FRNP-RPT-0086/V2

C-404 Hazardous Waste Landfill November 2019 Semiannual Groundwater Report (April 2019–September 2019), Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:Daniel Hayden11-13-19FRNP Classification SupportDate

FRNP-RPT-0086/V2

C-404 Hazardous Waste Landfill November 2019 Semiannual Groundwater Report (April 2019–September 2019), Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Date Issued—November 2019

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by FOUR RIVERS NUCLEAR PARTNERSHIP, LLC, managing the Deactivation and Remediation Project at the Paducah Gaseous Diffusion Plant under Contract DE-EM0004895

TA	BLES		v
FIC	GURE		v
AC	CRONYMS		vii
EX	ECUTIVE SU	UMMARY	ix
1.	1.1 BACK	TION GROUND TORING PERIOD ACTIVITIES Groundwater Monitoring Landfill Leachate	1 2 2
2.	STATISTIC	AL SYNOPSIS	5
3.	DATA VAL	IDATION AND QA/QC SUMMARY	7
4.	PROFESSIC	ONAL GEOLOGIST AUTHORIZATION	9
5.	REFERENC	ES	11
AF	PPENDIX A:	C-404 HAZARDOUS WASTE LANDFILL GROUNDWATER ANALYTICAL RESULTS	A-1
AF	PENDIX B:	C-404 HAZARDOUS WASTE LANDFILL STATISTICAL ANALYSES	B-1
AF	PPENDIX C:	C-404 HAZARDOUS WASTE LANDFILL LEACHATE ANALYTICAL RESULTS	C-1
AF	PPENDIX D:	C-404 HAZARDOUS WASTE LANDFILL ANNUAL HYDRAULIC FLOW RATE AND DIRECTION	D-1

CONTENTS

TABLES

1.	Monitoring Well Locations	2
2.	Assembled Kentucky Groundwater Numbers	4

FIGURE

1.	C-404 Landfill Monitoring Well Map	3
----	------------------------------------	---

ACRONYMS

- AKGWA Assembled Kentucky Groundwater
- CERCLA Comprehensive Environmental Response, Compensation, and Liability Act
- KDWM Kentucky Division of Waste Management
- MW monitoring well
- RCRA Resource Conservation and Recovery Act
- RGA Regional Gravel Aquifer
- UCRS Upper Continental Recharge System
- URGA Upper Regional Gravel Aquifer

EXECUTIVE SUMMARY

This report, C-404 Hazardous Waste Landfill November 2019 Semiannual Groundwater Report (April 2019–September 2019), Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0086/V2, is being submitted by the U.S. Department of Energy in accordance with requirements in Kentucky Division of Waste Management Hazardous Waste Management Facility Permit, KY8-890-008-982 (Permit). This second reporting period 2019 covers April through September 2019 and includes analytical data from the July 2019 sampling of monitoring wells (MWs) located in the vicinity of the closed C-404 Hazardous Waste Landfill (C-404 Landfill).

During this reporting period, Regional Gravel Aquifer (RGA) compliance wells MW84, MW87, and MW93 were abandoned and replaced with MW84A, MW87A, and MW93A. The integrity of MW87 had deteriorated to a point that it no longer was suitable for its intended purpose (FRNP 2019). RGA compliance wells MW84 and MW93 were abandoned and replaced because they were the same age (installed in 1988) as MW87. Compliance wells MW84A, MW87A, and MW93A were sampled during this reporting period, and analytical data for these replacement wells are included in this report.

The groundwater monitoring analytical data were subjected to statistical analyses. The analyses were conducted in accordance with the Hazardous Waste Management Facility Permit. Trichloroethene (TCE) concentrations in compliance well MW84A were statistically different from concentrations in the background wells. The 2007 *C-404 Landfill Source Demonstration, Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, PRS-ENM-0031/R2 (PRS 2007a) demonstrated that the C-404 Landfill was not the source of the historical, statistically significant background exceedance of TCE in MW84.

For the remaining parameters, concentrations in the downgradient (compliance) wells were not statistically different from the concentrations in upgradient (background) wells.

The leachate in the C-404 Landfill leachate collection system is monitored (at least monthly) and, at a minimum, is removed and sampled when the level exceeds 3 ft in depth. The volume of leachate removed from the sump during this reporting period, April through September 2019, was 1,000 gal. The leachate was sampled on June 20, 2019. Analytical results for the June 2019 leachate samples are provided in this report. Analytical results from the sample collected during the previous reporting period (March 2019) are provided in this report because the laboratory results were not available by the regulatory deadline of the previous report.

1. INTRODUCTION

This report contains the statistical evaluation of data from groundwater sampling and analysis for the closed C-404 Hazardous Waste Landfill (C-404 Landfill) at the U.S. Department of Energy Paducah Site (Paducah Site), Paducah, Kentucky. This semiannual report is required by the Kentucky Division of Waste Management Hazardous Waste Management Facility Permit, KY8-890-008-982 (Permit) (KDWM 2017), Specific Condition II.K.6.d—Recordkeeping, Reporting, and Response. The period covered by this report is April through September 2019.

Groundwater analytical results are provided in Appendix A. The statistical analyses and qualification statement are provided in Appendix B. Landfill leachate analytical results are provided in Appendix C. The annual groundwater flow rate and direction determination is provided in Appendix D.

1.1 BACKGROUND

The closed C-404 Landfill is located in the west-central portion of the Paducah Site secured area. The 1.2-acre facility operated as a surface impoundment from approximately 1952 until early 1957. During this time, influents to the impoundment originated from the C-400 Cleaning Building. In 1957, the impoundment was converted to a solid waste disposal facility for uranium-contaminated solid waste. When the impoundment was converted into a disposal facility, a sump was installed at the former weir to collect the leachate from the facility. Leachate is pumped from the sump, as needed, into a mobile tank. Then the leachate is transferred to a permitted hazardous waste storage facility on-site prior to characterization and transferred off-site for treatment.

In 1986, the disposal of waste at the C-404 Landfill was halted, and a portion of the disposed-of waste was found to be Resource Conservation and Recovery Act (RCRA)-hazardous. The landfill was covered with a RCRA multilayered cap and certified closed in 1987. It currently is regulated under RCRA as a land disposal unit and compliance is monitored under the current Hazardous Waste Management Facility Permit (KDWM 2017).

Previous groundwater monitoring documented that concentrations in compliance wells were statistically different from background wells for trichloroethene (TCE). The *C-404 Landfill Source Demonstration, Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (PRS 2007a) documented that the source of the differences from background concentrations in compliance wells is not from the C-404 Landfill, but rather, the source is located upgradient/crossgradient of the C-404 Landfill.

Regional Gravel Aquifer (RGA) compliance monitoring well (MW) 90A was abandoned and replaced in 2001. RGA compliance well MW420 was installed in 2007 to assess groundwater quality at the C-404 Landfill better (PRS 2007b). The Burial Grounds Operable Unit evaluated the MW network at the C-404 Landfill relative to the prevailing groundwater flow direction and concluded that the additional RGA well was needed to assess upgradient groundwater quality.

Upper Continental Recharge System (UCRS) well MW91 was abandoned and replaced with MW91A in 2017. Downhole camera inspections of MW91, conducted in 2017 as part of the site well maintenance program, revealed significant corrosion and some biofouling and a hole in the well riser (FRNP 2017). The integrity of the well riser had deteriorated to a point that it no longer was suitable for its intended purpose. MW91A was placed 10 ft north of MW91 and screened at the same depth interval.

Previous groundwater monitoring of RGA compliance well MW87 documented that concentrations in the compliance well were statistically different from background wells for lead and uranium (FRNP 2018). The *C-404 Hazardous Waste Landfill Alternate Source Demonstration—Source of Lead and Uranium in MW87 at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky*, (FRNP 2019) concluded that the statistical differences were a result of infiltration of UCRS groundwater into the RGA well due to compromised integrity of the well. The integrity of the well had deteriorated to a point that it no longer was suitable for its intended purpose. RGA compliance wells MW84, MW87, and MW93 were abandoned and replaced with MW84A, MW87A, and MW93A in 2019. RGA wells MW84 and MW93 were abandoned and replaced because they were the same age (installed in 1988) as MW87. MW84A and MW87A were placed 10 ft north of MW84 and MW87, respectively, and screened at the same depth intervals. MW93A was placed 6 ft west of MW91 and screened at the same depth interval.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

There are nine MWs sampled under the Permit for the C-404 Landfill: four UCRS wells and five Upper Regional Gravel Aquifer (URGA) wells. A map of the MW locations is provided in Figure 1.

Table 1 presents the well number for URGA wells located upgradient and downgradient of the C-404 Landfill. Table 1 also presents the well numbers for the UCRS wells located in proximity to the URGA wells. This table refers to the UCRS wells as being adjacent to an upgradient or downgradient URGA well location identified relative to these URGA groundwater flow direction. The conceptual model for the C-404 Landfill indicates that groundwater in the UCRS wells flows primarily vertically downward until it reaches the URGA; therefore, UCRS wells are not considered "upgradient" or "downgradient" of other wells in the area.

UCRS	
Located south of C-404 Landfill, adjacent to upgradient URGA background well MW93A	MW94
Located north of C-404 Landfill, adjacent to downgradient URGA compliance wells	MW85, MW88, MW91A*
URGA	
Upgradient background wells	MW93A*, MW420
Downgradient compliance wells	MW84A*, MW87A*, MW90A*

Table 1. Monitoring Well Locations

*MW90 was abandoned in 2001 and replaced with MW90A. MW91 was abandoned in 2017 and replaced with MW91A. MW84, MW87, and MW93 were abandoned in 2019 and replaced with MW84A, MW87A, and MW93A.

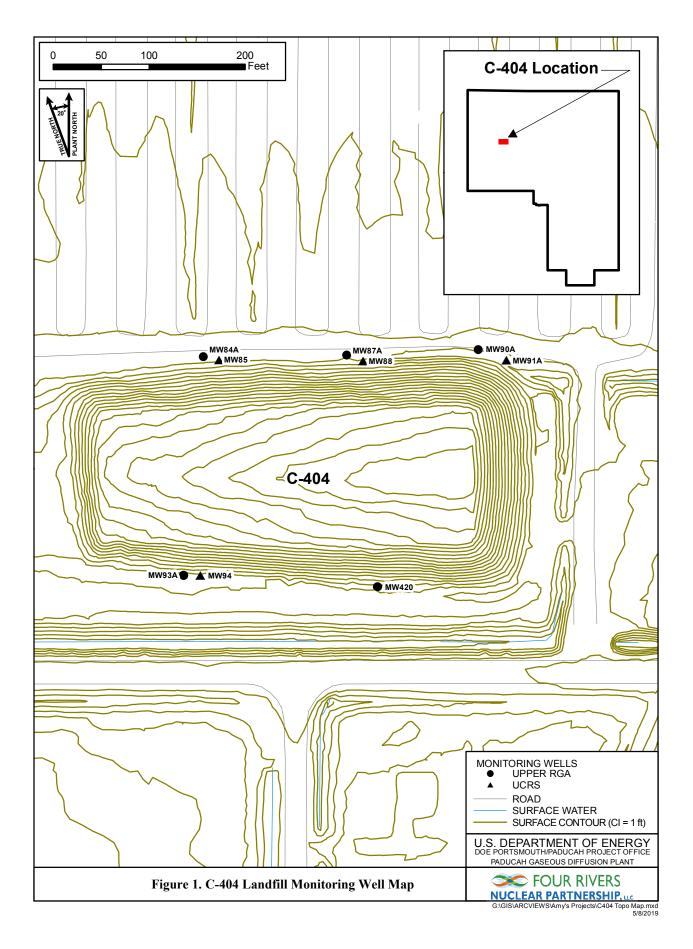


Table 2 presents the Assembled Kentucky Groundwater (AKGWA) numbers for each MW.

Paducah Site Well Number	AKGWA Number
MW84A	8007-4849
MW85	8000-5234
MW87A	8007-4850
MW88	8000-5237
MW90A	8004-0357
MW91A	8007-2917
MW93A	8007-4851
MW94	8000-5103
MW420	8005-3263

Table 2. Assembled Kentucky Groundwater Numbers

All nine MWs were sampled in July 2019 during this reporting period, and the samples were analyzed for parameters required by Part VIII.E of the Permit. Groundwater sampling was conducted using procedure CP4-ES-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were used. The laboratory that performed the analyses used U.S. Environmental Protection Agency-approved methods, as applicable. Appendix A of this report contains the analytical results. Appendix B of this report contains the statistical analyses.

1.2.2 Landfill Leachate

In accordance with Section 1.2 of the Permit, the quantity of liquid in the leachate collection system is monitored (at least monthly) and, at a minimum, will be "removed when the quantity exceeds 3 ft in depth." Once the leachate depth reaches 3 ft, the leachate is pumped into a mobile tank. The leachate then is transferred to a permitted hazardous waste storage facility on-site prior to characterization and transferred off-site for treatment. The volume of leachate removed from the sump during this reporting period, April through September 2019, was 1,000 gal. The leachate was sampled on June 20, 2019. Analytical results for the June 2019 leachate samples are included in Appendix C. Analytical data from the sample collected during the previous reporting period (March 2019) are provided in this report because the laboratory results were not available by the regulatory deadline of the previous report.

2. STATISTICAL SYNOPSIS

The statistical analyses conducted on the data collected from the C-404 Landfill were performed in accordance with procedures in the Permit, Part VIII.E, reissued in July 2015. Appendix B of this report contains the statistical analyses performed for this reporting period. Data utilized for statistical analyses included data from the URGA background wells, MW93A and MW420, and URGA compliance wells, MW84A, MW87A, and MW90A. For these statistical analyses, the reporting period data set includes data from July 2017, January 2018, August 2018, January 2019, and July 2019.

TCE concentrations in compliance well MW84A were statistically different from concentrations in the background wells. An alternate source demonstration previously was conducted for TCE in MW84. The 2007 *C-404 Landfill Source Demonstration, Paducah Gaseous Diffusion Plant, Paducah, Kentucky,* PRS-ENM-0031/R2, (PRS 2007a) demonstrated that the C-404 Landfill was not the source of the historical, statistically significant background exceedance of TCE in MW84. The 2007 demonstration found that the statistically significant increase of TCE in downgradient well MW84 appeared to be due to an upgradient source from which dissolved TCE is migrating through the C-404 Landfill area.

The statistical tests on all other parameters showed no statistical difference between concentrations in the compliance (downgradient) and background (upgradient) wells.

3. DATA VALIDATION AND QA/QC SUMMARY

The data and the data validation qualifiers for the July 2019 data set are provided in Appendix A. All data for this data set were considered useable as reported. Data validation was performed on the analytical data by an independent, third-party validator.

Field quality control samples are collected during each semiannual sampling event. Equipment rinseate blanks, field blanks, field duplicates, and trip blanks are obtained to ensure quality control and are reported in the Analytical Results in Appendix A. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory and reported in the laboratory report. Both field and laboratory quality control sample results are reviewed as part of the data validation process.

FIELD DUPLICATE SAMPLE

During a May 23, 2018, teleconference, the U.S. Department of Energy discussed with Kentucky Division of Waste Management (KDWM) the method used to collect duplicate samples from MWs at the C-404 Landfill. The collection method being used is defined in SW-846 as a collocated duplicate and differs from a definition in the Permit Part VIII.E, Appendix E3. In the teleconference, KDWM agreed that the collocated duplicate collection method was appropriate for precision monitoring at the C-404 Landfill. Additionally, there was a discussion about how this collection method is an acceptable practice under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and it is the type of duplicate sampling utilized in CERCLA sampling events at the Paducah Site.

Permit Part VIII.E, Appendix E3, Monitoring Well Requirements, Section 1.4, Field Quality Control, states that field duplicates consist of two aliquots of a sample (i.e., the primary sample and its duplicate) that are aliquoted into two containers from a single sample collection container or sample mixing container. Additionally, the Permit defines a duplicate sample as two or more separate samples taken from the same source during the same sampling event.

Procedure CP4-ES-2704, *Trip, Equipment, and Field Blank Preparation*, describes a field duplicate sample (collocated duplicate) as being collected at the same time, using the same procedures, the same type of equipment, and in the same types of containers as the original sample. The samples are placed in separate, but identical sample containers as the original sample. This is consistent with the Permit's definition of a duplicate sample (i.e., separate samples taken from the same source during the same sampling event).

The Permit's description for collection of a field duplicate sample is similar to the field replicate sample identified in CP4-ES-2704. Field replicate samples also are referred to as split samples in the procedure. The field replicate sample is described as being collected by initially collecting twice as much volume as is normally collected, homogenizing the material by mixing, and distributing into two sets of sample containers. Additionally, the procedure states that samples for volatile organic compounds are not mixed prior to subsampling. A field replicate sample is not commonly used in groundwater sampling due to volatile organic compounds being a contaminant of concern at the Paducah Site.

In order to comply with the current Permit requirement until a Permit modification can be established, two field duplicates were collected during this reporting period. Both samples were collected from the same MW. A groundwater sample was collected from a MW along with a field duplicate sample (MW85 REP) prescribed by the Permit. A separate groundwater sample was collected from the same MW along with a field duplicate sample (MW85 FR) prescribed by CP4-ES-2704. See Appendix A for data.

4. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION:

C-404 Hazardous Waste Landfill November 2019 Semiannual Groundwater Report (April 2019–September 2019), Paducah Gaseous Diffusion Plant, Paducah, Kentucky (FRNP-RPT-0086/V2)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

PG 113927 RDavis 11-7-19

Kenneth R. Davis

Kenneth R. Davis

PG113927

November 7, 2019

5. REFERENCES

- FRNP (Four Rivers Nuclear Partnership, LLC) 2017. Abandonment of MW91 and Replacement with MW91A, U.S. Department of Energy, Paducah, KY, December.
- FRNP 2018. C-404 Hazardous Waste Landfill November 2018 Semiannual Groundwater Report (April 2019-September 2018), Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0026/V2, U.S. Department of Energy, Paducah, KY, November.
- FRNP 2019. C-404 Hazardous Waste Landfill Alternate Source Demonstration—Source of Lead and Uranium in MW87 at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, FRNP-RPT-0078, Four Rivers Nuclear Partnership, LLC, Kevil, KY.
- KDWM (Kentucky Division of Waste Management) 2017. Hazardous Waste Management Facility Permit for the U.S. Department of Energy, Paducah Gaseous Diffusion Plant, KY8-890-008-982, effective October 13.
- PRS (Paducah Remediation Services, LLC) 2007a. C-404 Landfill Source Demonstration, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PRS-ENM-0031/R2, Paducah Remediation Services, LLC, Kevil, KY.
- PRS 2007b. Well Plan for Addition of Wells for C-404 Monitoring Well Network, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PRS/PROJ/0028, Paducah Remediation Services, LLC, Kevil, KY, July.

APPENDIX A

C-404 HAZARDOUS WASTE LANDFILL GROUNDWATER ANALYTICAL RESULTS

Facility: <u>C-404 Landfill</u>		County: <u>McCracke</u>)-008-982	
Sampling Point: <u>MW</u>	/84A REG	Downgradie	ent URG.	A	Period: Semiannual	Report	
AKGWA Well Tag #:8	3007-4849						
Parameter	Qualifier	Result Units	Reporting Limit	Date Collected	Counting Error (+/- TPU	Method	alidation
Arsenic		0.0168 mg/L	0.005	7/22/2019	X	SW846-6020	=
Arsenic, Dissolved	BJ	0.00207 mg/L	0.005	7/22/2019		SW846-6020	U
Barometric Pressure Reading		29.91 Inches/Hg	g	7/22/2019			Х
Cadmium	U	0.001 mg/L	0.001	7/22/2019		SW846-6020	=
Cadmium, Dissolved	U	0.001 mg/L	0.001	7/22/2019		SW846-6020	=
Chromium	U	0.01 mg/L	0.01	7/22/2019		SW846-6020	=
Chromium, Dissolved	U	0.01 mg/L	0.01	7/22/2019		SW846-6020	=
Conductivity		779 umho/cm	I	7/22/2019			Х
Depth to Water		43.22 ft		7/22/2019			Х
Dissolved Oxygen		0.56 mg/L		7/22/2019			Х
Lead	U	0.002 mg/L	0.002	7/22/2019		SW846-6020	=
Lead, Dissolved	J	0.00072 mg/L	0.002	7/22/2019		SW846-6020	U
Mercury	U	0.0002 mg/L	0.0002	7/22/2019		SW846-7470A	=
Mercury, Dissolved	U	0.0002 mg/L	0.0002	7/22/2019		SW846-7470A	=
рН		6.22 Std Unit		7/22/2019			Х
Redox		348 mV		7/22/2019			Х
Selenium	U	0.005 mg/L	0.005	7/22/2019		SW846-6020	=
Selenium, Dissolved	U	0.005 mg/L	0.005	7/22/2019		SW846-6020	=
Sulfate		155 mg/L	10	7/22/2019		SW846-9056	=
Technetium-99		126 pCi/L	22.1	7/22/2019	16.2 21.4	HASL 300, Tc-02-RC N	A =
Temperature		64.1 deg F		7/22/2019			Х
Trichloroethene	Y1	2000 ug/L	50	7/22/2019		SW846-8260B	J
Turbidity		27.6 NTU		7/22/2019			Х
Uranium		0.00089 mg/L	0.0002	7/22/2019		SW846-6020	=
Uranium-234		1.77 pCi/L	1.12	7/22/2019	1.17 1.2	HASL 300, U-02-RC M	=
Uranium-235	U	0.971 pCi/L	0.978	7/22/2019	0.988 0.997	HASL 300, U-02-RC M	=
Uranium-238		1.12 pCi/L	0.791	7/22/2019	0.921 0.933	HASL 300, U-02-RC M	=

Facility: <u>C-404 Land</u>	fill (County: <u>McCracke</u>	en		Permit #: <u>KY8</u>	8-890-008-982	
Sampling Point:	MW85 REG*	Downgradie	ent UCRS	5	Period: Semian	nual Report	
AKGWA Well Tag #:	8000-5234 Qualifier	Result Units	Reporting Limit	Date Collected	· · · · · ·		Validation
Arsenic		0.00879 mg/L	0.005	7/22/2019		SW846-6020	=
Arsenic, Dissolved	U	0.005 mg/L	0.005	7/22/2019		SW846-6020	=
Barometric Pressure Read	ding	29.91 Inches/H	g	7/22/2019			Х
Cadmium	U	0.001 mg/L	0.001	7/22/2019		SW846-6020	=
Cadmium, Dissolved	U	0.001 mg/L	0.001	7/22/2019		SW846-6020	=
Chromium	J	0.00441 mg/L	0.01	7/22/2019		SW846-6020	=
Chromium, Dissolved	J	0.0042 mg/L	0.01	7/22/2019		SW846-6020	=
Conductivity		420 umho/cn	n	7/22/2019			Х
Depth to Water		8.05 ft		7/22/2019			Х
Dissolved Oxygen		2.47 mg/L		7/22/2019			Х
Lead	U	0.002 mg/L	0.002	7/22/2019		SW846-6020	=
Lead, Dissolved	J	0.00077 mg/L	0.002	7/22/2019		SW846-6020	U
Mercury	U	0.0002 mg/L	0.0002	7/22/2019		SW846-7470A	=
Mercury, Dissolved	U	0.0002 mg/L	0.0002	7/22/2019		SW846-7470A	=
рН		6.37 Std Unit		7/22/2019			х
Redox		395 mV		7/22/2019			Х
Selenium	U	0.005 mg/L	0.005	7/22/2019		SW846-6020	=
Selenium, Dissolved	U	0.005 mg/L	0.005	7/22/2019		SW846-6020	=
Sulfate		9.29 mg/L	0.4	7/22/2019		SW846-9056	=
Technetium-99		53.6 pCi/L	20.9	7/22/2019	13.7 14	4.9 HASL 300, Tc-02-R	C M =
Temperature		66.4 deg F		7/22/2019			Х
Trichloroethene	Y1	2.21 ug/L	1	7/22/2019		SW846-8260B	=
Turbidity		31.5 NTU		7/22/2019			Х
Uranium		0.00027 mg/L	0.0002	7/22/2019		SW846-6020	=
Uranium-234	U	-0.0342 pCi/L	1.94	7/22/2019	0.854 0.8	855 HASL 300, U-02-RC	CM =
Uranium-235	U	0.152 pCi/L	1.62	7/22/2019	0.844 0.8	845 HASL 300, U-02-RC	CM =
Uranium-238	U	0.718 pCi/L	1.56	7/22/2019	1.06 1.	.07 HASL 300, U-02-RC	CM =

* The field duplicate sample associated with this sample is Sampling Point MW85 FR.

Facility: <u>C-404 Landfi</u>		County: <u>McCracke</u>	en		Permit #:]	KY8-890	0-008-982	
Sampling Point:	MW85 FR*	Downgradi	ent UCRS	5	Period: Sen	niannual	Report	
AKGWA Well Tag #:	8000-5234		Reporting	Date	Counting			
Parameter	Qualifier	Result Units	Limit	Collected	Error (+/	- TPU	Method SW846-6020	alidation
Arsenic		0.00912 mg/L	0.005	7/22/2019				=
Arsenic, Dissolved	BJ	0.00263 mg/L	0.005	7/22/2019			SW846-6020	U
Cadmium	U	0.001 mg/L	0.001	7/22/2019			SW846-6020	=
Cadmium, Dissolved	U	0.001 mg/L	0.001	7/22/2019			SW846-6020	=
Chromium	J	0.00416 mg/L	0.01	7/22/2019			SW846-6020	=
Chromium, Dissolved	J	0.00408 mg/L	0.01	7/22/2019			SW846-6020	=
Lead	U	0.002 mg/L	0.002	7/22/2019			SW846-6020	=
Lead, Dissolved	J	0.0009 mg/L	0.002	7/22/2019			SW846-6020	U
Mercury	U	0.0002 mg/L	0.0002	7/22/2019			SW846-7470A	=
Mercury, Dissolved	U	0.0002 mg/L	0.0002	7/22/2019			SW846-7470A	=
Selenium	U	0.005 mg/L	0.005	7/22/2019			SW846-6020	=
Selenium, Dissolved	U	0.005 mg/L	0.005	7/22/2019			SW846-6020	=
Sulfate		9.26 mg/L	0.4	7/22/2019			SW846-9056	=
Technetium-99		54 pCi/L	20	7/22/2019	13.1	14.4	HASL 300, Tc-02-RC N	1 =
Trichloroethene	Y1	2.55 ug/L	1	7/22/2019			SW846-8260B	=
Uranium		0.00027 mg/L	0.0002	7/22/2019			SW846-6020	=
Uranium-234		2.35 pCi/L	1.37	7/22/2019	1.52	1.56	HASL 300, U-02-RC M	=
Uranium-235	U	0.201 pCi/L	1.27	7/22/2019	0.754	0.755	HASL 300, U-02-RC M	=
Uranium-238	U	1.19 pCi/L	1.58	7/22/2019	1.22	1.23	HASL 300, U-02-RC M	=

* Field duplicate sample collected as prescribed by internal procedure.

Facility: <u>C-404 Landf</u>	ill (County: <u>McCrack</u>			Permit #: <u>K</u>	Y8-890	0-008-982	
Sampling Point:	MW85 REG*	Downgrad	ient UCRS	8	Period: Semi	annual	Report	
AKGWA Well Tag #:	8000-5234							
Parameter	Qualifier	Result Units	Reporting Limit	Date Collected	Counting Error (+/-	TPU	Method V	alidation
Arsenic		0.00954 mg/L	0.005	7/22/2019			SW846-6020	=
Arsenic, Dissolved	BJ	0.00255 mg/L	0.005	7/22/2019			SW846-6020	U
Barometric Pressure Read	ing	29.92 Inches/I	Hg	7/22/2019				Х
Cadmium	U	0.001 mg/L	0.001	7/22/2019			SW846-6020	=
Cadmium, Dissolved	U	0.001 mg/L	0.001	7/22/2019			SW846-6020	=
Chromium	J	0.00338 mg/L	0.01	7/22/2019			SW846-6020	=
Chromium, Dissolved	J	0.00318 mg/L	0.01	7/22/2019			SW846-6020	=
Conductivity		343 umho/c	m	7/22/2019				Х
Depth to Water		9.86 ft		7/22/2019				Х
Dissolved Oxygen		2.01 mg/L		7/22/2019				Х
Lead	U	0.002 mg/L	0.002	7/22/2019			SW846-6020	=
Lead, Dissolved	J	0.00084 mg/L	0.002	7/22/2019			SW846-6020	U
Mercury	U	0.0002 mg/L	0.0002	7/22/2019			SW846-7470A	=
Mercury, Dissolved	U	0.0002 mg/L	0.0002	7/22/2019			SW846-7470A	=
рН		5.98 Std Unit		7/22/2019				Х
Redox		450 mV		7/22/2019				Х
Selenium	U	0.005 mg/L	0.005	7/22/2019			SW846-6020	=
Selenium, Dissolved	U	0.005 mg/L	0.005	7/22/2019			SW846-6020	=
Sulfate		9.5 mg/L	0.4	7/22/2019			SW846-9056	=
Technetium-99		57.4 pCi/L	21.4	7/22/2019	14	15.4	HASL 300, Tc-02-RC N	1 =
Temperature		69.4 deg F		7/22/2019				Х
Trichloroethene	Y1	1.06 ug/L	1	7/22/2019			SW846-8260B	=
Turbidity		8.1 NTU		7/22/2019				Х
Uranium		0.00026 mg/L	0.0002	7/22/2019			SW846-6020	=
Uranium-234	U	0.382 pCi/L	1.4	7/22/2019	0.813	0.816	HASL 300, U-02-RC M	=
Uranium-235	U	0.339 pCi/L	1.23	7/22/2019	0.778	0.78	HASL 300, U-02-RC M	=
Uranium-238	U	0.411 pCi/L	1.1	7/22/2019	0.727	0.729	HASL 300, U-02-RC M	=

* The field duplicate sample associated with this sample is Sampling Point MW85 REP.

Facility: <u>C-404 Landf</u>	ill (County: <u>McCracke</u>	en		Permit #:	KY8-890	0-008-982	
Sampling Point:	MW85 REP*	Downgradie	ent UCRS	5	Period: Ser	niannual	Report	
AKGWA Well Tag #:	8000-5234		Reporting	Date	Counting			
Parameter	Qualifier	Result Units	Limit	Collected	Error (+/	- TPU		Validation
Arsenic		0.00929 mg/L	0.005	7/22/2019			SW846-6020	=
Arsenic, Dissolved	BJ	0.00313 mg/L	0.005	7/22/2019			SW846-6020	U
Cadmium	U	0.001 mg/L	0.001	7/22/2019			SW846-6020	=
Cadmium, Dissolved	U	0.001 mg/L	0.001	7/22/2019			SW846-6020	=
Chromium	J	0.00326 mg/L	0.01	7/22/2019			SW846-6020	=
Chromium, Dissolved	J	0.00331 mg/L	0.01	7/22/2019			SW846-6020	=
Lead	U	0.002 mg/L	0.002	7/22/2019			SW846-6020	=
Lead, Dissolved	J	0.00092 mg/L	0.002	7/22/2019			SW846-6020	U
Mercury	U	0.0002 mg/L	0.0002	7/22/2019			SW846-7470A	=
Mercury, Dissolved	U	0.0002 mg/L	0.0002	7/22/2019			SW846-7470A	=
Selenium	U	0.005 mg/L	0.005	7/22/2019			SW846-6020	=
Selenium, Dissolved	U	0.005 mg/L	0.005	7/22/2019			SW846-6020	=
Sulfate		9.53 mg/L	0.4	7/22/2019			SW846-9056	=
Technetium-99		55.1 pCi/L	20.3	7/22/2019	13.3	14.7	HASL 300, Tc-02-RC N	A =
Trichloroethene	JY1	0.85 ug/L	1	7/22/2019			SW846-8260B	=
Uranium		0.00025 mg/L	0.0002	7/22/2019			SW846-6020	=
Uranium-234		2.12 pCi/L	1.96	7/22/2019	1.65	1.69	HASL 300, U-02-RC N	=
Uranium-235	U	1.26 pCi/L	1.8	7/22/2019	1.45	1.46	HASL 300, U-02-RC N	=
Uranium-238	U	0.363 pCi/L	1.32	7/22/2019	0.834	0.836	HASL 300, U-02-RC N	=

* Field duplicate sample collected as prescribed in the Permit.

Facility: <u>C-404 Landfill</u>		County: <u>M</u>					<u>KY8-890</u>	-008-982	
Sampling Point: <u>MV</u>	V87A REG	Dov	wngradien	t URG.	4	Period: <u>Se</u>	miannual	Report	
AKGWA Well Tag #:	8007-4850								
Parameter	Qualifier	Result	Units	Reporting Limit	Date Collected	Counting Error (+		Method V	alidation
Arsenic		0.00723	mg/L	0.005	7/22/2019			SW846-6020	=
Arsenic, Dissolved	BJ	0.00237	mg/L	0.005	7/22/2019			SW846-6020	U
Barometric Pressure Reading		29.92	Inches/Hg		7/22/2019				Х
Cadmium	J	0.0006	mg/L	0.001	7/22/2019			SW846-6020	U
Cadmium, Dissolved	J	0.00065	mg/L	0.001	7/22/2019			SW846-6020	U
Chromium	U	0.01	mg/L	0.01	7/22/2019			SW846-6020	=
Chromium, Dissolved	U	0.01	mg/L	0.01	7/22/2019			SW846-6020	=
Conductivity		323	umho/cm		7/22/2019				Х
Depth to Water		43.17	ft		7/22/2019				Х
Dissolved Oxygen		2.29	mg/L		7/22/2019				Х
Lead	U	0.002	mg/L	0.002	7/22/2019			SW846-6020	=
Lead, Dissolved	J	0.00083	mg/L	0.002	7/22/2019			SW846-6020	U
Mercury	U	0.0002	mg/L	0.0002	7/22/2019			SW846-7470A	=
Mercury, Dissolved	U	0.0002	mg/L	0.0002	7/22/2019			SW846-7470A	=
рН		5.93	Std Unit		7/22/2019				х
Redox		429	mV		7/22/2019				Х
Selenium	U	0.005	mg/L	0.005	7/22/2019			SW846-6020	=
Selenium, Dissolved	U	0.005	mg/L	0.005	7/22/2019			SW846-6020	=
Sulfate		7.44	mg/L	0.4	7/22/2019			SW846-9056	=
Technetium-99	U	1.22	pCi/L	19.9	7/22/2019	11.6	11.6	HASL 300, Tc-02-RC N	1 =
Temperature		64.9	deg F		7/22/2019				Х
Trichloroethene	Y1	1850	ug/L	50	7/22/2019			SW846-8260B	=
Turbidity		9.2	NTU		7/22/2019				Х
Uranium	U	0.0002	mg/L	0.0002	7/22/2019			SW846-6020	=
Uranium-234	U	0.463	pCi/L	2.02	7/22/2019	1.11	1.12	HASL 300, U-02-RC M	=
Uranium-235	U	0.69	pCi/L	1.52	7/22/2019	1.1	1.1	HASL 300, U-02-RC M	=
Uranium-238	U	0.346	pCi/L	1.64	7/22/2019	0.912	0.913	HASL 300, U-02-RC M	=

Facility: <u>C-404 Landfill</u> County: McCracken **Permit #:** KY8-890-008-982 **Sampling Point:** MW88 REG Downgradient UCRS Period: Semiannual Report **AKGWA Well Tag #:** 8000-5237 Reporting Counting Date Parameter **Oualifier Result Units** Limit Collected Error (+/- TPU Method Validation SW846-6020 Arsenic 0.0077 mg/L 0.005 7/22/2019 = SW846-6020 Arsenic, Dissolved BJ 0.00263 mg/L 0.005 7/22/2019 U 29.93 Inches/Hg **Barometric Pressure Reading** 7/22/2019 Х SW846-6020 Cadmium U 0.001 mg/L 0.001 7/22/2019 = SW846-6020 Cadmium, Dissolved U 0.001 mg/L 0.001 7/22/2019 = SW846-6020 Chromium U 0.01 mg/L 0.01 7/22/2019 = Chromium, Dissolved U 0.01 mg/L 0.01 7/22/2019 SW846-6020 = Conductivity 621 umho/cm 7/22/2019 Х Х Depth to Water 7.81 ft 7/22/2019 **Dissolved Oxygen** 3.74 mg/L 7/22/2019 Х 0.002 mg/L 0.002 SW846-6020 Lead U 7/22/2019 = 0.00082 mg/L Lead, Dissolved J 0.002 7/22/2019 SW846-6020 U U 0.0002 mg/L 0.0002 7/22/2019 SW846-7470A Mercury = Mercury, Dissolved U 0.0002 mg/L 0.0002 7/22/2019 SW846-7470A = рΗ 5.79 Std Unit 7/22/2019 Х Redox 450 mV 7/22/2019 Х U 0.005 mg/L 0.005 7/22/2019 SW846-6020 Selenium = SW846-6020 Selenium, Dissolved U 0.005 mg/L 0.005 7/22/2019 = SW846-9056 Sulfate 124 mg/L 4 7/22/2019 = Technetium-99 U 19.2 pCi/L HASL 300, Tc-02-RC M 19.5 7/22/2019 11.9 12 = 66.5 deg F 7/22/2019 Temperature Х Trichloroethene Y1 4.7 ug/L 1 7/22/2019 SW846-8260B = Turbidity 19.2 NTU 7/22/2019 Х Uranium J 0.000083 mg/L 0.0002 7/22/2019 SW846-6020 = Uranium-234 U 0.218 pCi/L 2.09 7/22/2019 1.06 1.06 HASL 300, U-02-RC M = 1.78 Uranium-235 U 1.02 pCi/L 7/22/2019 1.48 1.49 HASL 300, U-02-RC M = HASL 300, U-02-RC M = Uranium-238 U 0.24 pCi/L 2.11 7/22/2019 1.08 1.08

Facility: <u>C-404 Landfill</u> County: McCracken **Permit #:** KY8-890-008-982 **Sampling Point:** MW90A REG Downgradient URGA Period: Semiannual Report **AKGWA Well Tag #:** 8004-0357 Reporting Counting Date Qualifier **Result Units** Limit Collected Error (+/- TPU Method Validation Parameter SW846-6020 Arsenic U 0.005 mg/L 0.005 7/22/2019 = SW846-6020 Arsenic, Dissolved 0.00289 mg/L 0.005 7/22/2019 U BJ 29.93 Inches/Hg **Barometric Pressure Reading** 7/22/2019 Х SW846-6020 Cadmium U 0.001 mg/L 0.001 7/22/2019 = SW846-6020 Cadmium, Dissolved U 0.001 mg/L 0.001 7/22/2019 = SW846-6020 U 0.01 mg/L 0.01 Chromium 7/22/2019 = U 0.01 mg/L 0.01 7/22/2019 SW846-6020 Chromium, Dissolved = 203 umho/cm 7/22/2019 Conductivity Х Х Depth to Water 42.39 ft 7/22/2019 **Dissolved Oxygen** 4.31 mg/L 7/22/2019 Х 0.002 mg/L 0.002 SW846-6020 Lead U 7/22/2019 = Lead, Dissolved J 0.00078 mg/L 0.002 7/22/2019 SW846-6020 U U 0.0002 mg/L 0.0002 7/22/2019 SW846-7470A Mercury = Mercury, Dissolved U 0.0002 mg/L 0.0002 7/22/2019 SW846-7470A = рΗ 5.94 Std Unit 7/22/2019 Х Redox 469 mV 7/22/2019 Х U 0.005 mg/L 0.005 SW846-6020 Selenium 7/22/2019 = SW846-6020 Selenium, Dissolved U 0.005 mg/L 0.005 7/22/2019 = SW846-9056 Sulfate 4.36 mg/L 0.4 7/22/2019 = Technetium-99 U 11.4 pCi/L HASL 300, Tc-02-RC M 19.4 7/22/2019 11.6 11.7 = 66.3 deg F 7/22/2019 Temperature Х Trichloroethene Y1 55.7 ug/L 1 7/22/2019 SW846-8260B = Turbidity 4 NTU 7/22/2019 Х Uranium U 0.0002 mg/L 0.0002 SW846-6020 7/22/2019 = Uranium-234 1.67 pCi/L 1.34 7/22/2019 1.26 1.29 HASL 300, U-02-RC M = Uranium-235 U 1.26 pCi/L 1.45 7/22/2019 1.25 1.27 HASL 300, U-02-RC M = HASL 300, U-02-RC M = Uranium-238 2.31 pCi/L 0.578 7/22/2019 1.36 1.4

Facility: <u>C-404 Landfill</u> County: McCracken **Permit #:** KY8-890-008-982 **Sampling Point:** MW91A REG Downgradient UCRS Period: Semiannual Report **AKGWA Well Tag #:** 8007-2917 Reporting Counting Date **Oualifier Result Units** Limit Collected Error (+/- TPU Method Validation Parameter SW846-6020 Arsenic 0.0233 mg/L 0.005 7/22/2019 = SW846-6020 Arsenic, Dissolved 0.0151 mg/L 0.005 7/22/2019 J В 29.92 Inches/Hg **Barometric Pressure Reading** 7/22/2019 Х SW846-6020 Cadmium U 0.001 mg/L 0.001 7/22/2019 = SW846-6020 Cadmium, Dissolved U 0.001 mg/L 0.001 7/22/2019 = SW846-6020 J 0.00348 mg/L 0.01 7/22/2019 Chromium = U 0.01 mg/L 0.01 7/22/2019 SW846-6020 Chromium, Dissolved = 1092 umho/cm 7/22/2019 Conductivity Х Х Depth to Water 12.14 ft 7/22/2019 **Dissolved Oxygen** 2.77 mg/L 7/22/2019 Х 0.002 mg/L 0.002 SW846-6020 Lead U 7/22/2019 = Lead, Dissolved J 0.00075 mg/L 0.002 7/22/2019 SW846-6020 U U 0.0002 mg/L 0.0002 7/22/2019 SW846-7470A Mercury = Mercury, Dissolved U 0.0002 mg/L 0.0002 7/22/2019 SW846-7470A = рΗ 6.27 Std Unit 7/22/2019 Х Redox 96 mV 7/22/2019 Х U 0.005 mg/L 0.005 SW846-6020 Selenium 7/22/2019 = SW846-6020 Selenium, Dissolved U 0.005 mg/L 0.005 7/22/2019 = SW846-9056 Sulfate 163 mg/L 10 7/22/2019 = Technetium-99 U 13.4 pCi/L HASL 300, Tc-02-RC M 19.9 7/22/2019 11.9 12 = 66.3 deg F 7/22/2019 Temperature Х Trichloroethene Y1 25.7 ug/L 1 7/22/2019 SW846-8260B = Turbidity 17.1 NTU 7/22/2019 Х Uranium J 0.000086 mg/L 0.0002 7/22/2019 SW846-6020 = Uranium-234 2.13 pCi/L 1.12 7/22/2019 1.27 1.31 HASL 300, U-02-RC M = Uranium-235 U 0.569 pCi/L 0.988 7/22/2019 0.819 0.823 HASL 300, U-02-RC M = HASL 300, U-02-RC M = Uranium-238 U 0.927 pCi/L 7/22/2019 0.947 0.955 1.23

Facility: <u>C-404 Landfill</u>	(County: <u>McCracken</u>	1		Permit #: <u>KY8-890</u>	-008-982	
Sampling Point: <u>MV</u>	V93A REG	Upgradient	URG	A	Period: Semiannual	Report	
AKGWA Well Tag #:	8007-4851						
Damanatan	Qualifier	Result Units	Reporting Limit	Date Collected	Counting Error (+/- TPU	Method V	alidation
Parameter Arsenic	Quaimer	0.00602 mg/L	0.005	7/22/2019		SW846-6020	=
Arsenic, Dissolved	BJ	0.00209 mg/L	0.005	7/22/2019		SW846-6020	U
Barometric Pressure Reading		29.92 Inches/Hg		7/22/2019			X
Cadmium	U	0.001 mg/L	0.001	7/22/2019		SW846-6020	=
Cadmium, Dissolved	U	0.001 mg/L	0.001	7/22/2019		SW846-6020	=
Chromium	U	0.01 mg/L	0.01	7/22/2019		SW846-6020	=
Chromium, Dissolved	U	0.01 mg/L	0.01	7/22/2019		SW846-6020	=
Conductivity		434 umho/cm		7/22/2019			Х
Depth to Water		46.28 ft		7/22/2019			Х
Dissolved Oxygen		1.91 mg/L		7/22/2019			Х
Lead	J	0.00051 mg/L	0.002	7/22/2019		SW846-6020	=
Lead, Dissolved	J	0.00074 mg/L	0.002	7/22/2019		SW846-6020	U
Mercury	U	0.0002 mg/L	0.0002	7/22/2019		SW846-7470A	=
Mercury, Dissolved	U	0.0002 mg/L	0.0002	7/22/2019		SW846-7470A	=
рН		6.2 Std Unit		7/22/2019			Х
Redox		159 mV		7/22/2019			Х
Selenium	U	0.005 mg/L	0.005	7/22/2019		SW846-6020	=
Selenium, Dissolved	U	0.005 mg/L	0.005	7/22/2019		SW846-6020	=
Sulfate		26 mg/L	0.8	7/22/2019		SW846-9056	=
Technetium-99	U	8.82 pCi/L	20.2	7/22/2019	12 12	HASL 300, Tc-02-RC M	=
Temperature		66.2 deg F		7/22/2019			Х
Trichloroethene	Y1	789 ug/L	20	7/22/2019		SW846-8260B	=
Turbidity		61.2 NTU		7/22/2019			Х
Uranium		0.00056 mg/L	0.0002	7/22/2019		SW846-6020	=
Uranium-234		2.38 pCi/L	1.58	7/22/2019	1.49 1.54	HASL 300, U-02-RC M	=
Uranium-235	U	0.0651 pCi/L	1.42	7/22/2019	0.681 0.681	HASL 300, U-02-RC M	=
Uranium-238	U	0.662 pCi/L	1.04	7/22/2019	0.839 0.844	HASL 300, U-02-RC M	=

Facility: <u>C-404 Landfill</u> County: McCracken **Permit #:** KY8-890-008-982 **Sampling Point:** MW94 REG Upgradient UCRS Period: Semiannual Report **AKGWA Well Tag #:** 8000-5103 Reporting Counting Date Qualifier **Result Units** Limit Collected Error (+/- TPU Method Validation Parameter SW846-6020 Arsenic 0.005 mg/L 0.005 7/22/2019 U = SW846-6020 Arsenic, Dissolved 0.00264 mg/L 0.005 7/22/2019 U BJ 29.92 Inches/Hg **Barometric Pressure Reading** 7/22/2019 Х SW846-6020 Cadmium U 0.001 mg/L 0.001 7/22/2019 = SW846-6020 Cadmium, Dissolved U 0.001 mg/L 0.001 7/22/2019 = SW846-6020 U 0.01 mg/L 0.01 7/22/2019 Chromium = U 0.01 mg/L 0.01 7/22/2019 SW846-6020 Chromium, Dissolved = 805 umho/cm 7/22/2019 Conductivity Х Х Depth to Water 12.35 ft 7/22/2019 **Dissolved Oxygen** 0.58 mg/L 7/22/2019 Х 0.00054 mg/L 0.002 SW846-6020 Lead J 7/22/2019 = Lead, Dissolved U 0.002 mg/L 0.002 7/22/2019 SW846-6020 = U 0.0002 mg/L 0.0002 7/22/2019 SW846-7470A Mercury = Mercury, Dissolved U 0.0002 mg/L 0.0002 7/22/2019 SW846-7470A = рΗ 6.39 Std Unit 7/22/2019 Х Redox 283 mV 7/22/2019 Х U 0.005 mg/L 0.005 SW846-6020 Selenium 7/22/2019 = SW846-6020 Selenium, Dissolved U 0.005 mg/L 0.005 7/22/2019 = SW846-9056 Sulfate 74.7 mg/L 4 7/22/2019 = Technetium-99 1210 pCi/L HASL 300, Tc-02-RC M 20.6 7/22/2019 31.9 138 = 64.8 deg F 7/22/2019 Temperature Х Trichloroethene Y1 1.54 ug/L 1 7/22/2019 SW846-8260B = Turbidity 24.3 NTU 7/22/2019 Х Uranium 0.00183 mg/L 0.0002 7/22/2019 SW846-6020 = Uranium-234 3.89 pCi/L 1.79 7/22/2019 1.89 1.98 HASL 300, U-02-RC M = Uranium-235 U 0.847 pCi/L 7/22/2019 1.07 1.08 HASL 300, U-02-RC M 1.33 = HASL 300, U-02-RC M = Uranium-238 1.67 pCi/L 1.44 7/22/2019 1.29 1.31

Facility: <u>C-404 Landfill</u> County: McCracken **Permit #:** KY8-890-008-982 **Sampling Point:** MW420 REG Upgradient URGA Period: Semiannual Report **AKGWA Well Tag #:** 8005-3263 Reporting Counting Date Parameter **Oualifier Result Units** Limit Collected Error (+/- TPU Method Validation SW846-6020 Arsenic 0.00359 mg/L 0.005 7/22/2019 J = SW846-6020 Arsenic, Dissolved U 0.005 mg/L 0.005 7/22/2019 = 29.91 Inches/Hg **Barometric Pressure Reading** 7/22/2019 Х SW846-6020 Cadmium U 0.001 mg/L 0.001 7/22/2019 = SW846-6020 Cadmium, Dissolved U 0.001 mg/L 0.001 7/22/2019 = SW846-6020 Chromium U 0.01 mg/L 0.01 7/22/2019 = U 0.01 mg/L 0.01 7/22/2019 SW846-6020 Chromium, Dissolved = 328 umho/cm 7/22/2019 Conductivity Х 45.91 ft Х Depth to Water 7/22/2019 **Dissolved Oxygen** 1.71 mg/L 7/22/2019 Х 0.002 mg/L 0.002 SW846-6020 Lead U 7/22/2019 = Lead, Dissolved J 0.00084 mg/L 0.002 7/22/2019 SW846-6020 U U 0.0002 mg/L 0.0002 7/22/2019 SW846-7470A Mercury = Mercury, Dissolved U 0.0002 mg/L 0.0002 7/22/2019 SW846-7470A = рΗ 5.92 Std Unit 7/22/2019 Х Redox 190 mV 7/22/2019 Х U 0.005 mg/L 0.005 SW846-6020 Selenium 7/22/2019 = SW846-6020 Selenium, Dissolved U 0.005 mg/L 0.005 7/22/2019 = SW846-9056 Sulfate 5.99 mg/L 0.4 7/22/2019 = Technetium-99 U 4.16 pCi/L HASL 300, Tc-02-RC M 20.5 7/22/2019 12 12 = 65.6 deg F 7/22/2019 Temperature Х Trichloroethene Y1 600 ug/L 10 7/22/2019 SW846-8260B = Turbidity 6 NTU 7/22/2019 Х Uranium U 0.0002 mg/L 0.0002 7/22/2019 SW846-6020 = Uranium-234 U 1.04 pCi/L 1.42 7/22/2019 1.08 1.09 HASL 300, U-02-RC M = Uranium-235 U 0.181 pCi/L 1.14 7/22/2019 0.677 0.678 HASL 300, U-02-RC M = HASL 300, U-02-RC M = Uranium-238 U -0.0384 pCi/L 7/22/2019 0.577 0.577 1.35

Facility: <u>C-404 Landfill</u>		County: McCracken			Permit #: KY8-890-008-982				
Type of Sample:	FB				1	Period: Semi	annual Re	port QC Sampl	es
AKGWA Well Tag #:	0000-0000			Descrite	Dete				
Parameter	Qualifier	Result	Units	Reporting Limit	Date Collected	Counting Error (+/-)	TPU	Method	Validation
Arsenic	U	0.005	mg/L	0.005	7/22/2019			SW846-6020	=
Cadmium	U	0.001	mg/L	0.001	7/22/2019			SW846-6020	=
Chromium	U	0.01	mg/L	0.01	7/22/2019			SW846-6020	=
Lead	U	0.002	mg/L	0.002	7/22/2019			SW846-6020	=
Mercury	U	0.0002	mg/L	0.0002	7/22/2019			SW846-7470/	4 =
Selenium	U	0.005	mg/L	0.005	7/22/2019			SW846-6020	=
Technetium-99	U	-3.47	pCi/L	19.9	7/22/2019	11.4	11.4	HASL 300, To 02-RC M	>- =
Trichloroethene	UY1	1	ug/L	1	7/22/2019			SW846-82601	3 =
Uranium	U	0.0002	mg/L	0.0002	7/22/2019			SW846-6020	=
Uranium-234	U	0.795	pCi/L	1.75	7/22/2019	1.12	1.13	HASL 300, U- 02-RC M	- =
Uranium-235	U	1.44	pCi/L	1.44	7/22/2019	1.37	1.39	HASL 300, U- 02-RC M	- =
Uranium-238	U	1.23	pCi/L	1.77	7/22/2019	1.28	1.29	HASL 300, U- 02-RC M	- =

Facility: C-404 Landfill		County: McCracken			_ 1	Permit #: <u>K</u>	Y8-890-0	008-982	
Type of Sample:	RI				I	Period: Semi	annual Re	port QC Sampl	es
AKGWA Well Tag #:	0000-0000			Doutouting	Data	Counting			
Parameter	Qualifier	Result	Units	Reporting Limit	Date Collected	Counting Error (+/-)	TPU	Method	Validation
Arsenic	U	0.005	mg/L	0.005	7/22/2019			SW846-6020	=
Cadmium	U	0.001	mg/L	0.001	7/22/2019			SW846-6020	=
Chromium	U	0.01	mg/L	0.01	7/22/2019			SW846-6020	=
Lead	U	0.002	mg/L	0.002	7/22/2019			SW846-6020	=
Mercury	U	0.0002	mg/L	0.0002	7/22/2019			SW846-7470/	4 =
Selenium	U	0.005	mg/L	0.005	7/22/2019			SW846-6020	=
Technetium-99	U	-7.29	pCi/L	19	7/22/2019	10.8	10.8	HASL 300, To 02-RC M	;- =
Trichloroethene	UY1	1	ug/L	1	7/22/2019			SW846-82601	3 =
Uranium	U	0.0002	mg/L	0.0002	7/22/2019			SW846-6020	=
Uranium-234	U	1.05	pCi/L	2.45	7/22/2019	1.58	1.6	HASL 300, U- 02-RC M	- =
Uranium-235	U	0.697	pCi/L	1.9	7/22/2019	1.37	1.37	HASL 300, U- 02-RC M	- =
Uranium-238	U	0.884	pCi/L	1.54	7/22/2019	1.27	1.28	HASL 300, U- 02-RC M	- =

		GROUNDWATER MONITORING REPORT							
Facility: <u>C-404 Landfill</u>		County	: McC	racken		Permit #: KY	78-890-0	08-982	
Type of Sample:	ТВ					Period: Semia	Semiannual Report QC San		nples
AKGWA Well Tag #: 0000-000				Descrite	 D_+4				
Parameter	Qualifier	Result	Units	Reporting Limit	Date Collected	Counting Error (+/-)	TPU	Method	Validation
Trichloroethene	UY1	1	ug/L	1	7/22/2019			SW846-8260)B =

Paducah OREIS

MEDIA Codes

WG Groundwater

QUALIFIER Codes

- U Analyte analyzed for, but not detected at or below the lowest concentration reported.
- J Estimated quantitation.
- B Analyte found in the associated blank
- Y1 MS/MSD recovery outside acceptance criteria

SAMPLE METHOD Codes

GR Grab

SAMPLING POINT Codes

- UCRS Upper Continental Recharge System
- URGA Upper Regional Gravel Aquifer

SAMPLE TYPE Codes

- FB Field Blank
- FR Field Duplicate as defined in sampling procedure.
- REP Field Duplicate as defined in permit.
- REG Regular
- RI QC Equipment Rinseate/Decon
- TB Trip Blank

VALIDATION Codes

- = Validated result, no qualifier is necessary.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- X Not validated.

APPENDIX B

C-404 HAZARDOUS WASTE LANDFILL STATISTICAL ANALYSES

THIS PAGE INTENTIONALLY LEFT BLANK

C-404 HAZARDOUS WASTE LANDFILL NOVEMBER 2019 SEMIANNUAL Facility: US DOE—Paducah Gaseous Diffusion Plant

Finds/Unit: <u>KY8-980-008-982/1</u> LAB ID:

For Official Use Only

GROUNDWATER STATISTICAL SUMMARY

Introduction

The statistical analyses conducted on the data collected from the C-404 Hazardous Waste Landfill (C-404 Landfill) were performed in accordance with procedures provided in Appendix E of the Hazardous Waste Management Facility Permit, reissued by the Kentucky Division of Waste Management (KDWM) in July 2015. The percent of censored (nondetected) data points for individual parameters was calculated for the combined analytical data from the most recent five sampling events. The percent of censored data was used to select the types of statistical analyses to determine whether compliance well concentrations differed from background well concentrations. Data points were used in the statistical analysis for analyte results close to the sample quantitation limit that were judged to be below that limit by the data validator. For the second reporting period 2019 semiannual report, the reporting period data set includes data from July 2017, January 2018, August 2018, January 2019, and July 2019.

Statistical Analysis Process

Utilizing the current data set and four previous data sets, the type of statistical test conducted for each chemical data set is a function of the number of samples and proportion of censored data (nondetects) to uncensored data (detects) in each group. The percent of censored (nondetected) data points for individual parameters was calculated for the combined analytical data. The statistical procedures applied to the data are summarized below.

- Determine the percentage of the censored data using the reporting period data set.
- Group by percentage of censored data where the following apply:
 - If censored data are greater than or equal to 90%, determine the limit of detection (LOD) and half of the LOD (1/2 LOD). This is Statistical Test 1.
 - If censored data are between 50% and 90%, perform a Test of Proportions. If the analysis indicates a significant proportional difference in compliance wells, further analyze through nonparametric Analysis of Variance (ANOVA) Test. This is Statistical Test 2.
 - If censored data are between 15% and 50%, perform nonparametric ANOVA Test. If results exceed the critical value, compute the critical difference used to identify individual well concentrations, which are significantly elevated compared with background. This is Statistical Test 3.
 - If censored data are less than 15%, actual data values are analyzed using parametric ANOVA procedures. If the wells exhibit equal variances, then the data are used as presented. If the wells do not exhibit equal variances, then the log of the data is taken and then used in the calculations. Where statistical testing indicates elevated compliance well concentrations, Bonferroni's Test of

Contrasts is performed. This is Statistical Test 4. If variances are found to be unequal even for log-transformed concentrations, Statistical Test 4 is abandoned and Statistical Test 3 is used to compare compliance wells with background wells. Statistical Test 4 is found in Section 5.2.1 of EPA guidance document, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (April 1989).

If the statistical method above indicates no statistical difference between concentrations in downgradient wells and concentrations in background wells, then there are no indications of statistically significant impacts on the groundwater from the C-404 Landfill. If the tiered statistical method above identifies a statistically significant difference between concentrations in downgradient wells and concentrations in background wells, then the data will be evaluated further to determine if the concentrations in downgradient wells are within statistically developed upper tolerance limit (UTL) for background concentrations or are consistent with the findings of the 2007 Alternate Source Demonstration (ASD), as follows:

- (1) Compare the most recent downgradient sample results to a 95% UTL using the five most recent sets of data for each upgradient well as described below. If downgradient concentrations are lower than the UTL for the paired upgradient concentrations, then there is no confirmed exceedance.
- (2) Evaluate results using paired ANOVA of wells in the same direction relative to the landfill (e.g., compare upgradient westernmost well results to downgradient westernmost well results). If ANOVA does not identify a statistically significant difference between upgradient and downgradient wells, then the results are consistent with the historical ASD.
- (3) If results show downgradient wells have statistically significant higher concentrations than upgradient wells, even when evaluated with respect to the ASD, additional intra-well evaluation of trend will be performed using the Mann-Kendall test for trend. If concentrations do not show an increasing trend, then there is no confirmed exceedance attributable to C-404.
- (4) Review other Regional Gravel Aquifer (RGA) well results in vicinity to determine if they are consistent with ASD.

If the statistical analysis identifies downgradient well concentrations that are increasing, are higher than UTL, are higher than the upgradient well concentrations even when the ASD results are taken into account, this evaluation will identify a confirmed, statistically significant exceedance (in a compliance well) over background.

Data Analysis

Data from the upgradient background wells in the Upper Regional Gravel Aquifer (URGA) are included for comparison with three downgradient URGA wells. Figure 1 of this C-404 Landfill Groundwater Report provides a map of the well locations associated with the C-404 Landfill. Upper Continental Recharge System (UCRS) wells in Figure 1 are provided for reference only. Data from wells that are in the UCRS are not included in the statistical analyses.

Table B.1 presents the C-404 Landfill upgradient or background wells and downgradient or compliance wells from the URGA. Data from the URGA compliance wells were compared with data from the URGA background wells.

Table B.1. Monitoring Well Locations

URGA	
Upgradient background wells	MW93A*, MW420
Downgradient compliance wells	MW84A*, MW87A*, MW90A*
*MW90 was abandoned in 2001 and replaced with M	AW90A. MW84, MW87, and MW93

*MW90 was abandoned in 2001 and replaced with MW90A. MW84, MW87, and MW93 were abandoned in 2019 and replaced with MW84A, MW87A, and MW93A, respectively.

For the second reporting period 2019 semiannual report, the reporting period data set from July 2017 through July 2019 consists of five sets of data.

Table B.2 lists the number of analyses (observations), nondetects (censored observations), detects (uncensored observations), and missing observations by parameter. When field duplicate data are available from a well, the higher of the two readings was retained for further evaluation.

Censoring Percentage and Statistical Analysis

The type of statistical test set applied to the data is a function of the number of nondetects (censored) versus detects (uncensored) in each of the parameter groups and among the wells. Table B.3 presents the percentage of censored data and type of statistical test chosen for each of the parameters required by Part VIII.E of the Permit.

Parameters	Observations	Missing Observations*	Censored Observations (Nondetects)	Uncensored Observations (Detects)
URGA				
Arsenic	25	0	6	19
Cadmium	25	0	18	7
Chromium	25	0	12	13
Lead	25	0	12	13
Mercury	25	0	25	0
Selenium	25	0	24	1
Technetium-99	25	0	21	4
Trichloroethene	25	0	0	25
Uranium (Metals)	25	0	13	12
Uranium-234	25	0	21	4
Uranium-235	25	0	25	0
Uranium-238	25	0	23	2

Table B.2. Summary of Missing, Censored, and Uncensored Data Collected

Parameter	Total Samples (Nonmissing)	Uncensored (Detects)	Censored (Nondetects)	Percent Censored	Statistical Test Set*
URGA					
Arsenic	25	19	6	24.00	3
Cadmium	25	7	18	72.00	2
Chromium	25	13	12	48.00	3
Lead	25	13	12	48.00	3
Mercury	25	0	25	100.00	1
Selenium	25	1	24	96.00	1
Technetium-99	25	4	21	84.00	2
Trichloroethene	25	25	0	0.00	4/3**
Uranium (Metals)	25	12	13	52.00	2
Uranium-234	25	4	21	84.00	2
Uranium-235	25	0	25	100.00	1
Uranium-238	25	2	23	92.00	1

Table B.3. Percent Censored Report and Statistical Test Set Selected

*A list of the constituents with greater than or equal to 90% censored data is included in Table B.4, which summarizes the results of Statistical Test 1.

**Because equality of variance could not be confirmed, Statistical Test 4, Parametric ANOVA, was abandoned, and Statistical Test 3, Nonparametric ANOVA, was performed.

SUMMARY OF CONCLUSIONS

The results for Statistical Test 1, LOD, are summarized in Table B.4. Table B.5 provides the summary of conclusions for the C-404 Landfill statistical analyses for the second reporting period 2019, including the statistical tests performed, the attachment number, well type, parameter, and results of each statistical test. Results of Statistical Test 2, Statistical Test 3, and Statistical Test 4 are presented in Attachments B1 through B8. The statistician qualification statement is presented in Attachment B9.

Table B.4. Statistical Test 1: Limit of Detection

Parameter	LOD Values	¹ ⁄ ₂ LOD Values
URGA		
Mercury (mg/L)	0.0002	0.0001
Selenium (mg/L)	0.005	0.0025
Uranium-235 (pCi/L)	1.52	0.76
Uranium-238 (pCi/L)	1.64	0.82

In summary, Statistical Test 2, Test of Proportions, for technetium-99, uranium, and uranium-234 in the URGA indicated no statistically significant difference between concentrations in downgradient wells and concentrations in background wells.

Statistical Test 2, Test of Proportions, for cadmium in the URGA indicated a statistically significant evidence that the proportion of detects in one group of data exceeds the proportion of detects in the other group. For cadmium, downgradient wells had a higher proportion of detects; therefore, the data were

evaluated further using Nonparametric ANOVA. Nonparametric ANOVA identified a statistically significant difference between concentrations in downgradient well MW87A and concentrations in background wells; therefore, the data were compared to the UTL. The 95% UTL did not indicate a statistically significant difference between concentrations in downgradient well MW87A and concentrations in background wells.

Statistical Test 3, Nonparametric ANOVA, for arsenic in the URGA identified a statistically significant difference between concentrations in downgradient well MW84A and concentrations in background wells; therefore, the data were evaluated further by comparing results to the UTL. The 95% UTL indicated a statistically significant difference between concentrations in downgradient well MW84A and concentrations in background wells. Based on these results, the data were evaluated using paired (parametric) ANOVA of wells in the same direction relative to the landfill [e.g., performed a comparison of downgradient well (MW84A) results to upgradient westernmost well (MW93A) results]. Results of the paired (parametric) ANOVA identified there to be a significant difference between upgradient and downgradient wells. A Mann-Kendall test was performed to further evaluate the data, and no trend was identified for arsenic in MW84A.

Statistical Test 3, Nonparametric ANOVA, for chromium in the URGA indicated no statistically significant difference between concentrations in downgradient wells and concentrations in background wells.

Statistical Test 3, Nonparametric ANOVA, for lead in the URGA identified a statistically significant difference between concentrations in downgradient well MW87A and concentrations in background wells; therefore, the data were evaluated further by comparing results to the UTL. The 95% UTL did not indicate a statistically significant difference between concentrations in downgradient well MW87A and concentrations in background wells.

Statistical Test 4, Parametric ANOVA, could not be used for trichloroethene in the URGA because there was no evidence of equality of variance. Thus, Statistical Test 4 was abandoned and Statistical Test 3, Nonparametric ANOVA, was performed. Nonparametric ANOVA identified a statistically significant difference between concentrations in downgradient well MW84A and concentrations in background wells; therefore, the data were evaluated further by comparing results to the UTL. The 95% UTL indicated a statistically significant difference between concentrations in downgradient well MW84A and concentrations in background wells. Based on these results, the data were evaluated using paired (parametric) ANOVA of wells in the same direction relative to the landfill [e.g., performed a comparison of downgradient well (MW84A) results to upgradient westernmost well (MW93A) results]. Results of the paired (parametric) ANOVA identified there to be a significant difference between upgradient and downgradient wells. A Mann-Kendall test was performed to further evaluate the data, and it identified a positive trend for trichloroethene in MW84A.

Table B.5. Summary of Conclusions from the C-404 Hazardous Waste Landfill Statistical Analyses for the Second Reporting Period 2019

Attachment	RGA Well Type	Parameter	Applied Statistical Test	Results
B1	URGA	Arsenic	Statistical Test 3, Nonparametric ANOVA with 95% UTL, paired ANOVA (MW84A vs. MW93A), and Mann-Kendall.	Because Nonparametric ANOVA indicated a statistically significant difference between concentrations in downgradient wells and concentrations in background wells for compliance well MW84A, a comparison to the 95% UTL, paired ANOVA, and Mann-Kendall was performed, as required by the Hazardous Waste Management Facility Permit. Results of the paired ANOVA have identified there is a significant difference between upgradient and downgradient wells. The Mann-Kendall identified no trend in MW84A.
Β2	URGA	Cadmium	Statistical Test 2, Test of Proportions with Statistical Test 3, Nonparametric ANOVA and 95% UTL	Because Test of Proportions indicated statistically significant evidence that the proportion of detects in one group of data exceeds the proportion of detects in the other group, Statistical Test 3, Nonparametric ANOVA, and a comparison to the 95% UTL were performed. Results of the comparison to the 95% UTL have not identified a statistically significant difference between concentrations in downgradient well MW87A and concentrations in background wells.
В3	URGA	Chromium	Statistical Test 3, Nonparametric ANOVA	No statistically significant difference between concentrations in downgradient wells and concentrations in background wells.
Β4	URGA	Lead	Statistical Test 3, Nonparametric ANOVA with 95% UTL	Because Nonparametric ANOVA indicated a statistically significant difference between concentrations in downgradient wells and concentrations in background wells for compliance well MW87A, a comparison to the 95% UTL was performed, as required by the Hazardous Waste Management Facility Permit. Results of the comparison to the 95% UTL have not identified a statistically significant difference between concentrations in downgradient well MW87A or concentrations in background wells.

Table B.5. Summary of Conclusions from the C-404 Hazardous Waste Landfill Statistical Analyses for the Second Reporting Period 2019 (Continued)

Attachment	RGA Well Type	Parameter	Applied Statistical Test	Results
В5	URGA	Technetium-99	Statistical Test 2, Test of Proportions	No statistically significant difference between concentrations in downgradient wells and concentrations in background wells.
B6	URGA	Trichloroethene	Statistical Test 4, Parametric ANOVA/Statistical Test 3, Nonparametric ANOVA with 95% UTL, paired ANOVA (MW84A vs. MW93A), Mann-Kendall, and data review	Because equality of variance could not be confirmed, Statistical Test 4 was abandoned and Statistical Test 3, Nonparametric ANOVA, was performed. Because Nonparametric ANOVA indicated a statistically significant difference between concentrations in downgradient wells and concentrations in background wells for compliance well MW84A, a comparison to the 95% UTL, paired ANOVA, Mann-Kendall, and an attempt to review data were performed, as required by the Hazardous Waste Management Facility Permit. Results of the paired ANOVA have identified there is a significant difference between upgradient and downgradient wells. The Mann-Kendall identified a positive trend in MW84A.
В7	URGA	Uranium	Statistical Test 2, Test of Proportions	No statistically significant difference between concentrations in downgradient wells and concentrations in background wells.
B8	URGA	Uranium-234	Statistical Test 2, Test of Proportions	No statistically significant difference between concentrations in downgradient wells and concentrations in background wells.

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT B1

ARSENIC STATISTICAL TEST 3 THIS PAGE INTENTIONALLY LEFT BLANK

	Arsenic (mg/L)							
Date	Background	Background	Compliance	Compliance	Compliance			
	MW93A	MW420	MW84A	MW87A	MW90A			
Jul-17	0.00755	0.00207	0.0191	0.00907	0.0025			
Jan-18	0.00807	0.0025	0.0185	0.0087	0.0025			
Aug-18	0.00619	0.00304	0.0289	0.0105	0.0025			
Jan-19	0.00462	0.00414	0.0275	0.0116	0.0025			
Jul-19	0.00602	0.00359	0.0168	0.00723	0.0025			
Sum	0.047	8	0.11080	0.04710	0.0125			
n _i	10		5	5	5			
(x _i) _{avg}	0.00478		0.02216	0.00942	0.0025			

mg/L = milligrams per liter

BG = background

DL = detection limit

All data sets represent 1/2 DL values for nondetects. **Bolded values indicate a detected result.**

Overall mean $x_{..} = 0.00873$

N =	25	N = the total number of samples
p =	4	$p =$ the number of n_i groups
x =	0.22	$x_{}$ = the sum of the total number of samples

Statistical Test 3, Nonparametric ANOVA

Ranking of Observations

		Adjusted	
Sequence	Arsenic (mg/L)	Rank	Tie Number
1	0	3.5	
2	0	3.5	
3	0	3.5	Tie 1
4	0	3.5	110 1
5	0	3.5	
6	0	3.5	
7	0.00207	7	
8	0.00304	8	
9	0.00359	9	
10	0.00414	10	
11	0.00462	11	
12	0.00602	12	
13	0.00619	13	
14	0.00723	14	
15	0.00755	15	
16	0.00807	16	
17	0.0087	17	
18	0.00907	18	
19	0.0105	19	
20	0.0116	20	
21	0.0168	21	
22	0.0185	22	
23	0.0191	23	
24	0.0275	24	
25	0.0289	25	

mg/L = milligrams per liter

BG = background

DL = detection limit

Bolded values indicate a detected result.

NOTE: For this method, observations below the detection limit that are considered nondetects (i.e., U qualified data) are reported as a concentration of 0.

 n_{tie} <u>Adjustment for Ties: $(n_{tie}^{3}-n_{tie})$ </u>

6

Tie 1 = 210 $\Sigma T_i = 210$

Sums of Ranks and Averages

		Ars	enic (mg/L)				
Date	Background	Background	Compliance	Compliance	Compliance		
	MW93A	MW420	MW84A	MW87A	MW90A		
Jul-17	0.00755	0.00207	0.0191	0.00907	0		
Jan-18	0.00807	0	0.0185	0.0087	0		
Aug-18	0.00619	0.00304	0.0289	0.0105	0		
Jan-19	0.00462	0.00414	0.0275	0.0116	0		
Jul-19	0.00602	0.00359	0.0168	0.00723	0		
						-	
		Observation	n Ranks for Arse	nic			
Date	Background	Background	Compliance	Compliance	Compliance		
	MW93A	MW420	MW84A	MW87A	MW90A		
Jul-17	15	7	23	18	3.5		
Jan-18	16	3.5	22	17	3.5		
Aug-18	13	8	25	19	3.5		
Jan-19	11	10	24	20	3.5		
Jul-19	12	9	21	14	3.5		
R _i	104	.5	115	88	17.5		
(R _i) _{avg}	10.:	5	23.0	17.6	3.5		
R_i^2/n_i	1092	2.0	2645.0	1548.8	61.3		
$\Sigma R_i^2/n_i =$	5347.1		0 0	ms per liter	K = the number of	f n _i groups	
			BG = backgrour		N = the total number $N = $ total number N	ber of samples	
			DL = detection 1	limit			
			Bolded values i	ndicate a detecte	d result.		
K =	4				ons below the detect		
N =	25		that are considered nondetects (i.e., U qualified data) are reported as a concentration of 0.				
Kruskal-Wal	llis Statistic						

Calculation of H

H =	20.715	Kruskal-Wallis Statistic	$H = [12/N(N+1)*\Sigma R_i^2/n_i] - 3(N+1)$
H' =	20.998	Corrected Kruskal-Wallis	$H' = H/[1-(\sum T_i/N^3-N)]$
$\chi^2_{crit} * =$	7.815	3 degrees of fre	edom at the 5% significance level

NOTE: $H' > \chi^2_{crit}$

If $H' \leq \chi^2_{crit}$, the data from each well come from the same continuous distribution and hence have the same median concentrations of a specific constituent.

If H' > χ^2_{crit} , reject the null hypothesis and calculate the critical difference for well comparisons to the background.

K-1 =	3	$\alpha/(K-1) =$	0.01667	$Z(\alpha/(K-1))^{**} =$	2.1280
$\alpha =$	0.05	$1 - (\alpha/K - 1) =$	0.983		

NOTE:

*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

**Table 4, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

Calculate Critical Values

Average Background Ranking = 10.5

	Well No.	Ci	$(R_i)_{avg}$ - $(R_b)_{avg}$	Conclusion
BG Well	MW93A			
BG Well	MW420			
	MW84A	8.578	12.6	evidence of contamination
	MW87A	8.578	7.2	not contaminated
	MW90A	8.578	-7.0	not contaminated

mg/L = milligrams per liter

BG = background

DL = detection limit

CONCLUSION:

If $(R_i)_{avg} - (R_b)_{avg} > C_i$, then there is evidence that the compliance well is contaminated.

If $(R_i)_{avg} - (R_b)_{avg} < C_i$ for wells, there is no evidence of a statistically significant difference between concentrations in downgradient compliance test wells and background wells.

Since $(R_i)_{avg} - (R_b)_{avg} > C_i$ for MW84A, there is a statistically significant difference between downgradient compliance test wells and background wells in MW84A from the C-404 Landfill.

Because nonparametric ANOVA indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance well MW84A, the 95% UTL was performed.

Since $(R_i)_{avg} - (R_b)_{avg} < C_i$ for MW87A and MW90A, there is no statistically significant difference between background wells and these downgradient compliance test wells; however, the negative value indicates that background wells have elevated concentrations.

Section 5.2.2, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989).

95% Upper Tolerance Limit (UTL)

XX7 II NT

Compare the most recent downgradient sample results to a calculated 95% UTL using the five most recent sets of data for each upgradient well, as described below. If downgradient concentration is less than the UTL for the paired upgradient concentrations, then there is no confirmed exceedance.

July 2019 Data, Second Reporting Period Observations (mg/L)

Well No.						
MW93A	0.00755	0.00807	0.00619	0.00462	0.00602	Upgradient Well [!]
MW420	0.00207	0.0025	0.00304	0.00414	0.00359	Upgradient Well [!]
						Current Data
MW84A	2	K: Mean Value =	0.0048			0.0168
	S: Standard	Deviation =	0.0021			
	ŀ	K* factor =	2.911	(for n = 10)		
	(CV = S/X	0.4381	<1, assume not	rmal distribution	
	Upper Tolera	ance Interval: TL =	X + (KxS) =	0.0109	(mg/L)	

! = Data from previous 5 sampling events.

CV = coefficient of variation

* = Table 5, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

Result: MW84A exceeded the UTL, which is statistically significant evidence that this compliance well has elevated concentration with respect to background data.

Because the 95% UTL indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance well MW84A, the paired ANOVA was performed.

Paired (Parametric) ANOVA

Evaluate results using paired ANOVA of wells in the same direction relative to the landfill [e.g., compare upgradient westernmost well results to downgradient westernmost well results]. If ANOVA does not identify a statistically significant difference between upgradient and downgradient wells, then the results are consistent with the historical ASD.

	Arsenic (mg/L))		
Date	Background	Compliance		
	MW93A	MW84A		n _i ²
Jul-17	0.00755	0.0191	0.0000570	0.0003648
Jan-18	0.00807	0.0185	0.0000651	0.0003423
Aug-18	0.00619	0.0289	0.0000383	0.0008352
Jan-19	0.00462	0.0275	0.0000213	0.0007563
Jul-19	0.00602	0.0168	0.0000362	0.0002822
$Sum(x_i)$	0.0325	0.11080	0.1433	Total Sum (x)
n _i	5	5		_
(x _i) _{avg}	0.00649	0.02216		
$(\mathbf{x}_i)^2$	0.00105	0.01228		

mg/L = milligrams per liter Bolded values indicate a detected result.

Overall mean x =	0.01433	
N =	10	N = the total number of samples
p =	2	$p =$ the number of n_i groups
X=	0.1433	$x_{}$ = the sum of the total number of samples

Determine Normality of Dataset

Coefficient of Variability Test

Table of Residuals $(x_i - x_{iavg})$						
Date	Background	Compliance				
	MW93A	MW84A				
Jul-17	0.00106	-0.00306				
Jan-18	0.00158	-0.00366				
Aug-18	-0.00030	0.00674				
Jan-19	-0.00187	0.00534				
Jul-19	-0.00047	-0.00536				

X: Mean Value =	1.82E-18	
S: Standard Deviation =	0.00384	
K* Factor =	2.911	(for n = 10)
CV = S/X =	2.11E+15	≥ 1 , data are NOT normally distributed

Data are not normally distributed (i.e., ≥ 1).

*Table 5, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

If the coefficient of variation (CV) is < 1, the data are normally distributed. If the coefficient of variation (CV) is > or = 1, data are not normally distributed.

Determine Equality of Variance of Dataset

p = number of wells	x ₌ 0.1433
n_i = number of data points per well	$(x_{avg})_{} = 0.01433$
N = total sample size	n _{i =} 5
S^2 = the square of the standard deviation	p = 2
$\ln(S_i^2) =$ natural logarithm of each variance	N = 10
f = total sample size minus the number of wells (groups)	$f_i = 4$
$f_i = n_i - 1$	

Calculations	for Equalit	v of Variance:	Bartlett's Test

S _i	S_i^2	$\ln(S_i^2)$	n _i	$f_i S_i^2$	$f_i ln(S_i^2)$
0.00136	0.00000185695	-13.197	5	0.0000074	-52.8
0.00560	0.00003135800	-10.370	5	0.0001254	-41.5

$\sum (S_i^2) =$	0.00003	$\sum f_i \ln(S_i^2) =$	-94.26647
			=

Equality of Variance: Bartlett's Test

f =	8			
$Sp^2 =$	0.0000166			
$\ln \mathrm{Sp}^2 =$	-11.006			
$\chi^2 =$	6.221	(If calculated $\chi^2 \le$ tabulated χ^2_{crit} , t significance level).	hen variance	es are equal at the given
$\chi^2_{crit} * =$	3.841	at a 5% significance level with	1	degrees of freedom (p-1)

NOTE: The variances are NOT equal. (i.e., calculated $\chi^2 > \chi^2_{crit}$)

Variances are not equal, transform the original data to lognormal (i.e., since calculated $\chi^2 > \chi^2_{crit}$).

*Table 1, Appendix B, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989).

Paired (Parametric) ANOVA-Lognormal Data

	ln[Arsenic (mg/L)]			
Date	Background	Compliance		
	MW93A	MW84A		n_i^2
Jul-17	-4.89	-3.96	23.88	15.67
Jan-18	-4.82	-3.99	23.23	15.92
Aug-18	-5.08	-3.54	25.86	12.56
Jan-19	-5.38	-3.59	28.92	12.91
Jul-19	-5.11	-4.09	26.14	16.70
Sum (x _i)	-25.28	-19.17	-44.45	Total Sum (x)
n _i	5	5		
$(\mathbf{x}_i)_{avg}$	-5.06	-3.83		
$(\mathbf{x}_i)^2$	639.11	367.56		

mg/L = milligrams per liter

Bolded values indicate a detected result.

Overall mean x =	-4.45	
N =	10	N = the total number of samples
p =	2	$p = the number of n_i groups$
X =	-44.45	$x_{}$ = the sum of the total number of samples

Determine Normality of Dataset

Coefficient of Variability Test-Lognormal Data

	(0
Date	Background	Compliance
	MW93A	MW84A
Jul-17	0.17	-0.12
Jan-18	0.24	-0.16
Aug-18	-0.03	0.29
Jan-19	-0.32	0.24
Jul-19	-0.06	-0.25

Table of Residuals (x_i-x_iavg) for Lognormal Data

X: Mean Value =	-3.11E-16	
S: Standard Deviation =	0.22	
K* Factor =	2.911	(for n = 10)
CV = S/X =	-7.09E+14	<1, data are normally distributed

Data are normally distributed (i.e., <1)

*Table 5, Appendix B, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989).

If the coefficient of variation is < 1, the residuals are normally distributed. If the coefficient of variation is > or = 1, the residuals are not normally distributed.

Determine Equality of Variance-Lognormal Data

p = number of wells	x ₌ -44.45
n_i = number of data points per well	$(x_{avg})_{} = -4.45$
N = total sample size	$n_{i=5}$
S^2 = the square of the standard deviation	p = 2
$\ln(S_i^2)$ = natural logarithm of each variance	N = 10
f = total sample size minus the number of wells (groups)	$f_i = 4$
$f_i = n_i - 1$	

Calculations for	r Equality of	Variance ¹	Bartlett's Test
	n Equanty of	variance.	Durtiett 5 105t

S _i	S_i^2	$\ln(S_i^2)$	n _i	$f_i S_i^2$	$f_i ln(S_i^2)$
0.22	0.05	-3.04	5	0.19	-12.1
0.25	0.06	-2.79	5	0.25	-11.2

$$\sum(S_i^2) = 0.11$$
 $\sum f_i \ln(S_i^2) = -23.31$

 $\begin{array}{l} f = & Equality \ of \ Variance: \ Bartlett's \ Test \\ f = & 8 \\ Sp^2 = & 0.05 \\ ln \ Sp^2 = & -2.91 \\ \chi^2 = & 0.06 \qquad (If \ calculated \ \chi^2 \le tabulated \ \chi^2_{\ crit}, \ then \ variances \ are \ equal \ at \ the \ given \\ significance \ level). \\ \chi^2_{\ crit} * = & 3.841 \qquad at \ a \ 5\% \ significance \ level \ with \qquad 1 \qquad degrees \ of \ freedom \ (p-1) \end{array}$

(i.e., calculated $\chi^2 \leq \chi^2_{crit}$)

NOTE: The variances are equal.

Since calculated $\chi^2 \le \chi^2_{crit}$, then the analysis can proceed as normal.

*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

**Section 5.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989)].

Between Well Sum of Squares

Source of	Sums	of Squares	Degrees of	Mean Squares	Calculated F	F Statistic**
Between Wells	$SS_{wells} =$	3.73168	1	3.73168	68.25	5.32
Error	$SS_{Error} =$	0.43740	8	0.054675		
Total	$SS_{Total} =$	4.16908	9			

If calculated F > F statistic, then reject the hypothesis of equal well means. If calculated F is less than or equal to F statistic, it can be concluded that there is no significant difference between concentrations; therefore, there is no evidence of well contamination.

CONCLUSION: Calculated F > F statistic; therefore, ANOVA has identified a significant difference between background and downgradient wells.

Because the paired ANOVA for the two wells indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance well MW84A, a Mann-Kendall statistical analysis was performed.

**Table 2, Appendix B, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989). F statistic taken at the 5% significance level.

Mann-Kendall Statistical Analysis for Arsenic in MW84A

Input Data

	Result
Date Collected	(mg/L)
Jan-16	0.0103
Jul-16	0.0137
Jan-17	0.017
Jul-17	0.0191
Jan-18	0.0185
Aug-18	0.0289
Jan-19	0.0275
Jul-19	0.0168

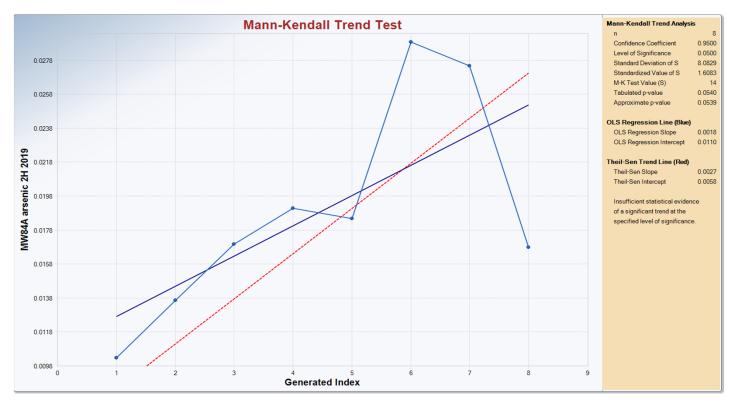
Bolded values indicate a detected result.

User Selected Options	
Date/Time of Computation	ProUCL 5.19/30/2019 9:08:49 AM
From File	WorkSheet.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05

MW84A arsenic 2H 2019

Mann-Kendall Trend Test Analysis

General Statistics


Number or Reported Events Not Used	0
Number of Generated Events	8
Number Values Reported (n)	8
Minimum	0.0103
Maximum	0.0289
Mean	0.019
Geometric Mean	0.0181
Median	0.0178
Standard Deviation	0.00636
Coefficient of Variation	0.335

Mann-Kendall Test

M-K Test Value (S)	14
Tabulated p-value	0.054
Standard Deviation of S	8.083
Standardized Value of S	1.608
Approximate p-value	0.0539

Insufficient evidence to identify a significant trend at the specified level of significance.

Mann-Kendall Statistical Analysis for Arsenic in MW84A

ATTACHMENT B2

CADMIUM STATISTICAL TEST 2 THIS PAGE INTENTIONALLY LEFT BLANK

Attachment B2: Cadmium URGA, Statistical Test 2, Test of Proportions, Second Reporting Period 2019

	Cadmium (mg/L)					
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93A	MW420	MW84A	MW87A	MW90A	
Jul-17	0.0005	0.0005	0.000396	0.000304	0.0005	
Jan-18	0.0005	0.0005	0.0005	0.000375	0.0005	
Aug-18	0.0005	0.0005	0.000323	0.000372	0.0005	
Jan-19	0.0005	0.0005	0.000415	0.000481	0.0005	
Jul-19	0.0005	0.0005	0.0005	0.0005	0.0005	

mg/L = milligrams per liter BG = background DL = detection limit All data sets represent 1/2 DL values for nondetects. Bolded values indicate a detected result.

[!]Test of Proportions

Calculate the number of detections in background wells vs. compliance wells.

$X = Y = n_b = n_c = n = $	0 7 10 15 25	X = number of samples above DL in background wells Y = number of samples above DL in compliance wells $n_b =$ count of background well results/samples analyzed $n_c =$ count of compliance well results/samples analyzed n = total number of samples
P = nP =	0.280 7	P = (x+y)/n $n = n_b + n_c$
n(1-P) =	18	

NOTE: If nP and n(1-P) are both $\geq = 5$, then the normal approximation may be used.

$P_b =$	0.000	P_b = proportion of detects in background wells
$P_c =$	0.467	P_c = proportion of detects in compliance wells
$S_D =$	0.183	S_D = standard error of difference in proportions
Z =	-2.546	$Z = (P_b - P_c)/S_D$
absolute value of $Z =$	2.546	

If the absolute value of Z exceeds the 97.5th percentile value of 1.96 from the standard normal distribution, this provides statistically significant evidence at the 5% significance level that the proportion of detects in one group of data exceeds the proportion of detects in the other group.

CONCLUSION: Because the absolute value of Z is greater than 1.96, Nonparameteric ANOVA was performed.

¹ Section 8.1.2, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (EPA 1989).

		Cadmi	um (mg/L)		
Date	Background	Background	Compliance	Compliance	Compliance
	MW93A	MW420	MW84A	MW87A	MW90A
Jul-17	0.0005	0.0005	0.000396	0.000304	0.0005
Jan-18	0.0005	0.0005	0.0005	0.000375	0.0005
Aug-18	0.0005	0.0005	0.000323	0.000372	0.0005
Jan-19	0.0005	0.0005	0.000415	0.000481	0.0005
Jul-19	0.0005	0.0005	0.0005	0.0005	0.0005
Sum	0.0050		0.00213	0.00203	0.0025
n _i	10		5	5	5
$(\mathbf{x}_i)_{avg}$	0.00050		0.00043	0.00041	0.0005

mg/L = milligrams per liter

BG = background

DL = detection limit

All data sets represent 1/2 DL values for nondetects.

Bolded values indicate a detected result.

Overall mean x =	0.00047
------------------	---------

N =	25	N = the total number of samples
p =	4	$p =$ the number of n_i groups
x =	0.01	$x_{}$ = the sum of the total number of samples

Statistical Test 3, Nonparametric ANOVA

Ranking of Observations

		Adjusted	
Sequence	Cadmium (mg/L)	Rank	Tie Number
1	0	9.5	
2	0	9.5	
3	0	9.5	
4	0	9.5	
5	0	9.5	
6	0	9.5	
7	0	9.5	
8	0	9.5	
9	0	9.5	Tie 1
10	0	9.5	The T
11	0	9.5	
12	0	9.5	
13	0	9.5	
14	0	9.5	
15	0	9.5	
16	0	9.5	
17	0	9.5	
18	0	9.5	
19	0.000304	19	
20	0.000323	20	
21	0.000372	21	
22	0.000375	22	
23	0.000396	23	
24	0.000415	24	
25	0.000481	25	

mg/L = milligrams per liter

BG = background

DL = detection limit

Bolded values indicate a detected result.

NOTE: For this method, observations below the detection limit that are considered nondetects (i.e., U qualified data) are reported as a concentration of 0.

n _{tie}	Adjustment for	Ties: $(n_{tie}^{3}-n_{tie})$
18	Tie 1 =	5814

$$\sum T_i = 5814$$

Sums of Ranks and Averages

		Cadmi	um (mg/L)			
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93A	MW420	MW84A	MW87A	MW90A	
Jul-17	0	0	0.000396	0.000304	0	
Jan-18	0	0	0	0.000375	0	
Aug-18	0	0	0.000323	0.000372	0	
Jan-19	0	0	0.000415	0.000481	0	
Jul-19	0	0	0	0	0	
		-	anks for Cadmiu			
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93A	MW420	MW84A	MW87A	MW90A	
Jul-17	9.5	9.5	23	19	9.5	
Jan-18	9.5	9.5	9.5	22	9.5	
Aug-18	9.5	9.5	20	21	9.5	
Jan-19	9.5	9.5	24	25	9.5	
Jul-19	9.5	9.5	9.5	9.5	9.5	
R _i	95		86	96.5	47.5	
(R _i) _{avg}	9.5		17.2	19.3	9.5	
R_i^2/n_i	902.	5	1479.2	1862.5	451.3	
$\Sigma R_i^2/n_i =$	4695.4		mg/L = milligram	ame par litar	K = the number	of n groups
$\Delta \mathbf{R}_i / \mathbf{n}_i =$	4095.4		e e	*		
			BG = backgrou		N = the total nu	mber of samples
			DL = detection			
К =	4		Bolded values indicate a detected result.			
	4		NOTE: For this method, observations below the detection limit			
N =	25		that are considered nondetects (i.e., U qualified data) are reported as a concentration of 0.			
617 1 1	Wallia Statistia					

Calculation of Kruskal-Wallis Statistic

H =	8.684	Kruskal-Wallis Statistic	$H = [12/N(N+1)*\Sigma R_i^2/n_i] - 3(N+1)$
H' =	13.844	Corrected Kruskal-Wallis	$H' = H/[1-(\sum T_i/N^3-N)]$
$\chi^2_{crit} * =$	7.815	3 degrees of fre	eedom at the 5% significance level

NOTE: $H' > \chi^2_{crit}$

If $H' \leq \chi^2_{crit}$, the data from each well come from the same continuous distribution and hence have the same median concentrations of a specific constituent.

If H' > χ^2_{crit} , reject the null hypothesis and calculate the critical difference for well comparisons to the background.

K-1 =3
$$\alpha/(K-1) =$$
0.01667 $Z(\alpha/(K-1))^{**} =$ 2.1280 $\alpha =$ 0.05 $1-(\alpha/K-1) =$ 0.983

 NOTE: *Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).
 **Table 4, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

Calculate Critical Values

Average Background Ranking = 9.5

	Well No.	Ci	$(R_i)_{avg}$ - $(R_b)_{avg}$	Conclusion
BG Well	MW93A			
BG Well	MW420			
	MW84A	8.578	7.70	not contaminated
	MW87A	8.578	9.80	evidence of contamination
	MW90A	8.578	0.00	not contaminated

mg/L = milligrams per liter BG = background DL = detection limit

CONCLUSION:

If $(R_i)_{avg} - (R_b)_{avg} > C_i$, then there is evidence that the compliance well is contaminated.

If $(R_i)_{avg} - (R_b)_{avg} < C_i$ for wells, there is no evidence of a statistically significant difference between concentrations in downgradient compliance test wells and background wells.

Since $(R_i)_{avg}$ - $(R_b)_{avg}$ > C_i for MW87A, there is a statistically significant difference between downgradient compliance test wells and background wells in MW87A from the C-404 Landfill.

Because nonparametric ANOVA indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance well MW87A, the 95% UTL was performed.

Since $(R_i)_{avg}$ - $(R_b)_{avg}$ < C_i for MW84A and MW90A, there is no statistically significant difference between compliance test wells and background wells at the C-404 Landfill.

Section 5.2.2, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989).

95% Upper Tolerance Limit (UTL)

Compare the most recent downgradient sample results to a calculated 95% UTL using the five most recent sets of data for each upgradient well, as described below. If downgradient concentration is less than the UTL for the paired upgradient concentrations, then there is no confirmed exceedance.

July 2019 Data, Second Reporting Period
Observations (mg/L)

				(0)		
Well No.						
MW93A	0.0005	0.0005	0.0005	0.0005	0.0005	Upgradient Well [!]
MW420	0.0005	0.0005	0.0005	0.0005	0.0005	Upgradient Well [!]
						Current Data
MW87A		X: Mean Value =	0.0005			0.0005
	S: Standard	d Deviation =	0.0000			
		K* factor =	2.911	(for n = 10)		
		CV = S/X	0.0000	<1, assume n	ormal distribution	
	Upper Tole	erance Interval: TL = 2	X + (KxS) =	0.0005	(mg/L)	

! = Data from previous 5 sampling events.

CV = coefficient of variation

* = Table 5, Appendix B, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989).

Result: The Test Well has not exceeded the UTL, which is statistically significant evidence that the well has no elevated concentration with respect to background data.

ATTACHMENT B3

CHROMIUM STATISTICAL TEST 3 THIS PAGE INTENTIONALLY LEFT BLANK

	Chromium (mg/L)						
Date	Background	Background	Compliance	Compliance	Compliance		
	MW93A	MW420	MW84A	MW87A	MW90A		
Jul-17	0.261	0.005	0.103	0.0557	0.005		
Jan-18	0.151	0.005	0.143	1.18	0.00381		
Aug-18	0.11	0.005	0.0752	0.275	0.005		
Jan-19	0.0561	0.005	0.0251	0.0424	0.005		
Jul-19	0.005	0.005	0.005	0.005	0.005		
Sum	0.6	081	0.35130	1.55810	0.0238		
n _i	1	0	5	5	5		
$(\mathbf{x}_i)_{avg}$	0.06	5081	0.07026	0.31162	0.0048		

mg/L = milligrams per liter BG = background DL = detection limit All data sets represent 1/2 DL values for nondetects. **Bolded values indicate a detected result.**

Overall mean $x_{..} = 0.10165$

N =	25	N = the total number of samples
p =	4	$p =$ the number of n_i groups
x =	2.54	$x_{}$ = the sum of the total number of samples

Statistical Test 3, Nonparametric ANOVA

Ranking of Observations

	Chromium	Adjusted	
Sequence	(mg/L)	Rank	Tie Number
1	0	6.5	
2	0	6.5	
3	0	6.5	
4	0	6.5	
5	0	6.5	
6	0	6.5	Tie 1
7	0	6.5	
8	0	6.5	
9	0	6.5	
10	0	6.5	
11	0	6.5	
12	0	6.5	
13	0.00381	13	
14	0.0251	14	
15	0.0424	15	
16	0.0557	16	
17	0.0561	17	
18	0.0752	18	
19	0.103	19	
20	0.11	20	
21	0.143	21	
22	0.151	22	
23	0.261	23	
24	0.275	24	
25	1.18	25	

mg/L = milligrams per liter

BG = background

DL = detection limit

Bolded values indicate a detected result.

NOTE: For this method, observations below the detection limit that are considered nondetects (i.e., U qualified data) are reported as a concentration of 0.

Adjustment for Ties: (n_{tie}³-n_{tie}) \mathbf{n}_{tie} 12

Tie 1 = 1716

> $\sum T_i =$ 1716

Sums of Ranks and Averages

	Chromium (mg/L)					
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93A	MW420	MW84A	MW87A	MW90A	
Jul-17	0.261	0	0.103	0.0557	0	
Jan-18	0.151	0	0.143	1.18	0.00381	
Aug-18	0.11	0	0.0752	0.275	0	
Jan-19	0.0561	0	0.0251	0.0424	0	
Jul-19	0	0	0	0	0	

Observation Ranks for Chromium						
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93A	MW420	MW84A	MW87A	MW90A	
Jul-17	23	6.5	19	16	6.5	
Jan-18	22	6.5	21	25	13	
Aug-18	20	6.5	18	24	6.5	
Jan-19	17	6.5	14	15	6.5	
Jul-19	6.5	6.5	6.5	6.5	6.5	
R _i	12	21	78.5	86.5	39	
(R _i) _{avg}	12	2.1	15.7	17.3	7.8	
R_i^2/n_i	146	54.1	1232.5	1496.5	304.2	

$\Sigma R_i^2/n_i =$	4497.2	mg/L = milligrams per liter BG = background DL = detection limit
K =	4	Bolded values indicate a detected result. NOTE: For this method, observations below the detection limit
N =	25	that are considered nondetects (i.e., U qualified data) are reported as a concentration of 0.

Calculation of Kruskal-Wallis Statistic

H =	5.025	Kruskal-Wallis Statistic	$H = [12/N(N+1)*\Sigma R_i^2/n_i] - 3(N+1)$
H' =	5.646	Corrected Kruskal-Wallis	$H' = H/[1-(\sum T_i/N^3-N)]$
$\chi^2_{crit} * =$	7.815	3 degrees of fre	eedom at the 5% significance level

NOTE: H' < χ^2_{crit}

If $H' \leq \chi^2_{crit}$, the data from each well come from the same continuous distribution and hence have the same median concentrations of a specific constituent.

If $H' > \chi^2_{crit}$, reject the null hypothesis and calculate the critical difference for well comparisons to the background.

*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

Calculate Critical Values

NOTE: Not required due to H' < χ^2_{crit}

Since $H' < \chi^2_{crit}$, there is no statistically significant evidence of a difference between background wells and compliance wells at the C-404 Landfill.

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT B4

LEAD STATISTICAL TEST 3 THIS PAGE INTENTIONALLY LEFT BLANK

		Le	ead (mg/L)		
Date	Background	Background	Compliance	Compliance	Compliance
	MW93A	MW420	MW84A	MW87A	MW90A
Jul-17	0.00213	0.001	0.00267	0.00533	0.001
Jan-18	0.00186	0.001	0.00191	0.00579	0.000634
Aug-18	0.000802	0.001	0.00319	0.00682	0.001
Jan-19	0.001	0.001	0.00204	0.00502	0.001
Jul-19	0.00051	0.001	0.001	0.001	0.001
Sum	0.011	3	0.01081	0.02396	0.0046
n _i	10		5	5	5
(x _i) _{avg}	0.00113		0.00216	0.00479	0.0009

mg/L = milligrams per liter

BG = background

DL = detection limit

All data sets represent 1/2 DL values for nondetects.

Bolded values indicate a detected result.

Overall mean x =	0.00203
------------------	---------

N =	25	N = the total number of samples
p =	4	$p =$ the number of n_i groups
x =	0.05	$x_{}$ = the sum of the total number of samples

Statistical Test 3, Nonparametric ANOVA

Ranking of Observations

		Adjusted	
Sequence	Lead (mg/L)	Rank	Tie Number
1	0	6.5	
2	0	6.5	
3	0	6.5	
4	0	6.5	
5	0	6.5	
6	0	6.5	Tie 1
7	0	6.5	110 1
8	0	6.5	
9	0	6.5	
10	0	6.5	
11	0	6.5	
12	0	6.5	
13	0.00051	13	
14	0.000634	14	
15	0.000802	15	
16	0.00186	16	
17	0.00191	17	
18	0.00204	18	
19	0.00213	19	
20	0.00267	20	
21	0.00319	21	
22	0.00502	22	
23	0.00533	23	
24	0.00579	24	
25	0.00682	25	

mg/L = milligrams per liter

BG = background

DL = detection limit

Bolded values indicate a detected result.

NOTE: For this method, observations below the detection limit that are considered nondetects (i.e., U qualified data) are reported as a concentration of 0.

 $n_{\text{tie}} \qquad \underline{\text{Adjustment for Ties: } (n_{\text{tie}}^{3} - n_{\text{tie}})}{12}$ $12 \qquad \text{Tie } 1 = 1716$

$$\Sigma T_i = 1716$$

Sums of Ranks and Averages

Lead (mg/L)						
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93A	MW420	MW84A	MW87A	MW90A	
Jul-17	0.00213	0	0.00267	0.00533	0	
Jan-18	0.00186	0	0.00191	0.00579	0.000634	
Aug-18	0.000802	0	0.00319	0.00682	0	
Jan-19	0	0	0.00204	0.00502	0	
Jul-19	0.00051	0	0	0	0	
		Observati	on Ranks for Lead	đ		
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93A	MW420	MW84A	MW87A	MW90A	
Jul-17	19	6.5	20	23	6.5	
Jan-18	16	6.5	17	24	14	
Aug-18	15	6.5	21	25	6.5	
Jan-19	6.5	6.5	18	22	6.5	
Jul-19	13	6.5	6.5	6.5	6.5	
R _i	102		82.5	100.5	40	
$(R_i)_{avg}$	10.2		16.5	20.1	8.0	
R_i^2/n_i	1040.	4	1361.3	2020.1	320.0	
$\Sigma R_i^2/n_i =$	4741.7		mg/L = milligran	*	K = the number of	
			BG = background		N = the total number	er of samples
			DL = detection li			
			Bolded values in			
			NOTE: For this method, observations below the detection limit			
N = 25 that are considered nondetects (i.e., U qualified data) are repo as a concentration of 0.			re reported			
Kruskal-Wal	llis Statistic					

Calculation of k

H =	9.539	Kruskal-Wallis Statistic	$H = [12/N(N+1)*\Sigma R_i^2/n_i] - 3(N+1)$
H' =	10.718	Corrected Kruskal-Wallis	$H' = H/[1-(\sum T_i/N^3-N)]$
$\chi^2_{crit} * =$	7.815	3 degrees of free	dom at the 5% significance level

NOTE: $H' > \chi^2_{crit}$

If H' $\leq \chi^2_{\text{crit}}$, the data from each well come from the same continuous distribution and hence have the same median concentrations of a specific constituent.

If H' > χ^2_{crit} , reject the null hypothesis and calculate the critical difference for well comparisons to the background.

K-1 =	3	$\alpha/(K-1) =$	0.01667	$Z(\alpha/(K-1))^{**} =$	2.1280
$\alpha =$	0.05	$1-(\alpha/K-1) =$	0.983		

NOTE:

*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989). **Table 4, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities,

Interim Guidance (EPA 1989).

Calculate Critical Values

Average Background Ranking = 10.2

	Well No.	Ci	$(R_i)_{avg}$ - $(R_b)_{avg}$	Conclusion
BG Well	MW93A			
BG Well	MW420			
	MW84A	8.578	6.30	not contaminated
	MW87A	8.578	9.90	evidence of contamination
	MW90A	8.578	-2.20	not contaminated

mg/L = milligrams per liter BG = background DL = detection limit

CONCLUSION:

If $(R_i)_{avg}$ - $(R_b)_{avg}$ > C_i , then there is evidence that the compliance well is contaminated.

If $(R_i)_{avg} - (R_b)_{avg} < C_i$ for wells, there is no evidence of a statistically significant difference between concentrations in downgradient compliance test wells and background wells.

Since $(R_i)_{avg} - (R_b)_{avg} > C_i$ for MW87A, there is a statistically significant difference between downgradient compliance test wells and background wells in MW87A from the C-404 Landfill.

Because nonparametric ANOVA indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance well MW87A, the 95% UTL was performed.

Since $(R_i)_{avg} - (R_b)_{avg} < C_i$ for MW84A and MW90A, there is no statistically significant difference between background wells and downgradient compliance test wells; however, the negative value indicates that the background wells have elevated concentrations.

Section 5.2.2, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989).

95% Upper Tolerance Limit (UTL)

XX7 11 NT

Compare the most recent downgradient sample results to a calculated 95% UTL using the five most recent sets of data for each upgradient well, as described below. If downgradient concentration is less than the UTL for the paired upgradient concentrations, then there is no confirmed exceedance.

July 2019 Data, Second Reporting Period Observations (mg/L)

Well No.						
MW93A	0.00213	0.00186	0.000802	0.001	0.00051	Upgradient Well [!]
MW420	0.001	0.001	0.001	0.001	0.001	Upgradient Well [!]
						Current Data
MW847A	2	K: Mean Value =	0.0011			0.001
	S: Standard	Deviation =	0.0005			
	H	K* factor =	2.911	(for n = 10)		
	(CV = S/X	0.4301	<1, assume nor	mal distribution	
	Upper Tolera	nce Interval: TL =	X + (KxS) =	0.0025	(mg/L)	

! = Data from previous 5 sampling events.

CV = coefficient of variation

* = Table 5, Appendix B, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989).

Result: The Test Well has not exceeded the UTL, which is statistically significant evidence that the well has no elevated concentration with respect to background data.

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT B5

TECHNETIUM-99 STATISTICAL TEST 2 THIS PAGE INTENTIONALLY LEFT BLANK

Attachment B5: Technetium-99 URGA, Statistical Test 2, Test of Proportions, Second Reporting Period 2019

	Technetium-99 (pCi/L)					
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93A	MW420	MW84A	MW87A	MW90A	
Jul-17	9.85	9.7	10.05	9.9	9.55	
Jan-18	9.4	21.5	34.4	9.45	9.2	
Aug-18	7.35	9.2	6.75	7.5	7.3	
Jan-19	11.05	9.5	28.8	9.5	7.9	
Jul-19	10.1	10.25	126	9.95	9.7	

pCi/L = picocuries per liter BG = background DL = detection limit Nondetect values are 1/2 DL. **Bolded values indicate a detected result.**

[!]Test of Proportions

Calculate the number of detections in background wells vs. compliance wells.

$\begin{array}{l} X = \\ Y = \\ n_b = \\ n_c = \\ n = \end{array}$	1 3 10 15 25	X = number of samples above DL in background wells Y = number of samples above DL in compliance wells $n_b =$ count of background well results/samples analyzed $n_c =$ count of compliance well results/samples analyzed n = total number of samples
$\mathbf{P} =$	0.160	P=(x+y)/n
nP =	4	n=n _b +n _c
n(1-P) =	21	

NOTE: If nP and n(1-P) are both ≥ 5 , then the normal approximation may be used; however, because nP < 5 and/or n(1-P) < 5, the test was continued to determine if the conclusion, along with a simple evaluation of the data would be similar.

$P_b =$	0.100	P_b = proportion of detects in background wells
$P_c =$	0.200	P_c = proportion of detects in compliance wells
$S_D =$	0.150	S_D = standard error of difference in proportions
Z =	-0.668	$Z = (P_b - P_c)/S_D$
absolute value of $Z =$	0.668	

If the absolute value of Z exceeds the 97.5th percentile value of 1.96 from the standard normal distribution, this provides statistically significant evidence at the 5% significance level that the proportion of detects in one group of data exceeds the proportion of detects in the other group.

CONCLUSION: Because the absolute value of Z is less than 1.96, there is no statistical evidence that the proportion of samples with detected results differs between the background well and compliance well samples.

¹Section 8.1.2, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (EPA 1989).

THIS PAGE INTENTIONALLY LEFT BLANK

ATTACHMENT B6

TRICHLOROETHENE STATISTICAL TESTS 4/3 THIS PAGE INTENTIONALLY LEFT BLANK

	Trichloroethene (TCE, $\mu g/L$)						
Date	Background	Background	Compliance	Compliance	Compliance		
	MW93A	MW420	MW84A	MW87A	MW90A		
Jul-17	1400	264	2910	1620	46.1		
Jan-18	994	232	3160	1400	40.6		
Aug-18	1000	476	5260	1690	53.3		
Jan-19	1000	601	5580	2380	69.9		
Jul-19	789	600	2000	1850	55.7		
n _i	10		5	5	5		
Sum	7356		18910	8940	265.60		
(x _i)avg	735.	.60	3782.00	1788.00	53.12		

 $\mu g/L$ = micrograms per liter Bolded values indicate a detected result.

Overall mean x =	1418.86	
N =	25	N = the total number of samples
p =	4	$p =$ the number of n_i groups
x =	35471.60	$x_{}$ = the sum of the total number of samples

Determine Normality of Dataset

Coefficient of Variability Test

Table of Residuals

Date	Background	Background	Compliance	Compliance	Compliance
	MW93A	MW420	MW84A	MW87A	MW90A
Jul-17	664.40	-471.60	-872.00	-168.00	-7.02
Jan-18	258.40	-503.60	-622.00	-388.00	-12.52
Aug-18	264.40	-259.60	1478.00	-98.00	0.18
Jan-19	264.40	-134.60	1798.00	592.00	16.78
Jul-19	53.40	-135.60	-1782.00	62.00	2.58

X: Mean Value =	2.84E-15	
S: Standard Deviation =	692.6	
K* Factor =	2.292	(for n = 25)
CV = S/X =	2.44E+17	> or = 1, data are not normally distributed

*K factor [from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989)].

If the coefficient of variation is < 1, the data are normally distributed. If the coefficient of variation is > or = 1, data are not normally distributed.

Determine Equality of Variance of Dataset

p = number of wells	x= 35471.60
n_i = number of data points per well	$(x_{avg})_{} = 1418.86$
N = total sample size	
S^2 = the square of the standard deviation	p = 4
$\ln(S_i^2)$ = natural logarithm of each variance	N = 25

f = total sample size minus the number of wells (groups)

 $f_i = n_i - 1$

Calculations for Equality of Variance: Bartlett's Test

S _i	S_i^2	$\ln(S_i^2)$	n _i	$f_i S_i^2$	$f_i ln(S_i^2)$
369.802	136753.38	11.826	10	1230780.4	106.4
1560.455	2435020.00	14.705	5	9740080.000	58.8
368.334	135670.00	11.818	5	542680.000	47.3
11.116	123.57	4.817	5	494.288	19.3

$$\sum(S_i^2) = 2707566.95$$
 $\sum f_i \ln(S_i^2) = 231.8$

Equality of Variance: Bartlett's Test

anty of varia	nee. Dartiett s	rest		
f =	21			
$Sp^2 =$	548287.366			
	13.215			
$\chi^2 =$	45.711	(If $\chi^2 \le \chi^2_{\text{crit}}$, then variances are equal at the given		
		significance level).		
$\chi^2_{crit} * =$	7.815	at a 5% significance level with	3	degrees of freedom

NOTE: The variances are NOT equal.

(i.e., $\chi^2 > \chi^2_{crit}$)

Variances are not equal, transform the original data to lognormal (i.e., since $\chi^2 > \chi^2_{crit}$).

*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

Lognormal Data for TCE

	ln [TCE (µg/L)]						
Date	Background	Background	Compliance	Compliance	Compliance		
	MW93A		MW84A	MW87A	MW90A		
Jul-17	7.24	5.58	7.98	7.39	3.83		
Jan-18	6.90	5.45	8.06	7.24	3.70		
Aug-18	6.91	6.17	8.57	7.43	3.98		
Jan-19	6.91	6.40	8.63	7.77	4.25		
Jul-19	6.67	6.40	7.60	7.52	4.02		
Xi	64.0	62	40.83	37.36	19.78		
(x _i)avg	6.4	.6	8.17	7.47	3.96		

 $\mu g/L = micrograms per liter$

Determine Normality of Dataset

Coefficient of Variability Test

Table of Residuals for Lognormal Data

Date	Background	Background	Compliance	Compliance	Compliance
	MW93A	MW420	MW84A	MW87A	MW90A
Jul-17	0.78	-0.89	-0.19	-0.08	-0.12
Jan-18	0.44	-1.01	-0.11	-0.23	-0.25
Aug-18	0.45	-0.30	0.40	-0.04	0.02
Jan-19	0.45	-0.06	0.46	0.30	0.29
Jul-19	0.21	-0.06	-0.57	0.05	0.06

X: Mean Value = S: Standard Deviation =	3.38E-16 0.42	
		(for $n = 25$) ≥ 1 , data are NOT normally distributed

*K factor [from Table 5, Appendix B of *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989)].

Determine Equality of Variance of Dataset for Lognormal Data

p = number of wells (background wells considered as one group)	x = 162.59
n_i = number of data points per well	$(x_{avg})_{} = 6.50$
N = total sample size	
S^2 = the square of the standard deviation	p = 4
$\ln(S_i^2)$ = natural logarithm of each variance	N = 25
f = total sample size minus the number of wells (groups)	

 $f_i = n_i - 1$

Calculations for Equality of Variance: Bartlett's Test

S _i	S_i^2	$\ln(S_i^2)$	ni	$f_i S_i^{\ 2}$	$f_i ln(S_i^2)$
0.592	0.351	-1.047	10	3.158	-9.4
0.430	0.185	-1.686	5	0.741	-6.7
0.196	0.039	-3.254	5	0.154	-13.0
0.205	0.042	-3.167	5	0.169	-12.7

 $\sum(S_i^2) = 0.62$ $\sum f_i \ln(S_i^2) = -41.9$

Equality of Variance: Bartlett's Test

f =	21			
$Sp^2 =$	0.201			
$\ln \text{Sp}^2 =$	-1.604			
$\chi^2 =$	8.167	(If $\chi^2 \le \chi^2_{\text{crit}}$, then variances are equal at the given		
		significance level).		
$\chi^2_{crit} * =$	7.815	at a 5% significance level with	3	degrees of freedom

NOTE: The variances are NOT equal.

(i.e., $\chi^2 > \chi^2_{crit}$)

Because variances are not equal, Statistical Test 3, Nonparametric ANOVA is performed.**

*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989)].

**Section 5.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989)].

Statistical Test 3, Nonparametric ANOVA

	TCE (µg/L)					
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93A	MW420	MW84A	MW87A	MW90A	
Jul-17	1400	264	2910	1620	46.1	
Jan-18	994	232	3160	1400	40.6	
Aug-18	1000	476	5260	1690	53.3	
Jan-19	1000	601	5580	2380	69.9	
Jul-19	789	600	2000	1850	55.7	
n _i	1	10 7356		5	5	
x _i	73			8940	265.60	
(x _i)avg	735	5.60	3782.00	1788.00	53.12	

 μ g/L = micrograms per liter BG=background

DL=detection limit

All data sets represent 1/2 DL values for nondetects.

Bolded values indicate a detected result.

Overall mean $x_{..} = 1418.86$

N =	25	N = the total number of samples
p =	4	$p =$ the number of n_i groups
x =	35471.60	$x_{}$ = the sum of the total number of samples

Statistical Test 3, Nonparametric ANOVA

Ranking of Observations

		Adjusted	
Sequence	TCE (µg/L)	Rank	Tie Number
1	40.6	1	
2	46.1	2	
3	53.3	3	
4	55.7	4	
5	69.9	5	
6	232	6	
7	264	7	
8	476	8	
9	600	9	
10	601	10	
11	789	11	
12	994	12	
13	1000	13.5	Tie 1
14	1000	15.5	
15	1400	15.5	Tie 2
16	1400	15.5	110.2
17	1620	17	
18	1690	18	
19	1850	19	
20	2000	20	
21	2380	21	
22	2910	22	
23	3160	23	
24	5260	24	
25	5580	25	

 $\mu g/L = micrograms per liter$

BG = background

DL = detection limit

Bolded values indicate a detected result.

NOTE: For this method, observations below the detection limit that are considered nondetects (i.e., U qualified data) are reported as a concentration of 0.

n _{tie}	Adjustment for Tie	es: $(n_{tie}^{3} - n_{tie})$
2	Tie 1 =	6
2	Tie 2 =	6
	$\sum T_i =$	12

Sums of Ranks and Averages

	TCE (µg/L)					
Date	Background	Background	Compliance	Compliance	Compliance	
	MW93A	MW420	MW84A	MW87A	MW90A	
Jul-17	1400	264	2910	1620	46.1	
Jan-18	994	232	3160	1400	40.6	
Aug-18	1000	476	5260	1690	53.3	
Jan-19	1000	601	5580	2380	69.9	
Jul-19	789	600	2000	1850	55.7	

Observation Ranks for TCE					
Date	Background	Background	Compliance	Compliance	Compliance
	MW93A	MW420	MW84A	MW87A	MW90A
Jul-17	15.5	7	22	17	2
Jan-18	12	6	23	15.5	1
Aug-18	13.5	8	24	18	3
Jan-19	13.5	10	25	21	5
Jul-19	11	9	20	19	4
R _{i.}	105.5		114	90.5	15
(R _i) _{avg}	10.6		22.8	18.1	3
R_i^2/n_i	111	3.0	2599.2	1638.1	45

$\Sigma R_i^2/n_i =$	5395.3	$\mu g/L = micrograms per liter$	$K =$ the number of n_i groups
		BG=background	N = the total number of samples
		DL=detection limit	
K =	4	Bolded values indicate a de	tected result.
N =	25	,	ervations below the detection limit that are J qualified data) are reported as a

Calculation of Kruskal-Wallis Statistic

H =	21.605	Kruskal-Wallis Statistic	$H = [12/N(N+1)*\Sigma R_i^2/n_i] - 3(N+1)$
H' =	21.622	Corrected Kruskal-Wallis	$H' = H/[1-(\sum T_i/N^3-N)]$
$\chi^2_{crit} * =$	7.815	3 degrees of free	edom at the 5% significance level

NOTE: $H' > \chi^2_{crit}$

If $H' \le \chi^2_{crit}$, the data from each well come from the same continuous distribution and hence have the same median concentrations of a specific constituent.

If $H' > \chi^2_{crit}$, reject the null hypothesis and calculate the critical difference for well comparisons to the background.

K-1 =	3	$\alpha/(K-1) =$	0.01667	$Z(\alpha/(K-1))^{**} = 2.1280$
$\alpha =$	0.05	$1 - (\alpha/K - 1) =$	0.983	

NOTE: *Table 1, Appendix B, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (USEPA 1989).

**Table 4, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (USEPA 1989).

Calculate Critical Values

	Well No.	Ci	$(R_i)_{avg}$ - $(R_b)_{avg}$	Conclusion
BG Well	MW93A			
BG Well	MW420			
	MW84A	8.578	12.25	evidence of contamination
	MW87A	8.578	7.55	not contaminated
	MW90A	8.578	-7.55	not contaminated

Average Background Ranking = 10.6

 $\mu g/L = micrograms per liter$ BG = background

DL = detection limit

CONCLUSION:

If $(R_i)_{avg}$ - $(R_b)_{avg}$ > C_i , then there is evidence that the compliance well is contaminated.

If $(R_i)_{avg} - (R_b)_{avg} < C_i$ for wells, there is no evidence of a statistically significant difference between concentrations in downgradient compliance test wells and background wells.

Since $(R_i)_{avg}$ - $(R_b)_{avg}$ > C_i for MW84A, there is a statistically significant difference between compliance test wells and background wells in MW84A at the C-404 Landfill.

Because nonparametric ANOVA indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance well MW84A, the 95% UTL was performed.

Since $(R_i)_{avg} - (R_b)_{avg} < C_i$ for MW87A and MW90A, there is no statistically significant difference between compliance test wells and background wells at the C-404 Landfill; however, the negative value indicates that background wells have elevated concentrations.

Section 5.2.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

95% Upper Tolerance Limit (UTL)

Compare the most recent downgradient sample results to a calculated 95% UTL using the five most recent sets of data for each upgradient well, as described below. If downgradient concentration is less than the UTL for the paired upgradient concentrations, then there is no confirmed exceedance.

Well No.	7					
MW93A	1400	994	1000	1000	789	Upgradient Well [!]
MW420	264	232	476	601	600	Upgradient Well [!]
						Current Data
MW84A	X	: Mean Value =	736			2000
	S: Stand	ard Deviation =	370			
		K* factor =	2.911	(for n = 10)		
		CV = S/X	0.5027	<1, assume no	ormal distributi	on
	Upper Toleranc	e Interval: $TL = X$	X + (KxS) =	1812	(µg/L)	

July 2019 Data, Second Reporting Period Observations (µg/L)

! = Data from previous 5 sampling events.

CV = coefficient of variation

* = Table 5, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

Result: MW84A exceeded the UTL, which is statistically significant evidence that this compliance well has elevated concentration with respect to background data.

Because the 95% UTL indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance well MW84A, the paired ANOVA was performed.

Paired (Parametric) ANOVA - MW93A and MW84A

Evaluate results using paired ANOVA of wells in the same direction relative to the landfill [e.g., compare upgradient westernmost well results to downgradient westernmost well results]. If ANOVA does not identify a statistically significant difference between upgradient and downgradient wells, then the results are consistent with the historical ASD.

	TCE (µg/L)			
Date	Background	Compliance		
	MW93A	MW84A	ni	2
Jul-17	1400	2910	1960000	8468100
Jan-18	994	3160	988036	9985600
Aug-18	1000	5260	1000000	27667600
Jan-19	1000	5580	1000000	31136400
Jul-19	789	2000	622521	4000000
Sum (x _i)	5183	18910	24093	Total Sum (x
n _i	5	5		
$(x_i)_{avg}$	1037	3782		
$(\mathbf{x}_i)^2$	26863489	357588100		

 μ g/L = micrograms per liter Bolded values indicate a detected result.

Overall mean $x_{} =$	2409	
N =	10	N = the total number of samples
p =	2	$p =$ the number of n_i groups
X ₌	24093	$x_{}$ = the sum of the total number of samples

Determine Normality of Dataset

Coefficient of Variability Test

Table of Residuals (x _i -x _{iavg})					
Date	Background Compliance				
	MW93A	MW84A			
Jul-17	363	-872			
Jan-18	-43	-622			
Aug-18	-37	1478			
Jan-19	-37	1798			
Jul-19	-248	-1782			

X: Mean Value =	0.00E+00	
S: Standard Deviation =	1051	
K* Factor =	2.911	(for $n = 10$)
CV = S/X =	$#\Delta I \varsigma / 0!$	#DIV/0!

†The Coefficient of Variability Test was not performed due to mean = 0 (i.e., division by 0 not possible).

*Table 5, Appendix B, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989).

If the coefficient of variation is < 1, the data are normally distributed. If the coefficient of variation is > or = 1, data are not normally distributed.

Determine Equality of Variance of Dataset

p = number of wells	x ₌ 24093
n _i = number of data points per well	$(x_{avg})_{} = 2409$
N = total sample size	$n_{i=}$ 5
S^2 = the square of the standard deviation	p = 2
$\ln(S_i^2)$ = natural logarithm of each variance	N = 10
f = total sample size minus the number of wells (groups)	$f_i = 4$
$\mathbf{f}_{i} = \mathbf{n}_{i} - 1$	

S _i	S_i^2	$\ln({S_i}^2)$ †	n _i	$f_i S_i^2$	$f_i ln(S_i^2)$ †
222	49465	10.809	5	197859	43.2
1560	2435020	14.705	5	9740080	58.8

$$\sum(S_i^2) = 2,484,485$$
 $\sum f_i \ln(S_i^2) = 102$

 $f = \frac{Equality \text{ of Variance: Bartlett's Test}}{8}$ $Sp^{2} = 1242242$ $\ln Sp^{2} = 14.032$ $\chi^{2} = 10.202 \quad (\text{If calculated } \chi^{2} \le \text{tabulated } \chi^{2}_{\text{crit}}, \text{ then variances are equal at the given significance level}).$ $\chi^{2}_{\text{crit}} * = 3.841 \quad \text{at a 5\% significance level with} \quad 1 \quad \text{degrees of freedom (p-1)}$

NOTE: The variances are NOT equal. (i.e., calculated $\chi^2 > \chi^2_{crit}$)

Variances are not equal, transform the original data to lognormal (i.e., since calculated $\chi^2 > \chi^2_{crit}$).

*Table 1, Appendix B, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989).

Paired (Parametric) ANOVA-Lognormal Data

1	n[TCE (µg/L)]			
Date	Background	Compliance		
	MW93A	MW84A	I	n_i^2
Jul-17	7.24	7.98	52.48	63.62
Jan-18	6.90	8.06	47.63	64.94
Aug-18	6.91	8.57	47.72	73.41
Jan-19	6.91	8.63	47.72	74.42
Jul-19	6.67	7.60	44.50	57.77
Sum (x _i)	34.63	40.83	75.46	Total Sum (x)
n _i	5	5		
(x _i) _{avg}	6.93	8.17		
$(\mathbf{x}_i)^2$	1199.39	1667.09		

 $\mu g/L = micrograms per liter$

Bolded values indicate a detected result.

Overall mean x =	7.55	
N =	10	N = the total number of samples
p =	2	$p =$ the number of n_i groups
X=	75.46	$x_{}$ = the sum of the total number of samples

Determine Normality of Dataset

Coefficient of Variability Test-Lognormal Data

Date	Background	Compliance				
	MW93A	MW84A				
Jul-17	0.32	-0.19				
Jan-18	-0.02	-0.11				
Aug-18	-0.02	0.40				
Jan-19	-0.02	0.46				
Jul-19	-0.26	-0.57				

Table of Residuals (x_i-x_iavg) for Lognormal Data

X: Mean Value =	1.78E-16	
S: Standard Deviation =	0.32	
K^* Factor =	2.911	(for n = 10)
CV = S/X =	1.79E+15	≥ 1 , data are NOT normally distributed

Data are not normally distributed (i.e., ≥ 1)

*Table 5, Appendix B, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989).

If the coefficient of variation is < 1, the residuals are normally distributed. If the coefficient of variation is > or = 1, the residuals are not normally distributed.

Determine Equality of Variance-Lognormal Data

p = number of wells	x ₌ 75.46
n _i = number of data points per well	$(x_{avg})_{} = 7.55$
N = total sample size	$n_{i=}$ 5
S^2 = the square of the standard deviation	p = 2
$\ln(S_i^2)$ = natural logarithm of each variance	N = 10
f = total sample size minus the number of wells (groups)	$f_i = 4$
$f_i = n_i - 1$	

Calculations for	or Equality of	Variance.	Bartlett's	Test
	л Equanty of	v al lance.	Darticus	rusi

S _i	S_i^2	$\ln(S_i^2)$	n _i	$f_i S_i^2$	$f_i ln(S_i^2)$
0.20	0.04	-3.17	5	0.17	-12.7
0.43	0.19	-1.69	5	0.74	-6.7

$$\sum(S_i^2) = 0.23$$
 $\sum f_i \ln(S_i^2) = -19.43$

 $\begin{array}{rcl} & & \\ f = & 8 \\ Sp^2 = & 0.11 \\ ln \ Sp^2 = & -2.18 \\ \chi^2 = & 2.03 & (If \ calculated \ \chi^2 \le tabulated \ \chi^2_{\ crit}, \ then \ variances \ are \ equal \ at \ the \ given \ significance \ level). \\ \chi^2_{\ crit} \ ^* = & 3.841 & at \ a \ 5\% \ significance \ level \ with \quad 1 & degrees \ of \ freedom \ (p-1) \end{array}$

NOTE: The variances are equal. (i.e., calculated $\chi^2 \le \chi^2_{crit}$)

Since calculated $\chi^2 \le \chi^2_{crit}$, then the analysis can proceed as normal.

*Table 1, Appendix B, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989).

**Section 5.2, Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance (EPA 1989)].

Between Well Sum of Squares

Source of			Degrees of			
Variation	Sums of Squares		Freedom	Mean Squares	Calculated F	F Statistic**
Between Wells	$SS_{wells} =$	3.84	1	3.84	33.82	5.32
Error	$SS_{Error} =$	0.91	8	0.11		
Total	$SS_{Total} =$	4.75	9			

If calculated F > F statistic, then reject the hypothesis of equal well means. If calculated F is less than or equal to F statistic, it can be concluded that there is no significant difference between concentrations; therefore, there is no evidence of well contamination.

CONCLUSION: Calculated F > F statistic; therefore, ANOVA has identified a significant difference between background and downgradient wells.

Because the paired ANOVA for the two wells indicated a statistically significant difference between compliance test wells and background wells at the C-404 Landfill in compliance well MW84A, a Mann-Kendall statistical analysis was performed.

**Table 2, Appendix B, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance* (EPA 1989). F statistic taken at the 5% significance level.

Attachment B6: Trichloroethene URGA, Statistical Test 3, Nonparametric ANOVA, Second Reporting Period 2019

Mann-Kendall Statistical Analysis for TCE in MW84A

Input Data

Date Collected	Result (µg/L)
Jan-16	1350
Jul-16	1820
Jan-17	2620
Jul-17	2910
Jan-18	3160
Aug-18	5260
Jan-19	5580
Jul-19	2000

Bolded values indicate a detected result.

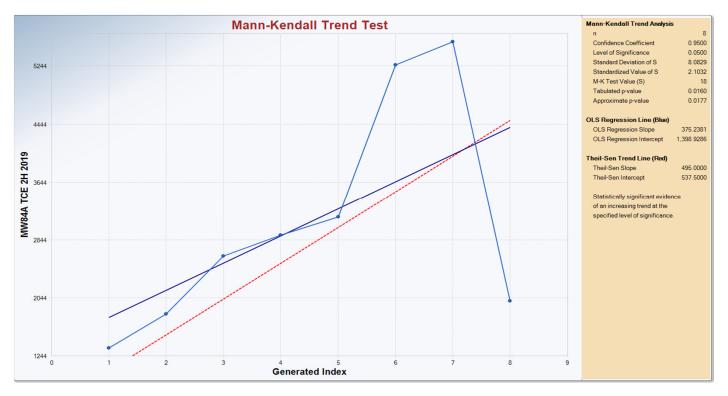
Mann-Kendall Trend Test Analysis

User Selected Options	
Date/Time of Computation	ProUCL 5.19/30/2019 11:23:24 AM
From File	WorkSheet.xls
Full Precision	OFF
Confidence Coefficient	0.95
Level of Significance	0.05

MW84A TCE 2H 2019

General Statistics

Number or Reported Events Not Used	0
Number of Generated Events	8
Number Values Reported (n)	8
Minimum	1350
Maximum	5580
Mean	3088
Geometric Mean	2771
Median	2765
Standard Deviation	1558
Coefficient of Variation	0.505


Mann-Kendall Test

M-K Test Value (S)	18
Tabulated p-value	0.016
Standard Deviation of S	8.083
Standardized Value of S	2.103
Approximate p-value	0.0177

Statistically significant evidence of an increasing trend at the specified level of significance.

Attachment B6: Trichloroethene URGA, Statistical Test 3, Nonparametric ANOVA, Second Reporting Period 2019

Mann-Kendall Statistical Analysis for TCE in MW84A

ATTACHMENT B7

URANIUM STATISTICAL TEST 2

Attachment B7: Uranium URGA, Statistical Test 2, Test of Proportions, Second Reporting Period 2019

	Uranium (mg/L)									
Date	Background	Background	Compliance	Compliance	Compliance					
	MW93A	MW420	MW84A	MW87A	MW90A					
Jul-17	0.000224	0.0001	0.000355	0.000571	0.0001					
Jan-18	0.0001	0.0001	0.0002	0.000681	0.0001					
Aug-18	0.000113	0.0001	0.000302	0.000722	0.0001					
Jan-19	0.0001	0.0001	0.000193	0.00042	0.0001					
Jul-19	0.00056	0.0001	0.00089	0.0001	0.0001					

mg/L = milligrams per liter BG = background DL = detection limit Nondetect values are 1/2 DL. Bolded values indicate a detected result.

[!]Test of Proportions

n(

Calculate the number of detections in background wells vs. compliance wells.

$X = Y = n_b = n_c = n = $	3 9 10 15 25	X = number of samples above DL in background wells Y = number of samples above DL in compliance wells $n_b =$ count of background well results/samples analyzed $n_c =$ count of compliance well results/samples analyzed n = total number of samples
P =	0.480	P=(x+y)/n
nP =	12	n=n _b +n _c
(1-P) =	13	

NOTE: If nP and n(1-P) are both $\geq = 5$, then the normal approximation may be used.

$P_b =$	0.300	P_b = proportion of detects in background wells
$P_c =$	0.600	P_c = proportion of detects in compliance wells
$S_D =$	0.204	S_D = standard error of difference in proportions
Z =	-1.471	$Z = (P_b - P_c)/S_D$
absolute value of $Z =$	1.471	

If the absolute value of Z exceeds the 97.5th percentile value of 1.96 from the standard normal distribution, this provides statistically significant evidence at the 5% significance level that the proportion of detects in one group of data exceeds the proportion of detects in the other group.

CONCLUSION: Because the absolute value of Z is less than 1.96, there is no statistical evidence that the proportion of samples with detected results differs between the background well and compliance well samples.

¹Section 8.1.2, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (EPA 1989).

ATTACHMENT B8

URANIUM-234 STATISTICAL TEST 2

Attachment B8: Uranium-234 URGA, Statistical Test 2, Test of Proportions, Second Reporting Period 2019

	Uranium-234 (pCi/L)									
Date	Background	Background	Compliance	Compliance	Compliance					
	MW93A	MW420	MW84A	MW87A	MW90A					
Jul-17	0.635	0.765	0.4835	0.79	0.63					
Jan-18	1.1	0.73	0.58	0.955	1.035					
Aug-18	0.78	0.78	0.525	0.865	1.305					
Jan-19	0.685	1.115	0.715	1.19	1.89					
Jul-19	2.38	0.71	1.77	1.01	1.67					

pCi/L = picocuries per liter BG = background DL = detection limit Nondetect values are 1/2 DL. **Bolded values indicate a detected result.**

[!]Test of Proportions

Calculate the number of detections in background wells vs. compliance wells.

$\begin{array}{l} X = \\ Y = \\ n_b = \\ n_c = \\ n = \end{array}$	1 3 10 15 25	X = number of samples above DL in background wells Y = number of samples above DL in compliance wells $n_b =$ count of background well results/samples analyzed $n_c =$ count of compliance well results/samples analyzed n = total number of samples
$\mathbf{P} =$	0.160	P=(x+y)/n
nP =	4	n=n _b +n _c
n(1-P) =	21	

NOTE: If nP and n(1-P) are both ≥ 5 , then the normal approximation may be used; however, because nP < 5 and/or n(1-P) < 5, the test was continued to determine if the conclusion, along with a simple evaluation of the data would be similar.

$P_b =$	0.100	P_b = proportion of detects in background wells
$P_c =$	0.200	P_c = proportion of detects in compliance wells
$S_D =$	0.150	S_D = standard error of difference in proportions
Z =	-0.668	$Z = (P_b - P_c)/S_D$
absolute value of $Z =$	0.668	

If the absolute value of Z exceeds the 97.5th percentile value of 1.96 from the standard normal distribution, this provides statistically significant evidence at the 5% significance level that the proportion of detects in one group of data exceeds the proportion of detects in the other group.

CONCLUSION: Because the absolute value of Z is less than 1.96, there is no statistical evidence that the proportion of samples with detected results differs between the background well and compliance well samples.

¹Section 8.1.2, *Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Final Guidance* (EPA 1989).

ATTACHMENT B9

STATISTICIAN STATEMENT

Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053 www.fourriversnuclearpartnership.com

September 30, 2019

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5511 Hobbs Road Kevil, KY 42053

Dear Ms. Layne:

I am submitting this statement as a supplementary document to the completed statistical analysis I performed on the groundwater data for the C-404 Hazardous Waste Landfill at the Paducah Site.

As an Environmental Scientist, with a bachelor's degree in science, I have over 20 years of experience in reviewing and assessing laboratory analytical results associated with environmental sampling and investigation activities. For the generation of these statistical analyses, my work was observed and reviewed by a senior chemist with Four Rivers Nuclear Partnership, LLC.

For this project, the statistical analyses on groundwater data from July 2017 through July 2019 were performed in accordance with the Hazardous Waste Management Facility Permit, Appendix E using Microsoft Excel 2010 and U.S. Environmental Protection Agency's (EPA's) ProUCL 5.1. The spreadsheets include the results for the following statistical tests:

- Test of Proportions
- Parametric Analysis of Variance (ANOVA)
- Nonparametric ANOVA
- 95% Upper Tolerance Limit
- Mann-Kendall

The statistical analyses procedures were based on EPA's *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Van Jennifer R.

APPENDIX C

C-404 HAZARDOUS WASTE LANDFILL LEACHATE ANALYTICAL RESULTS

March 21, 2019 Leachate Analytical Results

Paducah OREIS Report for 404L19-03

L1404L3-19 from: C404L on 3/21/2019 Media: WW SmpMethod: GR WL is @ 4.85' below rim of manhole. SM 3-21-19 Comments:

Analysis	Results	Units	Result Qual	Foot Note	Reporting Limit	Counting Error	TPU	Method	LabCode	V/V/A*
ANION										
Fluoride	5.88	mg/L			1			SW846-9056	GEL	I/X
FS										
Conductivity	516	umho/cm						FS	FS	/
Dissolved Oxygen	9.79	mg/L						FS	FS	/
рН	6.76	Std Unit						FS	FS	/
Redox	420	mV						FS	FS	/
Femperature	52.8	deg F						FS	FS	/
METAL										
Arsenic	0.00234	mg/L	J		0.005			SW846-6020	GEL	/ X
Barium	0.0735	mg/L			0.002			SW846-6020	GEL	/ X
Cadmium	0.001	mg/L	U		0.001			SW846-6020	GEL	/ X
Chromium	0.00547	mg/L	J		0.01			SW846-6020	GEL	S / X
Copper	0.0195	mg/L			0.001			SW846-6020	GEL	/ X
ron	1.05	mg/L			0.1			SW846-6020	GEL	/ X
Lead	0.00245	mg/L			0.002			SW846-6020	GEL	/ X
Mercury	0.000123	mg/L	J		0.0002			SW846-7470A	GEL	/ x
Nickel	0.0221	mg/L			0.002			SW846-6020	GEL	/ X
Selenium	0.005	mg/L	U		0.005			SW846-6020	GEL	/ X
Silver	0.001	mg/L	U		0.001			SW846-6020	GEL	/ x
Uranium	49.3	mg/L			0.004			SW846-6020	GEL	I/X
Zinc	0.0136	mg/L			0.01			SW846-6020	GEL	/ x
РРСВ										
PCB-1016	0.1	ug/L	U		0.1			SW846-8082	GEL	/ x
PCB-1221	0.1	ug/L	U		0.1			SW846-8082	GEL	/ x
PCB-1232	0.1	ug/L	U		0.1			SW846-8082	GEL	/ x
PCB-1242	0.1	ug/L	U		0.1			SW846-8082	GEL	/ x
PCB-1248	1.25	ug/L	-		0.1			SW846-8082	GEL	/ x
PCB-1254	0.1	ug/L	U		0.1			SW846-8082	GEL	/ X
PCB-1260	0.1	ug/L	U		0.1			SW846-8082	GEL	, / X
Polychlorinated biphenyl	1.25	ug/L	0		0.1			SW846-8082	GEL	1/X
RADS Cesium-137	2.05	pCi/L	U		6.84	8.72	8.72	EPA-901.1	GEL	/ x
Neptunium-237	1.46	pCi/L	0		1.1	1.02	1.03	ASTM-1475-00aM	GEL	/ x
		pCi/L					0.652			/ x
Plutonium-239/240	0.0572		U		1.38	0.652		HASL 300, Pu-11-RC M	GEL	
Technetium-99	163	pCi/L			11.3	9.84	20.6	HASL 300, Tc-02-RC M	GEL	/ X
Thorium-230	0.195	pCi/L	U		2.25	1.11	1.12	HASL 300, Th-01-RC M	GEL	/ X
Uranium-234	1940	pCi/L			119	323	417	HASL 300, U-02-RC M	GEL	/ x
Uranium-235 Uranium-238	329 22500	pCi/L pCi/L			93.4 75.5	152 1090	158 3220	HASL 300, U-02-RC M HASL 300, U-02-RC M	GEL GEL	/x /x
	22500	pei/E			75.5	1090	5220	HASE 300, 0-02-RC M	GEL	
VOA										
Trichloroethene	1	ug/L	U		1			SW846-8260B	GEL	/ x
WETCHEM										
Ammonia as Nitrogen	0.185	mg/L			0.05			EPA-350.1	GEL	/ x

Paducah OREIS Report for 404L19-03

TB404L3-19			from: QC	2	on	3/21/2019	Media: WQ	SmpMet	hod:	
Comments:										
Analysis	Results	Units	Result Qual	Foot Note	Reporting Limit	Counting Error	TPU	Method	LabCode	V/V/A*
VOA Trichloroethene	1	ug/L	U		1			SW846-8260B	GEL	

^{*}Verification/Validation/Assessment

June 20, 2019 Leachate Analytical Results

Paducah OREIS Report for 404L19-04

L1404L4-19 from: C404L on 6/20/2019 Media: WW SmpMethod: GR Water was very clear. Sampled a vertical profile from water surface to 1' below water surface. JB 6-20-19

Analysis	Results	Units	Result Qual	Foot Note	Reporting Limit	Counting Error	TPU	Method	LabCode	V/V/A*
ANION										
Fluoride	5.55	mg/L			1			SW846-9056	GEL	I/X.
FS										
Conductivity	550	umho/cm						FS	FS	1.
Dissolved Oxygen	4.83	mg/L						FS	FS	1.
рН	7.56	Std Unit						FS	FS	1.
Redox	408	mV						FS	FS	1.
Temperature	70.4	deg F						FS	FS	1.
METAL										
Arsenic	0.00225	mg/L	J		0.005			SW846-6020	GEL	/ x
Barium	0.0817	mg/L	E		0.004			SW846-6020	GEL	/ X
Cadmium	0.001	mg/L	U		0.001			SW846-6020	GEL	/ X
Chromium	0.01	mg/L	U		0.01			SW846-6020	GEL	/ X .
Copper	0.00719	mg/L			0.002			SW846-6020	GEL	/ X.
Iron	0.1	mg/L	U		0.1			SW846-6020	GEL	/ X.
Lead	0.002	mg/L	U		0.002			SW846-6020	GEL	/ x
Mercury	0.0002	mg/L	U		0.0002			SW846-7470A	GEL	/ x
Nickel	0.00282	mg/L	U U		0.002			SW846-6020	GEL	s/x
Selenium	0.005	mg/L	U		0.005			SW846-6020	GEL	/ X
Silver	0.001	mg/L	U		0.001			SW846-6020	GEL	/ x
Uranium	42.6	mg/L	0		0.01			SW846-6020	GEL	1/X
Zinc	0.00466	mg/L	J		0.01			SW846-6020	GEL	s/x
	0.00400		J		0.02			511040 0020	OLL	-,
РРСВ										
PCB-1016	0.0962	ug/L	UY1		0.0962			SW846-8082	GEL	/ X .
PCB-1221	0.0962	ug/L	U		0.0962			SW846-8082	GEL	/ X .
PCB-1232	0.0962	ug/L	U		0.0962			SW846-8082	GEL	/ X .
PCB-1242	0.0962	ug/L	U		0.0962			SW846-8082	GEL	/ X .
PCB-1248	0.561	ug/L			0.0962			SW846-8082	GEL	/ X
PCB-1254	0.0962	ug/L	U		0.0962			SW846-8082	GEL	/ X
PCB-1260	0.0962	ug/L	U		0.0962			SW846-8082	GEL	/ X
Polychlorinated biphenyl	0.561	ug/L			0.0962			SW846-8082	GEL	I/X
RADS										
Cesium-137	3.28	pCi/L	U		7.05	6.89	6.9	EPA-901.1	GEL	/ X .
Neptunium-237	0.89	pCi/L	U		1.6	1.1	1.11	ASTM-1475-00aM	GEL	/ X .
Plutonium-239/240	-0.0495	pCi/L	U		0.989	0.427	0.428	HASL 300, Pu-11-RC M	GEL	/ X .
Technetium-99	466	pCi/L			21.7	22.5	56	HASL 300, Tc-02-RC M	GEL	S / X / BH-LABP
Thorium-230	-0.0178	pCi/L	U		2.06	0.917	0.918	HASL 300, Th-01-RC M	GEL	/ X
Uranium-234	1480	pCi/L			150	323	391	HASL 300, U-02-RC M	GEL	/ X .
Uranium-235	195	pCi/L			64.9	134	138	HASL 300, U-02-RC M	GEL	/ X .
Uranium-238	16300	pCi/L			96.9	1050	2640	HASL 300, U-02-RC M	GEL	/ x .
VOA										
Trichloroethene	1	ug/L	U		1			SW846-8260B	GEL	/ x
WETCHEM										
Ammonia as Nitrogen	0.457	mg/L	BN		0.05			EPA-350.1	GEL	s / x

Paducah OREIS Report for 404L19-04

TB404L4-19			from: QC	2	on	6/20/2019	Media: WQ	SmpMet	hod:	
Comments:										
Analysis	Results	Units	Result Qual	Foot Note	Reporting Limit	Counting Error	TPU	Method	LabCode	V/V/A*
VOA Trichloroethene	1	ug/L	U		1			SW846-8260B	GEL	

^{*}Verification/Validation/Assessment

APPENDIX D

C-404 HAZARDOUS WASTE LANDFILL ANNUAL HYDRAULIC FLOW RATE AND DIRECTION

2019 ANNUAL REPORT OF THE C-404 HAZARDOUS WASTE LANDFILL HYDRAULIC FLOW RATE AND DIRECTION

The Hazardous Waste Management Facility Permit, KY8-890-008-982, (Permit) requires annual determination of average hydraulic flow rate and direction of flow in the uppermost aquifer at the C-404 Hazardous Waste Landfill (C-404 Landfill). The uppermost aquifer below C-404 Landfill is the Regional Gravel Aquifer (RGA). Water level measurements currently are taken from several monitoring wells (MWs) at the perimeter of the C-404 Landfill on a semiannual basis. The water levels used for this analysis (taken on January 29 and July 29, 2019) were measured as closely as possible and within a 24-hour period to ensure the comparability of the data. Table D.1 documents the datums used for the water level measurements. These measurements were used to plot the potentiometric surface of the upper RGA for the January and July 2019 semiannual sampling events.

Contours for each potentiometric surface were drawn after water level data were corrected for barometric pressure; groundwater hydraulic gradients then are calculated from the contours. The average of the gradients measured during this reporting period is the annual average groundwater hydraulic gradient for the upper RGA and is calculated at 1.22×10^{-3} ft/ft.

The hydraulic conductivity (K) values reported in the *Resource Conservation and Recovery Act (RCRA) Part B Permit Modification for Inclusion of C-404 Low-Level Radioactive/Hazardous Waste Landfill* (June 1992) were determined by multi-well testing and range from 21 to 140 ft/day $(7.41 \times 10^{-3} \text{ to} 4.94 \times 10^{-2} \text{ cm/s})$.

Multiplication of the hydraulic gradient (i) and the hydraulic conductivity (K) yields the specific discharge (q) for a unit area of the RGA. Annual average linear-flow velocity (v) is calculated by multiplying the hydraulic conductivity by the gradient and dividing by the porosity (n). It is assumed that (n) equals 25 percent in the RGA beneath the C-404 Landfill.

Table D.2 summarizes the annual average results of the calculations. Table D.3 presents the calculation information for the annual groundwater flow rate. The January and July potentiometric surface data of the upper RGA are presented in Tables D.4 and D.5, and potentiometric surface maps are presented in Figures D.1 and D.2. All water level measurements for January 29, 2019, and July 29, 2019, were measured using the reference points specified in the Permit, with the exception of MW90A and MW420. The Permit specified these reference points as being the Well Wizard plate. Because these MWs no longer have a Well Wizard plate, an alternate reference point was needed. Additionally, wells MW84, MW87, and MW93 were abandoned in June 2019, with replacement completed (new wells MW84A, MW87A, and MW93A) on July 19, 2019. Top of outside casing was the reference point for water level measurements in July for these new wells.

Well	Datur	Datum Point							
wen	January 29, 2019	July 29, 2019	Elevation (ft amsl)						
MW84	Well Wizard Plate	NA	375.82						
MW84A	NA	Top of Outside Casing	375.29						
MW87	Well Wizard Plate	NA	375.73						
MW87A	NA	Top of Outside Casing	375.30						
MW90A	Top of Inside Casing	Top of Inside Casing	374.15						
MW93	Well Wizard Plate	NA	377.60						
MW93A	NA	Top of Outside Casing	378.67						
MW420	Top of Inside Casing		377.55						
MW420		Top of Outside Casing	378.18						
NA = not applicable									

Table D.1. Measurement Control Datums Used for Upper Regional Gravel Aquifer C-404 Monitoring Wells During 2019

NA = not applicable

The potentiometric contours depict the directions of hydraulic flow during each sampling event. Hydraulic flow direction beneath the C-404 Landfill generally trends northeastward, but commonly varies from northeast to north.

Table D.2. C-404 Landfill Annual Average Groundwater Flow Rate for 2019

Hydraulic Conductivity (K) Range	Annual Average Specific Discharge (q) ft/day (cm/s)	Annual Average Linear Flow Velocity (v) ft/day (cm/s)		
High K	0.170 (6.01 x 10 ⁻⁵)	0.681 (2.40 x 10 ⁻⁴)		
Low K	0.0255 (9.01 x 10 ⁻⁶)	0.102 (3.60 x 10 ⁻⁵)		

	Uppo	er RGA K = 2	21 ft/d				
	i (ft/ft)	q (ft/d)	q (cm/s)	v (ft/d)	v (cm/s)		
January 2019	1.02 x 10 ⁻³	0.0214	7.54 x 10 ⁻⁶	0.0855	3.02 x 10 ⁻⁵		
July 2019	1.41 x 10 ⁻³	0.0297	1.05 x 10 ⁻⁵	0.119	4.19 x 10 ⁻⁵		
Annual Average	1.22 x 10 ⁻³	0.0255	9.01 x 10 ⁻⁶	0.102	3.60 x 10⁻⁵		
	Uppe	r RGA K = 1	40 ft/d				
	i (ft/ft)	q (ft/d)	q (cm/s) v (ft/c		v (cm/s)		
January 2019	1.02 x 10 ⁻³	0.142	5.03 x 10 ⁻⁵	0.570	2.01 x 10 ⁻⁴		
July 2019	uly 2019 1.41 x 10 ⁻³		6.99 x 10 ⁻⁵	0.792	2.80 x 10 ⁻⁴		
Annual Average	1.22 x 10 ⁻³	0.170	6.01 x 10 ⁻⁵	0.681	2.40 x 10 ⁻⁴		
q = K*i			v = q/n				
where:			where:				
q = specific discharge (pe	er unit area)	v = average linear velocity					
K = hydraulic conductivit	ty	q = specific discharge					
i = hydraulic gradient (fro	om potentiometric man)	$n_e = porosity$ (assumed to be 25%)					

ft/ft = foot per footft/d = foot per day

cm/s = centimeter/second

C-404 Landfill (January 2019) Water Levels										
			Raw Data Corrected I							
Date	Time	Well	Datum Elev*	BP	Delta BP	DTW	Elev	DTW	Elev	
			(ft amsl)	(in Hg)	(ft H ₂ O)	(ft)	(ft amsl)	(ft)	(ft amsl)	
1/29/2019	8:54	MW67	374.89	30.26	-0.01	48.39	326.50	48.38	326.52	
1/29/2019	8:39	MW76	376.56	30.24	0.01	50.06	326.50	50.07	326.49	
1/29/2019	8:10	MW84	375.82	30.24	0.01	49.33	326.49	49.34	326.48	
1/29/2019	8:46	MW87	375.73	30.24	0.01	49.28	326.45	49.29	326.44	
1/29/2019	8:42	MW90A	374.15	30.24	0.01	47.80	326.35	47.81	326.34	
1/29/2019	8:30	MW93	377.60	30.24	0.01	50.91	326.69	50.92	326.68	
1/29/2019	9:20	MW227	378.81	30.26	-0.01	52.09	326.72	52.08	326.74	
1/29/2019	8:23	MW333	377.33	30.24	0.01	50.44	326.89	50.45	326.88	
1/29/2019	8:05	MW337	374.39	30.24	0.01	47.76	326.63	47.77	326.62	
1/29/2019	8:07	MW338	374.85	30.24	0.01	48.11	326.74	48.12	326.73	
1/29/2019	8:37	MW420	377.55	30.24	0.01	51.02	326.53	51.03	326.52	
Initial Baror	netric Pr	essure	30.25							

Table D.4. Barometric Pressure Corrections

Elev = elevation

amsl = above mean sea level

BP = barometric pressure

DTW = depth to water in feet below datum

*On 1/29/2019, water levels were measured from alternate reference points to those specified in the Permit (Well Wizard Plate). Depth to water was measured from the top of inner casing in MW90A and MW420. MW90A and MW420 no longer have a Well Wizard Plate.

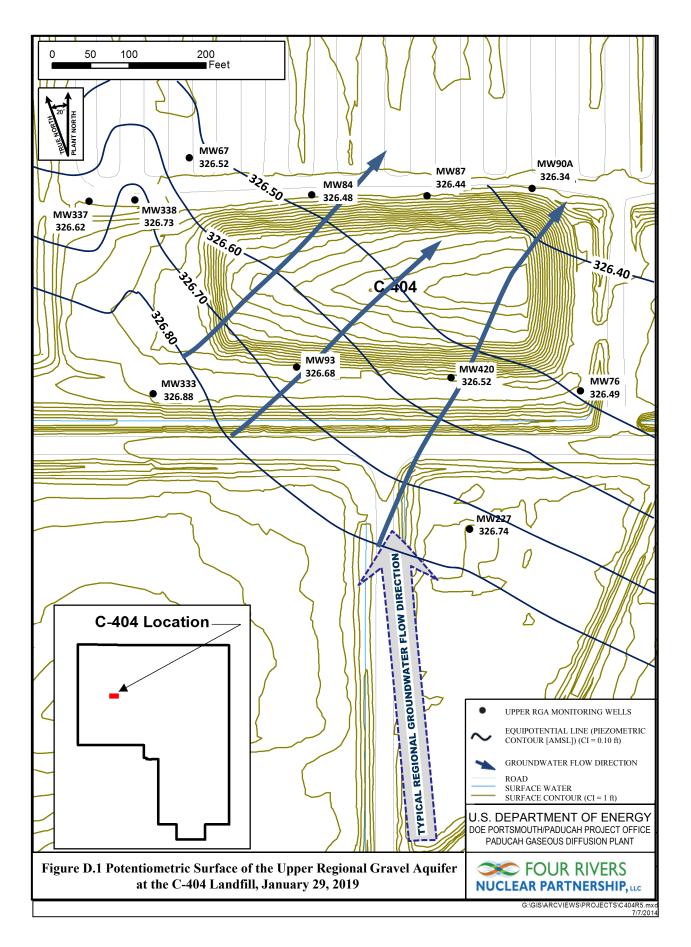
**Assumes a barometric efficiency of 1.0. Apparent discrepancies in the Corrected Data elevation values result from numerical rounding of the values.

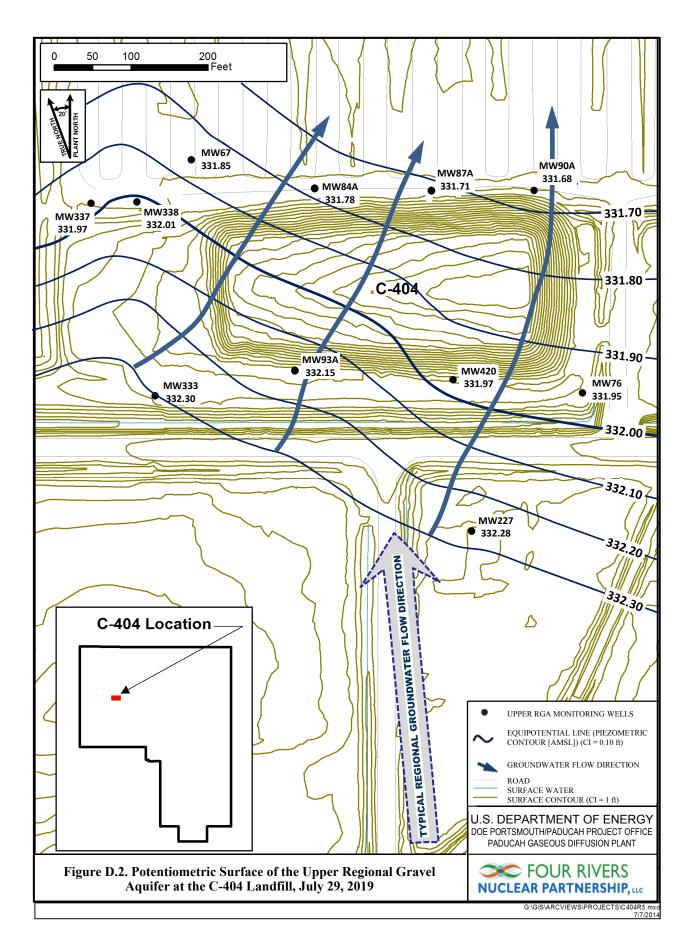
C-404 Landfill (July 2019) Water Levels										
						Raw Data Corrected Da				
Date	Time	Well	Datum Elev*	BP	Delta BP	DTW	Elev	DTW	Elev	
			(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)	
7/29/2019	10:25	MW67	375.02	30.01	-0.01	43.19	331.83	43.18	331.85	
7/29/2019	10:27	MW76	376.68	30.01	-0.01	44.75	331.93	44.74	331.95	
7/29/2019	10:20	MW84A	375.29	30.01	-0.01	43.53	331.76	43.52	331.78	
7/29/2019	10:15	MW87A	375.30	30.01	-0.01	43.60	331.70	43.59	331.71	
7/29/2019	10:03	MW90A	374.15	30.01	-0.01	42.48	331.67	42.47	331.68	
7/29/2019	10:40	MW93A	378.67	30.01	-0.01	46.54	332.13	46.53	332.15	
7/29/2019	10:56	MW227	378.81	29.99	0.01	46.52	332.29	46.53	332.28	
7/29/2019	10:46	MW333	377.35	30.01	-0.01	45.06	332.29	45.05	332.30	
7/29/2019	9:28	MW337	374.53	30.03	-0.03	42.60	331.93	42.57	331.97	
7/29/2019	9:29	MW338	374.86	30.03	-0.03	42.88	331.98	42.85	332.01	
7/29/2019	10:30	MW420	378.18	30.01	-0.01	46.23	331.95	46.22	331.97	
Initial Baron	netric Pres	ssure	30.00							

Table D.5. Barometric Pressure Corrections

Initial Barometric Pressure

Elev = elevation


amsl = above mean sea level


BP = barometric pressure

DTW = depth to water in feet below datum

*On 7/29/2019, water levels were measured from alternate reference points to those specified in the Permit (Well Wizard Plate) for MW90A and MW420. Depth to water was measured from the top of inside casing in MW90A and from the top of the outside casing in MW420. MW90A and MW420 no longer have a Well Wizard Plate. MW84A, MW87A, and MW93A are new wells, completed July 19, 2019. The datum in these wells was the top of outside casing.

**Assumes a barometric efficiency of 1.0. Apparent discrepancies in the Corrected Data elevation values result from numerical rounding of the values.

