C-746-S&T Landfills First Quarter Calendar Year 2018 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky

This document is approved for public release per review by:

Social Hayden 5-23-18

C-746-S&T Landfills
First Quarter Calendar Year 2018
(January–March)
Compliance Monitoring Report,
Paducah Gaseous Diffusion Plant,
Paducah, Kentucky

Date Issued—May 2018

U.S. DEPARTMENT OF ENERGY Office of Environmental Management

Prepared by
FOUR RIVERS NUCLEAR PARTNERSHIP, LLC,
managing the
Deactivation and Remediation Project at the
Paducah Gaseous Diffusion Plant
under Contract DE-EM0004895

CONTENTS

FI	GURES		v
TA	ABLES		v
Α(CRONYMS		vii
1.	INTRODUC	TION	1
		GROUND	
	1.2 MONI	TORING PERIOD ACTIVITIES	1
	1.2.1	Groundwater Monitoring	
	1.2.2	Methane Monitoring	
	1.2.3	Surface Water Monitoring	
	1.3 KEY I	RESULTS	4
2.	DATA EVA	LUATION/STATISTICAL SYNOPSIS	11
- .		ISTICAL ANALYSIS OF GROUNDWATER DATA	
	2.1.1	Upper Continental Recharge System	
	2.1.2	Upper Regional Gravel Aquifer	12
	2.1.3	Lower Regional Gravel Aquifer	13
	2.2 DATA	VERIFICATION AND VALIDATION	13
3.	PROFESSIO	ONAL GEOLOGIST AUTHORIZATION	15
4.	REFERENC	ES	17
Αŀ	PPENDIX A:	GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM	A-1
Αŀ	PPENDIX B:	FACILITY INFORMATION SHEET	B-1
Αŀ	PPENDIX C:	GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS	C-1
Αŀ	PPENDIX D:	STATISTICAL ANALYSES AND QUALIFICATION STATEMENT	D-1
Αŀ	PPENDIX E:	GROUNDWATER FLOW RATE AND DIRECTION	E-1
Αŀ	PPENDIX F:	NOTIFICATIONS	F-1
Αŀ	PPENDIX G:	CHART OF MCL AND UTL EXCEEDANCES	G-1
Αŀ	PPENDIX H:	METHANE MONITORING DATA	H-1
ΑĪ	PPENDIX I	SURFACE WATER ANALYSES AND WRITTEN COMMENTS	I-1

FIGURES

1.	C-746-S&T Landfills Groundwater Monitoring Well Network	2
	C-746-S&T Landfills Surface Water Monitoring Locations	
	TABLES	
1	Summary of MCL Exceedances	6
	Exceedances of Statistically Derived Historical Background Concentrations	
3.	Exceedances of Current Background UTL in Downgradient Wells	6
4.	C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight	
	Quarters	8
5.	Exceedances of Current Background UTL in Downgradient UCRS Wells	9
	Monitoring Wells Included in Statistical Analysis	

ACRONYMS

CFR Code of Federal Regulations

CY calendar year

KAR Kentucky Administrative Regulations
KDWM Kentucky Division of Waste Management

KRS Kentucky Revised Statutes
LEL lower explosive limit

LRGA Lower Regional Gravel Aquifer MCL maximum contaminant level

MW monitoring well

RGA Regional Gravel Aquifer

UCRS Upper Continental Recharge System URGA Upper Regional Gravel Aquifer

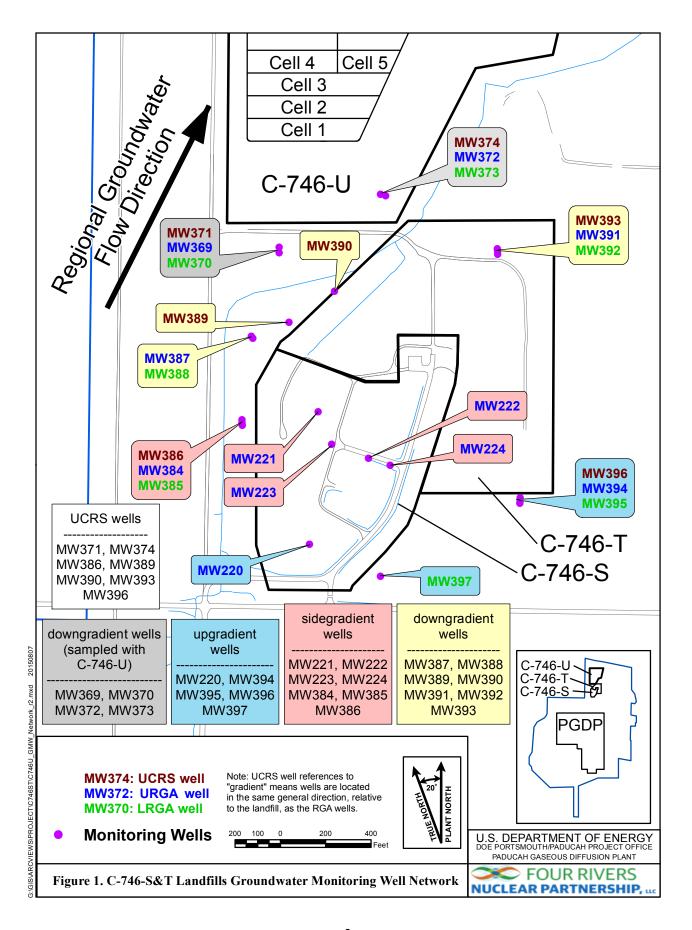
UTL upper tolerance limit

1. INTRODUCTION

This report, C-746-S&T Landfills First Quarter Calendar Year 2018 (January–March) Compliance Monitoring Report, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, is being submitted in accordance with Solid Waste Landfill Permit Number SW07300014, SW07300015, SW07300045.

The Groundwater, Surface Water, Leachate, and Methane Monitoring Sample Data Reporting Form is provided in Appendix A. The facility information sheet is provided in Appendix B. Groundwater analytical results are recorded on the Kentucky Division of Waste Management (KDWM) Groundwater Sample Analyses forms, which are presented in Appendix C. The statistical analyses and qualification statement are provided in Appendix D. The groundwater flow rate and direction determinations are provided in Appendix E. Appendix F contains the notifications for all permit required parameters whose concentrations exceed the maximum contaminant level (MCL) for Kentucky solid waste facilities provided in 401 KAR 47:030 § 6 and for all permit required parameters listed in 40 CFR § 302.4, Appendix A, that do not have an MCL and whose concentrations exceed the historical background concentrations [upper tolerance limit (UTL), as established at a 95% confidence]. Appendix G provides a chart of exceedances of the MCL and historical UTL that have occurred since the fourth quarter calendar year (CY) 2002. Methane monitoring results are documented on the approved C-746-S&T Landfills Methane Monitoring Report form provided in Appendix H. The form includes pertinent remarks/observations as required by 401 KAR 48:090 § 5. Surface water results are provided in Appendix I.

1.1 BACKGROUND


The C-746-S&T Landfills are closed, solid waste landfills located north of the Paducah Site and south of the C-746-U Landfill. Construction and operation of the C-746-S Residential Landfill were permitted in April 1981 under Solid Waste Landfill Permit Number 073-00014. The permitted C-746-S Landfill area covers about 16 acres and contains a clay liner with a cover of compacted soil. The C-746-S Landfill was a sanitary landfill for the Paducah Gaseous Diffusion Plant operations. The C-746-S Landfill is closed and has been inactive since July 1995.

Construction and operation of the C-746-T Inert Landfill were permitted in February 1985 under Solid Waste Landfill Permit Number 073-00015. The permitted C-746-T Landfill area covers about 20 acres and contains a clay liner with a cover of compacted soil. The C-746-T Landfill was used to dispose of construction debris (e.g., concrete, wood, and rock) and steam plant fly ash from the Paducah Gaseous Diffusion Plant operations. The C-746-T Landfill is closed and has been inactive since June 1992.

1.2 MONITORING PERIOD ACTIVITIES

1.2.1 Groundwater Monitoring

Three zones are monitored at the site: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). There are 23 monitoring wells (MWs) under permit for the C-746-S&T Landfills: 5 UCRS wells, 11 URGA wells, and 7 LRGA wells. A map of the MW locations is presented in Figure 1. All MWs listed on the permit were sampled this quarter except MW389 (screened in the UCRS), which had an insufficient amount of water to obtain a water level measurement or sample; therefore, there are no analytical results for this location.

Consistent with the approved Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, (Groundwater Monitoring Plan) (LATA Kentucky 2014) UCRS wells are included in the monitoring program. Groundwater flow gradients are downward through the UCRS, but the underlying Regional Gravel Aquifer (RGA) flows laterally. Groundwater flow in the RGA is typically in a north-northeasterly direction in the vicinity of the C-746-S&T Landfills. The Ohio River and lower reaches of Little Bayou Creek are the discharge areas for the RGA flow system from the vicinity of the landfills. Consistent with the conceptual site model, the constituent concentrations in UCRS wells are considered to be representative only of the conditions local to the well or sourced from overlying soils; thus, no discussion of potential "upgradient" sources is relevant to the discussion for the UCRS. Nevertheless, a UTL for background also has been calculated for UCRS wells using concentrations from UCRS wells located in the same direction (relative to the landfill) as those RGA wells identified as upgradient. The results from these wells are considered to represent historical "background" for UCRS water quality. Similarly, other gradient references for UCRS wells are identified using the same gradient references (relative to the landfill) that are attributed to nearby RGA wells. Results from UCRS wells are compared to this UTL, and exceedances of these values are reported in the quarterly report.

Groundwater sampling was conducted within the first quarter 2018 in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014) using the Deactivation and Remediation Contractor, procedure CP4-ES-2101, *Groundwater Sampling*. Appropriate sample containers and preservatives were utilized. The laboratory also used U.S. Environmental Protection Agency-approved methods, as applicable. The parameters specified in Permit Condition GSTR0003, Special Condition 3, were analyzed for all locations sampled.

The groundwater flow rate and direction determination are provided in Appendix E. Depth-to-water was measured on January 29, 2018, in MWs of the C-746-S&T Landfills (see Table E.1); in MWs of the C-746-U Landfill; and in MWs of the surrounding region (shown on Figure E.3). Water level measurements in 39 vicinity wells define the potentiometric surface for the RGA. Normal regional flow in the RGA is north to northeastward, toward the Ohio River. During January, RGA groundwater flow in the area of the landfill was oriented primarily northeastward. The hydraulic gradient for the RGA in the vicinity of the C-746-S&T Landfills in January was 4.19×10^{-4} ft/ft, while the gradient beneath the C-746-S&T Landfills was 3.18×10^{-4} ft/ft. Calculated groundwater flow rates (average linear velocities) for the RGA at the C-746-S&T Landfills range from 0.54 to 1.22 ft/day (see Table E.3).

1.2.2 Methane Monitoring

Methane monitoring was conducted in accordance with 401 KAR 48:090 § 5 and the approved Explosive Gas Monitoring Program (KEEC 2011), which is Technical Application, Attachment 12, of the Solid Waste Landfill Permit. Landfill operations staff monitored for the occurrence of methane in 1 on-site building location, 4 locations along the landfill boundary, and 27 passive-gas vents located in Cells 1, 2, and 3 of the C-746-S Landfill on March 8, 2018. See Appendix H for a map (Figure H.1) of the monitoring locations. Monitoring identified 0% of the lower explosive limit (LEL) of methane at all locations, which is compliant with the regulatory requirement of < 100% LEL at boundary locations and < 25% LEL at all other locations. The results are documented on the approved C-746-S&T Landfills Methane Log provided in Appendix H.

1.2.3 Surface Water Monitoring

Surface water was monitored, as specified in 401 KAR 48:300 § 2, and the approved Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky (PRS 2008), which is Technical Application

Attachment 24, of the Solid Waste Landfill Permit. Sampling was performed at the three locations (see Figure 2) monitored for the C-746-S&T Landfills. The landfills have an upstream location, L135; a downstream location, L154; and a location capturing runoff from the landfill surface, L136.

1.3 KEY RESULTS

Groundwater data were evaluated in accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014) which is Technical Application, Attachment 25, of the Solid Waste Landfill Permit. Parameters that had concentrations that exceeded their respective MCL are listed in Table 1. Those constituents that exceeded their respective MCL were further evaluated against their historical background UTL. Table 2 identifies parameters (without MCLs) with concentrations that exceeded the statistically derived historical background UTL during the first quarter 2018, as well as parameters that exceeded their MCL and also exceeded their historical background UTL. Those constituents (present in downgradient wells) that exceed their historical background UTL were evaluated against their current UTL-derived background using the most recent eight quarters of data from wells considered to be upgradient (Table 3).

The notification of parameters that exceeded the MCL has been submitted electronically to KDWM, in accordance with 401 KAR 48:300 § 7, prior to the submittal of this report.

The constituents that exceeded their MCL were subjected to a comparison against the UTL concentrations calculated using historical concentrations from wells identified as background. In accordance with the approved Groundwater Monitoring Plan, the MCL exceedances for trichloroethene in MW372, MW373, MW391, and MW392 (downgradient wells) do not exceed the historical background concentration and are considered to be a Type 1 exceedance—not attributable to the C-746-S&T Landfills.

The MCL exceedances for beta activity in MW370, MW387, and MW388 (downgradient wells) were shown to exceed both the historical background UTL and the current background UTL; therefore, preliminarily they were considered to be Type 2 exceedances because the source(s) of these exceedances is not determined. To evaluate these preliminary Type 2 exceedances further, the parameter was subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data. The results are summarized in Table 4. MW387 and MW388 had no increasing Mann-Kendall trends for beta activity and are considered to be Type 1 exceedances (not attributable to the landfill). MW370 had an increasing trend that is discussed in detail later in this section.

This report serves as the notification of parameters that had statistically significant increased concentrations relative to historical background concentrations, as required by Permit Number SW07300014, SW07300015, SW07300045, Condition GSTR0003, Standard Requirement 8, and 401 KAR 48:300 § 7.

The constituents listed in Table 2 that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL, developed using the most recent eight quarters of data from wells identified as upgradient, to identify if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the evaluation against current background UTL for those constituents present in downgradient wells with historical UTL exceedances. In accordance with the approved Groundwater Monitoring Plan, constituents in downgradient wells that exceed the historical UTL, but do not exceed the current UTL, are considered not to have a landfill source; therefore, they are a Type 1 exceedance.

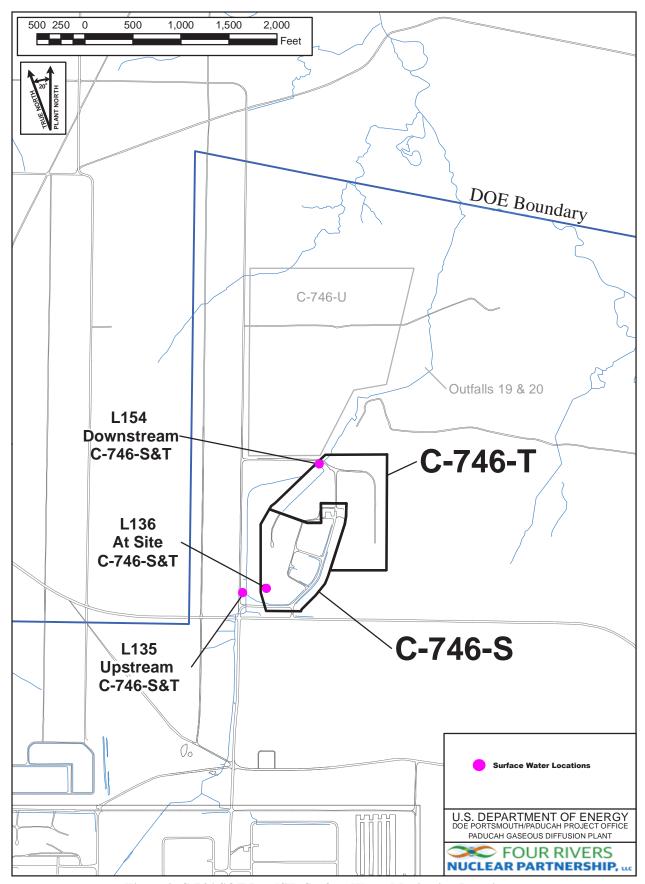


Figure 2. C-746-S&T Landfills Surface Water Monitoring Locations

Table 1. Summary of MCL Exceedances

UCRS	URGA	LRGA	
MW390: Beta activity	MW372: Trichloroethene	MW370: Beta activity	
	MW384: Beta activity	MW373: Trichloroethene	
	MW387: Beta activity	MW385: Beta activity	
	MW391: Trichloroethene	MW388: Beta activity	
	MW394: Trichloroethene	MW392: Trichloroethene	

Table 2. Exceedances of Statistically Derived Historical Background Concentrations

UCRS*	URGA	LRGA
MW386: Oxidation-reduction	MW221: Oxidation-reduction	MW370: Beta activity, oxidation-
potential	potential	reduction potential, radium-226,
		sulfate, technetium-99
MW390: Beta activity, oxidation-	MW222: Aluminum	MW373: Calcium, conductivity,
reduction potential, technetium-99		dissolved solids, magnesium,
		oxidation-reduction potential, sulfate
MW393: Oxidation-reduction	MW369: Technetium-99	MW385: Beta activity, sulfate,
potential		technetium-99
MW396: Oxidation-reduction	MW372: Calcium, dissolved solids,	MW388: Beta activity,
potential	magnesium, radium-226, sulfate	oxidation-reduction potential,
		radium-226, sulfate, technetium-99
	MW384: Beta activity, sulfate,	MW392: Oxidation-reduction
	technetium-99	potential
	MW387: Beta activity, magnesium,	MW397: Oxidation-reduction
	sulfate, technetium-99	potential
	MW391: Sulfate	

^{*}Gradients in the UCRS are downward. UCRS gradient designations are identified using the same gradient reference (relative to the landfill) that is attributed to nearby RGA wells.

Sidegradient wells: MW221, MW222, MW223, MW224, MW384, MW385, MW386

Downgradient wells: MW369, MW370, MW372, MW373, MW387, MW388, MW389, MW390, MW391, MW392, MW393

Upgradient wells: MW220, MW394, MW395, MW396, MW397

Table 3. Exceedances of Current Background UTL in Downgradient Wells

URGA	LRGA
MW369: Technetium-99	MW370: Beta activity, radium-226, sulfate, technetium-99
MW372: Calcium, magnesium, sulfate	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
MW387: Beta activity, magnesium, sulfate, technetium-99	MW388: Beta activity, radium-226, sulfate, technetium-99
MW391: Sulfate	

The constituents listed in Table 3 that exceed both the historical UTL and the current UTL do not have an identified source and are considered preliminarily to be a Type 2 exceedance, per the approved Groundwater Monitoring Plan. To evaluate these preliminary Type 2 exceedances further, the parameters were subjected to the Mann-Kendall statistical test for trend using the most recent eight quarters of data.

The results are summarized in Table 4. All but three of these preliminary Type 2 exceedances in downgradient wells—beta activity in MW370 and radium-226 and sulfate in MW388—did not have an increasing trend and are considered to be Type 1 exceedances (not attributable to the landfill).

The Mann-Kendall statistical test indicates that there is an increasing trend in beta activity in MW370 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, it is considered a Type 2 exceedance (source unknown). The source of the trend is believed to be unrelated to the C-746-S&T Landfills for the following reasons.

- There is a known upgradient regional source of beta activity associated with the technetium-99 Northwest Plume (see the Groundwater Monitoring Plan);
- Although the deeper (LRGA) MW370 shows an increasing trend, the shallower, collocated (URGA) well, MW369, does not exceed statistically derived historical background concentrations for beta activity (refer to Table 2); and
- The recent beta activity in MW370 is within the range of historical levels (3.66–84.6 pCi/L) of beta activity since 2002.

The Mann-Kendall statistical test indicates that there is an increasing trend of radium-226 in MW388 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, this is considered a Type 2 exceedance (source unknown). The source of the trend is believed to be unrelated to the C-746-S&T Landfills because the shallower, collocated URGA well, MW387, does not exceed the historical UTL for radium-226 (refer to Table 2). Moreover, statistical determinations of elevated activity of radium-226 occur among down-, side- and upgradient monitoring wells at the C-746-S&T Landfills, suggestive that the radium-226 is unrelated to a landfill source.

The Mann-Kendall statistical test indicates that there is an increasing trend of sulfate in MW388 over the past eight quarters. In accordance with the Groundwater Monitoring Plan, this is considered a Type 2 exceedance (source unknown). The source of the trend is believed to be unrelated to the C-746-S&T Landfills because the shallower, collocated URGA well, MW387, does not show the increasing Mann-Kendall trend for sulfate (refer to Table 4).

In accordance with Permit Condition GSTR0003, Variance 2, of the Solid Waste Permit, the groundwater assessment and corrective action requirements of 401 *KAR* 48:300 § 8 shall not apply to the C-746-S Residential Landfill and the C-746-T Inert Landfill. This variance in the permit provides that groundwater assessment and corrective actions for these landfills will be conducted in accordance with the corrective action requirements of 401 *KAR* 34:060 § 12.

Table 4. C-746-S&T Landfills Downgradient Wells Trend Summary Utilizing the Previous Eight Quarters

Location	Well ID	Parameter	Sample Size	Alpha ¹	p-Value ²	S^3	Var(S)4	Sen's Slope ⁵	Kendall Correlation ⁶	Decision ⁷
	MW369	Technetium-99	8	0.05	0.199	8	65.333	3.89	0.286	No Trend
		Beta Activity	8	0.05	0.031	16	65.333	3.84	0.571	Positive Trend
	MW270	Radium-226	8	0.05	0.138	10	65.333	0.06	0.357	No Trend
	MW370	Sulfate ⁸	8	0.05	0.309	5	64.333	0.17	0.182	No Trend
		Technetium-99	8	0.05	0.274	6	65.333	1.89	0.214	No Trend
		Calcium	8	0.05	0.054	-14	65.333	-0.99	-0.500	No Trend
	MW372	Magnesium	8	0.05	0.007	-20	65.333	-0.73	-0.714	Negative Trend
		Sulfate	8	0.05	0.016	-18	65.333	-7.58	-0.643	Negative Trend
		Calcium	8	0.05	0.452	-2	65.333	-0.34	-0.071	No Trend
	MW373	Conductivity	8	0.05	0.360	4	65.333	4.45	0.143	No Trend
C-746- S&T		Dissolved Solids	8	0.05	0.452	-2	65.333	-1.25	-0.071	No Trend
Landfills		Magnesium	8	0.05	0.452	-2	65.333	-0.10	-0.071	No Trend
		Sulfate ⁸	8	0.05	0.040	-15	64.333	-2.79	-0.546	Negative Trend
		Beta Activity	8	0.05	0.089	12	65.333	11.9	0.429	No Trend
	MW207	Magnesium	8	0.05	0.089	12	65.333	0.34	0.429	No Trend
	MW387	Sulfate	8	0.05	0.054	14	65.333	1.45	0.500	No Trend
		Technetium-99	8	0.05	0.199	8	65.333	14.1	0.286	No Trend
		Beta Activity	8	0.05	0.031	-16	65.333	-7.75	-0.571	Negative Trend
	MW200	Radium-226	8	0.05	0.016	18	65.333	0.08	0.643	Positive Trend
	MW388	Sulfate ⁸	8	0.05	0.040	15	64.333	0.59	0.546	Positive Trend
		Technetium-99	8	0.05	0.054	-14	65.333	-12.4	-0.500	No Trend
	MW391	Sulfate	8	0.05	0.089	-12	65.333	-1.88	-0.429	No Trend

Footnotes:

Note: Statistics generated using XLSTAT.

An alpha of 0.05 represents a 95% confidence interval.

² The p-value represents the risk of acceptance the H_a hypothesis of a trend, in terms of a percentage.

³ The initial value of the Mann-Kendall statistic, S, is assumed to be 0 (e.g., no trend). If a data value from a later time period is higher than a data value from an earlier time period, S is incremented by 1. On the other hand, if the data value from a later time period is lower than a data value sampled earlier, S is decremented by 1. The net result of all such increments and decrements yields the final value of S. A very high positive value of S is an indicator of an increasing trend, and a very low negative value indicates a decreasing trend.

⁴VAR(S) represents the variance of S in the sample set and takes into account statistical ties.

⁵ The magnitude of trend is predicted by the Sen's Slope. Here, the slope is described as the median of all $(x_j - x_k)/(j-k)$, where x is a data point and j and k are values of time.

⁶ Kendall's correlation is described as the difference of concordant pairs and discordant pairs, also taking sample size and statistical ties into account. When the Kendall's correlation is positive, it indicates an increasing trend and when it is negative, it indicates a decreasing trend.

The Mann-Kendall decision operates on two hypotheses, the H₀ and H_a. H₀ assumes there is no trend in the data, whereas H_a assumes either a positive or negative trend. Two different tests

were run to test for positive or negative trends. This table reports the test with the lowest p-value.

⁸ Due to ties in the data, XLSTAT applied a continuity correction to calculate an approximate p-value.

The statistical evaluation of current UCRS wells against the current UCRS background UTL identified UCRS well MW390 with beta activity and technetium-99 values that exceed both the historical and current backgrounds (Table 5). Because this well is not hydrogeologically downgradient of the C-746-S&T Landfills, this exceedance is not attributable to C-746-S&T sources and is considered to be a Type 1 exceedance.

Table 5. Exceedances of Current Background UTL in Downgradient UCRS Wells*

UCRS
MW390: Beta activity, technetium-99
*In the same direction (relative to the landfill) as RGA wells.

All MCL and UTL exceedances, except for beta activity in MW370 and radium-226 and sulfate in MW388, reported for this quarter were evaluated and considered to be Type 1 exceedances—not attributable to the C-746-S&T Landfills. The increasing trends for these listed parameters do not appear to be landfill-related. The listed parameters will continue to be evaluated in the context of these observations.

2. DATA EVALUATION/STATISTICAL SYNOPSIS

The statistical analyses conducted on the first quarter 2018 groundwater data collected from the C-746-S&T Landfills MWs were performed in accordance with the Groundwater Monitoring Plan (LATA Kentucky 2014). The statistical analyses for this report utilize data from the first eight quarters that were sampled for each parameter, beginning with the first two baseline sampling events in 2002, when available. The sampling dates associated with background data are listed next to the result in the statistical analysis sheets in Appendix D (Attachments D1 and D2).

For those parameters that exceed the MCL for Kentucky solid waste facilities found in 401 KAR 47:030 § 6, these exceedances were documented and evaluated further as follows. Exceedances were reviewed against historical background results (UTL). If the MCL exceedance was found not to exceed the historical UTL, the exceedance was noted as a Type 1 exceedance—an exceedance not attributable to the landfills. If there was an exceedance of the MCL in a downgradient well and this constituent also exceeded the historical background, the quarterly result was compared to the current background UTL (developed using the most recent eight quarters of data from wells identified as upgradient) to identify if this exceedance is attributable to upgradient/non-landfill sources. If the downgradient concentration was less than the current background, the exceedance was noted as a Type 1 exceedance. If a constituent exceeds its Kentucky solid waste facility MCL, historical background UTL, and current background UTL, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

For those parameters that do not have a Kentucky solid waste facility MCL, the same process was used. If a constituent without an MCL exceeded its historical background UTL and its current background UTL, it was evaluated further to identify the source of the exceedance, if possible. If the source of the exceedance could not be identified, it was reported as a Type 2 exceedance—source undetermined. Type 2 exceedances (undetermined source) were further evaluated using the Mann-Kendall test for trend. If there was not a statistically significant increasing trend for a constituent in a downgradient well, the exceedance was reclassified as a Type 1 exceedance (not attributable to the landfills).

To calculate the UTL, the data are divided into censored (nondetects) and uncensored (detected) observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored observation. Results of the one-sided tolerance interval statistical test are used to determine whether the data show a statistical exceedance in concentrations with respect to historical background concentrations (UTL).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted. The test well results are compared to both the upper and lower tolerance limit to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data.

A stepwise list of the one-sided tolerance interval statistical procedures applied to the data is provided in Appendix D under Statistical Analysis Process. The statistical analysis was conducted separately for each parameter in each well. The MWs included historically in the statistical analyses are listed in Table 6.

Table 6. Monitoring Wells Included in Statistical Analysis*

UCRS	URGA	LRGA
MW386	MW220 (upgradient)	MW370
MW389**	MW221	MW373
MW390	MW222	MW385
MW393	MW223	MW388
MW396***	MW224	MW392
	MW369	MW395 (upgradient)
	MW372	MW397 (upgradient)
	MW384	(10)
	MW387	
	MW391	
	MW394 (upgradient)	

^{*}A map showing the MW locations is shown on Figure 1.

2.1 STATISTICAL ANALYSIS OF GROUNDWATER DATA

Parameters requiring statistical analysis are summarized in Appendix D for each hydrological unit. A stepwise list for determining exceedances of statistically derived historical background concentrations is provided in Appendix D under Statistical Analysis Process. A comparison of the current quarter's results to the statistically derived historical background was conducted for parameters that do not have MCLs and also for those parameters whose concentrations exceed MCLs. Appendix G summarizes the occurrences (by well and by quarter) of exceedances of historical UTLs and MCL exceedances. The constituents that had exceedances of the statistically derived historical background UTL underwent additional statistical evaluation. The current-quarter concentrations were compared to the current background UTL developed using the most recent eight quarters of data from wells identified as upgradient in order to determine if the current downgradient concentrations are consistent with current background values. Table 3 summarizes the constituents present in downgradient wells with historical UTL exceedances that are above the current UTL. Those constituents that have exceeded both the historical and current background UTLs in downgradient wells were further evaluated for increasing trends and are listed in Table 4.

2.1.1 Upper Continental Recharge System

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the UCRS. During the first quarter, beta activity, oxidation-reduction potential, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity and technetium-99 exceeded the current background UTL and are included in Table 5.

2.1.2 Upper Regional Gravel Aquifer

In this quarter, 30 parameters, including those with MCLs, required statistical analysis in the URGA. During the first quarter, aluminum, beta activity, calcium, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTLs and are listed in Table 2. Beta activity, calcium, magnesium, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

^{**}MW389 had insufficient water to permit a water sample for laboratory analysis.

^{***}In the same direction (relative to the landfill) as RGA wells considered to be upgradient.

2.1.3 Lower Regional Gravel Aquifer

In this quarter, 29 parameters, including those with MCLs, required statistical analysis in the LRGA. During the first quarter, beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sulfate, and technetium-99 displayed concentrations that exceeded their respective historical UTL and are listed in Table 2. Beta activity, calcium, conductivity, dissolved solids, magnesium, radium-226, sulfate, and technetium-99 exceeded the current background UTL in downgradient wells and are included in Table 3.

2.2 DATA VERIFICATION AND VALIDATION

Data verification is the process of comparing a data set against set standard or contractual requirements. In accordance with the approved Groundwater Monitoring Plan (LATA Kentucky 2014), data verification is performed for 100% of the data. Data are flagged as necessary.

Data validation was performed on 100% of the organic, inorganic, and radiochemical analytical data by a qualified individual independent from sampling, laboratory, project management, or other decision-making personnel. Data validation evaluates the laboratory adherence to analytical method requirements. Validation qualifiers are added by the independent validator and not the laboratory. Validation qualifiers are not requested on the groundwater reporting forms.

Field quality control samples are collected for each sampling event. Field blanks, rinseate blanks, and trip blanks are obtained to ensure quality of field and laboratory practices, and data are reported in the Groundwater Sample Analysis forms in Appendix C. Laboratory quality control samples, such as matrix spikes, matrix spike duplicates, and method blanks, are performed by the laboratory. Both field and laboratory quality control sample results are reviewed as part of the data verification/validation process.

Data verification and validation results for this data set indicated that all data were considered usable.

3. PROFESSIONAL GEOLOGIST AUTHORIZATION

DOCUMENT IDENTIFICATION: C-

C-746-S&T Landfills

First Quarter Calendar Year 2018 (January–March)

Compliance Monitoring Report, Paducah Gaseous Diffusion Plant,

Paducah, Kentucky (FRNP-RPT-0028/V1)

Stamped and signed pursuant to my authority as a duly registered geologist under the provisions of *KRS* Chapter 322A.

Head Professional Professional

Kenneth R Davis

PG113927

15

4. REFERENCES

- KEEC (Kentucky Energy and Environment Cabinet) 2011. Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Division of Waste Management, Solid Waste Branch, Technical Application Attachment 12, "Explosive Gas Monitoring Program," January 21.
- LATA Kentucky (LATA Environmental Services of Kentucky, LLC) 2014. Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, PAD-PROJ-0139, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 25, LATA Environmental Services of Kentucky, LLC, Kevil, KY, June.
- PRS (Paducah Remediation Services, LLC) 2008. Surface Water Monitoring Plan for C-746-S and C-746-T Landfills Permit Numbers KY-073-00014 and 073-00015, Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Solid Waste Landfill Permit, Number SW07300014, SW07300015, SW07300045, Technical Application Attachment 24, Paducah Remediation Services, LLC, Kevil, KY, June.

APPENDIX A

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

GROUNDWATER, SURFACE WATER, LEACHATE, AND METHANE MONITORING SAMPLE DATA REPORTING FORM

NATURAL RESOURCES AND ENVIRONMENTAL PROTECTION CABINET DEPARTMENT FOR ENVIRONMENTAL PROTECTION DIVISION OF WASTE MANAGEMENT SOLID WASTE BRANCH 14 REILLY ROAD FRANKFORT, KY 40601

Facility Name:		Paducah Gaseou ally shown on DWI	us Diffusion Plant M Permit Face)	Activity:	C-746-S&T Landfills	
SW07300014, Permit No: SW07300015, SW07300045		5, F:	inds/Unit No:	Quarter & Year	1st Qtr. CY 2018	
Please check the f	following as ap	plicable:				
Characteri	zation X	Quarterly	Semiannual	Annual	Assessment	
Please check apple	icable submitt	al(s): X	Groundwater	<u>X</u>	Surface Water	
		-	Leachate	<u> </u>	Methane Monitoring	
hours of making the the lab report is NO pages. I certify under pena accordance with a sy Based on my inquiry best of my knowledge	e determination T considered n Ity of law that stem designed of the person one and belief, true	the document at assure that query persons directly e, accurate, and c	ou must report any indical analyses, direct companion of the completing the notations for completing the all attachments were palified personnel properly responsible for gathering is complete. I am aware that the sonment for such violations	orepared under my oregather and evaluate information, the informere are significant pe	lar techniques. Submitting to not submit the instruction of supervision in the information submitted.	
9. Dunle	beilh			slag	1116	
Myrna Redfiel Four Rivers Nucl			er	Date		
Jennifer Woodard		and te Lead	-	Date Date	9/18	

APPENDIX B FACILITY INFORMATION SHEET

FACILITY INFORMATION SHEET

Sampling Date: Facility Name:	Groundwater: January 20 Surface water: January 20 Methane: March 2018 U.S. DOE—Paducah Gase	018 cous Diffusion Pla	nt	McCracken	_ Permit Nos.	SW07300014, SW07300015, SW07300045			
(As officially shown on DWM Permit Face)									
Site Address:	5600 Hobbs Road		Kevil, Kentucky			42053			
	Street		City/State			Zip			
Phone No:	(270) 441-6800	Latitude:	N 37° 07' 37.	.70"	Longitude:	W 88° 47' 55.41"			
	OWNER INFORMATION								
Facility Owner:	U.S. DOE, Robert E. Edw	ards III. Manager			Phone No:	(859) 227-5020			
Contact Person:	James Miller	<u> </u>			-	(270) 441-5068			
Contact Person T	Director, Waste, M			Project,	1110110	(270) 111 2000			
Mailing Address:	5511 Hobbs Road		Kevil, Kentucky			42053			
	Street		City/State			Zip			
Company: Contact Person: Mailing Address:	GEO Consultants, LLC Sam Martin	THER THAN LA	Kevil, Kentucky City/State		Phone No:	(270) 441-6755 42053 Zip			
		LABORAT	ORY RECORD #	1					
Laboratory:	GEL Laboratories, LLC		La	ab ID No: _K	XY90129				
Contact Person:	Valerie Davis				Phone No:	(843) 769-7391			
Mailing Address:	2040 Savage Road	Ch	arleston, South Car	rolina		29407			
	Street		City/State			Zip			
		LABORAT	ORY RECORD #	2					
Laboratory:	N/A			Lab ID No:	N/A				
Contact Person:	N/A		 -		Phone No:	N/A			
Mailing Address:	N/A								
	Street		City/State			Zip			
		LABORAT	ORY RECORD #	3					
Laboratory:	N/A			Lab ID No:	N/A				
Contact Person:	N/A		<u></u>		Phone No:	N/A			
Mailing Address:	N/A								
	Street		City/State			Zip			

APPENDIX C GROUNDWATER SAMPLE ANALYSES AND WRITTEN COMMENTS

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-52	202	8000-52	242	8000-524	43
Facility's Loc	cal Well or Spring Number (e.g., B	MW−1	., MW-2, etc	.)	220		221		222		223	
Sample Sequence	ce #				1		1		1		1	
If sample is a F	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/23/2018 10	0:21	1/23/2018	07:24	1/23/2018	08:53	1/23/2018 ()8:09
Duplicate ("Y"	" or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW220SG2	2-18	MW221S0	G2-18	MW222S0	32-18	MW223SG	2-18
Laboratory Sam	mple ID Number (if applicable)		44229500)3	442295	005	4422950	007	4422950	09		
Date of Analys	te of Analysis (Month/Day/Year) For Volatile Organics Ana					3	1/26/20	18	1/26/20	18	1/26/201	8
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	UP		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.2	J	0.42		0.421		0.399	
16887-00-6	Chloride(s)	т	mg/L	9056	20.5		39.7		31.9		29.6	
16984-48-8	Fluoride	Т	mg/L	9056	0.198		0.27		0.354		0.303	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.17		0.997		1.08		1.1	
14808-79-8	Sulfate	Т	mg/L	9056	16.4		13.7		10.4		13	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.03		29.92		29.98		29.95	
s0145	Specific Conductance	Т	μ MH 0/cm	Field	331		407		317		378	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-520	2	8000-5242	2	8000-5243	Ì
Facility's Loc	al Well or Spring Number (e.g., MW-	-1, N	W-2, BLANK-I	F, etc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	321.83		321.89		322.1		322.04	
N238	Dissolved Oxygen	Т	mg/L	Field	5.01		3.92		2.58		2.82	
s0266	Total Dissolved Solids	T	mg/L	160.1	163		210		187		207	
s0296	рН	T	Units	Field	6.12		6.18		6.2		6.19	
NS215	Eh	T	mV	Field	362		401		387		378	
s0907	Temperature	Т	°C	Field	15.11		13.33		14.11		13.78	
7429-90-5	Aluminum	Т	mg/L	6020	0.0286	J	<0.05		0.707		0.0966	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.197		0.219		0.249		0.265	
7440-41-7	Beryllium	T	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	T	mg/L	6020	0.00702	J	0.0125	J	0.00767	J	0.00608	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	18.8		22.2		13.5		19.8	
7440-47-3	Chromium	Т	mg/L	6020	0.00548	J	0.00906	J	0.00866	J	0.0131	
7440-48-4	Cobalt	Т	mg/L	6020	0.000376	J	0.000494	J	0.00418		0.00245	
7440-50-8	Copper	T	mg/L	6020	0.00224		0.000796	J	0.00111		0.00113	
7439-89-6	Iron	T	mg/L	6020	0.0704	J	0.0582	J	1.39		0.27	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	T	mg/L	6020	8.04		9.14		6.51		8.45	
7439-96-5	Manganese	T	mg/L	6020	0.00354	J	0.00162	J	0.027		0.0691	
7439-97-6	Mercury	T	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8000-520)1	8000-52	02	8000-524	42	8000-524	43
Facility's L	ocal Well or Spring Number (e.g.	, MW-	·1, MW-2, e	tc.)	220		221		222		223	
CAS RN⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	0.000698		0.00391		0.000518		0.00435	
7440-02-0	Nickel	т	mg/L	6020	0.0135		0.0318		0.0299		0.117	
7440-09-7	Potassium	т	mg/L	6020	1.86		5.48		0.6		3.8	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	T	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	T	mg/L	6020	38.8		48.4		43.5		46.7	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.000114	BJ	<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		0.00484	J	<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		0.0044	J	<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER1	, Facility Well/Spring Number				8000-520 ⁻	1	8000-520	02	8000-52	242	8000-52	243
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		0.00084	J

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-520	1	8000-5202	2	8000-524	42	8000-524	43
Facility's Loc	cal Well or Spring Number (e.g., N	ſW−1	, MW-2, et	.c.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	T	mg/L	8011	<0.0000199		<0.0000195		<0.0000197		<0.0000196	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5201		8000-5202		8000-524	2	8000-524	13
Facility's Lo	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, et	cc.)	220		221		222		223	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.05	*	4.25	*	0.0844	*	2.53	*
12587-47-2	Gross Beta	Т	pCi/L	9310	12.8	*	15.1	*	3.19	*	2.15	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	-0.246	*	0.447	*	0.287	*	0.482	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	1.55	*	-0.439	*	1.26	*	-0.272	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	27.4	*	-0.215	*	-1.44	*	4.08	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.819	*	0.189	*	0.569	*	0.44	*
10028-17-8	Tritium	Т	pCi/L	906.0	102	*	-51.6	*	20.8	*	85.9	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	18.9	J	20.9		31.4		29.3	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	*
s0268	Total Organic Carbon	Т	mg/L	9060	0.823	J	1.06	J	0.699	J	0.754	J
s0586	Total Organic Halides	т	mg/L	9020	0.00486	J	0.00536	J	<0.01		0.00372	J

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-48	320	8004-48	18	8004-480)8
Facility's Loc	cal Well or Spring Number (e.g., N	/W−1	., MW-2, etc	:.)	224		369		370		372	
Sample Sequenc	ce #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date ar	nd Time (Month/Day/Year hour: minu	tes)		1/23/2018 09	9:38	1/22/2018	11:59	1/22/2018	13:27	1/22/2018 1	0:10
Duplicate ("Y'	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	le ID Number (if applicable)				MW224SG2	-18	MW369U0	G2-18	MW370U0	G2-18	MW372UG	2-18
Laboratory Sam	mple ID Number (if applicable)				44229501	1	442172	015	4421720	017	44217900	01
Date of Analys	sis (Month/Day/Year) For <u>Volatil</u> e	ganics Anal	ysis.	1/26/2018	3	1/24/20	18	1/24/20	18	1/24/201	8	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	IOWN)	SIDE		DOW	N	DOWI	V	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.254		0.364	*	0.443	*	0.576	
16887-00-6	Chloride(s)	Т	mg/L	9056	18.4		31.6		35.1		43.5	
16984-48-8	Fluoride	Т	mg/L	9056	0.375		0.159		0.149		0.147	
s0595	Nitrate & Nitrite	Т	mg/L	9056	0.827		0.682		0.972		0.178	J
14808-79-8	Sulfate	т	mg/L	9056	8.4		7.63	*	22.4	*	75.2	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	29.98		29.67		29.62		29.74	
S0145	Specific Conductance	Т	μ MH0/cm	Field	365		351		449		620	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-524	4	8004-482	0	8004-4818	3	8004-4808	
Facility's Lo	ocal Well or Spring Number (e.g., MW	I-1,	MW-2, BLANK-	F, etc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	т	Ft. MSL	Field	322.15		322.53		322.55		322.47	
N238	Dissolved Oxygen	Т	mg/L	Field	3.19		1.78		5.15		1.25	
s0266	Total Dissolved Solids	Т	mg/L	160.1	189		161	*	203	*	330	*
s0296	рн	T	Units	Field	6.14		6.21		6.12		6.29	
NS215	Eh	T	mV	Field	367		346		334		275	
s0907	Temperature	Т	°C	Field	15.22		16.11		16.33		14.83	
7429-90-5	Aluminum	T	mg/L	6020	0.0244	J	0.178		<0.05		<0.05	
7440-36-0	Antimony	T	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	T	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.192		0.381		0.23		0.058	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	T	mg/L	6020	0.00722	J	0.0163		0.0359		1.02	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	17.2		15		29.9		49.4	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	0.00217		0.00558		0.000314	J	0.000814	J
7440-50-8	Copper	Т	mg/L	6020	0.000812	J	0.00114		0.000629	J	0.0005	J
7439-89-6	Iron	т	mg/L	6020	0.0626	J	0.155	*	<0.1	*	0.166	
7439-92-1	Lead	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	7.86		6.82		13.2		18.5	*
7439-96-5	Manganese	т	mg/L	6020	0.0176		0.0215	*	0.00336	*J	0.0115	
7439-97-6	Mercury	т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBE	R ¹ , Facility Well/Spring Number				8000-524	14	8004-48	20	8004-48	18	8004-48	08
Facility's	Local Well or Spring Number (e.g.	MW-	1, MW-2, e	tc.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	Т	mg/L	6020	0.000438	J	<0.0005		<0.0005		0.00041	J
7440-02-0	Nickel	Т	mg/L	6020	0.0978		0.00495		0.000752	J	0.0012	J
7440-09-7	Potassium	Т	mg/L	6020	0.703		0.504		2.46		2.13	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		0.00216	J	<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		0.000378	J	<0.001	
7440-23-5	Sodium	Т	mg/L	6020	49.9		48.5		47.2		45.5	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		0.00426	J	<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		0.00335	J	<0.01		<0.01	
108-05-4	Vinyl acetate	T	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-524	4	8004-482	20	8004-48	318	8004-48	308
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	:c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	<0.001		0.00123		0.00056	J	0.00543	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8000-5244	4	8004-4820)	8004-48	18	8004-480	08
Facility's Loc	al Well or Spring Number (e.g., N	1W-1	l, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000197		<0.0000197		<0.0000197		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*	<0.0952		<0.0971		<0.0885	
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.0952		<0.0971		<0.0885	
11104-28-2	PCB-1221	Т	ug/L	8082		*	<0.0952		<0.0971		<0.0885	
11141-16-5	PCB-1232	Т	ug/L	8082		*	<0.0952		<0.0971		<0.0885	
53469-21-9	PCB-1242	Т	ug/L	8082		*	<0.0952		<0.0971		<0.0885	
12672-29-6	PCB-1248	Т	ug/L	8082		*	<0.0952		<0.0971	•	<0.0885	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8000-5244		8004-4820)	8004-481	8	8004-480)8
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	224		369		370		372	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.0952		<0.0971		<0.0885	
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.0952		<0.0971		<0.0885	
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.0952		<0.0971		<0.0885	
12587-46-1	Gross Alpha	Т	pCi/L	9310	3.38	*	0.769	*	1.85	*	1.17	*
12587-47-2	Gross Beta	Т	pCi/L	9310	2.99	*	32	*	71.9	*	21.7	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.214	*	0.676	*	1.01	*	0.689	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-0.777	*	2.93	*	-0.577	*	-1.15	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	1.89	*	38.8	*	73.9	*	17.3	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.997	*	-0.923	*	1.23	*	0.771	*
10028-17-8	Tritium	Т	pCi/L	906.0	113	*	-8.97	*	1.9	*	-30.4	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	10.5	J	12.6	J	16.8	J	29.3	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5	*	<0.5	*	<0.5	*	<0.5	*
s0268	Total Organic Carbon	Т	mg/L	9060	0.828	J	1.05	J	1.04	J	1.62	J
s0586	Total Organic Halides	Т	mg/L	9020	<0.01		0.0124		0.00458	J	0.037	

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

LAB ID: None For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-48	309	8004-48	10	8004-480	04
Facility's Loc	al Well or Spring Number (e.g., 1	1W−1	, MW-2, etc	.)	373		384		385		386	
Sample Sequence	e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		1/22/2018 08	3:06	1/24/2018	07:18	1/24/2018	08:47	1/24/2018 0	08:07
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	e ID Number (if applicable)		MW373UG2	-18	MW384S0	G2-18	MW385S0	G2-18	MW386SG	2-18		
Laboratory Sam	uple ID Number (if applicable)		44217901	1	442318	003	4423180	005	4423180	07		
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analys					3	1/26/20	18	1/26/20	18	1/26/201	8
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOWN		SIDE		SIDE		SIDE	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	Т	mg/L	9056	0.601		0.428		0.222		0.148	J
16887-00-6	Chloride(s)	т	mg/L	9056	41.9		39.4		23.1		14.6	
16984-48-8	Fluoride	т	mg/L	9056	0.184		0.267		0.156		0.61	
s0595	Nitrate & Nitrite	т	mg/L	9056	1.37		1.01		0.4		<0.2	
14808-79-8	Sulfate	Т	mg/L	9056	97.1		21.4		18.6		44.5	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	29.76		30.3		30.31		30.31	
s0145	Specific Conductance	т	μ MH0/cm	Field	730		486		458		601	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-479	2	8004-480	9	8004-4810)	8004-4804	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, N	MW-2, BLANK-I	F, etc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	322.46		322.44		321.44		346.71	
N238	Dissolved Oxygen	T	mg/L	Field	2.33		3.28		1.39		1.72	
s0266	Total Dissolved Solids	T	mg/L	160.1	376	*	260		264		347	
s0296	рн	T	Units	Field	6.19		6.14		6.51		6.67	
NS215	Eh	T	mV	Field	393		341		234		142	
s0907	Temperature	T	°C	Field	14.67		10.78		13.28		12.06	
7429-90-5	Aluminum	T	mg/L	6020	<0.05		0.0323	J	0.0928		<0.05	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		0.00242	٦	<0.005		0.00264	J
7440-39-3	Barium	Т	mg/L	6020	0.0302		0.141	*	0.248	*	0.21	*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	1.32		0.0304		0.0152		<0.015	
7440-43-9	Cadmium	т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	T	mg/L	6020	57.3		27.8		37.4		19.9	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		0.00561	J	<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		<0.001		0.0075	
7440-50-8	Copper	Т	mg/L	6020	0.000486	J	0.001		0.000534	J	0.0116	
7439-89-6	Iron	T	mg/L	6020	0.0752	J	1.04		0.204		1.64	
7439-92-1	Lead	T	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	T	mg/L	6020	22.8	*	11.4		14.6		8.77	
7439-96-5	Manganese	T	mg/L	6020	0.0116		0.0422		0.00674		0.952	
7439-97-6	Mercury	T	mg/L	7470	<0.0002		<0.0002	*	<0.0002	*	<0.0002	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-479	92	8004-48	09	8004-48	10	8004-48	04
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.000291	J	0.0006		0.000616	
7440-02-0	Nickel	т	mg/L	6020	0.000711	J	0.00116	J	0.0015	J	0.00242	
7440-09-7	Potassium	т	mg/L	6020	2.35		1.19		1.82		0.305	
7440-16-6	Rhodium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	0.000397	J	<0.001		<0.001		0.000308	J
7440-23-5	Sodium	Т	mg/L	6020	47.9		48.1		30.5		93.6	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		0.000256	В	<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-480	09	8004-48	310	8004-48	804
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	:c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.00626		0.00095	J	0.00048	J	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS - (Cont.)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-4792	2	8004-4809	9	8004-48	10	8004-480	04
Facility's Loc	cal Well or Spring Number (e.g., M	1W -1	1, MW-2, et	:c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000194		<0.0000197		<0.0000195		<0.0000199	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082	<0.0952			*		*		*
12674-11-2	PCB-1016	т	ug/L	8082	<0.0952			*		*		*
11104-28-2	PCB-1221	т	ug/L	8082	<0.0952			*		*		*
11141-16-5	PCB-1232	т	ug/L	8082	<0.0952			*		*		*
53469-21-9	PCB-1242	т	ug/L	8082	<0.0952			*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082	<0.0952			*		*		*

C-19

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4792		8004-4809	1	8004-481	0	8004-480)4
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	373		384		385		386	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082	<0.0952			*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082	<0.0952			*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082	<0.0952			*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	8.77	*	0.842	*	1.14	*	0.276	*
12587-47-2	Gross Beta	Т	pCi/L	9310	18.8	*	76.5	*	50.6	*	0.187	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.322	*	0.603	*	0.151	*	0.167	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	1.31	*	-0.843	*	-1.76	*	0.705	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	17.9	*	139	*	86.8	*	4.14	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.253	*	0.698	*	0.743	*	0.174	*
10028-17-8	Tritium	Т	pCi/L	906.0	78	*	128	*	-16.7	*	19.1	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	31.4		19.1	J	<20		22.5	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	Т	mg/L	300.0	<0.5	*	<0.5		<0.5		0.186	J
s0268	Total Organic Carbon	Т	mg/L	9060	1.04	J	1.5	J	0.924	J	7.32	
s0586	Total Organic Halides	Т	mg/L	9020	0.0104		0.0117		0.00738	J	0.121	
												<u> </u>
												<u> </u>

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716

For Official Use Only

LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-48	316	8004-481	12	8004-481	1
Facility's Loca	al Well or Spring Number (e.g., N	ſW−1	., MW-2, etc	.)	387		388		389		390	
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		1/23/2018 12	2:52	1/23/2018	13:32	NA		1/24/2018 07	7:19
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sample	cility Sample ID Number (if applicable)					-18	MW388S0	G2-18	NA		MW390SG2	<u>-</u> -18
Laboratory Sam	boratory Sample ID Number (if applicable)					3	442295	015	NA		44231800	19
Date of Analys	is (Month/Day/Year) For Volatile	ganics Anal	ysis	1/26/2018	3	1/26/20	18	NA		1/26/2018	8	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOWN		DOW	N	DOWN	٧	DOWN	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.497		0.356			*	0.456	
16887-00-6	Chloride(s)	т	mg/L	9056	41.2		30.8			*	40.4	
16984-48-8	Fluoride	т	mg/L	9056	0.614		0.205			*	0.335	
s0595	Nitrate & Nitrite	т	mg/L	9056	0.989		0.878			*	2.21	
14808-79-8	Sulfate	т	mg/L	9056	33.3		25.2			*	32.7	
NS1894	Barometric Pressure Reading	т	Inches/Hg	Field	30.07		30.07			*	30.3	
s0145	Specific Conductance	Т	μ MH0/cm	Field	545		465	_		*	671	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-481	6	8004-4812	2	8004-4811	
Facility's Lo	ocal Well or Spring Number (e.g., MV	I-1,	MW-2, BLANK-	F, etc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	т	Ft. MSL	Field	321.81		321.7			*	321.94	
N238	Dissolved Oxygen	Т	mg/L	Field	4.39		5.51			*	4.79	
s0266	Total Dissolved Solids	T	mg/L	160.1	286		246			*	371	
s0296	рн	Т	Units	Field	6.19		6.18			*	6.43	
NS215	Eh	Т	mV	Field	349		341			*	353	
s0907	Temperature	Т	°C	Field	14.44		14.67			*	10.72	
7429-90-5	Aluminum	Т	mg/L	6020	0.0575		0.0501			*	0.248	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003			*	<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	0.00471	J	<0.005			*	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.133		0.249			*	0.252	*
7440-41-7	Beryllium	т	mg/L	6020	<0.0005		<0.0005			*	<0.0005	
7440-42-8	Boron	т	mg/L	6020	0.0347		0.0324			*	0.0112	J
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001			*	<0.001	
7440-70-2	Calcium	Т	mg/L	6020	35.5		28.6			*	27.7	
7440-47-3	Chromium	Т	mg/L	6020	0.0044	J	<0.01			*	<0.01	
7440-48-4	Cobalt	T	mg/L	6020	<0.001		<0.001			*	0.000444	J
7440-50-8	Copper	т	mg/L	6020	0.000492	J	0.000737	J		*	0.00101	
7439-89-6	Iron	Т	mg/L	6020	0.351		0.207			*	0.28	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	15.6		13.1			*	12.1	
7439-96-5	Manganese	Т	mg/L	6020	0.0214		0.00138	J		*	0.00202	J
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002			*	<0.0002	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				8004-48	15	8004-48	16	8004-48	12	8004-48	1
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.000288	J		*	0.000384	J
7440-02-0	Nickel	Т	mg/L	6020	0.000824	J	0.00208			*	0.00191	J
7440-09-7	Potassium	T	mg/L	6020	1.88		2.24			*	0.375	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-22-4	Silver	Т	mg/L	6020	0.000374	J	0.000387	J		*	0.00038	J
7440-23-5	Sodium	Т	mg/L	6020	56.4		50.1			*	87.6	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005			*	<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002			*	<0.002	
7440-61-1	Uranium	T	mg/L	6020	0.000108	BJ	<0.0002			*	0.000193	BJ
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01			*	0.00339	J
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01			*	0.00414	J
108-05-4	Vinyl acetate	T	mg/L	8260	<0.005		<0.005			*	<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003			*	<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-97-5	Chlorobromomethane	T	mg/L	8260	<0.001		<0.001			*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-481	5	8004-48	16	8004-48	312	8004-481	1
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	l, MW-2, et	:c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00117		0.00073	J		*	<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-481	5	8004-4816	6	8004-48	12	8004-481	1
Facility's Loc	al Well or Spring Number (e.g., M	1 W−1	l, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005			*	<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005			*	<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005			*	<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000195		<0.0000201			*	<0.0000195	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001			*	<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001			*	<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001			*	<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001			*	<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4815		8004-4816		8004-481	2	8004-4811	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	387		388		389		390	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	2.68	*	2.39	*		*	-2.72	*
12587-47-2	Gross Beta	Т	pCi/L	9310	201	*	52.8	*		*	57.7	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	т	pCi/L	AN-1418	0.063	*	1.07	*		*	0.123	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.669	*	1.09	*		*	0.103	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	306	*	96.7	*		*	82.8	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	1.36	*	0.19	*		*	-0.223	*
10028-17-8	Tritium	Т	pCi/L	906.0	-2.21	*	49.2	*		*	85.5	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	20.9		18.9	J		*	29.2	
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2			*	<0.2	
20461-54-5	Iodide	T	mg/L	300.0	<0.5	*	<0.5	*		*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	1.3	J	1.28	J		*	2.57	
s0586	Total Organic Halides	Т	mg/L	9020	0.00622	J	0.0288			*	0.0123	

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716 LAB ID: None

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-48	306	8004-48	07	8004-480	02
Facility's Loc	al Well or Spring Number (e.g., D	MW−1	, MW-2, etc	.)	391		392		393		394	
Sample Sequenc	e #				1		1		1		1	
If sample is a B	clank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	NA		NA		NA		NA	
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		1/24/2018 09	9:41	1/24/2018 08:14		1/24/2018	08:56	1/23/2018 1	12:22
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	plit ("Y" or "N") ³						N		N		N	
Facility Sampl	acility Sample ID Number (if applicable)						MW392SG2-18		MW393SG2-18		MW394SG	2-18
Laboratory Sam	Laboratory Sample ID Number (if applicable)					1	442318	013	4423180)15 442295		17
Date of Analys	is (Month/Day/Year) For Volatile	e Or	ganics Anal	1/26/2018		1/26/2018		1/26/2018		1/26/201	8	
Gradient with	respect to Monitored Unit (UP, DO	, NWC	SIDE, UNKN	OWN)	DOWN		DOWN		DOWN		UP	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.571		0.634		0.167	J	0.658	
16887-00-6	Chloride(s)	т	mg/L	9056	42.9		46.8		13.9		49.3	
16984-48-8	Fluoride	Т	mg/L	9056	0.121		0.255		0.135		0.204	
s0595	Nitrate & Nitrite	Т	mg/L	9056	1.05		0.745		<0.2		1.02	
14808-79-8	Sulfate	Т	mg/L	9056	46.1		8.01		12.2		10.4	
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.33		30.31		30.33		30.07	
s0145	Specific Conductance	Т	μ MH 0/cm	Field	473		404	_	407		398	

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value

For Official Use Only

- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-480	5	8004-480	6	8004-4807	7	8004-4802			
Facility's Lo	ocal Well or Spring Number (e.g., MW	I-1 , 1	MW-2, BLANK-	F, etc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	321.86		321.86		338.38		322.33	
N238	Dissolved Oxygen	Т	mg/L	Field	3.23		1.7		1.73		3.55	
s0266	Total Dissolved Solids	Т	mg/L	160.1	261		227		249		187	
s0296	рн	Т	Units	Field	6.15		6.24		6.25		6.23	
NS215	Eh	Т	mV	Field	261		292		266		264	
s0907	Temperature	Т	°C	Field	14.22		12.94		14.11		11.56	
7429-90-5	Aluminum	Т	mg/L	6020	0.0234	J	0.0211	J	0.0671		0.0544	
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		<0.005		0.00471	J	<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.142	*	0.21	*	0.147	*	0.243	
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.165		0.0284		0.0218		0.0195	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	т	mg/L	6020	32.6		27.7		13.1		26	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000436	J	0.00192		0.000582	J	0.000741	J
7439-89-6	Iron	Т	mg/L	6020	0.123		0.0974	J	2.84		0.26	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	14.3		10.7		3.63		11.5	
7439-96-5	Manganese	Т	mg/L	6020	0.00322	J	0.0203		0.048		0.0061	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002	*	<0.0002	*	<0.0002	*	<0.0002	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480	05	8004-48	06	8004-480)7	8004-48	02
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005		0.000284	J	<0.0005		<0.0005	
7440-02-0	Nickel	т	mg/L	6020	0.000782	J	0.00105	J	<0.002		0.00292	
7440-09-7	Potassium	т	mg/L	6020	1.66		1.83		0.447		1.12	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	0.000393	J	0.000374	J	<0.001		0.000403	J
7440-23-5	Sodium	Т	mg/L	6020	31.1		33.1		71.6		33.5	
7440-25-7	Tantalum	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-480	5	8004-480	06	8004-48	307	8004-48	302
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	0.00057	J	0.0011		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	0.0119		0.0166		<0.001		0.00647	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	5	8004-4806	6	8004-480	07	8004-48	02
Facility's Loc	cal Well or Spring Number (e.g., M	IW-1	L, MW-2, et	:c.)	391		392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000193		<0.0000195		<0.0000196		<0.0000197	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4805		8004-4806	i	8004-480	7	8004-480)2
Facility's Lo							392		393		394	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-0.529	*	-0.285	*	2.31	*	-2.24	*
12587-47-2	Gross Beta	Т	pCi/L	9310	10.5	*	2.16	*	2.53	*	-3.27	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.0244	*	0.297	*	0.278	*	0.232	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.72	*	-1.08	*	-0.986	*	-1.7	*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	10.8	*	4.72	*	3.99	*	6.15	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.171	*	0.231	*	0.303	*	-0.346	*
10028-17-8	Tritium	Т	pCi/L	906.0	90.6	*	4.89	*	34.5	*	-35.6	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	22.5		24.2		12.3	J	12.6	J
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2		<0.2	
20461-54-5	Iodide	т	mg/L	300.0	<0.5		<0.5		<0.5		<0.5	*
s0268	Total Organic Carbon	Т	mg/L	9060	0.991	J	1.1	J	3.01		0.928	J
s0586	Total Organic Halides	Т	mg/L	9020	0.00876	J	0.0183		0.0183		0.0115	
		Щ										
		\perp										
		\perp										

Division of Waste Management Solid Waste Branch

Frankfort, KY 40601 (502)564-6716

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-48	803	8004-48	17	0000-000)0
Facility's Loc	al Well or Spring Number (e.g., N	ıw−1	L, MW-2, etc	·•)	395		396		397		E. BLAN	K
Sample Sequence	e #				1		1		1		1	
If sample is a B	lank, specify Type: (F)ield, (T)rip,	(M)∈	ethod, or (E)	NA		NA		NA		Е		
Sample Date an	d Time (Month/Day/Year hour: minu	tes)		1/23/2018 13:49		1/23/2018	13:04	1/23/2018	12:05	1/24/2018 0	6:35
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³		N		N		N		N			
Facility Sampl	e ID Number (if applicable)		MW395SG2	-18	MW396S0	G2-18	MW397S0	G2-18	RI1SG2-1	18		
Laboratory Sam	ple ID Number (if applicable)				44229501	9	442300	001	4422950	001	44231801	18
Date of Analys	is (Month/Day/Year) For Volatile	e Or	ganics Anal	1/26/2018		1/26/20	1/26/2018		18	1/26/201	8	
Gradient with	respect to Monitored Unit (UP, DO	NWC	, SIDE, UNKN	IOWN)	UP		UP		UP		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056	0.493		1.1		0.463			*
16887-00-6	Chloride(s)	Т	mg/L	9056	40.6		71.3	*B	39.1			*
16984-48-8	Fluoride	Т	mg/L	9056	0.158		0.67		0.145			*
s0595	Nitrate & Nitrite	т	mg/L	9056	1.42		<0.2		1.5			*
14808-79-8	Sulfate	Т	mg/L	9056	10.4		21.5		11.4			*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field	30.07		30.07		30.07			*
s0145	Specific Conductance	Т	μ MH0/cm	Field	384		750		326			*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit.

 $^{^7}$ Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	AKGWA NUMBER ¹ , Facility Well/Spring Number Facility's Local Well or Spring Number (e.g., MW-1, MW-2, BLANK-F, e						8004-480	3	8004-4817	,	0000-0000	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-E	, etc.)	395		396		397		E. BLANK	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S
s0906	Static Water Level Elevation	Т	Ft. MSL	Field	322.69		368.6		322.05			*
N238	Dissolved Oxygen	Т	mg/L	Field	3.39		1.01		5.37			*
s0266	Total Dissolved Solids	Т	mg/L	160.1	176		433		179			*
s0296	рн	Т	Units	Field	6.51		6.53		6.06			*
NS215	Eh	Т	mV	Field	195		203		361			*
s0907	Temperature	Т	°C	Field	14.67		15.11		13.83			*
7429-90-5	Aluminum	Т	mg/L	6020	0.0376	J	<0.05		0.103		0.0417	J
7440-36-0	Antimony	Т	mg/L	6020	<0.003		<0.003		<0.003		<0.003	
7440-38-2	Arsenic	Т	mg/L	6020	<0.005		0.00274	٦	<0.005		<0.005	
7440-39-3	Barium	Т	mg/L	6020	0.241		0.443		0.137		<0.002	*
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005		<0.0005		<0.0005		<0.0005	
7440-42-8	Boron	Т	mg/L	6020	0.0206		0.00697	٦	0.00938	J	<0.015	
7440-43-9	Cadmium	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-70-2	Calcium	Т	mg/L	6020	24.5		34.4		19.4		<0.2	
7440-47-3	Chromium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-48-4	Cobalt	Т	mg/L	6020	<0.001		0.00288		<0.001		<0.001	
7440-50-8	Copper	Т	mg/L	6020	0.000374	J	0.000421	J	0.000963	J	0.0101	
7439-89-6	Iron	Т	mg/L	6020	0.0896	J	2.6		0.243		<0.1	
7439-92-1	Lead	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7439-95-4	Magnesium	Т	mg/L	6020	10.8		15.5		8.61		<0.03	
7439-96-5	Manganese	Т	mg/L	6020	0.00115	J	0.45		0.00705		<0.005	
7439-97-6	Mercury	Т	mg/L	7470	<0.0002		<0.0002		<0.0002		<0.0002	*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	¹ , Facility Well/Spring Number				8004-480	01	8004-48	03	8004-481	17	0000-000	00
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	395		396		397		E. BLAN	1K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	0.000279	J	0.000418	J	<0.0005		<0.0005	
7440-02-0	Nickel	Т	mg/L	6020	0.0012	J	0.00126	J	0.000989	J	<0.002	
7440-09-7	Potassium	т	mg/L	6020	1.5		0.83		1.89		<0.3	
7440-16-6	Rhodium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7782-49-2	Selenium	Т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-22-4	Silver	Т	mg/L	6020	<0.001		<0.001		<0.001		<0.001	
7440-23-5	Sodium	т	mg/L	6020	28.2		112		34.1		<0.25	
7440-25-7	Tantalum	т	mg/L	6020	<0.005		<0.005		<0.005		<0.005	
7440-28-0	Thallium	Т	mg/L	6020	<0.002		<0.002		<0.002		<0.002	
7440-61-1	Uranium	Т	mg/L	6020	<0.0002		<0.0002		<0.0002		<0.0002	
7440-62-2	Vanadium	Т	mg/L	6020	<0.01		<0.01		<0.01		<0.01	
7440-66-6	Zinc	т	mg/L	6020	<0.01		<0.01		0.00337	J	<0.01	
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number		8004-480	1	8004-480	03	8004-48	317	0000-00	000		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	395		396		397		E. BLA	NK
CAS RN ⁴	CONSTITUENT	T D 5		METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	Т	mg/L	8260	0.00291		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

11NDB/ CN11 1 110 090 0

LAB ID: None
For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				8004-480	1	8004-4803	3	8004-48	17	0000-000	00
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	:c.)	395		396		397		E. BLAN	ΙΚ
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000197		<0.0000197		<0.0000195		<0.0000195	
78-87-5	Propane, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	Т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	Т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				8004-4801		8004-4803		8004-481	7	0000-000)0
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	1, MW-2, et	.c.)	395		396		397		E. BLAN	K
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	3.08	*	0.0895	*	0.898	*	-1.24	*
12587-47-2	Gross Beta	т	pCi/L	9310	7.59	*	5.34	*	2.66	*	0.992	*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0.592	*	0.682	*	0.3	*	0.394	*
10098-97-2	Strontium-90	Т	pCi/L	905.0	0.0326	*	1.43	*	1.1	*	-0.647	*
14133-76-7	Technetium-99	т	pCi/L	Tc-02-RC	15.7	*	5.85	*	13.2	*	7.2	*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	0.241	*	0.44	*	-0.213	*	0.494	*
10028-17-8	Tritium	Т	pCi/L	906.0	15.2	*	9.84	*	-56.2	*	-72.5	*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4	18.9	J	37.6		18.9	J		*
57-12-5	Cyanide	Т	mg/L	9012	<0.2		<0.2		<0.2			*
20461-54-5	Iodide	т	mg/L	300.0	<0.5	*	0.737	*	<0.5	*	<0.5	
s0268	Total Organic Carbon	Т	mg/L	9060	0.962	J	6.3		0.829	J		*
s0586	Total Organic Halides	Т	mg/L	9020	0.00894	J	0.0284		<0.01			*

Division of Waste Management Solid Waste Branch

14 Reilly Road

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

For Official Use Only

Frankfort, KY 40601 (502)564-6716

GROUNDWATER SAMPLE ANALYSIS (S)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	0000-00	00	0000-00	00	0000-000	0
Facility's Loc	al Well or Spring Number (e.g., N	ſW−1	L, MW-2, etc	:.)	F. BLAN	K	T. BLAN	K 1	T. BLAN	〈 2	T. BLANK	3
Sample Sequenc	e #				1		1		1		1	
If sample is a B	Blank, specify Type: (F)ield, (T)rip,	(M)e	ethod, or (E)	quipment	F		Т		Т		Т	
Sample Date an	nd Time (Month/Day/Year hour: minu	tes)		1/24/2018 0	7:20	1/23/2018	06:45	1/23/2018 1	1:45	1/24/2018 0	6:30
Duplicate ("Y"	or "N") ²				N		N		N		N	
Split ("Y" or	"N") ³				N		N		N		N	
Facility Sampl	cility Sample ID Number (if applicable)					18	TB1SG2	-18	TB2SG2-	18	TB3SG2-	18
Laboratory Sam	boratory Sample ID Number (if applicable)						4423000	03	4423000	04	44231801	9
Date of Analys	te of Analysis (Month/Day/Year) For <u>Volatile Organics</u> Analysis					8	1/26/20	18	1/26/201	18	1/26/201	8
Gradient with	e of Analysis (Month/Day/Year) For Volat			IOWN)	NA		NA		NA		NA	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S ⁷	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
24959-67-9	Bromide	т	mg/L	9056		*		*		*		*
16887-00-6	Chloride(s)	т	mg/L	9056		*		*		*		*
16984-48-8	Fluoride	т	mg/L	9056		*		*		*		*
s0595	Nitrate & Nitrite	т	mg/L	9056		*		*		*		*
14808-79-8	Sulfate	Т	mg/L	9056		*		*		*		*
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*		*		*		*
s0145	Specific Conductance	т	μ MHO /cm	Field	_	*		*		*	_	*

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. 7 Flags are as designated, do not use any other type. Use ** , * then describe on * Written Comments Page. *

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	0000-000	0	0000-0000)	0000-0000	
Facility's Loc	al Well or Spring Number (e.g., MW	-1, 1	MW-2, BLANK-F	r, etc.)	F. BLAN	<	T. BLANK	1	T. BLANK	2	T. BLANK 3	}
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*		*		*		*
N238	Dissolved Oxygen	Т	mg/L	Field		*		*		*		*
s0266	Total Dissolved Solids	Т	mg/L	160.1		*		*		*		*
s0296	рн	Т	Units	Field		*		*		*		*
NS215	Eh	Т	mV	Field		*		*		*		*
s0907	Temperature	Т	°C	Field		*		*		*		*
7429-90-5	Aluminum	Т	mg/L	6020	<0.05			*		*		*
7440-36-0	Antimony	Т	mg/L	6020	<0.003			*		*		*
7440-38-2	Arsenic	Т	mg/L	6020	<0.005			*		*		*
7440-39-3	Barium	Т	mg/L	6020	<0.002	*		*		*		*
7440-41-7	Beryllium	Т	mg/L	6020	<0.0005			*		*		*
7440-42-8	Boron	Т	mg/L	6020	<0.015			*		*		*
7440-43-9	Cadmium	Т	mg/L	6020	<0.001			*		*		*
7440-70-2	Calcium	Т	mg/L	6020	<0.2			*		*		*
7440-47-3	Chromium	Т	mg/L	6020	<0.01			*		*		*
7440-48-4	Cobalt	Т	mg/L	6020	<0.001			*		*		*
7440-50-8	Copper	Т	mg/L	6020	<0.001			*		*		*
7439-89-6	Iron	Т	mg/L	6020	<0.1			*		*		*
7439-92-1	Lead	Т	mg/L	6020	<0.002			*		*		*
7439-95-4	Magnesium	Т	mg/L	6020	<0.03			*		*		*
7439-96-5	Manganese	Т	mg/L	6020	<0.005			*		*		*
7439-97-6	Mercury	Т	mg/L	7470	<0.0002	*		*		*		*

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	1, Facility Well/Spring Number				0000-000	00	0000-00	000	0000-00	00	0000-00	00
Facility's L	ocal Well or Spring Number (e.g.	, MW-	1, MW-2, e	tc.)	F. BLAN	IK	T. BLAN	IK 1	T. BLAN	K 2	T. BLAN	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
7439-98-7	Molybdenum	т	mg/L	6020	<0.0005			*		*		*
7440-02-0	Nickel	Т	mg/L	6020	<0.002			*		*		*
7440-09-7	Potassium	Т	mg/L	6020	<0.3			*		*		*
7440-16-6	Rhodium	Т	mg/L	6020	<0.005			*		*		*
7782-49-2	Selenium	Т	mg/L	6020	<0.005			*		*		*
7440-22-4	Silver	Т	mg/L	6020	<0.001			*		*		*
7440-23-5	Sodium	т	mg/L	6020	<0.25			*		*		*
7440-25-7	Tantalum	т	mg/L	6020	<0.005			*		*		*
7440-28-0	Thallium	т	mg/L	6020	<0.002			*		*		*
7440-61-1	Uranium	т	mg/L	6020	<0.0002			*		*		*
7440-62-2	Vanadium	т	mg/L	6020	<0.01			*		*		*
7440-66-6	Zinc	т	mg/L	6020	<0.01			*		*		*
108-05-4	Vinyl acetate	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
67-64-1	Acetone	т	mg/L	8260	<0.005		<0.005		<0.005		0.00184	J
107-02-8	Acrolein	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
107-13-1	Acrylonitrile	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
71-43-2	Benzene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-90-7	Chlorobenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1330-20-7	Xylenes	Т	mg/L	8260	<0.003		<0.003		<0.003		<0.003	
100-42-5	Styrene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹	Facility Well/Spring Number				0000-0000)	0000-000	00	0000-00	000	0000-00	000
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	:c.)	F. BLAN	(T. BLAN	(1	T. BLAN	IK 2	T. BLAN	NK 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
75-27-4	Bromodichloromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-83-9	Methyl bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
78-93-3	Methyl ethyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-15-0	Carbon disulfide	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-00-5	Ethane, 1,1,2-Trichloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000	0	0000-0000)	0000-000	00	0000-00	00
Facility's Loc	al Well or Spring Number (e.g., M	1 W−1	l, MW-2, et	:c.)	F. BLAN	(T. BLANK	1	T. BLAN	< 2	T. BLANI	K 3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
591-78-6	2-Hexanone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
74-88-4	Iodomethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		<0.005	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000198		<0.0000197		<0.0000201		<0.0000199	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-02-6	trans-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
10061-01-5	cis-1,3-Dichloro-1-propene	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
156-60-5	trans-1,2-Dichloroethene	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
75-69-4	Trichlorofluoromethane	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
95-50-1	Benzene, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
106-46-7	Benzene, 1,4-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<0.001	
1336-36-3	PCB,Total	Т	ug/L	8082		*		*		*		*
12674-11-2	PCB-1016	Т	ug/L	8082		*		*		*		*
11104-28-2	PCB-1221	т	ug/L	8082		*		*		*		*
11141-16-5	PCB-1232	Т	ug/L	8082		*		*		*		*
53469-21-9	PCB-1242	Т	ug/L	8082		*		*		*		*
12672-29-6	PCB-1248	т	ug/L	8082		*		*		*		*

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	, Facility Well/Spring Number				0000-0000		0000-0000		0000-0000)	0000-0000	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	F. BLANK		T. BLANK 1		T. BLANK	2	T. BLANK	3
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G						
11097-69-1	PCB-1254	Т	ug/L	8082		*		*		*		*
11096-82-5	PCB-1260	Т	ug/L	8082		*		*		*		*
11100-14-4	PCB-1268	Т	ug/L	8082		*		*		*		*
12587-46-1	Gross Alpha	Т	pCi/L	9310	-1.56	*		*		*		*
12587-47-2	Gross Beta	Т	pCi/L	9310	0.558	*		*		*		*
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		*
13982-63-3	Radium-226	Т	pCi/L	AN-1418	0	*		*		*		*
10098-97-2	Strontium-90	Т	pCi/L	905.0	-1.13	*		*		*		*
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC	2.74	*		*		*		*
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC	-0.0233	*		*		*		*
10028-17-8	Tritium	Т	pCi/L	906.0	2.54	*		*		*		*
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*		*		*		*
57-12-5	Cyanide	Т	mg/L	9012		*		*		*		*
20461-54-5	Iodide	т	mg/L	300.0	<0.5			*		*		*
s0268	Total Organic Carbon	Т	mg/L	9060		*		*		*		*
s0586	Total Organic Halides	Т	mg/L	9020		*		*		*		*

Division of Waste Management RESIDENTIA
Solid Waste Branch Facility: N

RESIDENTIAL/INERT-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

14 Reilly Road Permit Number

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

Frankfort, KY 40601 (502)564-6716 LAB ID: None

For Official Use Only

GROUNDWATER SAMPLE ANALYSIS (s)

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	00	8004-479	2	8004-4809)	\	j
Facility's Loca	al Well or Spring Number (e.g., M	ſW−1	, MW-2, etc	:.)	T. BLANK	. 4	373		384			
Sample Sequence	e #				1		2		2			
If sample is a Bl	lank, specify Type: (F)ield, (T)rip,	(M)e	thod, or (E)	quipment	Т		NA		NA			
Sample Date and	d Time (Month/Day/Year hour: minu	tes)		1/24/2018 0	6:30	1/22/2018 08:	06	1/24/2018 07:	18		
Duplicate ("Y"	or "N") ²				N		Υ		Υ			
Split ("Y" or '	"N") ³				N		N		N			
Facility Sample	cility Sample ID Number (if applicable)					18	MW373DUG2	-18	MW384DSG2-	-18		
Laboratory Samp	ple ID Number (if applicable)		44231802	20	442179013		442318001		\ /			
Date of Analysi	e of Analysis (Month/Day/Year) For Volatile Organics Analysis						1/25/2018		1/26/2018		\ /	
Gradient with	adient with respect to Monitored Unit (UP, DOWN, SIDE, UNKNOWN)						DOWN		SIDE		Y	
CAS RN ⁴	CONSTITUENT			METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQI	F L A G S
24959-67-9	Bromide	т	mg/L	9056		*	0.587		0.436			1
16887-00-6	Chloride(s)	т	mg/L	9056		*	43.3		39.5			
16984-48-8						*	0.189		0.269			\Box
s0595	Nitrate & Nitrite T mg/L 90					*	1.39		0.955			
14808-79-8	Sulfate	Т	mg/L	9056		*	98.7		21.3			
NS1894	Barometric Pressure Reading	Т	Inches/Hg	Field		*	29.76		30.3			
s0145	Specific Conductance	Т	μMH0/cm	Field		*	730		486			

¹AKGWA # is 0000-0000 for any type of blank.

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis
 of a secondary dilution

²Respond "Y" if the sample was a duplicate of another sample in this report.

Respond "Y" if the sample was split and analyzed by separate laboratories.

 $^{^4}$ Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

^{5&}quot;T" = Total; "D" = Dissolved

⁶"<" indicates a non-detect; do not use "ND" or "BDL". Value shown is Practical Quantification Limit. ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments Page."

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	8004-479	2	8004-4809)		
Facility's Loc	al Well or Spring Number (e.g., MW-	-1, 1	W-2, BLANK-E	F, etc.)	T. BLANK	4	373		384			/
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G S	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
s0906	Static Water Level Elevation	Т	Ft. MSL	Field		*	322.46		322.44			
N238	Dissolved Oxygen	T	mg/L	Field		*	2.33		3.28			\prod
s0266	Total Dissolved Solids	T	mg/L	160.1		*	353	*	269			
s0296	рн	T	Units	Field		*	6.19		6.14			/
NS215	Eh	T	mV	Field		*	393		341			
s0907	Temperature	T	°C	Field		*	14.67		10.78		\ /	
7429-90-5	Aluminum	T	mg/L	6020		*	<0.05		0.0294	J	\ /	
7440-36-0	Antimony	T	mg/L	6020		*	<0.003		<0.003			
7440-38-2	Arsenic	T	mg/L	6020		*	<0.005		0.00275	J	X	
7440-39-3	Barium	T	mg/L	6020		*	0.0322		0.146	*	/\	
7440-41-7	Beryllium	T	mg/L	6020		*	<0.0005		<0.0005		/\	
7440-42-8	Boron	T	mg/L	6020		*	1.4		0.0309		/ \	
7440-43-9	Cadmium	T	mg/L	6020		*	<0.001		<0.001			
7440-70-2	Calcium	T	mg/L	6020		*	60.3		27.9			\
7440-47-3	Chromium	T	mg/L	6020		*	<0.01		0.0059	J		
7440-48-4	Cobalt	T	mg/L	6020		*	0.000332	J	<0.001			
7440-50-8	Copper	T	mg/L	6020		*	0.000513	J	0.000926	J		
7439-89-6	Iron	T	mg/L	6020		*	0.0864	J	1.03		1	
7439-92-1	Lead	T	mg/L	6020		*	<0.002		<0.002			
7439-95-4	Magnesium	T	mg/L	6020		*	24.3	*	11.4			
7439-96-5	Manganese	T	mg/L	6020		*	0.0142		0.041			
7439-97-6	Mercury	Т	mg/L	7470		*	<0.0002		<0.0002	*	<u> </u>	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER	, Facility Well/Spring Number				0000-000	00	8004-47	92	8004-480	09	\	
Facility's L	ocal Well or Spring Number (e.g.,	MW-	1, MW-2, e	tc.)	T. BLANI	K 4	373		384			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
7439-98-7	Molybdenum	т	mg/L	6020		*	<0.0005		0.000272	J		Π
7440-02-0	Nickel	т	mg/L	6020		*	0.0009	J	0.00113	J		Π
7440-09-7	Potassium	Т	mg/L	6020		*	2.5		1.2			1/
7440-16-6	Rhodium	Т	mg/L	6020		*	<0.005		<0.005			7
7782-49-2	Selenium	Т	mg/L	6020		*	<0.005		0.00201	J		I
7440-22-4	Silver	Т	mg/L	6020		*	0.000438	J	<0.001		\ /	
7440-23-5	Sodium	Т	mg/L	6020		*	49.8		51.3		\ /	
7440-25-7	Tantalum	Т	mg/L	6020		*	<0.005		<0.005		\/	
7440-28-0	Thallium	Т	mg/L	6020		*	<0.002		<0.002		X	
7440-61-1	Uranium	Т	mg/L	6020		*	<0.0002		<0.0002		/\	
7440-62-2	Vanadium	Т	mg/L	6020		*	<0.01		<0.01		/\	
7440-66-6	Zinc	Т	mg/L	6020		*	<0.01		<0.01		/ /	
108-05-4	Vinyl acetate	Т	mg/L	8260	<0.005		<0.005		<0.005			
67-64-1	Acetone	Т	mg/L	8260	<0.005		<0.005		<0.005			
107-02-8	Acrolein	Т	mg/L	8260	<0.005		<0.005		<0.005			
107-13-1	Acrylonitrile	Т	mg/L	8260	<0.005		<0.005		<0.005			
71-43-2	Benzene	т	mg/L	8260	<0.001		<0.001		<0.001			
108-90-7	Chlorobenzene	Т	mg/L	8260	<0.001		<0.001		<0.001			
1330-20-7	Xylenes	т	mg/L	8260	<0.003		<0.003		<0.003			
100-42-5	Styrene	т	mg/L	8260	<0.001		<0.001		<0.001			
108-88-3	Toluene	Т	mg/L	8260	<0.001		<0.001		<0.001			
74-97-5	Chlorobromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		/	

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None

For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-000	0	8004-479	92	8004-48	309	\	
Facility's Lo	cal Well or Spring Number (e.g.,	MW-1	l, MW-2, et	.c.)	T. BLANK	4	373		384		\	
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G		F L A
75-27-4	Bromodichloromethane	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-25-2	Tribromomethane	Т	mg/L	8260	<0.001		<0.001		<0.001		\ /	
74-83-9	Methyl bromide	т	mg/L	8260	<0.001		<0.001		<0.001		\ /	
78-93-3	Methyl ethyl ketone	Т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
110-57-6	trans-1,4-Dichloro-2-butene	Т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
75-15-0	Carbon disulfide	Т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
75-00-3	Chloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		\ /	
67-66-3	Chloroform	Т	mg/L	8260	<0.001		<0.001		<0.001		\/	
74-87-3	Methyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001		X	
156-59-2	cis-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		/\	
74-95-3	Methylene bromide	Т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
75-34-3	1,1-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
107-06-2	1,2-Dichloroethane	Т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
75-35-4	1,1-Dichloroethylene	Т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
106-93-4	Ethane, 1,2-dibromo	Т	mg/L	8260	<0.001		<0.001		<0.001		/ \	
79-34-5	Ethane, 1,1,2,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			
71-55-6	Ethane, 1,1,1-Trichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001		<u> </u>	_
79-00-5	Ethane, 1,1,2-Trichloro	т	mg/L	8260	<0.001		<0.001		<0.001		<u> </u>	
630-20-6	Ethane, 1,1,1,2-Tetrachloro	Т	mg/L	8260	<0.001		<0.001		<0.001			\setminus
75-01-4	Vinyl chloride	Т	mg/L	8260	<0.001		<0.001		<0.001			$ \top $
127-18-4	Ethene, Tetrachloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
79-01-6	Ethene, Trichloro-	т	mg/L	8260	<0.001		0.00621		0.00076	J		

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹ ,	Facility Well/Spring Number				0000-0000 8004-4792 8004-4809		09	\				
Facility's Loc	al Well or Spring Number (e.g., M	IW-1	L, MW-2, et	:c.)	T. BLANK 4 373		384					
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
100-41-4	Ethylbenzene	т	mg/L	8260	<0.001		<0.001		<0.001			17
591-78-6	2-Hexanone	Т	mg/L	8260	<0.005		<0.005		<0.005			Π
74-88-4	Iodomethane	Т	mg/L	8260	<0.005		<0.005		<0.005			1/
124-48-1	Methane, Dibromochloro-	т	mg/L	8260	<0.001		<0.001		<0.001			
56-23-5	Carbon Tetrachloride	Т	mg/L	8260	<0.001		<0.001		<0.001			
75-09-2	Dichloromethane	т	mg/L	8260	<0.005		<0.005		<0.005			
108-10-1	Methyl isobutyl ketone	т	mg/L	8260	<0.005		<0.005		<0.005		\ /	
96-12-8	Propane, 1,2-Dibromo-3-chloro	Т	mg/L	8011	<0.0000199		<0.0000199		<0.0000196		\bigvee	
78-87-5	Propane, 1,2-Dichloro-	т	mg/L	8260	<0.001		<0.001		<0.001		<u> </u>	
10061-02-6	trans-1,3-Dichloro-1-propene	T	mg/L	8260	<0.001		<0.001		<0.001		Λ	
10061-01-5	cis-1,3-Dichloro-1-propene	т	mg/L	8260	<0.001		<0.001		<0.001			
156-60-5	trans-1,2-Dichloroethene	Т	mg/L	8260	<0.001		<0.001		<0.001		/ /	
75-69-4	Trichlorofluoromethane	T	mg/L	8260	<0.001		<0.001		<0.001			\
96-18-4	1,2,3-Trichloropropane	Т	mg/L	8260	<0.001		<0.001		<0.001			\
95-50-1	Benzene, 1,2-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			1\
106-46-7	Benzene, 1,4-Dichloro-	Т	mg/L	8260	<0.001		<0.001		<0.001			
1336-36-3	PCB,Total	Т	ug/L	8082		*	<0.0952			*		
12674-11-2	PCB-1016	Т	ug/L	8082		*	<0.0952			*		
11104-28-2	PCB-1221	т	ug/L	8082		*	<0.0952			*		
11141-16-5	PCB-1232	Т	ug/L	8082		*	<0.0952			*		
53469-21-9	PCB-1242	т	ug/L	8082		*	<0.0952			*		
12672-29-6	PCB-1248	т	ug/L	8082		*	<0.0952			*	/	\

RESIDENTIAL/CONTAINED-QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant FINDS/UNIT: KY8-890-008-982 / 1

Permit Number: 073-00014 & 073-00015

LAB ID: None For Official Use Only

AKGWA NUMBER ¹	AKGWA NUMBER ¹ , Facility Well/Spring Number						8004-4792	8004-4792 8004-4809		9		
Facility's Lo	cal Well or Spring Number (e.g.,	MW-	1, MW-2, et	.c.)	T. BLANK 4		373		384			
CAS RN ⁴	CONSTITUENT	T D 5	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A G	DETECTED VALUE OR PQL ⁶	F L A
11097-69-1	PCB-1254	Т	ug/L	8082		*	<0.0952			*		\prod
11096-82-5	PCB-1260	Т	ug/L	8082		*	<0.0952			*		Π
11100-14-4	PCB-1268	Т	ug/L	8082		*	<0.0952			*		7
12587-46-1	Gross Alpha	Т	pCi/L	9310		*	6.28	*	-0.875	*		
12587-47-2	Gross Beta	Т	pCi/L	9310		*	23.5	*	89.7	*	\ /	
10043-66-0	Iodine-131	Т	pCi/L			*		*		*		
13982-63-3	Radium-226	Т	pCi/L	AN-1418		*	0.29	*	0.0278	*	\ /	
10098-97-2	Strontium-90	Т	pCi/L	905.0		*	-0.365	*	1.05	*	V	
14133-76-7	Technetium-99	Т	pCi/L	Tc-02-RC		*	24.8	*	135	*	Λ.	
14269-63-7	Thorium-230	Т	pCi/L	Th-01-RC		*	-0.289	*	0.169	*	/\	
10028-17-8	Tritium	Т	pCi/L	906.0		*	9.52	*	70.2	*	/ \	
s0130	Chemical Oxygen Demand	Т	mg/L	410.4		*	27.2		14	J		T
57-12-5	Cyanide	Т	mg/L	9012		*	<0.2		<0.2			
20461-54-5	Iodide	Т	mg/L	300.0		*	<0.5	*	<0.5			
s0268	Total Organic Carbon	Т	mg/L	9060		*	1.11	J	1.42	J		\prod
s0586	Total Organic Halides	Т	mg/L	9020		*	0.0135		0.00844	J		
											1/	
											/	

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-5201 MW22	20 MW220SG2-18	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 3.97. Rad error is 3.97.
		Gross beta		TPU is 7.15. Rad error is 6.84.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.366. Rad error is 0.364.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 2.29. Rad error is 2.28.
		Technetium-99		TPU is 12.4. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 1.34. Rad error is 1.32.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 124. Rad error is 122.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8000-5202 MW221	MW221SG2-18	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 6.16. Rad error is 6.11.
		Gross beta		TPU is 7.68. Rad error is 7.26.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.746. Rad error is 0.739.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 1.09. Rad error is 1.09.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 11.7. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 0.684. Rad error is 0.679.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TP is 115. Rad error is 115.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	,		Description
000-5242 MW22	22 MW222SG2-18	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 6.25. Rad error is 6.25.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 5.56. Rad error is 5.53.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.525. Rad error is 0.52.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.81. Rad error is 1.8.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 12. Rad error is 12.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.923. Rad error is 0.91.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 118. Rad error is 118.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	•		Description
000-5243 MW22	23 MW223SG2-18	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 4.88. Rad error is 4.86.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.59. Rad error is 4.56.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.69. Rad error is 0.676.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.77. Rad error is 2.77.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 11.5. Rad error is 11.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.752. Rad error is 0.742.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 123. Rad error is 122.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Fac Point San	ility nple ID	Constituent	Flag	Description
8000-5244 MW224 MW22	24SG2-18	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.78. Rad error is 5.75.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 5.19. Rad error is 5.16.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.531. Rad error is 0.526.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 1.48. Rad error is 1.48.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 11.7. Rad error is 11.7.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.896. Rad error is 0.869.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 125. Rad error is 123.
		lodide	W	Post-digestion spike recovery out of control limits.
3004-4820 MW369 MW36	9UG2-18	Bromide	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Iron	E	Result estimated due to matrix interferences.
		Manganese	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 4.9. Rad error is 4.9.
		Gross beta		TPU is 10.2. Rad error is 8.74.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. T is 0.72. Rad error is 0.702.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.73. Rad error is 2.69.
		Technetium-99		TPU is 12. Rad error is 11.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.684. Rad error is 0.683.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 103. Rad error is 103.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

O .	acility Sample ID	Constituent	Flag	Description
 004-4818 MW370 MW	/370UG2-18	Bromide	W	Post-digestion spike recovery out of control limits.
		Sulfate	W	Post-digestion spike recovery out of control limits.
		Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Iron	Е	Result estimated due to matrix interferences.
		Manganese	N	Sample spike (MS/MSD) recovery not within control limits
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.76. Rad error is 5.75.
		Gross beta		TPU is 15.9. Rad error is 10.4.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.953. Rad error is 0.916.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.59. Rad error is 1.59.
		Technetium-99		TPU is 14.9. Rad error is 12.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.9. Rad error is 1.87.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 103. Rad error is 103.
		lodide	W	Post-digestion spike recovery out of control limits.
004-4808 MW372 MW	/372UG2-18	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Magnesium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 6.01. Rad error is 6.01.
		Gross beta		TPU is 8.18. Rad error is 7.37.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.787. Rad error is 0.756.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.29. Rad error is 3.29.
		Technetium-99		TPU is 10.2. Rad error is 10.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.937. Rad error is 0.918.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 106. Rad error is 106.
		Iodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Sr 7.86. Rad error is 7.72. Gross beta TPU is 7.64. Rad error is 6.99. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/huclide was analyzed for, but not dete is 0.368. Rad error is 0.368. Strontium-90 U Indicates analyte/huclide was analyzed for, but not dete is 2.53. Rad error is 0.368. Technetium-99 U Indicates analyte/huclide was analyzed for, but not dete is 19.1. Rad error is 0.628. Tritium U Indicates analyte/huclide was analyzed for, but not dete is 0.634. Rad error is 0.628. Tritium U Indicates analyte/huclide was analyzed for, but not dete is 0.634. Rad error is 0.628. Tritium V Indicates analyte/huclide was analyzed for, but not dete is 0.634. Rad error is 0.628. Tritium N Sample spike recovery out of control limits. Barium N Sample spike (MS/MSD) recovery not within control limits. Barium N Sample spike (MS/MSD) recovery not within control limits. Barium N Sample spike (MS/MSD) recovery not within control limits. PCB, Total Analysis of constituent not required and not performed. PCB-1016 Analysis of constituent not required and not performed. PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1269 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not	Monitoring Point	Facility Sample ID	Constituent	Flag	Description
Gross alpha Gross alpha Gross beta Gross beta Gross beta U Indicates analyte/nuclide was analyzed for, but not dete is 7.86. Rad error is 7.72. TPU is 7.64. Rad error is 6.99. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not dete is 0.368. Rad error is 0.529. Rad error is 0.724. Rad error is 0.724. Rad error is 0.725. Rad error is 0.725. Rad error is 0.725. Rad error is 0.726. Rad error is 0.726. Rad error is 0.727. Rad error is 0.728. Rad error is 0.728. Rad error is 0.729. Rad error is 0.729. Rad error is 0.729. Rad error is 0.729.	 004-4792 MW373	3 MW373UG2-18	Total Dissolved Solids	*	Duplicate analysis not within control limits.
S 7.86. Rad error is 7.72.			Magnesium	Е	Result estimated due to matrix interferences.
lodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not dete is 0.368. Rad error is 0.368. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not dete is 2.53. Rad error is 2.52. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not dete is 2.53. Rad error is 2.52. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not dete is 19.1. Rad error is 19.1. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not dete is 0.634. Rad error is 0.628. Tritium U Indicates analyte/nuclide was analyzed for, but not dete is 0.634. Rad error is 1.02. Indicates analyte/nuclide was analyzed for, but not dete is 121. Rad error is 1.02. Indicates analyte/nuclide was analyzed for, but not dete is 121. Rad error is 1.02. Indicates analyte/nuclide was analyzed for, but not dete is 121. Rad error is 1.02. Indicates analyte/nuclide was analyzed for, but not dete is 121. Rad error is 1.02. Indicates analyte/nuclide was analyzed for, but not dete is 121. Rad error is 1.02. Indicates analyte/nuclide was analyzed for, but not dete is 121. Rad error is 1.02. Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1.02. Indicates analyte/nuclide was analyzed for, but not dete is 2.63. Indicates analyte/nuclide was analyzed for, but not dete is 2.64. Indicates analyte/nuclide was analyzed for, but not dete is 2.67. Indicates analyte/nuclide was analyzed for, but not dete is 2.67. Indicates analyte/nuclide was analyzed for, but not dete is 2.67. Indicates analyte/nuclide was analyzed for, but not dete is 2.67. Indicates analyte/nuclide was analyzed for, but not dete is 2.67. Indicates analyte/nuclide was analyzed for, but not dete is 2.67. Indicates analyte/nuclide was analyzed for, but not dete is 2.67. Indicates analyte/nuclide was analyzed for, but not dete is 2.67. Indicates analyte/nuclide was analyzed for, but not dete is 2.67. Indicates analyte/nuclide was analyzed for, but not dete is 2.67. Indicates analyte/nuclide was analyzed for, but not det			·	U	
Radium-226 Strontium-90 U Indicates analyte/nuclide was analyzed for, but not dete is 0.368. Rad error is 0.368. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not dete is 2.53. Rad error is 2.52. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not dete is 19.1. Rad error is 19. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not dete is 19.1. Rad error is 10.628. Tritium U Indicates analyte/nuclide was analyzed for, but not dete is 19.1. Rad error is 10.628. Tritium U Indicates analyte/nuclide was analyzed for, but not dete is 19.1. Rad error is 10.628. Tritium N Indicates analyte/nuclide was analyzed for, but not dete is 19.1. Rad error is 120. Iodide W Post-digestion spike recovery out of control limits. N Sample spike (MS/MSD) recovery not within control limit Mercury N Sample spike (MS/MSD) recovery not within control limit Analysis of constituent not required and not performed. PCB, Total PCB-1016 Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. PCB-1221 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Analysis of constituent not required and no			Gross beta		TPU is 7.64. Rad error is 6.99.
is 0.368. Rad error is 0.368. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not dete is 2.53. Rad error is 2.52. Technetium-99 U Indicates analyte/nuclide was analyzed for, but not dete is 2.53. Rad error is 2.52. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not dete is 1.51. Rad error is 0.638. Tritium U Indicates analyte/nuclide was analyzed for, but not dete is 121. Rad error is 0.638. Tritium U Indicates analyte/nuclide was analyzed for, but not dete is 121. Rad error is 0.638. Tritium N Indicates analyte/nuclide was analyzed for, but not dete is 121. Rad error is 120. Iodide W Post-digestion give recovery out of control limits. N Sample spike (MS/MSD) recovery not within control limits. N Sample spike (MS/MSD) recovery not within control limits. N Sample spike (MS/MSD) recovery not within control limits. N Sample spike (MS/MSD) recovery not within control limits. Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. PCB-1016 Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Gross alpha U Indicates analyte/nuclide was analyzed for, but not dete is 2.47. Rad error is 12.5. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not dete is 2.47. Rad error is 15.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 15.9. Totol dete is 1.02. Rad error is 1.5.			lodine-131		Analysis of constituent not required and not performed.
Technetium-99 U Indicates analyte/huclide was analyzed for, but not dete is 19.1. Rad error is 19. Thorium-230 U Indicates analyte/huclide was analyzed for, but not dete is 19.1. Rad error is 19. Thorium-230 U Indicates analyte/huclide was analyzed for, but not dete is 0.634. Rad error is 0.628. Tritium U Indicates analyte/huclide was analyzed for, but not dete is 121. Rad error is 120. Iodide W Post-digestion spike recovery out of control limits. Iodide W Post-digestion spike recovery out of control limits. Wercury N Sample spike (MS/MSD) recovery not within control limit PCB, Total Analysis of constituent not required and not performed. PCB-1016 Analysis of constituent not required and not performed. PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1269 Analysis of constituent not required and not performed. PCB-1269 Analysis of constituent not required and not performed. PCB-1269 Analysis of constituent not required and not performed. PCB-1269 Analysis of constituent not required and not performed. PCB-1269 Analysis of constituent not required and not performed. PCB-1269 Analysis of constituent n			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.368. Rad error is 0.368.
is 19.1. Rad error is 19. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not dete is 0.634. Rad error is 0.628. Tritium U Indicates analyte/nuclide was analyzed for, but not dete is 121. Rad error is 120. Iodide W Post-digestion spike recovery out of control limits. Barium N Sample spike (MS/MSD) recovery not within control limit Mercury N Sample spike (MS/MSD) recovery not within control limit PCB-1016 Analysis of constituent not required and not performed. PCB-1016 PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Ana			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.53. Rad error is 2.52.
Tritium Indicates analyte/nuclide was analyzed for, but not dete is 12.1. Rad error is 0.628. Tritium			Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 19.1. Rad error is 19.
is 121. Rad error is 120. lodide W Post-digestion spike recovery out of control limits. Barium N Sample spike (MS/MSD) recovery not within control limits. Mercury N Sample spike (MS/MSD) recovery not within control limits. PCB, Total Analysis of constituent not required and not performed. PCB-1016 Analysis of constituent not required and not performed. PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1269 Indicates analyte/nuclide was analyzed for, but not dete is 0.725. Rad error is 0.724. PCB-1269 Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 15.9. PCB-1269 Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1.02. Rad error is 1.02. PCB-1269 Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1.02. PCB-1269 Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1.02. PCB-1269 Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1.02.			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.634. Rad error is 0.628.
D04-4809 MW384 MW384SG2-18 Barium Mercury N Sample spike (MS/MSD) recovery not within control limit PCB, Total PCB-1016 PCB-1016 PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1248 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Bradium-226 U Indicates analyte/nuclide was analyzed for, but not dete is 0.725. Rad error is 0.724. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not dete is 2.47. Rad error is 2.47. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1.9. Tritium U Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1.1.			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 121. Rad error is 120.
Mercury PCB, Total Analysis of constituent not required and not performed. PCB-1016 Analysis of constituent not required and not performed. PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Indicates analyte/nuclide was analyzed for, but not dete is 0.725. Rad error is 1.2.5. Indicates analyte/nuclide was analyzed for, but not dete is 2.47. Rad error is 2.47. Technetium-99 Thorium-230 Uniciates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1.9. Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1.02. Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1.02. Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1.02. Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1.02. Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1.02. Indicates analyte/nuclide was analyzed for, but not dete			Iodide	W	Post-digestion spike recovery out of control limits.
PCB, Total PCB-1016 Analysis of constituent not required and not performed. PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of	004-4809 MW384	4 MW384SG2-18	Barium	N	Sample spike (MS/MSD) recovery not within control limits
PCB-1016 PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Analysi			Mercury	N	Sample spike (MS/MSD) recovery not within control limits
PCB-1221 Analysis of constituent not required and not performed. PCB-1232 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Gross alpha Undicates analyte/nuclide was analyzed for, but not dete is 5.5. TPU is 17.6. Rad error is 12.5. Indicates analyte/nuclide was analyzed for, but not dete is 0.725. Rad error is 0.724. Strontium-90 Undicates analyte/nuclide was analyzed for, but not dete is 2.47. Rad error is 2.47. Technetium-99 Thorium-230 Undicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 15.9. Tritium Undicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1.02. Ra			PCB, Total		Analysis of constituent not required and not performed.
PCB-1232 Analysis of constituent not required and not performed. PCB-1242 Analysis of constituent not required and not performed. PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituen			PCB-1016		Analysis of constituent not required and not performed.
PCB-1242 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Indicates analyte/nuclide was analyzed for, but not dete is 5.5. Rad error is 5.5. FPU is 17.6. Rad error is 12.5. Iodine-131 Analysis of constituent not required and not performed. Radium-226 Undicates analyte/nuclide was analyzed for, but not dete is 0.725. Rad error is 0.724. Strontium-90 Undicates analyte/nuclide was analyzed for, but not dete is 2.47. Rad error is 2.47. Technetium-99 Thorium-230 Undicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1. Tritium Undicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1.			PCB-1221		Analysis of constituent not required and not performed.
PCB-1248 Analysis of constituent not required and not performed. PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Gross alpha U Indicates analyte/nuclide was analyzed for, but not dete is 5.5. Rad error is 5.5. Gross beta TPU is 17.6. Rad error is 12.5. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not dete is 0.725. Rad error is 0.724. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not dete is 2.47. Rad error is 15.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1. Tritium U Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1.			PCB-1232		Analysis of constituent not required and not performed.
PCB-1254 Analysis of constituent not required and not performed. PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Gross alpha U Indicates analyte/nuclide was analyzed for, but not dete is 5.5. Rad error is 5.5. Gross beta TPU is 17.6. Rad error is 12.5. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not dete is 0.725. Rad error is 0.724. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not dete is 2.47. Rad error is 2.47. Technetium-99 TPU is 22.1. Rad error is 15.9. Thorium-230 U Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1.			PCB-1242		Analysis of constituent not required and not performed.
PCB-1260 Analysis of constituent not required and not performed. PCB-1268 Analysis of constituent not required and not performed. Gross alpha U Indicates analyte/nuclide was analyzed for, but not dete is 5.5. Rad error is 5.5. Gross beta TPU is 17.6. Rad error is 12.5. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not dete is 0.725. Rad error is 0.724. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not dete is 2.47. Rad error is 2.47. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1. Tritium U Indicates analyte/nuclide was analyzed for, but not dete			PCB-1248		Analysis of constituent not required and not performed.
PCB-1268 Analysis of constituent not required and not performed. Gross alpha U Indicates analyte/nuclide was analyzed for, but not dete is 5.5. Rad error is 5.5. Gross beta TPU is 17.6. Rad error is 12.5. Iodine-131 Analysis of constituent not required and not performed. Radium-226 U Indicates analyte/nuclide was analyzed for, but not dete is 0.725. Rad error is 0.724. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not dete is 2.47. Rad error is 2.47. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1. Tritium U Indicates analyte/nuclide was analyzed for, but not dete			PCB-1254		Analysis of constituent not required and not performed.
Gross alpha U Indicates analyte/nuclide was analyzed for, but not dete is 5.5. Rad error is 5.5. Gross beta TPU is 17.6. Rad error is 12.5. Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not dete is 0.725. Rad error is 0.724. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not dete is 2.47. Rad error is 2.47. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1. Tritium U Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1.			PCB-1260		Analysis of constituent not required and not performed.
is 5.5. Rad error is 5.5. Gross beta Iodine-131 Radium-226 Strontium-90 Technetium-99 Thorium-230 Tritium Iodine-25. Rad error is 12.5. Analysis of constituent not required and not performed. Indicates analyte/nuclide was analyzed for, but not dete is 0.725. Rad error is 0.724. Indicates analyte/nuclide was analyzed for, but not dete is 2.47. Rad error is 2.47. Technetium-99 Thorium-230 Undicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1. Tritium Undicates analyte/nuclide was analyzed for, but not dete			PCB-1268		Analysis of constituent not required and not performed.
Iodine-131 Radium-226 U Indicates analyte/nuclide was analyzed for, but not dete is 0.725. Rad error is 0.724. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not dete is 2.47. Rad error is 2.47. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not dete is 2.47. Rad error is 15.9. U Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1. Tritium U Indicates analyte/nuclide was analyzed for, but not dete			Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.5. Rad error is 5.5.
Radium-226 U Indicates analyte/nuclide was analyzed for, but not dete is 0.725. Rad error is 0.724. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not dete is 2.47. Rad error is 2.47. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1. Tritium U Indicates analyte/nuclide was analyzed for, but not dete			Gross beta		TPU is 17.6. Rad error is 12.5.
is 0.725. Rad error is 0.724. Strontium-90 U Indicates analyte/nuclide was analyzed for, but not dete is 2.47. Rad error is 2.47. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1. Tritium U Indicates analyte/nuclide was analyzed for, but not dete			lodine-131		Analysis of constituent not required and not performed.
is 2.47. Rad error is 2.47. Technetium-99 Thorium-230 U Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1. Tritium U Indicates analyte/nuclide was analyzed for, but not dete			Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.725. Rad error is 0.724.
Thorium-230 U Indicates analyte/nuclide was analyzed for, but not dete is 1.02. Rad error is 1. Tritium U Indicates analyte/nuclide was analyzed for, but not dete			Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.47. Rad error is 2.47.
is 1.02. Rad error is 1. Tritium U Indicates analyte/nuclide was analyzed for, but not dete			Technetium-99		TPU is 22.1. Rad error is 15.9.
			Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.02. Rad error is 1.
10 10 11 11 10 120			Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 131. Rad error is 128.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
3004-4810 MW38	85 MW385SG2-18	Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Mercury	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.05. Rad error is 3.05.
		Gross beta		TPU is 13.1. Rad error is 10.2.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.503. Rad error is 0.503.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.54. Rad error is 1.54.
		Technetium-99		TPU is 17. Rad error is 14.1.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.07. Rad error is 1.05.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 115. Rad error is 115.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4804 MW38	6 MW386SG2-18	Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Mercury	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.12. Rad error is 4.12.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.8. Rad error is 3.8.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.45. Rad error is 0.45.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.67. Rad error is 1.66.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 10.9. Rad error is 10.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.81. Rad error is 0.806.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 120. Rad error is 120.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Facilit Point Samp	<i>*</i>	stituent	Flag	Description
8004-4815 MW387 MW387	G2-18 PCB,	Total		Analysis of constituent not required and not performed.
	PCB-1	016		Analysis of constituent not required and not performed.
	PCB-1	221		Analysis of constituent not required and not performed.
	PCB-1	232		Analysis of constituent not required and not performed.
	PCB-1	242		Analysis of constituent not required and not performed.
	PCB-1	248		Analysis of constituent not required and not performed.
	PCB-1	254		Analysis of constituent not required and not performed.
	PCB-1	260		Analysis of constituent not required and not performed.
	PCB-1	268		Analysis of constituent not required and not performed.
	Gross	alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.87. Rad error is 5.84.
	Gross	beta		TPU is 37. Rad error is 17.6.
	Iodine	-131		Analysis of constituent not required and not performed.
	Radiui	m-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.449. Rad error is 0.446.
	Stronti	um-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.68. Rad error is 1.68.
	Techn	etium-99		TPU is 39. Rad error is 19.2.
	Thoriu	m-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.22. Rad error is 1.19.
	Tritium		U	Indicates analyte/nuclide was analyzed for, but not detected. is 118. Rad error is 118.
	Iodide		W	Post-digestion spike recovery out of control limits.
004-4816 MW388 MW3888	•			Analysis of constituent not required and not performed.
	PCB-1	016		Analysis of constituent not required and not performed.
	PCB-1	221		Analysis of constituent not required and not performed.
	PCB-1	232		Analysis of constituent not required and not performed.
	PCB-1	242		Analysis of constituent not required and not performed.
	PCB-1	248		Analysis of constituent not required and not performed.
	PCB-1	254		Analysis of constituent not required and not performed.
	PCB-1	260		Analysis of constituent not required and not performed.
	PCB-1	268		Analysis of constituent not required and not performed.
	Gross	alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.79. Rad error is 6.78.
	Gross	beta		TPU is 13.9. Rad error is 10.7.
	Iodine			Analysis of constituent not required and not performed.
	Radiu	m-226		TPU is 0.965. Rad error is 0.879.
		um-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.62. Rad error is 1.62.
		etium-99		TPU is 18. Rad error is 14.5.
	Thoriu		U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.686. Rad error is 0.681.
	Tritium	1	U	Indicates analyte/nuclide was analyzed for, but not detected. is 119. Rad error is 119.
	Iodide		W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Bromide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloride		During sampling, the well was dry; therefore, no sample wa collected.
		Fluoride		During sampling, the well was dry; therefore, no sample wa collected.
		Nitrate & Nitrite		During sampling, the well was dry; therefore, no sample wa collected.
		Sulfate		During sampling, the well was dry; therefore, no sample wa collected.
		Barometric Pressure Reading		During sampling, the well was dry; therefore, no sample wa collected.
		Specific Conductance		During sampling, the well was dry; therefore, no sample wa collected.
		Static Water Level Elevation		During sampling, the well was dry; therefore, no sample wa collected.
		Dissolved Oxygen		During sampling, the well was dry; therefore, no sample wa collected.
		Total Dissolved Solids		During sampling, the well was dry; therefore, no sample wa collected.
		рН		During sampling, the well was dry; therefore, no sample was collected.
		Eh		During sampling, the well was dry; therefore, no sample w collected.
		Temperature		During sampling, the well was dry; therefore, no sample w collected.
		Aluminum		During sampling, the well was dry; therefore, no sample was collected.
		Antimony		During sampling, the well was dry; therefore, no sample was collected.
		Arsenic		During sampling, the well was dry; therefore, no sample was collected.
		Barium		During sampling, the well was dry; therefore, no sample was collected.
		Beryllium		During sampling, the well was dry; therefore, no sample was collected.
		Boron		During sampling, the well was dry; therefore, no sample wa collected.
		Cadmium		During sampling, the well was dry; therefore, no sample wa collected.
		Calcium		During sampling, the well was dry; therefore, no sample was collected.
		Chromium		During sampling, the well was dry; therefore, no sample was collected.
		Cobalt		During sampling, the well was dry; therefore, no sample was collected.
		Copper		During sampling, the well was dry; therefore, no sample was collected.
		Iron		During sampling, the well was dry; therefore, no sample was collected.
		Lead		During sampling, the well was dry; therefore, no sample was collected.
		Magnesium		During sampling, the well was dry; therefore, no sample was collected.
		Manganese		During sampling, the well was dry; therefore, no sample wa collected.
		Mercury		During sampling, the well was dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Molybdenum		During sampling, the well was dry; therefore, no sample wa collected.
		Nickel		During sampling, the well was dry; therefore, no sample wa collected.
		Potassium		During sampling, the well was dry; therefore, no sample wa collected.
		Rhodium		During sampling, the well was dry; therefore, no sample wa collected.
		Selenium		During sampling, the well was dry; therefore, no sample wa collected.
		Silver		During sampling, the well was dry; therefore, no sample wa collected.
		Sodium		During sampling, the well was dry; therefore, no sample wa collected.
		Tantalum		During sampling, the well was dry; therefore, no sample wa collected.
		Thallium		During sampling, the well was dry; therefore, no sample wa collected.
		Uranium		During sampling, the well was dry; therefore, no sample wa collected.
		Vanadium		During sampling, the well was dry; therefore, no sample wa collected.
		Zinc		During sampling, the well was dry; therefore, no sample was collected.
		Vinyl acetate		During sampling, the well was dry; therefore, no sample was collected.
		Acetone		During sampling, the well was dry; therefore, no sample was collected.
		Acrolein		During sampling, the well was dry; therefore, no sample was collected.
		Acrylonitrile		During sampling, the well was dry; therefore, no sample was collected.
		Benzene		During sampling, the well was dry; therefore, no sample was collected.
		Chlorobenzene		During sampling, the well was dry; therefore, no sample was collected.
		Xylenes		During sampling, the well was dry; therefore, no sample wa collected.
		Styrene		During sampling, the well was dry; therefore, no sample was collected.
		Toluene		During sampling, the well was dry; therefore, no sample was collected.
		Chlorobromomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Bromodichloromethane		During sampling, the well was dry; therefore, no sample wa collected.
		Tribromomethane		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl bromide		During sampling, the well was dry; therefore, no sample was collected.
		Methyl Ethyl Ketone		During sampling, the well was dry; therefore, no sample wa collected.
		trans-1,4-Dichloro-2-butene		During sampling, the well was dry; therefore, no sample wa collected.
		Carbon disulfide		During sampling, the well was dry; therefore, no sample wa collected.
		Chloroethane		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		Chloroform		During sampling, the well was dry; therefore, no sample wa collected.
		Methyl chloride		During sampling, the well was dry; therefore, no sample wa collected.
		cis-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample wa collected.
		Methylene bromide		During sampling, the well was dry; therefore, no sample wa collected.
		1,1-Dichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1-Dichloroethylene		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromoethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,2,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample wa collected.
		1,1,1-Trichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,2-Trichloroethane		During sampling, the well was dry; therefore, no sample was collected.
		1,1,1,2-Tetrachloroethane		During sampling, the well was dry; therefore, no sample w collected.
		Vinyl chloride		During sampling, the well was dry; therefore, no sample w collected.
		Tetrachloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Trichloroethene		During sampling, the well was dry; therefore, no sample w collected.
		Ethylbenzene		During sampling, the well was dry; therefore, no sample w collected.
		2-Hexanone		During sampling, the well was dry; therefore, no sample w collected.
		lodomethane		During sampling, the well was dry; therefore, no sample was collected.
		Dibromochloromethane		During sampling, the well was dry; therefore, no sample was collected.
		Carbon tetrachloride		During sampling, the well was dry; therefore, no sample was collected.
		Dichloromethane		During sampling, the well was dry; therefore, no sample was collected.
		Methyl Isobutyl Ketone		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dibromo-3-chloropropane		During sampling, the well was dry; therefore, no sample was collected.
		1,2-Dichloropropane		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample w collected.
		cis-1,3-Dichloropropene		During sampling, the well was dry; therefore, no sample was collected.
		trans-1,2-Dichloroethene		During sampling, the well was dry; therefore, no sample we collected.
		Trichlorofluoromethane		During sampling, the well was dry; therefore, no sample was collected.
		1,2,3-Trichloropropane		During sampling, the well was dry; therefore, no sample was collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4812 MW389		1,2-Dichlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		1,4-Dichlorobenzene		During sampling, the well was dry; therefore, no sample wa collected.
		PCB, Total		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1016		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1221		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1232		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1242		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1248		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1254		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1260		During sampling, the well was dry; therefore, no sample wa collected.
		PCB-1268		During sampling, the well was dry; therefore, no sample wa collected.
		Gross alpha		During sampling, the well was dry; therefore, no sample wa collected.
		Gross beta		During sampling, the well was dry; therefore, no sample wa collected.
		lodine-131		During sampling, the well was dry; therefore, no sample wa collected.
		Radium-226		During sampling, the well was dry; therefore, no sample wa collected.
		Strontium-90		During sampling, the well was dry; therefore, no sample wa collected.
		Technetium-99		During sampling, the well was dry; therefore, no sample wa collected.
		Thorium-230		During sampling, the well was dry; therefore, no sample wa collected.
		Tritium		During sampling, the well was dry; therefore, no sample wa collected.
		Chemical Oxygen Demand		During sampling, the well was dry; therefore, no sample wa collected.
		Cyanide		During sampling, the well was dry; therefore, no sample wa collected.
		lodide		During sampling, the well was dry; therefore, no sample wa collected.
		Total Organic Carbon		During sampling, the well was dry; therefore, no sample wa collected.
		Total Organic Halides		During sampling, the well was dry; therefore, no sample wa collected.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4811 MW39	90 MW390SG2-18	Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Mercury	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
	PCB-1254		Analysis of constituent not required and not performed.	
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.99. Rad error is 4.99.
		Gross beta		TPU is 14.4. Rad error is 10.9.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.392. Rad error is 0.391.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.71. Rad error is 1.71.
		Technetium-99		TPU is 16.1. Rad error is 13.2.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.607. Rad error is 0.605.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 119. Rad error is 117.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4805 MW391	MW391SG2-18	Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Mercury	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 5.24. Rad error is 5.24.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 9.16. Rad error is 8.98.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.435. Rad error is 0.434.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.49. Rad error is 1.49.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected is 10.4. Rad error is 10.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.803. Rad error is 0.799.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 127. Rad error is 126.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4806 MW39	2 MW392SG2-18	Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Mercury	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 3.48. Rad error is 3.47.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.41. Rad error is 6.39.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.52. Rad error is 0.516.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.29. Rad error is 2.29.
	Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.2. Rad error is 10.2.	
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.74. Rad error is 0.734.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 121. Rad error is 121.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
8004-4807 MW39	93 MW393SG2-18	Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Mercury	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.59. Rad error is 5.57.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.38. Rad error is 5.36.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.545. Rad error is 0.541.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.17. Rad error is 1.17.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.6. Rad error is 10.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.871. Rad error is 0.864.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 114. Rad error is 114.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4802 MW39	94 MW394SG2-18	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.02. Rad error is 4.02.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 5.94. Rad error is 5.94.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.494. Rad error is 0.485.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.92. Rad error is 1.92.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 11.6. Rad error is 11.6.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.681. Rad error is 0.68.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 117. Rad error is 117.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4801 MW39	95 MW395SG2-18	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 5.35. Rad error is 5.32.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 7.91. Rad error is 7.81.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.785. Rad error is 0.742.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.5. Rad error is 1.5.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 14. Rad error is 13.9.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.618. Rad error is 0.613.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 119. Rad error is 119.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
		Chloride	W	Post-digestion spike recovery out of control limits.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 4.78. Rad error is 4.77.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 7.44. Rad error is 7.39.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		TPU is 0.758. Rad error is 0.69.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 2.51. Rad error is 2.5.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 10.8. Rad error is 10.8.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. I is 0.733. Rad error is 0.722.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 119. Rad error is 119.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4817 MW39	97 MW397SG2-18	PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.71. Rad error is 4.7.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 4.45. Rad error is 4.42.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.629. Rad error is 0.627.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.57. Rad error is 1.56.
	Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 12.1. Rad error is 12.	
	Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.616. Rad error is 0.616.	
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 114. Rad error is 114.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	RI1SG2-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Mercury	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.53. Rad error is 2.53.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected. is 6.87. Rad error is 6.86.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.6. Rad error is 0.589.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1.5. Rad error is 1.5.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 10.6. Rad error is 10.5.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 1. Rad error is 0.991.
		Tritium Chamical Owgan Damand	U	Indicates analyte/nuclide was analyzed for, but not detected. is 110. Rad error is 110. Applying of constitution not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	FB1SG2-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Mercury	N	Sample spike (MS/MSD) recovery not within control limits
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.54. Rad error is 2.54.
		Gross beta	U	Indicates analyte/nuclide was analyzed for, but not detected is 4.51. Rad error is 4.51.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.55. Rad error is 0.549.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. is 2.4. Rad error is 2.4.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. is 9.43. Rad error is 9.42.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. is 0.801. Rad error is 0.8.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. is 115. Rad error is 115.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG2-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB1SG2-18	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB2SG2-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB2SG2-18	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed
		Strontium-90		Analysis of constituent not required and not performed
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG2-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed.
		Barium		Analysis of constituent not required and not performed.
		Beryllium		Analysis of constituent not required and not performed.
		Boron		Analysis of constituent not required and not performed.
		Cadmium		Analysis of constituent not required and not performed.
		Calcium		Analysis of constituent not required and not performed.
		Chromium		Analysis of constituent not required and not performed.
		Cobalt		Analysis of constituent not required and not performed.
		Copper		Analysis of constituent not required and not performed.
		Iron		Analysis of constituent not required and not performed.
		Lead		Analysis of constituent not required and not performed.
		Magnesium		Analysis of constituent not required and not performed.
		Manganese		Analysis of constituent not required and not performed.
		Mercury		Analysis of constituent not required and not performed.
		Molybdenum		Analysis of constituent not required and not performed.
		Nickel		Analysis of constituent not required and not performed.
		Potassium		Analysis of constituent not required and not performed.
		Rhodium		Analysis of constituent not required and not performed.
		Selenium		Analysis of constituent not required and not performed.
		Silver		Analysis of constituent not required and not performed.
		Sodium		Analysis of constituent not required and not performed.
		Tantalum		Analysis of constituent not required and not performed.
		Thallium		Analysis of constituent not required and not performed.
		Uranium		Analysis of constituent not required and not performed.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB3SG2-18	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		Iodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed
		Total Organic Halides		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID: None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
000-0000 QC	TB4SG2-18	Bromide		Analysis of constituent not required and not performed.
		Chloride		Analysis of constituent not required and not performed.
		Fluoride		Analysis of constituent not required and not performed.
		Nitrate & Nitrite		Analysis of constituent not required and not performed.
		Sulfate		Analysis of constituent not required and not performed.
		Barometric Pressure Reading		Analysis of constituent not required and not performed.
		Specific Conductance		Analysis of constituent not required and not performed.
		Static Water Level Elevation		Analysis of constituent not required and not performed.
		Dissolved Oxygen		Analysis of constituent not required and not performed.
		Total Dissolved Solids		Analysis of constituent not required and not performed.
		рН		Analysis of constituent not required and not performed.
		Eh		Analysis of constituent not required and not performed.
		Temperature		Analysis of constituent not required and not performed.
		Aluminum		Analysis of constituent not required and not performed.
		Antimony		Analysis of constituent not required and not performed.
		Arsenic		Analysis of constituent not required and not performed
		Barium		Analysis of constituent not required and not performed
		Beryllium		Analysis of constituent not required and not performed
		Boron		Analysis of constituent not required and not performed
		Cadmium		Analysis of constituent not required and not performed
		Calcium		Analysis of constituent not required and not performed
		Chromium		Analysis of constituent not required and not performed
		Cobalt		Analysis of constituent not required and not performed
		Copper		Analysis of constituent not required and not performed
		Iron		Analysis of constituent not required and not performed
		Lead		Analysis of constituent not required and not performed
		Magnesium		Analysis of constituent not required and not performed
		Manganese		Analysis of constituent not required and not performed
		Mercury		Analysis of constituent not required and not performed
		Molybdenum		Analysis of constituent not required and not performed
		Nickel		Analysis of constituent not required and not performed
		Potassium		Analysis of constituent not required and not performed
		Rhodium		Analysis of constituent not required and not performed
		Selenium		Analysis of constituent not required and not performed
		Silver		Analysis of constituent not required and not performed
		Sodium		Analysis of constituent not required and not performed
		Tantalum		Analysis of constituent not required and not performed
		Thallium		Analysis of constituent not required and not performed
		Uranium		Analysis of constituent not required and not performed

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
0000-0000 QC	TB4SG2-18	Vanadium		Analysis of constituent not required and not performed.
		Zinc		Analysis of constituent not required and not performed.
		PCB, Total		Analysis of constituent not required and not performed.
		PCB-1016		Analysis of constituent not required and not performed.
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha		Analysis of constituent not required and not performed.
		Gross beta		Analysis of constituent not required and not performed.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226		Analysis of constituent not required and not performed.
		Strontium-90		Analysis of constituent not required and not performed.
		Technetium-99		Analysis of constituent not required and not performed.
		Thorium-230		Analysis of constituent not required and not performed.
		Tritium		Analysis of constituent not required and not performed.
		Chemical Oxygen Demand		Analysis of constituent not required and not performed.
		Cyanide		Analysis of constituent not required and not performed.
		lodide		Analysis of constituent not required and not performed.
		Total Organic Carbon		Analysis of constituent not required and not performed.
		Total Organic Halides		Analysis of constituent not required and not performed.
8004-4792 MW37	'3 MW373DUG2-18	Total Dissolved Solids	*	Duplicate analysis not within control limits.
		Magnesium	Е	Result estimated due to matrix interferences.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 8.05. Rad error is 7.98.
		Gross beta		TPU is 8.3. Rad error is 7.34.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 0.404. Rad error is 0.404.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 2.03. Rad error is 2.03.
		Technetium-99	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 19.5. Rad error is 19.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 0.547. Rad error is 0.546.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected. TPL is 119. Rad error is 119.
		lodide	W	Post-digestion spike recovery out of control limits.

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 and 073-00015

Finds/Unit: <u>KY8-890-008-982 / 1</u>

LAB ID:None

For Official Use Only

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
004-4809 MW38	34 MW384DSG2-18	Barium	N	Sample spike (MS/MSD) recovery not within control limits
		Mercury	N	Sample spike (MS/MSD) recovery not within control limits
	PCB, Total		Analysis of constituent not required and not performed.	
	PCB-1016		Analysis of constituent not required and not performed.	
		PCB-1221		Analysis of constituent not required and not performed.
		PCB-1232		Analysis of constituent not required and not performed.
		PCB-1242		Analysis of constituent not required and not performed.
		PCB-1248		Analysis of constituent not required and not performed.
		PCB-1254		Analysis of constituent not required and not performed.
		PCB-1260		Analysis of constituent not required and not performed.
		PCB-1268		Analysis of constituent not required and not performed.
		Gross alpha	U	Indicates analyte/nuclide was analyzed for, but not detected is 3.72. Rad error is 3.72.
		Gross beta		TPU is 18.9. Rad error is 12.1.
		lodine-131		Analysis of constituent not required and not performed.
		Radium-226	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.495. Rad error is 0.495.
		Strontium-90	U	Indicates analyte/nuclide was analyzed for, but not detected is 1.7. Rad error is 1.69.
		Technetium-99		TPU is 20.6. Rad error is 14.3.
		Thorium-230	U	Indicates analyte/nuclide was analyzed for, but not detected is 0.791. Rad error is 0.786.
		Tritium	U	Indicates analyte/nuclide was analyzed for, but not detected is 124. Rad error is 124.

APPENDIX D STATISTICAL ANALYSES AND QUALIFICATION STATEMENT

Finds/Unit: <u>KY8-980-008-982/1</u>

Lab ID: None
For Official Use Only

GROUNDWATER STATISTICAL COMMENTS

Introduction

The statistical analyses conducted on the first quarter 2018 groundwater data collected from the C-746-S&T Landfills monitoring wells (MWs) were performed in accordance with Permit GSTR0001, Standard Requirement 3, using the U.S. Environmental Protection Agency (EPA) guidance document, EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance (1989).

The statistical evaluation was conducted separately for the three groundwater systems: the Upper Continental Recharge System (UCRS), the Upper Regional Gravel Aquifer (URGA), and the Lower Regional Gravel Aquifer (LRGA). For each groundwater system, data from wells considered to represent background conditions were compared with test wells (downgradient or sidegradient wells) (Exhibit D.1). The first quarter 2018 data used to conduct the statistical analyses were collected in January 2018. The statistical analyses for this report first used data from the first eight quarters that had been sampled for each parameter to develop the historical background value, beginning with the first two baseline sampling events in 2002, when available. Then a second set of statistical analyses was run on analytes that had at least one downgradient well that exceeded the historical background, using the last eight quarters. The sampling dates associated with both the historical and the current background data are listed next to the result in the statistical analysis sheets of this appendix.

Statistical Analysis Process

Constituents of concern that have Kentucky maximum contaminant levels (MCLs) and results that do not exceed their respective MCL are not included in the statistical evaluation. Parameters that have MCLs can be found in 401 KAR 47:030 § 6. For parameters with no established MCL and for those parameters that exceed their MCLs, the most recent results are compared to historical background concentrations, as follows: the data are divided into censored and uncensored observations. The one-sided tolerance interval statistical test is conducted only on parameters that have at least one uncensored (detected) observation. The current result is compared to the results of the one-sided tolerance interval statistical test to determine if the current data exceed the historical background concentration calculated using the first eight quarters of data.

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted for pH. The test well results are compared to both an upper and lower tolerance limit (TL) to determine if statistically significant deviations in concentrations exist with respect to upgradient (background) well data from the first eight quarters. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

Statistical analyses are performed on the first eight quarters of historical background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well is considered to have an exceedance of the statistically derived historical background concentration.

Exhibit D.1. Station Identification for Monitoring Wells Analyzed

Station	Туре	Groundwater Unit
MW220	BG	URGA
MW221	SG	URGA
MW222	SG	URGA
MW223	SG	URGA
MW224	SG	URGA
MW369	TW	URGA
MW370	TW	LRGA
MW372	TW	URGA
MW373	TW	LRGA
MW384	SG	URGA
MW385	SG	LRGA
MW386 ¹	SG	UCRS
MW387	TW	URGA
MW388	TW	LRGA
MW389 ¹ *	TW	UCRS
$MW390^1$	TW	UCRS
MW391	TW	URGA
MW392	TW	LRGA
MW393 ¹	TW	UCRS
MW394	BG	URGA
MW395	BG	LRGA
MW396 ¹	BG	UCRS
MW397	BG	LRGA

¹NOTE: The gradients in UCRS wells are downward. The UCRS wells identified as up-, side- or downgradient are those wells located in the same general direction as the RGA wells considered to be up-, side-, or downgradient.

BG: upgradient or background wells

TW: downgradient or test wells

SG: sidegradient wells

*Well was dry this quarter and a groundwater sample could not be collected.

For those parameters that are determined to exceed the historical background concentration, a second one-sided tolerance interval statistical test, or a two-sided tolerance interval statistical test in the case of pH, is conducted. The second one-sided tolerance interval statistical test is conducted to determine whether the current concentration in downgradient wells exceeds the current background, as determined by a comparison against the statistically derived upper TL using the most recent eight quarters of data for the relevant background wells. The tolerance interval statistical analysis is conducted separately for each parameter in each well (no pooling of downgradient data).

For the statistical analysis of pH, a two-sided tolerance interval statistical test is conducted, if required. The test well pH results are compared to both an upper and lower TL to determine if the current pH is different from the current background level to a statistically significant level. Statistical analyses are performed on the last eight quarters of current background data, not on the data for the current quarter. Once a statistical result is obtained using the background data, the result for the current quarter is compared to that value. If the value is exceeded, the well has a statistically significant difference in concentration compared to the current background concentration.

A stepwise list of the one-sided tolerance interval statistical procedure applied to the data is summarized below.¹

- 1. The TL is calculated for the background data (first using the first eight quarters, then using the last eight quarters).
 - For each parameter, the background data are used to establish a baseline. On this data set, the mean (X) and the standard deviation (S) are computed.
 - The data set is checked for normality using coefficient of variation (CV). If $CV \le 1.0$, then the data are assumed to be normally distributed. Data sets with CV > 1.0 are assumed to be log-normally distributed; for data sets with CV > 1.0, the data are log-transformed and analyzed.
 - The factor (K) for one-sided upper TL with 95% minimum coverage is determined (Table 5, Appendix B; *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance*, 1989) based on the number of background data points.
 - The one-sided upper TL is calculated using the following equation:

$$TL = X + (K \times S)$$

2. Each observation from downgradient wells is compared to the calculated one-sided upper TL in Step 1. If an observation value exceeds the TL, then there is statistically significant evidence that the well concentration exceeds the historical background.

Type of Data Used

Exhibit D.1 presents the upgradient or background wells (identified as "BG"), the downgradient or test wells (identified as "TW"), and the sidegradient wells (identified as "SG") for the C-746-S&T Residential and Inert Landfills. Exhibit D.2 presents the parameters from the available data set for which a statistical test was performed using the one-sided tolerance interval.

Exhibits D.3, D.4, and D.5 list the number of analyses (observations), nondetects (censored observations), and detects (uncensored observations) by parameter in the UCRS, the URGA, and the LRGA, respectively. Those parameters displayed with bold-face type indicate the one-sided tolerance interval statistical test was performed. The data presented in Exhibits D.3, D.4, and D.5 were collected during the current quarter, first quarter 2018. The observations are representative of the current quarter data. Historical background data are presented in Attachment D1. The sampling dates associated with background data are listed next to the result in Attachment D1. When field duplicate data are available, the higher of the two readings is retained for further evaluation. When a data point has been rejected following data validation, this result is not used, and the next available data point is used for the background or current quarter data. A result has been considered a nondetect if it has a "U" validation code.

upper $TL = X + (K \times S)$ lower $TL = X - (K \times S)$

-

 $^{^{1}}$ For pH, two-sided TLs (upper and lower) were calculated with an adjusted K factor using the following equations:

Exhibit D.2. List of Parameters Tested Using the One-Sided Upper Tolerance Level Test with Historical Background

Parameters Aluminum Beta Activity Boron Bromide Calcium Chemical Oxygen Demand (COD) Chloride cis-1,2-Dichloroethene Cobalt Conductivity Copper Dissolved Oxygen Dissolved Solids Iodide Iron Magnesium Manganese Molybdenum Nickel Oxidation-Reduction Potential pH* Potassium Radium-226 Sodium Sulfate Technetium-99 Total Organic Carbon (TOC) Total Organic Halides (TOX) Trichloroethene Vanadium

Zinc

*For pH, the test well results were compared to both an upper and lower TL to determine if the current result differs to a statistically significant degree from the historical background values.

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	4	4	0	No
1,1,2,2-Tetrachloroethane	4	4	0	No
1,1,2-Trichloroethane	4	4	0	No
1,1-Dichloroethane	4	4	0	No
1,2,3-Trichloropropane	4	4	0	No
1,2-Dibromo-3-chloropropane	4	4	0	No
1,2-Dibromoethane	4	4	0	No
1,2-Dichlorobenzene	4	4	0	No
1,2-Dichloropropane	4	4	0	No
2-Butanone	4	4	0	No
2-Hexanone	4	4	0	No
4-Methyl-2-pentanone	4	4	0	No
Acetone	4	4	0	No
Acrolein	4	4	0	No
Acrylonitrile	4	4	0	No
Aluminum	4	2	2	Yes
Antimony	4	4	0	No
Beryllium	4	4	0	No
Beta activity	4	3	1	Yes
Boron	4	1	3	Yes
Bromide	4	0	4	Yes
Bromochloromethane	4	4	0	No
Bromodichloromethane	4	4	0	No
Bromoform	4	4	0	No
Bromomethane	4	4	0	No
Calcium	4	0	4	Yes
Carbon disulfide	4	4	0	No
Chemical Oxygen Demand (COD)	4	0	4	Yes
Chloride	4	0	4	Yes
Chlorobenzene	4	4	0	No
Chloroethane	4	4	0	No
Chloroform	4	4	0	No
Chloromethane	4	4	0	No
cis-1,2-Dichloroethene	4	4	0	No
cis-1,3-Dichloropropene	4	4	0	No
Cobalt	4	1	3	Yes
Conductivity	4	0	4	Yes
Copper	4	0	4	Yes
Cyanide	4	4	0	No
Dibromochloromethane	4	4	0	No
Dibromomethane	4	4	0	No
Dimethylbenzene, Total	4	4	0	No
Dissolved Oxygen	4	0	4	Yes
Dissolved Solids	4	0	4	Yes
Ethylbenzene	4	4	0	No

Exhibit D.3. Summary of Censored and Uncensored Data—UCRS (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	4	2	2	Yes
Iodomethane	4	4	0	No
Iron	4	0	4	Yes
Magnesium	4	0	4	Yes
Manganese	4	0	4	Yes
Methylene chloride	4	4	0	No
Molybdenum	4	1	3	Yes
Nickel	4	1	3	Yes
Oxidation-Reduction Potential	4	0	4	Yes
рН	4	0	4	Yes
Potassium	4	0	4	Yes
Radium-226	4	3	1	Yes
Rhodium	4	4	0	No
Sodium	4	0	4	Yes
Styrene	4	4	0	No
Sulfate	4	0	4	Yes
Tantalum	4	4	0	No
Technetium-99	4	3	1	Yes
Tetrachloroethene	4	4	0	No
Thallium	4	4	0	No
Thorium-230	4	4	0	No
Toluene	4	4	0	No
Total Organic Carbon (TOC)	4	0	4	Yes
Total Organic Halides (TOX)	4	0	4	Yes
trans-1,2-Dichloroethene	4	4	0	No
trans-1,3-Dichloropropene	4	4	0	No
trans-1,4-Dichloro-2-Butene	4	4	0	No
Trichlorofluoromethane	4	4	0	No
Vanadium	4	3	1	Yes
Vinyl Acetate	4	4	0	No
Zinc	4	3	1	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.4. Summary of Censored and Uncensored Data—URGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	11	11	0	No
1,1,2,2-Tetrachloroethane	11	11	0	No
1,1,2-Trichloroethane	11	11	0	No
1,1-Dichloroethane	11	11	0	No
1,2,3-Trichloropropane	11	11	0	No
1,2-Dibromo-3-chloropropane	11	11	0	No
1,2-Dibromoethane	11	11	0	No
1,2-Dichlorobenzene	11	11	0	No
1,2-Dichloropropane	11	11	0	No
2-Butanone	11	11	0	No
2-Hexanone	11	11	0	No
4-Methyl-2-pentanone	11	11	0	No
Acetone	11	11	0	No
Acrolein	11	11	0	No
Acrylonitrile	11	11	0	No
Aluminum	11	2	9	Yes
Antimony	11	11	0	No
Beryllium	11	11	0	No
Beta activity	11	5	6	Yes
Boron	11	0	11	Yes
Bromide	11	0	11	Yes
Bromochloromethane	11	11	0	No
Bromodichloromethane	11	11	0	No
Bromoform	11	11	0	No
Bromomethane	11	11	0	No
Calcium	11	0	11	Yes
Carbon disulfide	11	11	0	No
Chemical Oxygen Demand (COD)	11	0	11	Yes
Chloride	11	0	11	Yes
Chlorobenzene	11	11	0	No
Chloroethane	11	11	0	No
Chloroform	11	11	0	No
Chloromethane	11	11	0	No
cis-1,2-Dichloroethene	11	10	1	Yes
cis-1,3-Dichloropropene	11	11	0	No
Cobalt	11	4	7	Yes
Conductivity	11	0	11	Yes
Copper	11	0	11	Yes
Cyanide	11	11	0	No
Dibromochloromethane	11	11	0	No
Dibromomethane	11	11	0	No
Dimethylbenzene, Total	11	11	0	No
•				
Dissolved Oxygen	11	0	11	Yes
Dissolved Solids	11	0	11	Yes
Ethylbenzene	11	11	0	No

Exhibit D.4. Summary of Censored and Uncensored Data—URGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Iodide	11	11	0	No
Iodomethane	11	11	0	No
Iron	11	0	11	Yes
Magnesium	11	0	11	Yes
Manganese	11	0	11	Yes
Methylene chloride	11	11	0	No
Molybdenum	11	4	7	Yes
Nickel	11	0	11	Yes
Oxidation-Reduction Potential	11	0	11	Yes
рН	11	0	11	Yes
Potassium	11	0	11	Yes
Radium-226	11	10	1	Yes
Rhodium	11	11	0	No
Sodium	11	0	11	Yes
Styrene	11	11	0	No
Sulfate	11	0	11	Yes
Tantalum	11	11	0	No
Technetium-99	11	6	5	Yes
Tetrachloroethene	11	11	0	No
Thallium	11	11	0	No
Thorium-230	11	11	0	No
Toluene	11	11	0	No
Total Organic Carbon (TOC)	11	0	11	Yes
Total Organic Halides (TOX)	11	2	9	Yes
trans-1,2-Dichloroethene	11	11	0	No
trans-1,3-Dichloropropene	11	11	0	No
trans-1,4-Dichloro-2-Butene	11	11	0	No
Trichloroethene	11	4	7	Yes
Trichlorofluoromethane	11	11	0	No
Vanadium	11	9	2	Yes
Vinyl Acetate	11	11	0	No
Zinc	11	9	2	Yes

Bold denotes parameters with at least one uncensored observation.

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
1,1,1,2-Tetrachloroethane	7	7	0	No
1,1,2,2-Tetrachloroethane	7	7	0	No
1,1,2-Trichloroethane	7	7	0	No
1,1-Dichloroethane	7	7	0	No
1,2,3-Trichloropropane	7	7	0	No
1,2-Dibromo-3-chloropropane	7	7	0	No
1,2-Dibromoethane	7	7	0	No
1,2-Dichlorobenzene	7	7	0	No
1,2-Dichloropropane	7	7	0	No
2-Butanone	7	7	0	No
2-Hexanone	7	7	0	No
4-Methyl-2-pentanone	7	7	0	No
Acetone	7	7	0	No
Acrolein	7	7	0	No
Acrylonitrile	7	7	0	No
Aluminum	7	2	5	Yes
Antimony	7	7	0	No
Beryllium	7	7	0	No
Beta activity	7	3	4	Yes
Boron	7	0	7	Yes
Bromide	7	0	7	Yes
Bromochloromethane	7	7	0	No
Bromodichloromethane	7	7	0	No
Bromoform	7	7	0	No
Bromomethane	7	7	0	No
Calcium	7	0	7	Yes
Carbon disulfide	7	7	0	No
Chemical Oxygen Demand (COD)	7	1	6	Yes
Chloride	7	0	7	Yes
Chlorobenzene	7	7	0	No
Chloroethane	7	7	0	No
Chloroform	7	7	0	No
Chloromethane	7	7	0	No
cis-1,2-Dichloroethene	7	6	1	Yes
cis-1,3-Dichloropropene	7	7	0	No
Cobalt	7	5	2	Yes
Conductivity	7	0	7	Yes
Copper	7	0	7	Yes
Cyanide	7	7	0	No
Dibromochloromethane	7	7	0	No
Dibromomethane	7	7	0	No
Dimethylbenzene, Total	7	7	0	No
Dissolved Oxygen	7	0	7	Yes
Dissolved Solids	7	0	7	Yes
Ethylbenzene	7	7	0	No
Iodide	7	7	0	No
Iodomethane	7	7	0	No
Iron	7	1	6	Yes

Exhibit D.5. Summary of Censored and Uncensored Data—LRGA (Continued)

Parameters	Observations	Censored Observation	Uncensored Observation	Statistical Analysis?
Magnesium	7	0	7	Yes
Manganese	7	1	6	Yes
Methylene chloride	7	7	0	No
Molybdenum	7	3	4	Yes
Nickel	7	0	7	Yes
Oxidation-Reduction Potential	7	0	7	Yes
рН	7	0	7	Yes
Potassium	7	0	7	Yes
Radium-226	7	5	2	Yes
Rhodium	7	7	0	No
Sodium	7	0	7	Yes
Styrene	7	7	0	No
Sulfate	7	0	7	Yes
Tantalum	7	7	0	No
Technetium-99	7	4	3	Yes
Tetrachloroethene	7	7	0	No
Thallium	7	7	0	No
Thorium-230	7	7	0	No
Toluene	7	7	0	No
Total Organic Carbon (TOC)	7	0	7	Yes
Total Organic Halides (TOX)	7	1	6	Yes
trans-1,2-Dichloroethene	7	7	0	No
trans-1,3-Dichloropropene	7	7	0	No
trans-1,4-Dichloro-2-Butene	7	7	0	No
Trichloroethene	7	1	6	Yes
Trichlorofluoromethane	7	7	0	No
Vanadium	7	7	0	No
Vinyl Acetate	7	7	0	No
Zinc	7	6	1	Yes

Bold denotes parameters with at least one uncensored observation.

Discussion of Results from Historical Background Comparison

For the UCRS, URGA, and LRGA, the concentrations of this quarter were compared to the results of the one-sided upper tolerance interval tests that were calculated using historical background and presented in Attachment D1. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 29, 30, and 29 parameters, respectively, including those listed in bold print in Exhibits D.3, D.4, and D.5, which includes those constituents (beta activity and trichloroethene) that exceeded their MCL. A summary of exceedances when compared to statistically derived historical upgradient background by well number is shown in Exhibit D.6.

UCRS

This quarter's results identified exceedances of historical background UTL for beta activity, oxidation-reduction potential, and technetium-99.

URGA

This quarter's results identified exceedances of historical background UTL for aluminum, beta activity, calcium, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sulfate, and technetium-99.

LRGA

This quarter's results identified exceedances of historical background UTL for beta activity, calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, radium-226, sulfate, and technetium-99.

Statistical Summary

Summaries of the results of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and in the LRGA are presented in Exhibit D.7, Exhibit D.8, and Exhibit D.9, respectively.

Exhibit D.6. Summary of Exceedances of Statistically Derived Historical Background Concentrations

UCRS	URGA	LRGA
MW386: Oxidation-reduction potential	MW221: Oxidation-reduction potential	MW370: Beta activity, oxidation-reduction potential, radium-226, sulfate, technetium-99
MW390: Beta activity, oxidation-reduction potential, technetium-99	MW222: Aluminum	MW373: Calcium, conductivity, dissolved solids, magnesium, oxidation-reduction potential, sulfate
MW393: Oxidation-reduction potential	MW369: Technetium-99	MW385: Beta activity, sulfate, technetium-99
MW396: Oxidation-reduction potential	MW372: Calcium, dissolved solids, magnesium, radium-226, sulfate	MW388: Beta activity, oxidation-reduction potential, radium-226, sulfate, technetium-99
	MW384: Beta activity, sulfate, technetium-99	MW392: Oxidation-reduction potential
	MW387: Beta activity, magnesium, sulfate, technetium-99	MW397: Oxidation-reduction potential
	MW391: Sulfate	

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.57	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	1.17	Current results exceed statistically derived historical background concentration in MW390.
Boron	Tolerance Interval	1.28	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.02	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.34	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.12	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	1.20	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.19	No exceedance of statistically derived historical background concentration.
Iodide	Tolerance Interval	0.13	No exceedance of statistically derived historical background concentration.
Iron	Tolerance Interval	0.48	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.20	No exceedance of statistically derived historical background concentration.

Exhibit D.7. Test Summaries for Qualified Parameters for Historical Background—UCRS (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Manganese	Tolerance Interval	0.46	No exceedance of statistically derived historical background concentration.
Molybdenum	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.27	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	4.77	Current results exceed statistically derived historical background concentration in MW386, MW390, MW393, and MW396.
pН	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	1.78	No exceedance of statistically derived historical background concentration.
Sodium	Tolerance Interval	0.30	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Technetium-99	Tolerance Interval	0.86	Current results exceed statistically derived historical background concentration in MW390.
Total Organic Carbon (TOC)	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.38	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.11	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.79	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.28	Current results exceed statistically derived historical background concentration in MW222.
Beta Activity ¹	Tolerance Interval	0.97	Current results exceed statistically derived historical background concentration in MW384 and MW387.
Boron	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.17	Current results exceed statistically derived historical background concentration in MW372.
Chemical Oxygen Demand (COD)	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.23	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	2.44	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.28	No exceedance of statistically derived historical background concentration.
Copper	Tolerance Interval	0.43	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.50	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.12	Current results exceed statistically derived historical background concentration in MW372.
Iron	Tolerance Interval	1.17	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW372 and MW387.
Manganese	Tolerance Interval	2.16	No exceedance of statistically derived historical background concentration.

Exhibit D.8. Test Summaries for Qualified Parameters for Historical Background—URGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.26	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.79	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.48	Current results exceed statistically derived historical background concentration in MW221.
pH	Tolerance Interval	0.05	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	1.40	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	10.59	Current results exceed statistically derived historical background concentration in MW372.
Sodium	Tolerance Interval	0.24	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.25	Current results exceed statistically derived historical background concentration in MW372, MW384, MW387, and MW391.
Technetium-99	Tolerance Interval	0.99	Current results exceed statistically derived historical background concentration in MW369, MW384, and MW387.
Total Organic Carbon (TOC)	Tolerance Interval	0.49	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	2.57	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.95	No exceedance of statistically derived historical background concentration.
Vanadium	Tolerance Interval	0.08	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.72	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
* If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.86	No exceedance of statistically derived historical background concentration.
Beta Activity ¹	Tolerance Interval	0.36	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Boron	Tolerance Interval	1.24	No exceedance of statistically derived historical background concentration.
Bromide	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Calcium	Tolerance Interval	0.50	Current results exceed statistically derived historical background concentration in MW373.
Chemical Oxygen Demand	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Chloride	Tolerance Interval	0.22	No exceedance of statistically derived historical background concentration.
cis-1,2-Dichloroethene	Tolerance Interval	0.00	No exceedance of statistically derived historical background concentration.
Cobalt	Tolerance Interval	1.51	No exceedance of statistically derived historical background concentration.
Conductivity	Tolerance Interval	0.14	Current results exceed statistically derived historical background concentration in MW373.
Copper	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Dissolved Oxygen	Tolerance Interval	0.52	No exceedance of statistically derived historical background concentration.
Dissolved Solids	Tolerance Interval	0.16	Current results exceed statistically derived historical background concentration in MW373.
Iron	Tolerance Interval	1.29	No exceedance of statistically derived historical background concentration.
Magnesium	Tolerance Interval	0.51	Current results exceed statistically derived historical background concentration in MW373.
Manganese	Tolerance Interval	1.49	No exceedance of statistically derived historical background concentration.

Exhibit D.9. Test Summaries for Qualified Parameters for Historical Background—LRGA (Continued)

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Molybdenum	Tolerance Interval	1.45	No exceedance of statistically derived historical background concentration.
Nickel	Tolerance Interval	1.09	No exceedance of statistically derived historical background concentration.
Oxidation-Reduction Potential	Tolerance Interval	0.33	Current results exceed statistically derived historical background concentration in MW370, MW373, MW388, MW392, and MW397.
рН	Tolerance Interval	0.04	No exceedance of statistically derived historical background concentration.
Potassium	Tolerance Interval	0.40	No exceedance of statistically derived historical background concentration.
Radium-226	Tolerance Interval	10.74	Current results exceed statistically derived historical background concentration in MW370 and MW388.
Sodium	Tolerance Interval	0.47	No exceedance of statistically derived historical background concentration.
Sulfate	Tolerance Interval	0.20	Current results exceed statistically derived historical background concentration in MW370, MW373, MW385, and MW388.
Technetium-99	Tolerance Interval	0.80	Current results exceed statistically derived historical background concentration in MW370, MW385, and MW388.
Total Organic Carbon (TOC)	Tolerance Interval	0.55	No exceedance of statistically derived historical background concentration.
Total Organic Halides (TOX)	Tolerance Interval	0.59	No exceedance of statistically derived historical background concentration.
Trichloroethene ¹	Tolerance Interval	0.78	No exceedance of statistically derived historical background concentration.
Zinc	Tolerance Interval	0.76	No exceedance of statistically derived historical background concentration.

CV: coefficient of variation
*If CV > 1.0, used log-transformed data.

1 Tolerance interval was calculated based on an MCL exceedance.

Discussion of Results from Current Background Comparison

For concentrations in wells in the UCRS, URGA, and LRGA that exceeded the upper TL test using historical background, the concentrations were compared to the one-sided TL calculated using the most recent eight quarters of data and are presented in Attachment D2. The statistician qualification statement is presented in Attachment D3. For the UCRS, URGA, and LRGA, the test was applied to 3, 9, and 9 parameters, respectively, because these parameter concentrations exceeded the historical background TL.

For downgradient wells only, a summary of instances where concentrations exceeded the TL calculated using current background data is shown in Exhibit D.10.

Exhibit D.10. Summary of Exceedances (Downgradient Wells) of the TL Calculated Using Current Background Concentrations

URGA	LRGA
MW369: Technetium-99	MW370: Beta activity, radium-226, sulfate, technetium-99
MW372: Calcium, magnesium, sulfate,	MW373: Calcium, conductivity, dissolved solids, magnesium, sulfate
MW387: Beta activity, magnesium, sulfate, technetium-99	MW388: Beta activity, radium-226, sulfate, technetium-99
MW391: Sulfate	

UCRS

Because gradients in the UCRS are downward (vertical), there are no hydrogeologically downgradient UCRS wells. It should be noted; however, that the beta activity and technetium-99 concentration in one UCRS well (i.e., MW390) was higher than the current TL this quarter.

URGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, magnesium, sulfate, and technetium-99.

LRGA

This quarter's results identified current background exceedances in downgradient wells for beta activity, calcium, conductivity, dissolved solids, magnesium, radium-226, sulfate, and technetium-99.

Statistical Summary

Summaries of the statistical tests conducted on data obtained from wells in the UCRS, the URGA, and the LRGA are presented in Exhibit D.11, Exhibit D.12, and Exhibit D.13, respectively.

Exhibit D.11. Test Summaries for Qualified Parameters for Current Background—UCRS

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	2.58	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.29	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Technetium-99	Tolerance Interval	-2.62	Because gradients in UCRS wells are downward, there are no UCRS wells that are hydrogeologically downgradient of the landfill; however, MW390 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Exhibit D.12. Test Summaries for Qualified Parameters for Current Background—URGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Aluminum	Tolerance Interval	0.65	MW222 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Beta Activity	Tolerance Interval	0.67	MW384 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.16	MW372 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.31	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Magnesium	Tolerance Interval	0.15	MW372 and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-reduction potential	Tolerance Interval	0.15	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Radium-226	Tolerance Interval	0.63	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Sulfate	Tolerance Interval	0.32	MW372, MW387, and MW391 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.59	MW369, MW384, and MW387 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation *If CV > 1.0, used log-transformed data.

Exhibit D.13. Test Summaries for Qualified Parameters for Current Background—LRGA

Parameter	Performed Test	CV Normality Test*	Results of Tolerance Interval Test Conducted
Beta Activity	Tolerance Interval	0.56	MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Calcium	Tolerance Interval	0.22	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Conductivity	Tolerance Interval	0.09	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Dissolved Solids	Tolerance Interval	0.13	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Magnesium	Tolerance Interval	0.22	MW373 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Oxidation-Reduction Potential	Tolerance Interval	0.23	None of the test wells exceeded the upper TL, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically significant level.
Radium-226	Tolerance Interval	0.55	MW370 and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Sulfate	Tolerance Interval	0.06	MW370, MW373, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.
Technetium-99	Tolerance Interval	0.57	MW370, MW385, and MW388 exceeded the upper TL, which is evidence of elevated concentration with respect to current background data.

CV: coefficient of variation
* If CV > 1.0, used log-transformed data.

ATTACHMENT D1

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING HISTORICAL BACKGROUND DATA

C-746-S/T First Quarter 2018 Statistical Analysis **Aluminum** UNITS: mg/L

Historical Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.320

S = 0.182CV(1) = 0.567 **K factor**=** 3.188

TL(1) = 0.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.259 S = 0.503

CV(2) = -0.400

K factor=** 3.188

TL(2) = 0.345

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.393	-0.934
9/16/2002	0.2	-1.609
10/16/2002	0.2	-1.609
1/13/2003	0.501	-0.691
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.668	-0.403

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	0.05	N/A	-2.996	N/A		
MW390	Downgradien	t Yes	0.248	NO	-1.394	N/A		
MW393	Downgradien	t Yes	0.0671	NO	-2.702	N/A		
MW396	Upgradient	No	0.05	N/A	-2.996	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-3

C-746-S/T First Quarter 2018 Statistical Analysis H Beta activity UNITS: pCi/L

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 4.298

S= 5.012 **CV(1)**=1.166

K factor=** 3.188

TL(1)= 20.277

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.294

S= 0.988

CV(2) = 0.764

K factor=** 3.188

TL(2)= 2.632

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2.2	0.788
9/16/2002	0.727	-0.319
10/16/2002	7.28	1.985
1/13/2003	6.97	1.942
4/8/2003	13.9	2.632
7/16/2003	2.08	0.732
10/14/2003	-2.42	#Func!
1/14/2004	3.65	1.295

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	0.187	N/A	-1.677	N/A		
MW390	Downgradien	t Yes	57.7	N/A	4.055	YES		
MW393	Downgradien	t No	2.53	N/A	0.928	N/A		
MW396	Upgradient	No	5.34	N/A	1.675	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW390

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis Boron UNITS:

Analysis Historical Background Comparison UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.833 CV(1) = 1.282

K factor=** 3.188

TL(1) = 3.306

LL(1)=N/A

Statistics-Transformed Background Data

X= -1.034 **S**= 1.066

CV(2) = -1.031

K factor=** 3.188

TL(2) = 2.364

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/8/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/14/2004	0.2	-1.609

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	No	0.015	N/A	-4.200	N/A		
MW390	Downgradien	t Yes	0.0112	N/A	-4.492	NO		
MW393	Downgradien	t Yes	0.0218	N/A	-3.826	NO		
MW396	Upgradient	Yes	0.00697	/ N/A	-4.966	NO		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis Bromide UNITS:

Analysis Historical Background Comparison UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.388

S = 0.327 CV(1) = 0.236

K factor=** 3.188

TL(1) = 2.430

LL(1)=N/A

Statistics-Transformed Background Data

X= 0.301

S = 0.252

CV(2) = 0.838

K factor=** 3.188

TL(2) = 1.105

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	1.5	0.405
9/16/2002	1.6	0.470
10/16/2002	1.6	0.470
1/13/2003	1	0.000
4/8/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1.7	0.531
1/14/2004	1.7	0.531

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	0.148	NO	-1.911	N/A		
MW390	Downgradien	t Yes	0.456	NO	-0.785	N/A		
MW393	Downgradien	t Yes	0.167	NO	-1.790	N/A		
MW396	Upgradient	Yes	1.1	NO	0.095	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis Calcium UNITS:

Analysis Historical Background Comparison UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 41.825 **S**= 8.445

CV(1) = 0.202

K factor=** 3.188

TL(1)= 68.748

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.711

S= 0.241

CV(2) = 0.065

K factor=** 3.188

TL(2) = 4.479

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW396			
Result	LN(Result)		
38.4	3.648		
42.9	3.759		
40.2	3.694		
46.7	3.844		
49.8	3.908		
43.3	3.768		
49.7	3.906		
23.6	3.161		
	Result 38.4 42.9 40.2 46.7 49.8 43.3 49.7		

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	19.9	NO	2.991	N/A			
MW390	Downgradien	t Yes	27.7	NO	3.321	N/A			
MW393	Downgradien	t Yes	13.1	NO	2.573	N/A			
MW396	Upgradient	Yes	34.4	NO	3.538	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Chemical Oxygen Demand (COD)

UNITS: mg/L

UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.375 S = 0.744

CV(1)=0.021

K factor=** 3.188

TL(1)= 37.747

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.566

S = 0.021

CV(2) = 0.006

K factor=** 3.188

TL(2) = 3.632

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396		
Date Collected	Result	LN(Result)	
8/13/2002	36	3.584	
9/16/2002	35	3.555	
10/16/2002	37	3.611	
1/13/2003	35	3.555	
4/8/2003	35	3.555	
7/16/2003	35	3.555	
10/14/2003	35	3.555	
1/14/2004	35	3.555	

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)			
MW386	Sidegradient	Yes	22.5	NO	3.114	N/A			
MW390	Downgradien	t Yes	29.2	NO	3.374	N/A			
MW393	Downgradien	t Yes	12.3	NO	2.510	N/A			
MW396	Upgradient	Yes	37.6	NO	3.627	N/A			

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis Chloride UNITS: mg/L

Historical Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 101.725 S = 5.245

CV(1)=0.052

K factor=** 3.188

TL(1)= 118.447 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.621 S = 0.053

CV(2) = 0.011

K factor=** 3.188

TL(2) = 4.789

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	91.6	4.517
9/16/2002	98.3	4.588
10/16/2002	101.4	4.619
1/13/2003	108.3	4.685
4/8/2003	100.5	4.610
7/16/2003	102.5	4.630
10/14/2003	106.8	4.671
1/14/2004	104.4	4.648

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	14.6	NO	2.681	N/A
MW390	Downgradien	t Yes	40.4	NO	3.699	N/A
MW393	Downgradien	t Yes	13.9	NO	2.632	N/A
MW396	Upgradient	Yes	71.3	NO	4.267	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-9

Historical Background Comparison UNITS: mg/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Cobalt

X = 0.008

S = 0.011

CV(1) = 1.340**K factor**=** 3.188 TL(1) = 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X= -5.645 **S**= 1.339

CV(2) = -0.237

K factor=** 3.188

TL(2) = -1.377

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00324	-5.732
4/8/2003	0.00436	-5.435
7/16/2003	0.00276	-5.893
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

MW396 Upgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

-5.850

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.0075	N/A	-4.893	NO
MW390	Downgradien	t Yes	0.00044	4 N/A	-7.720	NO
MW393	Downgradien	t No	0.001	N/A	-6.908	N/A

N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

0.00288

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-10

C-746-S/T First Quarter 2018 Statistical Analysis **Conductivity**

Historical Background Comparison UNITS: umho/cm

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 922.500 S = 107.616 CV(1) = 0.117

K factor=** 3.188

TL(1)= 1265.579 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.822 S = 0.111 CV(2) = 0.016

K factor=** 3.188

TL(2) = 7.175

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	784	6.664
9/30/2002	871	6.770
10/16/2002	868	6.766
1/13/2003	912	6.816
4/8/2003	942	6.848
7/16/2003	910	6.813
10/14/2003	935	6.841
1/14/2004	1158	7.054

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	601	NO	6.399	N/A
MW390	Downgradien	t Yes	671	NO	6.509	N/A
MW393	Downgradien	t Yes	407	NO	6.009	N/A
MW396	Upgradient	Yes	750	NO	6.620	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-11

Historical Background Comparison

Copper UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

CV(1)=0.481

K factor=** 3.188

TL(1)= 0.072

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.650 S = 0.414

CV(2) = -0.113

K factor**= 3.188

TL(2) = -2.331

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.026	-3.650
1/13/2003	0.02	-3.912
4/8/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

S = 0.014

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.0116	NO	-4.457	N/A
MW390	Downgradien	t Yes	0.00101	NO	-6.898	N/A
MW393	Downgradien	t Yes	0.00058	2 NO	-7.449	N/A
MW396	Upgradient	Yes	0.00042	1 NO	-7.773	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis **Dissolved Oxygen** UNITS: mg/L

Historical Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.395

CV(1) = 1.202S = 1.677

K factor=** 3.188

TL(1) = 6.743

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.043 S = 0.814

CV(2) = -18.867

K factor=** 3.188

TL(2) = 2.553

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	5.45	1.696
9/16/2002	0.4	-0.916
10/16/2002	0.54	-0.616
1/13/2003	0.72	-0.329
4/8/2003	0.69	-0.371
7/16/2003	1.1	0.095
10/14/2003	0.71	-0.342
1/14/2004	1.55	0.438

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW386	Sidegradient	Yes	1.72	N/A	0.542	NO
MW390	Downgradien	t Yes	4.79	N/A	1.567	NO
MW393	Downgradien	t Yes	1.73	N/A	0.548	NO
MW396	Upgradient	Yes	1.01	N/A	0.010	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-13

C-746-S/T First Quarter 2018 Statistical Analysis **Dissolved Solids** UNITS: mg/L

Historical Background Comparison

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 550.375 S = 104.330 CV(1) = 0.190

K factor=** 3.188

TL(1)= 882.980 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 6.298 S = 0.162 CV(2) = 0.026

K factor=** 3.188

TL(2) = 6.815

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	502	6.219
9/16/2002	506	6.227
10/16/2002	543	6.297
1/13/2003	521	6.256
4/8/2003	504	6.223
7/16/2003	532	6.277
10/14/2003	490	6.194
1/14/2004	805	6.691

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	347	NO	5.849	N/A
MW390	Downgradien	t Yes	371	NO	5.916	N/A
MW393	Downgradien	t Yes	249	NO	5.517	N/A
MW396	Upgradient	Yes	433	NO	6.071	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-14

C-746-S/T First Quarter 2018 Statistical Analysis Iodide UNITS:

Analysis Historical Background Comparison UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 2.150

CV(1)=0.132

K factor**= 3.188

TL(1) = 3.052

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.759

S= 0.123

S = 0.283

CV(2) = 0.162

K factor=** 3.188

TL(2)=1.150

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

MW396	
Result	LN(Result)
2	0.693
2	0.693
2	0.693
2	0.693
2	0.693
2.7	0.993
2.5	0.916
2	0.693
	Result 2 2 2 2 2 2 2.7 2.5

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.186	NO	-1.682	N/A
MW390	Downgradien	t No	0.5	N/A	-0.693	N/A
MW393	Downgradien	t No	0.5	N/A	-0.693	N/A
MW396	Upgradient	Yes	0.737	NO	-0.305	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Analysis Historical Background Comparison UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Iron

X = 7.796

CV(1) = 0.478

K factor=** 3.188

TL(1)= 19.666

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.880

S= 0.723

S = 3.723

CV(2) = 0.384

K factor=** 3.188

TL(2) = 4.184

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 1.8 0.588 9/16/2002 9.53 2.254 10/16/2002 7.43 2.006 1/13/2003 9.93 2.296 4/8/2003 2.322 10.2 7/16/2003 9.16 2.215 10/14/2003 11.9 2.477 1/14/2004 2.42 0.884

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	1.64	NO	0.495	N/A
MW390	Downgradien	t Yes	0.28	NO	-1.273	N/A
MW393	Downgradien	t Yes	2.84	NO	1.044	N/A
MW396	Upgradient	Yes	2.6	NO	0.956	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Analysis Historical Background Comparison UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Magnesium

X= 16.876 **S**= 3.313

CV(1)=0.196

K factor=** 3.188

TL(1)= 27.438

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.804

S = 0.240 C

CV(2) = 0.086

K factor**= 3.188

TL(2) = 3.569

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	15.5	2.741
9/16/2002	17.3	2.851
10/16/2002	17.8	2.879
1/13/2003	19.2	2.955
4/8/2003	17.8	2.879
7/16/2003	17.8	2.879
10/14/2003	20.2	3.006
1/14/2004	9.41	2.242

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	8.77	NO	2.171	N/A
MW390	Downgradien	t Yes	12.1	NO	2.493	N/A
MW393	Downgradien	t Yes	3.63	NO	1.289	N/A
MW396	Upgradient	Yes	15.5	NO	2.741	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Manganese UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.774

S= 0.353 **CV(1)**=0.456

K factor=** 3.188

TL(1)= 1.900

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.566 S = 1.192

1.192 **CV(2)=**-2.105

K factor=** 3.188

TL(2) = 3.235

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.57	-0.562
9/16/2002	0.647	-0.435
10/16/2002	0.88	-0.128
1/13/2003	1.132	0.124
4/8/2003	0.965	-0.036
7/16/2003	0.983	-0.017
10/14/2003	0.984	-0.016
1/14/2004	0.0314	-3.461

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

MW396 Upgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

-0.799

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	0.952	NO	-0.049	N/A
MW390	Downgradien	t Yes	0.00202	NO	-6.205	N/A
MW393	Downgradien	t Yes	0.048	NO	-3.037	N/A

NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

0.45

Yes

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis I Molybdenum UNITS: mg/L

Historical Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S= 0.011 **CV(1)**=1.507

K factor=** 3.188

TL(1)= 0.042

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.928 S = 1.420

CV(2) = -0.240

K factor=** 3.188

TL(2) = -1.400

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00128	-6.661
4/8/2003	0.00271	-5.911
7/16/2003	0.00117	-6.751
10/14/2003	0.001	-6.908
1/14/2004	0.001	-6.908

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW386	Sidegradient	Yes	0.00061	6 N/A	-7.392	NO
MW390	Downgradien	t Yes	0.00038	4 N/A	-7.865	NO
MW393	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW396	Upgradient	Yes	0.00041	8 N/A	-7.780	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis I Nickel UNITS: mg/L

Historical Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016

S = 0.021 CV(1) = 1.272

K factor=** 3.188

TL(1)= 0.083

LL(1)=N/A

Statistics-Transformed Background Data

X = -4.706 S = 1.057

CV(2) = -0.225

K factor=** 3.188

TL(2) = -1.338

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.005	-5.298
1/13/2003	0.005	-5.298
4/8/2003	0.00571	-5.166
7/16/2003	0.005	-5.298
10/14/2003	0.005	-5.298
1/14/2004	0.005	-5.298

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	Yes	0.00242	N/A	-6.024	NO	
MW390	Downgradien	t Yes	0.00191	N/A	-6.261	NO	
MW393	Downgradien	t No	0.002	N/A	-6.215	N/A	
MW396	Upgradient	Yes	0.00126	N/A	-6.677	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis **Oxidation-Reduction Potential UNITS: mV**

Historical Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 13.000 S = 61.952 CV(1) = 4.766

K factor=** 3.188

TL(1)=210.502 LL(1)=N/A

Statistics-Transformed Background Data

X = 4.364

S = 0.333 CV(2) = 0.076

K factor=** 3.188

TL(2) = 4.736

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	d Result	LN(Result)
8/13/2002	60	4.094
4/8/2003	71	4.263
7/16/2003	-56	#Func!
10/14/2003	-54	#Func!
1/14/2004	-22	#Func!
4/12/2004	-6	#Func!
7/20/2004	-3	#Func!
10/12/2004	114	4.736

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	142	N/A	4.956	YES		
MW390	Downgradien	t Yes	353	N/A	5.866	YES		
MW393	Downgradien	t Yes	266	N/A	5.583	YES		
MW396	Upgradient	Yes	203	N/A	5.313	YES		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW386 MW390 MW393

MW396

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-21

Analysis Historical Background Comparison UNITS: Std Unit UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 6.460

S = 0.350

CV(1)=0.054

K factor=** 3.736

TL(1) = 7.766

LL(1)=5.1541

Statistics-Transformed Background Data

X = 1.864

S = 0.054

CV(2) = 0.029

K factor**= 3.736

TL(2) = 2.067

LL(2)=1.6621

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	6.17	1.820
9/16/2002	6.4	1.856
10/16/2002	5.9	1.775
1/13/2003	6.4	1.856
4/8/2003	6.65	1.895
7/16/2003	6.4	1.856
10/14/2003	6.71	1.904
1/14/2004	7.05	1.953

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) > TL(2)?
				Result <ll(1)?< td=""><td></td><td>LN(Result) <ll(2)?< td=""></ll(2)?<></td></ll(1)?<>		LN(Result) <ll(2)?< td=""></ll(2)?<>
MW386	Sidegradient	Yes	6.67	NO	1.898	N/A
MW390	Downgradien	t Yes	6.43	NO	1.861	N/A
MW393	Downgradien	t Yes	6.25	NO	1.833	N/A
MW396	Upgradient	Yes	6.53	NO	1.876	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Potassium UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.411

CV(1) = 0.282

K factor**= 3.188

TL(1) = 2.682

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.311

S = 0.399S = 0.271

CV(2)=0.870

K factor=** 3.188

TL(2) = 1.175

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396		
Date Collected	Result	LN(Result)	
8/13/2002	2	0.693	
9/16/2002	2	0.693	
10/16/2002	0.978	-0.022	
1/13/2003	1.08	0.077	
4/8/2003	1.12	0.113	
7/16/2003	1.38	0.322	
10/14/2003	1.24	0.215	
1/14/2004	1.49	0.399	

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data							
,	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
	MW386	Sidegradient	Yes	0.305	NO	-1.187	N/A	
	MW390	Downgradien	t Yes	0.375	NO	-0.981	N/A	
	MW393	Downgradien	t Yes	0.447	NO	-0.805	N/A	
	MW396	Upgradient	Yes	0.83	NO	-0.186	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison UNITS: pCi/L **UCRS**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.157

CV(1) = 1.782S = 0.280

K factor=** 3.188

TL(1) = 1.050

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.836 S = 1.229

CV(2) = -0.669

K factor=** 3.188

TL(2) = -0.371

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW396	
Date Collected	Result	LN(Result)
10/16/2002	0.69	-0.371
1/13/2003	-0.00693	#Func!
10/14/2003	-0.0514	#Func!
1/14/2004	0.494	-0.705
4/12/2004	-0.082	#Func!
7/20/2004	0.0879	-2.432
10/12/2004	0.0408	-3.199
1/18/2005	0.0844	-2.472

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Curi	Current Quarter Data							
Well 1	No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW3	386	Sidegradient	No	0.167	N/A	-1.790	N/A	
MW3	390	Downgradien	t No	0.123	N/A	-2.096	N/A	
MW3	393	Downgradien	t No	0.278	N/A	-1.280	N/A	
MW3	396	Upgradient	Yes	0.682	N/A	-0.383	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-24

C-746-S/T First Quarter 2018 Statistical Analysis Sodium UNITS: mg/L

Historical Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 106.825 S = 32.041 CV(1) = 0.300

K factor=** 3.188

TL(1)= 208.973 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.595 S = 0.492

CV(2) = 0.107

K factor**= 3.188

TL(2) = 6.163

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	115	4.745
9/16/2002	116	4.754
10/16/2002	117	4.762
1/13/2003	122	4.804
4/8/2003	106	4.663
7/16/2003	117	4.762
10/14/2003	132	4.883
1/14/2004	29.6	3.388

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	93.6	NO	4.539	N/A		
MW390	Downgradien	t Yes	87.6	NO	4.473	N/A		
MW393	Downgradien	t Yes	71.6	NO	4.271	N/A		
MW396	Upgradient	Yes	112	NO	4.718	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis Sulfate UNITS: mg/L

Historical Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 22.463 **S**= 8.876

6 **CV(1)=**0.395

K factor=** 3.188

TL(1) = 50.759

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.054

S = 0.351

CV(2) = 0.115

K factor=** 3.188

TL(2) = 4.173

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	41.9	3.735
9/16/2002	26.3	3.270
10/16/2002	20.6	3.025
1/13/2003	16.6	2.809
4/8/2003	23.9	3.174
7/16/2003	18.8	2.934
10/14/2003	12.9	2.557
1/14/2004	18.7	2.929

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	44.5	NO	3.795	N/A
MW390	Downgradien	t Yes	32.7	NO	3.487	N/A
MW393	Downgradien	t Yes	12.2	NO	2.501	N/A
MW396	Upgradient	Yes	21.5	NO	3.068	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis H Technetium-99 UNITS: pCi/L

Historical Background Comparison i/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.624

CV(1) = 0.860

K factor=** 3.188

TL(1) = 28.531

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.498

S= 6.558 **S**= 1.321

CV(2)=0.882

K factor=** 3.188

TL(2) = 5.710

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	16.7	2.815
9/16/2002	6.39	1.855
10/16/2002	4.55	1.515
1/13/2003	16.5	2.803
4/8/2003	3.04	1.112
7/16/2003	0.354	-1.038
10/14/2003	11.9	2.477
1/14/2004	1.56	0.445

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW386	Sidegradient	No	4.14	N/A	1.421	N/A
MW390	Downgradien	t Yes	82.8	YES	4.416	N/A
MW393	Downgradien	t No	3.99	N/A	1.384	N/A
MW396	Upgradient	No	5.85	N/A	1.766	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW390

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Total Organic Carbon (TOC)

UNITS: mg/L

UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 9.988

S= 4.696 **CV(1)**=0.470

K factor=** 3.188

TL(1)= 24.959

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.210

S = 0.454

CV(2) = 0.205

K factor=** 3.188

TL(2) = 3.657

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	19	2.944
9/16/2002	14.6	2.681
10/16/2002	10.4	2.342
1/13/2003	4.4	1.482
4/8/2003	7	1.946
7/16/2003	7.3	1.988
10/14/2003	9.1	2.208
1/14/2004	8.1	2.092

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	7.32	NO	1.991	N/A
MW390	Downgradien	t Yes	2.57	NO	0.944	N/A
MW393	Downgradien	t Yes	3.01	NO	1.102	N/A
MW396	Upgradient	Yes	6.3	NO	1.841	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Analysis Historical Background Comparison UNITS: ug/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 142.650 S = 53.533 CV(1) = 0.375

K factor=** 3.188

TL(1)= 313.314 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.896 S = 0.390

CV(2) = 0.080

K factor**= 3.188

TL(2) = 6.138

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Total Organic Halides (TOX)

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	193	5.263
9/16/2002	190	5.247
10/16/2002	221	5.398
1/13/2003	106	4.663
4/8/2003	77.8	4.354
7/16/2003	122	4.804
10/14/2003	86.4	4.459
1/14/2004	145	4.977

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW386	Sidegradient	Yes	121	NO	4.796	N/A		
MW390	Downgradien	t Yes	12.3	NO	2.510	N/A		
MW393	Downgradien	t Yes	18.3	NO	2.907	N/A		
MW396	Upgradient	Yes	28.4	NO	3.346	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis Vanadium UNITS: mg/L

Historical Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.021

CV(1)=0.109

K factor=** 3.188

TL(1) = 0.029

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.856 S = 0.103

S = 0.002

CV(2) = -0.027

K factor=** 3.188

TL(2) = -3.527

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW396 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.6890.02 -3.91210/16/2002 1/13/2003 0.02 -3.912 4/8/2003 0.02 -3.912 -3.912 7/16/2003 0.02 10/14/2003 0.02 -3.912-3.912 1/14/2004 0.02

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

MW396 Upgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

-4.605

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW390	Downgradien	t Yes	0.00339	NO	-5.687	N/A	
MW393	Downgradien	t No	0.01	N/A	-4.605	N/A	

N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

0.01

No

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-30

Analysis Historical Background Comparison UNITS: mg/L UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Zinc

X = 0.044

S = 0.035 CV(1) = 0.786

K factor=** 3.188

TL(1)= 0.156

LL(1)=N/A

Statistics-Transformed Background Data

X= -3.342 **S**= 0.682

CV(2) = -0.204

K factor=** 3.188

TL(2) = -1.168

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/8/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/14/2004	0.02	-3.912

Dry/Partially Dry Wells

Well No. Gradient

MW389 Downgradient

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW386	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW390	Downgradien	t Yes	0.00414	NO	-5.487	N/A	
MW393	Downgradien	t No	0.01	N/A	-4.605	N/A	
MW396	Upgradient	No	0.01	N/A	-4.605	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis I Aluminum UNITS: mg/L

Historical Background Comparison L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.221

S= 0.061 **C**Y

Current Quarter Data

MW391 Downgradient Yes

MW394 Upgradient

CV(1)=0.277

K factor=** 2.523

TL(1) = 0.376

LL(1)=N/A

Statistics-Transformed Background Data

X= -1.534 **S**= 0.212

CV(2)=-0.138

K factor=** 2.523

TL(2)= -0.999

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.609 1/15/2003 0.2 -1.609 0.2 4/10/2003 -1.6097/14/2003 0.2 -1.609 10/13/2003 0.427 -0.851 1/13/2004 0.309 -1.174 4/13/2004 0.2 -1.609 7/21/2004 0.202 -1.599 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.2 -1.609 9/16/2002 0.2 -1.6090.2 10/16/2002 -1.609 1/13/2003 0.2 -1.6094/10/2003 0.2 -1.6097/16/2003 0.2 -1.609 10/14/2003 0.2 -1.609 1/13/2004 0.2 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.0286	NO	-3.554	N/A	
MW221	Sidegradient	No	0.05	N/A	-2.996	N/A	
MW222	Sidegradient	Yes	0.707	YES	-0.347	N/A	
MW223	Sidegradient	Yes	0.0966	NO	-2.337	N/A	
MW224	Sidegradient	Yes	0.0244	NO	-3.713	N/A	
MW369	Downgradien	t Yes	0.178	NO	-1.726	N/A	
MW372	Downgradien	t No	0.05	N/A	-2.996	N/A	
MW384	Sidegradient	Yes	0.0323	NO	-3.433	N/A	
MW387	Downgradien	t Yes	0.0575	NO	-2.856	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

NO

0.0234

0.0544

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

N/A

-3.755

-2.911

MW222

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis **Beta activity** UNITS: pCi/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 14.273 S = 13.883 CV(1) = 0.973

K factor=** 2.523

TL(1)= 49.300

LL(1)=N/A

Statistics-Transformed Background

X = 2.213 S = 1.033 CV(2) = 0.467

K factor**= 2.523

TL(2) = 4.819

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	15.2	2.721
1/15/2003	42.5	3.750
4/10/2003	45.4	3.816
7/14/2003	8.53	2.144
10/13/2003	11.7	2.460
1/13/2004	13.5	2.603
4/13/2004	33.5	3.512
7/21/2004	13.7	2.617
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result)
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 5.03	1.615
Date Collected 8/13/2002 9/16/2002	Result 5.03 5.57	1.615 1.717
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 5.03 5.57 12.8	1.615 1.717 2.549
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 5.03 5.57 12.8 4.3	1.615 1.717 2.549 1.459
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 5.03 5.57 12.8 4.3 9.52	1.615 1.717 2.549 1.459 2.253

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	12.8	N/A	2.549	N/A	
MW221	Sidegradient	Yes	15.1	N/A	2.715	N/A	
MW222	Sidegradient	No	3.19	N/A	1.160	N/A	
MW223	Sidegradient	No	2.15	N/A	0.765	N/A	
MW224	Sidegradient	No	2.99	N/A	1.095	N/A	
MW369	Downgradien	t Yes	32	N/A	3.466	N/A	
MW372	Downgradien	t Yes	21.7	N/A	3.077	N/A	
MW384	Sidegradient	Yes	89.7	YES	4.496	N/A	
MW387	Downgradien	t Yes	201	YES	5.303	N/A	
MW391	Downgradien	t No	10.5	N/A	2.351	N/A	
MW394	Upgradient	No	-3.27	N/A	#Error	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-33

C-746-S/T First Quarter 2018 Statistical Analysis **Boron** UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.425

S = 0.615

CV(1) = 1.447

K factor=** 2.523

TL(1)= 1.976

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.322 S = 0.786

CV(2) = -0.595

K factor**= 2.523

TL(2) = 0.663

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

************	1.0000	
Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	0.2	-1.609
1/15/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/14/2003	0.2	-1.609
10/13/2003	0.2	-1.609
1/13/2004	0.2	-1.609
4/13/2004	0.2	-1.609
7/21/2004	0.2	-1.609
,, , ,		-1.609
7/21/2004 Well Number:	0.2 MW394	-1.609
,, , ,		-1.609 LN(Result)
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
Well Number: Date Collected 8/13/2002	MW394 Result	LN(Result) 0.693
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 2 2	LN(Result) 0.693 0.693
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 2 2 0.2	LN(Result) 0.693 0.693 -1.609

0.2

0.2

10/14/2003

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW220	Upgradient	Yes	0.00702	N/A	-4.959	NO		
MW221	Sidegradient	Yes	0.0125	N/A	-4.382	NO		
MW222	Sidegradient	Yes	0.00767	N/A	-4.870	NO		
MW223	Sidegradient	Yes	0.00608	N/A	-5.103	NO		
MW224	Sidegradient	Yes	0.00722	N/A	-4.931	NO		
MW369	Downgradien	t Yes	0.0163	N/A	-4.117	NO		
MW372	Downgradien	t Yes	1.02	N/A	0.020	NO		
MW384	Sidegradient	Yes	0.0309	N/A	-3.477	NO		
MW387	Downgradien	t Yes	0.0347	N/A	-3.361	NO		
MW391	Downgradien	t Yes	0.165	N/A	-1.802	NO		
MW394	Upgradient	Yes	0.0195	N/A	-3.937	NO		
N/A - Resu	lts identified as N	Ion-Detects	during labo	oratory analysis or	data validation	and were not		

included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.609

-1.609

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5 S

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-34

C-746-S/T First Quarter 2018 Statistical Analysis I Bromide UNITS: mg/L

Historical Background Comparison L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 1.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523 TL(1) = 1.000 LL(1) = N/A Statistics-Transformed Background X = 0.000 S = 0.000 CV(2) = #Num! K factor**= 2.523 TL(2) = 0.000 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 0.000 4/10/2003 0.000 7/14/2003 1 0.000 10/13/2003 1 0.000 1/13/2004 0.000 4/13/2004 0.000 7/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/16/2002 0.000 1/13/2003 0.000 4/10/2003 0.000 7/16/2003 0.000 10/14/2003 1 0.000 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.2	NO	-1.609	N/A	
MW221	Sidegradient	Yes	0.42	NO	-0.868	N/A	
MW222	Sidegradient	Yes	0.421	NO	-0.865	N/A	
MW223	Sidegradient	Yes	0.399	NO	-0.919	N/A	
MW224	Sidegradient	Yes	0.254	NO	-1.370	N/A	
MW369	Downgradien	t Yes	0.364	NO	-1.011	N/A	
MW372	Downgradien	t Yes	0.576	NO	-0.552	N/A	
MW384	Sidegradient	Yes	0.436	NO	-0.830	N/A	
MW387	Downgradien	t Yes	0.497	NO	-0.699	N/A	
MW391	Downgradien	t Yes	0.571	NO	-0.560	N/A	
MW394	Upgradient	Yes	0.658	NO	-0.419	N/A	
N/A - Resul	lts identified as N	Ion-Detects of	luring lab	oratory analysis or	data validatior	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis I Calcium UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Current Quarter Data

Statistics-Background Data

X= 27.638 **S**= 4.743

CV(1)=0.172

K factor=** 2.523

TL(1)= 39.604

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.304

S = 0.183

CV(2) = 0.055

K factor**= 2.523

TL(2) = 3.765

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	23.6	3.161
1/15/2003	25.9	3.254
4/10/2003	30.4	3.414
7/14/2003	33.9	3.523
10/13/2003	21.3	3.059
1/13/2004	20.3	3.011
4/13/2004	23.8	3.170
7/21/2004	19	2.944
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 3.384
Date Collected	Result	, ,
Date Collected 8/13/2002	Result 29.5	3.384
Date Collected 8/13/2002 9/16/2002	Result 29.5 29.9	3.384 3.398
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 29.5 29.9 31.2	3.384 3.398 3.440
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 29.5 29.9 31.2 30.7	3.384 3.398 3.440 3.424
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 29.5 29.9 31.2 30.7 34.4	3.384 3.398 3.440 3.424 3.538

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Butta							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	18.8	NO	2.934	N/A	
MW221	Sidegradient	Yes	22.2	NO	3.100	N/A	
MW222	Sidegradient	Yes	13.5	NO	2.603	N/A	
MW223	Sidegradient	Yes	19.8	NO	2.986	N/A	
MW224	Sidegradient	Yes	17.2	NO	2.845	N/A	
MW369	Downgradien	t Yes	15	NO	2.708	N/A	
MW372	Downgradien	t Yes	49.4	YES	3.900	N/A	
MW384	Sidegradient	Yes	27.9	NO	3.329	N/A	
MW387	Downgradien	t Yes	35.5	NO	3.570	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

NO

NO

3.484

3.258

MW372

32.6

26

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

N/A

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW391

MW394 Upgradient

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Downgradient Yes

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis

Historical Background Comparison

Chemical Oxygen Demand (COD) UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 35.000
 S= 0.000
 CV(1)=0.000
 K factor**= 2.523
 TL(1)= 35.000
 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.555
 S= 0.000
 CV(2)=0.000
 K factor**= 2.523
 TL(2)= 3.555
 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.555 1/15/2003 35 3.555 4/10/2003 35 3.555 7/14/2003 35 3.555 10/13/2003 35 3.555 1/13/2004 35 3.555 4/13/2004 35 3.555 7/21/2004 35 3.555 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 35 3.555 9/16/2002 35 3.555 35 10/16/2002 3.555 1/13/2003 35 3.555 35 4/10/2003 3.555 7/16/2003 35 3.555 35 10/14/2003 3.555 1/13/2004 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

URGA

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	18.9	NO	2.939	N/A
MW221	Sidegradient	Yes	20.9	NO	3.040	N/A
MW222	Sidegradient	Yes	31.4	NO	3.447	N/A
MW223	Sidegradient	Yes	29.3	NO	3.378	N/A
MW224	Sidegradient	Yes	10.5	NO	2.351	N/A
MW369	Downgradien	t Yes	12.6	NO	2.534	N/A
MW372	Downgradien	t Yes	29.3	NO	3.378	N/A
MW384	Sidegradient	Yes	19.1	NO	2.950	N/A
MW387	Downgradien	t Yes	20.9	NO	3.040	N/A
MW391	Downgradien	t Yes	22.5	NO	3.114	N/A
MW394	Upgradient	Yes	12.6	NO	2.534	N/A
37/4 D	1. 11 1 3	T D			1 . 11 1 .1	1 .

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis **Chloride** UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 49.044 S = 11.278 CV(1) = 0.230

K factor=** 2.523

TL(1)= 77.499

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.866 S = 0.244 CV(2) = 0.063

K factor**= 2.523

TL(2) = 4.482

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	44.6	3.798
1/15/2003	43.2	3.766
4/10/2003	31.5	3.450
7/14/2003	30.8	3.428
10/13/2003	40.9	3.711
1/13/2004	40.8	3.709
4/13/2004	37.5	3.624
7/01/0004	40.0	2.700
7/21/2004	40.8	3.709
Well Number:	40.8 MW394	3.709
,,21,200.		LN(Result)
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
Well Number: Date Collected 8/13/2002	MW394 Result 60.4	LN(Result) 4.101
Well Number: Date Collected 8/13/2002 9/16/2002	MW394 Result 60.4 60.3	LN(Result) 4.101 4.099
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002	MW394 Result 60.4 60.3 58	LN(Result) 4.101 4.099 4.060
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	MW394 Result 60.4 60.3 58 60.7	LN(Result) 4.101 4.099 4.060 4.106
Well Number: Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	MW394 Result 60.4 60.3 58 60.7 62.9	LN(Result) 4.101 4.099 4.060 4.106 4.142

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	20.5	NO	3.020	N/A	
MW221	Sidegradient	Yes	39.7	NO	3.681	N/A	
MW222	Sidegradient	Yes	31.9	NO	3.463	N/A	
MW223	Sidegradient	Yes	29.6	NO	3.388	N/A	
MW224	Sidegradient	Yes	18.4	NO	2.912	N/A	
MW369	Downgradien	t Yes	31.6	NO	3.453	N/A	
MW372	Downgradien	t Yes	43.5	NO	3.773	N/A	
MW384	Sidegradient	Yes	39.5	NO	3.676	N/A	
MW387	Downgradien	t Yes	41.2	NO	3.718	N/A	
MW391	Downgradien	t Yes	42.9	NO	3.759	N/A	
MW394	Upgradient	Yes	49.3	NO	3.898	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

4.025

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-38

C-746-S/T First Quarter 2018 Statistical Analysis cis-1,2-Dichloroethene UNITS: ug/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523
 TL(1) = 5.000 LL(1) = N/A

 Statistics-Transformed Background
 X = 1.609 S = 0.000 CV(2) = 0.000 K factor**= 2.523
 TL(2) = 1.609 LL(2) = N/A

Historical Background Data from Upgradient Wells with Transformed Result

Data

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	5	1.609
1/15/2003	5	1.609
4/10/2003	5	1.609
7/14/2003	5	1.609
10/13/2003	5	1.609
1/13/2004	5	1.609
4/13/2004	5	1.609
7/21/2004	5	1.609
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002	Result 5 5 5 5	1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003	Result 5 5 5 5 5	1.609 1.609 1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/16/2002 1/13/2003 4/10/2003	Result 5 5 5 5 5 5	1.609 1.609 1.609 1.609

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	No	1	N/A	0.000	N/A
MW221	Sidegradient	No	1	N/A	0.000	N/A
MW222	Sidegradient	No	1	N/A	0.000	N/A
MW223	Sidegradient	No	1	N/A	0.000	N/A
MW224	Sidegradient	No	1	N/A	0.000	N/A
MW369	Downgradien	t No	1	N/A	0.000	N/A
MW372	Downgradien	t No	1	N/A	0.000	N/A
MW384	Sidegradient	No	1	N/A	0.000	N/A
MW387	Downgradien	t No	1	N/A	0.000	N/A
MW391	Downgradien	t Yes	0.57	NO	-0.562	N/A
MW394	Upgradient	No	1	N/A	0.000	N/A
N/A - Resu	lts identified as N	Ion-Detects	luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis **Cobalt**

Historical Background Comparison UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.016S = 0.040 CV(1)=2.440

K factor=** 2.523

TL(1) = 0.116

LL(1)=N/A

Statistics-Transformed Background Data

X = -5.582 S = 1.573

CV(2) = -0.282

K factor**= 2.523

TL(2) = -1.613

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0041 -5.497 1/15/2003 0.00496 -5.306 0.00289 4/10/2003 -5.8467/14/2003 0.161 -1.826 10/13/2003 0.0226 -3.790 1/13/2004 0.00464 -5.373 4/13/2004 0.001 -6.908 7/21/2004 0.00264 -5.937 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.68910/16/2002 0.001 -6.908 1/13/2003 0.001 -6.908 4/10/2003 0.001 -6.9087/16/2003 0.001 -6.908 10/14/2003 0.001 -6.908 1/13/2004 0.001

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00037	6 N/A	-7.886	NO	
MW221	Sidegradient	Yes	0.000494	4 N/A	-7.613	NO	
MW222	Sidegradient	Yes	0.00418	N/A	-5.477	NO	
MW223	Sidegradient	Yes	0.00245	N/A	-6.012	NO	
MW224	Sidegradient	Yes	0.00217	N/A	-6.133	NO	
MW369	Downgradien	t Yes	0.00558	N/A	-5.189	NO	
MW372	Downgradien	t Yes	0.000814	4 N/A	-7.114	NO	
MW384	Sidegradient	No	0.001	N/A	-6.908	N/A	
MW387	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW391	Downgradien	t No	0.001	N/A	-6.908	N/A	
MW394	Upgradient	No	0.001	N/A	-6.908	N/A	
NI/A D	14	I D-44-			4-41:4-4:	1	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-6.908

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-40

Historical Background Comparison C-746-S/T First Quarter 2018 Statistical Analysis **Conductivity** UNITS: umho/cm **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 382.132 S = 107.134 CV(1) = 0.280

K factor=** 2.523

TL(1)= 652.432 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.716 S = 1.164 CV(2) = 0.204

K factor**= 2.523

TL(2) = 8.652

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 5.908 368 1/15/2003 433.2 6.071 489 6.192 4/10/2003 7/14/2003 430 6.064 10/13/2003 5.846 346 1/13/2004 365 5.900 4/13/2004 416 6.031 7/21/2004 353 5.866 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 406 6.006 9/16/2002 418 6.035 6.019 10/16/2002 411 1/13/2003 422 6.045 4/10/2003 420 6.040 7/16/2003 438 6.082 10/14/2003 3.91 1.364 1/13/2004 5.979 395

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	331	NO	5.802	N/A	
MW221	Sidegradient	Yes	407	NO	6.009	N/A	
MW222	Sidegradient	Yes	317	NO	5.759	N/A	
MW223	Sidegradient	Yes	378	NO	5.935	N/A	
MW224	Sidegradient	Yes	365	NO	5.900	N/A	
MW369	Downgradien	t Yes	351	NO	5.861	N/A	
MW372	Downgradien	t Yes	620	NO	6.430	N/A	
MW384	Sidegradient	Yes	486	NO	6.186	N/A	
MW387	Downgradien	t Yes	545	NO	6.301	N/A	
MW391	Downgradien	t Yes	473	NO	6.159	N/A	
MW394	Upgradient	Yes	398	NO	5.986	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-41

C-746-S/T First Quarter 2018 Statistical Analysis Copper UNITS:

Analysis Historical Background Comparison UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.024 S = 0.010 CV(1) = 0.429 K factor** = 2.523
 TL(1) = 0.050 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.794 S = 0.312 CV(2) = -0.082 K factor** = 2.523
 TL(2) = -3.007 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0211 -3.858 1/15/2003 0.02 -3.9120.02 -3.9124/10/2003 7/14/2003 0.02 -3.912 10/13/2003 0.02 -3.912 1/13/2004 0.02 -3.9124/13/2004 0.02 -3.9127/21/2004 -3.912 0.02 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.9960.02 10/16/2002 -3.912 1/13/2003 0.02 -3.9120.02 -3.912 4/10/2003 7/16/2003 0.02 -3.912 -3.912 10/14/2003 0.02 1/13/2004 0.02 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.00224	NO	-6.101	N/A	
MW221	Sidegradient	Yes	0.000796	6 NO	-7.136	N/A	
MW222	Sidegradient	Yes	0.00111	NO	-6.803	N/A	
MW223	Sidegradient	Yes	0.00113	NO	-6.786	N/A	
MW224	Sidegradient	Yes	0.000812	2 NO	-7.116	N/A	
MW369	Downgradien	t Yes	0.00114	NO	-6.777	N/A	
MW372	Downgradien	t Yes	0.0005	NO	-7.601	N/A	
MW384	Sidegradient	Yes	0.001	NO	-6.908	N/A	
MW387	Downgradien	t Yes	0.000492	2 NO	-7.617	N/A	
MW391	Downgradien	t Yes	0.000436	6 NO	-7.738	N/A	
MW394	Upgradient	Yes	0.000741	1 NO	-7.208	N/A	
N/A - Resul	ts identified as N	Ion-Detects of	luring labo	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis **Dissolved Oxygen** UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 3.784

CV(1)=0.499

K factor=** 2.523

TL(1) = 8.545

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.182 S = 0.612

S = 1.887

CV(2) = 0.518

K factor**= 2.523

TL(2) = 2.727

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.915 6.79 1/15/2003 7.25 1.981 4/10/2003 1.281 3.6 7/14/2003 0.94 -0.06210/13/2003 0.501 1.65 1/13/2004 3.48 1.247 4/13/2004 1.05 0.049 7/21/2004 4.46 1.495 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 6.09 1.807 9/16/2002 3.85 1.348 10/16/2002 5.11 1.631 1/13/2003 3.83 1.343 4/10/2003 4.15 1.423 7/16/2003 1.83 0.604

3.33

3.14

10/14/2003

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

LN(Result) >TL(2) N/A
3.7/4
N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

1.203

1.144

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-43

C-746-S/T First Quarter 2018 Statistical Analysis **Dissolved Solids** UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 232.688 S = 27.490 CV(1) = 0.118

K factor=** 2.523

TL(1)=302.045 LL(1)=N/A

Statistics-Transformed Background Data

X = 5.443 S = 0.118 CV(2) = 0.022

K factor**= 2.523

TL(2) = 5.740

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	208	5.338
1/15/2003	257	5.549
4/10/2003	288	5.663
7/14/2003	262	5.568
10/13/2003	197	5.283
1/13/2004	198	5.288
4/13/2004	245	5.501
7/21/2004	204	5.318
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 5.509
Date Collected	Result	•
Date Collected 8/13/2002	Result 247	5.509
Date Collected 8/13/2002 9/16/2002	Result 247 259	5.509 5.557
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 247 259 201	5.509 5.557 5.303
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 247 259 201 228	5.509 5.557 5.303 5.429
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 247 259 201 228 249	5.509 5.557 5.303 5.429 5.517

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW220	Upgradient	Yes	163	NO	5.094	N/A	
MW221	Sidegradient	Yes	210	NO	5.347	N/A	
MW222	Sidegradient	Yes	187	NO	5.231	N/A	
MW223	Sidegradient	Yes	207	NO	5.333	N/A	
MW224	Sidegradient	Yes	189	NO	5.242	N/A	
MW369	Downgradien	t Yes	161	NO	5.081	N/A	
MW372	Downgradien	t Yes	330	YES	5.799	N/A	
MW384	Sidegradient	Yes	269	NO	5.595	N/A	
MW387	Downgradien	t Yes	286	NO	5.656	N/A	
MW391	Downgradien	t Yes	261	NO	5.565	N/A	
MW394	Upgradient	Yes	187	NO	5.231	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-44

C-746-S/T First Quarter 2018 Statistical Analysis Iron UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.897 S = 1.050 CV(1) = 1.170

K factor**= 2.523

TL(1)=3.545 LL(1)=N/A

Statistics-Transformed Background Data

X= -0.565 **S**= 0.951 **CV(2)**=-1.683

K factor=** 2.523

TL(2)= 1.834

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 -1.609 1/15/2003 0.2 -1.609 0.429 -0.8464/10/2003 7/14/2003 4.33 1.466 10/13/2003 0.593 1.81 1/13/2004 0.793 -0.2324/13/2004 0.13 -2.0407/21/2004 0.382 -0.962Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 1.34 0.293 9/16/2002 0.328 -1.1150.322 10/16/2002 1.38 1/13/2003 1.3 0.262 4/10/2003 0.494 -0.7057/16/2003 0.62 -0.478 -0.994 10/14/2003 0.37

0.251

1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.0704	N/A	-2.654	NO	
MW221	Sidegradient	Yes	0.0582	N/A	-2.844	NO	
MW222	Sidegradient	Yes	1.39	N/A	0.329	NO	
MW223	Sidegradient	Yes	0.27	N/A	-1.309	NO	
MW224	Sidegradient	Yes	0.0626	N/A	-2.771	NO	
MW369	Downgradien	t Yes	0.155	N/A	-1.864	NO	
MW372	Downgradien	t Yes	0.166	N/A	-1.796	NO	
MW384	Sidegradient	Yes	1.04	N/A	0.039	NO	
MW387	Downgradien	t Yes	0.351	N/A	-1.047	NO	
MW391	Downgradien	t Yes	0.123	N/A	-2.096	NO	
MW394	Upgradient	Yes	0.26	N/A	-1.347	NO	
37/1 D							

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-1.382

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis I Magnesium UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.158

Statistics-Background Data

X= 10.796 **S**= 1.703

K factor**= 2.523

TL(1)= 15.092

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.368 **S**= 0.158 **CV(2)**= 0.067

K factor=** 2.523

TL(2)= 2.766

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	9.16	2.215
1/15/2003	10	2.303
4/10/2003	10.8	2.380
7/14/2003	14.7	2.688
10/13/2003	9.03	2.201
1/13/2004	8.49	2.139
4/13/2004	9.7	2.272
7/21/2004	8.06	2.087
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
Date Collected	Result	LN(Result)
Date Collected 8/13/2002	Result 11.8	LN(Result) 2.468
Date Collected 8/13/2002 9/16/2002	Result 11.8 12.1	LN(Result) 2.468 2.493
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.8 12.1 11.3	LN(Result) 2.468 2.493 2.425
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.8 12.1 11.3 10.3	LN(Result) 2.468 2.493 2.425 2.332
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.8 12.1 11.3 10.3 11.7	LN(Result) 2.468 2.493 2.425 2.332 2.460

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	8.04	NO	2.084	N/A
MW221	Sidegradient	Yes	9.14	NO	2.213	N/A
MW222	Sidegradient	Yes	6.51	NO	1.873	N/A
MW223	Sidegradient	Yes	8.45	NO	2.134	N/A
MW224	Sidegradient	Yes	7.86	NO	2.062	N/A
MW369	Downgradien	t Yes	6.82	NO	1.920	N/A
MW372	Downgradien	t Yes	18.5	YES	2.918	N/A
MW384	Sidegradient	Yes	11.4	NO	2.434	N/A
MW387	Downgradien	t Yes	15.6	YES	2.747	N/A
MW391	Downgradien	t Yes	14.3	NO	2.660	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

11.5

Yes

NO

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW387

2.442

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

MW394 Upgradient

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis Manganese UNITS:

Analysis Historical Background Comparison UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.287 S = 0.619 CV(1) = 2.156 K factor** = 2.523
 TL(1) = 1.848 LL(1) = N/A

 Statistics-Transformed Background
 X = -2.455 S = 1.619 CV(2) = -0.659 K factor** = 2.523
 TL(2) = 1.630 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.0306 -3.4871/15/2003 0.0291 -3.5370.0137 -4.2904/10/2003 7/14/2003 2.54 0.932 10/13/2003 -0.973 0.378 1/13/2004 0.159 -1.8394/13/2004 0.00707 -4.9520.0841 7/21/2004 -2.476Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.542 -0.6129/16/2002 0.155 -1.8640.103 -2.273 10/16/2002 1/13/2003 0.128 -2.056-5.298 4/10/2003 0.005 7/16/2003 0.272 -1.302 0.0795 -2.532 10/14/2003 0.0658 -2.721 1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00354	N/A	-5.644	NO
MW221	Sidegradient	Yes	0.00162	N/A	-6.425	NO
MW222	Sidegradient	Yes	0.027	N/A	-3.612	NO
MW223	Sidegradient	Yes	0.0691	N/A	-2.672	NO
MW224	Sidegradient	Yes	0.0176	N/A	-4.040	NO
MW369	Downgradien	t Yes	0.0215	N/A	-3.840	NO
MW372	Downgradien	t Yes	0.0115	N/A	-4.465	NO
MW384	Sidegradient	Yes	0.0422	N/A	-3.165	NO
MW387	Downgradien	t Yes	0.0214	N/A	-3.844	NO
MW391	Downgradien	t Yes	0.00322	N/A	-5.738	NO
MW394	Upgradient	Yes	0.0061	N/A	-5.099	NO
N/A - Resu	lts identified as N	Ion-Detects o	luring labo	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis I Molybdenum UNITS: mg/L

Historical Background Comparison L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.006 S = 0.008 CV(1) = 1.261 K factor** = 2.523
 TL(1) = 0.026 LL(1) = N/A

 Statistics-Transformed Background
 X = -5.747 S = 1.205 CV(2) = -0.210 K factor** = 2.523
 TL(2) = -2.708 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.00558 -5.189 1/15/2003 0.00983 -4.6220.0109 -4.519 4/10/2003 7/14/2003 0.00245 -6.012 10/13/2003 0.00566 -5.174 1/13/2004 0.00572 -5.164 4/13/2004 0.001 -6.908 7/21/2004 0.00392 -5.542Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.68910/16/2002 0.001 -6.908 1/13/2003 0.001 -6.908 4/10/2003 0.001 -6.9087/16/2003 0.001 -6.908 10/14/2003 0.001 -6.908 0.001 1/13/2004 -6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.00069	8 N/A	-7.267	NO
MW221	Sidegradient	Yes	0.00391	N/A	-5.544	NO
MW222	Sidegradient	Yes	0.00051	8 N/A	-7.566	NO
MW223	Sidegradient	Yes	0.00435	N/A	-5.438	NO
MW224	Sidegradient	Yes	0.00043	8 N/A	-7.733	NO
MW369	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW372	Downgradien	t Yes	0.00041	N/A	-7.799	NO
MW384	Sidegradient	Yes	0.00029	1 N/A	-8.142	NO
MW387	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW391	Downgradien	t No	0.0005	N/A	-7.601	N/A
MW394	Upgradient	No	0.0005	N/A	-7.601	N/A
N/A - Resu	lts identified as N	Ion-Detects of	during labo	oratory analysis or	data validatior	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis I Nickel UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.127 S = 0.228 CV(1) = 1.790 K factor**= 2.523
 TL(1) = 0.701 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.617 S = 1.837 CV(2) = -0.508 K factor**= 2.523
 TL(2) = 1.019 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.418 -0.8721/15/2003 0.738 -0.304-0.6094/10/2003 0.544 7/14/2003 0.106 -2.24410/13/2003 0.0529 -2.939 1/13/2004 0.0209 -3.868 4/13/2004 0.005 -5.2980.0192 7/21/2004 -3.953 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.05 -2.9969/16/2002 0.05 -2.996-5.298 10/16/2002 0.005 1/13/2003 0.005 -5.2984/10/2003 0.005 -5.2987/16/2003 0.005 -5.2980.005 -5.298 10/14/2003 0.005 -5.298 1/13/2004

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	0.0135	N/A	-4.305	NO
MW221	Sidegradient	Yes	0.0318	N/A	-3.448	NO
MW222	Sidegradient	Yes	0.0299	N/A	-3.510	NO
MW223	Sidegradient	Yes	0.117	N/A	-2.146	NO
MW224	Sidegradient	Yes	0.0978	N/A	-2.325	NO
MW369	Downgradien	t Yes	0.00495	N/A	-5.308	NO
MW372	Downgradien	t Yes	0.0012	N/A	-6.725	NO
MW384	Sidegradient	Yes	0.00116	N/A	-6.759	NO
MW387	Downgradien	t Yes	0.00082	4 N/A	-7.101	NO
MW391	Downgradien	t Yes	0.000782	2 N/A	-7.154	NO
MW394	Upgradient	Yes	0.00292	N/A	-5.836	NO
N/A - Resu	lts identified as N	Ion-Detects	during labo	ratory analysis or	data validatior	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis **Oxidation-Reduction Potential UNITS: mV**

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 179.872 S = 86.318 CV(1) = 0.480

K factor=** 2.523

TL(1)= 397.652 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 4.861 S = 1.252 CV(2) = 0.258

K factor**= 2.523

TL(2) = 8.021

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	205	5.323
1/15/2003	1.95	0.668
4/10/2003	203	5.313
7/14/2003	30	3.401
10/13/2003	107	4.673
1/13/2004	295	5.687
4/13/2004	190	5.247
7/21/2004	319	5.765
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 4.500
Date Collected	Result	•
Date Collected 8/13/2002	Result 90	4.500
Date Collected 8/13/2002 9/16/2002	Result 90 240	4.500 5.481
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 90 240 185	4.500 5.481 5.220
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 90 240 185 220	4.500 5.481 5.220 5.394
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 90 240 185 220 196	4.500 5.481 5.220 5.394 5.278

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	362	NO	5.892	N/A
MW221	Sidegradient	Yes	401	YES	5.994	N/A
MW222	Sidegradient	Yes	387	NO	5.958	N/A
MW223	Sidegradient	Yes	378	NO	5.935	N/A
MW224	Sidegradient	Yes	367	NO	5.905	N/A
MW369	Downgradien	t Yes	346	NO	5.846	N/A
MW372	Downgradien	t Yes	275	NO	5.617	N/A
MW384	Sidegradient	Yes	341	NO	5.832	N/A
MW387	Downgradien	t Yes	349	NO	5.855	N/A
MW391	Downgradien	t Yes	261	NO	5.565	N/A
MW394	Upgradient	Yes	264	NO	5.576	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW221

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-50

C-746-S/T First Quarter 2018 Statistical Analysis **Historical Background Comparison** pН **UNITS: Std Unit URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.904 **Statistics-Background Data** X = 6.138S = 0.282CV(1) = 0.046TL(1) = 6.957**LL(1)=**5.3179 **Statistics-Transformed Background**

Data

X = 1.813S = 0.047CV(2) = 0.026 **K factor**=** 2.904

TL(2) = 1.950

LL(2)=1.6765

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	6.04	1.798
1/15/2003	6.31	1.842
4/10/2003	6.5	1.872
7/14/2003	6.3	1.841
10/13/2003	6.34	1.847
1/13/2004	6.33	1.845
4/13/2004	6.3	1.841
7/21/2004	5.9	1.775
Well Number:	MW394	
Date Collected	Result	LN(Result)
8/13/2002	5.8	1.758
9/30/2002		
	5.93	1.780
10/16/2002	5.93 5.42	1.780 1.690
10/16/2002 1/13/2003		
	5.42	1.690
1/13/2003	5.42 6	1.690 1.792
1/13/2003 4/10/2003	5.42 6 6.04	1.690 1.792 1.798

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW220	Upgradient	Yes	6.12	NO	1.812	N/A
MW221	Sidegradient	Yes	6.18	NO	1.821	N/A
MW222	Sidegradient	Yes	6.2	NO	1.825	N/A
MW223	Sidegradient	Yes	6.19	NO	1.823	N/A
MW224	Sidegradient	Yes	6.14	NO	1.815	N/A
MW369	Downgradien	t Yes	6.21	NO	1.826	N/A
MW372	Downgradien	t Yes	6.29	NO	1.839	N/A
MW384	Sidegradient	Yes	6.14	NO	1.815	N/A
MW387	Downgradien	t Yes	6.19	NO	1.823	N/A
MW391	Downgradien	t Yes	6.15	NO	1.816	N/A
MW394	Upgradient	Yes	6.23	NO	1.829	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-51

C-746-S/T First Quarter 2018 Statistical Analysis I Potassium UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 6.654 S = 9.310 CV(1) = 1.399 K factor** = 2.523
 TL(1) = 30.144 LL(1) = N/A

 Statistics-Transformed Background
 X = 1.130 X = 1.208 X =

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 1.902 6.7 1/15/2003 29.7 3.391 24.9 3.215 4/10/2003 7/14/2003 1.13 0.122 10/13/2003 3.43 1.233 1/13/2004 6.71 1.904 4/13/2004 19.3 2.960 7/21/2004 3.97 1.379 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 2 0.693 9/16/2002 2 0.693 10/16/2002 1.03 0.030 1/13/2003 1.1 0.095 4/10/2003 1.24 0.215 7/16/2003 1.14 0.131 1.05 0.049 10/14/2003 1/13/2004 1.07 0.068

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW220	Upgradient	Yes	1.86	N/A	0.621	NO
MW221	Sidegradient	Yes	5.48	N/A	1.701	NO
MW222	Sidegradient	Yes	0.6	N/A	-0.511	NO
MW223	Sidegradient	Yes	3.8	N/A	1.335	NO
MW224	Sidegradient	Yes	0.703	N/A	-0.352	NO
MW369	Downgradien	t Yes	0.504	N/A	-0.685	NO
MW372	Downgradien	t Yes	2.13	N/A	0.756	NO
MW384	Sidegradient	Yes	1.2	N/A	0.182	NO
MW387	Downgradien	t Yes	1.88	N/A	0.631	NO
MW391	Downgradien	t Yes	1.66	N/A	0.507	NO
MW394	Upgradient	Yes	1.12	N/A	0.113	NO
N/A - Resu	lts identified as N	Ion-Detects of	luring lab	oratory analysis or	data validation	and were not

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis H Radium-226 UNITS: pCi/L

Historical Background Comparison /L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.036 S = 0.382 CV(1) = 10.588 K factor**= 2.523
 TL(1) = 1.001 LL(1) = N/A

 Statistics-Transformed Background
 X = -1.873 S = 1.110 CV(2) = -0.592 K factor**= 2.523
 TL(2) = -0.538 LL(2) = N/A

Data Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	-0.804	#Func!
1/15/2003	0	#Func!
10/13/2003	0.389	-0.944
1/13/2004	-0.12	#Func!
4/13/2004	0.159	-1.839
7/21/2004	0.382	-0.962
10/11/2004	0.211	-1.556
1/20/2005	0.229	-1.474
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) -0.538
Date Collected	Result	` ′
Date Collected 10/16/2002	Result 0.584	-0.538
Date Collected 10/16/2002 1/13/2003	Result 0.584 -0.839	-0.538 #Func!
Date Collected 10/16/2002 1/13/2003 10/14/2003	Result 0.584 -0.839 0.0325	-0.538 #Func! -3.427
Date Collected 10/16/2002 1/13/2003 10/14/2003 1/13/2004	Result 0.584 -0.839 0.0325 -0.00402	-0.538 #Func! -3.427 #Func!
Date Collected 10/16/2002 1/13/2003 10/14/2003 1/13/2004 4/12/2004	Result 0.584 -0.839 0.0325 -0.00402 -0.000337	-0.538 #Func! -3.427 #Func! #Func!

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	-0.246	N/A	#Error	N/A	
MW221	Sidegradient	No	0.447	N/A	-0.805	N/A	
MW222	Sidegradient	No	0.287	N/A	-1.248	N/A	
MW223	Sidegradient	No	0.482	N/A	-0.730	N/A	
MW224	Sidegradient	No	0.214	N/A	-1.542	N/A	
MW369	Downgradien	t No	0.676	N/A	-0.392	N/A	
MW372	Downgradien	t Yes	0.689	N/A	-0.373	YES	
MW384	Sidegradient	No	0.603	N/A	-0.506	N/A	
MW387	Downgradien	t No	0.063	N/A	-2.765	N/A	
MW391	Downgradien	t No	0.0244	N/A	-3.713	N/A	
MW394	Upgradient	No	0.232	N/A	-1.461	N/A	
N/A - Resu	lts identified as N	Ion-Detects	luring lah	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances
MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis I Sodium UNITS: mg/L

Historical Background Comparison L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 36.363
 S= 8.666
 CV(1)=0.238 K factor**= 2.523
 TL(1)=58.227 LL(1)=N/A

 Statistics-Transformed Background
 X= 3.570
 S= 0.222
 CV(2)=0.062 K factor**= 2.523
 TL(2)=4.129 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 35.4 3.567 1/15/2003 40.6 3.704 51 3.932 4/10/2003 7/14/2003 58.2 4.064 10/13/2003 38.1 3.640 1/13/2004 37 3.611 4/13/2004 43.2 3.766 7/21/2004 33.8 3.520 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 32.9 3.493 9/16/2002 29.9 3.398 10/16/2002 29 3.367 1/13/2003 27.1 3.300 4/10/2003 24.8 3.211 7/16/2003 35.6 3.572 3.523 10/14/2003 33.9 1/13/2004 31.3 3.444

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	38.8	NO	3.658	N/A	
MW221	Sidegradient	Yes	48.4	NO	3.879	N/A	
MW222	Sidegradient	Yes	43.5	NO	3.773	N/A	
MW223	Sidegradient	Yes	46.7	NO	3.844	N/A	
MW224	Sidegradient	Yes	49.9	NO	3.910	N/A	
MW369	Downgradien	t Yes	48.5	NO	3.882	N/A	
MW372	Downgradien	t Yes	45.5	NO	3.818	N/A	
MW384	Sidegradient	Yes	51.3	NO	3.938	N/A	
MW387	Downgradien	t Yes	56.4	NO	4.032	N/A	
MW391	Downgradien	t Yes	31.1	NO	3.437	N/A	
MW394	Upgradient	Yes	33.5	NO	3.512	N/A	
N/A - Resu	lts identified as N	Ion-Detects of	luring lab	oratory analysis or	data validatior	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis I Sulfate UNITS: mg/L

Historical Background Comparison /L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.481 **S**= 2.648

CV(1)=0.253

K factor=** 2.523

TL(1)= 17.161

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.322

S= 0.239 **CV(2)**=0.103

K factor=** 2.523

TL(2) = 2.925

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	10.4	2.342
1/15/2003	9.8	2.282
4/10/2003	15.4	2.734
7/14/2003	14.9	2.701
10/13/2003	13.5	2.603
1/13/2004	10.3	2.332
4/13/2004	14.3	2.660
7/21/2004	10.5	2.351
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.416
Date Collected	Result	
Date Collected 8/13/2002	Result 11.2	2.416
Date Collected 8/13/2002 9/16/2002	Result 11.2 8.3	2.416 2.116
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 11.2 8.3 8	2.416 2.116 2.079
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 11.2 8.3 8 8.5	2.416 2.116 2.079 2.140
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 11.2 8.3 8 8.5 7.9	2.416 2.116 2.079 2.140 2.067

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW220	Upgradient	Yes	16.4	NO	2.797	N/A
MW221	Sidegradient	Yes	13.7	NO	2.617	N/A
MW222	Sidegradient	Yes	10.4	NO	2.342	N/A
MW223	Sidegradient	Yes	13	NO	2.565	N/A
MW224	Sidegradient	Yes	8.4	NO	2.128	N/A
MW369	Downgradien	t Yes	7.63	NO	2.032	N/A
MW372	Downgradien	t Yes	75.2	YES	4.320	N/A
MW384	Sidegradient	Yes	21.4	YES	3.063	N/A
MW387	Downgradien	t Yes	33.3	YES	3.506	N/A
MW391	Downgradien	t Yes	46.1	YES	3.831	N/A
MW394	Upgradient	Yes	10.4	NO	2.342	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW372 MW384

MW387

MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis **Technetium-99** UNITS: pCi/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.992**K factor**=** 2.523 **TL(1)=** 32.768 **Statistics-Background Data** X = 9.354S = 9.280**Statistics-Transformed Background** CV(2) = 0.374

Data

X = 2.270 S = 0.849

K factor**= 2.523

TL(2) = 3.262

LL(1)=N/A LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	19.7	2.981
1/15/2003	26.1	3.262
4/10/2003	3.56	1.270
7/14/2003	0	#Func!
10/13/2003	21	3.045
1/13/2004	6.32	1.844
4/13/2004	3	1.099
7/21/2004	14.6	2.681
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 2.639
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 5.45	2.639 1.696
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 14 5.45 2.49	2.639 1.696 0.912
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 14 5.45 2.49 18.3	2.639 1.696 0.912 2.907
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 14 5.45 2.49 18.3 -1.45	2.639 1.696 0.912 2.907 #Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	27.4	NO	3.311	N/A	
MW221	Sidegradient	No	-0.215	N/A	#Error	N/A	
MW222	Sidegradient	No	-1.44	N/A	#Error	N/A	
MW223	Sidegradient	No	4.08	N/A	1.406	N/A	
MW224	Sidegradient	No	1.89	N/A	0.637	N/A	
MW369	Downgradien	t Yes	38.8	YES	3.658	N/A	
MW372	Downgradien	t Yes	17.3	NO	2.851	N/A	
MW384	Sidegradient	Yes	139	YES	4.934	N/A	
MW387	Downgradien	t Yes	306	YES	5.724	N/A	
MW391	Downgradien	t No	10.8	N/A	2.380	N/A	
MW394	Upgradient	No	6.15	N/A	1.816	N/A	
N/A Pagu	lts identified as N	Ion Dotoots o	lurina lah	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW369 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-56

C-746-S/T First Quarter 2018 Statistical Analysis **Total Organic Carbon (TOC)**

Historical Background Comparison UNITS: mg/L **URGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.493 **K factor**=** 2.523 Statistics-Background Data X = 1.494S = 0.737TL(1) = 3.353LL(1)=N/A **Statistics-Transformed Background** X = 0.315 S = 0.402 CV(2) = 1.279**K factor**=** 2.523 TL(2) = 1.330LL(2)=N/A

Historical Background Data from

Data

Upgradient Wells with Transformed Result

Because $CV(1)$ is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Well Number:	MW220	
Date Collected	Result	LN(Result)
10/14/2002	1	0.000
1/15/2003	1.1	0.095
4/10/2003	1	0.000
7/14/2003	3.3	1.194
10/13/2003	1.8	0.588
1/13/2004	1	0.000
4/13/2004	2	0.693
7/21/2004	3.1	1.131
Well Number:	MW394	
Well Number: Date Collected	MW394 Result	LN(Result)
		LN(Result) 0.262
Date Collected	Result	
Date Collected 8/13/2002	Result 1.3	0.262
Date Collected 8/13/2002 9/16/2002	Result 1.3 1	0.262 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002	Result 1.3 1	0.262 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003	Result 1.3 1 1.6	0.262 0.000 0.000 0.470
Date Collected 8/13/2002 9/16/2002 10/16/2002 1/13/2003 4/10/2003	Result 1.3 1 1 1.6 1	0.262 0.000 0.000 0.470 0.000

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	0.823	NO	-0.195	N/A	
MW221	Sidegradient	Yes	1.06	NO	0.058	N/A	
MW222	Sidegradient	Yes	0.699	NO	-0.358	N/A	
MW223	Sidegradient	Yes	0.754	NO	-0.282	N/A	
MW224	Sidegradient	Yes	0.828	NO	-0.189	N/A	
MW369	Downgradien	t Yes	1.05	NO	0.049	N/A	
MW372	Downgradien	t Yes	1.62	NO	0.482	N/A	
MW384	Sidegradient	Yes	1.5	NO	0.405	N/A	
MW387	Downgradien	t Yes	1.3	NO	0.262	N/A	
MW391	Downgradien	t Yes	0.991	NO	-0.009	N/A	
MW394	Upgradient	Yes	0.928	NO	-0.075	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-57

C-746-S/T First Quarter 2018 Statistical Analysis **Total Organic Halides (TOX)** UNITS: ug/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 63.475 S = 163.135 CV(1) = 2.570

K factor=** 2.523

TL(1)= 475.063 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 3.103 S = 1.145 CV(2) = 0.369

K factor**= 2.523

TL(2) = 5.992

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 3.912 1/15/2003 10 2.303 4/10/2003 10 2.303 7/14/2003 10 2.303 10/13/2003 10 2.303 1/13/2004 10 2.303 4/13/2004 10 2.303 7/21/2004 10 2.303 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 50 3.912 9/16/2002 672 6.510 3.912 10/16/2002 50 1/13/2003 36.1 3.586 4/10/2003 10 2.303 7/16/2003 42.7 3.754 10/14/2003 22 3.091 1/13/2004

12.8

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	Yes	4.86	N/A	1.581	NO	
MW221	Sidegradient	Yes	5.36	N/A	1.679	NO	
MW222	Sidegradient	No	10	N/A	2.303	N/A	
MW223	Sidegradient	Yes	3.72	N/A	1.314	NO	
MW224	Sidegradient	No	10	N/A	2.303	N/A	
MW369	Downgradien	t Yes	12.4	N/A	2.518	NO	
MW372	Downgradien	t Yes	37	N/A	3.611	NO	
MW384	Sidegradient	Yes	11.7	N/A	2.460	NO	
MW387	Downgradien	t Yes	6.22	N/A	1.828	NO	
MW391	Downgradien	t Yes	8.76	N/A	2.170	NO	
MW394	Upgradient	Yes	11.5	N/A	2.442	NO	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

2.549

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-58

C-746-S/T First Quarter 2018 Statistical Analysis Trichloroethene UNITS: ug/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 8.813
 S= 8.376
 CV(1)=0.951 K factor**= 2.523
 TL(1)=29.946 LL(1)=N/A

 Statistics-Transformed Background
 X= 1.395
 S= 1.449
 CV(2)=1.039 K factor**= 2.523
 TL(2)=5.052 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.000 1/15/2003 0.000 4/10/2003 0.000 7/14/2003 1 0.000 10/13/2003 1 0.000 1/13/2004 0.000 4/13/2004 0.000 7/21/2004 1 0.000 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 16 2.773 9/30/2002 20 2.996 17 10/16/2002 2.833 1/13/2003 15 2.708 10 4/10/2003 2.303 7/16/2003 19 2.944 20 2.996 10/14/2003 1/13/2004 16 2.773

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	1	N/A	0.000	N/A	
MW221	Sidegradient	No	1	N/A	0.000	N/A	
MW222	Sidegradient	No	1	N/A	0.000	N/A	
MW223	Sidegradient	Yes	0.84	N/A	-0.174	N/A	
MW224	Sidegradient	No	1	N/A	0.000	N/A	
MW369	Downgradien	t Yes	1.23	N/A	0.207	N/A	
MW372	Downgradien	t Yes	5.43	NO	1.692	N/A	
MW384	Sidegradient	Yes	0.95	N/A	-0.051	N/A	
MW387	Downgradien	t Yes	1.17	N/A	0.157	N/A	
MW391	Downgradien	t Yes	11.9	NO	2.477	N/A	
MW394	Upgradient	Yes	6.47	NO	1.867	N/A	
N/A - Resu	Its identified as N	Ion-Detects of	luring lab	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis I Vanadium UNITS: mg/L

Historical Background Comparison /L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.021 S = 0.002 CV(1) = 0.083 K factor** = 2.523
 TL(1) = 0.025 LL(1) = N/A

 Statistics-Transformed Background
 X = -3.884 S = 0.076 CV(2) = -0.020 CV(2) = -0.020

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.02 -3.912 1/15/2003 0.02 -3.9120.02 -3.9124/10/2003 7/14/2003 0.02 -3.912 10/13/2003 0.02 -3.912 1/13/2004 0.02 -3.9124/13/2004 0.02 -3.912-3.912 7/21/2004 0.02 Well Number: MW394 Date Collected LN(Result) Result 8/13/2002 0.025 -3.6899/16/2002 0.025 -3.6890.02 -3.912 10/16/2002 1/13/2003 0.02 -3.9120.02 -3.912 4/10/2003 7/16/2003 0.02 -3.912 -3.912 10/14/2003 0.02

0.02

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.01	N/A	-4.605	N/A	
MW221	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW222	Sidegradient	Yes	0.00484	NO	-5.331	N/A	
MW223	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW224	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW369	Downgradien	t Yes	0.00426	NO	-5.458	N/A	
MW372	Downgradien	t No	0.01	N/A	-4.605	N/A	
MW384	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW387	Downgradien	t No	0.01	N/A	-4.605	N/A	
MW391	Downgradien	t No	0.01	N/A	-4.605	N/A	
MW394	Upgradient	No	0.01	N/A	-4.605	N/A	
N/A - Resu	lts identified as N	Ion-Detects	luring labo	oratory analysis or	data validatior	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis Zinc UNITS: mg/L

Historical Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 0.036 S = 0.026 CV(1) = 0.722 K factor**= 2.523 TL(1) = 0.101 LL(1) = N/A Statistics-Transformed Background X = -3.485 S = 0.525 CV(2) = -0.151 K factor**= 2.523 TL(2) = -2.162 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 10/14/2002 0.025 -3.6891/15/2003 0.035 -3.3520.035 -3.3524/10/2003 7/14/2003 0.0389 -3.24710/13/2003 0.026 -3.650 1/13/2004 0.02 -3.9124/13/2004 0.02 -3.912-3.912 7/21/2004 0.02 Well Number: MW394 Date Collected Result LN(Result) 8/13/2002 0.1 -2.3039/16/2002 0.1 -2.3030.025 10/16/2002 -3.689 1/13/2003 0.035 -3.3524/10/2003 0.035 -3.3527/16/2003 0.02 -3.912 -3.912 10/14/2003 0.02 1/13/2004 0.02 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW220	Upgradient	No	0.01	N/A	-4.605	N/A	
MW221	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW222	Sidegradient	Yes	0.0044	NO	-5.426	N/A	
MW223	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW224	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW369	Downgradient	t Yes	0.00335	NO	-5.699	N/A	
MW372	Downgradient	t No	0.01	N/A	-4.605	N/A	
MW384	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW387	Downgradient	t No	0.01	N/A	-4.605	N/A	
MW391	Downgradient	t No	0.01	N/A	-4.605	N/A	
MW394	Upgradient	No	0.01	N/A	-4.605	N/A	
N/A - Resul	lts identified as N	Ion-Detects of	luring labo	oratory analysis or	data validation	and were not	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis I Aluminum UNITS: mg/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.258

S= 0.221 **CV(1)**=0.856

K factor=** 2.523

TL(1) = 0.815

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.266 S = 2.485

CV(2) = -1.097

K factor=** 2.523

TL(2)= 4.003

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.2	-1.609
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	0.737	-0.305
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
Date Collected	Result	LN(Result)
Date Collected 8/13/2002	Result 0.824	LN(Result) -0.194
Date Collected 8/13/2002 9/16/2002	Result 0.824 0.2	LN(Result) -0.194 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.824 0.2 0.0002	LN(Result) -0.194 -1.609 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.824 0.2 0.0002 0.363	LN(Result) -0.194 -1.609 -8.517 -1.013
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.824 0.2 0.0002 0.363 0.2	LN(Result) -0.194 -1.609 -8.517 -1.013 -1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	No	0.05	N/A	-2.996	N/A
MW373	Downgradient	No	0.05	N/A	-2.996	N/A
MW385	Sidegradient	Yes	0.0928	NO	-2.377	N/A
MW388	Downgradient	Yes	0.0501	NO	-2.994	N/A
MW392	Downgradient	Yes	0.0211	NO	-3.858	N/A
MW395	Upgradient	Yes	0.0376	NO	-3.281	N/A
MW397	Upgradient	Yes	0.103	NO	-2.273	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis **Beta activity** UNITS: pCi/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 **TL(1)=** 13.773 **Statistics-Background Data** X = 7.183S = 2.612CV(1)=0.364LL(1)=N/A **Statistics-Transformed Background** X = 1.870 S = 0.552**CV(2)**=0.295 **K factor**=** 2.523 TL(2) = 3.261LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.086 1.09 9/16/2002 5.79 1.756 1.920 10/16/2002 6.82 1/13/2003 5.01 1.611 4/10/2003 1.808 6.1 7/16/2003 8.51 2.141 10/14/2003 4.99 1.607 1/13/2004 6.58 1.884 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 9.57 2.259 9/16/2002 11 2.398 9.3 10/17/2002 2.230 1/13/2003 8.63 2.155 4/8/2003 10 2.303 7/16/2003 6.89 1.930 2.313 10/14/2003 10.1 1/13/2004 4.55 1.515

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	71.9	YES	4.275	N/A
MW373	Downgradient	Yes	23.5	N/A	3.157	N/A
MW385	Sidegradient	Yes	50.6	YES	3.924	N/A
MW388	Downgradient	Yes	52.8	YES	3.967	N/A
MW392	Downgradient	No	2.16	N/A	0.770	N/A
MW395	Upgradient	No	7.59	N/A	2.027	N/A
MW397	Upgradient	No	2.66	N/A	0.978	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-63

C-746-S/T First Quarter 2018 Statistical Analysis I Boron UNITS: mg/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.650

S = 0.805 C

CV(1)=1.238

K factor=** 2.523

TL(1) = 2.681

LL(1)=N/A

Statistics-Transformed Background Data

X= -1.034 **S**= 1.030

CV(2) = -0.996

K factor=** 2.523

TL(2) = 1.564

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.2	-1.609
1/13/2003	0.2	-1.609
4/10/2003	0.2	-1.609
7/16/2003	0.2	-1.609
10/14/2003	0.2	-1.609
1/13/2004	0.2	-1.609
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.693
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 2	0.693
Date Collected 8/13/2002 9/16/2002	Result 2 2	0.693 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2 2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2 2 0.2 0.2	0.693 0.693 -1.609
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2 2 0.2 0.2 0.2	0.693 0.693 -1.609 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	0.0359	N/A	-3.327	NO
MW373	Downgradient	Yes	1.4	N/A	0.336	NO
MW385	Sidegradient	Yes	0.0152	N/A	-4.186	NO
MW388	Downgradient	Yes	0.0324	N/A	-3.430	NO
MW392	Downgradient	Yes	0.0284	N/A	-3.561	NO
MW395	Upgradient	Yes	0.0206	N/A	-3.882	NO
MW397	Upgradient	Yes	0.00938	3 N/A	-4.669	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis I Bromide UNITS: mg/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.000

S= 0.000

CV(1)=0.000

K factor=** 2.523

TL(1)= 1.000

LL(1)=N/A

Statistics-Transformed Background Data

X = 0.000

S = 0.000 CV

CV(2)=#Num!

K factor=** 2.523

TL(2) = 0.000

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	1	0.000
9/16/2002	1	0.000
10/16/2002	1	0.000
1/13/2003	1	0.000
4/10/2003	1	0.000
7/16/2003	1	0.000
10/14/2003	1	0.000
1/13/2004	1	0.000
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.000
Date Collected	Result	` ,
Date Collected 8/13/2002	Result	0.000
Date Collected 8/13/2002 9/16/2002	Result 1	0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1 1 1	0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1 1 1 1	0.000 0.000 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	0.443	NO	-0.814	N/A	
MW373	Downgradient	Yes	0.601	NO	-0.509	N/A	
MW385	Sidegradient	Yes	0.222	NO	-1.505	N/A	
MW388	Downgradient	Yes	0.356	NO	-1.033	N/A	
MW392	Downgradient	Yes	0.634	NO	-0.456	N/A	
MW395	Upgradient	Yes	0.493	NO	-0.707	N/A	
MW397	Upgradient	Yes	0.463	NO	-0.770	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis **Calcium** UNITS: mg/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 23.103 S = 11.538 CV(1) = 0.499

K factor=** 2.523

TL(1) = 52.213

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.357 S = 2.411

CV(2) = 1.023

K factor**= 2.523

TL(2)= 8.439

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	32.2	3.472
9/16/2002	33	3.497
10/16/2002	0.0295	-3.523
1/13/2003	32.1	3.469
4/10/2003	40.2	3.694
7/16/2003	32.4	3.478
10/14/2003	33.9	3.523
1/13/2004	31.2	3.440
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.965
Date Collected	Result	,
Date Collected 8/13/2002	Result 19.4	2.965
Date Collected 8/13/2002 9/16/2002	Result 19.4 19	2.965 2.944
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 19.4 19 0.0179	2.965 2.944 -4.023
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 19.4 19 0.0179 17.8	2.965 2.944 -4.023 2.879
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 19.4 19 0.0179 17.8 20.3	2.965 2.944 -4.023 2.879 3.011

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter DataWell No.GradientDetected?ResultResult >TL(1)?LN(Result)LN(Result)MW370DowngradientYes29.9NO3.398N/AMW373DowngradientYes60.3YES4.099N/AMW385SidegradientYes37.4NO3.622N/A	
MW370 Downgradient Yes 29.9 NO 3.398 N/A MW373 Downgradient Yes 60.3 YES 4.099 N/A	
MW373 Downgradient Yes 60.3 YES 4.099 N/A) >TL(2
MW385 Sidegradient Ves 37.4 NO 3.622 N/A	
10 3.022 1011	
MW388 Downgradient Yes 28.6 NO 3.353 N/A	
MW392 Downgradient Yes 27.7 NO 3.321 N/A	
MW395 Upgradient Yes 24.5 NO 3.199 N/A	
MW397 Upgradient Yes 19.4 NO 2.965 N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-66

C-746-S/T First Quarter 2018 Statistical Analysis

Historical Background Comparison

Chemical Oxygen Demand (COD)

UNITS: mg/L

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 35.313 S = 1.250

CV(1) = 0.035

K factor=** 2.523

TL(1) = 38.466

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.564 S = 0.033

CV(2) = 0.009

K factor**= 2.523

TL(2) = 3.648

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	35	3.555
9/16/2002	35	3.555
10/16/2002	35	3.555
1/13/2003	35	3.555
4/10/2003	35	3.555
7/16/2003	35	3.555
10/14/2003	35	3.555
1/13/2004	35	3.555
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.689
Date Collected	Result	•
Date Collected 8/13/2002	Result 40	3.689
Date Collected 8/13/2002 9/16/2002	Result 40 35	3.689 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 40 35 35	3.689 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 40 35 35 35	3.689 3.555 3.555 3.555
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 40 35 35 35 35 35	3.689 3.555 3.555 3.555 3.555

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	16.8	NO	2.821	N/A
MW373	Downgradient	Yes	31.4	NO	3.447	N/A
MW385	Sidegradient	No	20	N/A	2.996	N/A
MW388	Downgradient	Yes	18.9	NO	2.939	N/A
MW392	Downgradient	Yes	24.2	NO	3.186	N/A
MW395	Upgradient	Yes	18.9	NO	2.939	N/A
MW397	Upgradient	Yes	18.9	NO	2.939	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-67

C-746-S/T First Quarter 2018 Statistical Analysis **Chloride** UNITS: mg/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 51.844 S = 11.652 CV(1) = 0.225

K factor=** 2.523

TL(1) = 81.242

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.924 S = 0.229

CV(2) = 0.058

K factor=** 2.523 **TL(2)=** 4.501

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	62.2	4.130
9/16/2002	64.7	4.170
10/16/2002	62.2	4.130
1/13/2003	63.5	4.151
4/10/2003	64.1	4.160
7/16/2003	64	4.159
10/14/2003	63.2	4.146
1/13/2004	60.6	4.104
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.661
Date Collected	Result	` '
Date Collected 8/13/2002	Result 38.9	3.661
Date Collected 8/13/2002 9/16/2002	Result 38.9 39.8	3.661 3.684
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 38.9 39.8 39.3	3.661 3.684 3.671
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 38.9 39.8 39.3 40.5	3.661 3.684 3.671 3.701
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 38.9 39.8 39.3 40.5 42.1	3.661 3.684 3.671 3.701 3.740

Because CV(1) is less than or equal to
1, assume normal distribution and
continue with statistical analysis
utilizing TL(1).

Current Quarter Data								
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2		
MW370	Downgradient	Yes	35.1	NO	3.558	N/A		
MW373	Downgradient	Yes	43.3	NO	3.768	N/A		
MW385	Sidegradient	Yes	23.1	NO	3.140	N/A		
MW388	Downgradient	Yes	30.8	NO	3.428	N/A		
MW392	Downgradient	Yes	46.8	NO	3.846	N/A		
MW395	Upgradient	Yes	40.6	NO	3.704	N/A		
MW397	Upgradient	Yes	39.1	NO	3.666	N/A		

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-68

C-746-S/T First Quarter 2018 Statistical Analysis cis-1,2-Dichloroethene UNITS: ug/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 5.000 S = 0.000 CV(1) = 0.000 K factor**= 2.523
 TL(1) = 5.000 LL(1) = N/A

 Statistics-Transformed Background
 X = 1.609 S = 0.000 CV(2) = 0.000 K factor**= 2.523
 TL(2) = 1.609 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 1.609 9/30/2002 5 1.609 5 10/16/2002 1.609 1/13/2003 5 1.609 4/10/2003 5 1.609 5 7/16/2003 1.609 10/14/2003 5 1.609 5 1/13/2004 1.609 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 5 1.609 9/30/2002 5 1.609 10/17/2002 5 1.609 1/13/2003 1.609 5 4/8/2003 1.609 7/16/2003 5 1.609 10/14/2003 5 1.609 1/13/2004 1.609

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	No	1	N/A	0.000	N/A
MW373	Downgradient	No	1	N/A	0.000	N/A
MW385	Sidegradient	No	1	N/A	0.000	N/A
MW388	Downgradient	No	1	N/A	0.000	N/A
MW392	Downgradient	Yes	1.1	NO	0.095	N/A
MW395	Upgradient	No	1	N/A	0.000	N/A
MW397	Upgradient	No	1	N/A	0.000	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis

Historical Background Comparison UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Cobalt

X = 0.007

CV(1) = 1.515S = 0.011

K factor=** 2.523

TL(1) = 0.034

LL(1)=N/A

Statistics-Transformed Background Data

X = -6.053 S = 1.416

CV(2) = -0.234

K factor**= 2.523

TL(2) = -2.480

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00148	-6.516
4/10/2003	0.00151	-6.496
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/17/2002	0.001	-6.908
1/13/2003	0.001	-6.908
4/8/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	Yes	0.00031	4 N/A	-8.066	NO	
MW373	Downgradient	Yes	0.00033	2 N/A	-8.010	NO	
MW385	Sidegradient	No	0.001	N/A	-6.908	N/A	
MW388	Downgradient	No	0.001	N/A	-6.908	N/A	
MW392	Downgradient	No	0.001	N/A	-6.908	N/A	
MW395	Upgradient	No	0.001	N/A	-6.908	N/A	
MW397	Upgradient	No	0.001	N/A	-6.908	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-70

C-746-S/T First Quarter 2018 Statistical Analysis Histo Conductivity UNITS: umho/cm

Historical Background Comparison ho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 377.875 S = 52.101 CV(1) = 0.138

8 **K factor****= 2.523

TL(1)= 509.326 **LL(1)**=N/A

Statistics-Transformed Background

X = 5.926 S = 0.136 CV(2) = 0.023

K factor=** 2.523

TL(2) = 6.270

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	405	6.004
9/16/2002	401	5.994
10/16/2002	392	5.971
1/13/2003	404	6.001
4/10/2003	488	6.190
7/16/2003	450	6.109
10/14/2003	410	6.016
1/13/2004	413	6.023
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.775
Date Collected	Result	,
Date Collected 8/13/2002	Result 322	5.775
Date Collected 8/13/2002 9/16/2002	Result 322 315	5.775 5.753
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 322 315 317	5.775 5.753 5.759
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 322 315 317 320	5.775 5.753 5.759 5.768
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 322 315 317 320 390	5.775 5.753 5.759 5.768 5.966

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	449	NO	6.107	N/A
MW373	Downgradient	Yes	730	YES	6.593	N/A
MW385	Sidegradient	Yes	458	NO	6.127	N/A
MW388	Downgradient	Yes	465	NO	6.142	N/A
MW392	Downgradient	Yes	404	NO	6.001	N/A
MW395	Upgradient	Yes	384	NO	5.951	N/A
MW397	Upgradient	Yes	326	NO	5.787	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis

Historical Background Comparison

Copper UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.028

S= 0.013 **CV(1)**=0.474

K factor=** 2.523

TL(1) = 0.061

LL(1)=N/A

Statistics-Transformed Background Data

X= -3.662 **S**= 0.406

CV(2) = -0.111

K factor=** 2.523

TL(2) = -2.638

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.0281	-3.572
1/13/2003	0.02	-3.912
4/10/2003	0.02	-3.912
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -2.996
Date Collected	Result	
Date Collected 8/13/2002	Result 0.05	-2.996
Date Collected 8/13/2002 9/16/2002	Result 0.05 0.05	-2.996 -2.996
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.05 0.05 0.02	-2.996 -2.996 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.05 0.05 0.02 0.02	-2.996 -2.996 -3.912 -3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.05 0.05 0.02 0.02 0.02	-2.996 -2.996 -3.912 -3.912

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	t Yes	0.00062	9 NO	-7.371	N/A	
MW373	Downgradient	t Yes	0.00051	3 NO	-7.575	N/A	
MW385	Sidegradient	Yes	0.00053	4 NO	-7.535	N/A	
MW388	Downgradient	t Yes	0.00073	7 NO	-7.213	N/A	
MW392	Downgradient	t Yes	0.00192	NO	-6.255	N/A	
MW395	Upgradient	Yes	0.00037	4 NO	-7.891	N/A	
MW397	Upgradient	Yes	0.00096	3 NO	-6.945	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis I Dissolved Oxygen UNITS: mg/L

Historical Background Comparison /L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 4.678

CV(1) = 0.520

K factor=** 2.523

TL(1)= 10.812

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.414

S = 0.550

S = 2.431

CV(2)=0.389

K factor**= 2.523

TL(2)= 2.802

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	7.29	1.987
9/30/2002	4.03	1.394
10/16/2002	3.85	1.348
1/13/2003	2.36	0.859
4/10/2003	1.14	0.131
7/16/2003	1.76	0.565
10/14/2003	4.05	1.399
1/13/2004	4.26	1.449
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.448
Date Collected	Result	` '
Date Collected 8/13/2002	Result 11.56	2.448
Date Collected 8/13/2002 9/16/2002	Result 11.56 5.86	2.448 1.768
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 11.56 5.86 5.94	2.448 1.768 1.782
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 11.56 5.86 5.94 4.66	2.448 1.768 1.782 1.539
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 11.56 5.86 5.94 4.66 3.77	2.448 1.768 1.782 1.539 1.327

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	5.15	NO	1.639	N/A
MW373	Downgradient	Yes	2.33	NO	0.846	N/A
MW385	Sidegradient	Yes	1.39	NO	0.329	N/A
MW388	Downgradient	Yes	5.51	NO	1.707	N/A
MW392	Downgradient	Yes	1.7	NO	0.531	N/A
MW395	Upgradient	Yes	3.39	NO	1.221	N/A
MW397	Upgradient	Yes	5.37	NO	1.681	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis **Dissolved Solids** UNITS: mg/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 219.250 S = 34.107 CV(1) = 0.156

K factor=** 2.523

TL(1)= 305.301 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.379 S = 0.152 CV(2) = 0.028

K factor**= 2.523

TL(2) = 5.762

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	249	5.517
9/16/2002	272	5.606
10/16/2002	255	5.541
1/13/2003	211	5.352
4/10/2003	289	5.666
7/16/2003	236	5.464
10/14/2003	224	5.412
1/13/2004	235	5.460
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 5.231
Date Collected	Result	,
Date Collected 8/13/2002	Result 187	5.231
Date Collected 8/13/2002 9/16/2002	Result 187 197	5.231 5.283
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 187 197 183	5.231 5.283 5.209
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 187 197 183 182	5.231 5.283 5.209 5.204
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 187 197 183 182 217	5.231 5.283 5.209 5.204 5.380

landfill.

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(
MW370	Downgradien	Yes	203	NO	5.313	N/A
MW373	Downgradien	Yes	376	YES	5.930	N/A
MW385	Sidegradient	Yes	264	NO	5.576	N/A
MW388	Downgradien	Yes	246	NO	5.505	N/A
MW392	Downgradien	Yes	227	NO	5.425	N/A
MW395	Upgradient	Yes	176	NO	5.170	N/A
MW397	Upgradient	Yes	179	NO	5.187	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-74

Historical Background Comparison UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Iron

X = 0.400

CV(1)=1.286S = 0.514

K factor=** 2.523

TL(1)=1.698

LL(1)=N/A

Statistics-Transformed Background Data

X = -2.197 S = 2.634 CV(2) = -1.199

K factor**= 2.523

TL(2) = 4.449

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.294	-1.224
9/16/2002	0.2	-1.609
10/16/2002	0.0002	-8.517
1/13/2003	1.33	0.285
4/10/2003	1.31	0.270
7/16/2003	0.2	-1.609
10/14/2003	0.1	-2.303
1/13/2004	0.1	-2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.457
Date Collected	Result	` '
Date Collected 8/13/2002	Result 1.58	0.457
Date Collected 8/13/2002 9/16/2002	Result 1.58 0.232	0.457 -1.461
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 1.58 0.232 0.0002	0.457 -1.461 -8.517
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 1.58 0.232 0.0002 0.453	0.457 -1.461 -8.517 -0.792
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 1.58 0.232 0.0002 0.453 0.2	0.457 -1.461 -8.517 -0.792 -1.609

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	0.1	N/A	-2.303	N/A
MW373	Downgradient	Yes	0.0864	N/A	-2.449	NO
MW385	Sidegradient	Yes	0.204	N/A	-1.590	NO
MW388	Downgradient	Yes	0.207	N/A	-1.575	NO
MW392	Downgradient	Yes	0.0974	N/A	-2.329	NO
MW395	Upgradient	Yes	0.0896	N/A	-2.412	NO
MW397	Upgradient	Yes	0.243	N/A	-1.415	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-75

Historical Background Comparison UNITS: mg/L **LRGA**

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

K factor=** 2.523 **Statistics-Background Data** X = 9.102S = 4.685CV(1)=0.515TL(1) = 20.922LL(1)=N/A **Statistics-Transformed Background** X = 1.423S = 2.408**CV(2)=**1.692 **K factor**=** 2.523 TL(2) = 7.500LL(2)=N/A

Data

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 12.5 2.526 9/16/2002 13 2.565 0.0127 10/16/2002 -4.3661/13/2003 11.2 2.416 4/10/2003 17.5 2.862 7/16/2003 12.9 2.557 10/14/2003 13.4 2.595 1/13/2004 12.4 2.518 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 7.83 2.058 9/16/2002 7.64 2.033 0.00658 10/17/2002 -5.0241/13/2003 6.69 1.901 4/8/2003 7.28 1.985 7/16/2003 7.82 2.057 2.072 10/14/2003 7.94 1/13/2004 7.51 2.016

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	t Yes	13.2	NO	2.580	N/A
MW373	Downgradient	t Yes	24.3	YES	3.190	N/A
MW385	Sidegradient	Yes	14.6	NO	2.681	N/A
MW388	Downgradient	t Yes	13.1	NO	2.573	N/A
MW392	Downgradient	t Yes	10.7	NO	2.370	N/A
MW395	Upgradient	Yes	10.8	NO	2.380	N/A
MW397	Upgradient	Yes	8.61	NO	2.153	N/A
37/4 D	1. 11 .10 1 31	. D			1 . 11 1	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

Wells with Exceedances MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-76

Analysis Historical Background Comparison UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical

background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X=0.131

S=0.195

CV(1)=1.487

K factor**= 2.523

TL(1)=0.624

LL(1)=N/A

Statistics-Transformed Background Data

Manganese

X= -3.104 **S=** 1.529 **CV(2)=** -0.493

K factor**= 2.523

TL(1)= 0.624 TL(2)= 0.755

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.361	-1.019
9/16/2002	0.028	-3.576
10/16/2002	0.026	-3.650
1/13/2003	0.0713	-2.641
4/10/2003	0.629	-0.464
7/16/2003	0.297	-1.214
10/14/2003	0.0198	-3.922
1/13/2004	0.0126	-4.374
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.764
Date Collected	Result	` '
Date Collected 8/13/2002	Result 0.466	-0.764
Date Collected 8/13/2002 9/16/2002	Result 0.466 0.077	-0.764 -2.564
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 0.466 0.077 0.028	-0.764 -2.564 -3.576
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 0.466 0.077 0.028 0.0164	-0.764 -2.564 -3.576 -4.110
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 0.466 0.077 0.028 0.0164 0.0407	-0.764 -2.564 -3.576 -4.110 -3.202

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	No	0.00336	N/A	-5.696	N/A
MW373	Downgradient	Yes	0.0142	N/A	-4.255	NO
MW385	Sidegradient	Yes	0.00674	N/A	-5.000	NO
MW388	Downgradient	Yes	0.00138	N/A	-6.586	NO
MW392	Downgradient	Yes	0.0203	N/A	-3.897	NO
MW395	Upgradient	Yes	0.00115	N/A	-6.768	NO
MW397	Upgradient	Yes	0.00705	N/A	-4.955	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis I Molybdenum UNITS: mg/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.007

S = 0.011 CV(1) = 1.451

K factor=** 2.523

TL(1) = 0.034

LL(1)=N/A

Statistics-Transformed Background Data

X= -5.990 **S**= 1.443

CV(2) = -0.241

K factor=** 2.523

TL(2) = -2.349

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

•		
Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/16/2002	0.001	-6.908
1/13/2003	0.00609	-5.101
4/10/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.025	-3.689
9/16/2002	0.025	-3.689
10/17/2002	0.001	-6.908
1/13/2003	0.001	-6.908
4/8/2003	0.001	-6.908
7/16/2003	0.001	-6.908
10/14/2003	0.001	-6.908
1/13/2004	0.001	-6.908

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	No	0.0005	N/A	-7.601	N/A
MW373	Downgradient	No	0.0005	N/A	-7.601	N/A
MW385	Sidegradient	Yes	0.0006	N/A	-7.419	NO
MW388	Downgradient	Yes	0.00028	8 N/A	-8.153	NO
MW392	Downgradient	Yes	0.00028	4 N/A	-8.167	NO
MW395	Upgradient	Yes	0.00027	9 N/A	-8.184	NO
MW397	Upgradient	No	0.0005	N/A	-7.601	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis I Nickel UNITS: mg/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.018

S = 0.020 C

CV(1)=1.089

K factor=** 2.523

TL(1) = 0.068

LL(1)=N/A

Statistics-Transformed Background Data

X= -4.540 **S**= 1.020

CV(2) = -0.225

K factor=** 2.523

TL(2) = -1.965

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/16/2002	0.00702	-4.959
1/13/2003	0.029	-3.540
4/10/2003	0.0091	-4.699
7/16/2003	0.00627	-5.072
10/14/2003	0.005	-5.298
1/13/2004	0.005	-5.298
Well Number:	MW397	
Date Collected	Result	LN(Result)
8/13/2002	0.05	-2.996
9/16/2002	0.05	-2.996
10/17/2002	0.005	-5.298
1/13/2003	0.00502	-5.294
4/8/2003		
4/ 6/ 2003	0.005	-5.298
7/16/2003	0.005 0.005	-5.298 -5.298
., .,		

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	0.00075	2 N/A	-7.193	NO
MW373	Downgradient	Yes	0.0009	N/A	-7.013	NO
MW385	Sidegradient	Yes	0.0015	N/A	-6.502	NO
MW388	Downgradient	Yes	0.00208	N/A	-6.175	NO
MW392	Downgradient	Yes	0.00105	N/A	-6.859	NO
MW395	Upgradient	Yes	0.0012	N/A	-6.725	NO
MW397	Upgradient	Yes	0.000989	9 N/A	-6.919	NO

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis **Oxidation-Reduction Potential UNITS: mV**

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 157.250 S = 52.376 CV(1) = 0.333

K factor=** 2.523

TL(1)= 289.395 **LL(1)**=N/A

Statistics-Transformed Background

X = 5.003 S = 0.348 CV(2) = 0.069

K factor**= 2.523

TL(2) = 5.880

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	80	4.382
9/16/2002	145	4.977
10/16/2002	125	4.828
1/13/2003	85	4.443
4/10/2003	159	5.069
7/16/2003	98	4.585
10/14/2003	138	4.927
1/13/2004	233	5.451
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 4.745
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 115	4.745
Date Collected 8/13/2002 9/30/2002	Result 115 140	4.745 4.942
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 115 140 185	4.745 4.942 5.220
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 115 140 185 230	4.745 4.942 5.220 5.438
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 115 140 185 230 155	4.745 4.942 5.220 5.438 5.043

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data Well No. Gradient Detected? Result Result >TL()	(1)? LN(Result) LN(Result) >TL(
Well No. Gradient Detected? Result Result >TL(
	5 011 NI/A
MW370 Downgradient Yes 334 YES	5.811 N/A
MW373 Downgradient Yes 393 YES	5.974 N/A
MW385 Sidegradient Yes 234 NO	5.455 N/A
MW388 Downgradient Yes 341 YES	5.832 N/A
MW392 Downgradient Yes 292 YES	5.677 N/A
MW395 Upgradient Yes 195 NO	5.273 N/A
MW397 Upgradient Yes 361 YES	5.889 N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373

MW388

MW392

MW397

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-80

C-746-S/T First Quarter 2018 Statistical Analysis Historical Background Comparison pH UNITS: Std Unit LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 6.048 S = 0.248 CV(1) = 0.041 K factor** = 2.904 TL(1) = 6.767 LL(1) = 5.3289

Statistics-Transformed Background Data

X= 1.799 **S**= 0.042 **CV(2)**= 0.023

K factor=** 2.904

TL(2)= 1.920

LL(2)=1.6782

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 5.8 1.758 9/16/2002 1.792 5.47 10/16/2002 1.699 1/13/2003 6 1.792 4/10/2003 6.18 1.821 7/16/2003 1.792 10/14/2003 6.31 1.842 1/13/2004 6.24 1.831 Well Number: MW397 Date Collected LN(Result) Result 8/13/2002 5.84 1.765 9/30/2002 1.792 6 5.75 10/17/2002 1.749 1/13/2003 1.792 4/8/2003 6.3 1.841 7/16/2003 6.2 1.825 10/14/2003 1.850 6.36 1/13/2004 6.32 1.844

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)? Result <ll(1)?< th=""><th>LN(Result)</th><th>LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<></th></ll(1)?<>	LN(Result)	LN(Result) >TL(2)? LN(Result) <ll(2)?< th=""></ll(2)?<>
MW370	Downgradien	t Yes	6.12	NO	1.812	N/A
MW373	Downgradien	t Yes	6.19	NO	1.823	N/A
MW385	Sidegradient	Yes	6.51	NO	1.873	N/A
MW388	Downgradien	t Yes	6.18	NO	1.821	N/A
MW392	Downgradien	t Yes	6.24	NO	1.831	N/A
MW395	Upgradient	Yes	6.51	NO	1.873	N/A
MW397	Upgradient	Yes	6.06	NO	1.802	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Potassium UNITS: mg/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 1.590

S= 0.642 **CV(1)**=0.404

K factor=** 2.523

TL(1) = 3.208

LL(1)=N/A

Statistics-Transformed Background Data

X= -0.306 **S**= 2.457

CV(2) = -8.028

K factor=** 2.523

TL(2)= 5.892

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	2	0.693
9/16/2002	2	0.693
10/16/2002	0.00129	-6.653
1/13/2003	1.51	0.412
4/10/2003	1.67	0.513
7/16/2003	1.73	0.548
10/14/2003	1.7	0.531
1/13/2004	1.58	0.457
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 0.708
Date Collected	Result	` '
Date Collected 8/13/2002	Result 2.03	0.708
Date Collected 8/13/2002 9/16/2002	Result 2.03 2	0.708 0.693
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 2.03 2 0.00145	0.708 0.693 -6.536
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 2.03 2 0.00145 1.69	0.708 0.693 -6.536 0.525
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 2.03 2 0.00145 1.69 1.73	0.708 0.693 -6.536 0.525 0.548

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	2.46	NO	0.900	N/A
MW373	Downgradient	Yes	2.5	NO	0.916	N/A
MW385	Sidegradient	Yes	1.82	NO	0.599	N/A
MW388	Downgradient	Yes	2.24	NO	0.806	N/A
MW392	Downgradient	Yes	1.83	NO	0.604	N/A
MW395	Upgradient	Yes	1.5	NO	0.405	N/A
MW397	Upgradient	Yes	1.89	NO	0.637	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis Radium-226 UNITS: pCi/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.039

S = 0.419

CV(1) = 10.740

K factor=** 2.523

TL(1) = 1.096

LL(1)=N/A

Statistics-Transformed Background Data

X = -1.695 S = 1.043 CV(2) = -0.615

K factor**= 2.523

TL(2) = -0.414

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
10/16/2002	0.661	-0.414
1/13/2003	-0.839	#Func!
10/14/2003	0.0266	-3.627
1/13/2004	-0.0777	#Func!
4/12/2004	-0.115	#Func!
7/20/2004	0.105	-2.254
10/12/2004	0.408	-0.896
1/18/2005	0.0564	-2.875
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) -0.552
Date Collected	Result	` ′
Date Collected 10/17/2002	Result 0.576	-0.552
Date Collected 10/17/2002 1/13/2003	Result 0.576 -0.841	-0.552 #Func!
Date Collected 10/17/2002 1/13/2003 10/14/2003	Result 0.576 -0.841 -0.179	-0.552 #Func! #Func!
Date Collected 10/17/2002 1/13/2003 10/14/2003 1/13/2004	Result 0.576 -0.841 -0.179 -0.0564	-0.552 #Func! #Func! #Func!
Date Collected 10/17/2002 1/13/2003 10/14/2003 1/13/2004 4/12/2004	Result 0.576 -0.841 -0.179 -0.0564 0.174	-0.552 #Func! #Func! #Func! -1.749

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Quarter Data					
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2
MW370	Downgradient	Yes	1.01	N/A	0.010	YES
MW373	Downgradient	No	0.322	N/A	-1.133	N/A
MW385	Sidegradient	No	0.151	N/A	-1.890	N/A
MW388	Downgradient	Yes	1.07	N/A	0.068	YES
MW392	Downgradient	No	0.297	N/A	-1.214	N/A
MW395	Upgradient	No	0.592	N/A	-0.524	N/A
MW397	Upgradient	No	0.3	N/A	-1.204	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-83

C-746-S/T First Quarter 2018 Statistical Analysis **Sodium** UNITS: mg/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 29.560 S = 13.894 CV(1) = 0.470

K factor=** 2.523

TL(1)= 64.616

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.615 S = 2.411 CV(2) = 0.922

K factor**= 2.523

TL(2)= 8.699

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	27	3.296
9/16/2002	27.2	3.303
10/16/2002	0.0253	-3.677
1/13/2003	22.6	3.118
4/10/2003	53.9	3.987
7/16/2003	30	3.401
10/14/2003	29.1	3.371
1/13/2004	26.4	3.273
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.561
Date Collected	Result	,
Date Collected 8/13/2002	Result 35.2	3.561
Date Collected 8/13/2002 9/16/2002	Result 35.2 34.3	3.561 3.535
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 35.2 34.3 0.0336	3.561 3.535 -3.393
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 35.2 34.3 0.0336 31.3	3.561 3.535 -3.393 3.444
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 35.2 34.3 0.0336 31.3 46.1	3.561 3.535 -3.393 3.444 3.831

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter Data					
Well No.	Gradient 1	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	47.2	NO	3.854	N/A
MW373	Downgradient	Yes	49.8	NO	3.908	N/A
MW385	Sidegradient	Yes	30.5	NO	3.418	N/A
MW388	Downgradient	Yes	50.1	NO	3.914	N/A
MW392	Downgradient	Yes	33.1	NO	3.500	N/A
MW395	Upgradient	Yes	28.2	NO	3.339	N/A
MW397	Upgradient	Yes	34.1	NO	3.529	N/A

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TLUpper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-84

C-746-S/T First Quarter 2018 Statistical Analysis **Sulfate** UNITS: mg/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 10.756 S = 2.147

CV(1)=0.200

K factor=** 2.523

TL(1) = 16.173

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.356 S = 0.203

CV(2) = 0.086

K factor**= 2.523

TL(2) = 2.869

LL(2)=N/A

Historical Background Data from **Upgradient Wells with Transformed Result**

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	10.3	2.332
9/16/2002	9.1	2.208
10/16/2002	8.8	2.175
1/13/2003	9	2.197
4/10/2003	8.3	2.116
7/16/2003	8.2	2.104
10/14/2003	8.3	2.116
1/13/2004	8.2	2.104
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.639
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 14	2.639
Date Collected 8/13/2002 9/16/2002	Result 14 12.8	2.639 2.549
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 14 12.8 12.3	2.639 2.549 2.510
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 14 12.8 12.3 12.7	2.639 2.549 2.510 2.542
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 14 12.8 12.3 12.7 12.8	2.639 2.549 2.510 2.542 2.549

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	22.4	YES	3.109	N/A	
MW373	Downgradient	Yes	98.7	YES	4.592	N/A	
MW385	Sidegradient	Yes	18.6	YES	2.923	N/A	
MW388	Downgradient	Yes	25.2	YES	3.227	N/A	
MW392	Downgradient	Yes	8.01	NO	2.081	N/A	
MW395	Upgradient	Yes	10.4	NO	2.342	N/A	
MW397	Upgradient	Yes	11.4	NO	2.434	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW373

MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution. CV

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D1-85

C-746-S/T First Quarter 2018 Statistical Analysis H Technetium-99 UNITS: pCi/L

Historical Background Comparison I/L LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X= 11.359
 S= 9.138
 CV(1)=0.805 K factor**= 2.523
 TL(1)=34.414 LL(1)=N/A

 Statistics-Transformed Background
 X= 2.398
 S= 0.859
 CV(2)=0.358 K factor**= 2.523
 TL(2)=3.246 LL(2)=N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	20.8	3.035
9/16/2002	16.2	2.785
10/16/2002	8.28	2.114
1/13/2003	13	2.565
4/10/2003	-9.37	#Func!
7/16/2003	0.826	-0.191
10/14/2003	14.1	2.646
1/13/2004	0	#Func!
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.802
Date Collected	Result	` '
Date Collected 8/13/2002	Result 6.06	1.802
Date Collected 8/13/2002 9/16/2002	Result 6.06 17.3	1.802 2.851
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 6.06 17.3 25.7	1.802 2.851 3.246
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 6.06 17.3 25.7 20.9	1.802 2.851 3.246 3.040
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 6.06 17.3 25.7 20.9 20.1	1.802 2.851 3.246 3.040 3.001

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	73.9	YES	4.303	N/A	
MW373	Downgradient	No	24.8	N/A	3.211	N/A	
MW385	Sidegradient	Yes	86.8	YES	4.464	N/A	
MW388	Downgradient	Yes	96.7	YES	4.572	N/A	
MW392	Downgradient	No	4.72	N/A	1.552	N/A	
MW395	Upgradient	No	15.7	N/A	2.754	N/A	
MW397	Upgradient	No	13.2	N/A	2.580	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to historical background data.

Wells with Exceedances

MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Historical Background Comparison

Total Organic Carbon (TOC)

UNITS: mg/L

LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 1.544 S = 0.856 CV(1) = 0.554 K factor** = 2.523
 TL(1) = 3.702 LL(1) = N/A

 Statistics-Transformed Background
 X = 0.325 S = 0.452 CV(2) = 1.393 K factor** = 2.523
 TL(2) = 1.465 LL(2) = N/A

Data

Historical Background Data from Upgradient Wells with Transformed Result

Well Number: MW395 Date Collected Result LN(Result) 8/13/2002 0.470 1.6 9/16/2002 1.1 0.095 10/16/2002 1 0.000 1/13/2003 2 0.693 4/10/2003 1.224 3 4 7/16/2003 2 0.693 10/14/2003 1 0.000 1/13/2004 0.000 Well Number: MW397 Date Collected Result LN(Result) 8/13/2002 1 0.000 9/16/2002 1 0.000 10/17/2002 1 0.000 1/13/2003 3.6 1.281 1.9 4/8/2003 0.642 7/16/2003 1.1 0.095 10/14/2003 0.000 1/13/2004 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradien	t Yes	1.04	NO	0.039	N/A	
MW373	Downgradien	t Yes	1.11	NO	0.104	N/A	
MW385	Sidegradient	Yes	0.924	NO	-0.079	N/A	
MW388	Downgradien	t Yes	1.28	NO	0.247	N/A	
MW392	Downgradien	t Yes	1.1	NO	0.095	N/A	
MW395	Upgradient	Yes	0.962	NO	-0.039	N/A	
MW397	Upgradient	Yes	0.829	NO	-0.188	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis Total Organic Halides (TOX) UNITS: ug/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 31.513 **S**= 18.609 **CV(1)**=0.591

.591 **K factor****= 2.523

TL(1) = 78.462

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.240 **S**= 0.707

0.707 **CV(2)**=0.218

K factor=** 2.523

TL(2) = 5.024

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	50	3.912
9/16/2002	50	3.912
10/16/2002	50	3.912
1/13/2003	18.3	2.907
4/10/2003	51.2	3.936
7/16/2003	42.6	3.752
10/14/2003	12.3	2.510
1/13/2004	10	2.303
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 3.912
Date Collected	Result	` ,
Date Collected 8/13/2002	Result 50	3.912
Date Collected 8/13/2002 9/16/2002	Result 50 50	3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002	Result 50 50 50	3.912 3.912 3.912
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	Result 50 50 50 12	3.912 3.912 3.912 2.485
Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	Result 50 50 50 12 19.9	3.912 3.912 3.912 2.485 2.991

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)	
MW370	Downgradient	Yes	4.58	NO	1.522	N/A	
MW373	Downgradient	Yes	13.5	NO	2.603	N/A	
MW385	Sidegradient	Yes	7.38	NO	1.999	N/A	
MW388	Downgradient	Yes	28.8	NO	3.360	N/A	
MW392	Downgradient	Yes	18.3	NO	2.907	N/A	
MW395	Upgradient	Yes	8.94	NO	2.191	N/A	
MW397	Upgradient	No	10	N/A	2.303	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis Trichloroethene UNITS: ug/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 7.313

CV(1)=0.780

K factor=** 2.523

TL(1)= 21.695

LL(1)=N/A

Statistics-Transformed Background Data

X = 1.467

S= 1.213

S = 5.701

CV(2) = 0.827

K factor=** 2.523

TL(2) = 4.528

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	11	2.398
9/30/2002	14	2.639
10/16/2002	12	2.485
1/13/2003	14	2.639
4/10/2003	14	2.639
7/16/2003	13	2.565
10/14/2003	12	2.485
1/13/2004	11	2.398
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 1.609
Date Collected	Result	` ′
Date Collected 8/13/2002	Result 5	1.609
Date Collected 8/13/2002 9/30/2002	Result 5	1.609 1.609
Date Collected 8/13/2002 9/30/2002 10/17/2002	Result 5 5 1	1.609 1.609 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003	Result 5 5 1 1	1.609 1.609 0.000 0.000
Date Collected 8/13/2002 9/30/2002 10/17/2002 1/13/2003 4/8/2003	Result 5 5 1 1 1 1	1.609 1.609 0.000 0.000 0.000

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

	Current Quarter Data							
1	Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
	MW370	Downgradient	Yes	0.56	N/A	-0.580	N/A	
	MW373	Downgradient	Yes	6.26	NO	1.834	N/A	
	MW385	Sidegradient	Yes	0.48	N/A	-0.734	N/A	
	MW388	Downgradient	Yes	0.73	N/A	-0.315	N/A	
	MW392	Downgradient	Yes	16.6	NO	2.809	N/A	
	MW395	Upgradient	Yes	2.91	N/A	1.068	N/A	
	MW397	Upgradient	No	1	N/A	0.000	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis Zinc UNITS: mg/L

Historical Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is evidence of an exceedance of the statistically-derived historical background concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.044

S= 0.034 **CV(1)**=0.760

K factor**= 2.523

TL(1)= 0.129

LL(1)=N/A

Statistics-Transformed Background Data

X= -3.342 **S**= 0.659

CV(2) = -0.197

K factor=** 2.523

TL(2) = -1.679

LL(2)=N/A

Historical Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
8/13/2002	0.1	-2.303
9/16/2002	0.1	-2.303
10/16/2002	0.025	-3.689
1/13/2003	0.035	-3.352
4/10/2003	0.035	-3.352
7/16/2003	0.02	-3.912
10/14/2003	0.02	-3.912
1/13/2004	0.02	-3.912
1/13/2004	0.02	-3.912
Well Number:	0.02 MW397	-3.912
-,,,,,,,,,,	***	LN(Result)
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
Well Number: Date Collected 8/13/2002	MW397 Result 0.1	LN(Result) -2.303
Well Number: Date Collected 8/13/2002 9/16/2002	MW397 Result 0.1 0.1	LN(Result) -2.303 -2.303
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002	MW397 Result 0.1 0.1 0.025	LN(Result) -2.303 -2.303 -3.689
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003	MW397 Result 0.1 0.1 0.025 0.035	LN(Result) -2.303 -2.303 -3.689 -3.352
Well Number: Date Collected 8/13/2002 9/16/2002 10/17/2002 1/13/2003 4/8/2003	MW397 Result 0.1 0.1 0.025 0.035 0.035	LN(Result) -2.303 -2.303 -3.689 -3.352 -3.352

0.02

1/13/2004

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2	
MW370	Downgradient	No	0.01	N/A	-4.605	N/A	
MW373	Downgradient	No	0.01	N/A	-4.605	N/A	
MW385	Sidegradient	No	0.01	N/A	-4.605	N/A	
MW388	Downgradient	No	0.01	N/A	-4.605	N/A	
MW392	Downgradient	No	0.01	N/A	-4.605	N/A	
MW395	Upgradient	No	0.01	N/A	-4.605	N/A	
MW397	Upgradient	Yes	0.00337	7 NO	-5.693	N/A	

N/A - Results identified as Non-Detects during laboratory analysis or data validation and were not included in the statistical evaluation. Additionally for parameters that have MCLs, where the result for a well did not exceed the MCL value, that well was not included in the statistical evaluation.

Conclusion of Statistical Analysis on Historical Data

-3.912

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from historical background concentrations to a statistically-significant level.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

ATTACHMENT D2

COMPARISON OF CURRENT DATA TO ONE-SIDED UPPER TOLERANCE INTERVAL TEST CALCULATED USING CURRENT BACKGROUND DATA

C-746-S/T First Quarter 2018 Statistical Analysis Beta activity UNITS: pCi/L

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

 Statistics-Background Data
 X = 0.656 S = 1.689 CV(1) = 2.576 K factor**= 3.188
 TL(1) = 6.039 LL(1) = N/A

 Statistics-Transformed Background
 X = -0.472 S = 1.900 CV(2) = -4.024 K factor**= 3.188
 TL(2) = 1.061 LL(2) = N/A

Data

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
1/5/2016	1.53	0.425
4/18/2016	2.89	1.061
7/19/2016	-2.66	#Func!
10/12/2016	2.09	0.737
1/17/2017	0.0175	-4.046
4/20/2017	0.34	-1.079
7/19/2017	1.07	0.068
10/9/2017	-0.033	#Func!

Because CV(1) is greater than 1, the natural logarithm of background and test well results were calculated utilizing TL(2) for comparison.

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Current Quarter Data							
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)		
MW390	Downgradien	t Yes	57.7	N/A	4.055	YES		

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW390

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis **Oxidation-Reduction Potential UNITS: mV**

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 257.000 S = 73.280 CV(1) = 0.285

K factor=** 3.188

TL(1)= 490.618 **LL(1)**=N/A

Statistics-Transformed Background Data

X= 5.516 **S**= 0.273

CV(2)=0.049

K factor=** 3.188

TL(2) = 6.385

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
1/5/2016	223	5.407
4/18/2016	384	5.951
7/19/2016	339	5.826
10/12/2016	221	5.398
1/17/2017	209	5.342
4/20/2017	172	5.147
7/19/2017	291	5.673
10/9/2017	217	5.380

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW386	Sidegradient	Yes	142	NO	4.956	N/A
MW390	Downgradien	t Yes	353	NO	5.866	N/A
MW393	Downgradien	t Yes	266	NO	5.583	N/A
MW396	Upgradient	Yes	203	NO	5.313	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis Technetium-99 UNITS: pCi/L

Current Background Comparison UCRS

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = -2.765 S = 7.236

CV(1)=-2.617

K factor=** 3.188

TL(1) = 20.305

LL(1)=N/A

Statistics-Transformed Background Data

X= 1.169 **S**= 0.704

CV(2) = 0.602

K factor=** 3.188

TL(2)= 1.831

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW396	
Date Collected	Result	LN(Result)
1/5/2016	6.24	1.831
4/18/2016	-7.52	#Func!
7/19/2016	3.89	1.358
10/12/2016	-10.9	#Func!
1/17/2017	3.72	1.314
4/20/2017	-7.44	#Func!
7/19/2017	1.19	0.174
10/9/2017	-11.3	#Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) > TL(2)
MW390	Downgradient	Ves	82.8	VES	4.416	N/Δ

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW390

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Analysis Current Background Comparison UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Aluminum

X = 0.051

S = 0.033 C

CV(1)=0.652

K factor=** 2.523

TL(1)= 0.134

LL(1)=N/A

Statistics-Transformed Background Data

X = -3.111 S = 0.487 CV(2) = -0.156

K factor=** 2.523

TL(2) = -1.883

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
1/5/2016	0.05	-2.996
4/12/2016	0.05	-2.996
7/19/2016	0.05	-2.996
10/10/2016	0.036	-3.324
1/11/2017	0.0444	-3.115
4/19/2017	0.0372	-3.291
7/19/2017	0.05	-2.996
10/9/2017	0.0203	-3.897

10/9/2017	0.0203	-3.897
Well Number:	MW394	
Date Collected	Result	LN(Result)
1/5/2016	0.0363	-3.316
4/18/2016	0.0168	-4.086
7/19/2016	0.05	-2.996
10/12/2016	0.05	-2.996
1/17/2017	0.05	-2.996
4/20/2017	0.05	-2.996
7/19/2017	0.05	-2.996
10/9/2017	0.167	-1.790

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW222	Sidegradient	Yes	0.707	YES	-0.347	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW222

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis **Beta activity** UNITS: pCi/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

CV(1)=0.670 **Statistics-Background Data** X = 10.655 S = 7.141

K factor=** 2.523

TL(1)= 28.671

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.248S = 0.662 CV(2) = 0.294

K factor=** 2.523

TL(2) = 3.114

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
1/5/2016	18.1	2.896
4/12/2016	14.2	2.653
7/19/2016	6.61	1.889
10/10/2016	21.7	3.077
1/11/2017	13.6	2.610
4/19/2017	20.1	3.001
7/19/2017	22.5	3.114
10/9/2017	13.1	2.573

Well Number:	MW394	
Date Collected	Result	LN(Result)
1/5/2016	6.13	1.813
4/18/2016	7.54	2.020
7/19/2016	4.04	1.396
10/12/2016	2.51	0.920
1/17/2017	5.57	1.717
4/20/2017	9.09	2.207
7/19/2017	6.29	1.839
10/9/2017	-0.603	#Func!

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter	Data
-----------------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW384	Sidegradient	Yes	89.7	YES	4.496	N/A
MW387	Downgradient	Yes	201	YES	5.303	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW384 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

LL Lower Tolerance Limit, LL = X - (K * S)TL Upper Tolerance Limit, TL = X + (K * S),

Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Analysis Current Background Comparison UNITS: mg/L URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Calcium

X= 24.313 **S**= 3.847

CV(1)=0.158

K factor=** 2.523

TL(1)= 34.018

LL(1)=N/A

Statistics-Transformed Background Data

X= 3.179 **S**= 0.162

CV(2) = 0.051

K factor=** 2.523

utilizing TL(1).

TL(2) = 3.587

Because CV(1) is less than or equal to

1, assume normal distribution and

continue with statistical analysis

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 1/5/2016 19.3 2.960 4/12/2016 25.7 3.246 7/19/2016 2.970 19.5 10/10/2016 20.5 3.020 2.976 1/11/2017 19.6 4/19/2017 20.8 3.035 7/19/2017 22.7 3.122 2.991 10/9/2017 19.9

Current Quarter Data

Well No. Gradient Detected? Result Result >TL(1)? LN(Result) LN(Result) >TL(2)

MW372 Downgradient Yes 49.4 YES 3.900 N/A

Well Number:	MW394	
Date Collected	Result	LN(Result)
1/5/2016	27.7	3.321
4/18/2016	29.5	3.384
7/19/2016	28.8	3.360
10/12/2016	28.6	3.353
1/17/2017	26.7	3.285
4/20/2017	27.9	3.329
7/19/2017	26.1	3.262
10/9/2017	25.7	3.246

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW372

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-8

C-746-S/T First Quarter 2018 Statistical Analysis **Dissolved Solids** UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 220.313 S = 67.292 CV(1) = 0.305

K factor=** 2.523

TL(1)= 390.091

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.364S = 0.240CV(2) = 0.045 **K factor**=** 2.523

TL(2) = 5.970

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 1/5/2016 209 5.342 4/12/2016 273 5.609 7/19/2016 5.298 200 10/10/2016 187 1/11/2017 201 4/19/2017 193 7/19/2017 451 6.111

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

5.231	
5.303	
5.263	

4.990 10/9/2017 147

Current	Quarter	Data
	Z	

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	330	NO	5.799	N/A

Well Number:	MW394	
Date Collected	Result	LN(Result)
1/5/2016	226	5.421
4/18/2016	199	5.293
7/19/2016	231	5.442
10/12/2016	219	5.389
1/17/2017	213	5.361
4/20/2017	203	5.313
7/19/2017	203	5.313
10/9/2017	170	5.136

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

Current Background Comparison URGA

Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.309 **S**= 1.550 **CV(1)**=0.150

K factor**= 2.523

TL(1)= 14.221

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.322 S = 0.154 CV(2) = 0.067

K factor=** 2.523

TL(2) = 2.712

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 1/5/2016 8.44 2.133 4/12/2016 10.5 2.351 7/19/2016 7.99 2.078 10/10/2016 8.7 2.163 2.138 1/11/2017 8.48 4/19/2017 9.11 2.209 7/19/2017 2.236 9.36 10/9/2017 8.67 2.160

10/ // 2017	0.07	2.100
Well Number:	MW394	
Date Collected	Result	LN(Result)
1/5/2016	11.9	2.477
4/18/2016	11.9	2.477
7/19/2016	11.7	2.460
10/12/2016	12.1	2.493
1/17/2017	11.7	2.460
4/20/2017	11.6	2.451
7/19/2017	11.4	2.434
10/9/2017	11.4	2.434

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradien	t Yes	18.5	YES	2.918	N/A
MW387	Downgradien	t Yes	15.6	YES	2.747	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-10

C-746-S/T First Quarter 2018 Statistical Analysis Oxidation-Reduction Potential UNITS: mV

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 383.875 **S**= 56.604 **CV(1)**=0.147

K factor=** 2.523

TL(1)= 526.686 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.940 S = 0.150 CV(2) = 0.025

K factor=** 2.523

utilizing TL(1).

TL(2) = 6.319

Because CV(1) is less than or equal to

1, assume normal distribution and

continue with statistical analysis

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW220 Date Collected Result LN(Result) 1/5/2016 449 6.107 4/12/2016 6.082 438 7/19/2016 425 6.052 10/10/2016 414 6.026 6.033 1/11/2017 417 4/19/2017 283 5.645 7/19/2017 5.858 350 10/9/2017 436 6.078

Current Quarter Data

Well No. Gradient Detected? Result Result >TL(1)? LN(Result) LN(Result) >TL(2)

MW221 Sidegradient Yes 401 NO 5.994 N/A

Well Number:	MW394	
Date Collected	Result	LN(Result)
1/5/2016	351	5.861
4/18/2016	484	6.182
7/19/2016	348	5.852
10/12/2016	369	5.911
1/17/2017	397	5.984
4/20/2017	306	5.724
7/19/2017	338	5.823
10/9/2017	337	5.820

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)

^{**} Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-11

C-746-S/T First Quarter 2018 Statistical Analysis Radium-226 UNITS: pCi/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.511

CV(1)=0.631

K factor=** 2.523

TL(1)= 1.324

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.895 S = 0.769

S = 0.322

CV(2) = -0.860

K factor=** 2.523

utilizing TL(1).

TL(2)= 1.045

Because CV(1) is less than or equal to

1, assume normal distribution and

continue with statistical analysis

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 1/5/2016 0.745 -0.2944/12/2016 0.657 -0.4207/19/2016 -0.981 0.375 10/10/2016 0.140 1.15 -1.1781/11/2017 0.308 4/19/2017 0.178 -1.7267/19/2017 0.476 -0.74210/9/2017 0.212 -1.551

Current Quarter Data

Well No. Gradient Detected? Result Result >TL(1)? LN(Result) LN(Result) >TL(2)

MW372 Downgradient Yes 0.689 NO -0.373 N/A

Well Number:	MW394	
Date Collected	Result	LN(Result)
1/5/2016	1.19	0.174
4/18/2016	0.757	-0.278
7/19/2016	0.405	-0.904
10/12/2016	0.419	-0.870
1/17/2017	0.518	-0.658
4/20/2017	0.0524	-2.949
7/19/2017	0.462	-0.772
10/9/2017	0.271	-1.306

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-12

C-746-S/T First Quarter 2018 Statistical Analysis Sulfate UNITS: mg/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 14.771 **S**= 4.793

CV(1)=0.324

K factor=** 2.523

TL(1) = 26.864

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.643 **S**= 0.325

CV(2)=0.123

K factor=** 2.523

TL(2)= 3.464

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW220 Well Number: Date Collected Result LN(Result) 1/5/2016 16.5 2.803 4/12/2016 3.082 21.8 7/19/2016 17.9 2.885 10/10/2016 18.7 2.929 2.912 1/11/2017 18.4 4/19/2017 19.9 2.991 7/19/2017 3.122 22.7

10/9/2017	17.6	2.868
Well Number:	MW394	
Date Collected	Result	LN(Result)
1/5/2016	10.1	2.313
4/18/2016	9.84	2.286
7/19/2016	10.5	2.351
10/12/2016	10.4	2.342
1/17/2017	10.8	2.380
4/20/2017	10.5	2.351
7/19/2017	10.2	2.322
10/9/2017	10.5	2.351

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW372	Downgradient	Yes	75.2	YES	4.320	N/A
MW384	Sidegradient	Yes	21.4	NO	3.063	N/A
MW387	Downgradient	Yes	33.3	YES	3.506	N/A
MW391	Downgradient	Yes	46.1	YES	3.831	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW372 MW387

MW391

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-13

C-746-S/T First Quarter 2018 Statistical Analysis Technetium-99 UNITS: pCi/L

Current Background Comparison URGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 13.471 **S**= 7.966

CV(1)=0.591

K factor=** 2.523

TL(1) = 33.570

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.382

S = 0.751 CV(2) = 0.315

K factor=** 2.523

TL(2) = 4.277

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW220	
Date Collected	Result	LN(Result)
1/5/2016	18.4	2.912
4/12/2016	13	2.565
7/19/2016	28.9	3.364
10/10/2016	12.3	2.510
1/11/2017	23.2	3.144
4/19/2017	20.7	3.030
7/19/2017	22.7	3.122

10/9/2017	18.3	2.907
Well Number:	MW394	
Date Collected	Result	LN(Result)
1/5/2016	4.07	1.404
4/18/2016	15	2.708
7/19/2016	5.87	1.770
10/12/2016	4.39	1.479
1/17/2017	7.79	2.053
4/20/2017	7.82	2.057
7/19/2017	11.1	2.407
10/9/2017	1.99	0.688

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW369	Downgradient	Yes	38.8	YES	3.658	N/A
MW384	Sidegradient	Yes	139	YES	4.934	N/A
MW387	Downgradient	Yes	306	YES	5.724	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW369 MW384

MW387

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis Beta activity UNITS: pCi/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data X = 7.656 S = 4.296 CV(1) = 0.561 K factor**= 2.523 TL(1) = 18.495 LL(1) = N/A Statistics-Transformed Background X = 2.032 S = 0.423 CV(2) = 0.208 K factor**= 2.523 TL(2) = 2.845 LL(2) = N/A Data

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
1/5/2016	17.2	2.845
4/18/2016	6.43	1.861
7/19/2016	-1.87	#Func!
10/12/2016	3.62	1.286
1/17/2017	5.31	1.670
4/20/2017	7.61	2.029
7/19/2017	5.16	1.641
10/9/2017	8.17	2.100
Well Number:	MW397	
Well Number: Date Collected	MW397 Result	LN(Result)
		LN(Result) 2.250
Date Collected	Result	,
Date Collected 1/5/2016	Result 9.49	2.250
Date Collected 1/5/2016 4/14/2016	Result 9.49 10.2	2.250 2.322
Date Collected 1/5/2016 4/14/2016 7/19/2016	Result 9.49 10.2 7.53	2.250 2.322 2.019
Date Collected 1/5/2016 4/14/2016 7/19/2016 10/11/2016	Result 9.49 10.2 7.53 5.73	2.250 2.322 2.019 1.746
Date Collected 1/5/2016 4/14/2016 7/19/2016 10/11/2016 1/11/2017	Result 9.49 10.2 7.53 5.73 4.42	2.250 2.322 2.019 1.746 1.486

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current Quarter Data						
Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	71.9	YES	4.275	N/A
MW385	Sidegradient	Yes	50.6	YES	3.924	N/A
MW388	Downgradient	Yes	52.8	YES	3.967	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-15

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Calcium

X= 23.713 **S**= 5.150

CV(1)=0.217

UNITS: mg/L

K factor=** 2.523

TL(1) = 36.707

Because CV(1) is less than or equal to

LL(1)=N/A

Statistics-Transformed Background Data

X = 3.144 S = 0.216 CV(2) = 0.069

K factor=** 2.523

2.523 **TL(2)**= 3.689

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW395 Well Number: Date Collected Result LN(Result) 1/5/2016 27.4 3.311 4/18/2016 27.6 3.318 7/19/2016 3.270 26.3 10/12/2016 27.2 3.303 3.254 1/17/2017 25.9 4/20/2017 28.2 3.339 7/19/2017 3.266 26.2 10/9/2017 25.3 3.231

1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Doto
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	Yes	60.3	YES	4.099	N/A

Well Number:	MW397	
Date Collected	Result	LN(Result)
1/5/2016	19.2	2.955
4/14/2016	18.1	2.896
7/19/2016	35.1	3.558
10/11/2016	19.3	2.960
1/11/2017	19.5	2.970
4/20/2017	18.2	2.901
7/19/2017	17.2	2.845
10/9/2017	18.7	2.929

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW373

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-16

Analysis Current Background Comparison UNITS: umho/cm LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

Conductivity

X= 360.875 **S**= 32.672 **CV(1)**= 0.091

K factor=** 2.523

TL(1)= 443.306 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.885 S = 0.091 CV(2) = 0.015

K factor=** 2.523

TL(2) = 6.114

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW395 Well Number: Date Collected Result LN(Result) 1/5/2016 408 6.011 4/18/2016 5.989 399 7/19/2016 5.976 394 10/12/2016 377 5.932 5.956 1/17/2017 386 4/20/2017 392 5.971 7/19/2017 392 5.971 10/9/2017 378 5.935

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Ouarter Da	to

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradient	Yes	730	YES	6.593	N/A

Well Number:	MW397	
Date Collected	Result	LN(Result)
1/5/2016	353	5.866
4/14/2016	323	5.778
7/19/2016	333	5.808
10/11/2016	334	5.811
1/11/2017	337	5.820
4/20/2017	320	5.768
7/19/2017	315	5.753
10/9/2017	333	5.808

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW373

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-17

C-746-S/T First Quarter 2018 Statistical Analysis **Dissolved Solids**

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

UNITS: mg/L

Statistics-Background Data

X = 192.875 S = 25.487 CV(1) = 0.132

K factor=** 2.523

TL(1)= 257.179

LL(1)=N/A

Statistics-Transformed Background Data

X = 5.254S = 0.133CV(2) = 0.025 **K factor**=** 2.523

TL(2) = 5.590

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW395 Well Number: Date Collected Result LN(Result) 1/5/2016 229 5.434 4/18/2016 5.412 224 7/19/2016 219 5.389 10/12/2016 5.366 2.14 5.407 1/17/2017 223 4/20/2017 204 5.318 7/19/2017 210 5.347 10/9/2017 5.094 163

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Onortor	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) > TL(2)
MW373	Downgradient	Yes	376	YES	5 930	N/A

Well Number:	MW397	
Date Collected	Result	LN(Result)
1/5/2016	204	5.318
4/14/2016	167	5.118
7/19/2016	169	5.130
10/11/2016	166	5.112
1/11/2017	187	5.231
4/20/2017	180	5.193
7/19/2017	171	5.142
10/9/2017	156	5.050

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

MW373

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)
- Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis

Current Background Comparison

Magnesium UNITS: mg/L

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.201 **S**= 2.194

CV(1) = 0.215

K factor=** 2.523

TL(1) = 15.736

LRGA

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.301

S = 0.213 **C**

CV(2)=0.093

K factor=** 2.523

TL(2)= 2.839

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
1/5/2016	11.8	2.468
4/18/2016	11.5	2.442
7/19/2016	11.1	2.407
10/12/2016	12	2.485
1/17/2017	11.4	2.434
4/20/2017	11.6	2.451
7/19/2017	10.9	2.389
10/9/2017	11.4	2.434

	10/9/2017	11.4	2.434
Well Number:		MW397	
	Date Collected	Result	LN(Result)
	1/5/2016	8.18	2.102
	4/14/2016	7.72	2.044
	7/19/2016	15.2	2.721
	10/11/2016	8.26	2.111
	1/11/2017	8.54	2.145
	4/20/2017	7.83	2.058
	7/19/2017	7.37	1.997
	10/9/2017	8.41	2.129

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
Current	Quarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW373	Downgradien	t Yes	24.3	YES	3.190	N/A

Conclusion of Statistical Analysis on Current Data

Wells with Exceedances

MW373

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill

- CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- S Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X (K * S)
- X Mean, X = (sum of background results)/(count of background results)
- ** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-19

C-746-S/T First Quarter 2018 Statistical Analysis **Oxidation-Reduction Potential UNITS: mV**

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 376.563 S = 86.870 CV(1) = 0.231

K factor=** 2.523

TL(1)= 595.735 **LL(1)**=N/A

Statistics-Transformed Background Data

X = 5.904S = 0.247CV(2)=0.042 **K factor**=** 2.523

TL(2) = 6.526

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW395 Well Number: Date Collected Result LN(Result) 1/5/2016 380 5.940 4/18/2016 325 5.784 7/19/2016 428 6.059 10/12/2016 5.878 357 5.700 1/17/2017 299 4/20/2017 190 5.247 7/19/2017 392 5.971

111212011	U / =	0.,,,
10/9/2017	385	5.953
Well Number:	MW397	
Date Collected	Result	LN(Result)
1/5/2016	473	6.159
4/14/2016	586	6.373
7/19/2016	420	6.040
10/11/2016	378	5.935
1/11/2017	416	6.031
4/20/2017	282	5.642
7/19/2017	352	5.864
10/9/2017	362	5.892

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Ouarter	Data

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	334	NO	5.811	N/A
MW373	Downgradient	Yes	393	NO	5.974	N/A
MW388	Downgradient	Yes	341	NO	5.832	N/A
MW392	Downgradient	Yes	292	NO	5.677	N/A
MW397	Upgradient	Yes	361	NO	5.889	N/A

Conclusion of Statistical Analysis on Current Data

None of the test wells exceeded the Upper Tolerance Limit, which is evidence that concentrations in these wells are not different from current background concentrations to a statistically-significant level.

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from

- Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.
- Standard Deviation, S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5
- LL Lower Tolerance Limit, LL = X (K * S)TL Upper Tolerance Limit, TL = X + (K * S),
- Mean, X = (sum of background results)/(count of background results)

Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009.

C-746-S/T First Quarter 2018 Statistical Analysis Radium-226 UNITS: pCi/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X = 0.418

CV(1)=0.553

K factor=** 2.523

TL(1)= 1.001

LL(1)=N/A

Statistics-Transformed Background Data

X = -0.930 S = 0.578

S = 0.231

CV(2) = -0.622

K factor=** 2.523

TL(2) = -0.290

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number:	MW395	
Date Collected	Result	LN(Result)
1/5/2016	0.707	-0.347
4/18/2016	0.13	-2.040
7/19/2016	0.654	-0.425
10/12/2016	0.669	-0.402
1/17/2017	0.347	-1.058
4/20/2017	0.198	-1.619
7/19/2017	0.437	-0.828
10/9/2017	0.345	-1.064

10/ // 2017	0.545	1.004
Well Number:	MW397	
Date Collected	Result	LN(Result)
1/5/2016	0.748	-0.290
4/14/2016	-0.0439	#Func!
7/19/2016	0.464	-0.768
10/11/2016	0.575	-0.553
1/11/2017	0.374	-0.983
4/20/2017	0.41	-0.892
7/19/2017	0.555	-0.589
10/9/2017	0.123	-2.096

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

#Because the natural log was not possbile for all background values, the TL was considered equal to the maximum background value.

Current	Ouarter	Data

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	1.01	YES	0.010	N/A
MW388	Downgradient	Yes	1.07	YES	0.068	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-21

C-746-S/T First Quarter 2018 Statistical Analysis Sulfate UNITS: mg/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 10.346 **S**= 0.660 **CV(1)**= 0.064

K factor=** 2.523

TL(1)= 12.012

LL(1)=N/A

Statistics-Transformed Background Data

X= 2.335 **S**= 0.063

CV(2)=0.027

K factor=** 2.523

TL(2)= 2.493

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

Well Number: MW395

Date Collected Result LN(Result)

1/5/2016 9.84 2.286 4/18/2016 2.275 9.73 7/19/2016 2.293 9.9 10/12/2016 9.86 2.288 2.313 1/17/2017 10.1 4/20/2017 10.4 2.342 7/19/2017 10 2.303

10/9/2017	10.1	2.313
Well Number:	MW397	
Date Collected	Result	LN(Result)
1/5/2016	11.2	2.416
4/14/2016	9.61	2.263
7/19/2016	11	2.398
10/11/2016	11.3	2.425
1/11/2017	11.6	2.451
4/20/2017	9.7	2.272
7/19/2017	10.1	2.313
10/9/2017	11.1	2.407

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current Quarter Data

Well No.	Gradient	Detected?	Result	Result $>$ TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	t Yes	22.4	YES	3.109	N/A
MW373	Downgradient	t Yes	98.7	YES	4.592	N/A
MW385	Sidegradient	Yes	18.6	YES	2.923	N/A
MW388	Downgradient	t Yes	25.2	YES	3.227	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW373 MW385

MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill.

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-22

C-746-S/T First Quarter 2018 Statistical Analysis Technetium-99 UNITS: pCi/L

Current Background Comparison LRGA

The CV is calculated to determine if background data are normally distributed. If so, the current test well results are compared to the TL. If not, a transformation is performed on the background and test well results, then each transformed test well result is compared to the transformed TL. If the test well result exceeds the TL, that is statistically significant evidence of elevated concentration in that well. For pH only, the current test well results are compared to the TL and LL. If the test well result for pH exceeds the TL or is less than the LL, that is statistically significant evidence of elevated or lowered concentration in that well.

Statistics-Background Data

X= 11.813 **S**= 6.732

CV(1)=0.570

K factor=** 2.523

TL(1)= 28.797

LL(1)=N/A

Statistics-Transformed Background Data

X = 2.301

S= 0.645 **CV(2)**=0.280

K factor=** 2.523

TL(2) = 3.927

LL(2)=N/A

Current Background Data from Upgradient Wells with Transformed Result

MW395 Well Number: Date Collected Result LN(Result) 1/5/2016 5.69 1.739 4/18/2016 8.36 2.123 7/19/2016 2.580 13.2 10/12/2016 0.765 2.15 2.434 1/17/2017 11.4 4/20/2017 9.95 2.298 7/19/2017 2.955 19.2

10/9/2017	3.67	1.300
Well Number:	MW397	
Date Collected	Result	LN(Result)
1/5/2016	17.4	2.856
4/14/2016	7.44	2.007
7/19/2016	14.9	2.701
10/11/2016	9.1	2.208
1/11/2017	8.85	2.180
4/20/2017	14.9	2.701
7/19/2017	29.8	3.395
10/9/2017	13	2.565

Because CV(1) is less than or equal to 1, assume normal distribution and continue with statistical analysis utilizing TL(1).

Current	Quarter	Data
---------	---------	------

Well No.	Gradient	Detected?	Result	Result >TL(1)?	LN(Result)	LN(Result) >TL(2)
MW370	Downgradient	Yes	73.9	YES	4.303	N/A
MW385	Sidegradient	Yes	86.8	YES	4.464	N/A
MW388	Downgradient	Yes	96.7	YES	4.572	N/A

Conclusion of Statistical Analysis on Current Data

The test well(s) listed exceeded the Upper Tolerance Limit, which is evidence of elevated concentration with respect to current background data.

Wells with Exceedances

MW370 MW385 MW388

NOTE: For UCRS wells, background ("upgradient") wells are those located in the same direction as RGA wells located upgradient from the landfill

CV Coefficient-of-Variation, CV = S/X If CV is less than or equal to 1 assume normal distribution.

S Standard Deviation, $S = [Sum ([(background result-X)^2]/[count of background results -1])]^0.5$

TL Upper Tolerance Limit, TL = X + (K * S), LL Lower Tolerance Limit, LL = X - (K * S)

X Mean, X = (sum of background results)/(count of background results)

** Read from Table 5, Appendix B of Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, Interim Guidance, EPA, 1989, based on total number of background results - The K-factor for pH to account for a two-sided tolerance interval instead of a one-sided tolerance limit. The K-factor for pH was computed using a formula from NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/,2009. D2-23

ATTACHMENT D3 STATISTICIAN QUALIFICATION STATEMENT

180A Market Place Boulevard Knoxville, TN 37922 PH 865.330.0037 www.geosyntec.com

19 April 2018

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5501 Hobbs Road Kevil, KY 42053

Subject: First Quarter 2018 Statistical Analysis for the C-746-S&T and C-746-U Landfills

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed statistical analysis I performed on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As an environmental microbiologist, with a Ph.D. in Engineering Science, I have over 10 years of experience reviewing and analyzing geochemical results associated with environmental sampling and investigation activities. For this project, statistical analysis was performed on historical background and current background data using a coded database provided by FRNP, LLC. Additionally, Mann-Kendall trend tests were conducted using XL Stat, a publicly available and widely used commercial product. In the production of the Mann-Kendall Results, XL Stat provides values for alpha, p-value, the Mann-Kendall Statistic (S), variance of S, Sen's slope, and Kendall's correction. For the generation of the Historical Background Comparison Report, Current Background Comparison Report, and the Mann-Kendall statistical analyses, my work was observed and reviewed by a Senior Hydrogeologist with Geosyntec Consultants.

Statistical analyses conducted on the first quarter 2018 monitoring well data collected from the C-746-S&T and C-746-U Landfills were performed in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Andrea Rocha, Ph.D. Senior Staff Scientist

Andre Roche

180A Market Place Boulevard Knoxville, TN 37922 PH 865.330.0037 www.geosyntec.com

19 April 2018

Ms. Kelly Layne Four Rivers Nuclear Partnership, LLC 5501 Hobbs Road Kevil, KY 42053

Subject: First Quarter 2018 Statistical Analysis for the C-746-S&T and C-746-U Landfills

Dear Ms. Layne:

This statement is submitted in response to your request that it be included with the completed statistical analysis that I checked and on the groundwater data for the C-746-S&T and C-746-U Landfills at the Paducah Gaseous Diffusion Plant.

As an environmental scientist, with a Ph.D. in hydrogeology, I have over 11 years of experience reviewing and analyzing environmental chemistry data associated with environmental sampling, investigation, and remediation activities. For the generation of the Historical Background Comparison Report, Current Background Comparison Report, and the Mann-Kendall statistical analyses, I have experience with the method and other parametric and nonparametric statistical methods to a level of expertise that allows me to provide peer and senior review of the analysis.

For this project, the statistical analyses conducted on the first quarter 2018 monitoring well data collected from the C-746-S&T and C-746-U Landfills were in accordance with guidance provided in the U.S. Environmental Protection Agency guidance document, *EPA Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Interim Final Guidance* (1989).

Sincerely,

Dawit Yifru, Ph.D., P.G. Senior Hydrogeologist

Dawif D. Yifon

APPENDIX E GROUNDWATER FLOW RATE AND DIRECTION

RESIDENTIAL/INERT—QUARTERLY, 1st CY 2018 Facility: U.S. DOE—Paducah Gaseous Diffusion Plant

Permit Numbers: SW07300014, SW07300015, SW07300045

Finds/Unit: <u>KY8-890-008-982/1</u>

LAB ID: None

For Official Use Only

GROUNDWATER FLOW RATE AND DIRECTION

Whenever monitoring wells (MWs) are sampled, 401 KAR 48:300, Section 11, requires determination of groundwater flow rate and direction of flow in the uppermost aquifer. The uppermost aquifer below the C-746-S&T Landfills is the Regional Gravel Aquifer (RGA). Water level measurements currently are recorded in several wells at the landfill on a quarterly basis. These measurements were used to plot the potentiometric surface of the RGA for the first quarter 2018 and to determine the groundwater flow rate and direction.

Water levels during this reporting period were measured on January 29, 2018. As shown on Figure E.1, MW389, screened in the Upper Continental Recharge System (UCRS), is usually dry, while other UCRS wells have recordable water levels. During this reporting period, MW389 had insufficient water for both measurement of the water level and for sampling.

The UCRS has a strong vertical hydraulic gradient; therefore, the limited number of available UCRS wells, screened over different elevations, is not sufficient for mapping the potentiometric surface. Figure E.1 shows the location of UCRS MWs. The Upper Regional Gravel Aquifer (URGA) and Lower Regional Gravel Aquifer (LRGA) data were corrected for barometric pressure, if necessary, and converted to elevations to plot the potentiometric surface of the RGA, as a whole, as shown on Table E.1. Figure E.2 is a composite or average map of the URGA and LRGA elevations where well clusters exist. The contour lines are placed based on the average water level elevations of the clusters. Based on the site potentiometric map (Figure E.2), the hydraulic gradient beneath the landfill, as measured along the defined groundwater flow directions, is 3.18×10^{-4} feet (ft)/ft. Additional water level measurements in January (Figure E.3) document the vicinity groundwater hydraulic gradient for the RGA to be 4.19×10^{-4} ft/ft. The hydraulic gradients are shown in Table E.2.

The average linear groundwater flow velocity (v) is determined by multiplying the hydraulic gradient (i) by the hydraulic conductivity (K) [resulting in the specific discharge (q)] and dividing by the effective porosity (n_e). The RGA hydraulic conductivity values used are reported in the Administrative Application for the New Solid Waste Landfill Permit No. 073-00045NWC1 and range from 425 to 725 ft/day (0.150 to 0.256 cm/s). RGA effective porosity is assumed to be 25%. Vicinity and site flow velocities were calculated using the low and high values for hydraulic conductivity, as shown in Table E.3.

Regional groundwater flow near the C-746-S&T Landfills typically trends northeastward toward the Ohio River. As demonstrated on the potentiometric map for January 2018, the groundwater flow direction in the immediate area of the landfill was oriented primarily northeastward.

_

¹ Additional water level measurements, in wells at the C-746-U Landfill and in wells of the surrounding region (MW98, MW100, MW125, MW139, MW165A, MW173, MW193, MW197, and MW200), were used to contour the RGA potentiometric surface.

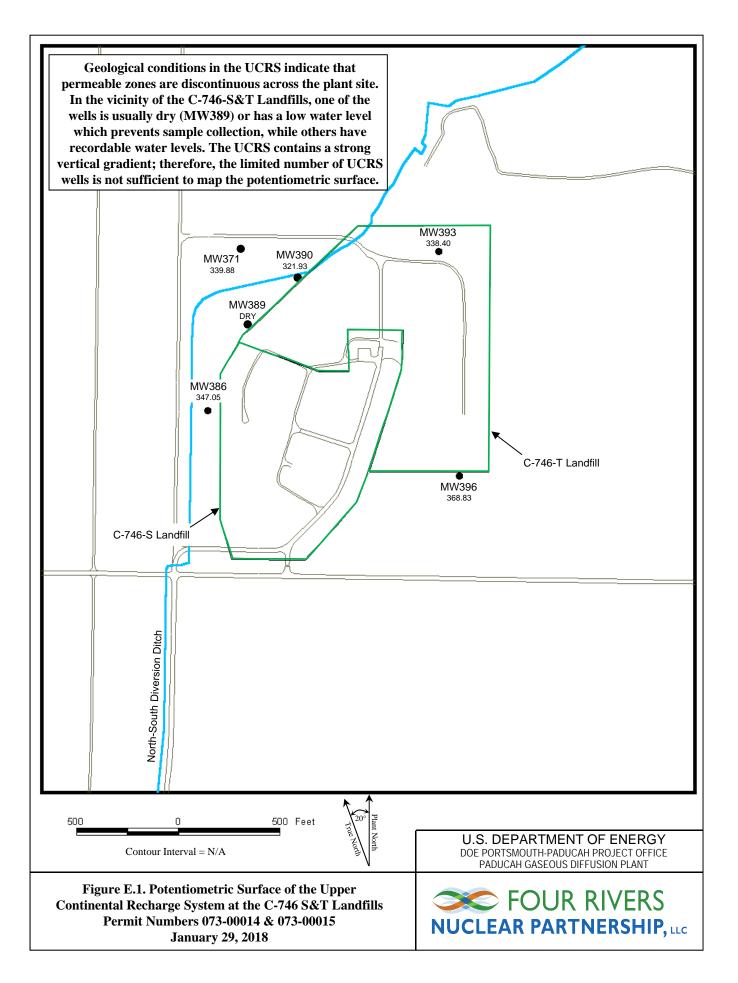
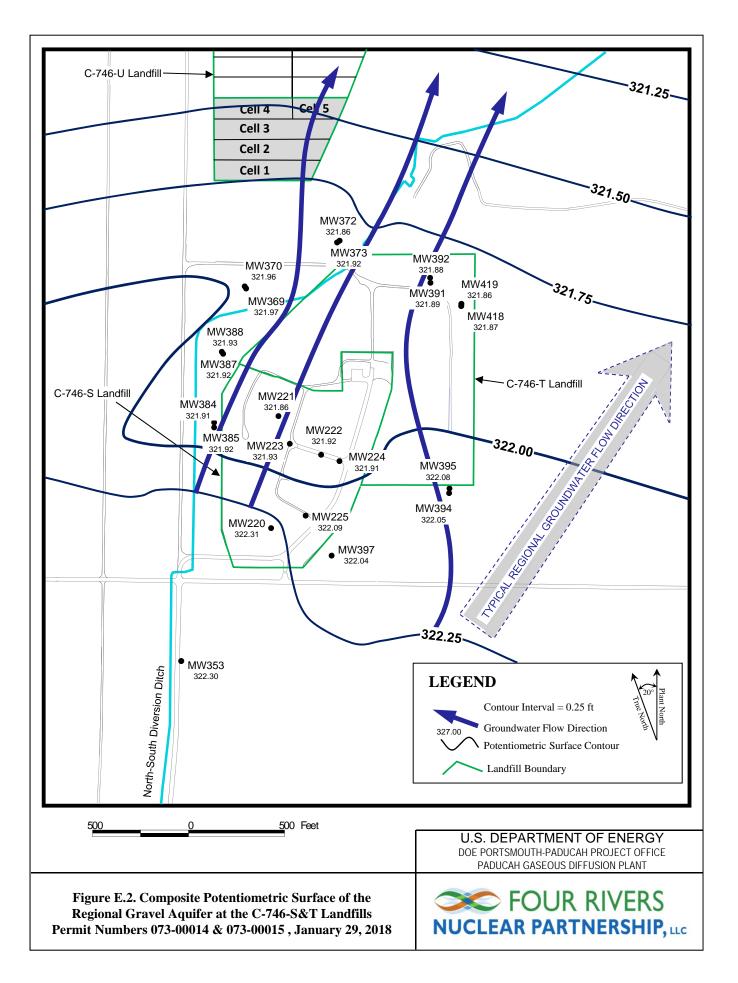


Table E.1. C-746-S&T Landfills First Quarter 2018 (January) Water Levels

			C-746-S&	T Landfills (Jan	uary 2018)	Water Leve	ls			
							Rav	w Data	*Corre	ected Data
Date	Time	Well	Formation	Datum Elev	BP	Delta BP	DTW	Elev	DTW	Elev
				(ft amsl)	(in Hg)	(ft H20)	(ft)	(ft amsl)	(ft)	(ft amsl)
1/29/2018	10:33	MW220	URGA	382.27	30.39	0.00	59.96	322.31	59.96	322.31
1/29/2018	10:43	MW221	URGA	391.51	30.39	0.00	69.65	321.86	69.65	321.86
1/29/2018	10:39	MW222	URGA	395.39	30.39	0.00	73.47	321.92	73.47	321.92
1/29/2018	10:41	MW223	URGA	394.49	30.39	0.00	72.56	321.93	72.56	321.93
1/29/2018	10:37	MW224	URGA	395.82	30.39	0.00	73.91	321.91	73.91	321.91
1/29/2018	10:35	MW225	URGA	385.88	30.39	0.00	63.79	322.09	63.79	322.09
1/29/2018	10:50	MW353	LRGA	375.12	30.39	0.00	52.82	322.30	52.82	322.30
1/29/2018	10:29	MW384	URGA	365.42	30.39	0.00	43.51	321.91	43.51	321.91
1/29/2018	10:30	MW385	LRGA	365.86	30.39	0.00	43.94	321.92	43.94	321.92
1/29/2018	10:31	MW386	UCRS	365.47	30.39	0.00	18.42	347.05	18.42	347.05
1/29/2018	10:26	MW387	URGA	363.65	30.39	0.00	41.73	321.92	41.73	321.92
1/29/2018	10:27	MW388	LRGA	363.64	30.39	0.00	41.71	321.93	41.71	321.93
1/29/2018		MW389	UCRS	364.26	NA		NA		DRY	
1/29/2018	10:24	MW390	UCRS	360.60	30.39	0.00	38.67	321.93	38.67	321.93
1/29/2018	10:11	MW391	URGA	366.83	30.39	0.00	44.94	321.89	44.94	321.89
1/29/2018	10:12	MW392	LRGA	366.07	30.39	0.00	44.19	321.88	44.19	321.88
1/29/2018	10:13	MW393	UCRS	366.81	30.39	0.00	28.41	338.40	28.41	338.40
1/29/2018	10:18	MW394	URGA	378.64	30.39	0.00	56.59	322.05	56.59	322.05
1/29/2018	10:19	MW395	LRGA	379.34	30.39	0.00	57.26	322.08	57.26	322.08
1/29/2018	10:20	MW396	UCRS	378.84	30.39	0.00	10.01	368.83	10.01	368.83
1/29/2018	10:22	MW397	LRGA	387.12	30.39	0.00	65.08	322.04	65.08	322.04
1/29/2018	10:15	MW418	URGA	367.37	30.39	0.00	45.50	321.87	45.50	321.87
1/29/2018	10:16	MW419	LRGA	367.22	30.39	0.00	45.36	321.86	45.36	321.86
Initial Baror	netric Pr	essure	30.39							_

Elev = elevation

amsl = above mean sea level


BP = barometric pressure

DTW = depth to water in feet below datum

URGA = Upper Regional Gravel Aquifer

LRGA = Lower Regional Gravel Aquifer UCRS = Upper Continental Recharge System NA = not available

*Assumes a barometric efficiency of 1.0

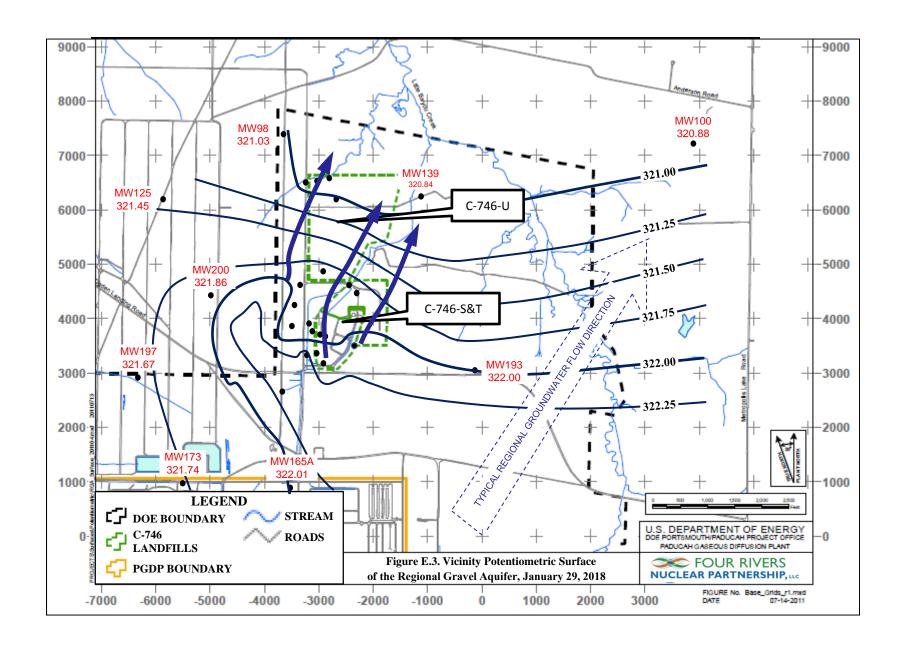


Table E.2. C-746-S&T Landfills Hydraulic Gradients

	ft/ft
Beneath Landfill Mound	3.18×10^{-4}
Vicinity	4.19×10^{-4}

Table E.3. C-746-S&T Landfills Groundwater Flow Rate

Hydraulic Co	Hydraulic Conductivity (K)		Discharge (q)	Average Linear Velocity (v)						
ft/day	cm/s	ft/day	cm/s	ft/day	cm/s					
Beneath Landfill	neath Landfill Mound									
725	0.256	0.231	8.15×10^{-5}	0.924	3.26×10^{-4}					
425	0.150	0.135	4.78×10^{-5}	0.541	1.91×10^{-4}					
<u>Vicinity</u>										
725	0.256	0.304	1.07×10^{-4}	1.22	4.29×10^{-4}					
425	0.150	0.178	6.29×10^{-5}	0.712	2.51×10^{-4}					

APPENDIX F NOTIFICATIONS

NOTIFICATIONS

In accordance with 401 KAR 48:300 § 7, the notification for parameters that exceed the maximum contaminant level (MCL) has been submitted to the Kentucky Division of Waste Management. The parameters are listed on the page F-4. The notification for parameters that do not have MCLs but had statistically significant increased concentrations relative to historical background concentrations is provided below.

STATISTICAL ANALYSIS OF PARAMETERS NOTIFICATION

The statistical analyses conducted on the first quarter 2018 groundwater data collected from the C-746-S&T Landfills monitoring wells were performed in accordance with *Groundwater Monitoring Plan for the Solid Waste Permitted Landfills (C-746-S Residential Landfill, C-746-T Inert Landfill, and C-746-U Contained Landfill) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky* (LATA Kentucky 2014).

The following are the permit required parameters in 40 CFR § 302.4, Appendix A, which had statistically significant increased concentrations relative to historical background concentrations.

	<u>Parameter</u>	Monitoring Well
Upper Continental Recharge System	Technetium-99	MW390
Upper Regional Gravel Aquifer	Technetium-99	MW369, MW384, MW387
Lower Regional Gravel Aquifer	Technetium-99	MW370, MW385, MW388

NOTE: Although technetium-99 is not cited in 40 *CFR* § 302.4, Appendix A, this radionuclide is being reported along with the parameters of this regulation.

2/26/2018

Four Rivers Nuclear Partnership, LLC PROJECT ENVIRONMENTAL MEASUREMENTS SYSTEM C-746-S&T LANDFILLS SOLID WASTE PERMIT NUMBER SW07300014 and SW07300015 MAXIMUM CONTAMINANT LEVEL (MCL) EXCEEDANCE REPORT Quarterly Groundwater Sampling

AKGWA	Station	Analysis	Method	Results	Units	MCL
8004-4818	3 MW370	Beta activity	9310	71.9	pCi/L	50
8004-4808	3 MW372	Trichloroethene	8260B	5.43	ug/L	5
8004-4792	2 MW373	Trichloroethene Trichloroethene	8260B 8260B	6.26 6.21	ug/L ug/L	5 5
8004-4809	9 MW384	Beta activity Beta activity	9310 9310	89.7 76.5	pCi/L pCi/L	50 50
8004-4810) MW385	Beta activity	9310	50.6	pCi/L	50
8004-4815	5 MW387	Beta activity	9310	201	pCi/L	50
8004-4816	6 MW388	Beta activity	9310	52.8	pCi/L	50
8004-4811	1 MW390	Beta activity	9310	57.7	pCi/L	50
8004-4805	5 MW391	Trichloroethene	8260B	11.9	ug/L	5
8004-4806	6 MW392	Trichloroethene	8260B	16.6	ug/L	5
8004-4802	2 MW394	Trichloroethene	8260B	6.47	ug/L	5

NOTE 1: MCLs are defined in 401 KAR 47:030.

NOTE 2: MW369, MW370, MW372, and MW373 are down-gradient wells for the C-746-S and C-746-T Landfills and upgradient for the C-746-U Landfill. These wells are sampled with the C-746-U Landfill monitoring well network. These wells are reported on the exceedance reports for C-746-S, C-746-T, and C-746-U.

APPENDIX G CHART OF MCL AND UTL EXCEEDANCES

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills

Gradient S D D D U S S S S S D D D U U S D D D D	Groundwater Flow System			UCRS	S						1	JRGA	A								LRG	A		
Moniferny Well 386 389 389 383 386 221 222 23 284 384 389 372 387 394 230 388 387 373 388 392 385 395 39 4 250 20 20 20 20 20 20 20 20 20 20 20 20 20	Gradient	S	_		_	U	S	S	S	S				D	D	U	U	S	D			_	U	U
ACETONE Openter 3, 2005 Openter 4, 2005 Openter 4, 2005 APPLA ACTIVITY Openter 4, 2008 Openter 5, 2003 Openter 5, 2003 Openter 6, 2003 Openter 7, 2003 Openter 7, 2004 Openter 7, 2005 Openter 8, 2004 Openter 9, 2004 Openter 9, 2004 Openter 9, 2004 Openter 9, 2005 Openter 9, 2006 Openter 9, 2007 Openter	Monitoring Well																							397
Quarter 4, 2003 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 200	ACETONE																							
Quarter 4, 2003 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 3, 2004 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 200	Quarter 3, 2003							*					*											
ALPHA ACTIVITY Quarter 4, 2008 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter	Quarter 4, 2003											*								*				
Quarter 4, 2002 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003	Quarter 1, 2005									*														
Quarter 4, 2005 Quarter 1, 2003 Quarter 1, 2003 Quarter 1, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2006 Quarter 4, 2007 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2001 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2001 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 3, 2001 Quarter 4, 2008 Quarter 2, 2009 Quarter 1, 2009 Quarter 3, 2001 Quarter 4, 2008 Quarter 2, 2010 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2010 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2010 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003	ALPHA ACTIVITY																							
Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2003 Quarter 2, 2004 Quarter 1, 2004 Quarter 1, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 4, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2006 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2008 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 6, 2010 Quarter 7, 2010 Quarter 7, 2010 Quarter 7, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2010 Quarter 6, 201						-																		
AUMINUM Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 1, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2016 Quarter 2, 2016 Quarter 4, 2014 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2019 Quarter 2, 2010 Quarter 2, 201	Quarter 4, 2008																							
Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2005 Quarter 5, 2006 Quarter 6, 2005 Quarter 6, 2005 Quarter 7, 2006 Quarter 6, 2005 Quarter 7, 2006 Quarter 7, 2006 Quarter 7, 2006 Quarter 9, 2007 Quarter 9, 2008 Quarter 1, 2007 Quarter 1, 2008 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 1, 2007 Quarter 2, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 5, 2008 Quarter 6, 2008 Quarter 6, 2008 Quarter 6, 200	Quarter 4, 2010																							
Quarter 2, 2003 Quarter 3, 2003 Quarter 1, 2004 Quarter 3, 2004 Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2008 Quarter 4, 2008 Quarter 2, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 1, 2016 Quarter 2, 2016 Quarter 4, 2003 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2006 Quarter 4, 2003 Quarter 2, 2016 Quarter 2, 201	ALUMINUM																							
Quarter 3, 2003 Quarter 4, 2005 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2013 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 4, 2007 Quarter 6, 2010 Quarter 7, 2011 Quarter 7, 2014 Quarter 1, 2015 Quarter 1, 2016 Quarter 2, 2010 Quarter 1, 2018 BARIUM Quarter 2, 2003 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	Quarter 1, 2003			*				*					*	*	*									
Quarter 4, 2003 Quarter 1, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 5, 2007 Quarter 6, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 4, 2009 Quarter 1, 2010 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 1, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2008 Quarter 4, 2009 Quarter 4, 2000	Quarter 2, 2003			*				*						*	*									
Quarter 4, 2003 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 5, 2007 Quarter 6, 2007 Quarter 1, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2016 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2010 Quarter 2, 2011 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2016 Quarter 2, 2011 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 5, 2011 Quarter 6, 2011 Quarter 6, 2011 Quarter 6, 2011 Quarter 6, 2011 Quarter 7, 2011 Quarter 1, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 4, 2003 Quarter 6, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 5, 2003 Quarter 6, 2003 Quarter 6, 2003 Quarter 6, 2003 Quarter 6, 2003	Quarter 3, 2003			*				*	*					*	*									
Quarter 2, 2004 Quarter 2, 2004 Quarter 3, 2004 Quarter 1, 2005 Quarter 1, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2014 Quarter 4, 2017 Quarter 1, 2018 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 1, 2018 Quarter 4, 2003 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 2, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003	Quarter 4, 2003							*	*			*			*									
Quarter 4, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 5, 2011 Quarter 6, 2011 Quarter 6, 2011 Quarter 7, 2012 Quarter 1, 2014 Quarter 1, 2016 Quarter 4, 2017 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2016 Quarter 1, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 4, 2011 Quarter 4, 2014 Quarter 5, 2016 Quarter 6, 2010 Quarter 7, 2010 Quarter 7, 2010 Quarter 1, 2016 Quarter 1, 2017 Quarter 2, 2003 Quarter 1, 2003 Quarter 2, 2003	Quarter 1, 2004			*				*	*			*												
Quarter 4, 2004 Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 3, 2010 Quarter 4, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2017 Quarter 1, 2018 Quarter 1, 2016 Quarter 1, 2017 Quarter 1, 2018 Quarter 1, 2017 Quarter 1, 2018 Quarter 1, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2019 Quarter 1, 2016 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 5, 2003 Quarter 6, 2003 Quarter 6, 2003 Quarter 7, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003	Quarter 2, 2004							*							*									
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 1, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2016 Quarter 3, 2019 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2010 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2019 Quarter 3, 2010 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2016 Quarter 4, 2017 Quarter 5, 2003 Quarter 4, 2003 Quarter 6, 2003	Quarter 3, 2004							*							*									
Quarter 1, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 5, 2007 Quarter 5, 2007 Quarter 6, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2014 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 3, 2017 Quarter 3, 2019 Quarter 3, 2010 Quarter 4, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 5, 2010 Quarter 5, 2010 Quarter 6, 201	Quarter 4, 2004			*																				
Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 3, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2008 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 1, 2003				*																				
Quarter 3, 2005 * * * * * * * * *	Quarter 2, 2005			*				*																
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2000 Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003	Quarter 3, 2005			*				*			*											*		t
Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2003 Quarter 2, 2000 Quarter 2, 20003 Quarter 2, 20003 Quarter 2, 20003				*				*				*												
Quarter 2, 2006														*										\vdash
Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 ** ** ** Quarter 1, 2009 ** ** ** Quarter 1, 2009 ** ** ** Quarter 1, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 ** Quarter 3, 2010 ** Quarter 3, 2010 ** Quarter 1, 2011 Quarter 2, 2012 ** Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2003 BETAACTIVITY Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2003 ** *				*				*																\vdash
Quarter 1, 2006 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2016 Quarter 1, 2018 BARIUM Quarter 2, 2003 BETA ACTIVITY Quarter 2, 2003																								-
Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 1, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2010 Quarter 1, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2016 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2018 Barry				*				*																—
Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2016 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2018 Quarter 3, 2019 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2016 Quarter 1, 2017 Quarter 4, 2017 Quarter 1, 2018 BARIUM Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2004 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2003 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 3, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 5, 2008 Quarter 6, 2008 Quarter 6, 2008 Quarter																		*						\vdash
Quarter 3, 2007 Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 1, 2013 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2016 Quarter 2, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2016 Quarter 1, 2017 Quarter 1, 2018 BARIUM Quarter 2, 2003 BETA ACTIVITY Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2000 Quarter 4, 2000 Quarter 2, 20003																								\vdash
Quarter 4, 2007 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2009 Quarter 4, 2009 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2018 Quarter 4, 2018 Quarter 4, 2018 Quarter 1, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2007 Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003																								
Quarter 1, 2008 Quarter 2, 2008 Quarter 4, 2008 Quarter 4, 2009 Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 3, 2010 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2017 Quarter 1, 2018 BARIUM Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2003																								\vdash
Quarter 2, 2008 Quarter 4, 2008 Quarter 1, 2009															*									├
Quarter 1, 2008 Quarter 1, 2009 * * * * * * * * * * * * * * * * * * *								т.				*			-									
Quarter 1, 2009								*				•												
Quarter 1, 2010				ж								3 <u>4</u>												<u> </u>
Quarter 2, 2010																								<u> </u>
Quarter 3, 2010								不																
Quarter 1, 2011															4			4			4			
Quarter 2, 2011				*											*			*			*			Ш
Quarter 2, 2012								*																
Quarter 3, 2012 Quarter 1, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2016 Quarter 2, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2018 BARIUM Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 4, 2003 Quarter 2, 2003 ##################################												*												
Quarter 1, 2013				*																				
Quarter 3, 2013																								
Quarter 1, 2014 Quarter 2, 2014 Quarter 4, 2014 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 BARIUM Quarter 3, 2003 Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003	Quarter 1, 2013							*				*												
Quarter 4, 2014				*																				
Quarter 4, 2014	,							*																
Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 BARIUM Quarter 3, 2003 Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003	Quarter 2, 2014											*												
Quarter 2, 2016	Quarter 4, 2014			*																				
Quarter 1, 2017 Quarter 4, 2017 Quarter 4, 2018 BARIUM Quarter 3, 2003 Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002 Quarter 4, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 5, 2003 Quarter 6, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003	Quarter 1, 2016							*																
Quarter 4, 2017 Quarter 1, 2018 * BARIUM Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 4, 2002 Quarter 5, 2003 Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003	Quarter 2, 2016														*									
A CTIVITY	Quarter 1, 2017							*																
BARIUM Quarter 3, 2003 Quarter 4, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003 Quarter 4, 2002 Quarter 3, 2003 Quarter 4, 2002 Quarter 5, 2003 Quarter 6, 2003 Quarter 7, 2003 Quarter	Quarter 4, 2017																							*
Quarter 3, 2003 Image: Control of the control of t	Quarter 1, 2018	_				L		*	L									_				L		
Quarter 4, 2003 BETA ACTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003	BARIUM																							
BETA ACTIVITY Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■	Quarter 3, 2003																							
Quarter 4, 2002	Quarter 4, 2003																							
Quarter 1, 2003	BETA ACTIVITY																							
Quarter 2, 2003																								
	-			L_	L_	<u> </u>			<u> </u>												_	<u> </u>		igsquare
Quarter 3, 2003			<u> </u>			<u> </u>			<u> </u>	<u> </u>	<u> </u>			L_		<u> </u>						<u> </u>	<u> </u>	<u> </u>
	Quarter 3, 2003	_	Щ		Щ			Щ		Щ	Щ					Щ		۰					Щ	$ldsymbol{ldsymbol{eta}}$

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Fractional S D D D D U S S S S S D D D D U S D D D U S D D D D	Groundwater Flow System			UCRS	S						1	URGA	4								LRG	A		
Marcer 4, 1904 Marcer 4, 2003 Marcer 4, 1904 Marcer 4, 2004 Marcer 4, 2004 Marcer 4, 2004 Marcer 4, 2004 Marcer 4, 2005 Marc	Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Descript 2,0003	Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Journet 2, 1004 Journet 3, 2004 Journet 4, 2005 Journet 3, 2005 Journet 4, 2005 Journet 3, 2007 Journet 3, 200	BETA ACTIVITY																							
Date 1, 2004	Quarter 4, 2003																							
Date Color	Quarter 1, 2004																							
Danter 2,0003	Quarter 2, 2004																							
Descript 2,0005	Quarter 3, 2004																							
Journet 2, 2005 Journet 3, 2005 Journet 4, 2005 Journet 2, 2006 Journet 2, 2006 Journet 3, 2006 Journet 3, 2006 Journet 4, 2006 Journet 4, 2006 Journet 5, 2007 Journet 6, 2007 Journet 6, 2007 Journet 7, 2007 Journet 8, 2007 Journet 9, 2008 Journet 9, 2008 Journet 9, 2008 Journet 9, 2008 Journet 9, 2009 Journet 9, 2010 Journet 9, 201	Quarter 4, 2004																							
Dauter 4, 2005 Dauter 4, 2006 Dauter 4, 2007 Dauter 4, 2008 Dauter 4, 2009 Dauter 5, 2009 Dauter 6, 2009 Dauter 6, 2009 Dauter 7, 2009 Dauter 7, 2009 Dauter 8, 2009 Dauter 8, 2009 Dauter 9, 2009 Dauter	Quarter 1, 2005																							
Seater 4, 2005	Quarter 2, 2005																							
Dauter 1, 2006 Dauter 2, 2006 Dauter 3, 2006 Dauter 4, 2006 Dauter 4, 2006 Dauter 4, 2007 Dauter 5, 2007 Dauter 6, 2007 Dauter 6, 2007 Dauter 6, 2008 Dauter 9, 2009 Dauter 1, 2009 Dauter 1, 2009 Dauter 1, 2009 Dauter 1, 2010 Dauter 1, 2010 Dauter 1, 2011 Dauter 1, 2011 Dauter 1, 2012 Dauter 2, 2011 Dauter 9, 2011	Quarter 3, 2005																							
Danter 2, 2006 Danter 3, 2006 Danter 4, 2006 Danter 4, 2006 Danter 5, 2007 Danter 1, 2007 Danter 1, 2007 Danter 1, 2008 Danter 2, 2008 Danter 2, 2008 Danter 2, 2008 Danter 3, 2009 Danter 4, 2010 Danter 4, 2010 Danter 4, 2010 Danter 4, 2011 Danter 4, 2011 Danter 4, 2011 Danter 4, 2011 Danter 4, 2012 Danter 4, 2012 Danter 4, 2013 Danter 4, 2013 Danter 4, 2014 Danter 4, 2014 Danter 4, 2015 Danter 4, 2015 Danter 4, 2015 Danter 4, 2015 Danter 4, 2016 Danter 4, 2015 Danter 4, 2016 Danter 4, 2015 Danter 4, 2016 Danter 4, 2017 Danter 4, 2016 Danter 4, 2017 Danter 4, 2017 Danter 4, 2016 Danter 4, 2017 Danter 4, 2016 Danter 4, 2017 Danter 5, 2017 Danter 6, 2017 Danter 7, 2018 Danter 6, 2017 Danter 7, 2018 Danter 7, 2018 Danter 8, 2017 Danter 9, 2018 Danter	Quarter 4, 2005																							
Danter 3, 2006	Quarter 1, 2006																							
Danter 4, 2006	Quarter 2, 2006																							
Dearter 1, 2007	Quarter 3, 2006																							
Dauter 2, 2007 Dauter 3, 2007 Dauter 4, 2007 Dauter 4, 2008 Dauter 5, 2008 Dauter 6, 2009 Dauter 6, 2010 Dauter 6, 2011 Dauter 6, 2013 Dauter 6, 2015 Dauter 6, 2015 Dauter 6, 2016 Dauter 6, 2017 Dauter 6, 2018 Dauter 7, 2018 Dauter 7, 2018	Quarter 4, 2006																							
Dauter 4, 2007 Dauter 4, 2007 Dauter 4, 2008 Dauter 5, 2008 Dauter 6, 2009 Dauter 6, 2009 Dauter 7, 2009 Dauter 7, 2009 Dauter 7, 2009 Dauter 7, 2009 Dauter 8, 2009 Dauter 9, 2010 Dauter 9, 2010 Dauter 9, 2010 Dauter 9, 2010 Dauter 9, 2011 Dauter 9, 2012 Dauter 9, 2014 Dauter 9, 2015 Dauter 9, 2015 Dauter 9, 2016 Dauter 9, 2016 Dauter 9, 2016 Dauter 9, 2017 Dauter 9, 2016 Dauter 9, 2016 Dauter 9, 2017 Dauter 9, 2016 Dauter 9, 2017 Dauter 9, 2018 Dauter 9, 2019 Dauter 9, 2019	Quarter 1, 2007																							
Dautrer 4, 2007 Dautrer 1, 2008 Dautrer 1, 2008 Dautrer 2, 2008 Dautrer 2, 2009 Dautrer 3, 2009 Dautrer 3, 2009 Dautrer 4, 2010 Dautrer 4, 2011 Dautrer 4, 2011 Dautrer 4, 2011 Dautrer 4, 2011 Dautrer 4, 2012 Dautrer 4, 2012 Dautrer 4, 2013 Dautrer 4, 2013 Dautrer 4, 2013 Dautrer 4, 2014 Dautrer 4, 2014 Dautrer 4, 2015 Dautrer 4, 2015 Dautrer 4, 2015 Dautrer 4, 2016 Dautrer 4, 2016 Dautrer 4, 2016 Dautrer 4, 2017 Dautrer 4, 2017 Dautrer 4, 2016 Dautrer 4, 2017 Dautrer 4, 2016 Dautrer 4, 2017 Dautrer 5, 2018 Dautrer 6, 2018 Dautrer 7, 2018 Dautrer 8, 2018 Dautrer 9, 2018 Dautre	Quarter 2, 2007																							
Dautret 4, 2007 Dautret 2, 2008 Dautret 2, 2008 Dautret 2, 2008 Dautret 3, 2008 Dautret 1, 2009 Dautret 1, 2009 Dautret 3, 2009 Dautret 3, 2009 Dautret 4, 2010 Dautret 4, 2010 Dautret 4, 2011 Dautret 4, 2011 Dautret 4, 2011 Dautret 4, 2012 Dautret 4, 2012 Dautret 4, 2013 Dautret 4, 2014 Dautret 2, 2014 Dautret 3, 2012 Dautret 4, 2013 Dautret 4, 2013 Dautret 4, 2015 Dautret 4, 2016 Dautret 4, 2015 Dautret 2, 2016 Dautret 3, 2016 Dautret 4, 2015 Dautret 3, 2016 Dautret 4, 2016 Dautret 4, 2016 Dautret 3, 2016 Dautret 4, 2016 Dautret 4, 2017 Dautret 2, 2016 Dautret 3, 2016 Dautret 4, 2016 Dautret 4, 2016 Dautret 3, 2016 Dautret 3, 2017 Dautret 4, 2017 Dautret 4, 2016 Dautret 4, 2017 Dautret 3, 2017 Dautret 4, 2017 Dautret 4, 2017 Dautret 4, 2017 Dautret 3, 2016 Dautret 4, 2017 Dautret 5, 2018 Dautret 6, 2018 Dautret 7, 2018 Dautret 7, 2018 Dautret 8, 2018 Dautret 9, 2018 Dautre	Quarter 3, 2007																							
Daurier 2, 2008 Daurier 3, 2008 Daurier 4, 2009 Daurier 2, 2009 Daurier 4, 2009 Daurier 4, 2009 Daurier 4, 2010 Daurier 2, 2010 Daurier 4, 2011 Daurier 4, 2012 Daurier 4, 2012 Daurier 4, 2013 Daurier 4, 2013 Daurier 4, 2013 Daurier 4, 2014 Daurier 4, 2014 Daurier 4, 2015 Daurier 4, 2015 Daurier 4, 2015 Daurier 4, 2015 Daurier 4, 2016 Daurier 4, 2016 Daurier 4, 2016 Daurier 4, 2017 Daurier 4, 2017 Daurier 4, 2018 Daurier 4, 2017 Daurier 4, 2017 Daurier 4, 2017 Daurier 4, 2018 Daurier 4, 2017 Daurier 4, 2017 Daurier 4, 2018 Daurier 4, 2017 Daurier 4, 2018 Daurier 4, 2017 Daurier 4, 2018 Daurier 4, 2018 Daurier 4, 2018 Daurier 4, 2017 Daurier 4, 2018 Daurier 5, 2018 Daurier 6, 201	Quarter 4, 2007																							
Dounter 3, 2008	Quarter 1, 2008																							
Dourter 4, 2008 Dourter 1, 2009 Dourter 2, 2009 Dourter 3, 2009 Dourter 4, 2008 Dourter 4, 2008 Dourter 4, 2008 Dourter 4, 2009 Dourter 3, 2001 Dourter 4, 2003	Quarter 2, 2008																							
Danter 1, 2009	Quarter 3, 2008																							
Danter 2, 2009 Danter 3, 2009 Danter 1, 2010 Danter 4, 2010 Danter 4, 2010 Danter 3, 2011 Danter 4, 2011 Danter 4, 2011 Danter 4, 2012 Danter 4, 2012 Danter 4, 2012 Danter 4, 2013 Danter 4, 2013 Danter 4, 2013 Danter 4, 2014 Danter 4, 2014 Danter 4, 2015 Danter 4, 2014 Danter 4, 2015 Danter 4, 2014 Danter 4, 2015 Danter 5, 2015 Danter 6, 2015 Danter 6, 2016 Danter 7, 2016 Danter 6, 2017 Danter 7, 2016 Danter 7, 2017 Danter 8, 2017 Danter 9, 2017 Danter 9, 2017 Danter 9, 2017 Danter 1, 2016 Danter 1, 2016 Danter 1, 2016 Danter 1, 2016 Danter 2, 2017 Danter 3, 2017 Danter 3, 2017 Danter 3, 2017 Danter 3, 2017 Danter 4, 2016 Danter 4, 2016 Danter 4, 2017 Danter 3, 2017 Danter 4, 2018 Danter 4, 2017 Danter 4, 2017 Danter 4, 2017 Danter 6, 2017 Danter 6, 2017 Danter 7, 2018 Danter 1, 2003 Danter 8, 2007 Danter 9, 2007 Danter	Quarter 4, 2008																							
Daurter 3, 2009 Daurter 4, 2009 Daurter 7, 2010 Daurter 7, 2011 Daurter 8, 2011 Daurter 9, 2012 Daurter 9, 2013 Daurter 9, 2013 Daurter 9, 2014 Daurter 9, 2015 Daurter 9, 2016 Daurter 9, 2017 Daurter 1, 2018 BROMIDE Daurter 1, 2003 **	Quarter 1, 2009																							
Duarter 4, 2009 Duarter 1, 2010 Duarter 2, 2010 Duarter 3, 2010 Duarter 4, 2010 Duarter 4, 2010 Duarter 4, 2010 Duarter 3, 2010 Duarter 4, 2011 Duarter 7, 2011 Duarter 7, 2011 Duarter 3, 2011 Duarter 4, 2011 Duarter 4, 2011 Duarter 4, 2012 Duarter 4, 2013 Duarter 1, 2014 Duarter 1, 2014 Duarter 4, 2014 Duarter 4, 2015 Duarter 4, 2015 Duarter 4, 2015 Duarter 4, 2016 Duarter 4, 2017 Duarter 5, 2017 Duarter 6, 2017 Duarter 7, 2017 Duarter 7, 2016 Duarter 1, 2016 Duarter 1, 2016 Duarter 1, 2016 Duarter 2, 2017 Duarter 3, 2017 Duarter 4, 2017 Duarter 4, 2017 Duarter 4, 2017 Duarter 5, 2017 Duarter 6, 2017 Duarter 7, 2017 Duarter 6, 2017 Duarter 7, 2018 Duarter 1, 2018 Duarter 2, 2017 Duarter 3, 2017 Duarter 4, 2018 Duarter 4, 2018 Duarter 4, 2018 Duarter 1, 2003 Duarter 2, 2003	Quarter 2, 2009																							
Quarter 1, 2010 Quarter 2, 2010 Quarter 3, 2010 Quarter 4, 2010 Quarter 4, 2010 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 5, 2012 Quarter 5, 2012 Quarter 6, 2012 Quarter 7, 2012 Quarter 7, 2013 Quarter 7, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 7, 2015 Quarter 7, 2015 Quarter 7, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2016 Quarter 4, 2016 Quarter 2, 2017 Quarter 3, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 1, 2018 Residuation of the content of	Quarter 3, 2009																							
Daurter 2, 2010 Daurter 3, 2010 Daurter 4, 2010 Daurter 4, 2011 Daurter 4, 2011 Daurter 4, 2012 Daurter 3, 2012 Daurter 4, 2012 Daurter 4, 2012 Daurter 4, 2013 Daurter 4, 2014 Daurter 4, 2014 Daurter 4, 2015 Daurter 2, 2015 Daurter 2, 2015 Daurter 2, 2016 Daurter 2, 2016 Daurter 2, 2016 Daurter 2, 2016 Daurter 4, 2016 Daurter 4, 2017 Daurter 4, 2017 Daurter 4, 2017 Daurter 3, 2017 Daurter 4, 2017 Daurter 3, 2016 Daurter 4, 2017 Daurter 3, 2017 Daurter 4, 2017 Daurter 4, 2017 Daurter 3, 2017 Daurter 3, 2017 Daurter 4, 2017 Daurter 3, 2017 Daurter 4, 2018 BROMIDE BROMIDE BROMIDE Daurter 4, 2003 ** Daurter 4, 2003 ** Daurter 4, 2003 Daurter 5, 2017 Daurter 6, 2017 Daurter 7, 2018 Daurter 1, 2008 Daurter 1, 2003	Quarter 4, 2009																							
Quarter 4, 2010 Quarter 4, 2010 Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 3, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 \$\$\$BOMIDE Quarter 4, 2003 \$	Quarter 1, 2010																							
Quarter 4, 2010 Quarter 1, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2014 Quarter 1, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 \$\$800000000000000000000000000000000	Quarter 2, 2010																							
Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 4, 2012 Quarter 3, 2013 Quarter 4, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 1, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 4, 2010 Quarter 4, 2017 Quarter 4, 2010 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2019 Quarter 4, 2010 Quarter 6, 201	Quarter 3, 2010																							
Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2012 Quarter 4, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2014 Quarter 4, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2019 Quarter 4, 2017 Quarter 4, 2019 Quarter 4, 2017 Quarter 4, 2010 Quarter 4, 2017 Quarter 4, 2003 **	Quarter 4, 2010																							
Quarter 4, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 3, 2012 Quarter 4, 2011 Quarter 4, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2003 ** ** ** ** ** ** ** ** **	Quarter 1, 2011																							
Quarter 1, 2011 Quarter 1, 2012 Quarter 2, 2012 Quarter 2, 2012 Quarter 3, 2012 Quarter 4, 2013 Quarter 3, 2013 Quarter 4, 2013 Quarter 4, 2013 Quarter 4, 2014 Quarter 2, 2014 Quarter 2, 2014 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2003 **	Quarter 2, 2011																							
Quarter 1, 2012	Quarter 3, 2011																							
Quarter 2, 2012	Quarter 4, 2011										•													
Duarter 4, 2012 Duarter 1, 2013 Duarter 2, 2013 Duarter 2, 2013 Duarter 3, 2013 Duarter 1, 2014 Duarter 2, 2014 Duarter 2, 2014 Duarter 1, 2015 Duarter 2, 2015 Duarter 2, 2015 Duarter 2, 2015 Duarter 3, 2015 Duarter 3, 2016 Duarter 4, 2016 Duarter 4, 2016 Duarter 2, 2017 Duarter 2, 2017 Duarter 3, 2017 Duarter 3, 2017 Duarter 3, 2017 Duarter 4, 2018 Duarter 3, 2017 Duarter 4, 2018 Duarter 4, 2018 Duarter 3, 2017 Duarter 4, 2018 Duarter 4, 2017 Duarter 4, 2017 Duarter 4, 2017 Duarter 4, 2018 Duarter 4, 2019 Duarter 3, 2017 Duarter 4, 2017 Duarter 4, 2017 Duarter 4, 2018 Duarter 4, 2018 Duarter 4, 2019 Duarter 4, 2019 Duarter 4, 2019 Duarter 4, 2019 Duarter 5, 2019 Duarter 6, 2017 Duarter 6, 2017 Duarter 7, 2018 Duarter 8, 2017 Duarter 1, 2008 Duarter 1, 2008 Duarter 1, 2003 Duarter 4, 2003 Duarter 4, 2003 Duarter 4, 2003 Duarter 6, 200	Quarter 1, 2012										•													
Quarter 1, 2012	Quarter 2, 2012																							
Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 4, 2014 Quarter 3, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 4, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2003 **	Quarter 3, 2012										•			•										
Duarter 2, 2013 Duarter 3, 2013 Duarter 4, 2013 Duarter 2, 2014 Duarter 2, 2014 Duarter 2, 2014 Duarter 3, 2014 Duarter 4, 2015 Duarter 2, 2015 Duarter 2, 2015 Duarter 2, 2015 Duarter 2, 2015 Duarter 3, 2016 Duarter 3, 2016 Duarter 3, 2016 Duarter 3, 2016 Duarter 4, 2017 Duarter 4, 2018 Duarter 1, 2003 Duarter 2, 2003 Duarter 3, 2003 Duarter 2, 2003 Duarter 3, 2003 Duarter 4, 2003 Duarter 2, 2003 Duarter 3, 2003 Duarter 2, 2003 Duarter 3, 2003 Duarter 3, 2003 Duarter 4, 2004 Duarter 5, 200	Quarter 4, 2012																							
Quarter 4, 2013 Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 1, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2018 Quarter 4, 2018 Quarter 3, 2018 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2018 Quarter 4, 2018 Quarter 1, 2018 Quarter 1, 2003 * Quarter 2, 2003	Quarter 1, 2013																							
Quarter 1, 2014	Quarter 2, 2013										•			•										
Quarter 1, 2014 Quarter 2, 2014 Quarter 3, 2014 Quarter 4, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 4, 2018 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2008 **	Quarter 3, 2013																							
Quarter 3, 2014	Quarter 4, 2013																							
Quarter 3, 2014	Quarter 1, 2014																							
Duarter 4, 2014	Quarter 2, 2014																							
Quarter 1, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2018 RROMIDE Quarter 4, 2003 * Quarter 4, 2003	Quarter 3, 2014																							
Duarter 2, 2015	Quarter 4, 2014																							
Quarter 3, 2015	Quarter 1, 2015																							
Quarter 4, 2015 Quarter 1, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 5, 2017 Quarter 6, 2017 Quarter 9, 2017 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2003 * Quarter 1, 2003 * Quarter 1, 2003 * Quarter 4, 2003	Quarter 2, 2015																							
Quarter 1, 2016	Quarter 3, 2015																							
Quarter 2, 2016	Quarter 4, 2015																							
Duarter 3, 2016 Quarter 4, 2016 Quarter 1, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 1, 2018 BROMIDE Quarter 1, 2003 * Quarter 4, 2003	Quarter 1, 2016																							
Quarter 4, 2016 Quarter 1, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 BROMIDE Quarter 1, 2003 * Quarter 4, 2003 * Quarter 4, 2003	Quarter 2, 2016																							
Quarter 1, 2017	Quarter 3, 2016																							
Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 Quarter 1, 2003 Quarter 4, 2003 *	Quarter 4, 2016																							
Quarter 3, 2017	Quarter 1, 2017																		<u> </u>					
Quarter 4, 2017 Quarter 1, 2018 BROMIDE Quarter 1, 2003 * Quarter 4, 2003 * Quarter 4, 2003	Quarter 2, 2017																							
Quarter 1, 2018 Image: Control of the con	Quarter 3, 2017																							
BROMIDE	Quarter 4, 2017																							
Quarter 1, 2003 *	Quarter 1, 2018																							
Quarter 4, 2003 *	BROMIDE																							
(2000)	Quarter 1, 2003																							
Quarter 1, 2004 *	Quarter 4, 2003																							
	Quarter 1, 2004			*																				

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\&T\ Landfills\ (Continued)$

Groundwater Flow System			UCRS	S							URGA	4								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
BROMIDE																							
Quarter 2, 2004			*																				
Quarter 3, 2004	1		*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 3, 2006	1		*																				
CALCIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*											
Quarter 3, 2003			*																				
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004	-		*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005	-											*							*				
	-											*							*				
Quarter 2, 2005	_	 										*							*		1		
Quarter 3, 2005	_	<u> </u>																			<u> </u>	<u> </u>	1
Quarter 4, 2005	_	<u> </u>								<u> </u>		*							*		<u> </u>	<u> </u>	<u> </u>
Quarter 1, 2006		<u> </u>			<u> </u>							*	<u> </u>			<u> </u>		<u> </u>	*		<u> </u>	<u> </u>	<u> </u>
Quarter 2, 2006		<u> </u>			<u> </u>					<u> </u>		*	<u> </u>			<u> </u>		<u> </u>	*		<u> </u>	<u> </u>	<u> </u>
Quarter 3, 2006												*							*				
Quarter 4, 2006												*							*				
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007	1											*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008	1											*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009	1											*							*				
Quarter 3, 2009	-											*							*				
Quarter 4, 2009	-											*							*				
Quarter 1, 2010	-											*							*				
												*							*				
Quarter 2, 2010	-					-						*							*				
Quarter 3, 2010																							
Quarter 4, 2010												*							*		<u> </u>		
Quarter 1, 2011												*							*			<u> </u>	
Quarter 2, 2011												*	*						*				
Quarter 3, 2011		<u> </u>										*							*		<u> </u>	<u> </u>	
Quarter 4, 2011												*							*				<u> </u>
Quarter 1, 2012			<u></u>	<u> </u>			<u> </u>				<u></u>	*		<u></u>					*				
Quarter 2, 2012												*							*				
Quarter 3, 2012		L^{-1}				L		L				*							*	LĪ	L^{-}	L	\mathbb{L}^{\top}
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013	i					1						*							*				
Quarter 4, 2013												*							*		t		
Quarter 1, 2014																		*	*		1	 	
Quarter 2, 2014	+	1	1			1					1	*		1					*		1	1	
Quarter 3, 2014	+	 	 			1					 	*		 				*	*		 	 	
Quarter 4, 2014	+	 		<u> </u>		 	<u> </u>					*					-	_	*	-	1	 	1
Quarter 1, 2015	_	 										*	*						*		1		
Quarter 1, 2015													_						L*			<u> </u>	

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						,	URGA	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CALCIUM																							
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016												*		*					*				
Quarter 3, 2016												*							*				
Quarter 4, 2016												*							*				
Quarter 1, 2017												*							*				
Quarter 2, 2017												*							*				
Quarter 3, 2017												*							*				
Quarter 4, 2017												*							*				
Quarter 1, 2018												*							*				
CARBON DISULFIDE																							
Quarter 4, 2010											*												
Quarter 1, 2011												*									*		
Quarter 2, 2017													*										
CHEMICAL OXYGEN DEMAND)																						
Quarter 1, 2003				*																			
Quarter 2, 2003				*																			
Quarter 3, 2003				*			*			*													
Quarter 4, 2003				*																			
Quarter 1, 2004	*			*																			
Quarter 4, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*																						
Quarter 3, 2005	*									*		*									*		
Quarter 4, 2005	*									*													
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													
Quarter 2, 2007	*																						
Quarter 3, 2007	*																						
Quarter 4, 2007	*																						
Quarter 1, 2008	*																						
Quarter 2, 2008	*																						
Quarter 3, 2008	*																						
	*																						
Quarter 4, 2008 Quarter 1, 2009	*			-	-								-							-			
Quarter 1, 2009 Quarter 2, 2009	*	-	<u> </u>		<u> </u>	-	-	<u> </u>	<u> </u>		<u> </u>		<u> </u>	-	<u> </u>		-			*	<u> </u>		<u> </u>
Quarter 2, 2009 Quarter 3, 2009	*	-	<u> </u>		<u> </u>	-	-	<u> </u>	<u> </u>		<u> </u>		<u> </u>	-	<u> </u>		-			_	<u> </u>		<u> </u>
	*		-	-	-			-	-		-		-		-					-	-		-
Quarter 4, 2009	*		-	-	-			-	-		-		-		-					-	-		-
Quarter 1, 2010	*		<u> </u>	<u> </u>				<u> </u>	<u> </u>		<u> </u>				<u> </u>						<u> </u>		<u> </u>
Quarter 2, 2010	*	-					-							-									
Quarter 3, 2010		-					-							-									
Quarter 4, 2010	*																						
Quarter 3, 2011	*																						
Quarter 4, 2011	*		-	-	<u> </u>			-	-	-	-		<u> </u>		-					<u> </u>	-		<u> </u>
Quarter 1, 2012	*																						
Quarter 1, 2013	*																						
Quarter 3, 2013	*																						
Quarter 3, 2014	*	-					41-		*				*	-				*					
Quarter 4, 2014			<u> </u>		<u> </u>		*	<u> </u>	<u> </u>		<u> </u>		<u> </u>		<u> </u>	al-				<u> </u>	<u> </u>		<u> </u>
Quarter 2, 2015															<u> </u>	*							
Quarter 3, 2015															*								
Quarter 3, 2016			*								*												
Quarter 4, 2016																	*						
Quarter 2, 2017							*																
Quarter 3, 2017	*														*								
Quarter 4, 2017						*																	

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\&T\ Landfills\ (Continued)$

Groundwater Flow System			UCRS	5						1	URGA	4]	LRGA			\neg
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CHLORIDE																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*																				
Quarter 3, 2003			*																				
Quarter 4, 2003			*																				
Quarter 1, 2004			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*																				
Quarter 4, 2004			*																				
Quarter 1, 2005			*																				
Quarter 2, 2005			*																				
Quarter 3, 2005			*																				
Quarter 4, 2005			*																				
Quarter 1, 2006																		*					
Quarter 2, 2006			*																				
Quarter 3, 2006			*																				
Quarter 4, 2006			*																			\vdash	
Quarter 1, 2007	1	-	*			_	-					-	-									\vdash	\vdash
Quarter 2, 2007	-		*			-																┝	\vdash
			*																			\vdash	
Quarter 3, 2007			*			_																<u> </u>	
Quarter 4, 2007	!	-				-	<u> </u>					<u> </u>	-									<u> </u>	ш
Quarter 1, 2008			*			<u> </u>										Щ						<u> </u>	igspace
Quarter 2, 2008			*																			<u> </u>	ш
Quarter 3, 2008			*																				
Quarter 4, 2008			*																				
Quarter 1, 2009			*																				
Quarter 2, 2009			*																				
Quarter 3, 2009			*																				
Quarter 4, 2009			*																				
Quarter 1, 2010			*																				
Quarter 2, 2010			*																				
Quarter 3, 2010			*																				
Quarter 4, 2010			*																				
Quarter 2, 2011			*																				
Quarter 3, 2011			*																				
Quarter 4, 2011			*																				
Quarter 3, 2012			*																				\vdash
Quarter 3, 2013			*																				\vdash
Quarter 4, 2013			*																				\vdash
Quarter 4, 2014			*																				\vdash
CHROMIUM			-																				
Quarter 4, 2002																							
Quarter 1, 2003								Ī														-	-
Quarter 2, 2003	_					\vdash		i								H						⊢≕	\vdash
Quarter 3, 2009	1	 					Ι-	_				 	 									\vdash	\vdash
COBALT						Ė																	
Quarter 3, 2003							*																
CONDUCTIVITY																							
Quarter 4, 2002										*									*				\vdash
Quarter 1, 2003	 		*				-			*		-							*				$\vdash\vdash\vdash$
Quarter 1, 2003 Quarter 2, 2003	1	-	*			_	-			*		-	-						*			\vdash	${oldsymbol{dash}}$
Quarter 3, 2003	 		*				-	*		*		-							*			\vdash	${oldsymbol{dash}}$
Quarter 4, 2003	 		*				-	-		*		-							*			\vdash	${oldsymbol{dash}}$
Quarter 1, 2004	_					\vdash										H	\vdash		*			\vdash	$\vdash\vdash$
Quarter 2, 2004	_					\vdash				*						H	\vdash		*			\vdash	$\vdash\vdash$
Quarter 3, 2004	1	-				_	-			*		-	-						*			\vdash	${oldsymbol{dash}}$
Quarter 4, 2004	1	-	*			_	-			*		-	-						*			\vdash	\vdash
Quarter 4, 2004 Quarter 1, 2005	_		т							*		*							*			\vdash	-
Quarter 1, 2005 Quarter 2, 2005	_									~		*							*			\vdash	-
	_											~							*			\vdash	-
Quarter 3, 2005 Quarter 4, 2005	!	<u> </u>				-	<u> </u>			*		*	<u> </u>						*			 	-
Quarter 4, 2005 Quarter 1, 2006										*		*							*			\vdash	
Qualter 1, 2000	_	_			_	_		_		_	_	· *	_		_		_	_	*	_			

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\&T\ Landfills\ (Continued)$

Groundwater Flow System			UCRS	S						Ţ	JRGA	4								LRGA	4		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
CONDUCTIVITY																							
Quarter 2, 2006												*							*				
Quarter 3, 2006												*							*				
Quarter 4, 2006																	*		*				
Quarter 1, 2007												*							*				
Quarter 2, 2007																	*		*				
Quarter 3, 2007																	*		*				
Quarter 4, 2007												*					*		*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*					*		*				
Quarter 4, 2008												*					-		*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				-
Quarter 3, 2009												*							*				
Quarter 4, 2009												*					*		*				
												*					•		*				
Quarter 1, 2010	-											*							*				
Quarter 2, 2010	 	-	 				 	-				*	-	 	 	-		 	*	-	-	1	1
Quarter 3, 2010	_	-										*	-						*	-		<u> </u>	<u> </u>
Quarter 4, 2010	-		 			<u> </u>	-			JJ.				 	 			 			-	1	<u> </u>
Quarter 1, 2011		-								*		*	ļ						*	ļ		<u> </u>	<u> </u>
Quarter 2, 2011						<u> </u>		<u> </u>				*				<u> </u>			*		<u> </u>	<u> </u>	<u> </u>
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*			<u> </u>	<u> </u>
Quarter 1, 2012											*	*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*							*				
Quarter 4, 2012												*							*				
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*							*				
Quarter 2, 2014												*							*				
Quarter 3, 2014												*							*				
Quarter 4, 2014												*							*				
Quarter 1, 2015												*							*				
Quarter 2, 2015												*							*				
Quarter 3, 2015												*							*				
Quarter 4, 2015												*							*				
Quarter 1, 2016												*							*				
Quarter 2, 2016																			*				
Quarter 3, 2016												*							*				
Quarter 4, 2016																			*			t	
Quarter 1, 2017																			*				
Quarter 2, 2017	1																		*				t
Quarter 3, 2017																			*				
Quarter 4, 2017																			*				
Quarter 1, 2018																			*				
DISSOLVED OXYGEN																							
Quarter 3, 2006			*					*															
DISSOLVED SOLIDS																							
Quarter 4, 2002										*									*				
Quarter 1, 2003	1		*	 					 	*			 						*	 		 	
Quarter 2, 2003	1		*				 			*		 	1	 	 			 	*	1		 	
Quarter 3, 2003	 		*				*	*		*		*				<u> </u>			*				<u> </u>
Quarter 4, 2003	-	-	*				*	F.,	*	*		*	-			_			*	-			
	 	-	*	-		_	_		_	<u> </u>		*	 	-	-		-	-	*	 	-	 	
Quarter 1, 2004	-		*			<u> </u>	-			JŁ.		*		 	 			 	*		-	1	<u> </u>
Quarter 2, 2004										*												<u> </u>	<u> </u>
Quarter 3, 2004						<u> </u>		<u> </u>		*		*				<u> </u>			*		<u> </u>	<u> </u>	<u> </u>
Quarter 4, 2004			<u> </u>				<u> </u>	<u> </u>		*		*		<u> </u>	<u> </u>	<u> </u>		<u> </u>	*				

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		_	UCRS	_							URGA									LRGA			
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
DISSOLVED SOLIDS																							
Quarter 1, 2005												*							*				
Quarter 2, 2005																			*				
Quarter 3, 2005																	*	*	*	*	*		
Quarter 4, 2005																	*	*	*	*	*		
Quarter 1, 2006																	*	*	*	*	*		
Quarter 2, 2006																	*	*	*	*	*		
Quarter 3, 2006	1																*	*	*	*	*		
Quarter 4, 2006	1									*		*					*		*				
Quarter 1, 2007	1																		*				
Quarter 2, 2007	-									*		*							*				<u> </u>
Quarter 3, 2007	-									*		*							*				\vdash
Quarter 4, 2007	-											*							*				\vdash
Quarter 1, 2008	-											*							*				
Quarter 2, 2008	-											*							*				<u> </u>
	-											*											₩
Quarter 3, 2008	-			-		<u> </u>				ىد	 		 	-			-		*				₩
Quarter 4, 2008	_	<u> </u>		-						*	-	*	-	-			-			-			₽
Quarter 1, 2009										<u> </u>	<u> </u>	*							*				<u> </u>
Quarter 2, 2009		<u> </u>										*	*						*				<u> </u>
Quarter 3, 2009		<u> </u>										*	*						*				<u> </u>
Quarter 4, 2009										<u> </u>	<u> </u>	*	*						*				<u> </u>
Quarter 1, 2010		<u> </u>								L.		*	*						*				<u> </u>
Quarter 2, 2010										*		*	*						*				
Quarter 3, 2010										*		*							*				
Quarter 4, 2010										*		*							*				
Quarter 1, 2011										*		*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011												*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012											*	*	*						*				
Quarter 2, 2012												*							*				
Quarter 3, 2012										*		*	*						*				
Quarter 4, 2012												*	*						*				
Quarter 1, 2013										*		*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
Quarter 1, 2014												*	*						*				
Quarter 2, 2014												*							*				
Quarter 3, 2014									*			*	*						*				
Quarter 4, 2014												*	*						*				
Quarter 1, 2015	1											*							*				
Quarter 2, 2015	1											*							*				
Quarter 3, 2015	1											*							*				
Quarter 4, 2015									*			*						*	*				
Quarter 1, 2016	Ī											*							*				
Quarter 2, 2016												*	*	*					*				
Quarter 3, 2016	Ī											*							*				
Quarter 4, 2016	1											*							*				
Quarter 1, 2017	Î											*							*				Г
Quarter 2, 2017	1											*							*				T
Quarter 3, 2017	1											*		*	*				*				
Quarter 4, 2017	1											*							*				
Quarter 1, 2018	1											*							*				\Box
IODIDE																							T
Quarter 4, 2002																					*		
Quarter 2, 2003	1					*																	\vdash
Quarter 3, 2003	1												*										\vdash
Quarter 1, 2004	1			*																			\vdash
Quarter 3, 2010	1																				*		┢
Quarter 2, 2013	1									*													\vdash
			1				1	i	i	ı	ı	i	ı	1	i	1			1	1			1

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	A]	LRGA	1		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
IRON																							
Quarter 1, 2003							*			*	*			*									
Quarter 2, 2003										*	*	*	*										
Quarter 3, 2003							*	*	*	*	*	*											
Quarter 4, 2003											*												
Quarter 1, 2004											*												
Quarter 2, 2004										*	*												
Quarter 3, 2004										*													
Quarter 4, 2004										*													
Quarter 1, 2005										-		*											
Quarter 2, 2005											*	*											
Quarter 1, 2006							*				-												
-							т.					*											
Quarter 2, 2006											*	•											
Quarter 3, 2006												4											
Quarter 1, 2007											*	*											
Quarter 2, 2007		<u> </u>	<u> </u>								*												
Quarter 2, 2008												*											
Quarter 3, 2008												*											
MAGNESIUM																							
Quarter 1, 2003			*																				
Quarter 2, 2003			*									*							*				
Quarter 3, 2003			*				*					*											
Quarter 4, 2003			*									*							*				
Quarter 1, 2004			*									*		*					*				
Quarter 2, 2004			*									*							*				
Quarter 3, 2004			*									*							*				
Quarter 4, 2004			*									*							*				
Quarter 1, 2005												*							*				
Quarter 2, 2005												*							*				
Quarter 3, 2005												*							*				
Quarter 4, 2005												*							*				
Quarter 1, 2006												*							*				
-												*							*				
Quarter 2, 2006 Quarter 3, 2006												*							*				
												*							*				
Quarter 4, 2006																							
Quarter 1, 2007												*							*				
Quarter 2, 2007												*							*				
Quarter 3, 2007												*							*				
Quarter 4, 2007												*							*				
Quarter 1, 2008												*							*				
Quarter 2, 2008												*							*				
Quarter 3, 2008												*							*				
Quarter 4, 2008												*							*				
Quarter 1, 2009												*							*				
Quarter 2, 2009												*							*				
Quarter 3, 2009												*	*						*				
Quarter 4, 2009												*	H						*			 	
Quarter 1, 2010		-	-				-				-	*	-	-					*				
Quarter 1, 2010 Quarter 2, 2010							<u> </u>					*	*	<u> </u>					*			<u> </u>	-
` '	_	 	 			_	-				 	*	*	-					*				-
Quarter 3, 2010																							
Quarter 4, 2010							<u> </u>					*		<u> </u>					*				
Quarter 1, 2011												*							*				
Quarter 2, 2011												*	*						*				
Quarter 3, 2011		<u> </u>	<u> </u>			L					<u> </u>	*							*				
Quarter 4, 2011												*							*				
Quarter 1, 2012												*							*				
Quarter 2, 2012												*							*				
Quarter 3, 2012												*	*						*				
												*	*						*				
Quarter 4, 2012																							

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System Gradient	S	D	UCRS			_	_													LRGA			
		ν	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
MAGNESIUM																							
Quarter 1, 2013												*							*				
Quarter 2, 2013												*							*				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				┢
Quarter 1, 2014																		*	*				├
Quarter 2, 2014												*	*					-	*				├─
												*	•						*				—
Quarter 3, 2014												*	*						*				Ь—
Quarter 4, 2014												*	*						*				├
Quarter 1, 2015												*	不						*				—
Quarter 2, 2015																			*				├
Quarter 3, 2015												*											—
Quarter 4, 2015												*							*				—
Quarter 1, 2016												*		a.					*				Ь—
Quarter 2, 2016		<u> </u>					<u> </u>					*		*					*	<u> </u>			<u> </u>
Quarter 3, 2016												*		- Ju		Щ			*				<u> </u>
Quarter 4, 2016												*		*		Щ			*	<u> </u>			<u> </u>
Quarter 1, 2017												*		*					*	<u> </u>			<u> </u>
Quarter 2, 2017		<u> </u>					<u> </u>					*								<u> </u>			<u> </u>
Quarter 3, 2017												*		*									Щ
Quarter 4, 2017		<u> </u>					<u> </u>					*							*	<u> </u>			<u> </u>
Quarter 1, 2018												*	*						*				Щ
MANGANESE																							
Quarter 4, 2002																					*		<u> </u>
Quarter 3, 2003							*	*															<u> </u>
Quarter 4, 2003							*	*															<u> </u>
Quarter 1, 2004							*																<u> </u>
Quarter 2, 2004							*																<u> </u>
Quarter 4, 2004							*	*															<u> </u>
Quarter 1, 2005							*																
Quarter 3, 2005																					*		
Quarter 3, 2009	*																						
OXIDATION-REDUCTION POTE	ENTI	AL																					
Quarter 4, 2003			*																				
Quarter 2, 2004			*																				
Quarter 3, 2004			*															*					
Quarter 4, 2004			*			*																	
Quarter 1, 2005			*															*					
Quarter 2, 2005	*		*																				
Quarter 3, 2005	*		*																				
Quarter 4, 2005			*																				
Quarter 2, 2006			*																				
Quarter 3, 2006			*															*					
Quarter 4, 2006			*																				
Quarter 1, 2007			*																				
Quarter 2, 2007			*				*																
Quarter 3, 2007			*				*																
Quarter 4, 2007			*																				
Quarter 1, 2008			*			*			*														
Quarter 2, 2008	*		*	*		*							*				*		*	*			
Quarter 3, 2008			*	*		*							*				*		*	*			
Quarter 4, 2008			*	*		*	*	*	*				*				*	*		*			
Quarter 1, 2009			*				*	*	*				*	*				*		*			
Quarter 3, 2009			*	*		*											*	*	*	*			H
Quarter 4, 2009			*			*			*									*		*			
Quarter 1, 2010	*		*																	*			<u> </u>
Quarter 2, 2010	*	1	*	*			1		*				*			\vdash	*	*		*			
Quarter 3, 2010	*		*	*		*			Ë							H	*	*	*	*			\vdash
Quarter 4, 2010		<u> </u>	*			Ë	<u> </u>	*			*			*		H	*	*	*	*			\vdash
Quarter 1, 2011	*	-	-	*		*	*	*	*		*		*	*			*	*		*	*		<u> </u>
Quarter 1, 2011 Quarter 2, 2011	*		*	*		-	*	*	*	*	*		*	*			*	*	*	*	*		<u> </u>
	-4-	l		_		Ь—			-		_				*		*	*	*	*	-		\vdash
Quarter 3, 2011	*		*	*			*	*		*			*		*					-			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System		,	UCRS	S						1	URGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
OXIDATION-REDUCTION POTI	ENTL	AL																					
Quarter 4, 2011	*		*	*			*				*						*	*		*			
Quarter 1, 2012	*		*	*		*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 2, 2012	*		*				*		*		*		*	*			*	*	*	*	*		
Quarter 3, 2012	*		*			*	*	*	*	*			*	*			*	*	*	*	*		
Quarter 4, 2012				*		*		*	*	*	*		*	*			*	*	*	*	*		
Quarter 1, 2013				*		*		*	*		*		*	*				*		*	*		
Quarter 2, 2013	*			*			*		*		*		*				*	*	*	*	*		
Quarter 3, 2013	*		*	*		*	*	*	*	*			*				*	*	*	*			
Quarter 4, 2013			*	*		*	*	*	*	*	*	*	*	*			*	*	*	*	*		
Quarter 1, 2014	*		*	*		*	*		*		*	*	*	*			*	*	*	*	*		
Quarter 2, 2014	*		*	*		*	*		*		*		*				*	*	*	*	*		
Quarter 3, 2014	*		*	*		*											*	*	*	*			
Quarter 4, 2014	*		*	*							*		*				*	*	*	*	*		
Quarter 1, 2015	*		*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Quarter 2, 2015	*		*	*	*	*	*				*			*	*	*	*	*	*	*	*	*	*
Quarter 3, 2015	*		*	*	*	*	*	*	*	*	*		*	*	*	*	*	*	*	*	*	*	*
Quarter 4, 2015	*		*	*	*	*	*	*	*	*			*		*	*	*	*	*	*	*	*	*
Quarter 1, 2016	*		*	*	*	*	*	*	*	*	*		*		*		*	*		*	*	*	*
Quarter 2, 2016	*		*	*	*	*		*	*	*			*	*	*	*	*	*		*	*	*	*
Quarter 3, 2016	*		*	*	*	*	*	*	*	*			*	*	*		*	*	*	*	*	*	*
Quarter 4, 2016	*		*	*	*		*	*		*			*		*		*	*	*	*	*	*	*
Quarter 1, 2017	*		*	*	*			*	*						*			*		*		*	*
Quarter 2, 2017	*		*	*	*												*			*	*		
Quarter 3, 2017	*		*	*	*												*	*	*	*	*	*	*
Quarter 4, 2017	*		*	*	*	*	*	*	*	*	*		*	*	*		*	*	*	*	*	*	*
Quarter 1, 2018	*		*	*	*	*												*	*	*	*		*
PCB-1016																							
Quarter 4, 2003							*	*	*		*							*					
Quarter 3, 2004											*												
Quarter 3, 2005							*				*												
Quarter 1, 2006											*												
Quarter 2, 2006											*												
Quarter 4, 2006											*												
Quarter 1, 2007											*	*											
Quarter 2, 2007												*											
Quarter 3, 2007											*												
Quarter 2, 2008											*	*											
Quarter 3, 2008											*												
Quarter 4, 2008											*												
Quarter 1, 2009											*												
Quarter 2, 2009							-				*	-	-		-	-	 	-	-	-	-	-	
Quarter 3, 2009							-				*	-	<u> </u>			<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>		
-											*						_						
Quarter 4, 2009											*												
Quarter 1, 2010 Quarter 2, 2010							<u> </u>				*	<u> </u>			<u> </u>		!					<u> </u>	
,																							
Quarter 3, 2010							-				*	-	-	-	-	-	!	-	-	-	-	-	
Quarter 4, 2010											*												
PCB-1232											şi.												
Quarter 1, 2011											*												
PCB-1248																							
Quarter 2, 2008												*											
PCB-1260																							
Quarter 2, 2006	Ш																	*					
pH																							
Quarter 4, 2002																	*						
Quarter 2, 2003																	*						
Quarter 3, 2003																	*						
Quarter 4, 2003							*										*						
Quarter 1, 2004							*										*						
Quarter 2, 2004																	*						
Quarter 3, 2004																	*						

 $Chart\ of\ MCL\ and\ Historical\ UTL\ Exceedances\ for\ the\ C-746-S\&T\ Landfills\ (Continued)$

Gradient S D D D V S S S S S D D D V U S S D D D D D D D D D D D D D D D D D	Groundwater Flow System			UCRS	S						1	URGA	A								LRGA	Α		
Montrock Well 91 91 91 91 92 93 94 95 95 95 96 97 97 98 98 98 98 98 98 98 98	•	S	_		_	U	S	S	S	S				D	D	U	U	S	D			_	U	U
March 2004		386	389	390		396									391	220			370	373		392	395	397
Quarter 4, 2004 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2011 Quarter 2, 2016 POTANSITINA Quarter 4, 2007 Qu	pН																							
Quarter 1, 2005 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2011 Quarter 3, 2017 Quarter 4, 2008 Quarter 3, 2017 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2007 Quarter 4, 200	•																	*						
Quarter 4, 2005 Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2007 Quarter 4, 2008 Quarter 3, 2011 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2014 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2006 Quarter 3, 2016 Quarter 4, 2006 Quarter 3, 2016 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2016 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2016 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 5, 2006 Quarter 6, 200											*							*				*		
Quarter 1, 2006 Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2008 Quarter 1, 2008 Quarter 1, 2009 Quarter 4, 2008 Quarter 1, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 200											*							*					\vdash	
Quarter 2, 2006 Quarter 3, 2007 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2009 Quarter 4, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2011 Quarter 2, 2011 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2005 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2016 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2016 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2016 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 3, 2003 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 200																		*					\vdash	
Quarter 3, 2006 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 1, 2001 Quarter 1, 2001 Quarter 1, 2001 Quarter 1, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2002 Quarter 4, 2005 Quarter 4, 2008 Quarter 2, 200																		*						
Quarter 1, 2007 Quarter 4, 2008 Quarter 1, 2009 Quarter 1, 2001 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2011 Quarter 2, 2014 Quarter 1, 2012 Quarter 3, 2014 Quarter 2, 2016 POTASSIEM Quarter 4, 2002 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2006 Quarter 4, 2006 Quar																		*					Н	
Quarter 1, 2007 Quarter 1, 2009 Quarter 1, 2001 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2011 Quarter 3, 2004 Quarter 4, 2002 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2007 Quarter 4,																							Н	
Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2001 Quarter 1, 2001 Quarter 2, 2001 Quarter 2, 2001 Quarter 3, 2001 Quarter 3, 2001 Quarter 4, 2001 Quarter 4, 2004 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 200																							\vdash	
Quarter 1, 2009 Quarter 1, 2011 Quarter 2, 2011 Quarter 3, 2011 Quarter 3, 2012 Quarter 1, 2013 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 4, 2002 Quarter 4, 2002 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2012 Quarter 3, 2012 Quarter 3, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2006 Quar																							\vdash	
Quarter 1, 2011 Quarter 2, 2011 Quarter 1, 2012 Quarter 1, 2013 Quarter 4, 2014 Quarter 2, 2016 POTASSIUM Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2009 Quarter 3, 2009 Quarter 2, 2009 Quarter 3, 2009 Quarter 4, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 6, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 6, 2009 Quarter 7, 2009 Quarter 6, 2009 Quarter 7, 2009 Quar																								
Quarter 2, 2011 Quarter 3, 2011 Quarter 4, 2012 Quarter 1, 2013 Quarter 4, 2004 Quarter 2, 2016 POTASSIUM Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 2, 2007 Quar																							\vdash	
Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2014 Quarter 2, 2016 Quarter 3, 2014 Quarter 3, 2014 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2007 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2007 Quarter 2, 2006 Quarter 4, 2017 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2015 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 5, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 7, 2007 Quarter 1, 2008 Quarter 2, 2006 Quarter 2, 2007 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 1, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2007 Quarter 2, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 5, 2008 Quarter 6, 2008 Quarter 6, 2008 Quarter 6, 200												*											\vdash	
Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2014 Quarter 2, 2016 POTASSIUM Quarter 3, 2004 Quarter 3, 2005 Quarter 2, 2006 Quarter 3, 2017 Quarter 2, 2006 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2007 Quarter 5, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 7, 2007 Quarter 7, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 6, 2007 Quarter 7, 2007 Quarter 7, 2007 Quarter 7, 2007 Quarter 9, 2007 Quarter 9, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 5, 2007 Quarter 6, 2007 Quarter 6, 2007 Quarter 7, 2007 Quarter 7, 2007 Quarter 1, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 1, 2007 Quarter 2, 2007 Quarter 3, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 4, 2007 Quarter 5, 2007 Quarter 6, 2007 Quar																							\vdash	
Quarter 1, 2013 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2001 Quarter 3, 2002 Quarter 3, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 2, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2012 Quarter 2, 2013 Quarter 3, 2012 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2005 Quarter 4, 2002 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2007 Quarter 3, 2007 Quarter 2, 200															*								\vdash	
Quarter 4, 2014 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2004 Quarter 4, 2005 Quarter 2, 2005 Quarter 3, 2006 Quarter 4, 2008 Quarter 2, 2008 Quarter 2, 2008 Quarter 3, 2012 Quarter 2, 2013 Quarter 2, 2015 Quarter 2, 2006 Quarter 3, 2014 Quarter 4, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2007 Quarter 4, 200											*			*				*					\vdash	
Quarter 2, 2016 Quarter 2, 2007 Quarter 3, 2002 Quarter 3, 2004 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2013 Quarter 2, 2014 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2014 Quarter 1, 2015 Quarter 3, 2014 Quarter 1, 2015 Quarter 3, 2016 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2016 Quarter 3, 2015 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2016 Quarter 5, 2017 Quarter 6, 2017 Quarter 6, 2017 Quarter 6, 2017 Quarter 1, 2018 RADIUM-28 Quarter 1, 2016 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003 RESERVILMO Quarter 3, 2003											т-			т-				т-				*	\vdash	
Courter 4, 2002																			*	*		т.	₩	
Quarter 3, 2002 Quarter 3, 2004 Quarter 2, 2005 Quarter 3, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2012 Quarter 4, 2008 Quarter 3, 2012 Quarter 1, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2014 Quarter 4, 2005 Quarter 3, 2015 Quarter 3, 2016 Quarter 4, 2015 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 3, 2016 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 5, 2003 Quarter 5, 2003																			*	*				
Quarter 3, 2004 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2012 Quarter 3, 2013 Quarter 3, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 4, 2002 Quarter 4, 2002 Quarter 1, 2005 Quarter 1, 2009 Quarter 2, 2015 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2019 Quarter 3, 2017 Quarter 3, 2005 Quarter 3, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 3, 2007 Quarter 3, 2005 Quarter 1, 2006 SELENIUM Quarter 3, 2003																			JŁ.	3k				
Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2008 Quarter 3, 2008 Quarter 4, 2008 Quarter 4, 2008 Quarter 5, 2008 Quarter 6, 2008 Quarter 7, 2008 Quarter 7, 2008 Quarter 9, 2008 Quarter 1, 2008 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 2, 2003		!	-	-	-	-		-	-			-							不			-	<u> </u>	
Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 2, 2006 Quarter 3, 2006 Quarter 3, 2006 Quarter 4, 2008 Quarter 3, 2012 Quarter 4, 2008 Quarter 3, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 RADIUM-226 Quarter 4, 2002 Quarter 3, 2004 Quarter 3, 2004 Quarter 2, 2005 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2017 Quarter 1, 2017 Quarter 3, 2017 Quarter 1, 2017 Quarter 1, 2018 RADIUM-228 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 1, 2017 Quarter 3, 2005 Quarter 1, 2017 Quarter 1, 2018 RADIUM-228 Quarter 2, 2005 Quarter 3, 2005 Quarter 3, 2007 Quarter 3, 2005 Quarter 4, 2006 SELENIUM Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003																								
Quarter 4, 2005 Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 2, 2014 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2005 Quarter 3, 2015 Quarter 1, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2005 Quarter 3, 2016 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 2, 2017 Quarter 3, 2005 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2018 Quarter 1, 2006 Quarter 1, 2006 Quarter 1, 2007 Quarter 1, 2008 Quarter 1, 2009 Quarter 1, 2000 Quarter 2, 2000 Quarter 2, 2000 Quarter 1, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 2000 Quarter 2, 2000 Quarter 3, 200		!	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>			<u> </u>	-									<u> </u>	<u> </u>	
Quarter 2, 2006 Quarter 3, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2013 Quarter 2, 2014 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2015 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 2, 2017 Quarter 2, 2016 Quarter 3, 2016 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2016 Quarter 3, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 4, 2007 Quarter 2, 2003 Quarter 1, 2006 Quarter 1, 2006 Quarter 2, 2003 Quarter 3, 2003	-																						\vdash	
Quarter 4, 2006 Quarter 4, 2006 Quarter 4, 2008 Quarter 3, 2012 Quarter 1, 2013 Quarter 1, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 3, 2011 Quarter 4, 2012 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 2, 2016 Quarter 2, 2016 Quarter 2, 2016 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 2, 2005 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2017 Quarter 4, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2007 Quarter 4, 2005 Quarter 2, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003																							<u> </u>	
Quarter 4, 2006 Quarter 4, 2008 Quarter 4, 2008 Quarter 1, 2013 Quarter 1, 2013 Quarter 2, 2015 Quarter 2, 2005 Quarter 2, 2005 Quarter 1, 2009 Quarter 2, 2005 Quarter 1, 2009 Quarter 2, 2015 Quarter 3, 2014 ** ** ** ** ** ** ** ** ** ** ** ** *																							<u> </u>	
Quarter 4, 2008 Quarter 3, 2012 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2012 Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2002 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2004 Quarter 2, 2005 Quarter 1, 2009 Quarter 1, 2009 Quarter 3, 2014 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2018 Quarter 2, 2005 Quarter 3, 2017 Quarter 4, 2018 Quarter 4, 2019 Quarter 3, 2017 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2017 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2017 Quarter 4, 2019 Quarter 4, 2019 Quarter 4, 2019 Quarter 3, 2017 Quarter 4, 2019 Quarter 4, 2009 Quarter 1, 2000 Quarter 2, 2000 Quarter 3, 2000																							<u> </u>	
Quarter 1, 2012 Quarter 1, 2013 Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 RADIUM-226 Quarter 2, 2004 Quarter 2, 2005 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2009 Quarter 1, 2015 Quarter 4, 2014 Quarter 1, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 2, 2007 Quarter 3, 2017 Quarter 3, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2007 Quarter 2, 2007 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2017 Quarter 3, 2017 Quarter 3, 2017 Quarter 4, 2016 Quarter 4, 2016 Quarter 3, 2007 Quarter 3, 2007 Quarter 4, 2016 Quarter 4, 2016 Quarter 5, 2007 Quarter 6, 2017 Quarter 6, 2017 Quarter 7, 2007 Quarter 7, 2008 Quarter 1, 2008 Quarter 2, 2003 Quarter 3, 2003																								
Quarter 2, 2013 Quarter 2, 2013 Quarter 3, 2013 RADIUM-226 Quarter 4, 2002 Quarter 2, 2004 Quarter 1, 2009 Quarter 1, 2015 Quarter 1, 2015 Quarter 2, 2015 Quarter 2, 2015 ** ** ** ** ** ** ** ** **																							<u> </u>	
Quarter 2, 2013 Quarter 3, 2013 Quarter 3, 2013 Quarter 4, 2002 Quarter 4, 2002 Quarter 2, 2005 Quarter 2, 2005 Quarter 2, 2009 Quarter 3, 2011 Quarter 4, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2015 Quarter 3, 2016 Quarter 3, 2016 Quarter 3, 2016 Quarter 4, 2016 X X X X X X X X X X X X X X X X X X X																								
Quarter 3, 2013 RADIUM-226 Quarter 4, 2002 W																							$ldsymbol{ldsymbol{ldsymbol{eta}}}$	
RADIUM-226 Quarter 4, 2002																							$ldsymbol{ldsymbol{ldsymbol{eta}}}$	
Quarter 4, 2002																				*			<u> </u>	
Quarter 2, 2004 Quarter 2, 2005 Quarter 1, 2009 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 Quarter 2, 2015 Quarter 2, 2015 Quarter 3, 2015 Quarter 4, 2015 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2016 Quarter 4, 2017 Quarter 2, 2017 Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 4, 2017 Quarter 3, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 4, 2000 Quarter 4, 2000 Quarter 4, 20003 Quarter 4, 20003 Quarter 2, 20003 Quarter 2, 20003 Quarter 3, 20003	RADIUM-226																							
Quarter 2, 2005 Quarter 1, 2009 Quarter 3, 2014 Quarter 4, 2014 Quarter 4, 2015 * * * * * * * * * * * * * * * * * * *	Quarter 4, 2002			*										*	*							*	<u> </u>	
Quarter 1, 2009	Quarter 2, 2004																			*				
Quarter 3, 2014 Quarter 4, 2014	Quarter 2, 2005									*														
Quarter 4, 2014	Quarter 1, 2009											*												
Warter 1, 2015	Quarter 3, 2014									*			*											
Warter 3, 2015	Quarter 4, 2014			*								*							*					
Quarter 3, 2015	Quarter 1, 2015			*				*			*		*						*					
Quarter 4, 2015	Quarter 2, 2015			*				*			*		*						*					
Wanter 3, 2016	Quarter 3, 2015			*																				
Quarter 3, 2016 Quarter 4, 2016 * * * * * * * * * * * * * * * * * * *	Quarter 4, 2015					*	*									*		*				*	*	
Quarter 4, 2016	Quarter 2, 2016			*						*		*	*	*	*	*	*							
Quarter 1, 2017	Quarter 3, 2016																		*					
Quarter 2, 2017 Quarter 3, 2017 Quarter 4, 2017 Quarter 1, 2018 RADIUM-228 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2005 Quarter 1, 2006 SELENIUM Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003	Quarter 4, 2016	*		*			*			*				*		*					*		*	
Quarter 2, 2017 *	Quarter 1, 2017			*							*	*							*					
Quarter 4, 2017 Quarter 1, 2018 RADIUM-228 Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 4, 2006 Quarter 1, 2006 SELENIUM Quarter 1, 2003 Quarter 1, 2003 Quarter 2, 2003 Quarter 2, 2003 Quarter 3, 2003	Quarter 2, 2017																	*	*		*	*		
Quarter 4, 2017	Quarter 3, 2017					*				*	*	*									*			
Quarter 1, 2018	Quarter 4, 2017																		*		*		Г	П
RADIUM-228 Quarter 2, 2005 Image: Control of the c	•	1											*						*		*		\Box	М
Quarter 2, 2005 Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 SELENIUM Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003	RADIUM-228																							
Quarter 3, 2005 Quarter 4, 2005 Quarter 1, 2006 SELENIUM Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003																								
Quarter 4, 2005 Image: square of the content of th																							Г	
Quarter 1, 2006 SELENIUM Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003																							Г	\vdash
SELENIUM Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003 Quarter 3, 2003																							г	Н
Quarter 4, 2002																								
Quarter 1, 2003																								H
Quarter 2, 2003		 	-	_	-			-	-			-	1									-		$\vdash \vdash$
Quarter 3, 2003	` '	-	-		-	-		-	-			-										-	<u> </u>	$\vdash\vdash$
Quanto 5, 2005		_				-																		
Qualici 4, 2003		_				-							-											$\vdash\vdash$
	Quarter 4, 2005	_	_	_	_	_	_	_	_	_		_		_	_	_	ш	щ		_		_		_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Gradient Monitoring Well SODIUM Quarter 4, 2002 Quarter 1, 2003	S 386	D 389	D 390	D 393	U 396	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well SODIUM Quarter 4, 2002	386	389	390	393	396	221		_															'
Quarter 4, 2002					370	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2003																			*		*		
				*					*	*	*												
Quarter 2, 2003				*						*	*		*										
Quarter 3, 2003							*	*		*													
Quarter 4, 2003							*		*	*													
Quarter 1, 2004									*	*				*									
Quarter 2, 2004										*													
Quarter 3, 2004										*													
Quarter 4, 2004									*	*													
Quarter 1, 2005										*									*				
Quarter 2, 2005										*									*				
Quarter 3, 2005									*	*									*				
Quarter 4, 2005									*	*													
Quarter 1, 2006									*	*													
Quarter 2, 2006									*														
Quarter 3, 2006	-								*	*		*							*				\vdash
-		<u> </u>				_			*	*		-		<u> </u>			*		-			<u> </u>	<u> </u>
Quarter 4, 2006	-	 							*	<u> </u>		*	 				_			-			<u> </u>
Quarter 1, 2007	-	<u> </u>							*	*		*	<u> </u>										<u> </u>
Quarter 2, 2007	_								*	不													<u> </u>
Quarter 3, 2007																							
Quarter 4, 2007									*														
Quarter 1, 2008									*														
Quarter 3, 2008												*											
Quarter 4, 2008									*	*													
Quarter 1, 2009									*			*							*				
Quarter 3, 2009												*											
Quarter 4, 2009									*			*											
Quarter 1, 2010												*											
Quarter 2, 2010										*		*											
Quarter 3, 2010										*													
Quarter 4, 2010									*	*													
Quarter 1, 2011										*													
Quarter 2, 2011									*														
Quarter 4, 2011																			*				
Quarter 1, 2012											*												
Quarter 3, 2012												*							*				
Quarter 4, 2012												*											
Quarter 1, 2013										*		*							*				
Quarter 2, 2013										-		*							-				
Quarter 3, 2013												*							*				
Quarter 4, 2013												*							*				
												*							-				
Quarter 1, 2014									*		*	*							*				
Quarter 2, 2014									*		*												
Quarter 3, 2014	-	<u> </u>								4		*							*	<u> </u>			<u> </u>
Quarter 4, 2014	<u> </u>								*	*		*	*			Щ							<u> </u>
Quarter 1, 2015	-	<u> </u>										46	*							<u> </u>			<u> </u>
Quarter 2, 2015	_	<u> </u>								, L		*	<u> </u>										<u> </u>
Quarter 3, 2015	<u> </u>								JL.	*		*				Щ							<u> </u>
Quarter 4, 2015	_	<u> </u>							*	*	- No	*	<u> </u>										<u> </u>
Quarter 2, 2016	<u> </u>										*					Щ							٠
Quarter 3, 2016										şi.	*		984					şl.		<u> </u>			*
Quarter 1, 2017									984	*	*		*					*		<u> </u>			
Quarter 2, 2017	_								*	*	*						ш						_
STRONTIUM-90																							
Quarter 2, 2003										_										<u> </u>			
Quarter 1, 2004	Щ	<u> </u>				ட				_			<u> </u>				Щ			<u> </u>			_

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System Gradient Monitoring Well SULFATE Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003 Quarter 3, 2003	S 386	D 389	D 390	D 393	U 396	S 221	S 222	S 223	S	S	URGA D	D	D	D	U	U	S	D	D	LRGA D	D	U	U
SULFATE Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003	386	389	390	393	396	221	222	222	22.4														
SULFATE Quarter 4, 2002 Quarter 1, 2003 Quarter 2, 2003				-				223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
Quarter 1, 2003 Quarter 2, 2003																							
Quarter 2, 2003																			*				
												*	*				*		*				
Quarter 3, 2003										*		*	*					*	*				
										*		*	*						*				
Quarter 4, 2003										*		*	*						*				
Quarter 1, 2004										*		*	*					*	*				
Quarter 2, 2004										*		*	*				*	*	*	*			
Quarter 3, 2004									*	*		*	*					*	*				
Quarter 4, 2004										*		*	*					*	*				<u> </u>
Quarter 1, 2005										*		*	*				*	*	*				<u> </u>
Quarter 2, 2005										*		*	*					*	*				<u> </u>
Quarter 3, 2005										*		*	*				*	*	*				<u> </u>
Quarter 4, 2005										*		*	*					*	*	*			
Quarter 1, 2006										*		*	*				*	*	*	*			<u> </u>
Quarter 2, 2006									*	*		*	*				*	*	*	*			
Quarter 3, 2006									*	*		*	*				*		*	*			
Quarter 4, 2006									*	*		*	*				*		*				L
Quarter 1, 2007									*	*		*	*				*		*	*			
Quarter 2, 2007									*	*		*	*				*		*	*			L
Quarter 3, 2007									*	*		*	*				*		*	*			
Quarter 4, 2007										*		*	*				*	*	*	*			
Quarter 1, 2008	_									*		*	*				*	*	*	*			Ē
Quarter 2, 2008								*		*	*	*	*	*			*	*	*	*			
Quarter 3, 2008										*		*	*				*	*	*	*			
Quarter 4, 2008										*		*	*				*		*				
Quarter 1, 2009										*		*	*				*	*	*				
Quarter 2, 2009									*	*		*	*				*	*	*	*			
Quarter 3, 2009									*	*		*	*				*	*	*	*			
Quarter 4, 2009	*									*		*	*				*	*	*				
Quarter 1, 2010	*								*	*		*	*				*		*				
Quarter 2, 2010									*	*		*	*				*	*	*	*			
Quarter 3, 2010										*		*	*				*	*	*	*			
Quarter 4, 2010	*									*		*	*				*	*	*				
Quarter 1, 2011	*									*		*	*				*	*	*				
Quarter 2, 2011	*									*		*	*	*			*	*	*	*			
Quarter 3, 2011	*									*		*	*	*			*	*	*	*			
Quarter 4, 2011	*									*		*	*				*	*	*	*			
Quarter 1, 2012	*									*		*	*				*	*	*	*			
Quarter 2, 2012	*									*		*	*				*	*	*	*			
Quarter 3, 2012	*									*		*	*				*	*	*	*			
Quarter 4, 2012										*		*	*				*	*	*	*			
Quarter 1, 2013										*		*	*				*	*	*	*			
Quarter 2, 2013										*		*	*	*			*	*	*	*			
Quarter 3, 2013										*		*	*	*			*	*	*	*			Г
Quarter 4, 2013										*		*	*				*	*	*	*			Г
Quarter 1, 2014								*		*		*	*				*	*	*	*			
Quarter 2, 2014										*		*	*	*			*	*	*	*			
Quarter 3, 2014										*		*	*	*			*	*	*	*			
Quarter 4, 2014										*		*	*				*	*	*	*			
Quarter 1, 2015										*		*	*				*	*	*	*			
Quarter 2, 2015										*	*	*	*	*	*		*	*	*	*			
Quarter 3, 2015								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2015										*		*	*	*			*		*	*			
Quarter 1, 2016								*		*		*	*	*			*	*	*	*			
Quarter 2, 2016								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2016								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2016										*		*	*	*	*		*	*	*	*			
Quarter 1, 2017										*		*	*	*	*		*	*	*	*			
Quarter 2, 2017								*		*		*	*	*	*		*	*	*	*			
Quarter 3, 2017								*		*		*	*	*	*		*	*	*	*			
Quarter 4, 2017										*		*	*	*	*		*	*	*	*			
Quarter 1, 2018										*		*	*	*			*	*	*	*			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S							URG	A								LRGA	١		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TECHNETIUM-99																							
Quarter 4, 2002																			*				
Quarter 1, 2003													*				*		*				
Quarter 2, 2003	*		*							*			*				*						
Quarter 3, 2003			*									-14	*				*			*			
Quarter 4, 2003			*							*		*	*				*		*	*			
Quarter 1, 2004	-		*									*	*				*		*	*			
Quarter 2, 2004 Quarter 3, 2004			*									*	不				*		*	不			-
Quarter 4, 2004			*							*		*	*				*	*	*				
Quarter 1, 2005			*							*		*	*				*		-4-	*			
Quarter 2, 2005	l		*							*			*				*	*	*	*			
Quarter 3, 2005	1		*							*			*				*	*	*	*			
Quarter 4, 2005	1		*							*		*	*				*		*	*			
Quarter 1, 2006										*		*	*						*	*			
Quarter 2, 2006			*							*			*				*	*	*	*			
Quarter 3, 2006			*							*			*				*	*	*	*			
Quarter 4, 2006	*									*		*	*		l -	l -			*	*			
Quarter 1, 2007	t		*							*			*				*		*	*			
Quarter 2, 2007	t		*							*		*	*				*	*		*			
Quarter 3, 2007	l		*							*	*	*	*				*		*	*			
Quarter 4, 2007	l		*							*		*	*				*		*	*			
Quarter 1, 2008	l		*							*		*	*				*	*	*	*			
Quarter 2, 2008	l		*							*	*		*				*		*	*			
Quarter 3, 2008										*		*	*				*			*			
Quarter 4, 2008			*							*		*	*				*	*	*	*			
Quarter 1, 2009			*							*		*	*				*						
Quarter 2, 2009			*							*		*	*				*	*		*			
Quarter 3, 2009			*							*	*	*	*				*			*			
Quarter 4, 2009			*							*		*	*				*						
Quarter 1, 2010			*							*		*	*				*						
Quarter 2, 2010			*							*			*				*	*		*			
Quarter 3, 2010			*							*	*	*	*				*						
Quarter 4, 2010			*							*		*	*				*						
Quarter 1, 2011										*			*				*						
Quarter 2, 2011			*							*			*				*			*			
Quarter 3, 2011			*							*			*				*			*			
Quarter 4, 2011			*							*	*	*	*				*						
Quarter 1, 2012			*							*			*				*			*			
Quarter 2, 2012			*							*			*				*		*	*			
Quarter 3, 2012			*							*		*	*				*						
Quarter 4, 2012	1—	-		<u> </u>			<u> </u>	<u> </u>		*		*	*		<u> </u>	<u> </u>	*		*	*			
Quarter 1, 2013	├	<u> </u>								*		*	*				*		*	*			
Quarter 2, 2013	1—		*			 		-		*		*	*		-	-	*		*	*			-
Quarter 3, 2013 Quarter 4, 2013	1		*	_			_	_		*		*	*		_	_	*		*	*			_
Quarter 4, 2013 Quarter 1, 2014	\vdash		*			_				*	*	•	*				*		*	*			
Quarter 1, 2014 Quarter 2, 2014	\vdash		*			.				*	*		*	*	<u> </u>	<u> </u>	*		*	*			
Quarter 3, 2014	1	<u> </u>	*	-			-	-		*	<u> </u>		*	ļ.,	-	-	*		<u> </u>	*			-
Quarter 4, 2014	1		*			 				*	*	*	*				*		*	*			-
Quarter 1, 2015	l –		*			 		-		*	*	*	*		-	-	*			*			-
Quarter 2, 2015	1		*	 			 			*	*		*				*			*			
Quarter 3, 2015	t		*							*	*	*	*				*	*	*	*			
Quarter 4, 2015	t		*							*	*	*	*				*	*		*			
Quarter 1, 2016	T		*							*	*		*				*		*	*			
Quarter 2, 2016	l		*			*				*			*				*	*		*			
Quarter 3, 2016	Ĭ		*							*		*	*				*	*		*			
Quarter 4, 2016			*							*	*		*				*			*			
Quarter 1, 2017			*							*			*				*	*		*			
Quarter 2, 2017			*							*			*				*	*		*			
Quarter 3, 2017			*							*	*		*				*	*		*			
Quarter 4, 2017			*							*	*	*	*				*	*		*			
Quarter 1, 2018			*							*	*		*				*	*		*			

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						1	URGA	4								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385		373	388	392	395	397
THORIUM-230																							
Quarter 1, 2012	*								*					*									
Quarter 4, 2014	*		*																				\vdash
Quarter 3, 2015	*								*	*			*		*								
Quarter 1, 2017			*							*							*						
THORIUM-234																							
Quarter 2, 2003						*			*					*									
Quarter 4, 2007									*					-									<u> </u>
TOLUENE																							
Quarter 2, 2014										*	*		*										
TOTAL ORGANIC CARBON										т.	т .		т.										
																					*		
Quarter 4, 2002				*						*	*							*	*		*		
Quarter 1, 2003				*		-				*	*		*					不	*		*		\vdash
Quarter 2, 2003								<u>.</u>	ı.				*								不		-
Quarter 3, 2003							*	*	*	*	*	*											-
Quarter 4, 2003							*		*	*													
Quarter 1, 2004		<u> </u>	<u> </u>					<u> </u>		*	,u.	<u> </u>		<u> </u>	<u> </u>			<u> </u>			<u> </u>		<u> </u>
Quarter 2, 2004		<u> </u>	<u> </u>					<u> </u>		*	*	<u> </u>		<u> </u>	<u> </u>								<u> </u>
Quarter 3, 2004		<u> </u>	<u> </u>		<u> </u>			<u> </u>		*	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		L_	<u> </u>		<u> </u>	<u> </u>		
Quarter 4, 2004										*													
Quarter 1, 2005										*													
Quarter 2, 2005					L		L			*			L				L			L	*		L
Quarter 3, 2005										*		*									*		
Quarter 4, 2005										*											*		
Quarter 1, 2006										*													
Quarter 2, 2006										*		*											
Quarter 4, 2006																	*						
Quarter 1, 2007	*									*													-
Quarter 3, 2007	*					*	*	*	*	*			*	*			*						-
	т					*	~	т.	т-	т.	*		т.	т.			т.						
Quarter 2, 2011	u.										不												ļ
Quarter 3, 2012	*																						
Quarter 3, 2016																			*				
TOTAL ORGANIC HALIDES																							
Quarter 4, 2002																		*	*		*		
Quarter 1, 2003				*														*			*		
Quarter 3, 2003				*																	*		
Quarter 2, 2004																					*		
Quarter 3, 2004	*																						
Quarter 1, 2005	*																						
Quarter 2, 2005	*					L																	
Quarter 3, 2005	*																						
Quarter 4, 2005	*																						
Quarter 1, 2006	*																						
Quarter 2, 2006	*																						
Quarter 3, 2006	*																						
Quarter 4, 2006																	*						
Quarter 1, 2007	*																						
Quarter 2, 2007	*																						
Quarter 3, 2007	*					1																	
Quarter 4, 2007	*																				*		
Quarter 1, 2008	*																						
Quarter 4, 2008	*																						
Quarter 4, 2008	*	1	1			1		1			1	1		1	1			1			1		
Quarter 1, 2009	*	 	 			1		 			 	 		 	 			 			 		
Quarter 2, 2009	*	-	-		-	1		-		-	-	-	-	-	-		-	-		-	*		
Quarter 3, 2009	*	-	-		-	1		-		-	-	-	-	-	-		-	-		-	٠.		
	*	-	-	<u> </u>		 	-	-			-	<u> </u>		-	-			-			-	-	
Quarter 4, 2009	*	 	 			-		 			 	-		 	 		_	 			 		-
Quarter 1, 2010						_	-										<u> </u>						-
Quarter 2, 2010	*	<u> </u>	<u> </u>			!	-	<u> </u>			<u> </u>	<u> </u>		<u> </u>	<u> </u>		_	<u> </u>			<u> </u>		
Quarter 3, 2010	*																Ц_						

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCRS	S						Ţ	URG/	A								LRG	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TOTAL ORGANIC HALIDES																							
Quarter 4, 2010	*																						
Quarter 1, 2011	*																						
Quarter 3, 2013																					*		
TRICHLOROETHENE																							
Quarter 4, 2002																							
Quarter 1, 2003																							
Quarter 2, 2003																							
Quarter 3, 2003																							
Quarter 4, 2003																							
Quarter 1, 2004																							
Quarter 2, 2004																							
Quarter 3, 2004																							
Quarter 4, 2004																							
Quarter 1, 2005																							
Quarter 2, 2005																							
Quarter 3, 2005																							
Quarter 4, 2005																							
Quarter 1, 2006																	H					_	
Quarter 2, 2006			1												1								
Quarter 2, 2007			1												1								
Quarter 3, 2007			<u> </u>			—						i	<u> </u>	i	<u> </u>	Ħ	H		H	<u> </u>	H		\vdash
Quarter 4, 2007			-										-	-	-					-			
Quarter 1, 2008			 									i			 	=	\vdash		i		i	⊢	
Quarter 2, 2008													<u> </u>							<u> </u>		—	
Quarter 3, 2008																-						-	
Quarter 4, 2008												-							H			-	
-														=									
Quarter 1, 2009																=							
Quarter 2, 2009																							
Quarter 3, 2009														-									
Quarter 4, 2009											_												
Quarter 1, 2010												_									_		
Quarter 2, 2010												_				_			<u> </u>		_	_	
Quarter 3, 2010												_		•		•					_		
Quarter 4, 2010												_										_	
Quarter 1, 2011												•							_				
Quarter 2, 2011												_				<i>lladli</i>							
Quarter 3, 2011												_											
Quarter 4, 2011																							
Quarter 1, 2012												•											
Quarter 2, 2012																							
Quarter 3, 2012																							
Quarter 4, 2012																							
Quarter 1, 2013																							
Quarter 2, 2013																							
Quarter 3, 2013																							
Quarter 4, 2013																							
Quarter 1, 2014																							
Quarter 2, 2014																							
Quarter 3, 2014																							
Quarter 4, 2014																							
Quarter 1, 2015																							
Quarter 2, 2015																							
Quarter 3, 2015																							
Quarter 4, 2015																							
Quarter 1, 2016																							
Quarter 2, 2016																							
Quarter 3, 2016																							
Quarter 4, 2016																-						H	
Quarter 1, 2017																						H	
Quarter 2, 2017			-									-	-		-				1	 		\vdash	
Quarter 3, 2017			 									i			 		\vdash		i		ī	H	
Quarter 4, 2017 Quarter 4, 2017											•	_	<u> </u>						H	<u> </u>		—	
			L								_		<u> </u>				\vdash					\vdash	-
Quarter 1, 2018																							

Chart of MCL and Historical UTL Exceedances for the C-746-S&T Landfills (Continued)

Groundwater Flow System			UCR	S						1	URGA	A								LRGA	A		
Gradient	S	D	D	D	U	S	S	S	S	S	D	D	D	D	U	U	S	D	D	D	D	U	U
Monitoring Well	386	389	390	393	396	221	222	223	224	384	369	372	387	391	220	394	385	370	373	388	392	395	397
TURBIDITY																							
Quarter 4, 2002																					*		
Quarter 1, 2003							*					*		*									
URANIUM																							
Quarter 4, 2002																		*	*				
Quarter 1, 2003																			*				
Quarter 4, 2003							*																
Quarter 1, 2004							*	*	*					*			*						
Quarter 4, 2004																	*						
Quarter 4, 2006																			*		*		
ZINC																							
Quarter 3, 2003												*											
Quarter 4, 2003							*		*			*											
Quarter 4, 2004							*																
Quarter 4, 2007							*	*	*														

* Statistical test results indicate an elevated concentration (i.e., a statistically significant increase)

■ MCL Exceedance

Previously reported as an MCL exceedance; however, result was equal to MCL

UCRS Upper Continental Recharge System

URGA Upper Regional Gravel Aquifer

LRGA Lower Regional Gravel Aquifer

S Sidegradient; D Downgradient; U Upgradient

APPENDIX H METHANE MONITORING DATA

CP3-WM-0017-F03 - C-746-S & T LANDFILL METHANE MONITORING REPORT

Date:		3/0	08/20	18			Т	ime	e:			090)0a	m			M	on	itor	:		R	obert Kirby
Weather Cor Mostly cloud			grees	s wit	h wi	nds	out	of t	the	e N'	W at	t 7 :	mp	h			***********						
Monitoring E RAE System	quipm	ent:																					
						loni	torii	ng L	LO(cat	ion												Reading (% LEL)
Ogden Landin Road Entranc		Che	ecked	d at g	round	d leve	el																0
North Landfill	Gate	Che	ecked	d at g	round	d leve	əl																0
West Side of Landfill: North 37° 0 West 88° 4		Che	ecked	d at g	round	d leve	əl																0
East Side of Landfill: North 37° 0 West 88° 4	07.628'			d at g																			0
Cell 1 Gas Ve	nt (17)	1 0	2	3	4 0	5 0	6 0	7 0		8 0	9		0	11 0	12 0	13 0		4	15 0	16 0		17 0	0
Cell 2 Gas Ve	ent (3)	1 0	0	3 0																			0
Cell 3 Gas Ve	ent (7)	1	0	3	4 0	5 0	6 0	7 0															0
Landfill		Che	ecked	d at fl	oor le	evel																	0
Suspect or Pr	oblem Areas	No	area	s note	ed																		N/A
Remarks:																							
ALL VENTS	CHEC	KE	D 1"	FRO	MC	THE	ΞΜ	OU ⁻	Tŀ	НО	FV	ΈN	Τ										
Performed b	y:				1	!	nul)	ت ب	h	·	K										7)	10	~ 8/18
	Signature Smith											V	8//8 Date										

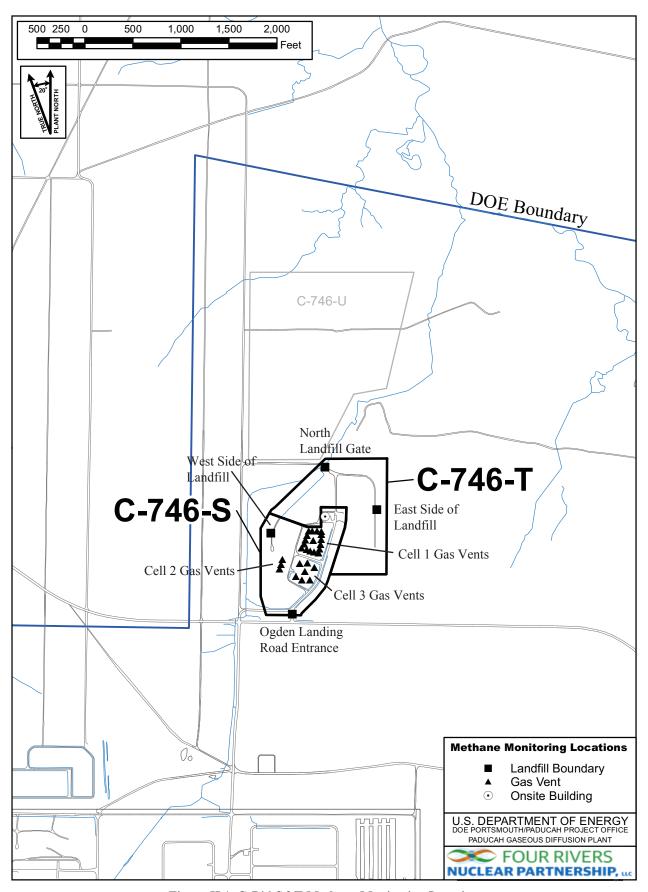


Figure H.1. C-746-S&T Methane Monitoring Locations

APPENDIX I SURFACE WATER ANALYSES AND WRITTEN COMMENTS

Division of Waste Management

RESIDENTIAL/INERT-QUARTERLY

Solid Waste Branch

14 Reilly Road

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015 FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None

Frankfort, KY 40601 (502)564-6716

For Official Use Only

SURFACE WATER SAMPLE ANALYSIS (s)

Monitoring Po	int	(KPDES Discharge Number, or "U	JPST	REAM", or "D	OWNSTREAM")	L135 UPSTRE	AM	L154 DOWNSTI	REAM	L136 AT SI	TE		
Sample Sequer	ıce	#				1		1		1			
If sample is	a Bl	ank, specify Type: (F)ield, (T)r:	ip, (M)ethod	, or (E)quipment	NA		NA		NA			
Sample Date a	and	Time (Month/Day/Year hour: m	inu	tes)		1/8/2018 09:3	34	1/8/2018 09:	23	1/22/2018 08	3:05		
Duplicate (")	?" c	or "N") ¹				N		N		N			7
Split ('Y' o	· "N	Ι") ²				N		N		N			/
Facility Samp	ole	ID Number (if applicable)				L135SS2-18	3	L154US2-1	8	L136SS2-1	18	\ /	
Laboratory Sa	mpl	e ID Number (if applicable)				441179001		441166002	2	44215700	1	\ /	
Date of Analy	rsis	(Month/Day/Year)				1/18/2018		1/18/2018		2/1/2018			
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQI	F L A G
A200-00-0	0	Flow	Т	MGD	Field	0.01		0.81		0.06		/ \	
16887-00-6	2	Chloride(s)	Т	MG/L	300.0	11.6		11.4		1.24		/ \	
14808-79-8	0	Sulfate	Т	MG/L	300.0	10.8		10.2		10.5			
7439-89-6	0	Iron	Т	MG/L	200.8	0.275		0.526		0.465			
7440-23-5	0	Sodium	Т	MG/L	200.8	1.85		1.33		1.17			
s0268	0	Organic Carbon ⁶	Т	MG/L	9060	21.2		25.3		11.6			
s0097	0	BOD ⁶	Т	MG/L	not applicable		*		*		*		
s0130	0	Chemical Oxygen Demand	т	MG/L	410.4	47.7		71.5		37.6			

STANDARD FLAGS:

- * = See Comments
- J = Estimated Value
- B = Analyte found in blank
- A = Average value
- N = Presumptive ID
- D = Concentration from analysis of a secondary dilution factor

¹Respond "Y" if the sample was a duplicate of another sample in this report

²Respond "Y" if the sample was split and analyzed by separate laboratories.

³Chemical Abstracts Service Registry Number or unique identifier number assigned by agency.

⁴"T" = Total; "D" = Dissolved

⁵"<" indicates a non-detect; do not use "ND" or "BDL". Value then shown is Practical Quantification Limit ⁶Facility has either/or option on Organic Carbon and (BOD) Biochemical Oxygen Demand - both are not required

Facility has either/or option on Organic Carbon and (BOD) Blochemical Oxygen Demand - both are <u>not</u> required ⁷Flags are as designated, do not use any other type. Use "*," then describe on "Written Comments" page.

SURFACE WATER - QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Number: 073-00014 & 073-00015

FINDS/UNIT: KY8-890-008-982 / 1

LAB ID: None
For Official Use Only

SURFACE WATER SAMPLE ANALYSIS - (Cont.)

Monitoring Po	int	: (KPDES Discharge Number, or	יי ד	JPSTREAM" or	"DOWNSTREAM")	L135 UPSTRE	EAM	L154 DOWNSTE	REAM	L136 AT S	ITE		
CAS RN ³		CONSTITUENT	T D 4	Unit OF MEASURE	METHOD	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	F L A G	DETECTED VALUE OR PQL ⁵	A G s ⁷
s0145	1	Specific Conductance	Т	µHMS/CM	Field	203		165		282			
s0270	0	Total Suspended Solids	Т	MG/L	160.2	6.2		9.4		4.9			
s0266	0	Total Dissolved Solids	Т	MG/L	160.1	176	*	179	*	196			
s0269	0	Total Solids	т	MG/L	SM-2540 B 17	204		193		218			
s0296	0	Нд	т	Units	Field	7.55		7.38		7.78			
7440-61-1		Uranium	Т	MG/L	200.8	0.00499		0.00126		0.00243			
12587-46-1		Gross Alpha (α)	т	pCi/L	9310	9.68	*	0.834	*	7.23	*		
12587-47-2		Gross Beta (β)	т	pCi/L	9310	40.7	*	9.38	*	5.44	*	X	
												/\	
												/	
													\
													\prod
													\Box
													\Box
												<u> </u>	

RESIDENTIAL/INERT – QUARTERLY

Facility: US DOE - Paducah Gaseous Diffusion Plant

Permit Numbers: 073-00014 & 073-00015

Finds/Unit:	KY8-890-008-982 /	1
LAB ID:	None	
For Official U	se Only	

SURFACE WATER WRITTEN COMMENTS

Monitoring Point	Facility Sample ID	Constituent	Flag	Description
L135	L135SS2-18	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity		TPU is 3.05. Rad error is 2.61.
		Beta activity		TPU is 7.58. Rad error is 3.69.
L154	L154US2-18	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Dissolved Solids	*	Duplicate analysis not within control limits.
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 1.31. Rad error is 1.3.
		Beta activity		TPU is 3.2. Rad error is 2.8.
L136	L136SS2-18	Biochemical Oxygen Demand (BOD)		Analysis of constituent not required and not performed
		Alpha activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 6.05. Rad error is 5.93.
		Beta activity	U	Indicates analyte/nuclide was analyzed for, but not detected. TPU is 5.64. Rad error is 5.54.

