 (upgradient)	

^{*}A map showing the MW locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 27 parameters, including those with MCLs, required statistical analysis in the UCRS. During the first quarter, oxidation-reduction potential and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Technetium-99 exceeded the current background UTL and is included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 31 parameters, including those with MCLs, required statistical analysis in the URGA. During the first quarter, beta activity, calcium, chromium, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, dissolved solids, magnesium, sodium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

^{**}MW389 had insufficient water to permit a water sample for laboratory analysis.

^{***}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the LRGA. During the first quarter, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices, and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-746-S&T Landfills

First Quarter Calendar Year 2019 (January–March)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (FRNP-RPT-0088/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

The state of the s

Kenneth R. Davis

PG113927

4. REFERENCES

- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:	U.S. D	OE–Pac	lucah	Gaseous	Diffusion Plant	Activity: C-746-S&T Landfills		
	(As	officially	shown	on DWM	Permit Face)			
Permit No:	SW07300014, SW07300015, SW07300045		7300015, Finds/Unit No:		Quarter & Yea	1st Qtr. CY 2019		
Please check the	following	as appli	cable	:				
Character	rization	X	Qua	rterly	Semiannual	Annua	d Assessment	
Please check app	licable sul	bmittal(s	s): _	X	Groundwater	X	Surface Water	
			_		Leachate	X	Methane Monitoring	
45:160) or by statut jurisdiction of the E hours of making the lab report is No pages. I certify under penaccordance with a secondance wi	e (Kentuck division of Vale determine OT considerally of law system design of the per- dedge and by	y Revises Waste Ma nation us red notif that this gned to a son or pe belief, tru	d Statu anager sing st ication s docu assure rsons (ae, acc	ues Chap ment. You tatistical n. Instruc- ument and that qual directly r urate, and	ter 224) to conduct ground must report any indicated analyses, direct comparations for completing the find all attachments were properly gesponsible for gathering the	ndwater and surface ation of contamination, or other sime form are attached. It prepared under my gather and evaluate the information, the that there are significant	ulations-401 KAR 48:300 and water monitoring under thation within forty-eight (48 ilar techniques. Submitting Do not submit the instruction direction or supervision in the information submitted information submitted is, to cant penalties for submitting	
Myrna E. Redfie Four Rivers Nuc				_		Date		
Jennifer Woodar U.S. Department			Lead			Date		

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

	Groundwater: January 20 Surface water: January 20					SW07300014, SW07300015,			
Sampling Date:	Methane: February 2019		County:	McCracken	Permit Nos.	SW07300045			
Facility Name: U.S. DOE—Paducah Gaseous Diffusion Plant									
(As officially shown on DWM Permit Face)									
Site Address:	5600 Hobbs Road	Key	vil, Kentucky			42053			
	Street		City/State			Zip			
Phone No:	(270) 441-6800	Latitude:	N 37° 07' 37.	.70"	Longitude:	W 88° 47' 55.41"			
		OWNER INFO	RMATION						
Facility Owner:	U.S. DOE, Robert E. Edwa	ards III, Manager			Phone No:	(859) 227-5020			
Contact Person:	David Hutchison	<u></u>			Phone No:	(270) 441-5929			
Contact Person Ti	tle: Director, Environme	ental Services, Four Ri	vers Nuclear I	Partnership, L	LC				
Mailing Address:	5511 Hobbs Road	Ke	vil, Kentucky			42053			
	Street		City/State			Zip			
SAMPLING PERSONNEL (IF OTHER THAN LANDFILL OR LABORATORY)									
Company:	GEO Consultants, LLC								
Contact Person:	Sam Martin				Phone No:	(270) 441-6755			
Mailing Address:	199 Kentucky Avenue	Ke	vil, Kentucky			42053			
	Street		City/State			Zip			
		LABORATORY	RECORD #1	1					
Laboratory:	GEL Laboratories, LLC		La	ab ID No: <u>K</u>	Y90129				
Contact Person:	Valerie Davis				Phone No:	(843) 769-7391			
Mailing Address:	2040 Savage Road	Charlest	on, South Car	rolina		29407			
	Street		City/State			Zip			
		LABORATORY	RECORD #2	2					
Laboratory:	N/A			Lab ID No:	N/A				
Contact Person:	N/A			•	Phone No:	N/A			
Mailing Address:	N/A								
	Street		City/State			Zip			
		LABORATORY	RECORD #3	3					
Laboratory:	N/A			Lab ID No:	N/A				
Contact Person:	N/A				Phone No:	N/A			
Mailing Address:	N/A								
	Street		City/State			Zip			

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-520	1	8000-52	202	8000-52	242	8000-524	43
Facility's Lo	cal Well or Spring Number (e.g., N	/W−1	, MW-2, etc	:.)	220		221		222		223	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/22/2019 09	9:25	1/22/2019	10:10	1/22/2019	12:41	1/22/2019 1	0:54
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	ility Sample ID Number (if applicable)					2-19	MW221S	G2-19	MW222S0	G2-19	MW223SG	2-19
Laboratory San	oratory Sample ID Number (if applicable))1	469611	003	4696110	005	4696110	07
Date of Analy	sis (Month/Day/Year) For <u>Volatile</u>	ganics Anal	ysis.	1/28/2019	9	1/28/20	19	1/26/20	19	1/26/201	9	
Gradient with	respect to Monitored Unit (UP, DC	, NWC	SIDE, UNKN	IOWN)	UP		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.199	J	0.369		0.395		0.386	
16887-00-6	Chloride(s)	т	mg/L	9056	17.4	*	32	*	31.3	*	26.4	*
16984-48-8	Fluoride	т	mg/L	9056	0.334		0.187		0.259		0.329	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.57		0.934		0.833		0.844	
14808-79-8	Sulfate	т	mg/L	9056	21.4		15.5		13.8		22	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.22		30.19		30.16		30.19	
S0145	Specific Conductance	Т	μ M H0/cm	Field	416		389		371		406	

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	2	8000-5243	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.14		326.26		326.43		326.49	
N238	Dissolved Oxygen	т	mg/L	Field	4.08		4.18		3.53		3.31	
s0266	Total Dissolved Solids	Т	mg/L	160.1	209		206		201		203	
s0296	рн	т	Units	Field	6.21		6.19		6.23		6.16	
NS215	Eh	Т	mV	Field	361		403		408		407	
s0907	Temperature	т	°C	Field	13.33		13.78		14.61		14.11	
7429-90-5	Aluminum	Т	mg/L	6020	0.255		0.0195	J	0.0428	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00245	J	0.00208	J	0.002	J	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.236		0.224		0.281		0.237	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.00736	J	0.0141	J	0.01	J	0.00854	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	26		22.6		19.6		23.4	
7440-47-3	Chromium	т	mg/L	6020	0.0102		0.325		<0.01		0.00985	J
7440-48-4	Cobalt	т	mg/L	6020	0.00135		0.00105		0.00161		0.000336	J
7440-50-8	Copper	Т	mg/L	6020	0.00388		0.0163		0.00291		0.00251	
7439-89-6	Iron	Т	mg/L	6020	0.584		1.52		0.0901	J	<0.1	
7439-92-1	Lead	Т	mg/L	6020	0.000644	J	<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	10.8		10.2		9.03		10.3	
7439-96-5	Manganese	Т	mg/L	6020	0.0136		0.00547		0.0269		0.00633	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8000-520	01	8000-52	02	8000-524	42	8000-52	43
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	0.00144		0.0225		0.000647		0.00477	
7440-02-0	Nickel	Т	mg/L	6020	0.0183		0.0961		0.118		0.182	
7440-09-7	Potassium	Т	mg/L	6020	5.52		1.43		0.584		1.11	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	45.1		46.6		45		47.5	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	T	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	0.00434	J	0.00712	J	<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number		8000-520	1	8000-520)2	8000-52	242	8000-52	243		
Facility's Loc	cal Well or Spring Number (e.g., 1	MW-	1, MW-2, et	cc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	0.00034	J	<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	42	8000-52	43
Facility's Loc	al Well or Spring Number (e.g., M	IW −1	L, MW-2, et	cc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000193		<0.0000189		<0.0000191		<0.0000192	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5201		8000-5202	2	8000-524	2	8000-524	13
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	T	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.41	*	1.99	*	-0.00901	*	-2.7	*
12587-47-2	Gross Beta	Т	pCi/L	9310	23	*	1	*	2.11	*	6.64	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.169	*	0.0778	*	-0.0331	*	0.45	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	1.4	*	1.53	*	0.672	*	-0.839	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	19.4	*	13.9	*	4.63	*	17	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.16	*	0.202	*	0.171	*	-0.0478	*
10028-17-8	Tritium	Т	pCi/L	906.0	11.3	*	-1.14	*	-14.2	*	69.2	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		14.4	J	12.3	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.742	J	0.98	J	0.992	J	1.02	J
s0586	Total Organic Halides	т	mg/L	9020	<0.01		0.00404	BJ	<0.01		<0.01	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8000-5244	4	8004-48	320	8004-48	318	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g., N	1W−1	., MW-2, etc	.)	224		369		370		372	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/22/2019 13	3:27	1/16/2019	11:04	1/16/2019	13:03	1/17/2019 0	8:33
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	ility Sample ID Number (if applicable)					-19	MW369U	G2-19	MW370U0	G2-19	MW372UG	2-19
Laboratory San	oratory Sample ID Number (if applicable)					9	469131	007	4691310	009	4693490	01
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ganics Anal	ysis	1/26/2019)	1/23/20	19	1/23/20	19	1/24/201	9	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	SIDE		DOW	N	DOWI	N	DOWN	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.477		0.318		0.371		0.482	
16887-00-6	Chloride(s)	Т	mg/L	9056	35.6	*	31.6	*	33.8	*	40.9	
16984-48-8	Fluoride	Т	mg/L	9056	0.384		0.209		0.136		0.195	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.04		0.308	J	0.766		0.474	
14808-79-8	Sulfate	т	mg/L	9056	14.5		6.59		23		71.7	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.13		30.29		30.26		30.04	
S0145	Specific Conductance	т	μ M H0/cm	Field	427		386		458		613	

¹AKGWA # is 0000-0000 for any type of blank.

- STANDARD FLAGS: * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., MW	7-1,	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	т	Ft. MSL	Field	326.57		326.36		326.41		326.43	
N238	Dissolved Oxygen	т	mg/L	Field	3.3		1.26		3.52		0.78	
S0266	Total Dissolved Solids	T	mg/L	160.1	219		224	В	257	В	394	
s0296	рн	T	Units	Field	6.23		6.29		6.17		6.1	
NS215	Eh	T	mV	Field	373		432		440		393	
s0907	Temperature	т	°C	Field	14.78		15.11		14.11		13.72	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.0567		<0.05		<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		0.00252	J	0.00347	J	<0.005	
7440-39-3	Barium	т	mg/L	6020	0.225		0.422		0.225		0.055	*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0197		0.0165		0.0342		0.872	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	24		16.3		29.1		46.8	
7440-47-3	Chromium	T	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	T	mg/L	6020	0.000915	J	0.00505		0.000351	J	0.000795	J
7440-50-8	Copper	т	mg/L	6020	0.00208		0.00366		0.00263		0.00192	
7439-89-6	Iron	т	mg/L	6020	0.0892	J	0.0841	J	0.0448	J	0.139	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	10.6		7.17		12.9		18.9	
7439-96-5	Manganese	т	mg/L	6020	0.0111		0.017		0.00212	J	0.00722	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8000-524	44	8004-48	20	8004-48	18	8004-48	08
Facility's L	ocal Well or Spring Number (e.g.	, MW-	-1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	0.000477	J	<0.0005		<0.0005		0.000358	J
7440-02-0	Nickel	т	mg/L	6020	0.0501		0.0057		0.000651	J	0.00125	J
7440-09-7	Potassium	т	mg/L	6020	0.946		0.545		2.58		2.19	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	54.6		53.1	*	46	*	46.2	
7440-25-7	Tantalum	T	mg/L	6020	<0.005	*	<0.005		<0.005		<0.005	
7440-28-0	Thallium	T	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	T	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	T	mg/L	6020	<0.01		0.00516	J	0.00438	J	<0.01	
7440-66-6	Zinc	T	mg/L	6020	<0.01		0.00361	J	0.00371	J	<0.01	
108-05-4	Vinyl acetate	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	T	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	
108-90-7	Chlorobenzene	T	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	
1330-20-7	Xylenes	T	mg/L	8260	<0.003		<0.003	*	<0.003	*	<0.003	
100-42-5	Styrene	T	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number		8000-5244	4	8004-482	20	8004-48	318	8004-48	308		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005	*	<0.005	*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00119		0.00085	J	0.00516	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-4820)	8004-48	18	8004-48	08
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005	*	<0.005	*	<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005	*	<0.005	*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.000019		<0.0000198		<0.0000198		<0.0000203	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001	*	<0.001	*	<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*	<0.0962		<0.0952		<0.0943	
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.0962		<0.0952		<0.0943	
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.0962		<0.0952		<0.0943	
11141-16-5	PCB-1232	Т	ug/L	8082		*	<0.0962		<0.0952		<0.0943	
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0962		<0.0952		<0.0943	
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.0962		<0.0952		<0.0943	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244		8004-4820)	8004-481	8	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*	<0.0962		<0.0952		<0.0943	
11096-82-5	PCB-1260	т	ug/L	8082		*	<0.0962		<0.0952		<0.0943	
11100-14-4	PCB-1268	т	ug/L	8082		*	<0.0962		<0.0952		<0.0943	
12587-46-1	Gross Alpha	т	pCi/L	9310	4.07	*	3.18	*	-1.91	*	5.89	*
12587-47-2	Gross Beta	Т	pCi/L	9310	8.76	*	22.5	*	75.8	*	25.4	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.209	*	0.746	*	1.1	*	0.519	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-3.48	*	0.0182	*	0.969	*	2.42	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	12.2	*	39.1	*	94.3	*	35	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.522	*	-0.0747	*	0.404	*	0.037	*
10028-17-8	Tritium	Т	pCi/L	906.0	67.9	*	86.7	*	94.4	*	47.3	*
s0130	Chemical Oxygen Demand	т	mg/L	410.4	12.3	J	18.4	J	28.6		<20	*
57-12-5	Cyanide	т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		0.236	J
s0268	Total Organic Carbon	т	mg/L	9060	0.954	J	1.36	J	1.07	J	2.37	
S0586	Total Organic Halides	Т	mg/L	9020	0.0068	J	0.022		0.00792	J	0.0121	В

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-48	309	8004-48	10	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g., N	4W−1	., MW-2, etc	:.)	373		384		385		386	
Sample Sequen	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date a	nd Time (Month/Day/Year hour: minu	tes)		1/17/2019 10	0:01	1/22/2019	08:20	1/22/2019	10:17	1/22/2019 1	1:13
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW373UG2	2-19	MW384S	G2-19	MW385S0	G2-19	MW386SG2	2-19
Laboratory San	poratory Sample ID Number (if applicable))3	469611	013	4696110)15	4696110	17
Date of Analy	te of Analysis (Month/Day/Year) For Volatile Organics Analysis					9	1/26/20	19	1/26/20	19	1/26/201	9
Gradient with	radient with respect to Monitored Unit (UP, DOWN, SID				DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.697	*	0.323		0.3		<0.2	
16887-00-6	Chloride(s)	т	mg/L	9056	42.8		33.7	*	32.1	*	13.3	*
16984-48-8				9056	0.168		0.278		0.248		0.658	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.765	*	0.969		0.908		<0.1	
14808-79-8	Sulfate	т	mg/L	9056	121		23.7		21.3		47.5	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.06		30.22		30.19		30.19	
S0145	Specific Conductance	Т	μ MH 0/cm	Field	741		453		420		587	_

¹AKGWA # is 0000-0000 for any type of blank.

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

STANDARD FLAGS:

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-I	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	326.67		326.28		326.4		347.36	
N238	Dissolved Oxygen	Т	mg/L	Field	1.07		3.59		3.7		1.61	
s0266	Total Dissolved Solids	Т	mg/L	160.1	386		211		206		341	
s0296	рН	Т	Units	Field	6.16		6.11		5.96		6.55	
NS215	Eh	Т	mV	Field	336		308		397		162	
s0907	Temperature	Т	ပ	Field	14.56		12.89		12.61		13.94	
7429-90-5	Aluminum	Т	mg/L	6020	<0.05		0.027	J	0.179		0.05	J
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	0.00288	J	0.00299	J	0.00277	J	0.00319	J
7440-39-3	Barium	Т	mg/L	6020	0.0396	*	0.192		0.238		0.208	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	1.1		0.0543		0.0296		0.00659	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	64.4		26.3		25.9		21.1	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		0.00367	J	<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.000376	J	<0.001		0.000581	J	0.00975	
7440-50-8	Copper	Т	mg/L	6020	0.00457		0.0032		0.00235		0.00198	
7439-89-6	Iron	Т	mg/L	6020	<0.1		0.897		0.345		1.9	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	24.2		11.1		10.6		9.08	
7439-96-5	Manganese	Т	mg/L	6020	0.0223		0.0418		0.0193		1.13	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		0.000561	
7440-02-0	Nickel	т	mg/L	6020	0.00182	J	0.000789	J	0.00127	J	0.00226	
7440-09-7	Potassium	т	mg/L	6020	2.91		1.63		1.86		0.302	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	53.6		53.7		47.5		107	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	T	mg/L	6020	0.000084	J	<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	0.00344	BJ	<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		0.00365	J	0.00354	J	<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-480)9	8004-48	310	8004-48	304
Facility's Loc	al Well or Spring Number (e.g., 1	∙w-:	1, MW-2, et	cc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00457		0.00038	J	0.00043	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809)	8004-48	10	8004-48	04
Facility's Loc	al Well or Spring Number (e.g., M	IW −1	L, MW-2, et	cc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000197		<0.0000189		<0.000019		<0.0000189	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0943			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0943			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0943			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0943			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0943			*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0943			*		*		*

C-19

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-4809		8004-481	0	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	L, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082	<0.0943			*		*		*
11096-82-5	PCB-1260	т	ug/L	8082	<0.0943			*		*		*
11100-14-4	PCB-1268	т	ug/L	8082	<0.0943			*		*		*
12587-46-1	Gross Alpha	т	pCi/L	9310	3.23	*	-0.252	*	4.38	*	-0.517	*
12587-47-2	Gross Beta	т	pCi/L	9310	17.4	*	95.6	*	73.6	*	6.67	*
10043-66-0	Iodine-131	т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	-0.0147	*	0.628	*	-0.345	*	0.182	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	2.71	*	0.87	*	2.62	*	-3.15	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	28.4	*	152	*	149	*	8.83	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.648	*	0.161	*	-0.114	*	0.568	*
10028-17-8	Tritium	т	pCi/L	906.0	56.8	*	40.7	*	-12	*	14.9	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20	*	<20		10.2	J	23	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	T	mg/L	300.0	<0.5		<0.5		<0.5		0.253	J
S0268	Total Organic Carbon	Т	mg/L	9060	1.37	J	1.25	J	1.15	J	6.87	
s0586	Total Organic Halides	Т	mg/L	9020	0.0137	В	0.0111		0.00642	J	0.195	

C-20

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-48	316	8004-48	12	8004-481	1
Facility's Loc	cal Well or Spring Number (e.g., 1	4W-1	L, MW-2, etc	:.)	387		388		389		390	
Sample Sequence	ce #				1		1		1		1	
If sample is a E	Blank, specify Type: (F)ield, (T)rip,	(M) ∈	ethod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/22/2019 08	8:51	1/22/2019	09:32	NA		1/22/2019 08	8:08
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW387SG2	2-19	MW388S0	G2-19	NA		MW390SG2	2-19
Laboratory Sam	ooratory Sample ID Number (if applicable)						469611	021	NA		46961102	:3
Date of Analys	ce of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					9	1/26/20	19	NA		1/26/2019	9
Gradient with	respect to Monitored Unit (UP, Do	, NWC	, SIDE, UNKN	OWN)	DOWN		DOW	N	DOWN		DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.841		0.402			*	0.414	
16887-00-6	Chloride(s)	т	mg/L	9056	46.3	*	34.7	*		*	38.2	*
16984-48-8	Fluoride	Т	mg/L	9056	0.494		0.249			*	0.469	
s0595			9056	1.81		0.904			*	2.29		
14808-79-8	Sulfate	Т	mg/L	9056	21.5		27.5			*	33.5	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.22		30.22			*	30.22	
S0145	Specific Conductance	Т	μ M H0/cm	Field	545		475			*	641	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Loc	cal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	326.42		326.4			*	326.54	
N238	Dissolved Oxygen	т	mg/L	Field	2.35		3.73			*	4.04	
s0266	Total Dissolved Solids	т	mg/L	160.1	246		216			*	313	
s0296	рН	Т	Units	Field	6.13		6.01			*	6.22	
NS215	Eh	Т	mV	Field	373		386			*	359	
s0907	Temperature	т	°C	Field	12.61		12.17			*	11.22	
7429-90-5	Aluminum	Т	mg/L	6020	0.0369	J	0.129			*	0.411	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	т	mg/L	6020	0.00371	J	0.00312	J		*	0.00235	J
7440-39-3	Barium	т	mg/L	6020	0.16		0.211			*	0.248	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0216		0.029			*	0.0151	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	т	mg/L	6020	34.9		30.4			*	29.4	
7440-47-3	Chromium	T	mg/L	6020	<0.01		0.00317	J		*	<0.01	
7440-48-4	Cobalt	T	mg/L	6020	<0.001		<0.001			*	0.000314	J
7440-50-8	Copper	Т	mg/L	6020	0.00171		0.00224			*	0.00264	
7439-89-6	Iron	Т	mg/L	6020	0.164		0.482			*	0.333	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	14.2		13.6			*	12.9	
7439-96-5	Manganese	Т	mg/L	6020	0.021		0.00382	J		*	0.00167	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-48	15	8004-48	16	8004-48	12	8004-481	1
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.000306	J		*	0.000323	J
7440-02-0	Nickel	Т	mg/L	6020	0.000613	J	0.00186	J		*	0.00138	J
7440-09-7	Potassium	Т	mg/L	6020	1.33		2.16			*	0.403	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-23-5	Sodium	Т	mg/L	6020	58.5		52.2			*	87.4	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*		*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002			*	0.000175	J
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01			*	0.00342	J
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01			*	<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: None
For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-48	16	8004-48	312	8004-48	11
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00085	J	0.00061	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-4810	3	8004-48	12	8004-4811	1
Facility's Loc	al Well or Spring Number (e.g., N	1 ₩−1	1, MW-2, et	cc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.000019		<0.0000191			*	<0.0000191	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB, Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815	;	8004-4816	i	8004-481	2	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.51	*	9.95	*		*	0.166	*
12587-47-2	Gross Beta	Т	pCi/L	9310	157	*	80.9	*		*	33.1	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.148	*	0.679	*		*	0.715	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.552	*	0.651	*		*	0.216	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	255	*	166	*		*	78.9	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.201	*	-0.193	*		*	-0.038	*
10028-17-8	Tritium	Т	pCi/L	906.0	-0.87	*	-22.8	*		*	44.5	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	10.2	J	12.3	J		*	<20	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5			*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.33	J	1.15	J		*	2.07	
s0586	Total Organic Halides	Т	mg/L	9020	0.0158		0.0116			*	0.0142	
											_	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-480	5	8004-48	306	8004-48	07	8004-480)2
Facility's Lo	cal Well or Spring Number (e.g., N	4W−1	., MW-2, etc	:.)	391		392		393		394	
Sample Sequence	ce #				1		1		1		1	
If sample is a	Blank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/22/2019 12	2:47	1/22/2019	13:28	1/22/2019	14:08	1/23/2019 1	0:22
Duplicate ("Y	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Samp	le ID Number (if applicable)				MW391SG2	-19	MW392S0	G2-19	MW393S0	G2-19	MW394SG2	2-19
Laboratory San	oratory Sample ID Number (if applicable)					5	469611	027	4696110)29	46966700	01
Date of Analys	sis (Month/Day/Year) For <u>Volatile</u>	ganics Anal	ysis	1/26/2019)	1/26/20	19	1/28/20	19	1/29/201	9	
Gradient with	dient with respect to Monitored Unit (UP)			OWN)	DOWN		DOW	N	DOWI	٧	UP	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
24959-67-9	Bromide	т	mg/L	9056	0.602		0.872		0.145	J	0.616	
16887-00-6	Chloride(s)	т	mg/L	9056	46.6	*	47.6	*	12.9	*	45.1	*
16984-48-8	Fluoride	т	mg/L	9056	0.246		0.192		0.161		0.142	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.38		0.537		<0.1		1.36	
14808-79-8	Sulfate	т	mg/L	9056	55		10.7		20.5		11	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.16		30.13		30.11		29.81	
S0145	Specific Conductance	Т	μ M H0/cm	Field	493		410		457		381	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	6	8004-4807	7	8004-4802	
	cal Well or Spring Number (e.g., MV	I-1, I	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	326.47		326.44		339.29		326.8	
N238	Dissolved Oxygen	Т	mg/L	Field	3.66		1.33		1.22		4.55	
S0266	Total Dissolved Solids	Т	mg/L	160.1	236		214		237		197	
s0296	рН	т	Units	Field	5.98		6.08		6.14		6.33	
NS215	Eh	т	mV	Field	300		344		232		314	
s0907	Temperature	Т	°C	Field	13.5		13.72		14.56		14.89	
7429-90-5	Aluminum	т	mg/L	6020	0.144		<0.05		0.0602		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	0.00225	J	0.00208	J	0.00545		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.119		0.199		0.16		0.256	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.2		0.0284		0.022		0.0241	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	36.5		29.4		14.8		27.9	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.00182		0.00182		0.00639		0.00236	
7439-89-6	Iron	Т	mg/L	6020	0.751		0.19		2.97		0.14	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		0.00057	J
7439-95-4	Magnesium	Т	mg/L	6020	15.9		11.3		4.26		11.4	
7439-96-5	Manganese	Т	mg/L	6020	0.0126		0.04		0.0576		0.00393	J
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-480	05	8004-48	06	8004-480	07	8004-48	02
Facility's L	ocal Well or Spring Number (e.g.	, MW-	·1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-02-0	Nickel	т	mg/L	6020	0.000798	J	0.00065	J	<0.002		0.00616	
7440-09-7	Potassium	т	mg/L	6020	1.78		1.92		0.486		1.47	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	35.9		36.6		86.9		32.7	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		0.00415	J	0.00342	J
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-480	5	8004-480	06	8004-48	307	8004-48	302
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	т	mg/L	8260	0.00034	J	0.00092	J	<0.001		<0.001	
74-95-3	Methylene bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0089		0.011		<0.001		0.0036	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	6	8004-480	07	8004-48	02
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	L, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000194		<0.0000193		<0.000019		<0.0000199	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4805		8004-4806		8004-480	7	8004-480	2
Facility's Lo	cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-3.75	*	-0.00961	*	4.26	*	2.24	*
12587-47-2	Gross Beta	Т	pCi/L	9310	3.29	*	1.44	*	1.72	*	4.28	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	-0.206	*	0.581	*	0.773	*	0.254	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.269	*	1.36	*	3.15	*	-0.124	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	1.91	*	2.18	*	13.9	*	11.5	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.706	*	-0.116	*	-0.114	*	0.687	*
10028-17-8	Tritium	Т	pCi/L	906.0	61.4	*	45.3	*	17.8	*	100	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20		<20		16.6	J	<20	*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		0.236	J	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.889	J	1.11	J	2.88		0.858	J
s0586	Total Organic Halides	Т	mg/L	9020	0.0131		0.0346		0.0183		0.0146	

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-48	303	8004-48	317	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., N	⁄w−1	, MW-2, etc	:.)	395		396		397		E. BLAN	K
Sample Sequenc	e #				1		1		1		1	
If sample is a B	clank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA		NA		NA		Е	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		1/23/2019 09	9:24	1/23/2019	09:50	1/23/2019	11:01	1/22/2019 0	7:05
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)				MW395SG2	!-19	MW396S0	G2-19	MW397S0	G2-19	RI1SG2-	19
Laboratory Sam	poratory Sample ID Number (if applicable)						469667	005	4696670	007	46961103	32
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Analysis)	1/30/20	19	1/29/20	19	1/28/201	9
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.735		1.12		0.419			*
16887-00-6	Chloride(s)	т	mg/L	9056	41.7	*	67.6	*	34.7	*		*
16984-48-8	Fluoride	т	mg/L	9056	0.117		0.589		0.157			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.44		<0.1		1.3			*
14808-79-8	Sulfate	Т	mg/L	9056	10.6		25.4		10.1			*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.79		29.79		29.83			*
S0145	Specific Conductance	Т	μ M H0/cm	Field	359		752		316			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, <u>do not</u> use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	1	8004-480	3	8004-4817	,	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g., MW	-1, I	MW-2, BLANK-	F, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	327.19		371.58		326.71			*
N238	Dissolved Oxygen	т	mg/L	Field	4.83		3.98		6.39			*
S0266	Total Dissolved Solids	т	mg/L	160.1	284		407		160			*
s0296	рН	т	Units	Field	6.01		6.46		6.11			*
NS215	Eh	т	mV	Field	433		231		394			*
s0907	Temperature	т	°c	Field	14.61		14.83		13.94			*
7429-90-5	Aluminum	т	mg/L	6020	<0.05		<0.05		0.0393	J	<0.05	
7440-36-0	Antimony	т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	т	mg/L	6020	<0.005		0.00286	J	<0.005		<0.005	
7440-39-3	Barium	т	mg/L	6020	0.244		0.42		0.143		<0.002	
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0238		0.00922	J	0.00969	J	<0.015	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	27.3		35.9		19		0.883	
7440-47-3	Chromium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	т	mg/L	6020	<0.001		0.00357		<0.001		<0.001	
7440-50-8	Copper	т	mg/L	6020	0.00285		0.0028		0.00212		0.00256	
7439-89-6	Iron	т	mg/L	6020	0.0701	J	2.3		0.119		<0.1	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	т	mg/L	6020	11.2		15.3		7.84		0.0214	J
7439-96-5	Manganese	т	mg/L	6020	0.00146	J	0.581		0.003	J	<0.005	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-480	01	8004-48	03	8004-48	17	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	395		396		397		E. BLAN	١K
CAS RN ⁴	CONSTITUENT	Т D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
7439-98-7	Molybdenum	т	mg/L	6020	0.00024	J	0.000386	J	<0.0005		<0.0005	
7440-02-0	Nickel	т	mg/L	6020	0.00178	J	0.00235		0.00103	J	<0.002	
7440-09-7	Potassium	т	mg/L	6020	1.64		0.834		1.77		<0.3	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	Т	mg/L	6020	30.3		110		33.8		<0.25	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005	*	<0.005	*	<0.005	*	<0.005	*
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		0.00431	J	<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-480)3	8004-48	317	0000-00	000
Facility's Loc	al Well or Spring Number (e.g., N	MW-	1, MW-2, et	.c.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00289		0.00043	J	0.00034	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	, Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-48	17	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g., N	4W −1	L, MW-2, et	cc.)	395		396		397		E. BLAN	ΙΚ
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000195		<0.0000197		<0.0000195		<0.0000207	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB, Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4801		8004-4803		8004-481	7	0000-000	00
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	395		396		397		E. BLAN	К
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	T	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	1.92	*	1.37	*	4.54	*	-0.164	*
12587-47-2	Gross Beta	Т	pCi/L	9310	5.24	*	-3.09	*	8.19	*	7.02	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.738	*	0.316	*	-0.185	*	0.322	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.928	*	-1.81	*	-1.24	*	-0.099	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	10.3	*	6.22	*	7.12	*	3.94	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.668	*	1.48	*	0.042	*	-0.368	*
10028-17-8	Tritium	Т	pCi/L	906.0	160	*	21.1	*	42.5	*	40.4	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	<20	*	<20	*	<20	*		*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5		0.735		<0.5		<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.793	J	4.95		0.755	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.0066	J	0.0344		0.0046	J		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502)564-6716

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: <u>KY8-890-008-982</u>/1

LAB ID: None
For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-000)0
Facility's Loc	al Well or Spring Number (e.g., b	1W−1	L, MW-2, etc	:.)	F. BLAN	K	T. BLAN	K 1	T. BLANK	(2	T. BLANK	(3
Sample Sequenc	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	F		Т		Т		Т	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		1/22/2019 0	8:22	1/22/2019 (07:00	1/22/2019 0	7:10	1/23/2019 0	6:30
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	cility Sample ID Number (if applicable)						TB1SG2	-19	TB2SG2-	19	TB3SG2-	19
Laboratory Sam	boratory Sample ID Number (if applicable)						4696110	33	4696110	34	46966700)9
Date of Analys	ate of Analysis (Month/Day/Year) For Volatile Organics Analysis						1/28/20	19	1/28/201	9	1/30/201	9
Gradient with	respect to Monitored Unit (UP, DO	, NWC	, SIDE, UNKN	IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT CONSTITUENT T Unit D OF MEASURE		METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595						*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
S0145	Specific Conductance	Т	μ M H0/cm	Field	_	*		*		*		*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

⁴Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁵"T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

7Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	0000-0000	
Facility's Lo	ocal Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-	F, etc.)	F. BLAN	<	T. BLANK	1	T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	т	mg/L	160.1		*		*		*		*
s0296	рн	т	Units	Field		*		*		*		*
NS215	Eh	т	mV	Field		*		*		*		*
s0907	Temperature	т	°C	Field		*		*		*		*
7429-90-5	Aluminum	т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	т	mg/L	6020	<0.002			*		*		*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	Т	mg/L	6020	0.00172			*		*		*
7439-89-6	Iron	т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	Т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	Т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	Т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	т	mg/L	7470	<0.0002			*		*		*

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				0000-000	00	0000-00	00	0000-000	00	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	F. BLAN	IK	T. BLAN	K 1	T. BLAN	< 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005			*		*		*
7440-02-0	Nickel	т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	Т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	Т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	Т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	т	mg/L	6020	<0.005	*		*		*		*
7440-28-0	Thallium	т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	т	mg/L	6020	<0.01			*		*		*
7440-66-6	Zinc	т	mg/L	6020	<0.01			*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	0.00852		<0.005		<0.005		0.00302	J
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

LAB ID: <u>None</u>
For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000)	0000-000	00	0000-00	000	0000-00	000
Facility's Loc	al Well or Spring Number (e.g., N	4W−:	1, MW-2, et	.c.)	F. BLANK	(T. BLANK	(1	T. BLAN	IK 2	T. BLAN	IK 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	0.0116		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000	0	0000-0000)	0000-000	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., N	1 ₩−1	1, MW-2, et	cc.)	F. BLAN	(T. BLANK	1	T. BLAN	< 2	T. BLANI	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.000019		<0.000019		<0.0000189		<0.0000199	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-0000		0000-0000		0000-0000	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	tc.)	F. BLANK		T. BLANK 1		T. BLANK 2		T. BLANK 3	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.811	*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	5.06	*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	-0.327	*		*		*		*
10098-97-2	Strontium-90	т	pCi/L	905.0	-0.00289	*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	4.42	*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.115	*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0	169	*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	T	mg/L	300.0	<0.5			*		*		*
S0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	т	mg/L	9020		*		*		*		*

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	9						
Facility's Loc	al Well or Spring Number (e.g., M		, MW-2, etc	:.)	384							
Sample Sequenc	e #				1						/	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M) e	thod, or (E)	quipment	NA							
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		1/22/2019 08	8:20	`	$\overline{\ \ }$				
Duplicate ("Y"	or "N") ²				Υ							
Split ("Y" or	"N") ³				N							
Facility Sampl	acility Sample ID Number (if applicable)					2-19						
Laboratory Sam	aboratory Sample ID Number (if applicable)					1						
Date of Analys	ate of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					9						
Gradient with	ate of Analysis (Month/Day/Year) For Volatile Organics Analysis radient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN				SIDE				\setminus	/		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	T	mg/L	9056	0.365							
16887-00-6	Chloride(s)	Т	mg/L	9056	33.3	*						
16984-48-8	Fluoride	Т	mg/L	9056	0.165							
s0595	Nitrate & Nitrite	т	mg/L	9056	0.805							
14808-79-8	Sulfate	т	mg/L	9056	24.1							
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*						
S0145	Specific Conductance	Т	μ MH 0/cm	Field		*						

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	9	\setminus					
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	W-2, BLANK-	F, etc.)	384							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*						
N238	Dissolved Oxygen	т	mg/L	Field		*						
s0266	Total Dissolved Solids	т	mg/L	160.1	197							
s0296	рН	T	Units	Field		*						
NS215	Eh	т	mV	Field		*						
s0907	Temperature	т	°C	Field		*						
7429-90-5	Aluminum	т	mg/L	6020	0.0219	J						
7440-36-0	Antimony	т	mg/L	6020	<0.003							
7440-38-2	Arsenic	T	mg/L	6020	0.00295	J			X			
7440-39-3	Barium	т	mg/L	6020	0.188							
7440-41-7	Beryllium	T	mg/L	6020	<0.0005							
7440-42-8	Boron	T	mg/L	6020	0.053							
7440-43-9	Cadmium	т	mg/L	6020	<0.001						\	
7440-70-2	Calcium	T	mg/L	6020	25.9							
7440-47-3	Chromium	т	mg/L	6020	<0.01							
7440-48-4	Cobalt	т	mg/L	6020	<0.001		,					
7440-50-8	Copper	T	mg/L	6020	0.00344							
7439-89-6	Iron	Т	mg/L	6020	0.667							
7439-92-1	Lead	Т	mg/L	6020	<0.002							
7439-95-4	Magnesium	T	mg/L	6020	11							
7439-96-5	Manganese	Т	mg/L	6020	0.0331							
7439-97-6	Mercury	т	mg/L	7470	<0.0002		/					

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	09	N					
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	384							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	<0.0005							
7440-02-0	Nickel	Т	mg/L	6020	0.00073	J						
7440-09-7	Potassium	Т	mg/L	6020	1.6							
7440-16-6	Rhodium	T	mg/L	6020	<0.005							
7782-49-2	Selenium	Т	mg/L	6020	<0.005							
7440-22-4	Silver	T	mg/L	6020	<0.001							
7440-23-5	Sodium	T	mg/L	6020	53.6							
7440-25-7	Tantalum	T	mg/L	6020	<0.005	*						
7440-28-0	Thallium	T	mg/L	6020	<0.002				X			
7440-61-1	Uranium	Т	mg/L	6020	<0.0002							
7440-62-2	Vanadium	T	mg/L	6020	<0.01							
7440-66-6	Zinc	T	mg/L	6020	0.00663	J						
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005							
67-64-1	Acetone	T	mg/L	8260	<0.005				Y			
107-02-8	Acrolein	T	mg/L	8260	<0.005							
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005							
71-43-2	Benzene	т	mg/L	8260	<0.001							
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001							
1330-20-7	Xylenes	т	mg/L	8260	<0.003							
100-42-5	Styrene	T	mg/L	8260	<0.001							
108-88-3	Toluene	T	mg/L	8260	<0.001							
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001							

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number			8004-480	9	\setminus					
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-1, MW-2, e	tc.)	384							
CAS RN ⁴	CONSTITUENT	T Unit D OF 5 MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DENECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	T mg/L	8260	<0.001							
75-25-2	Tribromomethane	T mg/L	8260	<0.001							
74-83-9	Methyl bromide	T mg/L	8260	<0.001							
78-93-3	Methyl ethyl ketone	T mg/L	8260	<0.005							
110-57-6	trans-1,4-Dichloro-2-butene	T mg/L	8260	<0.005					/		
75-15-0	Carbon disulfide	T mg/L	8260	<0.005					/		
75-00-3	Chloroethane	T mg/L	8260	<0.001					/		
67-66-3	Chloroform	T mg/L	8260	<0.001					1		
74-87-3	Methyl chloride	T mg/L	8260	<0.001				X			
156-59-2	cis-1,2-Dichloroethene	T mg/L	8260	<0.001							
74-95-3	Methylene bromide	T mg/L	8260	<0.001							
75-34-3	1,1-Dichloroethane	T mg/L	8260	<0.001							
107-06-2	1,2-Dichloroethane	T mg/L	8260	<0.001				/			
75-35-4	1,1-Dichloroethylene	T mg/L	8260	<0.001			/				
106-93-4	Ethane, 1,2-dibromo	T mg/L	8260	<0.001							
79-34-5	Ethane, 1,1,2,2-Tetrachloro	T mg/L	8260	<0.001							
71-55-6	Ethane, 1,1,1-Trichloro-	T mg/L	8260	<0.001							
79-00-5	Ethane, 1,1,2-Trichloro	T mg/L	8260	<0.001							
630-20-6	Ethane, 1,1,1,2-Tetrachloro	T mg/L	8260	<0.001							
75-01-4	Vinyl chloride	T mg/L	8260	<0.001							\overline{N}
127-18-4	Ethene, Tetrachloro-	T mg/L	8260	<0.001							\Box
79-01-6	Ethene, Trichloro-	T mg/L	8260	0.00035	J						

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4809	9	\setminus					
Facility's Loc	al Well or Spring Number (e.g., M	IW −1	., MW-2, et	.c.)	384							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001							
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		\					
74-88-4	Iodomethane	т	mg/L	8260	<0.005							
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001							
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001				\setminus			
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005							
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005							
96-12-8	Propane, 1,2-Dibromo-3-chloro	т	mg/L	8011	<0.0000191							
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001				X			
10061-02-6	trans-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001				/_\			
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001							
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001							
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001						\	
96-18-4	1,2,3-Trichloropropane	т	mg/L	8260	<0.001							
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001							
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		/					
1336-36-3	PCB,Total	т	ug/L	8082		*						
12674-11-2	PCB-1016	Т	ug/L	8082		*						
11104-28-2	PCB-1221	т	ug/L	8082		*						
11141-16-5	PCB-1232	Т	ug/L	8082		*						
53469-21-9	PCB-1242	т	ug/L	8082		*						
12672-29-6	PCB-1248	т	ug/L	8082		*						

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

		(00::0:									
Facility Well/Spring Number				8004-4809							
cal Well or Spring Number (e.g.,	MW-:	1, MW-2, et	.c.)	384							
CONSTITUENT	T D ₅	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
PCB-1254	Т	ug/L	8082		*						
PCB-1260	Т	ug/L	8082		*						
PCB-1268	Т	ug/L	8082		*						
Gross Alpha	Т	pCi/L	9310	2.2	*						
Gross Beta	Т	pCi/L	9310	99.8	*						
Iodine-131	Т	pCi/L			*						
Radium-226	Т	pCi/L	AN-1418	0.652	*						
Strontium-90	Т	pCi/L	905.0	-2.17	*						
Technetium-99	Т	pCi/L	Tc-02-RC	139	*						
Thorium-230	Т	pCi/L	Th-01-RC	-0.265	*			 			
Tritium	Т	pCi/L	906.0	44.3	*						
Chemical Oxygen Demand	Т	mg/L	410.4	14.4	J						
Cyanide	Т	mg/L	9012	<0.2							
Iodide	T	mg/L	300.0	<0.5							
Total Organic Carbon	Т	mg/L	9060	1.27	J	/					
Total Organic Halides	т	mg/L	9020	0.00442	J						
	CONSTITUENT CONSTITUENT PCB-1254 PCB-1260 PCB-1268 Gross Alpha Gross Beta Iodine-131 Radium-226 Strontium-90 Technetium-99 Thorium-230 Tritium Chemical Oxygen Demand Cyanide Iodide Total Organic Carbon	CONSTITUENT CONSTITUENT CONSTITUENT T T T T T CONSTITUENT T T T T CONSTITUENT T T T CONSTITUENT T T T T CONSTITUENT T T T T T T CONSTITUENT T T T T T T T T T T T T	CONSTITUENT CONSTITUENT CONSTITUENT T Unit OF MEASURE CONSTITUENT T Ug/L PCB-1254 PCB-1260 PCB-1268 Gross Alpha T pCi/L Gross Beta T pCi/L Iodine-131 T pCi/L Radium-226 Strontium-90 T pCi/L Technetium-99 T pCi/L Thorium-230 T pCi/L Thorium-230 T pCi/L Thorium-230 T pCi/L Chemical Oxygen Demand T mg/L Cyanide T mg/L Total Organic Carbon T mg/L	CONSTITUENT CONSTITUENT CONSTITUENT T Unit OF MEASURE PCB-1254 PCB-1260 PCB-1268 T ug/L 8082 PCB-1268 T ug/L 8082 Gross Alpha T pCi/L 9310 Gross Beta T pCi/L 9310 Iodine-131 Radium-226 Strontium-90 T pCi/L 905.0 Technetium-99 T pCi/L 70-02-RC Thorium-230 T pCi/L 906.0 Chemical Oxygen Demand T mg/L 9012 Iodide T mg/L 300.0 Total Organic Carbon T mg/L 9060	CONSTITUENT T	CONSTITUENT CONSTITUENT T D S MEASURE CONSTITUENT T Unit OF MEASURE PCB-1254 T Ug/L 8082 PCB-1260 T Ug/L 8082 * PCB-1268 T Ug/L 8082 * PCB-1268 T Ug/L 8082 * Gross Alpha T pCi/L 9310 Gross Beta T pCi/L 9310 PCB-131 T pCi/L 9310 PCB-131 T pCi/L AN-1418 PCB-131 T pCi/L AN-1418 PCB-131 T pCi/L PCB-14 Strontium-90 T pCi/L PCB-14 Technetium-99 T pCi/L TC-02-RC TOUM-130 T pCi/L PCB-14 TOUM-130 T pCi/L PCB-14 TOUM-130 T pCi/L PCB-14 TOUM-130 T pCi/L PCB-14 TOUM-14 T pCi/L PCB-14 TOUM-15 TOUM-16 T PCI/L PCB-16 T PCI/L PCB-16 TOUM-17 TOUM-18 T PCI/L PCB-16 T PCI/	CONSTITUENT CONSTITUENT CONSTITUENT T Unit OF MEASURE DETECTED F VALUE OR A PQL OR PQL OR PQL CONSTITUENT T Unit OF MEASURE DETECTED VALUE OR A PQL OR PQL S S PCB-1254 PCB-1260 T ug/L 8082 PCB-1268 T ug/L 8082 PCB-1268 T ug/L 9310 CONSTITUENT T pCi/L AN-1418 CONSTITUENT T pCi/L AN-1418 CONSTITUENT T pCi/L TC-02-RC TOURL 906.0 T pCi/L 906.0 CONSTITUENT T pCI/L 906.0 CONSTITUEN	CONSTITUENT CONSTITUENT CONSTITUENT D D D DETECTED OF MEASURE D D S MEASURE CONSTITUENT T D S MEASURE D DETECTED VALUE L OR PQL6 S COR A PQL6 S COR A PQL6 S COR A PQL COR A PQL COR	CONSTITUENT T Unit OF MEASURE DETECTED OF VALUE L OR PQL G PQL	CONSTITUENT T	CONSTITUENT

Division of Waste Management Solid Waste Branch 14 Reilly Road Frankfort, KY 40601 (502) 564-6716

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014,SW07300015,SW07300045

FINDS/UNIT: KY8-890-008-982 /1

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ , Facility Well/Spring Number				8000-520)2							
Facility's Loc	Facility's Local Well or Spring Number (e.g., MW-1, MW-2, etc.)				221							
Sample Sequenc	Sample Sequence #			2						,		
If sample is a B	slank, specify Type: (F)ield, (T)rip,	(M) e	ethod, or (E)	quipment	NA							
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		1/22/2019 1	0:10						
Duplicate ("Y"	or "N") ²				N							
Split ("Y" or	"N") ³				N							
Facility Sampl	e ID Number (if applicable)				MW221SG2	2-19						
Laboratory Sam	ple ID Number (if applicable)				4719420	01						
Date of Analys	is (Month/Day/Year) For Volatile	01	rganics Anal	ysis.	NA							
Gradient with	respect to Monitored Unit (UP, DC	, NWC	, SIDE, UNKN	IOWN)	SIDE				\searrow	/		
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*			/			
16887-00-6	Chloride(s)	т	mg/L	9056		*						
16984-48-8	Fluoride	Т	mg/L	9056		*						
s0595	Nitrate & Nitrite	Т	mg/L	9056		*						
14808-79-8	Sulfate	т	mg/L	9056		*						
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field		*						
S0145	Specific Conductance	т	μ M H0/cm	Field		*						

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

 $^{^{2}}$ Respond "Y" if the sample was a duplicate of another sample in this report.

³Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

^{6&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: SW07300014, SW07300015, SW07300045 LAB ID: None

For Official Use Only

					(00::01)							
AKGWA NUMBER ¹ , Facility Well/Spring Number												
Facility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, etc.)					221							
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field		*						
N238	Dissolved Oxygen	т	mg/L	Field		*						
s0266	Total Dissolved Solids	т	mg/L	160.1		*						
s0296	рН	т	Units	Field		*						
NS215	Eh	т	mV	Field		*						
s0907	Temperature	т	°C	Field		*				/		
7429-90-5	Aluminum	Т	mg/L	6020		*						
7440-36-0	Antimony	т	mg/L	6020		*						
7440-38-2	Arsenic	т	mg/L	6020		*			X			
7440-39-3	Barium	т	mg/L	6020		*			/ \			
7440-41-7	Beryllium	т	mg/L	6020		*						
7440-42-8	Boron	т	mg/L	6020		*						
7440-43-9	Cadmium	т	mg/L	6020		*					\	
7440-70-2	Calcium	т	mg/L	6020		*						
7440-47-3	Chromium	т	mg/L	6020	0.293	*						
7440-48-4	Cobalt	т	mg/L	6020		*	,	/				
7440-50-8	Copper	т	mg/L	6020		*						
7439-89-6	Iron	т	mg/L	6020		*						
7439-92-1	Lead	т	mg/L	6020		*					\	
7439-95-4	Magnesium	т	mg/L	6020		*						
7439-96-5	Manganese	т	mg/L	6020		*						
7439-97-6	Mercury	т	mg/L	7470		*						

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5201 MW22	0 MW220SG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.29. Rad error is 4.28.
		Gross beta		TPU is 9.88. Rad error is 9.15.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.563. Rad error is 0.563.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.71. Rad error is 3.7.
		Technetium-99		TPU is 11. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.428. Rad error is 0.426.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 106. Rad error is 106.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5202 MW221	MW221SG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.84. Rad error is 3.83.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 7.33. Rad error is 7.33.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.551. Rad error is 0.551.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.7. Rad error is 2.69.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 11.6. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.723. Rad error is 0.72.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 106. Rad error is 106.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
00-5242 MW22	2 MW222SG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.96. Rad error is 5.95.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.86. Rad error is 5.84.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.477. Rad error is 0.477.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.1. Rad error is 4.1.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 13.1. Rad error is 13.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.587. Rad error is 0.584.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 105. Rad error is 105.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5243 MW22	23 MW223SG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.92. Rad error is 4.91.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.77. Rad error is 6.68.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.688. Rad error is 0.685.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.38. Rad error is 1.38.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.6. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.624. Rad error is 0.623.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 115. Rad error is 114.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5244 MW22	24 MW224SG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.16. Rad error is 5.12.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 7.32. Rad error is 7.17.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.583. Rad error is 0.582.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.4. Rad error is 3.4.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.4. Rad error is 10.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.872. Rad error is 0.863.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 114. Rad error is 113.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4820 MW36	69 MW369UG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Sodium	Е	Result estimated due to matrix interferences.
		Benzene	Y1	MS/MSD recovery outside acceptance criteria
		Chlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		Xylenes	Y1	MS/MSD recovery outside acceptance criteria
		Styrene	Y1	MS/MSD recovery outside acceptance criteria
		Toluene	Y1	MS/MSD recovery outside acceptance criteria
		Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria
		1,2-Dibromoethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,2-Trichloroethane	Y1	MS/MSD recovery outside acceptance criteria
		1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
		Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria
		Ethylbenzene	Y1	MS/MSD recovery outside acceptance criteria
		Iodomethane	Y1	MS/MSD recovery outside acceptance criteria
		Dichloromethane	Y1	MS/MSD recovery outside acceptance criteria
		trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
		1,2-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		1,4-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.59. Rad error is 5.56.
		Gross beta		TPU is 9. Rad error is 8.18.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.803. Rad error is 0.794.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 1.68. Rad error is 1.68.
		Technetium-99		TPU is 11.7. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.474. Rad error is 0.473.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 137. Rad error is 136.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Facility Point Sample ID	Constituent	Flag	Description
8004-4818 MW370 MW370UG2-	9 Chloride	W	Post-digestion spike recovery out of control limits.
	Sodium	Е	Result estimated due to matrix interferences.
	Benzene	Y1	MS/MSD recovery outside acceptance criteria
	Chlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
	Xylenes	Y1	MS/MSD recovery outside acceptance criteria
	Styrene	Y1	MS/MSD recovery outside acceptance criteria
	Toluene	Y1	MS/MSD recovery outside acceptance criteria
	Carbon disulfide	Y1	MS/MSD recovery outside acceptance criteria
	1,2-Dibromoethane	Y1	MS/MSD recovery outside acceptance criteria
	1,1,2-Trichloroethane	Y1	MS/MSD recovery outside acceptance criteria
	1,1,1,2-Tetrachloroethane	Y1	MS/MSD recovery outside acceptance criteria
	Tetrachloroethene	Y1	MS/MSD recovery outside acceptance criteria
	Ethylbenzene	Y1	MS/MSD recovery outside acceptance criteria
	Iodomethane	Y1	MS/MSD recovery outside acceptance criteria
	Dichloromethane	Y1	MS/MSD recovery outside acceptance criteria
	trans-1,3-Dichloropropene	Y1	MS/MSD recovery outside acceptance criteria
	1,2-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
	1,4-Dichlorobenzene	Y1	MS/MSD recovery outside acceptance criteria
	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 4.06. Rad error is 4.06.
	Gross beta		TPU is 17.1. Rad error is 11.6.
	lodine-131		Analysis of constituent not required and not performed.
	Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.949. Rad error is 0.925.
	Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.24. Rad error is 2.23.
	Technetium-99		TPU is 17. Rad error is 13.4.
	Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.739. Rad error is 0.733.
	Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 135. Rad error is 134.
004-4808 MW372 MW372UG2-	9 Barium	N	Sample spike (MS/MSD) recovery not within control limits
	Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 6.89. Rad error is 6.82.
	Gross beta		TPU is 10.2. Rad error is 9.25.
	lodine-131		Analysis of constituent not required and not performed.
	Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.728. Rad error is 0.728.
	Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.66. Rad error is 2.63.
	Technetium-99		TPU is 10.7. Rad error is 9.93.
	Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.55. Rad error is 0.549.
	Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 115. Rad error is 115.
	Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
 004-4792 MW37	73 MW373UG2-19	Bromide	W	Post-digestion spike recovery out of control limits.
		Nitrate & Nitrite	Н	Analysis performed outside holding time requirement
		Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.64. Rad error is 6.62.
		Gross beta		TPU is 10. Rad error is 9.56.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.528. Rad error is 0.528.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.85. Rad error is 2.82.
		Technetium-99		TPU is 10.1. Rad error is 9.57.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.859. Rad error is 0.848.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 104. Rad error is 104.
	Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits	
004-4809 MW384 MW384SG2-19	Chloride	W	Post-digestion spike recovery out of control limits.	
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.26. Rad error is 5.26.
		Gross beta		TPU is 20.9. Rad error is 13.5.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.797. Rad error is 0.779.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.74. Rad error is 2.74.
		Technetium-99		TPU is 22.3. Rad error is 14.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.731. Rad error is 0.729.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 109. Rad error is 109.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4810 MW38	35 MW385SG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.76. Rad error is 5.71.
		Gross beta		TPU is 17.4. Rad error is 12.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.357. Rad error is 0.353.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.78. Rad error is 2.75.
		Technetium-99		TPU is 21.7. Rad error is 14.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.482. Rad error is 0.481.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 104. Rad error is 104.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4804 MW38	36 MW386SG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.51. Rad error is 4.51.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 7.56. Rad error is 7.48.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.495. Rad error is 0.491.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.57. Rad error is 3.57.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.1. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.1. Rad error is 1.09.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 107. Rad error is 107.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4815 MW387 MW387SG2-19		Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.66. Rad error is 3.65.
		Gross beta		TPU is 30.6. Rad error is 16.4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.564. Rad error is 0.56.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.1. Rad error is 2.1.
		Technetium-99		TPU is 34. Rad error is 18.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.624. Rad error is 0.623.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 107. Rad error is 107.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4816 MW388 MW388SG2-19		Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 9.26. Rad error is 9.09.
		Gross beta		TPU is 18.1. Rad error is 12.3.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.798. Rad error is 0.746.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.38. Rad error is 2.38.
		Technetium-99		TPU is 24.8. Rad error is 16.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.502. Rad error is 0.501.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 102. Rad error is 102.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well was dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well was dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample was collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample wa collected.
		рН		During sampling, the well was dry; therefore, no sample was collected.
		Eh		During sampling, the well was dry; therefore, no sample w collected.
		Temperature		During sampling, the well was dry; therefore, no sample w collected.
		Aluminum		During sampling, the well was dry; therefore, no sample w collected.
		Antimony		During sampling, the well was dry; therefore, no sample w collected.
		Arsenic		During sampling, the well was dry; therefore, no sample w collected.
		Barium		During sampling, the well was dry; therefore, no sample w collected.
		Beryllium		During sampling, the well was dry; therefore, no sample w collected.
		Boron		During sampling, the well was dry; therefore, no sample w collected.
		Cadmium		During sampling, the well was dry; therefore, no sample was collected.
		Calcium		During sampling, the well was dry; therefore, no sample was collected.
		Chromium		During sampling, the well was dry; therefore, no sample was collected.
		Cobalt		During sampling, the well was dry; therefore, no sample was collected.
		Copper		During sampling, the well was dry; therefore, no sample was collected.
		Iron		During sampling, the well was dry; therefore, no sample w collected.
		Lead		During sampling, the well was dry; therefore, no sample was collected.
		Magnesium		During sampling, the well was dry; therefore, no sample was collected.
		Manganese		During sampling, the well was dry; therefore, no sample was collected.
		Mercury		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample wa collected.
		Nickel		During sampling, the well was dry; therefore, no sample wa collected.
		Potassium		During sampling, the well was dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well was dry; therefore, no sample wa collected.
		Selenium		During sampling, the well was dry; therefore, no sample was collected.
		Silver		During sampling, the well was dry; therefore, no sample was collected.
		Sodium		During sampling, the well was dry; therefore, no sample was collected.
		Tantalum		During sampling, the well was dry; therefore, no sample was collected.
		Thallium		During sampling, the well was dry; therefore, no sample was collected.
		Uranium		During sampling, the well was dry; therefore, no sample was collected.
		Vanadium		During sampling, the well was dry; therefore, no sample w collected.
		Zinc		During sampling, the well was dry; therefore, no sample w collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample w collected.
		Acetone		During sampling, the well was dry; therefore, no sample w collected.
		Acrolein		During sampling, the well was dry; therefore, no sample w collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample w collected.
		Benzene		During sampling, the well was dry; therefore, no sample w collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample w collected.
		Xylenes		During sampling, the well was dry; therefore, no sample w collected.
		Styrene		During sampling, the well was dry; therefore, no sample w collected.
		Toluene		During sampling, the well was dry; therefore, no sample w collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample w collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample w collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample w collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample w collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample w collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample w collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sample w collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample w collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Chloroform		During sampling, the well was dry; therefore, no sample w collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample w collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample w collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample w collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample w collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample v collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample v collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample v collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample v collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample v collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample v collected.
		lodomethane		During sampling, the well was dry; therefore, no sample v collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample v collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample v collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample v collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample v collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample v collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample v collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample v collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample v collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample v collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample v collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample v collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample w collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample w collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample w collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample w collected.
		Gross beta		During sampling, the well was dry; therefore, no sample w collected.
		lodine-131		During sampling, the well was dry; therefore, no sample w collected.
		Radium-226		During sampling, the well was dry; therefore, no sample w collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample w collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample w collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample w collected.
		Tritium		During sampling, the well was dry; therefore, no sample w collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample w collected.
		Cyanide		During sampling, the well was dry; therefore, no sample w collected.
		lodide		During sampling, the well was dry; therefore, no sample w collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample w collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample v collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4811 MW390) MW390SG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.94. Rad error is 4.94.
		Gross beta		TPU is 11.5. Rad error is 10.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.811. Rad error is 0.743.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.26. Rad error is 2.26.
		Technetium-99		TPU is 15.5. Rad error is 12.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.458. Rad error is 0.457.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 112. Rad error is 112.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4805 MW391	MW391SG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.52. Rad error is 4.52.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.99. Rad error is 5.96.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.34. Rad error is 0.331.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.67. Rad error is 1.67.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 9.85. Rad error is 9.85.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.787. Rad error is 0.775.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 114. Rad error is 113.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4806 MW39	92 MW392SG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
	PCB-1254		Analysis of constituent not required and not performed.	
	PCB-1260		Analysis of constituent not required and not performed.	
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.24. Rad error is 3.24.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.55. Rad error is 6.55.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.842. Rad error is 0.784.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.63. Rad error is 3.62.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 10.2. Rad error is 10.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.458. Rad error is 0.457.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 111. Rad error is 111.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4807 MW39	93 MW393SG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.09. Rad error is 6.04.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.49. Rad error is 6.48.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.11. Rad error is 1.02.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.24. Rad error is 4.21.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 11. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.484. Rad error is 0.483.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 109. Rad error is 109.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4802 MW394	4 MW394SG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.45. Rad error is 4.43.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 7.34. Rad error is 7.31.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.626. Rad error is 0.626.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.36. Rad error is 3.36.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 9.34. Rad error is 9.26.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.817. Rad error is 0.805.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 124. Rad error is 123.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4801 MW39	95 MW395SG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.7. Rad error is 3.69.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 7.78. Rad error is 7.74.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.889. Rad error is 0.887.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 2.41. Rad error is 2.41.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 9.34. Rad error is 9.27.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.958. Rad error is 0.946.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 139. Rad error is 135.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4803 MW39	6 MW396SG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.2. Rad error is 6.2.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.23. Rad error is 5.23.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.659. Rad error is 0.658.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.11. Rad error is 2.11.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 11.4. Rad error is 11.4.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.4. Rad error is 1.37.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 117. Rad error is 116.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4817 MW397	7 MW397SG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.71. Rad error is 6.67.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.99. Rad error is 6.86.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.325. Rad error is 0.324.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.71. Rad error is 3.7.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 12.3. Rad error is 12.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.556. Rad error is 0.555.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 111. Rad error is 111.
		Chemical Oxygen Demand	N	Sample spike (MS/MSD) recovery not within control limits

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	RI1SG2-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. Ti is 3.19. Rad error is 3.19.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 7.17. Rad error is 7.08.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 0.587. Rad error is 0.548.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 2.12. Rad error is 2.12.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 9.75. Rad error is 9.74.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.336. Rad error is 0.335.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 112. Rad error is 112.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	FB1SG2-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 2.92. Rad error is 2.92.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 7. Rad error is 6.95.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. To is 0.347. Rad error is 0.335.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.58. Rad error is 2.58.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 10.6. Rad error is 10.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.542. Rad error is 0.54.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 125. Rad error is 121.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG2-19	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB1SG2-19	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG2-19	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG2-19	Vanadium		Analysis of constituent not required and not performed
		Zinc		Analysis of constituent not required and not performed
		PCB, Total		Analysis of constituent not required and not performed
		PCB-1016		Analysis of constituent not required and not performed
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		lodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG2-19	Bromide		Analysis of constituent not required and not performed
		Chloride		Analysis of constituent not required and not performed
		Fluoride		Analysis of constituent not required and not performed
		Nitrate & Nitrite		Analysis of constituent not required and not performed
		Sulfate		Analysis of constituent not required and not performed
		Barometric Pressure Reading		Analysis of constituent not required and not performed
		Specific Conductance		Analysis of constituent not required and not performed
		Static Water Level Elevation		Analysis of constituent not required and not performed
		Dissolved Oxygen		Analysis of constituent not required and not performed
		Total Dissolved Solids		Analysis of constituent not required and not performed
		рН		Analysis of constituent not required and not performed
		Eh		Analysis of constituent not required and not performed
		Temperature		Analysis of constituent not required and not performed
		Aluminum		Analysis of constituent not required and not performed
		Antimony		Analysis of constituent not required and not performed
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB3SG2-19	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed
		PCB-1232		Analysis of constituent not required and not performed
		PCB-1242		Analysis of constituent not required and not performed
		PCB-1248		Analysis of constituent not required and not performed
		PCB-1254		Analysis of constituent not required and not performed
		PCB-1260		Analysis of constituent not required and not performed
		PCB-1268		Analysis of constituent not required and not performed
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed
		Thorium-230		Analysis of constituent not required and not performed
		Tritium		Analysis of constituent not required and not performed
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed
		Iodide		Analysis of constituent not required and not performed
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4809 MW384	MW384DSG2-19	Chloride	W	Post-digestion spike recovery out of control limits.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Tantalum	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 6.32. Rad error is 6.31.
		Gross beta		TPU is 21.3. Rad error is 13.9.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.713. Rad error is 0.697.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 1.7. Rad error is 1.7.
		Technetium-99		TPU is 21.6. Rad error is 15.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.476. Rad error is 0.475.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 112. Rad error is 112.

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3000-5202 MW221	MW221SG2-19	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium	*	Duplicate analysis not within control limits.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

RESIDENTIAL/INERT—QUARTERLY, 1st CY 2019

Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-980-008-982/1</u>

Lab ID: None

For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the first quarter 2019 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0003, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The first quarter 2019 data used to conduct the statistical analyses were collected in January 2019. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that exceeded the historical background, using the last eight quarters. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 *KAR* 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ¹ *	TW	UCRS
$MW390^1$	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

¹NOTE: The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, first quarter 2019. The observations are representative of the current quarter data. Historical background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondetect if it has a "U" validation code.

lower $TL = X - (K \times S)$

¹ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations: upper $TL = X + (K \times S)$

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters Aluminum Beta Activity Boron Bromide Calcium Chemical Oxygen Demand (COD) Chloride Chromium cis-1,2-Dichloroethene Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iodide Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential рН*

Potassium

Sodium

Sulfate

Technetium-99

Total Organic Carbon (TOC)

Total Organic Halides (TOX)

Trichloroethene

Vanadium

Zinc

^{*}For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	1	3	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Boron	4	0	4	Yes
Bromide	4	1	3	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	2	2	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	1	3	Yes
Conductivity	4	0	4	Yes
Copper	4	0	4	Yes
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No
Iodide	4	1	3	Yes

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	0	4	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	1	3	Yes
Nickel	4	1	3	Yes
Oxidation-Reduction Potential	4	0	4	Yes
рН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	4	0	No
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Vanadium	4	3	1	Yes
Vinyl Acetate	4	4	0	No
Zinc	4	3	1	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	4	7	Yes
Antimony	11	11	0	No
Beryllium	11	11	0	No
Beta activity	11	6	5	Yes
Boron	11	0	11	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	5	6	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
Chromium	11	7	4	Yes
cis-1,2-Dichloroethene	11	9	2	Yes
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	4	7	Yes
Conductivity	11	0	11	Yes
Copper	11	0	11	Yes
Cyanide	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
Dissolved Oxygen	11	0	11	Yes
Dissolved Solids	11	0	11	Yes

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Ethylbenzene	11	11	0	No
Iodide	11	10	1	Yes
Iodomethane	11	11	0	No
Iron	11	1	10	Yes
Magnesium	11	0	11	Yes
Manganese	11	0	11	Yes
Methylene chloride	11	11	0	No
Molybdenum	11	5	6	Yes
Nickel	11	0	11	Yes
Oxidation-Reduction Potential	11	0	11	Yes
рН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	11	0	No
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	6	5	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	4	7	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	5	6	Yes
Trichlorofluoromethane	11	11	0	No
Vanadium	11	10	1	Yes
Vinyl Acetate	11	11	0	No
Zinc Rold denotes parameters with at least one uncensored or	11	7	4	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	4	3	Yes
Antimony	7	7	0	No
Beryllium	7	7	0	No
Beta activity	7	3	4	Yes
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	4	3	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	4	3	Yes
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Oxygen Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No No
Iodide	7	7	0	No
TOUTUE	ı /	i /	ı U	INO
Iodomethane	7	7	0	No

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Magnesium	7	0	7	Yes
Manganese	7	1	6	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	5	2	Yes
Nickel	7	2	5	Yes
Oxidation-Reduction Potential	7	0	7	Yes
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	7	0	No
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	3	4	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	0	7	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	0	7	Yes
Trichlorofluoromethane	7	7	0	No
Vanadium	7	6	1	Yes
Vinyl Acetate	7	7	0	No
Zinc	7	5	2	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided tolerance interval tests that were calculated using historical background and presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 27, 31, and 29 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity, chromium, and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background UTL for oxidation-reduction potential and technetium-99.

URGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, chromium, dissolved solids, magnesium, oxidation-reduction potential, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential	MW220: Sulfate	MW370: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW390: Oxidation-reduction potential, technetium-99	MW221: Chromium, oxidation-reduction potential	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate
MW393: Oxidation-reduction potential	MW222: Oxidation-reduction potential	MW385: Beta activity, oxidation-reduction potential, sulfate, technetium-99
MW396: Oxidation-reduction potential	MW223: Oxidation-reduction potential, sulfate	MW388: Beta activity, oxidation-reduction potential, sulfate, technetium-99
	MW369: Oxidation-reduction potential, technetium-99	MW392: Oxidation-reduction potential
	MW372: Calcium, dissolved solids, magnesium, sulfate, technetium-99	MW395: Oxidation-reduction potential
	MW384: Beta activity, sulfate, technetium-99	MW397: Oxidation-reduction potential
	MW387: Beta activity, sodium, sulfate, technetium-99	
	MW391: Magnesium, sulfate	

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
pН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentrations in MW384 and MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentrations in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
Chromium ¹	Tolerance Interval	0.27	Current results exceed statistically derived historical background concentrations in MW221.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Iodide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372 and MW391.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW221, MW222, MW223, and MW369.
рН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.24	Current results exceed statistically derived historical background concentration in MW387.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW220, MW223, MW372, MW384, MW387, and MW391.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW372, MW384, and MW387.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.08	No exceedance of statistically derived historical background concentration.
Zine	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
* If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, MW388, MW392, MW395, and MW397.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the TL test using historical background, the concentrations were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 2, 9, and 8 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

LRGA
MW370: Beta activity, sulfate, technetium-99
MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
MW388: Beta activity, sulfate, technetium-99

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that the technetium-99 concentration in one UCRS well (i.e., MW390) exceeded the current TL this quarter.

URGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, dissolved solids, magnesium, sodium, sulfate, and technetium-99.

LRGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Oxidation-Reduction Potential	Tolerance Interval	0.25	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	-2.62	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.69	MW384 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.13	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Chromium	Tolerance Interval	0.35	MW221 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.32	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.14	MW372 and MW391 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.14	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level
Sodium	Tolerance Interval	0.16	MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.34	MW372 and MW391 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.57	MW369, MW372, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.41	MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.18	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.09	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.17	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.19	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.22	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.06	MW370, MW373, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.43	MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
* If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

Historical Background Comparison

Aluminum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.320

S = 0.182 CV(1) = 0.567

K factor=** 3.188

TL(1) = 0.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.259

S = 0.503 CV

CV(2) = -0.400

K factor**= 3.188

TL(2) = 0.345

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.393	-0.934
9/16/2002	0.2	-1.609
10/16/2002	0.2	-1.609
1/13/2003	0.501	-0.691
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.668	-0.403

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

l	Current Quarter Data						
1	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW386	Sidegradient	Yes	0.05	NO	-2.996	N/A
	MW390	Downgradien	t Yes	0.411	NO	-0.889	N/A
	MW393	Downgradien	t Yes	0.0602	NO	-2.810	N/A
	MW396	Upgradient	No	0.05	N/A	-2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Boron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S= 0.833 **CV(1)**=1.282

K factor=** 3.188

TL(1) = 3.306

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.034 S = 1.066

CV(2) = -1.031

K factor**= 3.188

TL(2) = 2.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.693 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.6094/8/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/14/2004 0.2 -1.609

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00659	N/A	-5.022	NO
MW390	Downgradien	t Yes	0.0151	N/A	-4.193	NO
MW393	Downgradien	t Yes	0.022	N/A	-3.817	NO
MW396	Upgradient	Yes	0.00922	N/A	-4.686	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Bromide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.388

CV(1) = 0.236

K factor=** 3.188

TL(1) = 2.430

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.301

S= 0.252

S = 0.327

CV(2) = 0.838

K factor**= 3.188

TL(2)=1.105

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.5	0.405
9/16/2002	1.6	0.470
10/16/2002	1.6	0.470
1/13/2003	1	0.000
4/8/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1.7	0.531
1/14/2004	1.7	0.531

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.2	N/A	-1.609	N/A
MW390	Downgradien	t Yes	0.414	NO	-0.882	N/A
MW393	Downgradien	t Yes	0.145	NO	-1.931	N/A
MW396	Upgradient	Yes	1.12	NO	0.113	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Calcium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 41.825 S = 8.445 CV(1) = 0.202

K factor**= 3.188

TL(1)= 68.748

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.711

S = 0.241

CV(2) = 0.065

K factor**= 3.188

TL(2) = 4.479

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	38.4	3.648
9/16/2002	42.9	3.759
10/16/2002	40.2	3.694
1/13/2003	46.7	3.844
4/8/2003	49.8	3.908
7/16/2003	43.3	3.768
10/14/2003	49.7	3.906
1/14/2004	23.6	3.161

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	21.1	NO	3.049	N/A
MW390	Downgradien	t Yes	29.4	NO	3.381	N/A
MW393	Downgradien	t Yes	14.8	NO	2.695	N/A
MW396	Upgradient	Yes	35.9	NO	3.581	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Chemical Oxygen Demand (COD)

UNITS: mg/L

UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.375 S = 0.744

CV(1) = 0.021

K factor=** 3.188

TL(1) = 37.747

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.566

S = 0.021

CV(2) = 0.006

K factor**= 3.188

TL(2) = 3.632

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	36	3.584
9/16/2002	35	3.555
10/16/2002	37	3.611
1/13/2003	35	3.555
4/8/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/14/2004	35	3.555

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	23	NO	3.135	N/A	
MW390	Downgradien	t No	20	N/A	2.996	N/A	
MW393	Downgradien	t Yes	16.6	NO	2.809	N/A	
MW396	Upgradient	No	20	N/A	2.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Chloride UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 101.725 S = 5.245

K factor**= 3.188

TL(1)= 118.447

LL(1)=N/A

Statistics-Transformed Background Data

X = 4.621 S = 0.053

CV(2) = 0.011

CV(1)=0.052

K factor**= 3.188

TL(2) = 4.789

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	13.3	NO	2.588	N/A	
MW390	Downgradien	t Yes	38.2	NO	3.643	N/A	
MW393	Downgradien	t Yes	12.9	NO	2.557	N/A	
MW396	Upgradient	Yes	67.6	NO	4.214	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.008

CV(1) = 1.340S = 0.011

K factor=** 3.188

TL(1) = 0.042

LL(1)=N/A

Statistics-Transformed Background

X = -5.645 S = 1.339

CV(2) = -0.237

K factor=** 3.188

TL(2) = -1.377

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00975	N/A	-4.630	NO
MW390	Downgradien	t Yes	0.00031	4 N/A	-8.066	NO
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A
MW396	Upgradient	Yes	0.00357	N/A	-5.635	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-9

Historical Background Comparison

Conductivity UNITS: umho/cm UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 922.500 S = 107.616 CV(1) = 0.117

K factor**= 3.188

TL(1)= 1265.579 **LL(1)=**N/A

Statistics-Transformed Background Data

X= 6.822 **S**= 0.111

CV(2) = 0.016

K factor**= 3.188

TL(2) = 7.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	784	6.664
9/30/2002	871	6.770
10/16/2002	868	6.766
1/13/2003	912	6.816
4/8/2003	942	6.848
7/16/2003	910	6.813
10/14/2003	935	6.841
1/14/2004	1158	7.054

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	587	NO	6.375	N/A
MW390	Downgradien	t Yes	641	NO	6.463	N/A
MW393	Downgradien	t Yes	457	NO	6.125	N/A
MW396	Upgradient	Yes	752	NO	6.623	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

UNITS: mg/L Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

CV(1) = 0.481S = 0.014

K factor=** 3.188

TL(1) = 0.072

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.650 S = 0.414

CV(2) = -0.113

K factor=** 3.188

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data						
1	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
	MW386	Sidegradient	Yes	0.00198	NO	-6.225	N/A
	MW390	Downgradien	t Yes	0.00264	NO	-5.937	N/A
	MW393	Downgradien	t Yes	0.00639	NO	-5.053	N/A
	MW396	Upgradient	Yes	0.0028	NO	-5.878	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-11

Historical Background Comparison

Dissolved Oxygen UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.395

CV(1)=1.202

K factor=** 3.188

TL(1) = 6.743

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.043 S = 0.814

S = 1.677

CV(2) = -18.867

K factor=** 3.188

TL(2) = 2.553

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	5.45	1.696
9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Curren	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	1.61	N/A	0.476	NO	
MW390	Downgradien	t Yes	4.04	N/A	1.396	NO	
MW393	Downgradien	t Yes	1.22	N/A	0.199	NO	
MW396	Upgradient	Yes	3.98	N/A	1.381	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-12

Historical Background Comparison

Dissolved Solids UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 550.375 S = 104.330 CV(1) = 0.190

K factor=** 3.188

TL(1)= 882.980

LL(1)=N/A

Statistics-Transformed Background Data

X = 6.298 S = 0.162 CV(2) = 0.026

K factor=** 3.188

TL(2) = 6.815

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	341	NO	5.832	N/A	
MW390	Downgradien	t Yes	313	NO	5.746	N/A	
MW393	Downgradien	t Yes	237	NO	5.468	N/A	
MW396	Upgradient	Yes	407	NO	6.009	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-13

Historical Background Comparison

Iodide UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.150

CV(1)=0.132

K factor=** 3.188

TL(1)= 3.052

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.759

S= 0.123

S = 0.283

CV(2) = 0.162

K factor**= 3.188

TL(2) = 1.150

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	2	0.693
1/13/2003	2	0.693
4/8/2003	2	0.693
7/16/2003	2.7	0.993
10/14/2003	2.5	0.916
1/14/2004	2	0.693

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.253	NO	-1.374	N/A	
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A	
MW393	Downgradien	t Yes	0.236	NO	-1.444	N/A	
MW396	Upgradient	Yes	0.735	NO	-0.308	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Iron UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.796

CV(1) = 0.478

K factor=** 3.188

TL(1)= 19.666

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.880

S = 0.723

S = 3.723

CV(2) = 0.384

K factor**= 3.188

TL(2) = 4.184

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.8	0.588
9/16/2002	9.53	2.254
10/16/2002	7.43	2.006
1/13/2003	9.93	2.296
4/8/2003	10.2	2.322
7/16/2003	9.16	2.215
10/14/2003	11.9	2.477
1/14/2004	2.42	0.884

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	1.9	NO	0.642	N/A	
MW390	Downgradien	t Yes	0.333	NO	-1.100	N/A	
MW393	Downgradien	t Yes	2.97	NO	1.089	N/A	
MW396	Upgradient	Yes	2.3	NO	0.833	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Magnesium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 16.876 S = 3.313 CV(1) = 0.196

K factor=** 3.188

TL(1)= 27.438

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.804

S= 0.240 **CV(2)**=0.086

K factor**= 3.188

TL(2) = 3.569

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	9.08	NO	2.206	N/A	
MW390	Downgradien	t Yes	12.9	NO	2.557	N/A	
MW393	Downgradien	t Yes	4.26	NO	1.449	N/A	
MW396	Upgradient	Yes	15.3	NO	2.728	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Manganese UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.774

CV(1) = 0.456S = 0.353

K factor=** 3.188

TL(1)= 1.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.566 S = 1.192 CV(2) = -2.105

K factor=** 3.188

TL(2) = 3.235

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.57	-0.562
9/16/2002	0.647	-0.435
10/16/2002	0.88	-0.128
1/13/2003	1.132	0.124
4/8/2003	0.965	-0.036
7/16/2003	0.983	-0.017
10/14/2003	0.984	-0.016
1/14/2004	0.0314	-3.461

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	1.13	NO	0.122	N/A
MW390	Downgradien	t Yes	0.00167	NO	-6.395	N/A
MW393	Downgradien	t Yes	0.0576	NO	-2.854	N/A
MW396	Upgradient	Yes	0.581	NO	-0.543	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-17

Historical Background Comparison

Molybdenum UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S= 0.011 **CV(1)**=1.507

K factor=** 3.188

TL(1) = 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.928

S= 1.420

CV(2) = -0.240

K factor**= 3.188

TL(2) = -1.400

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00128	-6.661
4/8/2003	0.00271	-5.911
7/16/2003	0.00117	-6.751
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Cultent Quarter Dat	Data)uarter D	Current
---------------------	------	-----------	---------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL
MW386	Sidegradient	Yes	0.00056	1 N/A	-7.486	NO
MW390	Downgradien	t Yes	0.00032	3 N/A	-8.038	NO
MW393	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW396	Upgradient	Yes	0.00038	6 N/A	-7.860	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Analysis Historical Background Comparison UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Nickel

X = 0.016

S = 0.021 CV(1) = 1.272

K factor=** 3.188

TL(1)= 0.083

LL(1)=N/A

Statistics-Transformed Background

X = -4.706 S = 1.057

CV(2) = -0.225

K factor**= 3.188

TL(2) = -1.338

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

MW396 Upgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

-6.053

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.00226	N/A	-6.092	NO
MW390	Downgradien	t Yes	0.00138	N/A	-6.586	NO
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A

N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

0.00235

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2019 Statistical Analysis **UNITS: mV Oxidation-Reduction Potential**

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 13.000 S = 61.952 CV(1) = 4.766

K factor=** 3.188

TL(1)=210.502 LL(1)=N/A

Statistics-Transformed Background

X = 4.364

S = 0.333 CV(2) = 0.076

K factor=** 3.188

TL(2) = 4.736

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

MW 396	
Result	LN(Result)
60	4.094
71	4.263
-56	#Func!
-54	#Func!
-22	#Func!
-6	#Func!
-3	#Func!
114	4.736
	60 71 -56 -54 -22 -6 -3

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	162	N/A	5.088	YES	
MW390	Downgradien	t Yes	359	N/A	5.883	YES	
MW393	Downgradien	t Yes	232	N/A	5.447	YES	
MW396	Upgradient	Yes	231	N/A	5.442	YES	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386 MW390 MW393 MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-20

C-746-S/T First Quarter 2019 Statistical Analysis Hist pH UNITS: Std Unit

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.460

S= 0.350 **CV(1)**=0.054

K factor=** 3.736

TL(1)= 7.766

LL(1)=5.1541

Statistics-Transformed Background Data

X = 1.864

S= 0.054

CV(2) = 0.029

K factor**= 3.736

TL(2) = 2.067

LL(2)=1.6621

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:		MW396			
	Date Collected	Result	LN(Result)		
	8/13/2002	6.17	1.820		
	9/16/2002	6.4	1.856		
	10/16/2002	5.9	1.775		
	1/13/2003	6.4	1.856		
	4/8/2003	6.65	1.895		
	7/16/2003	6.4	1.856		
	10/14/2003	6.71	1.904		
	1/14/2004	7.05	1.953		

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW386	Sidegradient	Yes	6.55	NO	1.879	N/A
MW390	Downgradien	t Yes	6.22	NO	1.828	N/A
MW393	Downgradien	t Yes	6.14	NO	1.815	N/A
MW396	Upgradient	Yes	6.46	NO	1.866	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.411

S = 0.399 CV(1) = 0.282

K factor=** 3.188

TL(1)= 2.682

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.311

S= 0.271

CV(2) = 0.870

K factor=** 3.188

TL(2) = 1.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396		
Date Collected	Result	LN(Result)	
8/13/2002	2	0.693	
9/16/2002	2	0.693	
10/16/2002	0.978	-0.022	
1/13/2003	1.08	0.077	
4/8/2003	1.12	0.113	
7/16/2003	1.38	0.322	
10/14/2003	1.24	0.215	
1/14/2004	1.49	0.399	

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.302	NO	-1.197	N/A	
MW390	Downgradien	t Yes	0.403	NO	-0.909	N/A	
MW393	Downgradien	t Yes	0.486	NO	-0.722	N/A	
MW396	Upgradient	Yes	0.834	NO	-0.182	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2019 Statistical Analysis I Sodium UNITS: mg/L

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical

background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 106.825 S = 32.041 CV(1) = 0.300

K factor**= 3.188

TL(1)= 208.973

LL(1)=N/A

Statistics-Transformed Background Data

X= 4.595 **S**= 0.492

CV(2) = 0.107

K factor**= 3.188

TL(2) = 6.163

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	115	4.745
9/16/2002	116	4.754
10/16/2002	117	4.762
1/13/2003	122	4.804
4/8/2003	106	4.663
7/16/2003	117	4.762
10/14/2003	132	4.883
1/14/2004	29.6	3.388

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	107	NO	4.673	N/A	
MW390	Downgradien	t Yes	87.4	NO	4.470	N/A	
MW393	Downgradien	t Yes	86.9	NO	4.465	N/A	
MW396	Upgradient	Yes	110	NO	4.700	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2019 Statistical Analysis I Sulfate UNITS: mg/L

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 22.463 **S**= 8.876

CV(1) = 0.395

K factor=** 3.188

TL(1)= 50.759

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.054

S = 0.351

CV(2) = 0.115

K factor=** 3.188

TL(2) = 4.173

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396			
Date Collected	Result	LN(Result)		
8/13/2002	41.9	3.735		
9/16/2002	26.3	3.270		
10/16/2002	20.6	3.025		
1/13/2003	16.6	2.809		
4/8/2003	23.9	3.174		
7/16/2003	18.8	2.934		
10/14/2003	12.9	2.557		
1/14/2004	18.7	2.929		

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	47.5	NO	3.861	N/A		
MW390	Downgradien	t Yes	33.5	NO	3.512	N/A		
MW393	Downgradien	t Yes	20.5	NO	3.020	N/A		
MW396	Upgradient	Yes	25.4	NO	3.235	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2019 Statistical Analysis H Technetium-99 UNITS: pCi/L

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.624

CV(1)=0.860

K factor=** 3.188

TL(1)= 28.531

LL(1)=N/A

Statistics-Transformed Background

X = 1.498

S= 1.321

S = 6.558

CV(2)=0.882

K factor**= 3.188

TL(2) = 5.710

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:		MW396	
	Date Collected	Result	LN(Result)
	8/13/2002	16.7	2.815
	9/16/2002	6.39	1.855
	10/16/2002	4.55	1.515
	1/13/2003	16.5	2.803
	4/8/2003	3.04	1.112
	7/16/2003	0.354	-1.038
	10/14/2003	11.9	2.477
	1/14/2004	1.56	0.445

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	8.83	N/A	2.178	N/A		
MW390	Downgradien	t Yes	78.9	YES	4.368	N/A		
MW393	Downgradien	t No	13.9	N/A	2.632	N/A		
MW396	Upgradient	No	6.22	N/A	1.828	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW390

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Total Organic Carbon (TOC)

UNITS: mg/L

UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.988

S= 4.696 **CV(1)**= 0.470

K factor=** 3.188

TL(1)= 24.959

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.210

S = 0.454

CV(2) = 0.205

K factor**= 3.188

TL(2) = 3.657

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 19 2.944 9/16/2002 14.6 2.681 10.4 2.342 10/16/2002 1/13/2003 4.4 1.482 4/8/2003 7 1.946 7/16/2003 7.3 1.988 10/14/2003 9.1 2.208 1/14/2004 8.1 2.092

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	6.87	NO	1.927	N/A
MW390	Downgradien	t Yes	2.07	NO	0.728	N/A
MW393	Downgradien	t Yes	2.88	NO	1.058	N/A
MW396	Upgradient	Yes	4.95	NO	1.599	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Total Organic Halides (TOX)

UNITS: ug/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 142.650 S = 53.533 CV(1) = 0.375

S = 0.390

K factor=** 3.188

TL(1)= 313.314 **LL(1)=**N/A

Statistics-Transformed Background Data

X = 4.896

CV(2) = 0.080

K factor=** 3.188

TL(2) = 6.138

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	195	NO	5.273	N/A	
MW390	Downgradien	t Yes	14.2	NO	2.653	N/A	
MW393	Downgradien	t Yes	18.3	NO	2.907	N/A	
MW396	Upgradient	Yes	34.4	NO	3.538	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-27

Historical Background Comparison

Vanadium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.021

CV(1)=0.109S = 0.002

K factor=** 3.188

TL(1) = 0.029

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.856 S = 0.103

CV(2) = -0.027

K factor=** 3.188

TL(2) = -3.527

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

L	Current Quarter Data						
V	Vell No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
I	MW386	Sidegradient	No	0.01	N/A	-4.605	N/A
I	MW390	Downgradien	t Yes	0.00342	NO	-5.678	N/A
I	MW393	Downgradien	t No	0.01	N/A	-4.605	N/A
1	MW396	Upgradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-28

Historical Background Comparison

Zinc UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.044

CV(1) = 0.786

K factor=** 3.188

TL(1)= 0.156

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.342 S = 0.682

S = 0.035S = 0.682

CV(2) = -0.204

K factor**= 3.188

TL(2) = -1.168

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/8/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	No	0.01	N/A	-4.605	N/A
MW390	Downgradien	t No	0.01	N/A	-4.605	N/A
MW393	Downgradien	t Yes	0.00415	NO	-5.485	N/A
MW396	Upgradient	No	0.00431	N/A	-5.447	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2019 Statistical Analysis Aluminum UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.221

S = 0.061

CV(1)=0.277

K factor**= 2.523

TL(1) = 0.376

LL(1)=N/A

Statistics-Transformed Background

X = -1.534 S = 0.212 CV(2) = -0.138

K factor=** 2.523

TL(2) = -0.999

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.609 0.2 1/15/2003 0.2 -1.6094/10/2003 0.2 -1.609 7/14/2003 0.2 -1.60910/13/2003 0.427 -0.8511/13/2004 0.309 -1.1744/13/2004 0.2 -1.609 7/21/2004 0.202 -1.599Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.2 -1.609 9/16/2002 0.2 -1.60910/16/2002 0.2 -1.6091/13/2003 0.2 -1.6094/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.6091/13/2004 0.2 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.255	NO	-1.366	N/A
MW221	Sidegradient	Yes	0.0195	NO	-3.937	N/A
MW222	Sidegradient	Yes	0.0428	NO	-3.151	N/A
MW223	Sidegradient	No	0.05	N/A	-2.996	N/A
MW224	Sidegradient	No	0.05	N/A	-2.996	N/A
MW369	Downgradien	t Yes	0.0567	NO	-2.870	N/A
MW372	Downgradien	t No	0.05	N/A	-2.996	N/A
MW384	Sidegradient	Yes	0.027	NO	-3.612	N/A
MW387	Downgradien	t Yes	0.0369	NO	-3.300	N/A
MW391	Downgradien	t Yes	0.144	NO	-1.938	N/A
MW394	Upgradient	No	0.05	N/A	-2.996	N/A
NI/A D	14. : J4: C . J N	I D-44-	J 1 - 1.		3-41: 3-4: -	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-30

C-746-S/T First Quarter 2019 Statistical Analysis Beta activity UNITS: pCi/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 14.273 S = 13.883 CV(1) = 0.973

K factor**= 2.523

TL(1)= 49.300

LL(1)=N/A

Statistics-Transformed Background

X = 2.213 S = 1.033 CV(2) = 0.467

K factor=** 2.523

TL(2) = 4.819

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	15.2	2.721
1/15/2003	42.5	3.750
4/10/2003	45.4	3.816
7/14/2003	8.53	2.144
10/13/2003	11.7	2.460
1/13/2004	13.5	2.603
4/13/2004	33.5	3.512
7/21/2004	13.7	2.617
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.615
Date Collected	Result	,
Date Collected 8/13/2002	Result 5.03	1.615
Date Collected 8/13/2002 9/16/2002	Result 5.03 5.57	1.615 1.717
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 5.03 5.57 12.8	1.615 1.717 2.549
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 5.03 5.57 12.8 4.3	1.615 1.717 2.549 1.459
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.03 5.57 12.8 4.3 9.52	1.615 1.717 2.549 1.459 2.253

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	23	N/A	3.135	N/A
MW221	Sidegradient	No	1	N/A	0.000	N/A
MW222	Sidegradient	No	2.11	N/A	0.747	N/A
MW223	Sidegradient	No	6.64	N/A	1.893	N/A
MW224	Sidegradient	No	8.76	N/A	2.170	N/A
MW369	Downgradien	t Yes	22.5	N/A	3.114	N/A
MW372	Downgradien	t Yes	25.4	N/A	3.235	N/A
MW384	Sidegradient	Yes	99.8	YES	4.603	N/A
MW387	Downgradien	t Yes	157	YES	5.056	N/A
MW391	Downgradien	t No	3.29	N/A	1.191	N/A
MW394	Upgradient	No	4.28	N/A	1.454	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-31

C-746-S/T First Quarter 2019 Statistical Analysis **Boron** UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.425

S = 0.615

CV(1) = 1.447

K factor**= 2.523

TL(1)= 1.976

LL(1)=N/A

Statistics-Transformed Background

X = -1.322 S = 0.786 CV(2) = -0.595

K factor=** 2.523

TL(2) = 0.663

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.609 0.2 1/15/2003 0.2 -1.6094/10/2003 0.2 -1.609 7/14/2003 0.2 -1.60910/13/2003 0.2 -1.6091/13/2004 0.2 -1.6094/13/2004 0.2 -1.609 7/21/2004 0.2 -1.609Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/16/2002 0.2 -1.6091/13/2003 0.2 -1.6094/10/2003 0.2 -1.6097/16/2003 0.2 -1.609

0.2

0.2

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00736	N/A	-4.912	NO
MW221	Sidegradient	Yes	0.0141	N/A	-4.262	NO
MW222	Sidegradient	Yes	0.01	N/A	-4.605	NO
MW223	Sidegradient	Yes	0.00854	N/A	-4.763	NO
MW224	Sidegradient	Yes	0.0197	N/A	-3.927	NO
MW369	Downgradien	t Yes	0.0165	N/A	-4.104	NO
MW372	Downgradien	t Yes	0.872	N/A	-0.137	NO
MW384	Sidegradient	Yes	0.0543	N/A	-2.913	NO
MW387	Downgradien	t Yes	0.0216	N/A	-3.835	NO
MW391	Downgradien	t Yes	0.2	N/A	-1.609	NO
MW394	Upgradient	Yes	0.0241	N/A	-3.726	NO
NI/A D	14. : 34:C. 3 X	T D-44-	J 1 . 1.		3-41: 3-4:	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

-1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-32

C-746-S/T First Quarter 2019 Statistical Analysis I Bromide UNITS: mg/L

Historical Background Comparison L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.000

 $S = 0.000 \quad CV(1) = 0.000$

K factor=** 2.523

TL(1)= 1.000

LL(1)=N/A

Statistics-Transformed Background

X = 0.000

S= 0.000

CV(2)=#Num!

K factor**= 2.523

TL(2) = 0.000

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1	0.000
4/10/2003	1	0.000
7/14/2003	1	0.000
10/13/2003	1	0.000
1/13/2004	1	0.000
4/13/2004	1	0.000
7/01/0001		0.000
7/21/2004	1	0.000
Well Number:	1 MW394	0.000
,,=1,=00.	•	LN(Result)
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
Well Number: Date Collected 8/13/2002	MW394 Result	LN(Result) 0.000
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 1	LN(Result) 0.000 0.000
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 1 1	LN(Result) 0.000 0.000 0.000
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 1 1 1	LN(Result) 0.000 0.000 0.000 0.000
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	MW394 Result 1 1 1 1	LN(Result) 0.000 0.000 0.000 0.000 0.000 0.000

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	0.199	NO	-1.614	N/A
MW221	Sidegradient	Yes	0.369	NO	-0.997	N/A
MW222	Sidegradient	Yes	0.395	NO	-0.929	N/A
MW223	Sidegradient	Yes	0.386	NO	-0.952	N/A
MW224	Sidegradient	Yes	0.477	NO	-0.740	N/A
MW369	Downgradien	t Yes	0.318	NO	-1.146	N/A
MW372	Downgradien	t Yes	0.482	NO	-0.730	N/A
MW384	Sidegradient	Yes	0.365	NO	-1.008	N/A
MW387	Downgradien	t Yes	0.841	NO	-0.173	N/A
MW391	Downgradien	t Yes	0.602	NO	-0.507	N/A
MW394	Upgradient	Yes	0.616	NO	-0.485	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison URGA UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Calcium

X = 27.638 S = 4.743

CV(1)=0.172

K factor**= 2.523

TL(1) = 39.604

LL(1)=N/A

Statistics-Transformed Background

X = 3.304 S = 0.183 CV(2) = 0.055

K factor=** 2.523

TL(2) = 3.765

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	23.6	3.161
1/15/2003	25.9	3.254
4/10/2003	30.4	3.414
7/14/2003	33.9	3.523
10/13/2003	21.3	3.059
1/13/2004	20.3	3.011
4/13/2004	23.8	3.170
7/21/2004	19	2.944
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.384
Date Collected	Result	
Date Collected 8/13/2002	Result 29.5	3.384
Date Collected 8/13/2002 9/16/2002	Result 29.5 29.9	3.384 3.398
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 29.5 29.9 31.2	3.384 3.398 3.440
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 29.5 29.9 31.2 30.7	3.384 3.398 3.440 3.424
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 29.5 29.9 31.2 30.7 34.4	3.384 3.398 3.440 3.424 3.538

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	26	NO	3.258	N/A
MW221	Sidegradient	Yes	22.6	NO	3.118	N/A
MW222	Sidegradient	Yes	19.6	NO	2.976	N/A
MW223	Sidegradient	Yes	23.4	NO	3.153	N/A
MW224	Sidegradient	Yes	24	NO	3.178	N/A
MW369	Downgradien	t Yes	16.3	NO	2.791	N/A
MW372	Downgradien	t Yes	46.8	YES	3.846	N/A
MW384	Sidegradient	Yes	26.3	NO	3.270	N/A
MW387	Downgradien	t Yes	34.9	NO	3.552	N/A
MW391	Downgradien	t Yes	36.5	NO	3.597	N/A
MW394	Upgradient	Yes	27.9	NO	3.329	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-34

C-746-S/T First Quarter 2019 Statistical Analysis Historical Background Comparison Chemical Oxygen Demand (COD) UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 35.000
 S= 0.000
 CV(1)=0.000
 K factor**= 2.523
 TL(1)= 35.000
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.555
 S= 0.000
 CV(2)=0.000
 K factor**= 2.523
 TL(2)= 3.555
 LL(2)=N/A

Historical Background Data from

Upgradient Wells with Transformed Result

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	35	3.555
1/15/2003	35	3.555
4/10/2003	35	3.555
7/14/2003	35	3.555
10/13/2003	35	3.555
1/13/2004	35	3.555
4/13/2004	35	3.555
7/21/2004	35	3.555
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	35	3.555
9/16/2002	35	3.555
10/16/2002	35	3.555
1/13/2003	35	2.555
1/13/2003	33	3.555
4/10/2003	35	3.555 3.555
-,,		
4/10/2003	35	3.555

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	20	N/A	2.996	N/A
MW221	Sidegradient	No	20	N/A	2.996	N/A
MW222	Sidegradient	Yes	14.4	NO	2.667	N/A
MW223	Sidegradient	Yes	12.3	NO	2.510	N/A
MW224	Sidegradient	Yes	12.3	NO	2.510	N/A
MW369	Downgradien	t Yes	18.4	NO	2.912	N/A
MW372	Downgradien	t No	20	N/A	2.996	N/A
MW384	Sidegradient	Yes	14.4	NO	2.667	N/A
MW387	Downgradien	t Yes	10.2	NO	2.322	N/A
MW391	Downgradien	t No	20	N/A	2.996	N/A
MW394	Upgradient	No	20	N/A	2.996	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2019 Statistical Analysis Chloride UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 49.044 S = 11.278 CV(1) = 0.230

K factor**= 2.523

TL(1)= 77.499

LL(1)=N/A

Statistics-Transformed Background

X = 3.866 S = 0.244 CV(2) = 0.063

K factor**= 2.523

TL(2) = 4.482

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	44.6	3.798
1/15/2003	43.2	3.766
4/10/2003	31.5	3.450
7/14/2003	30.8	3.428
10/13/2003	40.9	3.711
1/13/2004	40.8	3.709
4/13/2004	37.5	3.624
7/21/2004	40.8	3.709
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.101
Date Collected	Result	
Date Collected 8/13/2002	Result 60.4	4.101
Date Collected 8/13/2002 9/16/2002	Result 60.4 60.3	4.101 4.099
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 60.4 60.3 58	4.101 4.099 4.060
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 60.4 60.3 58 60.7	4.101 4.099 4.060 4.106
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 60.4 60.3 58 60.7 62.9	4.101 4.099 4.060 4.106 4.142

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	17.4	NO	2.856	N/A
MW221	Sidegradient	Yes	32	NO	3.466	N/A
MW222	Sidegradient	Yes	31.3	NO	3.444	N/A
MW223	Sidegradient	Yes	26.4	NO	3.273	N/A
MW224	Sidegradient	Yes	35.6	NO	3.572	N/A
MW369	Downgradien	t Yes	31.6	NO	3.453	N/A
MW372	Downgradien	t Yes	40.9	NO	3.711	N/A
MW384	Sidegradient	Yes	33.7	NO	3.517	N/A
MW387	Downgradien	t Yes	46.3	NO	3.835	N/A
MW391	Downgradien	t Yes	46.6	NO	3.842	N/A
MW394	Upgradient	Yes	45.1	NO	3.809	N/A
NI/A D	1, 11, 200 1 3	T D ()	1 1 1 1	1 1	1.4 11.1.7	1 4

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-36

Historical Background Comparison

Chromium UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.024

CV(1) = 0.275S = 0.007

K factor**= 2.523

TL(1) = 0.040

LL(1)=N/A

Statistics-Transformed Background

X = -3.773 S = 0.238 CV(2) = -0.063

K factor=** 2.523

TL(2) = -3.172

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0351	-3.350
1/15/2003	0.0389	-3.247
4/10/2003	0.0346	-3.364
7/14/2003	0.02	-3.912
10/13/2003	0.02	-3.912
1/13/2004	0.02	-3.912
4/13/2004	0.02	-3.912
7/21/2004	0.02	-3.912
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.025 0.025 0.02	-3.689 -3.689 -3.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.025 0.025 0.02 0.02	-3.689 -3.689 -3.912 -3.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.02 0.02 0.02	-3.689 -3.689 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.0102	N/A	-4.585	N/A
MW221	Sidegradient	Yes	0.325	YES	-1.124	N/A
MW222	Sidegradient	No	0.01	N/A	-4.605	N/A
MW223	Sidegradient	Yes	0.00985	N/A	-4.620	N/A
MW224	Sidegradient	No	0.01	N/A	-4.605	N/A
MW369	Downgradien	t No	0.01	N/A	-4.605	N/A
MW372	Downgradien	t No	0.01	N/A	-4.605	N/A
MW384	Sidegradient	Yes	0.00367	N/A	-5.608	N/A
MW387	Downgradien	t No	0.01	N/A	-4.605	N/A
MW391	Downgradien	t No	0.01	N/A	-4.605	N/A
MW394	Upgradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW221

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-37

C-746-S/T First Quarter 2019 Statistical Analysis cis-1,2-Dichloroethene UNITS: ug/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S = 0.000CV(1)=0.000**K factor**=** 2.523 Statistics-Background Data X = 5.000TL(1) = 5.000LL(1)=N/A **Statistics-Transformed Background** CV(2) = 0.000X = 1.609S = 0.000**K factor**=** 2.523 TL(2) = 1.609LL(2)=N/A

Historical Background Data from

Upgradient Wells with Transformed Result

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	5	1.609
1/15/2003	5	1.609
4/10/2003	5	1.609
7/14/2003	5	1.609
10/13/2003	5	1.609
1/13/2004	5	1.609
4/13/2004	5	1.609
7/21/2004	5	1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result)
Date Collected	Result	
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5 5 5 5 5 5	1.609 1.609 1.609 1.609

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.34	NO	-1.079	N/A
MW221	Sidegradient	No	1	N/A	0.000	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t No	1	N/A	0.000	N/A
MW372	Downgradien	t No	1	N/A	0.000	N/A
MW384	Sidegradient	No	1	N/A	0.000	N/A
MW387	Downgradien	t No	1	N/A	0.000	N/A
MW391	Downgradien	t Yes	0.34	NO	-1.079	N/A
MW394	Upgradient	No	1	N/A	0.000	N/A
N/A Pogul	to identified as N	Ion Datasta	during lob	oratory analysis or	data validation	a and wore not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-38

Historical Background Comparison

URGA Cobalt UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016

CV(1)=2.440S = 0.040

K factor**= 2.523

TL(1) = 0.116

LL(1)=N/A

Statistics-Transformed Background

X = -5.582 S = 1.573 CV(2) = -0.282

K factor=** 2.523

TL(2) = -1.613

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0041	-5.497
1/15/2003	0.00496	-5.306
4/10/2003	0.00289	-5.846
7/14/2003	0.161	-1.826
10/13/2003	0.0226	-3.790
1/13/2004	0.00464	-5.373
4/13/2004	0.001	-6.908
7/21/2004	0.00264	-5.937
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 0.025	-3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	-3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.025 0.025 0.001	-3.689 -3.689 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.025 0.025 0.001 0.001	-3.689 -3.689 -6.908 -6.908
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.025 0.025 0.001 0.001 0.001	-3.689 -3.689 -6.908 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00135	N/A	-6.608	NO
MW221	Sidegradient	Yes	0.00105	N/A	-6.859	NO
MW222	Sidegradient	Yes	0.00161	N/A	-6.432	NO
MW223	Sidegradient	Yes	0.00033	6 N/A	-7.998	NO
MW224	Sidegradient	Yes	0.00091	5 N/A	-6.997	NO
MW369	Downgradien	t Yes	0.00505	N/A	-5.288	NO
MW372	Downgradien	t Yes	0.00079	5 N/A	-7.137	NO
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A
MW394	Upgradient	No	0.001	N/A	-6.908	N/A
NI/A D	14. :	T D-44-	Ji 1.1.		3-41:3-4:	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-39

C-746-S/T First Quarter 2019 Statistical Analysis Historical Background Comparison Conductivity UNITS: umho/cm URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 382.132 S = 107.134 CV(1) = 0.280

K factor=** 2.523

TL(1) = 652.432

LL(1)=N/A

Statistics-Transformed Background

X = 5.716 S = 1.164 CV(2) = 0.204

K factor**= 2.523

TL(2)= 8.652

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 5.908 368 1/15/2003 433.2 6.071 4/10/2003 489 6.192 7/14/2003 430 6.064 10/13/2003 346 5.846 1/13/2004 365 5.900 4/13/2004 416 6.031 7/21/2004 353 5.866 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 406 6.006 9/16/2002 418 6.035 6.019 10/16/2002 411 1/13/2003 422 6.045 4/10/2003 420 6.040 7/16/2003 438 6.082 10/14/2003 3.91 1.364 1/13/2004 5.979 395

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	416	NO	6.031	N/A
MW221	Sidegradient	Yes	389	NO	5.964	N/A
MW222	Sidegradient	Yes	371	NO	5.916	N/A
MW223	Sidegradient	Yes	406	NO	6.006	N/A
MW224	Sidegradient	Yes	427	NO	6.057	N/A
MW369	Downgradien	t Yes	386	NO	5.956	N/A
MW372	Downgradien	t Yes	613	NO	6.418	N/A
MW384	Sidegradient	Yes	453	NO	6.116	N/A
MW387	Downgradien	t Yes	545	NO	6.301	N/A
MW391	Downgradien	t Yes	493	NO	6.201	N/A
MW394	Upgradient	Yes	381	NO	5.943	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

URGA UNITS: mg/L Copper

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.024

S = 0.010CV(1)=0.429 **K** factor**= 2.523

TL(1) = 0.050

LL(1)=N/A

Statistics-Transformed Background

X = -3.794 S = 0.312 CV(2) = -0.082

K factor=** 2.523

TL(2) = -3.007

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0211	-3.858
1/15/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/14/2003	0.02	-3.912
10/13/2003	0.02	-3.912
1/13/2004	0.02	-3.912
4/13/2004	0.02	-3.912
7/21/2004	0.02	-3.912
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.05 0.05 0.02	-2.996 -2.996 -3.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.05 0.05 0.02 0.02	-2.996 -2.996 -3.912 -3.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.05 0.05 0.02 0.02 0.02	-2.996 -2.996 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00388	NO	-5.552	N/A
MW221	Sidegradient	Yes	0.0163	NO	-4.117	N/A
MW222	Sidegradient	Yes	0.00291	NO	-5.840	N/A
MW223	Sidegradient	Yes	0.00251	NO	-5.987	N/A
MW224	Sidegradient	Yes	0.00208	NO	-6.175	N/A
MW369	Downgradien	t Yes	0.00366	NO	-5.610	N/A
MW372	Downgradien	t Yes	0.00192	NO	-6.255	N/A
MW384	Sidegradient	Yes	0.00344	NO	-5.672	N/A
MW387	Downgradien	t Yes	0.00171	NO	-6.371	N/A
MW391	Downgradien	t Yes	0.00182	NO	-6.309	N/A
MW394	Upgradient	Yes	0.00236	NO	-6.049	N/A
N/A Pagu	lta identified on N	Jon Dotoota	during lab	oratory analysis or	data validatio	n and ware not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-41

C-746-S/T First Quarter 2019 Statistical Analysis **Dissolved Oxygen** UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.784

CV(1)=0.499

K factor**= 2.523

TL(1) = 8.545

LL(1)=N/A

Statistics-Transformed Background

X = 1.182

S = 1.887

 $S= 0.612 \quad CV(2)=0.518$

K factor=** 2.523

TL(2) = 2.727

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.915 6.79 1/15/2003 7.25 1.981 4/10/2003 1.281 3.6 7/14/2003 0.94 -0.06210/13/2003 0.501 1.65 1/13/2004 3.48 1.247 4/13/2004 1.05 0.049 7/21/2004 4.46 1.495 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 6.09 1.807 9/16/2002 3.85 1.348 10/16/2002 5.11 1.631 1/13/2003 3.83 1.343 4/10/2003 4.15 1.423 7/16/2003 1.83 0.604 10/14/2003 3.33 1.203 1/13/2004 3.14 1.144

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	4.08	NO	1.406	N/A
MW221	Sidegradient	Yes	4.18	NO	1.430	N/A
MW222	Sidegradient	Yes	3.53	NO	1.261	N/A
MW223	Sidegradient	Yes	3.31	NO	1.197	N/A
MW224	Sidegradient	Yes	3.3	NO	1.194	N/A
MW369	Downgradien	t Yes	1.26	NO	0.231	N/A
MW372	Downgradien	t Yes	0.78	NO	-0.248	N/A
MW384	Sidegradient	Yes	3.59	NO	1.278	N/A
MW387	Downgradien	t Yes	2.35	NO	0.854	N/A
MW391	Downgradien	t Yes	3.66	NO	1.297	N/A
MW394	Upgradient	Yes	4.55	NO	1.515	N/A
	10			110		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-42

C-746-S/T First Quarter 2019 Statistical Analysis **Dissolved Solids** UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 232.688 S = 27.490 CV(1) = 0.118

K factor**= 2.523

TL(1) = 302.045

LL(1)=N/A

Statistics-Transformed Background

X = 5.443 S = 0.118 CV(2) = 0.022

K factor**= 2.523

TL(2) = 5.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	209	NO	5.342	N/A	
MW221	Sidegradient	Yes	206	NO	5.328	N/A	
MW222	Sidegradient	Yes	201	NO	5.303	N/A	
MW223	Sidegradient	Yes	203	NO	5.313	N/A	
MW224	Sidegradient	Yes	219	NO	5.389	N/A	
MW369	Downgradien	t Yes	224	NO	5.412	N/A	
MW372	Downgradien	t Yes	394	YES	5.976	N/A	
MW384	Sidegradient	Yes	211	NO	5.352	N/A	
MW387	Downgradien	t Yes	246	NO	5.505	N/A	
MW391	Downgradien	t Yes	236	NO	5.464	N/A	
MW394	Upgradient	Yes	197	NO	5.283	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-43

C-746-S/T First Quarter 2019 Statistical Analysis I Iodide UNITS: mg/L

Historical Background Comparison L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 2.000
 S= 0.000
 CV(1)=0.000
 K factor**= 2.523
 TL(1)= 2.000
 LL(1)=N/A

 Statistics-Transformed Background
 X= 0.693
 S= 0.000
 CV(2)=0.000
 K factor**= 2.523
 TL(2)= 0.693
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.693 1/15/2003 2 0.693 4/10/2003 2 0.693 7/14/2003 2 0.693 10/13/2003 2 0.693 2 1/13/2004 0.693 4/13/2004 2 0.693 2 7/21/2004 0.693 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 2 10/16/2002 0.693 1/13/2003 2 0.693 4/10/2003 2 0.693 2 7/16/2003 0.693 10/14/2003 2 0.693 1/13/2004 0.693

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	No	0.5	N/A	-0.693	N/A
MW221	Sidegradient	No	0.5	N/A	-0.693	N/A
MW222	Sidegradient	No	0.5	N/A	-0.693	N/A
MW223	Sidegradient	No	0.5	N/A	-0.693	N/A
MW224	Sidegradient	No	0.5	N/A	-0.693	N/A
MW369	Downgradien	t No	0.5	N/A	-0.693	N/A
MW372	Downgradien	t Yes	0.236	NO	-1.444	N/A
MW384	Sidegradient	No	0.5	N/A	-0.693	N/A
MW387	Downgradien	t No	0.5	N/A	-0.693	N/A
MW391	Downgradien	t No	0.5	N/A	-0.693	N/A
MW394	Upgradient	No	0.5	N/A	-0.693	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2019 Statistical Analysis Iron UNITS: mg/L

Historical Background Comparison L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.897

CV(1)=1.170

S = 1.050

K factor=** 2.523

TL(1) = 3.545

LL(1)=N/A

Statistics-Transformed Background

X = -0.565 S = 0.951

51 **CV(2)=**-1.683

K factor=** 2.523

TL(2) = 1.834

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.609 0.2 1/15/2003 0.2 -1.6094/10/2003 -0.8460.429 7/14/2003 4.33 1.466 10/13/2003 0.593 1.81 1/13/2004 0.793 -0.2324/13/2004 0.13 -2.0407/21/2004 0.382 -0.962Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1.34 0.293 9/16/2002 0.328 -1.115 0.322 10/16/2002 1.38

1.3

0.494

0.62

0.37

0.251

1/13/2003

4/10/2003

7/16/2003

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.584	N/A	-0.538	NO	
MW221	Sidegradient	Yes	1.52	N/A	0.419	NO	
MW222	Sidegradient	Yes	0.0901	N/A	-2.407	NO	
MW223	Sidegradient	No	0.1	N/A	-2.303	N/A	
MW224	Sidegradient	Yes	0.0892	N/A	-2.417	NO	
MW369	Downgradien	t Yes	0.0841	N/A	-2.476	NO	
MW372	Downgradien	t Yes	0.139	N/A	-1.973	NO	
MW384	Sidegradient	Yes	0.897	N/A	-0.109	NO	
MW387	Downgradien	t Yes	0.164	N/A	-1.808	NO	
MW391	Downgradien	t Yes	0.751	N/A	-0.286	NO	
MW394	Upgradient	Yes	0.14	N/A	-1.966	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.262

-0.705 -0.478

-0.994

-1.382

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2019 Statistical Analysis H Magnesium UNITS: mg/L

Historical Background Comparison L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Ouarter Data

Statistics-Background Data

X = 10.796 S = 1.703

CV(1)=0.158

K factor**= 2.523

TL(1)= 15.092

LL(1)=N/A

Statistics-Transformed Background

X = 2.368

S = 0.158

CV(2) = 0.067

K factor=** 2.523

TL(2) = 2.766

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	9.16	2.215
1/15/2003	10	2.303
4/10/2003	10.8	2.380
7/14/2003	14.7	2.688
10/13/2003	9.03	2.201
1/13/2004	8.49	2.139
4/13/2004	9.7	2.272
7/21/2004	8.06	2.087
Well Number:	MW394	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.468
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 11.8	2.468
Date Collected 8/13/2002 9/16/2002	Result 11.8 12.1	2.468 2.493
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.8 12.1 11.3	2.468 2.493 2.425
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.8 12.1 11.3 10.3	2.468 2.493 2.425 2.332
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.8 12.1 11.3 10.3 11.7	2.468 2.493 2.425 2.332 2.460

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	C					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	10.8	NO	2.380	N/A
MW221	Sidegradient	Yes	10.2	NO	2.322	N/A
MW222	Sidegradient	Yes	9.03	NO	2.201	N/A
MW223	Sidegradient	Yes	10.3	NO	2.332	N/A
MW224	Sidegradient	Yes	10.6	NO	2.361	N/A
MW369	Downgradien	t Yes	7.17	NO	1.970	N/A
MW372	Downgradien	t Yes	18.9	YES	2.939	N/A
MW384	Sidegradient	Yes	11.1	NO	2.407	N/A
MW387	Downgradien	t Yes	14.2	NO	2.653	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

YES

NO

15.9

11.4

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW391

MW394 Upgradient

Wells with Exceedances

N/A

N/A

MW372 MW391

2.766

2.434

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Downgradient Yes

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Manganese UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.287

CV(1)=2.156

K factor**= 2.523

TL(1)= 1.848

LL(1)=N/A

Statistics-Transformed Background

X = -2.455 S = 1.619 CV(2) = -0.659

S = 0.619

K factor=** 2.523

TL(2) = 1.630

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.0306	-3.487
1/15/2003	0.0291	-3.537
4/10/2003	0.0137	-4.290
7/14/2003	2.54	0.932
10/13/2003	0.378	-0.973
1/13/2004	0.159	-1.839
4/13/2004	0.00707	-4.952
7/21/2004	0.0841	-2.476
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -0.612
Date Collected	Result	
Date Collected 8/13/2002	Result 0.542	-0.612
Date Collected 8/13/2002 9/16/2002	Result 0.542 0.155	-0.612 -1.864
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.542 0.155 0.103	-0.612 -1.864 -2.273
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.542 0.155 0.103 0.128	-0.612 -1.864 -2.273 -2.056
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.542 0.155 0.103 0.128 0.005	-0.612 -1.864 -2.273 -2.056 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.0136	N/A	-4.298	NO	
MW221	Sidegradient	Yes	0.00547	N/A	-5.208	NO	
MW222	Sidegradient	Yes	0.0269	N/A	-3.616	NO	
MW223	Sidegradient	Yes	0.00633	N/A	-5.062	NO	
MW224	Sidegradient	Yes	0.0111	N/A	-4.501	NO	
MW369	Downgradien	t Yes	0.017	N/A	-4.075	NO	
MW372	Downgradien	t Yes	0.00722	N/A	-4.931	NO	
MW384	Sidegradient	Yes	0.0418	N/A	-3.175	NO	
MW387	Downgradien	t Yes	0.021	N/A	-3.863	NO	
MW391	Downgradien	t Yes	0.0126	N/A	-4.374	NO	
MW394	Upgradient	Yes	0.00393	N/A	-5.539	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-47

C-746-S/T First Quarter 2019 Statistical Analysis Molybdenum UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.006

CV(1) = 1.261S = 0.008

K factor**= 2.523

TL(1) = 0.026

LL(1)=N/A

Statistics-Transformed Background

X = -5.747 S = 1.205 CV(2) = -0.210

K factor=** 2.523

TL(2) = -2.708

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.00558	-5.189
1/15/2003	0.00983	-4.622
4/10/2003	0.0109	-4.519
7/14/2003	0.00245	-6.012
10/13/2003	0.00566	-5.174
1/13/2004	0.00572	-5.164
4/13/2004	0.001	-6.908
7/21/2004	0.00392	-5.542
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.001	-6.908
4/10/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00144	N/A	-6.543	NO	
MW221	Sidegradient	Yes	0.0225	N/A	-3.794	NO	
MW222	Sidegradient	Yes	0.00064	7 N/A	-7.343	NO	
MW223	Sidegradient	Yes	0.00477	N/A	-5.345	NO	
MW224	Sidegradient	Yes	0.00047	7 N/A	-7.648	NO	
MW369	Downgradien	t No	0.0005	N/A	-7.601	N/A	
MW372	Downgradien	t Yes	0.00035	8 N/A	-7.935	NO	
MW384	Sidegradient	No	0.0005	N/A	-7.601	N/A	
MW387	Downgradien	t No	0.0005	N/A	-7.601	N/A	
MW391	Downgradien	t No	0.0005	N/A	-7.601	N/A	
MW394	Upgradient	No	0.0005	N/A	-7.601	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-48

C-746-S/T First Quarter 2019 Statistical Analysis Nickel UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.127

CV(1)=1.790

K factor**= 2.523

TL(1) = 0.701

LL(1)=N/A

Statistics-Transformed Background

X = -3.617 S = 1.837 CV(2) = -0.508

S = 0.228

K factor=** 2.523

TL(2) = 1.019

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.418 -0.8721/15/2003 0.738 -0.3044/10/2003 -0.609 0.544 7/14/2003 0.106 -2.24410/13/2003 -2.9390.0529 1/13/2004 0.0209 -3.8684/13/2004 0.005 -5.298 0.0192 7/21/2004 -3.953Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.05 -2.996 9/16/2002 0.05 -2.99610/16/2002 0.005 -5.2981/13/2003 0.005 -5.2984/10/2003 0.005-5.298 7/16/2003 0.005 -5.29810/14/2003 0.005 -5.298

0.005

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.0183	N/A	-4.001	NO	
MW221	Sidegradient	Yes	0.0961	N/A	-2.342	NO	
MW222	Sidegradient	Yes	0.118	N/A	-2.137	NO	
MW223	Sidegradient	Yes	0.182	N/A	-1.704	NO	
MW224	Sidegradient	Yes	0.0501	N/A	-2.994	NO	
MW369	Downgradien	t Yes	0.0057	N/A	-5.167	NO	
MW372	Downgradien	t Yes	0.00125	N/A	-6.685	NO	
MW384	Sidegradient	Yes	0.00078	9 N/A	-7.145	NO	
MW387	Downgradien	t Yes	0.00061	3 N/A	-7.397	NO	
MW391	Downgradien	t Yes	0.00079	8 N/A	-7.133	NO	
MW394	Upgradient	Yes	0.00616	N/A	-5.090	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-5.298

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-49

C-746-S/T First Quarter 2019 Statistical Analysis **Oxidation-Reduction Potential UNITS: mV**

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 179.872 S = 86.318 CV(1) = 0.480

K factor**= 2.523

TL(1) = 397.652

LL(1)=N/A

Statistics-Transformed Background

X = 4.861 S = 1.252 CV(2) = 0.258

K factor=** 2.523

TL(2) = 8.021

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	205	5.323
1/15/2003	1.95	0.668
4/10/2003	203	5.313
7/14/2003	30	3.401
10/13/2003	107	4.673
1/13/2004	295	5.687
4/13/2004	190	5.247
7/21/2004	319	5.765
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	
Date Collected 8/13/2002	Result 90	4.500
Date Collected 8/13/2002 9/16/2002	Result 90 240	4.500 5.481
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 90 240 185	4.500 5.481 5.220
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 90 240 185 220	4.500 5.481 5.220 5.394
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 90 240 185 220 196	4.500 5.481 5.220 5.394 5.278

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	361	NO	5.889	N/A	
MW221	Sidegradient	Yes	403	YES	5.999	N/A	
MW222	Sidegradient	Yes	408	YES	6.011	N/A	
MW223	Sidegradient	Yes	407	YES	6.009	N/A	
MW224	Sidegradient	Yes	373	NO	5.922	N/A	
MW369	Downgradien	t Yes	432	YES	6.068	N/A	
MW372	Downgradien	t Yes	393	NO	5.974	N/A	
MW384	Sidegradient	Yes	308	NO	5.730	N/A	
MW387	Downgradien	t Yes	373	NO	5.922	N/A	
MW391	Downgradien	t Yes	300	NO	5.704	N/A	
MW394	Upgradient	Yes	314	NO	5.749	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW221 MW222

MW223

MW369

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-50

C-746-S/T First Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.138 S = 0.282 CV(1) = 0.046 K factor**= 2.904 TL(1) = 6.957 LL(1) = 5.3179

Statistics-Transformed Background Data

S= 0.047 **CV(2)**=0.026

K factor**= 2.904

TL(2)= 1.950

LL(2)=1.6765

Historical Background Data from Upgradient Wells with Transformed Result

X = 1.813

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	6.04	1.798
1/15/2003	6.31	1.842
4/10/2003	6.5	1.872
7/14/2003	6.3	1.841
10/13/2003	6.34	1.847
1/13/2004	6.33	1.845
4/13/2004	6.3	1.841
7/21/2004	5.9	1.775
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result)
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 5.8	1.758
Date Collected 8/13/2002 9/30/2002	Result 5.8 5.93	1.758 1.780
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5.8 5.93 5.42	1.758 1.780 1.690
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5.8 5.93 5.42 6	1.758 1.780 1.690 1.792
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.8 5.93 5.42 6 6.04	1.758 1.780 1.690 1.792 1.798

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Dat	Current	Ouarter	Data
---------------------	---------	----------------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	6.21	NO	1.826	N/A
MW221	Sidegradient	Yes	6.19	NO	1.823	N/A
MW222	Sidegradient	Yes	6.23	NO	1.829	N/A
MW223	Sidegradient	Yes	6.16	NO	1.818	N/A
MW224	Sidegradient	Yes	6.23	NO	1.829	N/A
MW369	Downgradien	t Yes	6.29	NO	1.839	N/A
MW372	Downgradien	t Yes	6.1	NO	1.808	N/A
MW384	Sidegradient	Yes	6.11	NO	1.810	N/A
MW387	Downgradien	t Yes	6.13	NO	1.813	N/A
MW391	Downgradien	t Yes	5.98	NO	1.788	N/A
MW394	Upgradient	Yes	6.33	NO	1.845	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

URGA Potassium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.654

CV(1) = 1.399

K factor=** 2.523

TL(1)=30.144

LL(1)=N/A

Statistics-Transformed Background

X = 1.130

S= 9.310

 $S= 1.208 \quad CV(2)=1.069$

K factor**= 2.523

TL(2) = 4.178

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	6.7	1.902
1/15/2003	29.7	3.391
4/10/2003	24.9	3.215
7/14/2003	1.13	0.122
10/13/2003	3.43	1.233
1/13/2004	6.71	1.904
4/13/2004	19.3	2.960
7/21/2004	3.97	1.379
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 2 2 1.03	0.693 0.693 0.030
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 2 2 1.03 1.1	0.693 0.693 0.030 0.095
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 2 2 1.03 1.1 1.24	0.693 0.693 0.030 0.095 0.215

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	5.52	N/A	1.708	NO	
MW221	Sidegradient	Yes	1.43	N/A	0.358	NO	
MW222	Sidegradient	Yes	0.584	N/A	-0.538	NO	
MW223	Sidegradient	Yes	1.11	N/A	0.104	NO	
MW224	Sidegradient	Yes	0.946	N/A	-0.056	NO	
MW369	Downgradien	t Yes	0.545	N/A	-0.607	NO	
MW372	Downgradien	t Yes	2.19	N/A	0.784	NO	
MW384	Sidegradient	Yes	1.63	N/A	0.489	NO	
MW387	Downgradien	t Yes	1.33	N/A	0.285	NO	
MW391	Downgradien	t Yes	1.78	N/A	0.577	NO	
MW394	Upgradient	Yes	1.47	N/A	0.385	NO	
NI/A Danie		I D-44-	Ji 1.1.	4	3-41: 3-4: -	1	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-52

C-746-S/T First Quarter 2019 Statistical Analysis I Sodium UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 36.363 **S**= 8.666

CV(1) = 0.238

K factor**= 2.523

TL(1)= 58.227

LL(1)=N/A

Statistics-Transformed Background

X = 3.570

S = 0.222

CV(2) = 0.062

K factor=** 2.523

TL(2) = 4.129

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	35.4	3.567
1/15/2003	40.6	3.704
4/10/2003	51	3.932
7/14/2003	58.2	4.064
10/13/2003	38.1	3.640
1/13/2004	37	3.611
4/13/2004	43.2	3.766
7/21/2004	33.8	3.520
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.493
Date Collected	Result	
Date Collected 8/13/2002	Result 32.9	3.493
Date Collected 8/13/2002 9/16/2002	Result 32.9 29.9	3.493 3.398
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 32.9 29.9	3.493 3.398 3.367
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 32.9 29.9 29	3.493 3.398 3.367 3.300
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 32.9 29.9 29 27.1 24.8	3.493 3.398 3.367 3.300 3.211

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	45.1	NO	3.809	N/A	
MW221	Sidegradient	Yes	46.6	NO	3.842	N/A	
MW222	Sidegradient	Yes	45	NO	3.807	N/A	
MW223	Sidegradient	Yes	47.5	NO	3.861	N/A	
MW224	Sidegradient	Yes	54.6	NO	4.000	N/A	
MW369	Downgradien	t Yes	53.1	NO	3.972	N/A	
MW372	Downgradien	t Yes	46.2	NO	3.833	N/A	
MW384	Sidegradient	Yes	53.7	NO	3.983	N/A	
MW387	Downgradien	t Yes	58.5	YES	4.069	N/A	
MW391	Downgradien	t Yes	35.9	NO	3.581	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

3.487

MW387

32.7

Yes

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

N/A

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW394 Upgradient

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2019 Statistical Analysis I Sulfate UNITS: mg/L

Historical Background Comparison L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.481 S = 2.648

CV(1)=0.253

K factor**= 2.523

TL(1)= 17.161

LL(1)=N/A

Statistics-Transformed Background

X = 2.322

S= 0.239 **CV(2)**=0.103

K factor=** 2.523

TL(2) = 2.925

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	10.4	2.342
1/15/2003	9.8	2.282
4/10/2003	15.4	2.734
7/14/2003	14.9	2.701
10/13/2003	13.5	2.603
1/13/2004	10.3	2.332
4/13/2004	14.3	2.660
7/21/2004	10.5	2.351
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.416
Date Collected	Result	
Date Collected 8/13/2002	Result 11.2	2.416
Date Collected 8/13/2002 9/16/2002	Result 11.2 8.3	2.416 2.116
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.2 8.3 8	2.416 2.116 2.079
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.2 8.3 8 8.5	2.416 2.116 2.079 2.140
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.2 8.3 8 8.5 7.9	2.416 2.116 2.079 2.140 2.067

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	21.4	YES	3.063	N/A	
MW221	Sidegradient	Yes	15.5	NO	2.741	N/A	
MW222	Sidegradient	Yes	13.8	NO	2.625	N/A	
MW223	Sidegradient	Yes	22	YES	3.091	N/A	
MW224	Sidegradient	Yes	14.5	NO	2.674	N/A	
MW369	Downgradien	t Yes	6.59	NO	1.886	N/A	
MW372	Downgradien	t Yes	71.7	YES	4.272	N/A	
MW384	Sidegradient	Yes	24.1	YES	3.182	N/A	
MW387	Downgradien	t Yes	21.5	YES	3.068	N/A	
MW391	Downgradien	t Yes	55	YES	4.007	N/A	
MW394	Upgradient	Yes	11	NO	2.398	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

wens with Exceedances	
MW220	
MW223	
MW372	
MW384	
MW387	

MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2019 Statistical Analysis **Technetium-99** UNITS: pCi/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.354

CV(1)=0.992

K factor=** 2.523

TL(1)= 32.768

LL(1)=N/A

Statistics-Transformed Background

X = 2.270

S = 9.280

S = 0.849 CV(2) = 0.374

K factor**= 2.523

TL(2) = 3.262

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	19.7	2.981
1/15/2003	26.1	3.262
4/10/2003	3.56	1.270
7/14/2003	0	#Func!
10/13/2003	21	3.045
1/13/2004	6.32	1.844
4/13/2004	3	1.099
7/21/2004	14.6	2.681
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.639
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 5.45	2.639 1.696
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 14 5.45 2.49	2.639 1.696 0.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 14 5.45 2.49 18.3	2.639 1.696 0.912 2.907
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 14 5.45 2.49 18.3 -1.45	2.639 1.696 0.912 2.907 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	19.4	NO	2.965	N/A	
MW221	Sidegradient	No	13.9	N/A	2.632	N/A	
MW222	Sidegradient	No	4.63	N/A	1.533	N/A	
MW223	Sidegradient	No	17	N/A	2.833	N/A	
MW224	Sidegradient	No	12.2	N/A	2.501	N/A	
MW369	Downgradien	t Yes	39.1	YES	3.666	N/A	
MW372	Downgradien	t Yes	35	YES	3.555	N/A	
MW384	Sidegradient	Yes	152	YES	5.024	N/A	
MW387	Downgradien	t Yes	255	YES	5.541	N/A	
MW391	Downgradien	t No	1.91	N/A	0.647	N/A	
MW394	Upgradient	No	11.5	N/A	2.442	N/A	
N/A - Recu	lts identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW369 MW372 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-55

Historical Background Comparison

Total Organic Carbon (TOC) UNITS: mg/L

URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.494

CV(1) = 0.493S = 0.737

K factor**= 2.523

TL(1) = 3.353

LL(1)=N/A

Statistics-Transformed Background

X = 0.315

 $S= 0.402 \quad CV(2)=1.279$

K factor=** 2.523

TL(2) = 1.330

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1.1	0.095
4/10/2003	1	0.000
7/14/2003	3.3	1.194
10/13/2003	1.8	0.588
1/13/2004	1	0.000
4/13/2004	2	0.693
7/21/2004	3.1	1.131
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	1.3	0.262
9/16/2002	1	0.000
10/16/2002	1	0.000
1/13/2003	1.6	0.470
4/10/2003	1	0.000
7/16/2003	1.4	0.336
10/14/2003	1.3	0.262

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW220	Upgradient	Yes	0.742	NO	-0.298	N/A		
MW221	Sidegradient	Yes	0.98	NO	-0.020	N/A		
MW222	Sidegradient	Yes	0.992	NO	-0.008	N/A		
MW223	Sidegradient	Yes	1.02	NO	0.020	N/A		
MW224	Sidegradient	Yes	0.954	NO	-0.047	N/A		
MW369	Downgradien	t Yes	1.36	NO	0.307	N/A		
MW372	Downgradien	t Yes	2.37	NO	0.863	N/A		
MW384	Sidegradient	Yes	1.27	NO	0.239	N/A		
MW387	Downgradien	t Yes	1.33	NO	0.285	N/A		
MW391	Downgradien	t Yes	0.889	NO	-0.118	N/A		
MW394	Upgradient	Yes	0.858	NO	-0.153	N/A		
	10							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-56

C-746-S/T First Quarter 2019 Statistical Analysis **Total Organic Halides (TOX)** UNITS: ug/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 63.475 S = 163.135 CV(1) = 2.570

K factor**= 2.523

TL(1) = 475.063

LL(1)=N/A

Statistics-Transformed Background

X = 3.103 S = 1.145 CV(2) = 0.369

K factor=** 2.523

TL(2) = 5.992

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.912 1/15/2003 10 2.303 4/10/2003 10 2.303 7/14/2003 10 2.303 10/13/2003 10 2.303 1/13/2004 10 2.303 4/13/2004 10 2.303 10 7/21/2004 2.303 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 50 3.912 9/16/2002 672 6.510 3.912 10/16/2002 50 1/13/2003 36.1 3.586 4/10/2003 10 2.303 42.7 7/16/2003 3.754 10/14/2003 22 3.091

12.8

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	No	10	N/A	2.303	N/A		
MW221	Sidegradient	No	4.04	N/A	1.396	N/A		
MW222	Sidegradient	No	10	N/A	2.303	N/A		
MW223	Sidegradient	No	10	N/A	2.303	N/A		
MW224	Sidegradient	Yes	6.8	N/A	1.917	NO		
MW369	Downgradien	t Yes	22	N/A	3.091	NO		
MW372	Downgradien	t Yes	12.1	N/A	2.493	NO		
MW384	Sidegradient	Yes	11.1	N/A	2.407	NO		
MW387	Downgradien	t Yes	15.8	N/A	2.760	NO		
MW391	Downgradien	t Yes	13.1	N/A	2.573	NO		
MW394	Upgradient	Yes	14.6	N/A	2.681	NO		
NI/A D	14. : J4:6: . J X	I D-44-	Ji 1.1.		3-41: 3-4: -			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.549

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-57

C-746-S/T First Quarter 2019 Statistical Analysis UNITS: ug/L **Trichloroethene**

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

S= 8.376 CV(1) = 0.951**K** factor**= 2.523 TL(1)= 29.946 Statistics-Background Data X = 8.813LL(1)=N/A **Statistics-Transformed Background** X = 1.395CV(2) = 1.039S = 1.449K factor**= 2.523 TL(2) = 5.052LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

MW220 Well Number: Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 1 0.000 4/10/2003 0.000 7/14/2003 1 0.000 10/13/2003 1 0.000 1/13/2004 1 0.000 4/13/2004 1 0.000 7/21/2004 1 0.000Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 16 2.773 9/30/2002 20 2.996 10/16/2002 17 2.833 1/13/2003 15 2.708 10 4/10/2003 2.303 19 7/16/2003 2.944 10/14/2003 20 2.996 1/13/2004 16 2.773

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	No	1	N/A	0.000	N/A		
MW221	Sidegradient	No	1	N/A	0.000	N/A		
MW222	Sidegradient	No	1	N/A	0.000	N/A		
MW223	Sidegradient	No	1	N/A	0.000	N/A		
MW224	Sidegradient	No	1	N/A	0.000	N/A		
MW369	Downgradien	t Yes	1.19	N/A	0.174	N/A		
MW372	Downgradien	t Yes	5.16	NO	1.641	N/A		
MW384	Sidegradient	Yes	0.38	N/A	-0.968	N/A		
MW387	Downgradien	t Yes	0.85	N/A	-0.163	N/A		
MW391	Downgradien	t Yes	8.9	NO	2.186	N/A		
MW394	Upgradient	Yes	3.6	N/A	1.281	N/A		
N/A - Resu	lts identified as N	Jon-Detects	during lab	oratory analysis or	data validatio	n and were not		

- Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-58

C-746-S/T First Quarter 2019 Statistical Analysis E Vanadium UNITS: mg/L

Historical Background Comparison L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.021

CV(1)=0.083

S = 0.002

K factor=** 2.523

TL(1)= 0.025

LL(1)=N/A

Statistics-Transformed Background

X = -3.884 S = 0.076

CV(2) = -0.020

K factor=** 2.523

TL(2) = -3.692

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.02 -3.912 1/15/2003 0.02 -3.912 4/10/2003 0.02 -3.912 7/14/2003 0.02 -3.912 10/13/2003 0.02 -3.912 -3.912 1/13/2004 0.02 4/13/2004 0.02 -3.912 -3.912 7/21/2004 0.02 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.6890.02 -3.91210/16/2002 1/13/2003 0.02 -3.9124/10/2003 0.02-3.912 -3.912 7/16/2003 0.02 10/14/2003 0.02 -3.912 -3.912 1/13/2004 0.02

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	No	0.01	N/A	-4.605	N/A		
MW221	Sidegradient	No	0.01	N/A	-4.605	N/A		
MW222	Sidegradient	No	0.01	N/A	-4.605	N/A		
MW223	Sidegradient	No	0.01	N/A	-4.605	N/A		
MW224	Sidegradient	No	0.01	N/A	-4.605	N/A		
MW369	Downgradien	t Yes	0.00516	NO	-5.267	N/A		
MW372	Downgradien	t No	0.01	N/A	-4.605	N/A		
MW384	Sidegradient	No	0.01	N/A	-4.605	N/A		
MW387	Downgradien	t No	0.01	N/A	-4.605	N/A		
MW391	Downgradien	t No	0.01	N/A	-4.605	N/A		
MW394	Upgradient	No	0.01	N/A	-4.605	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2019 Statistical Analysis Zinc UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.036S = 0.026 CV(1)=0.722

K factor**= 2.523

TL(1) = 0.101

LL(1)=N/A

Statistics-Transformed Background

X = -3.485 S = 0.525 CV(2) = -0.151

K factor=** 2.523

TL(2) = -2.162

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.025	-3.689
1/15/2003	0.035	-3.352
4/10/2003	0.035	-3.352
7/14/2003	0.0389	-3.247
10/13/2003	0.026	-3.650
1/13/2004	0.02	-3.912
4/13/2004	0.02	-3.912
7/21/2004	0.02	-3.912
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -2.303
Date Collected	Result	
Date Collected 8/13/2002	Result 0.1	-2.303
Date Collected 8/13/2002 9/16/2002	Result 0.1 0.1	-2.303 -2.303
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 0.1 0.1 0.025	-2.303 -2.303 -3.689
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 0.1 0.1 0.025 0.035	-2.303 -2.303 -3.689 -3.352
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 0.1 0.1 0.025 0.035 0.035	-2.303 -2.303 -3.689 -3.352 -3.352

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW220	Upgradient	Yes	0.00434	NO	-5.440	N/A			
MW221	Sidegradient	Yes	0.00712	NO	-4.945	N/A			
MW222	Sidegradient	No	0.01	N/A	-4.605	N/A			
MW223	Sidegradient	No	0.01	N/A	-4.605	N/A			
MW224	Sidegradient	No	0.01	N/A	-4.605	N/A			
MW369	Downgradien	t Yes	0.00361	NO	-5.624	N/A			
MW372	Downgradien	t No	0.01	N/A	-4.605	N/A			
MW384	Sidegradient	Yes	0.00663	NO	-5.016	N/A			
MW387	Downgradien	t No	0.01	N/A	-4.605	N/A			
MW391	Downgradien	t No	0.01	N/A	-4.605	N/A			
MW394	Upgradient	No	0.00342	N/A	-5.678	N/A			
37/4 75	1	r			4 . 4				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-60

Historical Background Comparison

Aluminum UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.258

CV(1) = 0.856S = 0.221

K factor=** 2.523

TL(1) = 0.815

LL(1)=N/A

Statistics-Transformed Background

X = -2.266 S = 2.485 CV(2) = -1.097

K factor=** 2.523

TL(2) = 4.003

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	0.737	-0.305
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.194
Date Collected	Result	
Date Collected 8/13/2002	Result 0.824	-0.194
Date Collected 8/13/2002 9/16/2002	Result 0.824 0.2	-0.194 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.824 0.2 0.0002	-0.194 -1.609 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.824 0.2 0.0002 0.363	-0.194 -1.609 -8.517 -1.013
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.824 0.2 0.0002 0.363 0.2	-0.194 -1.609 -8.517 -1.013 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

I	Current Quarter Data								
١	Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
	MW370	Downgradient	No	0.05	N/A	-2.996	N/A		
	MW373	Downgradient	No	0.05	N/A	-2.996	N/A		
	MW385	Sidegradient	Yes	0.179	NO	-1.720	N/A		
	MW388	Downgradient	Yes	0.129	NO	-2.048	N/A		
	MW392	Downgradient	No	0.05	N/A	-2.996	N/A		
	MW395	Upgradient	No	0.05	N/A	-2.996	N/A		
	MW397	Upgradient	Yes	0.0393	NO	-3.237	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-61

C-746-S/T First Quarter 2019 Statistical Analysis Beta activity UNITS: pCi/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.183

CV(1)=0.364S = 2.612

K factor=** 2.523

TL(1)=13.773

LL(1)=N/A

Statistics-Transformed Background

X = 1.870

S = 0.552 CV(2) = 0.295

K factor**= 2.523

TL(2) = 3.261

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1.09	0.086
9/16/2002	5.79	1.756
10/16/2002	6.82	1.920
1/13/2003	5.01	1.611
4/10/2003	6.1	1.808
7/16/2003	8.51	2.141
10/14/2003	4.99	1.607
1/13/2004	6.58	1.884
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.259
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 9.57	2.259
Date Collected 8/13/2002 9/16/2002	Result 9.57	2.259 2.398
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 9.57 11 9.3	2.259 2.398 2.230
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 9.57 11 9.3 8.63	2.259 2.398 2.230 2.155
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 9.57 11 9.3 8.63 10	2.259 2.398 2.230 2.155 2.303

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data									
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW370	Downgradient	Yes	75.8	YES	4.328	N/A			
MW373	Downgradient	Yes	17.4	N/A	2.856	N/A			
MW385	Sidegradient	Yes	73.6	YES	4.299	N/A			
MW388	Downgradient	Yes	80.9	YES	4.393	N/A			
MW392	Downgradient	No	1.44	N/A	0.365	N/A			
MW395	Upgradient	No	5.24	N/A	1.656	N/A			
MW397	Upgradient	No	8.19	N/A	2.103	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-62

Historical Background Comparison

Boron UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S= 0.805 **CV(1)**=1.238

K factor**= 2.523

TL(1)= 2.681

LL(1)=N/A

Statistics-Transformed Background

X = -1.034 S = 1.030

CV(2) = -0.996

K factor**= 2.523

TL(2) = 1.564

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.693 9/16/2002 2 0.693 0.2 -1.609 10/16/2002 1/13/2003 0.2 -1.6094/10/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/17/2002 0.2 -1.6091/13/2003 0.2 -1.6094/8/2003 0.2 -1.6097/16/2003 0.2 -1.60910/14/2003 0.2 -1.609

0.2

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW370	Downgradient	Yes	0.0342	N/A	-3.376	NO			
MW373	Downgradient	Yes	1.1	N/A	0.095	NO			
MW385	Sidegradient	Yes	0.0296	N/A	-3.520	NO			
MW388	Downgradient	Yes	0.029	N/A	-3.540	NO			
MW392	Downgradient	Yes	0.0284	N/A	-3.561	NO			
MW395	Upgradient	Yes	0.0238	N/A	-3.738	NO			
MW397	Upgradient	Yes	0.00969	N/A	-4.637	NO			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Bromide UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.000

S = 0.000CV(1)=0.000 **K factor**=** 2.523

TL(1)=1.000

LL(1)=N/A

Statistics-Transformed Background

X = 0.000

S = 0.000

CV(2)=#Num!

K factor=** 2.523

TL(2) = 0.000

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.000 9/16/2002 1 0.000 10/16/2002 0.000 1/13/2003 1 0.000 4/10/2003 1 0.000 7/16/2003 1 0.000 10/14/2003 1 0.000 1/13/2004 1 0.000Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/17/2002 0.000 1/13/2003 0.000 4/8/2003 0.0007/16/2003 1 0.000 10/14/2003 0.000 1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	0.371	NO	-0.992	N/A	
MW373	Downgradient	Yes	0.697	NO	-0.361	N/A	
MW385	Sidegradient	Yes	0.3	NO	-1.204	N/A	
MW388	Downgradient	Yes	0.402	NO	-0.911	N/A	
MW392	Downgradient	Yes	0.872	NO	-0.137	N/A	
MW395	Upgradient	Yes	0.735	NO	-0.308	N/A	
MW397	Upgradient	Yes	0.419	NO	-0.870	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

0.000

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-64

Historical Background Comparison

Calcium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 23.103 S = 11.538 CV(1) = 0.499

K factor=** 2.523

TL(1) = 52.213

LL(1)=N/A

Statistics-Transformed Background

X = 2.357 S = 2.411 CV(2) = 1.023

K factor=** 2.523

TL(2) = 8.439

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.965
Date Collected	Result	
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW370	Downgradient	Yes	29.1	NO	3.371	N/A		
MW373	Downgradient	Yes	64.4	YES	4.165	N/A		
MW385	Sidegradient	Yes	25.9	NO	3.254	N/A		
MW388	Downgradient	Yes	30.4	NO	3.414	N/A		
MW392	Downgradient	Yes	29.4	NO	3.381	N/A		
MW395	Upgradient	Yes	27.3	NO	3.307	N/A		
MW397	Upgradient	Yes	19	NO	2.944	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-65

Historical Background Comparison

Chemical Oxygen Demand (COD) UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.313 S = 1.250

CV(1) = 0.035

K factor=** 2.523

TL(1) = 38.466

LL(1)=N/A

Statistics-Transformed Background

X = 3.564

S = 0.033 CV(2) = 0.009

K factor**= 2.523

TL(2) = 3.648

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	35	3.555
9/16/2002	35	3.555
10/16/2002	35	3.555
1/13/2003	35	3.555
4/10/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/13/2004	35	3.555
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.689
Date Collected	Result	
Date Collected 8/13/2002	Result 40	3.689
Date Collected 8/13/2002 9/16/2002	Result 40 35	3.689 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 40 35 35	3.689 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 40 35 35 35	3.689 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 40 35 35 35 35 35	3.689 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	28.6	NO	3.353	N/A	
MW373	Downgradient	No	20	N/A	2.996	N/A	
MW385	Sidegradient	Yes	10.2	NO	2.322	N/A	
MW388	Downgradient	Yes	12.3	NO	2.510	N/A	
MW392	Downgradient	No	20	N/A	2.996	N/A	
MW395	Upgradient	No	20	N/A	2.996	N/A	
MW397	Upgradient	No	20	N/A	2.996	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-66

C-746-S/T First Quarter 2019 Statistical Analysis I Chloride UNITS: mg/L

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.844 S = 11.652 CV(1) = 0.225

K factor**= 2.523

TL(1)= 81.242

LRGA

LL(1)=N/A

Statistics-Transformed Background

X = 3.924

S = 0.229 CV(2) = 0.058

K factor**= 2.523

TL(2) = 4.501

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	62.2	4.130
9/16/2002	64.7	4.170
10/16/2002	62.2	4.130
1/13/2003	63.5	4.151
4/10/2003	64.1	4.160
7/16/2003	64	4.159
10/14/2003	63.2	4.146
1/13/2004	60.6	4.104
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.661
Date Collected	Result	
Date Collected 8/13/2002	Result 38.9	3.661
Date Collected 8/13/2002 9/16/2002	Result 38.9 39.8	3.661 3.684
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 38.9 39.8 39.3	3.661 3.684 3.671
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 38.9 39.8 39.3 40.5	3.661 3.684 3.671 3.701
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 38.9 39.8 39.3 40.5 42.1	3.661 3.684 3.671 3.701 3.740

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	33.8	NO	3.520	N/A	
MW373	Downgradient	Yes	42.8	NO	3.757	N/A	
MW385	Sidegradient	Yes	32.1	NO	3.469	N/A	
MW388	Downgradient	Yes	34.7	NO	3.547	N/A	
MW392	Downgradient	Yes	47.6	NO	3.863	N/A	
MW395	Upgradient	Yes	41.7	NO	3.731	N/A	
MW397	Upgradient	Yes	34.7	NO	3.547	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2019 Statistical Analysis cis-1,2-Dichloroethene UNITS: ug/L

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 5.000
 S= 0.000
 CV(1)=0.000
 K factor**= 2.523
 TL(1)= 5.000
 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.609
 S= 0.000
 CV(2)=0.000
 K factor**= 2.523
 TL(2)= 1.609
 LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.609 9/30/2002 5 1.609 5 10/16/2002 1.609 1/13/2003 5 1.609 4/10/2003 5 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 5 1/13/2004 1.609 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 5 1.609 1/13/2003 5 1.609 5 4/8/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

LRGA

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	. No	1	N/A	0.000	N/A
MW373	Downgradient	No	1	N/A	0.000	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradient	No	1	N/A	0.000	N/A
MW392	Downgradient	Yes	0.92	NO	-0.083	N/A
MW395	Upgradient	No	1	N/A	0.000	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Cobalt UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

CV(1)=1.515S = 0.011

K factor**= 2.523

TL(1) = 0.034

LL(1)=N/A

Statistics-Transformed Background

X = -6.053 S = 1.416 CV(2) = -0.234

K factor=** 2.523

TL(2) = -2.480

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/17/2002	0.001	-6.908
1/13/2003	0.001	-6.908
4/8/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

	Current Quarter Data							
	Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
•	MW370	Downgradient	Yes	0.000351	N/A	-7.955	NO	
	MW373	Downgradient	Yes	0.000376	N/A	-7.886	NO	
	MW385	Sidegradient	Yes	0.000581	N/A	-7.451	NO	
	MW388	Downgradient	No	0.001	N/A	-6.908	N/A	
	MW392	Downgradient	No	0.001	N/A	-6.908	N/A	
	MW395	Upgradient	No	0.001	N/A	-6.908	N/A	
	MW397	Upgradient	No	0.001	N/A	-6.908	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-69

C-746-S/T First Quarter 2019 Statistical Analysis **Historical Background Comparison Conductivity** UNITS: umho/cm

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 377.875 S = 52.101 CV(1) = 0.138

K factor**= 2.523

TL(1)= 509.326 **LL(1)=**N/A

Statistics-Transformed Background

X = 5.926 S = 0.136 CV(2) = 0.023

K factor=** 2.523

TL(2) = 6.270

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 5.775
Date Collected	Result	
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	458	NO	6.127	N/A	
MW373	Downgradient	Yes	741	YES	6.608	N/A	
MW385	Sidegradient	Yes	420	NO	6.040	N/A	
MW388	Downgradient	Yes	475	NO	6.163	N/A	
MW392	Downgradient	Yes	410	NO	6.016	N/A	
MW395	Upgradient	Yes	359	NO	5.883	N/A	
MW397	Upgradient	Yes	316	NO	5.756	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-70

Historical Background Comparison

Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

S = 0.013 CV(1) = 0.474

K factor**= 2.523

TL(1)= 0.061

LL(1)=N/A

Statistics-Transformed Background

X = -3.662 S = 0.406

CV(2) = -0.111

K factor=** 2.523

TL(2) = -2.638

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.0281	-3.572
1/13/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/17/2002	0.02	-3.912
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	0.00263	NO	-5.941	N/A
MW373	Downgradien	t Yes	0.00457	NO	-5.388	N/A
MW385	Sidegradient	Yes	0.00235	NO	-6.053	N/A
MW388	Downgradien	t Yes	0.00224	NO	-6.101	N/A
MW392	Downgradien	t Yes	0.00182	NO	-6.309	N/A
MW395	Upgradient	Yes	0.00285	NO	-5.860	N/A
MW397	Upgradient	Yes	0.00212	NO	-6.156	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Dissolved Oxygen UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 4.678

CV(1)=0.520S = 2.431

K factor=** 2.523

TL(1)=10.812

LL(1)=N/A

Statistics-Transformed Background

X = 1.414

 $S = 0.550 \quad CV(2) = 0.389$

K factor**= 2.523

TL(2) = 2.802

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	7.29	1.987
9/30/2002	4.03	1.394
10/16/2002	3.85	1.348
1/13/2003	2.36	0.859
4/10/2003	1.14	0.131
7/16/2003	1.76	0.565
10/14/2003	4.05	1.399
1/13/2004	4.26	1.449
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.448
Date Collected	Result	
Date Collected 8/13/2002	Result 11.56	2.448
Date Collected 8/13/2002 9/16/2002	Result 11.56 5.86	2.448 1.768
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 11.56 5.86 5.94	2.448 1.768 1.782
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 11.56 5.86 5.94 4.66	2.448 1.768 1.782 1.539
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 11.56 5.86 5.94 4.66 3.77	2.448 1.768 1.782 1.539 1.327

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	3.52	NO	1.258	N/A	
MW373	Downgradient	Yes	1.07	NO	0.068	N/A	
MW385	Sidegradient	Yes	3.7	NO	1.308	N/A	
MW388	Downgradient	Yes	3.73	NO	1.316	N/A	
MW392	Downgradient	Yes	1.33	NO	0.285	N/A	
MW395	Upgradient	Yes	4.83	NO	1.575	N/A	
MW397	Upgradient	Yes	6.39	NO	1.855	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-72

C-746-S/T First Quarter 2019 Statistical Analysis **Dissolved Solids** UNITS: mg/L

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 219.250 S = 34.107 CV(1) = 0.156

K factor**= 2.523

TL(1) = 305.301

LRGA

LL(1)=N/A

Statistics-Transformed Background

X = 5.379 S = 0.152 CV(2) = 0.028

K factor=** 2.523

TL(2) = 5.762

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.231
Date Collected	Result	
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	257	NO	5.549	N/A		
MW373	Downgradient	Yes	386	YES	5.956	N/A		
MW385	Sidegradient	Yes	206	NO	5.328	N/A		
MW388	Downgradient	Yes	216	NO	5.375	N/A		
MW392	Downgradient	Yes	214	NO	5.366	N/A		
MW395	Upgradient	Yes	284	NO	5.649	N/A		
MW397	Upgradient	Yes	160	NO	5.075	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-73

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result

for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Iron

X = 0.400

S = 0.514 CV(1) = 1.286

UNITS: mg/L

K factor**= 2.523

TL(1)= 1.698

LRGA

LL(1)=N/A

Statistics-Transformed Background

X = -2.197 S = 2.634 CV(2) = -1.199

K factor=** 2.523

TL(2) = 4.449

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.294	-1.224
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	1.33	0.285
4/10/2003	1.31	0.270
7/16/2003	0.2	-1.609
10/14/2003	0.1	-2.303
1/13/2004	0.1	-2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.457
Date Collected	Result	` ,
Date Collected 8/13/2002	Result 1.58	0.457
Date Collected 8/13/2002 9/16/2002	Result 1.58 0.232	0.457 -1.461
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1.58 0.232 0.0002	0.457 -1.461 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1.58 0.232 0.0002 0.453	0.457 -1.461 -8.517 -0.792
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1.58 0.232 0.0002 0.453 0.2	0.457 -1.461 -8.517 -0.792 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2				
MW370	Downgradient	Yes	0.0448	N/A	-3.106	NO				
MW373	Downgradient	No	0.1	N/A	-2.303	N/A				
MW385	Sidegradient	Yes	0.345	N/A	-1.064	NO				
MW388	Downgradient	Yes	0.482	N/A	-0.730	NO				
MW392	Downgradient	Yes	0.19	N/A	-1.661	NO				
MW395	Upgradient	Yes	0.0701	N/A	-2.658	NO				
MW397	Upgradient	Yes	0.119	N/A	-2.129	NO				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-74

Historical Background Comparison

Magnesium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.102

CV(1) = 0.515

K factor=** 2.523

TL(1)= 20.922

LL(1)=N/A

Statistics-Transformed Background

X = 1.423

S= 2.408

S = 4.685

CV(2)=1.692

K factor=** 2.523

TL(2) = 7.500

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	12.5	2.526
9/16/2002	13	2.565
10/16/2002	0.0127	-4.366
1/13/2003	11.2	2.416
4/10/2003	17.5	2.862
7/16/2003	12.9	2.557
10/14/2003	13.4	2.595
1/13/2004	12.4	2.518
1/13/2001	12.1	2.510
Well Number:	MW397	2.310
		LN(Result)
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
Well Number: Date Collected 8/13/2002	MW397 Result 7.83	LN(Result) 2.058
Well Number: Date Collected 8/13/2002 9/16/2002	MW397 Result 7.83 7.64	LN(Result) 2.058 2.033
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002	MW397 Result 7.83 7.64 0.00658	LN(Result) 2.058 2.033 -5.024
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	MW397 Result 7.83 7.64 0.00658 6.69	LN(Result) 2.058 2.033 -5.024 1.901
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	MW397 Result 7.83 7.64 0.00658 6.69 7.28	LN(Result) 2.058 2.033 -5.024 1.901 1.985

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	12.9	NO	2.557	N/A		
MW373	Downgradient	Yes	24.2	YES	3.186	N/A		
MW385	Sidegradient	Yes	10.6	NO	2.361	N/A		
MW388	Downgradient	Yes	13.6	NO	2.610	N/A		
MW392	Downgradient	Yes	11.3	NO	2.425	N/A		
MW395	Upgradient	Yes	11.2	NO	2.416	N/A		
MW397	Upgradient	Yes	7.84	NO	2.059	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Manganese UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.131

CV(1) = 1.487

K factor**= 2.523

TL(1) = 0.624

LL(1)=N/A

Statistics-Transformed Background

X = -3.104 S = 1.529 CV(2) = -0.493

S = 0.195

K factor=** 2.523

TL(2) = 0.755

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.361	-1.019
9/16/2002	0.028	-3.576
10/16/2002	0.026	-3.650
1/13/2003	0.0713	-2.641
4/10/2003	0.629	-0.464
7/16/2003	0.297	-1.214
10/14/2003	0.0198	-3.922
1/13/2004	0.0126	-4.374
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.466	-0.764
9/16/2002	0.077	-2.564
10/17/2002	0.028	-3.576
1/13/2003	0.0164	-4.110
4/8/2003	0.0407	-3.202
7/16/2003	0.0167	-4.092
10/14/2003	0.00555	-5.194

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data									
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2				
MW370	Downgradient	No	0.00212	N/A	-6.156	N/A				
MW373	Downgradient	Yes	0.0223	N/A	-3.803	NO				
MW385	Sidegradient	Yes	0.0193	N/A	-3.948	NO				
MW388	Downgradient	Yes	0.00382	N/A	-5.568	NO				
MW392	Downgradient	Yes	0.04	N/A	-3.219	NO				
MW395	Upgradient	Yes	0.00146	N/A	-6.529	NO				
MW397	Upgradient	Yes	0.003	N/A	-5.809	NO				

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-76

C-746-S/T First Quarter 2019 Statistical Analysis Molybdenum UNITS: mg/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

CV(1)=1.451

K factor**= 2.523

TL(1) = 0.034

LL(1)=N/A

Statistics-Transformed Background

S = 0.011

X = -5.990 S = 1.443 CV(2) = -0.241

K factor=** 2.523

TL(2) = -2.349

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00609	-5.101
4/10/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/17/2002	0.001	-6.908
1/13/2003	0.001	-6.908
4/8/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2			
MW370	Downgradient	No	0.0005	N/A	-7.601	N/A			
MW373	Downgradient	No	0.0005	N/A	-7.601	N/A			
MW385	Sidegradient	No	0.0005	N/A	-7.601	N/A			
MW388	Downgradient	Yes	0.00030	6 N/A	-8.092	NO			
MW392	Downgradient	No	0.0005	N/A	-7.601	N/A			
MW395	Upgradient	Yes	0.00024	N/A	-8.335	NO			
MW397	Upgradient	No	0.0005	N/A	-7.601	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-77

C-746-S/T First Quarter 2019 Statistical Analysis Nickel UNITS: mg/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.018

S = 0.020

CV(1)=1.089

K factor**= 2.523

TL(1) = 0.068

LL(1)=N/A

Statistics-Transformed Background

X = -4.540 S = 1.020 CV(2) = -0.225

K factor=** 2.523

TL(2) = -1.965

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
		LN(Result)
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
Well Number: Date Collected 8/13/2002	MW397 Result 0.05	LN(Result) -2.996
Well Number: Date Collected 8/13/2002 9/16/2002	MW397 Result 0.05 0.05	LN(Result) -2.996 -2.996
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002	MW397 Result 0.05 0.05 0.005	LN(Result) -2.996 -2.996 -5.298
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	MW397 Result 0.05 0.05 0.005 0.005	LN(Result) -2.996 -2.996 -5.298 -5.294
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	MW397 Result 0.05 0.05 0.005 0.005 0.00502 0.005	LN(Result) -2.996 -2.996 -5.298 -5.294 -5.298

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data									
Well No.	Gradient	Detected?	Result	Re	sult >TL(1)?	LN(Result)	LN(Result) >TL(
MW370	Downgradient	Yes	0.00065	1	N/A	-7.337	NO		
MW373	Downgradient	Yes	0.00182		N/A	-6.309	NO		
MW385	Sidegradient	Yes	0.00127		N/A	-6.669	NO		
MW388	Downgradient	Yes	0.00186	·)	N/A	-6.287	NO		
MW392	Downgradient	Yes	0.00065		N/A	-7.339	NO		
MW395	Upgradient	No	0.00178		N/A	-6.331	N/A		
MW397	Upgradient	No	0.00103		N/A	-6.878	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-78

C-746-S/T First Quarter 2019 Statistical Analysis **Oxidation-Reduction Potential UNITS: mV**

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 157.250 S = 52.376 CV(1) = 0.333

K factor=** 2.523

TL(1) = 289.395

LL(1)=N/A

Statistics-Transformed Background

X = 5.003 S = 0.348 CV(2) = 0.069

K factor=** 2.523

TL(2) = 5.880

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	80	4.382
9/16/2002	145	4.977
10/16/2002	125	4.828
1/13/2003	85	4.443
4/10/2003	159	5.069
7/16/2003	98	4.585
10/14/2003	138	4.927
1/13/2004	233	5.451
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 4.745
Date Collected	Result	
Date Collected 8/13/2002	Result 115	4.745
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	440	YES	6.087	N/A
MW373	Downgradient	Yes	336	YES	5.817	N/A
MW385	Sidegradient	Yes	397	YES	5.984	N/A
MW388	Downgradient	Yes	386	YES	5.956	N/A
MW392	Downgradient	Yes	344	YES	5.841	N/A
MW395	Upgradient	Yes	433	YES	6.071	N/A
MW397	Upgradient	Yes	394	YES	5.976	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances
MW370
MW373
MW385
MW388
MW392
MW395

MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-79

C-746-S/T First Quarter 2019 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.048 S = 0.248 CV(1) = 0.041 K factor**= 2.904 TL(1) = 6.767 LL(1) = 5.3289

Statistics-Transformed Background Data

X= 1.799 **S**= 0.042 **CV(2)**= 0.023

K factor**= 2.904

TL(2)= 1.920

LL(2)=1.6782

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 5.8 1.758 9/16/2002 1.792 5.47 1.699 10/16/2002 1/13/2003 6 1.792 4/10/2003 6.18 1.821 7/16/2003 6 1.792 10/14/2003 6.31 1.842 1/13/2004 6.24 1.831 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5.84 1.765 9/30/2002 1.792 6 10/17/2002 5.75 1.749 1/13/2003 6 1.792 4/8/2003 6.3 1.841 7/16/2003 6.2 1.825 10/14/2003 6.36 1.850 1/13/2004 6.32 1.844

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW370	Downgradien	t Yes	6.17	NO	1.820	N/A
MW373	Downgradien	t Yes	6.16	NO	1.818	N/A
MW385	Sidegradient	Yes	5.96	NO	1.785	N/A
MW388	Downgradien	t Yes	6.01	NO	1.793	N/A
MW392	Downgradien	t Yes	6.08	NO	1.805	N/A
MW395	Upgradient	Yes	6.01	NO	1.793	N/A
MW397	Upgradient	Yes	6.11	NO	1.810	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Potassium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.590

S = 0.642

CV(1) = 0.404

K factor**= 2.523

TL(1) = 3.208

LL(1)=N/A

Statistics-Transformed Background

X = -0.306 S = 2.457 CV(2) = -8.028

K factor=** 2.523

TL(2) = 5.892

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.00129	-6.653
1/13/2003	1.51	0.412
4/10/2003	1.67	0.513
7/16/2003	1.73	0.548
10/14/2003	1.7	0.531
1/13/2004	1.58	0.457
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 0.708
Date Collected	Result	
Date Collected 8/13/2002	Result 2.03	0.708
Date Collected 8/13/2002 9/16/2002	Result 2.03 2	0.708 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2.03 2 0.00145	0.708 0.693 -6.536
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2.03 2 0.00145 1.69	0.708 0.693 -6.536 0.525
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2.03 2 0.00145 1.69 1.73	0.708 0.693 -6.536 0.525 0.548

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	2.58	NO	0.948	N/A
MW373	Downgradient	Yes	2.91	NO	1.068	N/A
MW385	Sidegradient	Yes	1.86	NO	0.621	N/A
MW388	Downgradient	Yes	2.16	NO	0.770	N/A
MW392	Downgradient	Yes	1.92	NO	0.652	N/A
MW395	Upgradient	Yes	1.64	NO	0.495	N/A
MW397	Upgradient	Yes	1.77	NO	0.571	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-81

C-746-S/T First Quarter 2019 Statistical Analysis Sodium UNITS: mg/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 29.560 S = 13.894 CV(1) = 0.470

K factor**= 2.523

TL(1) = 64.616

LL(1)=N/A

Statistics-Transformed Background

X = 2.615 S = 2.411 CV(2) = 0.922

K factor=** 2.523

TL(2) = 8.699

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.561
Date Collected	Result	
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	46	NO	3.829	N/A
MW373	Downgradient	Yes	53.6	NO	3.982	N/A
MW385	Sidegradient	Yes	47.5	NO	3.861	N/A
MW388	Downgradient	Yes	52.2	NO	3.955	N/A
MW392	Downgradient	Yes	36.6	NO	3.600	N/A
MW395	Upgradient	Yes	30.3	NO	3.411	N/A
MW397	Upgradient	Yes	33.8	NO	3.520	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-82

C-746-S/T First Quarter 2019 Statistical Analysis **Sulfate** UNITS: mg/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.756 S = 2.147

CV(1) = 0.200

K factor=** 2.523

TL(1)= 16.173

LL(1)=N/A

Statistics-Transformed Background

X = 2.356 S = 0.203 CV(2) = 0.086

K factor=** 2.523

TL(2) = 2.869

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	10.3	2.332
9/16/2002	9.1	2.208
10/16/2002	8.8	2.175
1/13/2003	9	2.197
4/10/2003	8.3	2.116
7/16/2003	8.2	2.104
10/14/2003	8.3	2.116
1/13/2004	8.2	2.104
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 2.639
Date Collected	Result	
Date Collected 8/13/2002	Result	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 12.8	2.639 2.549
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 14 12.8 12.3	2.639 2.549 2.510
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 14 12.8 12.3 12.7	2.639 2.549 2.510 2.542
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 14 12.8 12.3 12.7 12.8	2.639 2.549 2.510 2.542 2.549

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW370	Downgradient	Yes	23	YES	3.135	N/A
MW373	Downgradient	Yes	121	YES	4.796	N/A
MW385	Sidegradient	Yes	21.3	YES	3.059	N/A
MW388	Downgradient	Yes	27.5	YES	3.314	N/A
MW392	Downgradient	Yes	10.7	NO	2.370	N/A
MW395	Upgradient	Yes	10.6	NO	2.361	N/A
MW397	Upgradient	Yes	10.1	NO	2.313	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-83

C-746-S/T First Quarter 2019 Statistical Analysis H Technetium-99 UNITS: pCi/L

Historical Background Comparison /L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.359 **S**= 9.138

CV(1) = 0.805

K factor**= 2.523

TL(1)= 34.414

LL(1)=N/A

Statistics-Transformed Background

X = 2.398

S = 0.859

CV(2) = 0.358

K factor=** 2.523

TL(2) = 3.246

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	20.8	3.035
9/16/2002	16.2	2.785
10/16/2002	8.28	2.114
1/13/2003	13	2.565
4/10/2003	-9.37	#Func!
7/16/2003	0.826	-0.191
10/14/2003	14.1	2.646
1/13/2004	0	#Func!
Well Number:	MW397	
Well Number: Date Collected		LN(Result)
		LN(Result) 1.802
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 6.06	1.802
Date Collected 8/13/2002 9/16/2002	Result 6.06 17.3	1.802 2.851
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 6.06 17.3 25.7	1.802 2.851 3.246
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 6.06 17.3 25.7 20.9	1.802 2.851 3.246 3.040
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 6.06 17.3 25.7 20.9 20.1	1.802 2.851 3.246 3.040 3.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient I	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	94.3	YES	4.546	N/A
MW373	Downgradient	Yes	28.4	NO	3.346	N/A
MW385	Sidegradient	Yes	149	YES	5.004	N/A
MW388	Downgradient	Yes	166	YES	5.112	N/A
MW392	Downgradient	No	2.18	N/A	0.779	N/A
MW395	Upgradient	No	10.3	N/A	2.332	N/A
MW397	Upgradient	No	7.12	N/A	1.963	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Total Organic Carbon (TOC)

UNITS: mg/L

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.544

CV(1) = 0.554

K factor=** 2.523

TL(1) = 3.702

LL(1)=N/A

Statistics-Transformed Background

X = 0.325

S = 0.856

S = 0.452 CV(2) = 1.393

K factor=** 2.523

TL(2) = 1.465

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1.6	0.470
9/16/2002	1.1	0.095
10/16/2002	1	0.000
1/13/2003	2	0.693
4/10/2003	3.4	1.224
7/16/2003	2	0.693
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	, ,
Date Collected 8/13/2002	Result	0.000
Date Collected 8/13/2002 9/16/2002	Result 1 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 3.6	0.000 0.000 0.000 1.281
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 1 3.6 1.9	0.000 0.000 0.000 1.281 0.642

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	1.07	NO	0.068	N/A
MW373	Downgradient	Yes	1.37	NO	0.315	N/A
MW385	Sidegradient	Yes	1.15	NO	0.140	N/A
MW388	Downgradient	Yes	1.15	NO	0.140	N/A
MW392	Downgradient	Yes	1.11	NO	0.104	N/A
MW395	Upgradient	Yes	0.793	NO	-0.232	N/A
MW397	Upgradient	Yes	0.755	NO	-0.281	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-85

Historical Background Comparison

Total Organic Halides (TOX)

UNITS: ug/L

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 31.513 S = 18.609 CV(1) = 0.591

K factor**= 2.523

TL(1) = 78.462

LL(1)=N/A

Statistics-Transformed Background

X = 3.240 S = 0.707 CV(2) = 0.218

K factor=** 2.523

TL(2) = 5.024

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	50	3.912
9/16/2002	50	3.912
10/16/2002	50	3.912
1/13/2003	18.3	2.907
4/10/2003	51.2	3.936
7/16/2003	42.6	3.752
10/14/2003	12.3	2.510
4 /4 2 /2 2 2 4	4.0	2 202
1/13/2004	10	2.303
Well Number:	10 MW397	2.303
-, -2, -00	10	LN(Result)
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
Well Number: Date Collected 8/13/2002	MW397 Result 50	LN(Result) 3.912
Well Number: Date Collected 8/13/2002 9/16/2002	MW397 Result 50 50	LN(Result) 3.912 3.912
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002	MW397 Result 50 50	LN(Result) 3.912 3.912 3.912
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	MW397 Result 50 50 12	LN(Result) 3.912 3.912 3.912 2.485
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	MW397 Result 50 50 50 12 19.9	LN(Result) 3.912 3.912 3.912 2.485 2.991

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	7.92	NO	2.069	N/A
MW373	Downgradient	Yes	13.7	NO	2.617	N/A
MW385	Sidegradient	Yes	6.42	NO	1.859	N/A
MW388	Downgradient	Yes	11.6	NO	2.451	N/A
MW392	Downgradient	Yes	34.6	NO	3.544	N/A
MW395	Upgradient	Yes	6.6	NO	1.887	N/A
MW397	Upgradient	Yes	4.6	NO	1.526	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.303

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-86

Historical Background Comparison

Trichloroethene UNITS: ug/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.313

CV(1) = 0.780S = 5.701

K factor**= 2.523

TL(1)=21.695

LL(1)=N/A

Statistics-Transformed Background

X = 1.467

 $S= 1.213 \quad CV(2)=0.827$

K factor**= 2.523

TL(2) = 4.528

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	14	2.639
10/16/2002	12	2.485
1/13/2003	14	2.639
4/10/2003	14	2.639
7/16/2003	13	2.565
10/14/2003	12	2.485
1/13/2004	11	2.398
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 1	1.609 1.609 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 1 1 1	1.609 1.609 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 1 1 1 1	1.609 1.609 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	0.85	N/A	-0.163	N/A
MW373	Downgradient	Yes	4.57	N/A	1.520	N/A
MW385	Sidegradient	Yes	0.43	N/A	-0.844	N/A
MW388	Downgradient	Yes	0.61	N/A	-0.494	N/A
MW392	Downgradient	Yes	11	NO	2.398	N/A
MW395	Upgradient	Yes	2.89	N/A	1.061	N/A
MW397	Upgradient	Yes	0.34	N/A	-1.079	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-87

Historical Background Comparison

Vanadium UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.021

S = 0.002

CV(1)=0.105

K factor**= 2.523

TL(1) = 0.027

LL(1)=N/A

Statistics-Transformed Background

X = -3.856 S = 0.100 CV(2) = -0.026

K factor=** 2.523

TL(2) = -3.604

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.02	-3.912
1/13/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
4/12/2004	0.02	-3.912
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
Date Collected	Result	LN(Result)
Date Collected 8/13/2002	Result 0.025	LN(Result) -3.689
Date Collected 8/13/2002 9/16/2002	Result 0.025 0.025	LN(Result) -3.689 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.025 0.025 0.02	LN(Result) -3.689 -3.689 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.025 0.025 0.02 0.02	LN(Result) -3.689 -3.689 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.025 0.025 0.02 0.02 0.02	LN(Result) -3.689 -3.689 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	0.00438	NO	-5.431	N/A
MW373	Downgradient	No	0.00344	N/A	-5.672	N/A
MW385	Sidegradient	No	0.01	N/A	-4.605	N/A
MW388	Downgradient	No	0.01	N/A	-4.605	N/A
MW392	Downgradient	No	0.01	N/A	-4.605	N/A
MW395	Upgradient	No	0.01	N/A	-4.605	N/A
MW397	Upgradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-88

C-746-S/T First Quarter 2019 Statistical Analysis Zinc UNITS: mg/L

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.044

S = 0.034

CV(1) = 0.760**K** factor**= 2.523 TL(1) = 0.129

LRGA

LL(1)=N/A

Statistics-Transformed Background

X = -3.342 S = 0.659 CV(2) = -0.197

K factor=** 2.523

TL(2) = -1.679

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/10/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.303
Date Collected	Result	,
Date Collected 8/13/2002	Result 0.1	-2.303
Date Collected 8/13/2002 9/16/2002	Result 0.1 0.1	-2.303 -2.303
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.1 0.1 0.025	-2.303 -2.303 -3.689
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.1 0.1 0.025 0.035	-2.303 -2.303 -3.689 -3.352
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.1 0.1 0.025 0.035 0.035	-2.303 -2.303 -3.689 -3.352 -3.352

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	0.00371	NO	-5.597	N/A
MW373	Downgradient	No	0.01	N/A	-4.605	N/A
MW385	Sidegradient	Yes	0.00354	NO	-5.644	N/A
MW388	Downgradient	No	0.01	N/A	-4.605	N/A
MW392	Downgradient	No	0.01	N/A	-4.605	N/A
MW395	Upgradient	No	0.01	N/A	-4.605	N/A
MW397	Upgradient	No	0.01	N/A	-4.605	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)TL

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-89

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

Current Background Comparison UCRS

Oxidation-Reduction Potential

UNITS: mV

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 241.250 S = 59.720 CV(1) = 0.248

K factor**= 3.188

TL(1)= 431.638

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.461

S = 0.235

CV(2) = 0.043

K factor**= 3.188

TL(2) = 6.211

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 1/17/2017 209 5.342 4/20/2017 172 5.147 7/19/2017 291 5.673 10/9/2017 217 5.380 1/23/2018 203 5.313 4/19/2018 275 5.617 7/19/2018 353 5.866 10/22/2018 5.347 210

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	162	NO	5.088	N/A
MW390	Downgradient	Yes	359	NO	5.883	N/A
MW393	Downgradient	Yes	232	NO	5.447	N/A
MW396	Upgradient	Yes	231	NO	5.442	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-3

Current Background Comparison

Technetium-99 UNITS: pCi/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = -2.520 S = 6.601

CV(1) = -2.620

K factor**= 3.188

TL(1)= 18.525

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.966

S= 0.711 **CV(2)**=0.736

K factor**= 3.188

TL(2) = 1.766

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
1/17/2017	3.72	1.314
4/20/2017	-7.44	#Func!
7/19/2017	1.19	0.174
10/9/2017	-11.3	#Func!
1/23/2018	5.85	1.766
4/19/2018	-10.3	#Func!
7/19/2018	1.84	0.610
10/22/2018	-3.72	#Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW390	Downgradient	Yes	78 9	YES	4 368	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW390

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

UNITS: pCi/L

Statistics-Background Data

Beta activity

$$X = 9.785$$

LL(1)=N/A

Statistics-Transformed Background Data

$$X = 2.322$$

$$S = 0.532$$
 $CV(2) = 0.229$

URGA

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
1/11/2017	13.6	2.610
4/19/2017	20.1	3.001
7/19/2017	22.5	3.114
10/9/2017	13.1	2.573
1/23/2018	12.8	2.549
4/17/2018	14.4	2.667
7/19/2018	8.64	2.156
10/15/2018	12.2	2.501
Well Number:	MW394	

Well Number:	MW394	
Date Collected	Result	LN(Result)
1/17/2017	5.57	1.717
4/20/2017	9.09	2.207
7/19/2017	6.29	1.839
10/9/2017	-0.603	#Func!
1/23/2018	-3.27	#Func!
4/19/2018	8.1	2.092
7/19/2018	2.94	1.078
10/22/2018	11.1	2.407

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW384	Sidegradient	Yes	99.8	YES	4.603	N/A
MW387	Downgradient	Yes	157	YES	5.056	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Current Background Comparison

Calcium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 23.850 S = 3.093

CV(1)=0.130

K factor**= 2.523

TL(1) = 31.653

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.164 S = 0.134

CV(2) = 0.042

K factor**= 2.523

TL(2) = 3.501

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected LN(Result) Result 1/11/2017 19.6 2.976 4/19/2017 3.035 20.8 7/19/2017 22.7 3.122 2.991 10/9/2017 19.9 1/23/2018 18.8 2.934 4/17/2018 22.6 3.118 7/19/2018 25.5 3.239 10/15/2018 20.6 3 025

10/13/2010	20.0	3.023
Well Number:	MW394	
Date Collected	Result	LN(Result)
1/17/2017	26.7	3.285
4/20/2017	27.9	3.329
7/19/2017	26.1	3.262
10/9/2017	25.7	3.246
1/23/2018	26	3.258
4/19/2018	25.4	3.235
7/19/2018	27.9	3.329
10/22/2018	25.4	3.235

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Vec	46.8	VES	3 8/16	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Current Background Comparison

Chromium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.008

S = 0.003 CV(1) = 0.349

K factor**= 2.523

TL(1) = 0.014

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.954 S = 0.402

CV(2) = -0.081

K factor=** 2.523

TL(2) = -3.941

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 1/11/2017 0.00383 -5.5654/19/2017 0.00856 -4.761 7/19/2017 0.00661 -5.019 0.00374 -5.589 10/9/2017 1/23/2018 0.00548 -5.207 4/17/2018 0.00565 -5.1767/19/2018 0.00866 -4.749

Well Number: MW394	
Date Collected Result LN(Result	ılt)
1/17/2017 0.01 -4.605	
4/20/2017 0.01 -4.605	
7/19/2017 0.01 -4.605	
10/9/2017 0.0048 -5.339	
1/23/2018 0.01 -4.605	
4/19/2018 0.01 -4.605	
7/19/2018 0.01 -4.605	
10/22/2018 0.01 -4.605	

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW221	Sideoradient	Ves	0.325	YES	-1 124	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW221

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Current Background Comparison

Dissolved Solids UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 214.250 S = 68.965 CV(1) = 0.322

K factor**= 2.523

TL(1)= 388.249

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.333

S = 0.249

CV(2) = 0.047

K factor**= 2.523

TL(2)= 5.962

LL(2)=N/A

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 1/11/2017 201 5.303 4/19/2017 193 5.263 7/19/2017 451 6.111 147 4.990 10/9/2017 1/23/2018 163 5.094 4/17/2018 183 5.209 7/19/2018 207 5.333 10/15/2018 226 5 421

10/13/2016	220	3.421
Well Number:	MW394	
Date Collected	Result	LN(Result)
1/17/2017	213	5.361
4/20/2017	203	5.313
7/19/2017	203	5.313
10/9/2017	170	5.136
1/23/2018	187	5.231
4/19/2018	271	5.602
7/19/2018	204	5.318
10/22/2018	206	5.328

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW372	Downgradient	t Yes	394	YES	5 976	N/A	

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Current Background Comparison

Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.362 S = 1.415 CV(1) = 0.137

S = 0.141

K factor**= 2.523

TL(1)= 13.931

URGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.329

CV(2) = 0.061

K factor**= 2.523

TL(2)= 2.685

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
1/11/2017	8.48	2.138
4/19/2017	9.11	2.209
7/19/2017	9.36	2.236
10/9/2017	8.67	2.160
1/23/2018	8.04	2.084
4/17/2018	9.63	2.265
7/19/2018	11.1	2.407
10/15/2018	8.8	2.175

Well Number:	MW394	
Date Collected	Result	LN(Result)
1/17/2017	11.7	2.460
4/20/2017	11.6	2.451
7/19/2017	11.4	2.434
10/9/2017	11.4	2.434
1/23/2018	11.5	2.442
4/19/2018	11.7	2.460
7/19/2018	12	2.485
10/22/2018	11.3	2.425

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	18.9	YES	2.939	N/A
MW391	Downgradien	t Yes	15.9	YES	2.766	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Current Background Comparison URGA

Oxidation-Reduction Potential UNITS: mV URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 354.313 S = 51.114 CV(1) = 0.144

K factor=** 2.523

TL(1)= 483.273

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.860

S = 0.148 CV(2) = 0.025

K factor**= 2.523

TL(2) = 6.233

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 1/11/2017 417 6.033 4/19/2017 283 5.645 7/19/2017 350 5.858 6.078 10/9/2017 436 1/23/2018 362 5.892 4/17/2018 305 5.720 7/19/2018 390 5.966 10/15/2018 6.023 413 Well Number: MW394 Date Collected Result LN(Result) 1/17/2017 397 5.984 4/20/2017 306 5.724

338

337

2.64

310

375

386

7/19/2017

10/9/2017

1/23/2018

4/19/2018

7/19/2018

10/22/2018

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW221	Sidegradient	Yes	403	NO	5.999	N/A	
MW222	Sidegradient	Yes	408	NO	6.011	N/A	
MW223	Sidegradient	Yes	407	NO	6.009	N/A	
MW369	Downgradien	t Yes	432	NO	6.068	N/A	

Conclusion of Statistical Analysis on Current Data

5.823

5.820

5.576

5.7375.927

5.956

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison

Sodium UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 37.069

CV(1)=0.161

K factor**= 2.523

TL(1) = 52.169

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.601

 $S = 0.160 \quad CV(2) = 0.044$

S = 5.985

K factor=** 2.523

TL(2) = 4.005

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 1/11/2017 41 3.714 4/19/2017 41.4 3.723 7/19/2017 42 3.738 40.9 10/9/2017 3.711 1/23/2018 38.8 3.658 4/17/2018 44.6 3.798 7/19/2018 49.6 3.904 10/15/2018 3 664

10/15/2018	39	3.664
Well Number:	MW394	
Date Collected	Result	LN(Result)
1/17/2017	35.3	3.564
4/20/2017	30.7	3.424
7/19/2017	28.7	3.357
10/9/2017	33.6	3.515
1/23/2018	33.5	3.512
4/19/2018	30.4	3.414
7/19/2018	30.2	3.408
10/22/2018	33.4	3.509

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Cumant	Owenter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW387	Downgradien	t Vec	58.5	VES	4.060	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW387

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Current Background Comparison

URGA **Sulfate** UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 15.100 S = 5.173

CV(1)=0.343

K factor**= 2.523

TL(1)= 28.152

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.661

CV(2)=0.126S = 0.336

K factor**= 2.523

TL(2) = 3.510

LL(2)=N/A

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW220 Date Collected LN(Result) Result 1/11/2017 18.4 2.912 4/19/2017 19.9 2.991 7/19/2017 22.7 3.122 10/9/2017 17.6 2.868 1/23/2018 16.4 2.797 4/17/2018 21.1 3.049 7/19/2018 24.7 3.207

10/15/2018	16.9	2.827
Well Number:	MW394	
Date Collected	Result	LN(Result)
1/17/2017	10.8	2.380
4/20/2017	10.5	2.351
7/19/2017	10.2	2.322
10/9/2017	10.5	2.351
1/23/2018	10.4	2.342
4/19/2018	10.4	2.342
7/19/2018	10.5	2.351
10/22/2018	10.6	2.361

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	21.4	NO	3.063	N/A
MW223	Sidegradient	Yes	22	NO	3.091	N/A
MW372	Downgradien	t Yes	71.7	YES	4.272	N/A
MW384	Sidegradient	Yes	24.1	NO	3.182	N/A
MW387	Downgradien	t Yes	21.5	NO	3.068	N/A
MW391	Downgradien	t Yes	55	YES	4.007	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Current Background Comparison

Technetium-99 UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 14.126 S = 8.077

CV(1)=0.572K factor**= 2.523

TL(1) = 34.504

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.269

S = 1.282CV(2) = 0.565 K factor**= 2.523

TL(2) = 5.505

URGA

LL(2)=N/A

Current Background Data from Upgradient

Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
1/11/2017	23.2	3.144
4/19/2017	20.7	3.030
7/19/2017	22.7	3.122
10/9/2017	18.3	2.907
1/23/2018	27.4	3.311
4/17/2018	19.9	2.991
7/19/2018	14	2.639
10/15/2018	20.8	3.035
Well Number:	MW394	
Date Collected	Result	LN(Result)
1/17/2017	7.79	2.053
4/20/2017	7.82	2.057
7/19/2017	11.1	2.407

1.99

6.15

0.158

10.6

13.4

10/9/2017

1/23/2018

4/19/2018

7/19/2018

10/22/2018

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradient	Yes	39.1	YES	3.666	N/A
MW372	Downgradient	Yes	35	YES	3.555	N/A
MW384	Sidegradient	Yes	152	YES	5.024	N/A
MW387	Downgradient	Yes	255	YES	5.541	N/A

Conclusion of Statistical Analysis on Current Data

0.688

1.816

-1.845

2.361

2.595

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW369 MW372 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Current Background Comparison

Beta activity UNITS: pCi/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.602

CV(1)=0.409

K factor**= 2.523

TL(1)= 15.452

LRGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.945

S = 0.433

S= 3.111

CV(2)=0.222

K factor**= 2.523

TL(2) = 3.037

LL(2)=N/A

Current Background Data from Upgradient

Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
1/17/2017	5.31	1.670
4/20/2017	7.61	2.029
7/19/2017	5.16	1.641
10/9/2017	8.17	2.100
1/23/2018	7.59	2.027
4/19/2018	5.4	1.686
7/19/2018	7.89	2.066
10/22/2018	9.41	2.242
*** 11 3 * 1	1.634205	

Well Number:	MW397	
Date Collected	Result	LN(Result)
1/11/2017	4.42	1.486
4/20/2017	12.1	2.493
7/19/2017	9.5	2.251
10/9/2017	11.9	2.477
1/23/2018	2.66	0.978
4/17/2018	5.57	1.717
7/19/2018	13.8	2.625
10/15/2018	5.14	1.637

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	75.8	YES	4.328	N/A
MW385	Sidegradient	Yes	73.6	YES	4.299	N/A
MW388	Downgradient	Yes	80.9	YES	4.393	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Current Background Comparison

Calcium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 22.006 **S**= 4.068

CV(1)=0.185

K factor**= 2.523

TL(1) = 32.269

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.075

S = 0.187

CV(2) = 0.061

K factor**= 2.523

utilizing TL(1).

TL(2) = 3.547

Because CV(1) is less than or equal to

1, assume normal distribution and

continue with statistical analysis

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 1/17/2017 25.9 3.254 4/20/2017 28.2 3.339 7/19/2017 26.2 3.266 10/9/2017 25.3 3.231 1/23/2018 24.5 3.199 4/19/2018 24.5 3.199 7/19/2018 27.1 3.300 10/22/2018 24.4 3.195

Current Quarter Data

Well No. Gradient Detected? Result Result >TL(1)? LN(Result) LN(Result) >TL(2)

MW373 Downgradient Yes 64.4 YES 4.165 N/A

Well Number:	MW397	
Date Collected	Result	LN(Result)
1/11/2017	19.5	2.970
4/20/2017	18.2	2.901
7/19/2017	17.2	2.845
10/9/2017	18.7	2.929
1/23/2018	19.4	2.965
4/17/2018	16.8	2.821
7/19/2018	16.9	2.827
10/15/2018	19.3	2.960

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances
MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Current Background Comparison

Conductivity

UNITS: umho/cm

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 353.750 S = 32.852 CV(1) = 0.093

K factor**= 2.523

TL(1)= 436.636

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.865

S = 0.093CV(2) = 0.016 K factor**= 2.523

TL(2) = 6.100

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 1/17/2017 386 5.956 392 5.971 4/20/2017 7/19/2017 392 5.971 10/9/2017 378 5.935 1/23/2018 384 5.951 4/19/2018 372 5.919

7/19/2018 396 5.981 10/22/2018 5.927 375

Well Number: MW397 Date Collected Result LN(Result) 1/11/2017 337 5.820 4/20/2017 320 5.768 7/19/2017 315 5.753 10/9/2017 333 5.808 1/23/2018 326 5.787 4/17/2018 307 5.727 8/21/2018 326 5.787 10/15/2018 321 5.771

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No. Gradient Result Result >TL(1)? LN(Result) LN(Result) >TL(2) MW373 Downgradient Yes 741 YES 6.608 N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Current Background Comparison

Dissolved Solids UNITS: mg/L

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 184.563 S = 30.583 CV(1) = 0.166

K factor**= 2.523

TL(1) = 261.724

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.205 S = 0.166 CV(2) = 0.032

K factor**= 2.523

TL(2) = 5.624

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 1/17/2017 223 5.407 204 4/20/2017 5.318 7/19/2017 210 5.347 5.094 10/9/2017 163 1/23/2018 176 5.170

 1/23/2018
 176
 5.170

 4/19/2018
 257
 5.549

 7/19/2018
 203
 5.313

 10/22/2018
 176
 5.170

Well Number: MW397

Date Collected	Result	LN(Result)
1/11/2017	187	5.231
4/20/2017	180	5.193
7/19/2017	171	5.142
10/9/2017	156	5.050
1/23/2018	179	5.187
4/17/2018	124	4.820
7/19/2018	160	5.075
10/15/2018	184	5.215

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	386	YES	5 956	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Current Background Comparison

Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.588

S= 1.782 **CV(1)**=0.186

K factor=** 2.523

TL(1)= 14.084

LRGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.244

S= 0.191 **CV(2)**=0.085

K factor**= 2.523

TL(2) = 2.726

1, assume normal distribution and

Because CV(1) is less than or equal to

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 1/17/2017 11.4 2.434 4/20/2017 11.6 2.451 7/19/2017 10.9 2.389 2.434 10/9/2017 11.4 1/23/2018 10.8 2.380 4/19/2018 11.4 2.434

 4/19/2018
 11.4
 2.434

 7/19/2018
 11.7
 2.460

 10/22/2018
 10.7
 2.370

Well Number: MW397 Date Collected Result LN(Result) 1/11/2017 8.54 2.145 4/20/2017 7.83 2.058 7/19/2017 7.37 1.997 10/9/2017 8.41 2.129 1/23/2018 8.61 2.153 4/17/2018 6.89 1.930 1.999 7/19/2018 7.38

8.48

10/15/2018

continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	24.2	YES	3 186	N/A

Conclusion of Statistical Analysis on Current Data

2.138

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

C-746-S/T First Quarter 2019 Statistical Analysis

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 331.500 S = 72.741 CV(1) = 0.219

UNITS: mV

K factor**= 2.523

TL(1)= 515.025

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.777

S = 0.251CV(2) = 0.043 K factor**= 2.523

TL(2) = 6.409

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Oxidation-Reduction Potential

Well Number: MW395 Date Collected LN(Result) Result 1/17/2017 299 5.700 190 4/20/2017 5.247 5.971 7/19/2017 392 10/9/2017 385 5.953 1/23/2018 195 5.273 4/19/2018 367 5.905 7/19/2018 336 5.817 10/22/2018 237 5.468 Well Number: MW397 Date Collected Result LN(Result) 1/11/2017 416 6.031 4/20/2017 282 5.642 7/19/2017 352 5.864 10/9/2017 362 5.892 5.889

361

319

404

407

1/23/2018

4/17/2018

8/21/2018

10/15/2018

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradien	t Yes	440	NO	6.087	N/A
MW373	Downgradien	t Vec	336	NO	5 817	N/A

MW373 Downgradient 336 NΟ 5.817 N/A MW385 Sidegradient 397 NO 5.984 N/A Yes MW388 Downgradient Yes 386 NO 5.956 N/A MW392 Downgradient 344 5.841 Yes NO N/A 433 MW395 Upgradient Yes NO 6.071 N/A NO MW397 Upgradient 394 5.976 Yes N/A

Conclusion of Statistical Analysis on Current Data

5.765

6.001

6.009

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-19

C-746-S/T First Quarter 2019 Statistical Analysis

Current Background Comparison

LRGA Sulfate UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.347 S = 0.605

CV(1)=0.058

K factor**= 2.523

TL(1)= 11.872

Because CV(1) is less than or equal to

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.335

S = 0.058

CV(2) = 0.025

K factor**= 2.523

TL(2) = 2.481

LL(2)=N/A

Current Background Data from Upgradient

Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
1/17/2017	10.1	2.313
4/20/2017	10.4	2.342
7/19/2017	10	2.303
10/9/2017	10.1	2.313
1/23/2018	10.4	2.342
4/19/2018	10.5	2.351
7/19/2018	10.4	2.342
//19/2018	10.4	2.342
10/22/2018	10.4	2.322
10/22/2018	10.2	
10/22/2018 Well Number:	10.2 MW397	2.322

9.7

10.1

11.1

11.4

9.21

9.94

10.4

4/20/2017

7/19/2017

10/9/2017

1/23/2018

4/17/2018

7/19/2018

10/15/2018

1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	23	YES	3.135	N/A
MW373	Downgradient	Yes	121	YES	4.796	N/A
MW385	Sidegradient	Yes	21.3	YES	3.059	N/A
MW388	Downgradient	Yes	27.5	YES	3.314	N/A

Conclusion of Statistical Analysis on Current Data

2.272

2.313

2.407

2.434

2.220 2.297

2.342

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW373

MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-20

C-746-S/T First Quarter 2019 Statistical Analysis

Current Background Comparison

UNITS: pCi/L **Technetium-99**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 14.428 S = 6.234

CV(1)=0.432

K factor**= 2.523

TL(1)= 30.156

LRGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.573

S = 0.481

CV(2)=0.187

K factor**= 2.523

TL(2) = 3.786

LL(2)=N/A

Current Background Data from Upgradient

Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 1/17/2017 11.4 2.434 4/20/2017 9.95 2.298 19.2 2.955 7/19/2017 10/9/2017 3.67 1.300 1/23/2018 15.7 2.754 4/19/2018 9.83 2.285 7/19/2018 9.05 2.203 10/22/2018 13.2 2 580

10/22/2016	13.2	2.360
Well Number:	MW397	
Date Collected	Result	LN(Result)
1/11/2017	8.85	2.180
4/20/2017	14.9	2.701
7/19/2017	29.8	3.395
10/9/2017	13	2.565
1/23/2018	13.2	2.580
4/17/2018	18.9	2.939
7/19/2018	21.9	3.086
10/15/2018	18.3	2.907

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	94.3	YES	4.546	N/A
MW385	Sidegradient	Yes	149	YES	5.004	N/A
MW388	Downgradient	Yes	166	YES	5.112	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$ S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-21

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

Four Rivers Nuclear Partnership, LLC

5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

April 16, 2019

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I have performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As an Environmental Scientist, with a bachelor's degree in science, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist and geologist with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses conducted on the first quarter 2019 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Jennifer R. Watson

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/INERT—QUARTERLY, 1st CY 2019 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the first quarter 2019 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on January 29, 2019. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for both measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is 2.45×10^{-4} ft/ft. Additional water level measurements in January (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 1.77×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the administrative application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for January 2019, the groundwater flow direction in the immediate area of the landfill was oriented primarily south to east.

_

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

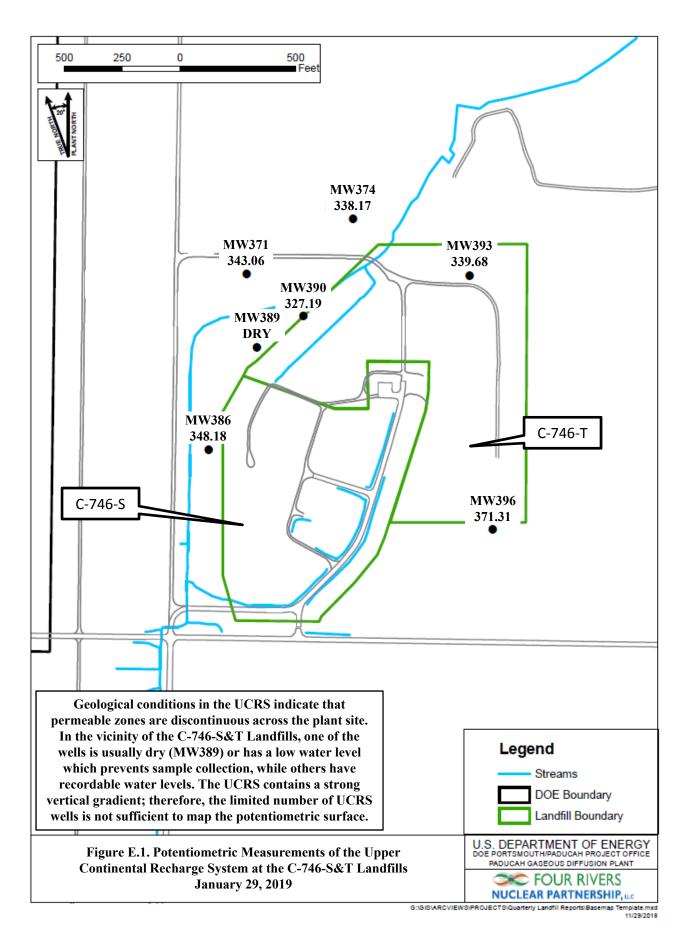


Table E.1. C-746-S&T Landfills First Quarter 2019 (January) Water Levels

	C-746-S&T Landfills (January 2019) Water Levels									
							Rav	v Data	*Corre	cted Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
1/29/2019	9:36	MW220	URGA	382.27	30.26	0.00	55.12	327.15	55.12	327.15
1/29/2019	9:42	MW221	URGA	391.51	30.26	0.00	64.44	327.07	64.44	327.07
1/29/2019	9:49	MW222	URGA	395.39	30.26	0.00	68.41	326.98	68.41	326.98
1/29/2019	9:46	MW223	URGA	394.49	30.26	0.00	67.43	327.06	67.43	327.06
1/29/2019	9:51	MW224	URGA	395.82	30.26	0.00	68.79	327.03	68.79	327.03
1/29/2019	9:39	MW225	URGA	385.88	30.26	0.00	58.94	326.94	58.94	326.94
1/29/2019	9:55	MW353	LRGA	375.12	30.26	0.00	48.41	326.71	48.41	326.71
1/29/2019	9:31	MW384	URGA	365.42	30.26	0.00	38.27	327.15	38.27	327.15
1/29/2019	9:32	MW385	LRGA	365.86	30.26	0.00	38.67	327.19	38.67	327.19
1/29/2019	9:33	MW386	UCRS	365.47	30.26	0.00	17.29	348.18	17.29	348.18
1/29/2019	9:28	MW387	URGA	363.65	30.26	0.00	36.46	327.19	36.46	327.19
1/29/2019	9:29	MW388	LRGA	363.64	30.26	0.00	36.44	327.20	36.44	327.20
1/29/2019	9:26	MW389	UCRS	364.26			DRY		DRY	
1/29/2019	9:25	MW390	UCRS	360.60	30.26	0.00	33.41	327.19	33.41	327.19
1/29/2019	9:06	MW391	URGA	366.83	30.26	0.00	39.73	327.10	39.73	327.10
1/29/2019	9:07	MW392	LRGA	366.07	30.26	0.00	38.94	327.13	38.94	327.13
1/29/2019	9:08	MW393	UCRS	366.81	30.26	0.00	27.13	339.68	27.13	339.68
1/29/2019	9:15	MW394	URGA	378.64	30.26	0.00	51.59	327.05	51.59	327.05
1/29/2019	9:16	MW395	LRGA	379.34	30.26	0.00	52.26	327.08	52.26	327.08
1/29/2019	9:17	MW396	UCRS	378.84	30.26	0.00	7.53	371.31	7.53	371.31
1/29/2019	9:21	MW397	LRGA	387.12	30.26	0.00	60.18	326.94	60.18	326.94
1/29/2019	14:44	MW418	URGA	367.37	30.15	0.12	40.10	327.27	40.22	327.15
1/29/2019	14:47	MW419	LRGA	367.22	30.15	0.12	39.96	327.26	40.08	327.14
Initial Danas	4 · D		20.26							

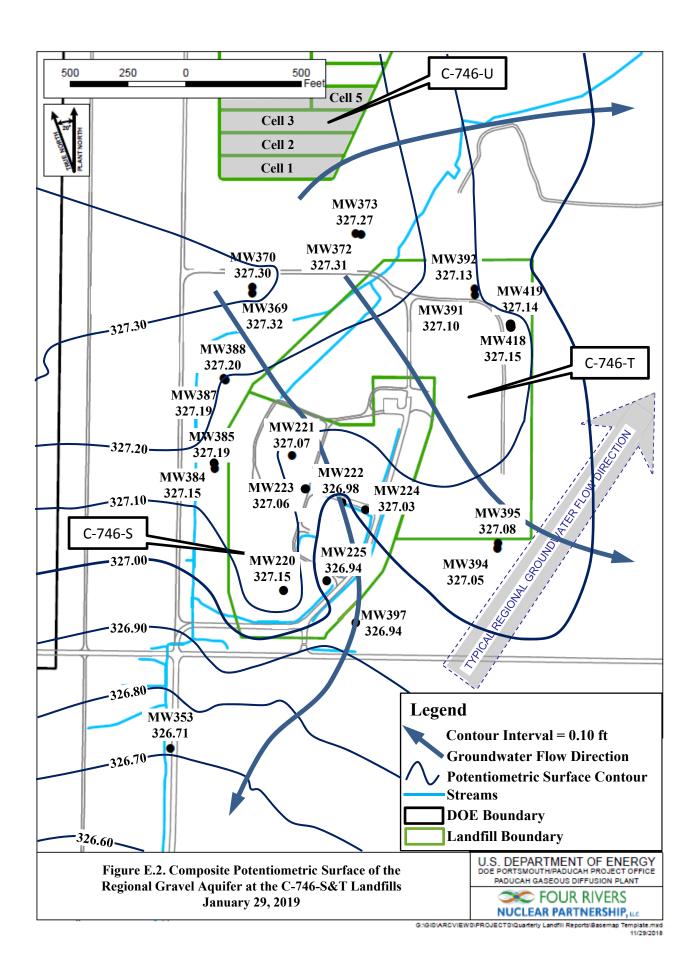
Initial Barometric Pressure

30.26

Elev = elevation

amsl = above mean sea level

BP = barometric pressure


DTW = depth to water in feet below datum

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer

UCRS = Upper Continental Recharge System

*Assumes a barometric efficiency of 1.0

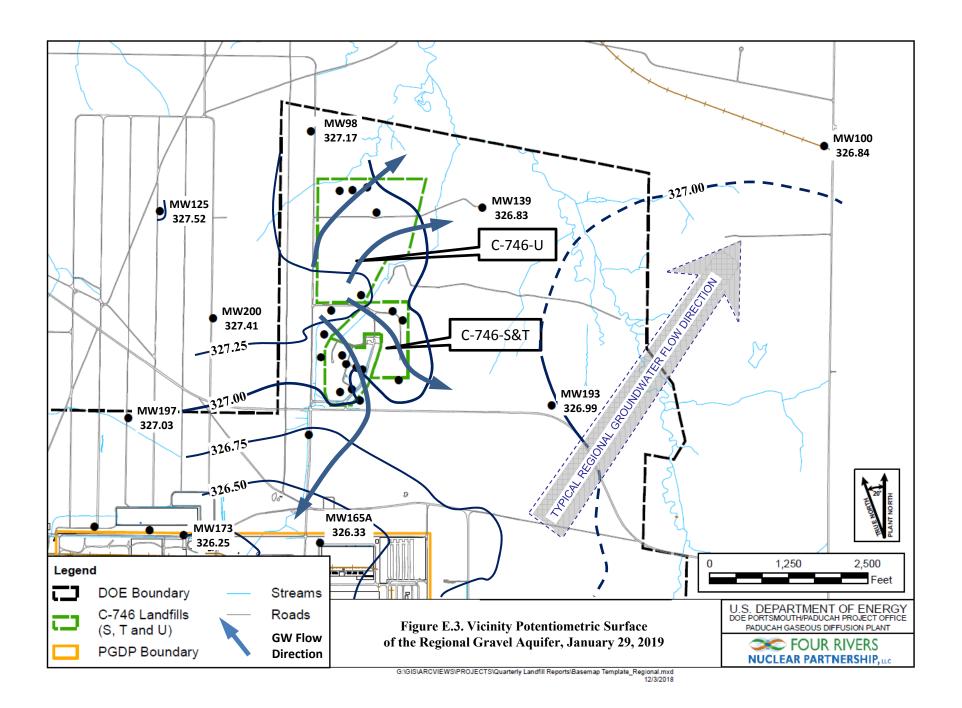


Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	2.45×10^{-4}
Vicinity	1.77×10^{-4}

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Conductivity (K)		Specific 1	Discharge (q)	Average Linear Velocity (v)		
ft/day	cm/s	ft/day	ft/day cm/s		cm/s	
Beneath Landfill Mound						
725	0.256	0.178	6.27 × 10 ⁻⁵	0.711	2.51 × 10 ⁻⁴	
425	0.150	0.104	3.68 × 10 ⁻⁵	0.417	1.47×10^{-4}	
Vicinity						
725	0.256	0.128	4.53 × 10 ⁻⁵	0.513	1.81 × 10 ⁻⁴	
425	0.150	0.0751	2.65 × 10 ⁻⁵	0.301	1.06×10^{-4}	

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below. Additionally, parameters that have an MCL and are also listed in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations are also provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the first quarter 2019 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Chromium Sodium Technetium-99	MW221 MW387 MW369, MW372, MW384, MW387
Lower Regional Gravel Aquifer	Technetium-99	MW370, MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

2/26/2019

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S&T LANDFILLS SOLID WASTE PERMIT NUMBER SW07300014, SW07300015, SW07300045 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method		Results	Units	MCL
8000-5202	MW221	Chromium Chromium	6020 6020	*	0.293 0.325	mg/L mg/L	0.1 0.1
8004-4818	MW370	Beta activity	9310		75.8	pCi/L	50
8004-4808	MW372	Trichloroethene	8260B		5.16	ug/L	5
8004-4809	MW384	Beta activity Beta activity	9310 9310		99.8 95.6	pCi/L pCi/L	50 50
8004-4810	MW385	Beta activity	9310		73.6	pCi/L	50
8004-4815	MW387	Beta activity	9310		157	pCi/L	50
8004-4816	MW388	Beta activity	9310		80.9	pCi/L	50
8004-4805	MW391	Trichloroethene	8260B		8.9	ug/L	5
8004-4806	MW392	Trichloroethene	8260B		11	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills

Groundwater Flow System			UCRS	3						1	URGA	1								LRGA	Α		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
ACETONE																							
Quarter 3, 2003							*					*											
Quarter 4, 2003											*								*				
Quarter 1, 2005									*														
ALPHA ACTIVITY																							
Quarter 4, 2002																							
Quarter 4, 2008																							
Quarter 4, 2010																							
ALUMINUM																							
Quarter 1, 2003			*				*					*	*	*									
Quarter 2, 2003			*				*						*	*									
Quarter 3, 2003			*				*	*					*	*									
Quarter 4, 2003							*	*			*			*									
Quarter 1, 2004			*				*	*			*												
Quarter 2, 2004							*							*									
Quarter 3, 2004							*							*									
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*				*																
Quarter 3, 2005			*				*			*											*		
Quarter 4, 2005			*				*				*												
Quarter 1, 2006							*						*										
Quarter 2, 2006			*				*																
Quarter 3, 2006							*																
Quarter 4, 2006			*				*																-
			***				*										*						-
Quarter 1, 2007							*										*						\vdash
Quarter 2, 2007							*										*						
Quarter 3, 2007																							
Quarter 4, 2007							*																
Quarter 1, 2008							*							*									
Quarter 2, 2008											*												
Quarter 4, 2008							*																
Quarter 1, 2009			*				*				*												
Quarter 1, 2010			*				*				*												
Quarter 2, 2010			*								*												
Quarter 3, 2010			*								*			*			*			*			
Quarter 1, 2011							*				*												
Quarter 2, 2011			*								*												
Quarter 2, 2012			*																				
Quarter 3, 2012							*																
Quarter 1, 2013							*				*												
Quarter 3, 2013			*																				
Quarter 1, 2014							*																
Quarter 2, 2014											*												
Quarter 4, 2014			*								Ė												H
Quarter 1, 2016		 	-				*				-				 	 				 	 		\vdash
Quarter 2, 2016														*									\vdash
Quarter 1, 2017							*																\vdash
Quarter 4, 2017																							*
Quarter 1, 2018							*																
BARIUM																							
Quarter 3, 2003																							
Quarter 4, 2003																							
BETA ACTIVITY																							
Quarter 4, 2002																							
Quarter 1, 2003																							H
																							_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		-	UCRS	S						1	URGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BETA ACTIVITY																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005										•													
Quarter 4, 2005																							
Quarter 1, 2006																							
Quarter 2, 2006																							
Quarter 3, 2006																							
Quarter 4, 2006																							
Quarter 1, 2007																							
Quarter 2, 2007																							
Quarter 3, 2007																							
Quarter 4, 2007																							
Quarter 1, 2008																							
Quarter 2, 2008																							
Quarter 3, 2008																							
Quarter 4, 2008										•													
Quarter 1, 2009																							
Quarter 2, 2009																							
Quarter 3, 2009																							
Quarter 4, 2009																							
Quarter 1, 2010	<u>L</u>																						
Quarter 2, 2010	<u> </u>																						
Quarter 3, 2010	<u> </u>																						
Quarter 4, 2010	Щ.																						
Quarter 1, 2011	<u> </u>																						
Quarter 2, 2011	<u> </u>																						
Quarter 3, 2011	Щ.																						
Quarter 4, 2011	<u> </u>																						
Quarter 1, 2012	<u> </u>																						
Quarter 2, 2012	<u> </u>																						
Quarter 3, 2012	<u> </u>																						
Quarter 4, 2012	Ш																						
Quarter 1, 2013	Ш																						
Quarter 2, 2013	<u> </u>																						
Quarter 3, 2013	ഥ									_									•	_			<u> </u>
Quarter 4, 2013	ഥ		<u> </u>							_													<u> </u>
Quarter 1, 2014	ഥ									_										_			<u> </u>
Quarter 2, 2014	ഥ									_													<u> </u>
Quarter 3, 2014	ഥ									_		<u> </u>	_										<u> </u>
Quarter 4, 2014	ഥ									_		_											<u> </u>
Quarter 1, 2015	⊢									_												Ш	
Quarter 2, 2015	⊢									_							•					Ш	
Quarter 3, 2015	⊢									_		_					•					Ш	
Quarter 4, 2015	ऻ—		_							-												\vdash	<u> </u>
Quarter 1, 2016	ऻ—									_												\vdash	<u> </u>
Quarter 2, 2016	⊢									_							•					Ш	
Quarter 3, 2016	ऻ—									-	_											\vdash	<u> </u>
Quarter 4, 2016	⊢									_												Ш	
Quarter 1, 2017	⊢									_												Ш	
Quarter 2, 2017	ऻ—									-							4	_				\vdash	<u> </u>
Quarter 3, 2017	<u></u>		Ц_	Ц_	Щ	_	_	Щ		▝	Ц_	Ц_	▝		Щ		╚	▝		_	Ц_		_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		-	UCRS	S						Ţ	JRGA	4								LRGA	١		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370		388	392	395	397
BETA ACTIVITY																							
Quarter 4, 2017																	-						
Quarter 1, 2018																							
Quarter 2, 2018																							
Quarter 3, 2018																							
Quarter 4, 2018																							
Quarter 1, 2019																							
BROMIDE																							
Quarter 1, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 3, 2006			*																				
CALCIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											
Quarter 3, 2003			*																				
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
												*							*				
Quarter 4, 2005																							
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009		-	-									*							*		-		
Quarter 3, 2009			-									*							*		-		
	-					-						*							*				
Quarter 4, 2009	_	-				_											-	_		-			_
Quarter 1, 2010												*							*				
Quarter 2, 2010												*							*				
Quarter 3, 2010												*							*				
Quarter 4, 2010												*							*				
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				
Vanio 3, 2012	_	_		_	_	_	_			_	_	ت	_	_		_	_					_	

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		-	UCRS	S							URGA	١								LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	_			223	224	384		372	387	391	220	394	385	370	373	388	392	395	397
CALCIUM			-	-	-					-	-	-	-	-			-	-				-	-
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				┢
Quarter 1, 2014																		*	*				₩
Quarter 2, 2014												*							*				┢
Quarter 3, 2014												*						*	*				₩
Quarter 4, 2014												*							*				├
												*	*						*				├─
Quarter 1, 2015	-											*	т.						*	-			—
Quarter 2, 2015	-											*							*	-			—
Quarter 3, 2015												*							*				-
Quarter 4, 2015																			*				-
Quarter 1, 2016												*		JE.									<u> </u>
Quarter 2, 2016	!		<u> </u>	<u> </u>							<u> </u>	*	<u> </u>	*	<u> </u>	<u> </u>			*				<u> </u>
Quarter 3, 2016	_		<u> </u>	<u> </u>							<u> </u>	*	<u> </u>	<u> </u>	<u> </u>	<u> </u>			*				—
Quarter 4, 2016												*							*				ـــــ
Quarter 1, 2017												*		<u> </u>	<u> </u>	<u> </u>			*				<u> </u>
Quarter 2, 2017	<u> </u>											*							*				<u> </u>
Quarter 3, 2017												*							*				<u> </u>
Quarter 4, 2017												*							*				<u> </u>
Quarter 1, 2018												*							*				<u> </u>
Quarter 2, 2018												*							*				<u> </u>
Quarter 4, 2018												*							*				<u> </u>
Quarter 1, 2019												*							*				<u> </u>
CARBON DISULFIDE											_												
Quarter 4, 2010											*												
Quarter 1, 2011												*									*		<u> </u>
Quarter 2, 2017													*										<u> </u>
CHEMICAL OXYGEN DEMAN	D																						
Quarter 1, 2003				*																			<u> </u>
Quarter 2, 2003				*			4			4													<u> </u>
Quarter 3, 2003				*			*			*													_
Quarter 4, 2003	- NE	-		*																	-		
Quarter 1, 2004	*			不																			-
Quarter 4, 2004	*																			-			
Quarter 1, 2005	*																			-			
Quarter 2, 2005	*									*		*									*		-
Quarter 3, 2005												*									不		
Quarter 4, 2005	*									*													
Quarter 1, 2006																							₩
Quarter 2, 2006	*		<u> </u>	<u> </u>							<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>				<u> </u>
Quarter 3, 2006	*																L,						<u> </u>
Quarter 4, 2006	L		<u> </u>	<u> </u>							<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	*		<u> </u>				<u> </u>
Quarter 1, 2007	*		<u> </u>	<u> </u>						*	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>				<u> </u>
Quarter 2, 2007	*																						<u> </u>
Quarter 3, 2007	*																						<u> </u>
Quarter 4, 2007	*																						<u> </u>
Quarter 1, 2008	*																						
Quarter 2, 2008	*																						
Quarter 3, 2008	*	L	L	L	L					L	L	L	L	L	L	L			L	L	L	L	L
Quarter 4, 2008	*																						
Quarter 1, 2009	*																						
Quarter 2, 2009	*																			*			
Quarter 3, 2009	*																						
	_	_	_	_			_				_		_	_	_	_			_	_	_		

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Granter: S. D. D. D. U. S. S. S. S. S. S. D. D. D. D. D. U. U. S. D.	Groundwater Flow System			UCRS	S						1	URG	A								LRGA	A		
Noninterly Well 386 389 390 391 390 291 222 223 24 384 596 372 87 391 220 394 385 370 373 385 392 395 2016		S				U	S	S	S	S				D	D	U	U	S	D				U	U
GIEMERAL ONXIGEN DEMAND																								397
Quanter 4, 2009		D																						
Owater 1, 2010 Owater 3, 2010 Owater 3, 2010 Owater 4, 2011 Owater 4, 2013 Owater 4, 2014 Owater 4, 2014 Owater 4, 2014 Owater 4, 2015 Owater 4, 2016 Owater 4, 2016 Owater 4, 2016 Owater 4, 2017 Owater 4, 2017 Owater 4, 2017 Owater 4, 2017 Owater 4, 2018 Owater 4, 2008 Owater 4, 2009 Owater 4, 2006 Owater																								
Ounter 2, 2010 Ounter 3, 2010 Ounter 4, 2010 Ounter 4, 2011 Ounter 1, 2012 Ounter 3, 2013 Ounter 3, 2013 Ounter 4, 2014 Ounter 2, 2016 Ounter 3, 2015 Ounter 3, 2015 Ounter 3, 2015 Ounter 3, 2016 Ounter 3, 2016 Ounter 4, 2017 Ounter 4, 2018 Ounter 1, 2003 Ounter 1, 2003 Ounter 1, 2005 Ounter 2, 2006 Ounter 3, 2008 Ounter 4, 2009 Ounter 4, 2009 Ounter 5, 2009 Ounter 6, 2009 Ounter 7, 2009		*																						
Quarter 3, 2010		*																						
Quarter 4, 2010 Quarter 3, 2011 Quarter 1, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2015 Quarter 3, 2014 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2015 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 3, 2000 Quarter 4, 2000 Quarter 4, 2000 Quarter 3, 2000 Quarter 4, 200		*																						
Quarter 3, 2011																								-
Quarter 4, 2011																							H	-
Quarter 1, 2012																							\vdash	-
Quarter 1, 2013																							 	-
Quarter 3, 2013																								
Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 2, 2018 Quarter 3, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2019 Quarter 1, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 4, 2004 Quarter 1, 2004 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 5, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarte																								-
Quarter 4, 2014 Quarter 2, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2018 Quarter 4, 2018 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 2, 2006 Quarter 1, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2008 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 200										4				- Jan					- Ju				<u> </u>	-
Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2018 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 1, 2010 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 1, 2010 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 200		不						4		*				*					*				<u> </u>	
Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 2, 2017 Quarter 2, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2004 Quarter 1, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 200								*															<u> </u>	
Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2017 ** Quarter 3, 2017 ** Quarter 3, 2017 ** Quarter 4, 2017 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2004 Quarter 1, 2003 ** Quarter 4, 2003 Quarter 2, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 4, 2004 ** Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2007 Quarter 3, 2006 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2000 Quarter 3, 2009 Quarter 3, 2000 Quarter 3, 2009 Quarter 3, 2000 Quarter 4,																	*						<u> </u>	
Quarter 4, 2016 Quarter 2, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2006 Quarter 3, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2000 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 3, 2009 Quarter 3, 200																*								
Quarter 2, 2017				*	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	*		<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>		<u> </u>	
Quarter 4, 2017																		*						
Quarter 2, 2018 Quarter 2, 2018 Quarter 2, 2018 Quarter 3, 2018 Quarter 4, 2018 CHLORIDE Quarter 1, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 2, 2003 Quarter 2, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 4, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 X X X X X X X X X X X X X X X X X X								*																
Quarter 2, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 4, 2018 CHLORIDE Quarter 1, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 4, 2005 Quarter 1, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2006 Quarter 2, 2009 Quarter 2, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2010 Quarter 3, 2010 **		*														*								
Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2003 ** Quarter 2, 2003 ** Quarter 2, 2003 Quarter 3, 2003 Quarter 1, 2004 ** Quarter 4, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 4, 2004 Quarter 4, 2004 Quarter 2, 2005 ** Quarter 2, 2005 ** Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2001 X Quarter 3, 2001 X Quarter 3, 2009 Quarter 3, 2001 X Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2001 X Quarter 3, 2001 X Quarter 3, 2001 X Quarter 3, 2009 Quarter 3, 2009 Quarter 3, 2001 X Quarter 4, 2009 Quarter 4, 2009 Quarter 3, 2001 X Quarter 3, 2001 X Quarter 4, 2009 Quarter 5, 2010 Q							*																	L
Quarter 4, 2018 CHLORIDE Quarter 2, 2003 W* Quarter 3, 2003 W* Quarter 3, 2003 W* Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2004 Quarter 2, 2004 W* Quarter 2, 2004 W* Quarter 1, 2004 Quarter 1, 2005 W* Quarter 1, 2005 W* Quarter 1, 2005 W* Quarter 2, 2005 W* Quarter 3, 2005 W* Quarter 4, 2005 W* Quarter 3, 2006 Quarter 3, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2006 W* Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 W* Quarter 3, 2009 W* Quarter 3, 2008 W* Quarter 3, 2009 W* Quarter 3, 2009 W* Quarter 1, 2009 Quarter 2, 2009 W* Quarter 2, 2009 W* Quarter 3, 2009 W* Quarter 2, 2009 W* Quarter 3, 2009 W* Quarter 4, 2009 Quarter 2, 2009 W* Quarter 2, 2009 W* Quarter 3, 2009 W* Quarter 4, 2009 Quarter 1, 2010 Quarter 3, 2010 W* Quarter 3, 2010	Quarter 2, 2018														*								*	
CHLORIDE Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 * Quarter 2, 2004 * Quarter 3, 2004 * Quarter 2, 2004 * Quarter 2, 2004 * Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 * Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 2, 2007 * Quarter 3, 2008 Quarter 4, 2007 Quarter 4, 2009 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 X Quarter 2, 2009 Quarter 3, 2009 X Quarter 2, 2010 X Quarter 3, 2010	Quarter 3, 2018												*											
Quarter 1, 2003	Quarter 4, 2018																							*
Quarter 2, 2003	CHLORIDE																							
Quarter 4, 2003	Quarter 1, 2003			*																				
Quarter 4, 2003	Quarter 2, 2003			*																				
Quarter 1, 2004	Quarter 3, 2003			*																				
Quarter 2, 2004	Quarter 4, 2003																							
Quarter 3, 2004	Quarter 1, 2004																							
Quarter 4, 2004																								
Quarter 1, 2005	Quarter 3, 2004																							
Quarter 2, 2005																							L'	
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 4, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 X Quarter 2, 2010 X Quarter 2, 2010 X Quarter 2, 2010 X Quarter 3, 2010																								
Quarter 4, 2005	Quarter 2, 2005			*																				
Quarter 1, 2006 * *	Quarter 3, 2005			*																				
Quarter 2, 2006	Quarter 4, 2005			*																				
Quarter 3, 2006	Quarter 1, 2006																		*					
Quarter 4, 2006	Quarter 2, 2006			*																				
Quarter 1, 2007	Quarter 3, 2006			*																				
Quarter 1, 2007 * Quarter 2, 2007 * Quarter 3, 2007 * Quarter 4, 2007 * Quarter 1, 2008 * Quarter 2, 2008 * Quarter 3, 2008 * Quarter 4, 2008 * Quarter 1, 2009 * Quarter 2, 2009 * Quarter 2, 2009 * Quarter 4, 2009 * Quarter 1, 2010 * Quarter 2, 2010 * Quarter 3, 2010 *	Quarter 4, 2006			*																				
Quarter 2, 2007 * *				*																				
Quarter 3, 2007 * *				*																				
Quarter 4, 2007 *				*																				\vdash
Quarter 1, 2008				*																				\vdash
Quarter 2, 2008	,	1											1											
Quarter 3, 2008 *		1											1											
Quarter 4, 2008 *		1			_	_		_	_		_	_	 	_	_	_				_	_			-
Quarter 1, 2009 *			-		-	-	-	-	-		-	-		-	-	-				-	-			\vdash
Quarter 2, 2009			-		-	-	-	-	-		-	-		-	-	-				-	-			\vdash
Quarter 3, 2009 *																								
Quarter 4, 2009		-	-		-	-	-	-	-		-	-	-	-	-	-				-	-			
Quarter 1, 2010 * Quarter 2, 2010 * Quarter 3, 2010 *		_																					<u> </u>	
Quarter 2, 2010 * Quarter 3, 2010 *																							<u> </u>	<u> </u>
Quarter 3, 2010 *																							<u> </u>	
Opertor 4, 2010																								
Quarter 4, 2010	Quarter 4, 2010		<u> </u>	*			<u> </u>															<u> </u>		<u> </u>

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCR	S						1	URG	4]	LRGA	1		_
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370		388	392	395	397
CHLORIDE																							
Quarter 2, 2011			*																				
Quarter 3, 2011			*																				
Quarter 4, 2011			*																				<u> </u>
Quarter 3, 2012			*																				1
Quarter 3, 2013			*																				
Quarter 4, 2013			*																				
Quarter 4, 2014			*																				
CHROMIUM																							
Quarter 4, 2002																							
Quarter 1, 2003																							<u> </u>
Quarter 2, 2003																							
Quarter 3, 2009																							
Quarter 1, 2019																							
COBALT																							
Quarter 3, 2003							*																
CONDUCTIVITY																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*					*		*									*				
Quarter 4, 2003			*							*									*				
Quarter 1, 2004																			*				
Quarter 2, 2004		<u> </u>								*									*				
Quarter 3, 2004		<u> </u>								*									*				
Quarter 4, 2004			*							*		40							*				
Quarter 1, 2005		ļ								*		*							*				
Quarter 2, 2005	-	-	-									不							*				
Quarter 3, 2005 Quarter 4, 2005		-								*		*							*				-
Quarter 1, 2006										т.		*							*				-
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				-
Quarter 4, 2006																	*		*				-
Quarter 1, 2007												*							*				1
Quarter 2, 2007																	*		*				
Quarter 3, 2007																	*		*				
Quarter 4, 2007												*					*		*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009		<u> </u>										*							*				
Quarter 4, 2009												*					*		*				
Quarter 1, 2010		<u> </u>										*							*				<u> </u>
Quarter 2, 2010	!						<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	*	<u> </u>						*	<u> </u>			<u> </u>
Quarter 3, 2010	!								<u> </u>			*							*				
Quarter 4, 2010										*		*							*				
Quarter 1, 2011 Quarter 2, 2011	-									_		*							*				
Quarter 3, 2011	-											*							*				
Quarter 4, 2011	 	<u> </u>					<u> </u>	<u> </u>		<u> </u>	<u> </u>	*	<u> </u>						*	<u> </u>			_
Quarter 1, 2012	_	\vdash					_	_		_	*	*	_						*	_			\vdash
Quarter 2, 2012	_	\vdash					_	_		_	<u> </u>	*	_						*	_			-
Quarter 3, 2012												*							*				\vdash
	_				_	_			_							_	_						

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						Ţ	URGA	4								LRGA	\		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY																							
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*							*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*							*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016	匚																		*				
Quarter 3, 2016												*							*				
Quarter 4, 2016	匚																		*				
Quarter 1, 2017	匚																		*				
Quarter 2, 2017																			*				
Quarter 3, 2017	匚																		*				
Quarter 4, 2017																			*				
Quarter 1, 2018																			*				
Quarter 2, 2018																			*				
Quarter 3, 2018																			*				
Quarter 4, 2018																			*				
Quarter 1, 2019																			*				
DISSOLVED OXYGEN																							
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS																							
Quarter 4, 2002										*									*				
Quarter 1, 2003			*							*									*				
Quarter 2, 2003			*							*									*				
Quarter 3, 2003			*				*	*		*		*							*				
Quarter 4, 2003			*				*		*	*		*							*				
Quarter 1, 2004			*									*							*				
Quarter 2, 2004										*		*							*				
Quarter 3, 2004										*		*							*				
Quarter 4, 2004										*		*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005	t																*	*	*	*	*		
Quarter 1, 2006	t																*	*	*	*	*		\vdash
Quarter 2, 2006	t		1														*	*	*	*	*		
Quarter 3, 2006	1		1					1				1	1				*	*	*	*	*		
	\vdash	-	 			_				*		*				\vdash	*	<u> </u>	*		_		₩
Quarter 1, 2006	₩	-				<u> </u>				<u> </u>						$\vdash \vdash$	<u> </u>		*				-
Quarter 1, 2007	<u> </u>									ų.		110											<u> </u>
Quarter 2, 2007	<u> </u>							ļ		*		*	ļ						*				<u> </u>
Quarter 3, 2007	<u> </u>									*		*							*				
Quarter 4, 2007	<u> </u>											*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008	1											*							*				
	t									*		*				H			*				
Quarter 4, 2008									1	i		i	i				i	i	i	ı			Ь—
Quarter 4, 2008 Ouarter 1, 2009	1											*							*				
Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009												*	*						*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	3							URGA	4								LRG	١		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED SOLIDS																							
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	*						*				
Quarter 1, 2010												*	*						*				
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010										*		*							*				
Quarter 4, 2010										*		*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*	*						*				
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*	*						*				
Quarter 2, 2014												*							*				
Quarter 3, 2014									*			*	*						*				
Quarter 4, 2014												*	*						*				
Quarter 1, 2015												*							*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015									*			*						*	*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*	*	*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*							*				
Quarter 1, 2017												*							*				
Quarter 2, 2017												*							*				
Quarter 3, 2017												*		*	*				*				
Quarter 4, 2017												*							*				
Quarter 1, 2018												*							*				
Quarter 2, 2018												*							*				
Quarter 3, 2018												*		*					*				
Quarter 4, 2018												*							*				
Quarter 1, 2019												*							*				
IODIDE																							
Quarter 4, 2002																					*		
Quarter 2, 2003						*																	
Quarter 3, 2003													*										
Quarter 1, 2004				*																			
Quarter 3, 2010																					*		
Quarter 2, 2013										*													
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
	-							_		_	_		_	_									

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		-	UCRS	S						1	URGA	4								LRGA	١		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
IRON																							
Quarter 1, 2005												*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*																
Quarter 2, 2006												*											
Quarter 3, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007											*												
Quarter 2, 2008												*											
Quarter 3, 2008												*											
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*							*				
Quarter 4, 2009 Quarter 1, 2010	-					<u> </u>		_				*							*				\vdash
	-					<u> </u>		_				*	*						*				\vdash
Quarter 2, 2010	-		<u> </u>			-				<u> </u>	<u> </u>	*	*		<u> </u>				*				-
Quarter 4, 2010	_					-						*							*				<u> </u>
Quarter 4, 2010	_					_						*							*				<u> </u>
Quarter 1, 2011	-		<u> </u>			-				<u> </u>	<u> </u>		طو		<u> </u>								<u> </u>
Quarter 2, 2011	-		<u> </u>			-				<u> </u>	<u> </u>	*	*		<u> </u>				*				<u> </u>
Quarter 3, 2011			<u> </u>							<u> </u>	<u> </u>	*			<u> </u>				*				
Quarter 4, 2011			<u> </u>							<u> </u>	<u> </u>	*			<u> </u>				*				<u> </u>
Quarter 1, 2012			<u> </u>							<u> </u>	<u> </u>	*			<u> </u>				*				<u> </u>
Quarter 2, 2012												*							*				
Quarter 3, 2012												*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013												*							*				L
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014																		*	*				
	-																						

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		,	UCRS	S						1	URGA	Λ								LRGA	١		$\overline{}$
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394		370		388	392	395	397
MAGNESIUM																							
Quarter 2, 2014												*	*						*				
Quarter 3, 2014												*							*				
Quarter 4, 2014	-											*	*						*				
Quarter 1, 2015	-											*	*						*				
Quarter 2, 2015	-											*	~						*				
Quarter 3, 2015	-											*							*				
Quarter 4, 2015	-											*							*				
												*							*				
Quarter 1, 2016												*		*					*				
Quarter 2, 2016 Quarter 3, 2016	_											*		~					*				
` '												*		*					*				
Quarter 4, 2016	-											*		*					*				
Quarter 1, 2017												*		不					*				
Quarter 2, 2017	 	-								-	-	*	-	*		\vdash			-	-	-		-
Quarter 3, 2017	 	-									-	*		*					*		-		<u> </u>
Quarter 4, 2017	ऻ—	-				_						*	*	-			-		*				<u> </u>
Quarter 1, 2018	 	-										*	不	-					不				-
Quarter 2, 2018																							
Quarter 3, 2018	ऻ—	 							<u> </u>			*	*	*					*				
Quarter 4, 2018													不										
Quarter 1, 2019	—											*		*					*				
MANGANESE																					<u>.</u>		
Quarter 4, 2002	<u> </u>						4	4													*		
Quarter 3, 2003							*	*															
Quarter 4, 2003	<u> </u>						*	*															
Quarter 1, 2004	<u> </u>						*																
Quarter 2, 2004	<u> </u>						*																
Quarter 4, 2004							*	*															
Quarter 1, 2005	<u> </u>						*																
Quarter 3, 2005																					*		
Quarter 3, 2009	*																						
OXIDATION-REDUCTION POT	ENT	IAL																					
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				
Quarter 2, 2006			*																				
Quarter 3, 2006		t	*											t				*					
Quarter 4, 2006			*																				
Quarter 1, 2007	 		*																				
Quarter 2, 2007	_		*				*									H							1
Quarter 3, 2007	1		*				*			-	 		-			\vdash			-	-	 		
Quarter 4, 2007	 		*				Ë																_
Quarter 1, 2008	 		*			*			*														
Quarter 2, 2008	*		*	*		*			Ë				*				*		*	*			_
Quarter 3, 2008	Ë	 	*	*		*			-				*	 			*		*	*			
Quarter 4, 2008	1	 	*	*		*	*	*	*				*	 			*	*	<u> </u>	*			
Quarter 1, 2009	1	 	*	<u> </u>		<u> </u>	*	*	*				*	*				*		*			
Quarter 3, 2009	 	1	*	*		*	-	-	-		 		-	+			*	*	*	*	 		
Quarter 4, 2009	 	1	*			*			*		 			1				*	·r	*	 		
Quarter 1, 2010	*		*			-				-	-		-					<u> </u>	-	*	-		\vdash
Quarter 1, 2010 Quarter 2, 2010	*	-	*	*					*				*	-			*	*		*			\vdash
Quarter 2, 2010 Quarter 3, 2010	*		*	*		*			_	-	-		~				*	*	*	*	-		\vdash
Quarter 3, 2010	╨		*	_					_		_				_		╨	*	~	~	_		_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	3							URG	4]	LRG	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
OXIDATION-REDUCTION POT					-								-	-		-	-						-
Quarter 4, 2010	LINI	IAL	*					*			*			*			*	*	*	*			
Quarter 1, 2011	*		-	*		*	*	*	*		*		*	*			*	*	-	*	*		
Quarter 2, 2011	*		*	*			*	*	*	*	*		*	*			*	*	*	*	*		
Quarter 3, 2011	*		*	*			*	*	-	*	-		*		*		*	*	*	*	-		
Quarter 4, 2011	*		*	*			*	-			*		-		-		*	*	-	*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*	-	*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*	-		*	*			*	*	*	*	*		
Quarter 4, 2012			-	*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2013				*		*		*	*	-	*		*	*				*		*	*		
Quarter 2, 2013	*			*			*	-	*		*		*	-			*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*		H
Quarter 3, 2014	*		*	*		*											*	*	*	*			H
Quarter 4, 2014	*		*	*		Ė					*	1	*				*	*	*	*	*		
Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*		*	*	*	*	*				*			*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*	1	*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*		*	*	*	*	*	*	*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*		*		*	*		*	*	*	*
Quarter 2, 2016	*		*	*	*	*		*	*	*			*	*	*	*	*	*		*	*	*	*
Quarter 3, 2016	*		*	*	*	*	*	*	*	*			*	*	*	-	*	*	*	*	*	*	*
Quarter 4, 2016	*		*	*	*		*	*		*			*		*		*	*	*	*	*	*	*
Quarter 1, 2017	*		*	*	*			*	*						*			*		*		*	*
Quarter 2, 2017	*		*	*	*												*			*	*		
Quarter 3, 2017	*		*	*	*												*	*	*	*	*	*	*
Quarter 4, 2017	*		*	*	*	*	*	*	*	*	*		*	*	*		*	*	*	*	*	*	*
Quarter 1, 2018	*		*	*	*	*												*	*	*	*		*
Quarter 2, 2018	*		*	*	*												*	*	*	*	*	*	*
Quarter 3, 2018	*		*	*	*	*	*	*	*								*	*	*	*	*	*	*
Quarter 4, 2018	*		*	*	*	*				*			*		*		*	*	*	*	*		*
Quarter 1, 2019	*		*	*	*	*	*	*			*						*	*	*	*	*	*	*
PCB-1016																							
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004											*												
Quarter 3, 2005							*				*												
Quarter 1, 2006											*												
Quarter 2, 2006											*												
Quarter 4, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007												*											
Quarter 3, 2007											*												
Quarter 2, 2008											*	*											
Quarter 3, 2008	1										*												
Quarter 4, 2008											*												
Quarter 1, 2009		t									*												H
Quarter 2, 2009	1	1					-				*	1	-								1		\vdash
Quarter 3, 2009	1					-	-				*		-					-	-	-			-
Quarter 4, 2009	 	-				<u> </u>					*	 					_			_	 		├
												-								<u> </u>	-		<u> </u>
Quarter 1, 2010	!					<u> </u>					*	ļ								<u> </u>	ļ		
Quarter 2, 2010											*									<u> </u>			<u> </u>
Quarter 3, 2010											*												
Quarter 4, 2010											*												
																							_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						Ţ	JRG	4								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394		370		388	392	395	
PCB-1232	300	30)	370	373	370	221		223	22.	50.	30)	3,2	307	371	220	57.	305	370	373	300	372	370	371
Quarter 1, 2011	1										*												
PCB-1248																							
Quarter 2, 2008												*											_
PCB-1260												**											_
Quarter 2, 2006																		*					_
pH																		Ť					
																	*						
Quarter 4, 2002	-																*						₩
Quarter 2, 2003	-																						<u> </u>
Quarter 3, 2003	-																*						₩
Quarter 4, 2003	-						*										*						<u> </u>
Quarter 1, 2004	-						*										*						<u> </u>
Quarter 2, 2004	-																*						<u> </u>
Quarter 3, 2004																	*						<u> </u>
Quarter 4, 2004			<u> </u>							<u> </u>							*						Щ
Quarter 3, 2005			<u> </u>							*							*				*		$ldsymbol{f eta}$
Quarter 4, 2005			<u> </u>							*							*						Щ
Quarter 1, 2006			<u> </u>				ļ			ļ		ļ			ļ		*						<u> </u>
Quarter 2, 2006			<u> </u>				ļ			ļ		ļ			ļ		*						<u> </u>
Quarter 3, 2006	1		<u> </u>														*						Щ
Quarter 3, 2007																	*						<u> </u>
Quarter 4, 2007																	*						<u> </u>
Quarter 4, 2008																	*						<u> </u>
Quarter 1, 2009																	*						
Quarter 1, 2011																	*						
Quarter 2, 2011											*												
Quarter 3, 2011											*												
Quarter 1, 2012														*									
Quarter 1, 2013										*			*				*						
Quarter 4, 2014																					*		
Quarter 2, 2016																		*	*				
POTASSIUM																							
Quarter 4, 2002																		*	*				
Quarter 3, 2004																			*				
Quarter 2, 2005																			*				
Quarter 3, 2005																			*				
Quarter 4, 2005																			*				
Quarter 2, 2006																			*				
Quarter 3, 2006	1																		*				
Quarter 4, 2006	1		t																*				
Quarter 4, 2008	1																		*				t
Quarter 3, 2012	1		t																*				
Quarter 1, 2013	1																		*				t
Quarter 2, 2013	1																		*				<u> </u>
Quarter 3, 2013	1		1				1			1		1			1				*				t
RADIUM-226																							
Quarter 4, 2002			*										*	*							*		
Quarter 2, 2004	1		t																*				t
Quarter 2, 2005	1		t						*														t
Quarter 1, 2009	1		 								*												
Quarter 3, 2014	1	_	1				1		*	1		*			1								┢
Quarter 4, 2014	1	_	*				1		H	1	*	Ė			1			*					\vdash
Quarter 1, 2015	+	\vdash	*			-	*		-	*	Ë	*						*					\vdash
Quarter 2, 2015	+		*				*			*		*			-			*					\vdash
	-	-	*	—		—	-			<u> </u>	<u> </u>	<u> </u>					 	<u> </u>	<u> </u>	<u> </u>			\vdash
Quarter 3, 2015																							

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System	UCRS					1						URGA								LRGA			
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
RADIUM-226																							
Quarter 4, 2015					*	*									*		*				*	*	
Quarter 2, 2016			*						*		*	*	*	*	*	*		*					
Quarter 3, 2016																		*					
Quarter 4, 2016	*		*			*			*				*		*					*		*	
Quarter 1, 2017			*							*	*							*					
Quarter 2, 2017																	*	*		*	*		
Quarter 3, 2017					*				*	*	*									*			
Quarter 4, 2017																		*		*			
Quarter 1, 2018												*						*		*			
Quarter 4, 2018													*				*						
RADIUM-228																							
Quarter 2, 2005																							
Quarter 3, 2005			-																				
Quarter 4, 2005																							
Quarter 1, 2006																							
SELENIUM																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
SODIUM																							
Quarter 4, 2002																			*		*		
Quarter 1, 2003				*					*	*	*												
Quarter 2, 2003				*						*	*		*										
Quarter 3, 2003							*	*		*													
Quarter 4, 2003							*		*	*													
Quarter 1, 2004									*	*				*									
Quarter 2, 2004										*													
Quarter 3, 2004										*													
Quarter 4, 2004									*	*													
Quarter 1, 2005										*									*				
Quarter 2, 2005										*									*				
Quarter 3, 2005									*	*									*				-
									*	*													
Quarter 4, 2005																							-
Quarter 1, 2006									*	*													ــــ
Quarter 2, 2006									*														<u> </u>
Quarter 3, 2006									*	*		*							*				<u> </u>
Quarter 4, 2006									*	*							*						
Quarter 1, 2007									*			*											L
Quarter 2, 2007									*	*													
Quarter 3, 2007									*														
Quarter 4, 2007									*														
Quarter 1, 2008									*														
Quarter 3, 2008												*											\vdash
Quarter 4, 2008						-			*	*							-						\vdash
Quarter 1, 2009	-	-					-	-	*	-	-	*	-					-	*	-			-
		-				-	-	-	-		-	*					-	-	~	-			├
Quarter 3, 2009	_								12.														
Quarter 4, 2009									*			*											Ь.
Quarter 1, 2010												*											
Quarter 2, 2010										*		*											
Quarter 3, 2010										*													
Quarter 4, 2010									*	*													
Quarter 1, 2011										*													
Quarter 2, 2011									*														
Quarter 4, 2011																			*				<u> </u>
., 2011		_				_	_	_		_	_	_	_				_	_	_	_			_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		,	UCRS	3						ì	URG	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SODIUM																							
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*											
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*											
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*											
Quarter 2, 2014									*		*	*							*				
									٠		~								*				
Quarter 3, 2014									4	4		*	46						不				
Quarter 4, 2014									*	*		*	*										
Quarter 1, 2015												4	*										
Quarter 2, 2015										J.		*											
Quarter 3, 2015	_					<u> </u>			*	*		*					-		_				-
Quarter 4, 2015	_					<u> </u>			*	*	34c	*					-		_				-
Quarter 2, 2016	_					<u> </u>				_	*						-		_				*
Quarter 1, 2016	-	-				-				*	*	-	*	-				*		-	-		不
Quarter 1, 2017 Quarter 2, 2017	-	-				-			*	*	*	-	*	-				*		-	-		
Quarter 2, 2017 Quarter 2, 2018	-	-				-			*	*	*	-	*	-						-	-		
Quarter 3, 2018 Quarter 3, 2018	-												*	*									
Quarter 1, 2019													*	Ψ.									
STRONTIUM-90													_										
Quarter 2, 2003										_													
Quarter 1, 2004										Ŧ													
SULFATE																							
Quarter 4, 2002																			*				
Quarter 1, 2003												*	*				*		*				
Quarter 2, 2003										*		*	*					*	*				
Quarter 3, 2003										*		*	*					-	*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004										*		*	*					*	*				
Quarter 1, 2005										*		*	*				*	*	*				
Quarter 2, 2005										*		*	*					*	*				
Quarter 3, 2005										*		*	*				*	*	*				
7										*		*	*					*	*	*			
Quarter 4, 2005	-	-				-				*	-	*	*	-			*	*	*	*	-		
Quarter 1, 2006	_					<u> </u>			*	*		*	*				*	*	*	*			-
Quarter 2, 2006	_																	*					
Quarter 3, 2006									*	*		*	*				*		*	*			
Quarter 4, 2006									*	*		*	*				*		*				
Quarter 1, 2007									*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*				*		*	*			
Quarter 3, 2007									*	*		*	*				*		*	*			L
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008										*		*	*				*	*	*	*			
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009	-	-				-			*	*	-	*	*	-			*	*	*	*	-		
Quarter 4, 2009	*	-				-			-	*	-	*	*	-			*	*	*	-	-		
	*	-				-			*	*	-	*	*	-			*	<u> </u>	*	-	-		
Quarter 1, 2010																							

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		,	UCRS	3						1	URGA	4								LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
SULFATE																							
Quarter 2, 2010									*	*		*	*				*	*	*	*			
Quarter 3, 2010										*		*	*				*	*	*	*			
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011	*									*		*	*				*	*	*				
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			-
Quarter 4, 2011	*									*		*	*	-			*	*	*	*			-
Quarter 1, 2012	*									*		*	*				*	*	*	*			
	*									*		*	*				*	*	*	*			
Quarter 2, 2012																			*	*			-
Quarter 3, 2012	*									*		*	*				*	*					<u> </u>
Quarter 4, 2012										*		*	*				*	*	*	*			
Quarter 1, 2013										*		*	*				*	*	*	*			
Quarter 2, 2013										*		*	*	*			*	*	*	*			
Quarter 3, 2013										*		*	*	*			*	*	*	*			
Quarter 4, 2013										*		*	*				*	*	*	*			L
Quarter 1, 2014								*		*		*	*				*	*	*	*			
Quarter 2, 2014										*		*	*	*			*	*	*	*			
Quarter 3, 2014	1									*		*	*	*			*	*	*	*			
Quarter 4, 2014										*		*	*				*	*	*	*			
Quarter 1, 2015										*		*	*				*	*	*	*			
Quarter 2, 2015										*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2015								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2015										*		*	*	*			*		*	*			
Quarter 1, 2016								*		*		*	*	*			*	*	*	*			
Quarter 2, 2016								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2016								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2016										*		*	*	*	*		*	*	*	*			
Quarter 1, 2017										*		*	*	*	*		*	*	*	*			
Quarter 2, 2017								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2017								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2017										*		*	*	*	*		*	*	*	*			
Quarter 1, 2018										*		*	*	*			*	*	*	*			
Quarter 2, 2018								*		*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2018								*		*		*		*	*		*	*	*	*			
Quarter 4, 2018										*		*	*	*			*	*	*	*			
Quarter 1, 2019								*		*		*	*	*	*		*	*	*	*			
TECHNETIUM-99																							
Quarter 4, 2002																			*				
Quarter 1, 2003													*				*		*				
Quarter 2, 2003	*		*							*			*				*						
Quarter 3, 2003			*										*				*			*			
Quarter 4, 2003			*							*		*	*				*		*	*			<u> </u>
Quarter 1, 2004			*									*	*				*		*	L.			<u> </u>
Quarter 2, 2004		<u> </u>	*							<u> </u>		*	*	<u> </u>			*	<u> </u>	*	*			<u> </u>
Quarter 3, 2004			*							91.		*	,1.				*	91.	*				
Quarter 4, 2004			*							*		*	*				*	*	*	L.			<u> </u>
Quarter 1, 2005			*							*		*	*				*			*			
Quarter 2, 2005			*							*			*				*	*	*	*			
Quarter 3, 2005			*							*			*				*	*	*	*			
Quarter 4, 2005			*							*		*	*				*		*	*			
Quarter 1, 2006										*		*	*						*	*			
Quarter 2, 2006	1		*							*			*				*	*	*	*			
Quarter 3, 2006			*							*			*				*	*	*	*			
Quarter 4, 2006	*									*		*	*						*	*			
Quarter 1, 2007			*							*			*				*		*	*			
, 2007	_		Ė			_				Ė	_		÷				Ė		Ė	÷			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		1	UCRS	S						1	URGA	١								LRG/	١		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 2, 2007			*							*		*	*				*	*		*			
Quarter 3, 2007			*							*	*	*	*				*		*	*			
Quarter 4, 2007			*							*		*	*				*		*	*			
Quarter 1, 2008			*							*		*	*				*	*	*	*			
Quarter 2, 2008			*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			\vdash
Quarter 1, 2009			*							*		*	*				*			-			
•			*							*		*	*				*	*		*			—
Quarter 2, 2009			*							*	*	*	*				*	~		*			\vdash
Quarter 3, 2009											不									不			-
Quarter 4, 2009			*							*		*	*				*						<u> </u>
Quarter 1, 2010			*							*		*	*				*						
Quarter 2, 2010			*							*			*				*	*		*			
Quarter 3, 2010			*							*	*	*	*				*						
Quarter 4, 2010			*							*		*	*				*						
Quarter 1, 2011										*			*				*						
Quarter 2, 2011			*							*			*				*		L	*			L
Quarter 3, 2011			*							*			*				*			*			
Quarter 4, 2011			*							*	*	*	*				*						
Quarter 1, 2012			*							*			*				*			*			
Quarter 2, 2012			*							*			*				*		*	*			
Quarter 3, 2012			*							*		*	*				*						
Quarter 4, 2012										*		*	*				*		*	*			
Quarter 1, 2013										*			*				*		*	*			
Quarter 2, 2013										*		*	*				*		*	*			
Quarter 3, 2013			*							*		*	*				*		*	*			
Quarter 4, 2013			*							*		*	*				*		*	*			
Quarter 1, 2014			*							*	*	-	*				*		*	*			\vdash
Quarter 2, 2014			*							*	*		*	*			*		*	*			₩
			*							*	-4"		*				*			*			—
Quarter 3, 2014			*								<u>.</u>	<u>.</u>					*		.	*			\vdash
Quarter 4, 2014										*	*	*	*				*		*	*			
Quarter 1, 2015			*							*	*	*											ш
Quarter 2, 2015			*							*	*		*				*		-14	*			ш
Quarter 3, 2015			*							*	*	*	*				*	*	*	*			
Quarter 4, 2015			*							*	*	*	*				*	*		*			
Quarter 1, 2016			*							*	*		*				*		*	*			
Quarter 2, 2016			*			*				*			*				*	*		*			
Quarter 3, 2016			*							*		*	*				*	*		*			
Quarter 4, 2016			*			L			L	*	*		*	LĪ			*		L	*			L
Quarter 1, 2017			*							*			*				*	*		*			
Quarter 2, 2017			*							*			*				*	*		*			
Quarter 3, 2017			*							*	*		*				*	*		*			
Quarter 4, 2017			*							*		*	*				*	*		*			
Quarter 1, 2018			*							*	*		*				*	*		*			
Quarter 2, 2018			*							*	*	*	*				*	*		*			
Quarter 3, 2018			*							*		*	*				*	*		*			
Quarter 4, 2018			*							*	*	*	*				*	*		*			\vdash
Quarter 1, 2019			*							*	*	*	*				*	*		*			┝
THORIUM-230													Ė				Ë			Ė			
Quarter 1, 2012	*								*					*									
Quarter 4, 2014	*	-	*				-		<u>.</u>	 	-		 	-	-			 	 				\vdash
Quarter 3, 2015	*								*	*			*		*								<u> </u>
Quarter 1, 2017	Ė		*							*			H				*						\vdash
THORIUM-234																							
Quarter 2, 2003						*			*					*									
Quarter 4, 2007									*														

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

S D D D D U S S S S D D D D D U S S S S	Groundwater Flow System			UCRS	3						1	URG	4								LRGA	4		
Monitorium Well 386 390	Gradient	S				U	S	S	S	S				D	D	U	U	S	D	_			U	U
DOTAL DESCRIPTION DATE D	Monitoring Well										_													
Dameter 4, 2005 Dameter 4, 2005 Dameter 4, 2005 Dameter 4, 2006 Dameter 4, 2008 Dameter 4, 2009 Dameter 4,	TOLUENE																							
Descript 2,0002	Quarter 2, 2014										*	*		*										
Descript 2,0002																								
Danter 2, 2003 Danter 3, 2003 Danter 4, 2003 Danter 4, 2003 Danter 5, 2004 Danter 6, 2004 Danter 6, 2004 Danter 7, 2004 Danter 9, 2005 Danter 9, 2005 Danter 9, 2005 Danter 9, 2005 Danter 9, 2006 Danter 9, 2006	Quarter 4, 2002																					*		
Duarter 1, 2003 Duarter 1, 2004 Duarter 2, 2004 Duarter 2, 2004 Duarter 3, 2006 Duarter 4, 2005 Duarter 4, 2005 Duarter 2, 2005 Duarter 2, 2005 Duarter 3, 2005 Duarter 3, 2006 Duarter 4, 2005 Duarter 4, 2005 Duarter 4, 2006 Duarter 3, 2007 Duarter 4, 2008 Duarter 4, 2009 Duarter 4, 2000 Duarter 4, 200	Quarter 1, 2003				*						*	*							*	*		*		<u> </u>
Dearter 1, 2003 Dearter 2, 2004 Dearter 2, 2004 Dearter 3, 2004 Dearter 3, 2004 Dearter 3, 2005 Dearter 3, 2006 Dearter 4,	Quarter 2, 2003										*	*		*								*		
Dearter 1, 2003 Dearter 2, 2004 Dearter 2, 2004 Dearter 3, 2004 Dearter 3, 2004 Dearter 3, 2005 Dearter 3, 2006 Dearter 4,								*	*	*	*	*	*											
Daurier 1, 2004	Quarter 4, 2003							*		*	*													
Dearter 3, 2004	Quarter 1, 2004										*													
Date Color	Quarter 2, 2004										*	*												
Dameter 1, 2005	Quarter 3, 2004										*													
Duarter 2, 2005 Duarter 3, 2005 Duarter 1, 2005 Duarter 1, 2006 Duarter 1, 2007 Duarter 2, 2011 Duarter 2, 2011 Duarter 3, 2012 Duarter 3, 2012 Duarter 4, 2002 Duarter 1, 2003 Duarter 1, 2006 Duarter 1, 2006 Duarter 1, 2006 Duarter 2, 2011 Duarter 3, 2016 Duarter 3, 2016 Duarter 4, 2007 Duarter 3, 2006 Duarter 1, 2006 Duarter 1, 2006 Duarter 1, 2006 Duarter 3, 2007 Duarter 3, 2007 Duarter 3, 2007 Duarter 4, 2007 Duarter 4, 2006 Duarter 4, 2007 Duarter 4, 2007 Duarter 4, 2007 Duarter 4, 2007 Duarter 4, 2008 Duarter 4, 2009 Duarter 2, 2009 Duarter 3, 2009 Duarter 4, 2009 Duarter 4, 2009 Duarter 4, 2009 Duarter 3, 2009 Duarter 4, 2009 Duarter 3, 2009 Duarter 4, 2009 Duarter 4, 2009 Duarter 3, 2009 Duarter 4, 2001 Duarter 4, 2009 Duarter 4, 2001 Duarter 4, 2001 Duarter 5, 2010 Duarter 5, 2010 Duarter 6, 2010 Duarter 6, 2010 Duarter 6, 2010 Duarter 7, 2010 Duarter 7, 2011 Duarter 8, 2010 Duarter 9, 201	Quarter 4, 2004										*													
Dunter 3, 2005	Quarter 1, 2005										*													
Duarter 3, 2005 Duarter 4, 2005 Duarter 2, 2006 Duarter 2, 2006 Duarter 3, 2007 A	Quarter 2, 2005										*											*		
Duarter 4, 2005 Duarter 1, 2006 Duarter 2, 2006 Duarter 2, 2006 Duarter 3, 2007 Part 1, 2007 Part 2, 2011 Duarter 3, 2012 Part 2, 2011 Duarter 4, 2006 Duarter 4, 2006 Duarter 4, 2007 Part 2, 2011 Duarter 3, 2012 Part 3, 2012 Part 3, 2013 Part 4, 2002 Duarter 4, 2003 Part 4, 2004 Part 4, 2005 Part 4, 2006 Part 4, 2006 Part 4, 2006 Part 4, 2006 Part 4, 2007 Part 4, 2007 Part 4, 2007 Part 4, 2007 Part 4, 2008 Part 4, 2009 Part 4, 200											*		*									*		
Duarter 1, 2006	•										*											*		
Quarter 2, 2006		\vdash											1									1		\vdash
Quarter 2,006		Н						_				_	*	_	_	_		_	_	_	_	 		\vdash
Quarter 2,0007		\vdash											-					*						\vdash
Durater 3, 2007	•	*									*		-					<u> </u>				-		\vdash
Quarter 2, 2011	,						*	**	*	*				*	**			*		<u> </u>				
Quarter 3, 2012	,	*					*	*	*	*	不	<u>.</u>		*	*			*						<u> </u>
Quarter 3, 2016												不												<u> </u>
COTAL ORGANIC HALIDES	•	*																		-10				<u> </u>
Quarter 4, 2002		<u> </u>																		*				
A																								
Quarter 3, 2003																				*				<u> </u>
Quarter 2, 2004																			*					<u> </u>
Quarter 3, 2004					*																			
Quarter 1, 2005																						*		
Quarter 2, 2005																								
Quarter 3, 2005																								
Quarter 4, 2005	-																							
Quarter 1, 2006																								<u> </u>
Quarter 2, 2006																								<u> </u>
Quarter 3, 2006	-																							<u> </u>
Quarter 4, 2006 * *													-							<u> </u>		-		<u> </u>
Quarter 1, 2007		*											ļ					, the		<u> </u>		ļ		ــــ
Quarter 2, 2007													ļ					*		<u> </u>		ļ		
Quarter 3, 2007			-				<u> </u>													<u> </u>			_	₩
Quarter 4, 2007	,		-				<u> </u>													<u> </u>			_	₩
Quarter 1, 2008			-				-	-			-	-	-	-	-	-			-	 	-	*		₩
Quarter 4, 2008			-				_						 					-		_		*		\vdash
Quarter 1, 2008													-									-		\vdash
Quarter 1, 2009	-															-				-				\vdash
A	,																							\vdash
Quarter 3, 2009																						*		\vdash
Quarter 4, 2009 * Quarter 1, 2010 * Quarter 2, 2010 * Quarter 3, 2010 * Quarter 4, 2010 * Quarter 1, 2011 *																						-		\vdash
Quarter 1, 2010 * Quarter 2, 2010 * Quarter 3, 2010 * Quarter 4, 2010 * Quarter 1, 2011 *	,												 									 		\vdash
Quarter 2, 2010 * Quarter 3, 2010 * Quarter 4, 2010 * Quarter 1, 2011 *													1									1		
Quarter 3, 2010 *																								\vdash
Quarter 4, 2010 * Quarter 1, 2011 * Quarter 1, 2													 									 		\vdash
Quarter 1, 2011 *													 									 		\vdash
													 									 		\vdash
		H																				*		\vdash
																		_				_		_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		-	UCRS	S						Į	JRGA	١								LRGA	١		\neg
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TRICHLOROETHENE																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																$\overline{}$							
Quarter 4, 2005												Ŧ				Ŧ							
Quarter 1, 2006												Ŧ		H		▔		i				=	
Quarter 2, 2006												Ŧ				_		Ŧ					
Quarter 2, 2007			<u> </u>			-	<u> </u>	_					_			i		<u> </u>		-			\vdash
			<u> </u>			-	<u> </u>	_					_			÷		_		-		=	
Quarter 3, 2007			-			-	-									=				-		-	
Quarter 1, 2007	-	-	-				-									=				-		-	-
Quarter 1, 2008	-	-	-				-													-			-
Quarter 2, 2008						-			<u> </u>			-					<u> </u>			 			
Quarter 3, 2008																							
Quarter 4, 2008												_				_							
Quarter 1, 2009												_		_					_		_		
Quarter 2, 2009												-											
Quarter 3, 2009												_											
Quarter 4, 2009																							
Quarter 1, 2010																							
Quarter 2, 2010																							
Quarter 3, 2010																							
Quarter 4, 2010																							
Quarter 1, 2011																							
Quarter 2, 2011																							
Quarter 3, 2011																							
Quarter 4, 2011																							
Quarter 1, 2012																							
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013																							
Quarter 1, 2014																							
Quarter 2, 2014																							
Quarter 3, 2014																							
Quarter 4, 2014			1				1																
Quarter 1, 2015												-											
Quarter 2, 2015												Ŧ											
Quarter 3, 2015		-	1				1																
Quarter 4, 2015						-			-			┪		1	-				ī	 	Ē		
Quarter 1, 2016						-			-			Ŧ				Ŧ				 	=		
Quarter 2, 2016			 				 					i		i		_				1	=		
Quarter 2, 2016 Quarter 3, 2016			<u> </u>			-	<u> </u>	_				i	_			-		_		-	=		
,			 			-	 					=				=				-			
Quarter 4, 2016			-			-	-		ļ											-			-
Quarter 1, 2017						-			<u> </u>			-					<u> </u>			 			
Quarter 2, 2017			<u> </u>				<u> </u>					_											<u> </u>
Quarter 3, 2017			<u> </u>				<u> </u>				_												
Quarter 4, 2017		<u> </u>	<u> </u>	Щ	Щ	Ц_	<u> </u>	Щ.	<u> </u>	Щ	_	Щ.	<u> </u>		$ldsymbol{ldsymbol{ldsymbol{eta}}}$		Щ	<u> </u>		<u> </u>		Щ	<u> </u>

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCR	S						ì	URGA	A								LRGA	l.		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TRICHLOROETHENE																							
Quarter 1, 2018																							
Quarter 2, 2018																							
Quarter 3, 2018																							
Quarter 4, 2018																							
Quarter 1, 2019																							
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004	t						*															t	
Quarter 4, 2007							*	*	*														
* Statistical test results indicate an	elevat	ed co	ncenti	ration	(i.e	a stati	istical	lv sigi	nifica	nt inci	rease)											_	_
MCI Exceedance			. ,		,,			, , . 8															

UCRS Upper Continental Recharge System

URGA Upper Regional Gravel Aquifer

LRGA Lower Regional Gravel Aquifer

S Sidegradient; D Downgradient; U Upgradient

[■] MCL Exceedance

■ Previously reported as an MCL exceedance; however, result was equal to MCL

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F03 - C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:	02/2	6/1	9				Т	ime:	0	930)				Mon	itor:	F	Rob	эe	ert Kirby
Weather Co Sunny, Cool,			and 4	4 De	grees	3														
Monitoring RAE Systems				I # 79	970															
					M	loni	itorii	ng Lo	ocati	ion										Reading (% LEL)
Ogden Landi Road Entran		Ch	eck	ced	at g	ro	unc	llev	el							,				0
North Landfi	II Gate	Ch	eck	ked	at g	ro	unc	llev	'el											0
West Side of Landfill: North 37° West 88°	07.652	Ch	eck	ed a	at gro	oun	nd le	evel												0
East Side of Landfill: North 37° West 88°	07.628'	Ch		ed a	at gro	our	nd le	evel												0
Cell 1 Gas V	ent (17)	0	0	0	0	5 0	6 0	0	0	9	10 0	11 0	12 0	13 0	14 0	15 0	16 0	0		0
Cell 2 Gas V	/ent (3)	1 0	0	3 0																0
Cell 3 Gas V	/ent (7)	0	0	3 0	0	5 0	6 0	7												0
Landfi	II Office	Ch	eck	ced	at f	loo	r le	vel												0
Suspect or F	roblem Areas	No	are	eas	not	ed														NA
Remarks:																				
Al	LL VENT	rs c	HEC	KED	1" F	RO	M TI	HE M	OUT	гн о	F VE	NT								
М	onitoring	ı was	s cor	nplet	ed 02	2/26	3/19.													
		,																		
								,												
Performed	by:			las	4)	//	3										1	23	3/	25/19
			/			ana	ture												/-	Date

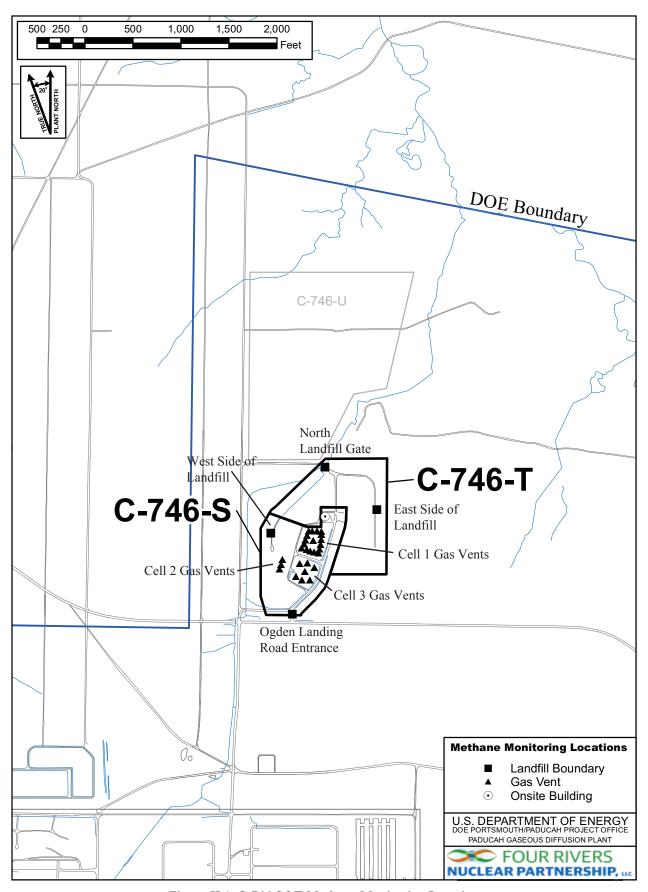


Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300014, SW07300015, SW07300045

Frankfort, KY 40601 (502) 564-6716

FINDS/UNIT: KY8-890-008-982 / 1 LAB ID: None For Official Use Only

SURFACE WATER SAMPLE ANALYSIS

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "D	OWNSTREAM")	L135 UPSTRE	AM	L154 DOWNSTF	REAM	L136 AT SI	TE		- 1
Sample Seque	nce	#				1		1		1			
If sample is	а В	lank, specify Type: (F)ield, (T) r:	ip, (M)ethod	, or (E) quipment	NA		NA		NA			
Sample Date a	and	Time (Month/Day/Year hour: m	inu	tes)		1/23/2019 08:	44	1/23/2019 08	:28	1/23/2019 08	3:56		
Duplicate ("	Y" (or "N") ¹				N		N		N			T
Split ('Y' o	r "1	N") ²				N		N		N			
Facility Samp	ple	ID Number (if applicable)				L135SS2-19)	L154US2-1	9	L136SS2-1	19	\ /	
Laboratory Sa	amp.	le ID Number (if applicable)				469680001		469687002)	46968000	2	\ /	
Date of Analy	ysi	s (Month/Day/Year)				2/14/2019		2/14/2019		2/14/2019)		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L G S	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQI	F L A G
A200-00-0	0	Flow	Т	MGD	Field		*		*		*	/ \	
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	1.7		2.01		0.494		/ \	
14808-79-8	0	Sulfate	Т	MG/L	300.0	2.57		2.47		6.03			
7439-89-6	0	Iron	Т	MG/L	200.8	2.39		2.24		1.31			
7440-23-5	0	Sodium	т	MG/L	200.8	1.88		1.97		1.02			
S0268	0	Organic Carbon ⁶	т	MG/L	9060	9.09		8.24		5.14			
s0097	0	BOD ⁶	т	MG/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	т	MG/L	410.4	78.7	*	25.2	*	13.2	*J		

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

^{5&}quot;<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit

⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

STANDARD FLAGS:

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: SW07300015, SW07300015, SW07300045

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	oint	(KPDES Discharge Number, or	r "(JPSTREAM" or	"DOWNSTREAM")	L135 UPSTRE	EAM	L154 DOWNSTE	REAM	L136 AT S	ITE		\perp
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	A G S ⁷
S0145	1	Specific Conductance	т	µнмs/см	Field	54		30		171			
S0270	0	Total Suspended Solids	Т	MG/L	160.2	28.4		35.6		8.8	J	\ /	
S0266	0	Total Dissolved Solids	Т	MG/L	160.1	116		127		153		\ /	
S0269	0	Total Solids	Т	MG/L	SM-2540 B 17	116		102		95		\ /	
S0296	0	рН	T	Units	Field	6.69		6.31		7.22		\ /	
7440-61-1		Uranium	т	MG/L	200.8	0.00121		0.000924		0.00146		\ /	
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	5.11	*	0.595	*	-0.217	*	\/	
12587-47-2		Gross Beta (β)	т	pCi/L	9310	10.8	*	7.12	*	1.41	*	X	
												/\	
												/ \	
												/ \	
												/	\
													\bot

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant Permit Number: SW07300014, SW07300015, SW07300045

Finds/Unit:	KY8-890-008-982 /	1
LAB ID:	None	
For Official U	se Only	

SURFACE WATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
L135	L135SS2-19	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control lim
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.1. Rad error is 5.03.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.58. Rad error is 7.37.
L154	L154US2-19	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control lim
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 4.12. Rad error is 4.12.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 7.58. Rad error is 7.49.
L136	L136SS2-19	Flow Rate		Analysis of constituent not required and not performed.
		Biochemical Oxygen Demand (BOD		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand (COD)	N	Sample spike (MS/MSD) recovery not within control lim
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.19. Rad error is 5.18.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.98. Rad error is 5.98.

