

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

AUG 2 9 2014

PPPO-02-2445067-14

Mr. Todd Mullins
Federal Facility Agreement Manager
Division of Waste Management
Kentucky Department for Environmental Protection
200 Fair Oaks Lane, 2nd Floor
Frankfort, Kentucky 40601

Ms. Jennifer Tufts
Federal Facility Agreement Manager
U.S. Environmental Protection Agency, Region 4
61 Forsyth Street
Atlanta, Georgia 30303

Dear Mr. Mullins and Ms. Tufts:

TRANSMITTAL OF THE ADDENDUM TO THE WORK PLAN FOR THE SOILS OPERABLE UNIT REMEDIAL INVESTIGATION/FEASIBILITY STUDY AT THE PADUCAH GASEOUS DIFFUSION PLANT, PADUCAH, KENTUCKY, REMEDIAL INVESTIGATION 2, SAMPLING AND ANALYSIS PLAN (DOE/LX/07-0120&D2/R2/A1/R1)

References:

- 1. Letter from J. Tufts to J. Woodard, "EPA Comments on the Addendum to the Work Plan for the Soils Operable Unit Remedial Investigation/Feasibility Study at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Remedial Investigation 2 Sampling and Analysis Plan (DOE/LX/07-0120&D2/R2/A1)," dated August 1, 2014
- Letter from A. Webb to J. Woodard, "Comments on the Addendum to the Work Plan for the Soils Operable Unit Remedial Investigation/Feasibility Study Remedial Investigation 2 - Sampling and Analysis Plan (DOE/LX/07-0120&D2/R2/A1), Paducah Gaseous Diffusion Plant, Paducah, McCracken County, Kentucky, KY8-890-008-982," dated July 24, 2014

Enclosed for your approval is the certified Addendum to the Work Plan for the Soils Operable Unit Remedial Investigation/Feasibility Study at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Remedial Investigation 2, Sampling and Analysis Plan, DOE/LX/07-0120&D2/R2/A1/R1. The approach included in this work plan was scoped by the Federal Facility Agreement (FFA) parties during scoping meetings held in March and April 2014. As agreed to by the FFA parties, the Quality Assurance Project Plan worksheets from the original work plan were used to develop the addendum. The subject document has been revised in response to comments received from the Kentucky Department for Environmental Protection

and the U.S. Environmental Protection Agency on July 24, 2014, and August 1, 2014, respectively. This document also contains revisions based on feedback received during the comment resolution teleconferences held with the FFA parties on August 13 and 20, 2014. A redline version of the document and comment response summaries also are included.

If you have any questions or require additional information, please contact Lisa Santoro at (270) 441-6804.

Sincerely,

Jennifer Woodard Paducah Site Lead

Portsmouth/Paducah Project Office

mile Wordard

Enclosures:

- 1. Addendum to the WP for the SOU RI/FS, RI 2 SAP (clean)
- 2. Addendum to the Work Plan for the SOU RI/FS, RI 2 SAP (redline)
- 3. KDEP CRS
- 4. EPA CRS
- 5. Certification Page

e-copy w/enclosures:

brian.begley@ky.gov, KDEP/Frankfort craig.jones@lataky.com, LATA/Kevil darla.bowen@lataky.com, LATA/Kevil dennis.greene@lex.doe.gov, P2S/PAD gaye.brewer@ky.gov, KDEP/PAD jennifer.watson@lataky.com, LATA/Kevil jennifer.woodard@lex.doe.gov, PPPO/PAD latacorrespondence@lataky.com, LATA/Kevil leo.williamson@ky.gov, KDEP/Frankfort lisa.santoro@lex.doe.gov, PPPO/PAD mark.duff@latakv.com, LATA/Kevil mike.guffey@ky.gov, KDEP/Frankfort myrna.redfield@lataky.com, LATA/Kevil nathan.garner@ky.gov, KYRHB/Frankfort pad.dmc@swiftstaley.com, SST/Kevil paula.spear@lataky.com, LATA/Kevil rachel.blumenfeld@lex.doe.gov, PPPO/PAD reinhard.knerr@lex.doe.gov, PPPO/PAD richards.jon@epamail.epa.gov, EPA/Atlanta rob.seifert@lex.doe.gov, PPPO/PAD stephaniec.brock@ky.gov, KYRHB/Frankfort todd.mullins@ky.gov, KDEP/Frankfort tufts.jennifer@epamail.epa.gov, EPA/Atlanta

CERTIFICATION

Document Identification:

Addendum to the Work Plan for the Soils Operable Unit Remedial Investigation/Feasibility Study at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Remedial Investigation 2, Sampling and Analysis Plan, DOE/LX/07-0120&D2/R2/A1/R1

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

LATA Environmental Services of Kentucky, LLC

Craig Sciences, Manager of Projects

S/29/14 Date Signed

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to ensure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

U.S. Department of Energy

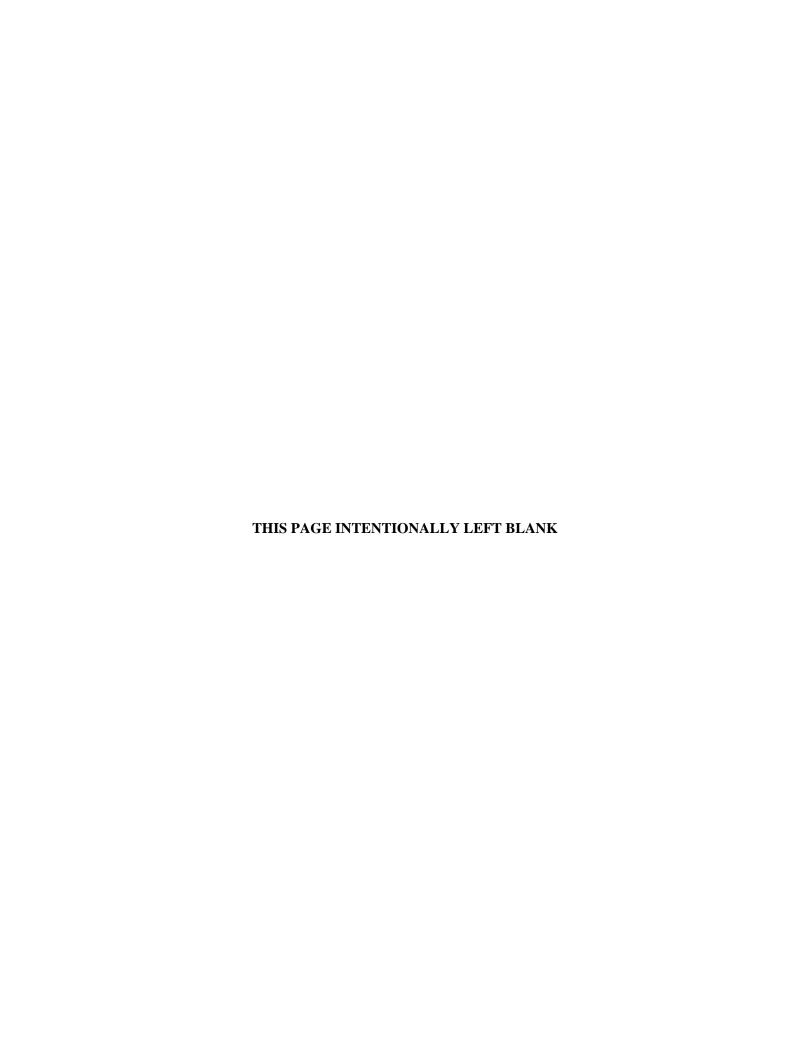
Jennifer Woodard, Paducah Site Lead Portsmouth Paducah Project Office Date Signed

DOE/LX/07-0120&D2/R2/A1/R1 Primary Document

Addendum to the Work Plan for the Soils Operable Unit Remedial Investigation/Feasibility Study at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Remedial Investigation 2 Sampling and Analysis Plan

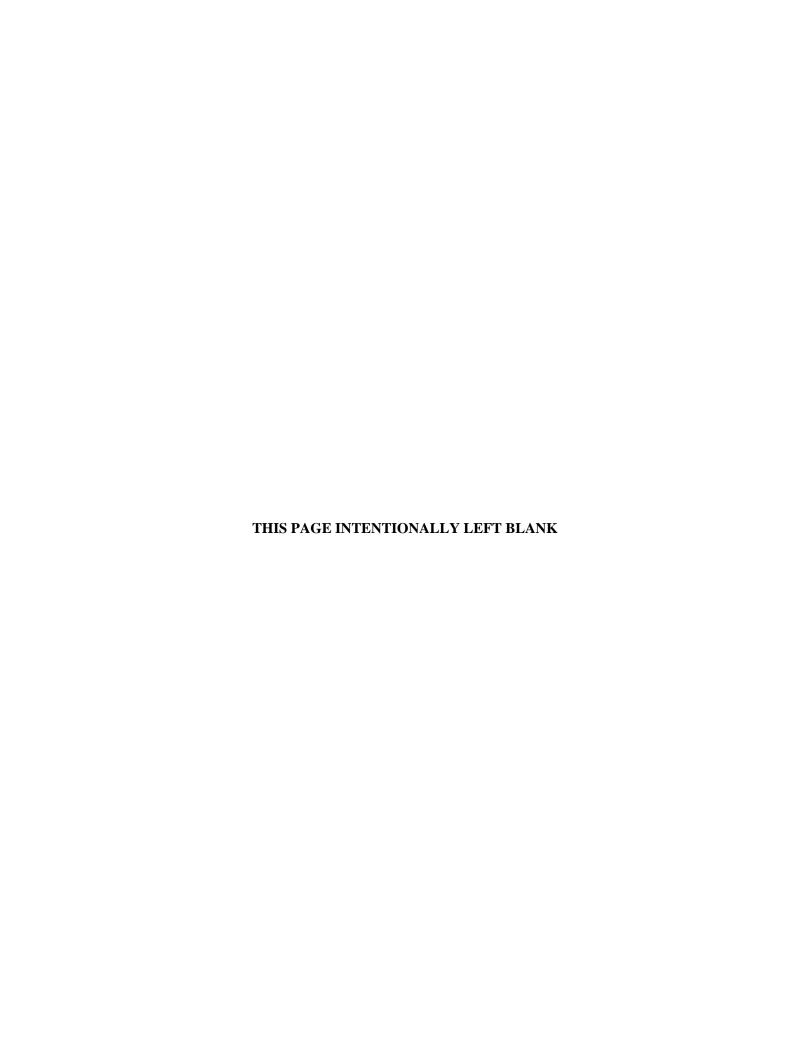
CLEARED FOR PUBLIC RELEASE

DOE/LX/07-0120&D2/R2/A1/R1 Primary Document


Addendum to the Work Plan for the Soils Operable Unit Remedial Investigation/Feasibility Study at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Remedial Investigation 2 Sampling and Analysis Plan

Date Issued—August 2014

Prepared for the U.S. DEPARTMENT OF ENERGY Office of Environmental Management


Prepared by
LATA ENVIRONMENTAL SERVICES OF KENTUCKY, LLC
managing the
Environmental Remediation Activities at the
Paducah Gaseous Diffusion Plant
under contract DE-AC30-10CC40020

CLEARED FOR PUBLIC RELEASE

CONTENTS

TA	BLES	S	v
FIG	GURE	S	v
QA	APP W	ORKSHEETS	v
AC	CRON	YMS	vii
EX	ŒCU'	TIVE SUMMARY	ix
1.	INT	RODUCTION	
	1.1	SWMUs SAMPLED UNDER THIS WORK PLAN	3
	1.2	SWMUs DEFERRED TO OTHER OPERABLE UNITS OR DO NOT REQUIRE	
		ADDITIONAL SAMPLING	3
		1.2.1 SWMU 16	
		1.2.2 SWMU 47	3
		1.2.3 SWMU 74	4
		1.2.4 SWMU 226	4
		1.2.5 SWMU 224	
	1.3	DEVIATIONS FROM THE JUNE 2010 SOILS OU RI/FS WORK PLAN	4
		1.3.1 Concrete and Asphalt	
		1.3.2 Gamma Walkover Survey Judgmental Grab Sample	
		1.3.3 XRF Analyses	
	1.4	SWMU 225	
	1.5	EXAMINATION OF SWMU 27	
	1.6	RECHARACTERIZATION OF SWMU 1	7
2.	QUA	ALITY ASSURANCE PROJECT PLAN	9
3.	REF	ERENCES	101
AF	PENI	DIX A: SURVEY PLAN FOR SOILS OPERABLE UNIT SWMUs AND AOCs	
		AT THE PADUCAH GASEOUS DIFFUSION PLANT	A-1
ΑF	PENI	DIX B: PROCEDURES CROSSWALK	R-1

TABLES

ES.1 1.	Soils OU RI 2 SWMUs/AOCs	
	FIGURES	
1.	Soils OU RI 2 SWMUs/AOCs	2
2.	SWMU 224	
3.	SWMU 13 Sampling Locations	
4. -	SWMU 15 Sampling Locations	
5.	SWMU 26 Sampling Locations	
6. 7	SWMU 77 Sampling Locations	
7. 8.	SWMU 56/80 Sampling Locations	
o. 9.	SWMU 211-A Sampling Locations	
). 10.	SWMU 225-A Sampling Locations	
11.	SWMU 1 Sampling Locations	
	QAPP WORKSHEETS	
OAP	PP Worksheet #1 Title Page	10
OAP	PP Worksheet #2 QAPP Identifying Information	10
	P Worksheet #3 Distribution List	
	P Worksheet #4-1 Project Personnel Sign-Off Sheet	
	P Worksheet #4-2 Project Personnel Sign-Off Sheet	
_	PP Worksheet #5 Project Organizational Chart	
	PP Worksheet #6 Communication Pathways	
	PP Worksheet #7 Personnel Responsibilities and Qualifications Table	
	PP Worksheet #8 Special Personnel Training Requirements Table	
	PP Worksheet #9 Project Scoping Session Participants Sheet	
	PP Worksheet #10 Problem Definition	
	P Worksheet #12-1 Measurement Performance Criteria Table	
	P Worksheet #12-2 Measurement Performance Criteria Table	
_	PP Worksheet #12-3 Measurement Performance Criteria Table	
	P Worksheet #12-4 Measurement Performance Criteria Table	
QAP	PP Worksheet #12-5 Measurement Performance Criteria Table	45
	PP Worksheet #12-6 Measurement Performance Criteria Table	
_	PP Worksheet #12-7 Measurement Performance Criteria Table	
_	PP Worksheet #12-8 Measurement Performance Criteria Table	
	PP Worksheet #12-9 Measurement Performance Criteria Table	
	PP Worksheet #12-10 Measurement Performance Criteria Table	
_	PP Worksheet #12-11 Measurement Performance Criteria Table	
QAP	PP Worksheet #12-12 Measurement Performance Criteria Table	32

QAPP Worksheet #13 Secondary Data Criteria and Limitations Table	53
QAPP Worksheet #14 Summary of Project Tasks	
QAPP Worksheet #15-1 Reference Limits and Evaluation Table	
QAPP Worksheet #15-2 Reference Limits and Evaluation Table	
QAPP Worksheet #15-3 Reference Limits and Evaluation Table	
QAPP Worksheet #15-4 Reference Limits and Evaluation Table	
QAPP Worksheet #15-5 Reference Limits and Evaluation Table	
QAPP Worksheet #15-6 Reference Limits and Evaluation Table	
QAPP Worksheet #15-7 Reference Limits and Evaluation Table	
QAPP Worksheet #16 Project Schedule/Timeline Table	
QAPP Worksheet #17 Sampling Design and Rationale	
QAPP Worksheet #18-1 Sampling Locations and Methods/SOP Requirements Table	
QAPP Worksheet #18-2 Sampling Locations and Methods/SOP Requirements Table	68
QAPP Worksheet #18-3 Sampling Locations and Methods/SOP Requirements Table	
QAPP Worksheet #18-4 Sampling Locations and Methods/SOP Requirements Table	70
QAPP Worksheet #18-5 Sampling Locations and Methods/SOP Requirements Table	71
QAPP Worksheet #18-6 Sampling Locations and Methods/SOP Requirements Table	72
QAPP Worksheet #18-7 Sampling Locations and Methods/SOP Requirements Table	
QAPP Worksheet #18-8 Sampling Locations and Methods/SOP Requirements Table	74
QAPP Worksheet #18-9 Sampling Locations and Methods/SOP Requirements Table	75
QAPP Worksheet #18-10 Sampling Locations and Methods/SOP Requirements Table	76
QAPP Worksheet #18-11 Sampling Locations and Methods/SOP Requirements Table	77
QAPP Worksheet #18-12 Sampling Locations and Methods/SOP Requirements Table	
QAPP Worksheet #19 Analytical SOP Requirements Table	
QAPP Worksheet #20 Field Quality Control Sample Summary Table	80
QAPP Worksheet #21 Project Sampling SOP References Table	
QAPP Worksheet #22 Field Equipment Calibration, Maintenance, Testing, and Inspection Table \dots	
QAPP Worksheet #23 Analytical SOP References Table	
QAPP Worksheet #24 Analytical Instrument Calibration Table	85
QAPP Worksheet #25 Analytical Instrument and Equipment Maintenance, Testing, and	
Inspection Table	
QAPP Worksheet #26 Sample Handling System	
QAPP Worksheet #27 Sample Custody Requirements	
QAPP Worksheet #28-1 Quality Control Requirements	
QAPP Worksheet #28-2 Quality Control Requirements	90
QAPP Worksheet #28-3 Quality Control Requirements	91
QAPP Worksheet #29 Project Documents and Records Table	
QAPP Worksheet #30 Analytical Services Table	
QAPP Worksheet #31 Planned Project Assessments Table	
QAPP Worksheet #32 Assessment Findings and Corrective Action Responses	
QAPP Worksheet #33 QA Management Reports Table	
QAPP Worksheet #34 Verification (Step I) Process Table	
QAPP Worksheet #35 Validation (Steps IIa and IIb) Process Table	
QAPP Worksheet #36 Validation (Steps IIa and IIb) Summary Table	
QAPP Worksheet #37 Usability Assessment	100

ACRONYMS

AOC area of concern bgs below ground surface

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

D&D decontamination and decommissioning

DOE U.S. Department of Energy

DOECAP DOE Consolidated Audit Program

DQO data quality objective EDD electronic data deliverable

EPA U.S. Environmental Protection Agency

ES&H environment, safety, and health FFA Federal Facility Agreement

FIDLER field instrument for the detection of low energy radiation

FS feasibility study
GC gas chromatography
GWS gamma walkover survey

KDEP Kentucky Department for Environmental Protection LATA Kentucky LATA Environmental Services of Kentucky, LLC

MBWA Management by Walking Around

MDL method detection limit
MS mass spectrometry
N/A not applicable
NFA no further action

OREIS Oak Ridge Environmental Information System

OU operable unit

PCB polychlorinated biphenyl

PEGASIS Portsmouth/Paducah Project Office Environmental Geographic Analytical Spatial

Information System

PGDP Paducah Gaseous Diffusion Plant

PQO project quality objective

QA quality assurance

QAPP Quality Assurance Project Plan

QC quality control quantitation limit QL remedial investigation RI SAP Sampling and Analysis Plan SWMU assessment report **SAR SMO** Sample Management Office standard operating procedure SOP **SVOC** semivolatile organic compound solid waste management unit **SWMU**

TBD to be determined

UFP Uniform Federal Policy VOC volatile organic compound

XRF X-ray fluorescence

EXECUTIVE SUMMARY

This Addendum to the Work Plan for the Soils Operable Unit Remedial Investigation/Feasibility Study at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Remedial Investigation 2, Sampling and Analysis Plan is comprised of the Quality Assurance Project Plan (QAPP) worksheets necessary to define the field sampling for this subsequent remedial investigation (RI), known as Soils Operable Unit (OU) RI 2. Sixteen solid waste management units (SWMUs)/areas of concern (AOCs), listed in Table ES.1, were determined to require additional characterization subsequent to the Soils OU RI to delineate the extent of contamination at the Paducah Gaseous Diffusion Plant (PGDP). These SWMUs/AOCs are subject to a remedial investigation/feasibility study (RI/FS). The Sampling and Analysis Plan (SAP) describes how additional sampling will be performed and supplements the approved RI/FS Work Plan for the Soils OU, which was completed in June 2010 (DOE 2010). Information not included in this SAP should be referenced from the June 2010 RI/FS Work Plan. Deviations to the June 2010 RI/FS Work Plan are documented in this addendum.

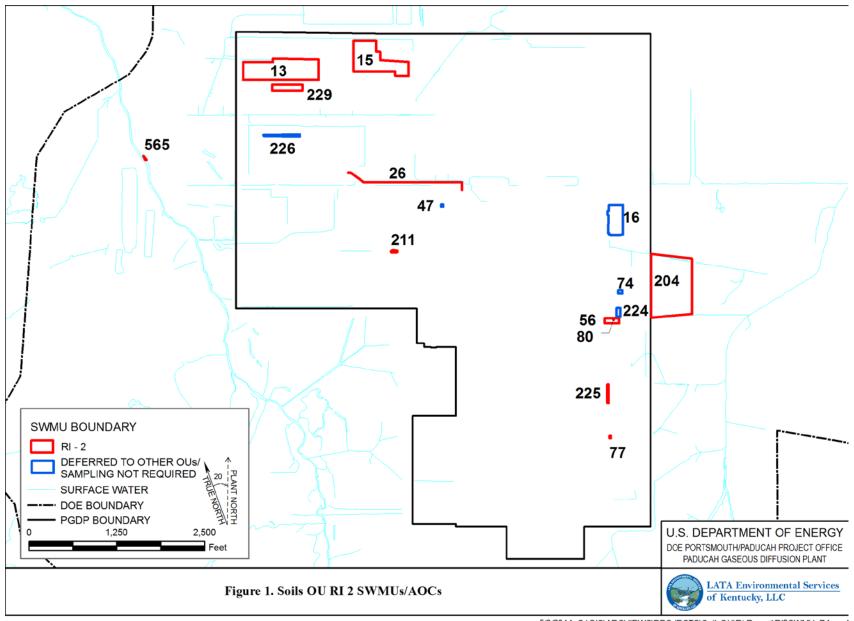
The data collected from this sampling effort will be used to conduct a Baseline Human Health Risk Assessment and a Screening Ecological Risk Assessment. To be consistent with the approved RI/FS Work Plan, project action limits have been set to the child resident no action limits (at an excess lifetime cancer risk of 1E-6 and/or hazard index of 0.1) found in *Methods for Conducting Risk Assessments and Risk Evaluation at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky,* DOE/OR/07-1506&D2/V1. Data gaps to be addressed at each of the SWMUs/AOCs are listed in Table ES.1. SWMUs that were recommended for deferral to other OUs also are noted in this addendum.

Table ES.1. Soils OU RI 2 SWMUs/AOCs

SWMU/			
AOC	Location	Description	Data Gap
13	C-746-P&P1	P&P1 Scrap Yards	Extent of affected surface soil undefined
15	C-746-C	C Scrap Yard	Extent undefined to the east
16	C-746-D	D Scrap Yard	Deferred to Soils and Slabs OU
26	C-400 to C-404	4-inch Underground Transfer Line	Extent of affected surface soil undefined
47	C-400	Tc-99 Storage Tank Area	Deferred to Soils and Slabs OU
56	C-540-A	PCB Staging Area	To be evaluated with SWMU 80
74	C-340	Transformer Spill Site	Deferred to Soils and Slabs OU
77	C-634-B	Sulfuric Acid Storage Tank	Nature and extent undefined
			Vertical extent undefined, horizontal
80	C-540	PCB Spill Site	extent undefined south of road
204	Dyke Road	Historical Staging Area	Nature and extent undefined
211-A	C-720	TCE Spill Site Northwest	Extent undefined to the south and west
		DMSA OS-13, empty drum	No additional sampling required; previous
224	C-340	storage	sampling to be included in RI Report
			225-A: Nature and extent undefined
			225-B: Nature and extent defined; to be
225	C-533-1	DMSA OS-14, rail cars	included in Soils OU RI 2 Report
226	C-745-B	DMSA OS-15	Deferred to Soils and Slabs OU
229	C-746-F	DMSA OS-18	Extent undefined to the south and east
	North of C-611 Water		
565	Treatment Plant	Rubble Area K	Extent undefined to the north

Samples will be analyzed for the same parameters as in the first RI. This SAP summarizes the information known about the SWMUs/AOCs and describes how the additional investigation will fill the data gaps and support remedial decision making.

SWMU 27 and SWMU 1 were not included as part of the 16 deferred SWMUs/AOCs and therefore are not listed in Table ES-1; however, the units are included within the scope of this work plan. SWMU 27, the C-722 Acid Neutralization Tank, will be further investigated as part of this subsequent investigation, as stated in the 2013 RI Report (DOE 2013a). The 2013 RI Report states, "Examination of the interior of the tank is necessary to support an NFA decision for SWMU 27. Future disposition of SWMU 27 will be based upon findings of the examination. The future disposition may include the following: alternative development in the FS, further sampling as part of the subsequent RI, or an NFA."


SWMU 1, C-747-C Oil Land Farm, currently is being remediated as part of the Southwest Plume source action. Details regarding this action are provided in the Southwest Plume Sources SWMU 1 project documents. Because soils in the mixing area will be disturbed, the surface soils in that area will require recharacterization for use in the Soils OU. Surface soil sampling will occur following the completion of the source action once the soil has been respread. This sampling supports the requirement identified in the 2012 Remedial Design Support Investigation for SWMU 1 (DOE 2013b).

1. INTRODUCTION

This Addendum to the Work Plan for the Soils Operable Unit Remedial Investigation/Feasibility Study at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Remedial Investigation 2 Sampling and Analysis Plan is comprised of the Quality Assurance Project Plan (QAPP) worksheets necessary to define the field sampling for this subsequent remedial investigation (RI), known as Soils Operable Unit (OU) RI 2. Sixteen solid waste management units (SWMUs)/areas of concern (AOCs), listed in Table 1, were determined to require additional characterization subsequent to the Soils OU RI to delineate the extent of contamination at the Paducah Gaseous Diffusion Plant (PGDP) (Figure 1). These SWMUs/AOCs are subject to a remedial investigation/feasibility study (FS). This Sampling and Analysis Plan (SAP) describes how additional sampling will be performed and supplements the approved RI/FS Work Plan for the Soils OU, which was completed in June 2010 (DOE 2010). Information not included in this SAP should be referenced from the June 2010 RI/FS Work Plan. Deviations to the June 2010 RI/FS Work Plan are documented in this section. A crosswalk of procedures listed in the June 2010 RI/FS Work Plan with current procedures is provided in Appendix B.

Table 1. Soils OU SWMUs/AOCs Identified for Further Characterization

SWMU/			
AOC	Location	Description	Data Gap
13	C-746-P&P1	P&P1 Scrap Yards	Extent of affected surface soil undefined
15	C-746-C	C Scrap Yard	Extent undefined to the east
16	C-746-D	D Scrap Yard	Deferred to Soils and Slabs OU
		4-inch Underground Transfer	
26	C-400 to C-404	Line	Extent of affected surface soil undefined
47	C-400	Tc-99 Storage Tank Area	Deferred to Soils and Slabs OU
56	C-540-A	PCB Staging Area	To be evaluated with SWMU 80
74	C-340	Transformer Spill Site	Deferred to Soils and Slabs OU
77	C-634-B	Sulfuric Acid Storage Tank	Nature and extent undefined
			Vertical extent undefined, horizontal extent
80	C-540	PCB Spill Site	undefined south of road
204	Dyke Road	Historical Staging Area	Nature and extent undefined
211-A	C-720	TCE Spill Site Northwest	Extent undefined to the south and west
		DMSA OS-13, empty drum	No additional sampling required; previous
224	C-340	storage	sampling to be included in RI Report
			225-A: Nature and extent undefined
			225-B: Nature and extent defined; to be
225	C-533-1	DMSA OS-14, rail cars	included in Soils OU RI 2 Report
226	C-745-B	DMSA OS-15	Deferred to Soils and Slabs OU
229	C-746-F	DMSA OS-18	Extent undefined to the south and east
	North of C-611		
	Water Treatment		
565	Plant	Rubble Area K	Extent undefined to the north

1.1 SWMUs SAMPLED UNDER THIS WORK PLAN

SWMUs/AOCs sampled under this SAP are listed below and are further described in QAPP Worksheet #10, presented in Section 2. The sampling strategy is detailed in Section 9 of the June 2010 RI/FS Work Plan (DOE 2010).

SWMU 13	C-746-P&P1 Scrap Yards
SWMU 15	C-746-C Scrap Yard
SWMU 26	C-400 to C-404 4-inch Underground Transfer Line
SWMU 56	C-540-A PCB Staging Area
SWMU 77	C-634-B Sulfuric Acid Storage Tank
SWMU 80	C-540 PCB Spill Site
AOC 204	Historical Staging Area
SWMU 211-A	C-720 TCE Spill Site Northwest
SWMU 225-A	DMSA OS-14, rail cars
SWMU 229	DMSA OS-18
AOC 565	Rubble Area K
SWMU 1	C-747-C Oil Land Farm
SWMU 27	C-722 Acid Neutralization Tank

1.2 SWMUs DEFERRED TO OTHER OPERABLE UNITS OR DO NOT REQUIRE ADDITIONAL SAMPLING

The Federal Facility Agreement (FFA) parties participated in site walkdowns and project scoping meetings during March and April 2014. As a result, the parties identified SWMUs for deferral to other OUs and SWMUs that do not require additional sampling. The basis for these decisions is discussed within the SWMU-specific sections.

1.2.1 SWMU 16

SWMU 16 was deferred to this subsequent RI to further delineate the nature and extent of contamination. After a site walkdown by the FFA parties on March 10, 2014, the parties proposed to defer this unit to the Soils and Slabs OU on the basis that the conditions that existed during the initial RI that prohibited sampling activities have not changed.

Additionally, during the initial RI, SWMU 16 did not undergo a gamma walkover survey (GWS) using a field instrument for the detection of low energy radiation (FIDLER). The influence of radiation due to proximity to a cylinder yard would have prevented the ability to determine accurately if/where a sample would be required. Elevated gamma dose rate from the cylinder yard exhibits a positive bias on the walkover field instrument.

No characterization activities will be conducted for this unit during this field investigation and the unit will not be included in the RI report.

1.2.2 SWMU 47

This unit was deferred to this subsequent RI to further delineate extent of contamination to the south and west of the unit. After a site walkdown by the FFA parties on March 10, 2014, the parties proposed to defer SWMU 47 to the Soils and Slabs OU and the Decontamination and Decommissioning (D&D) OU on the basis that the unit is located directly next to the C-400 Building and could be recontaminated

during D&D of the building. No characterization activities will be conducted for this unit during this field investigation, and the unit will not be included in the RI report.

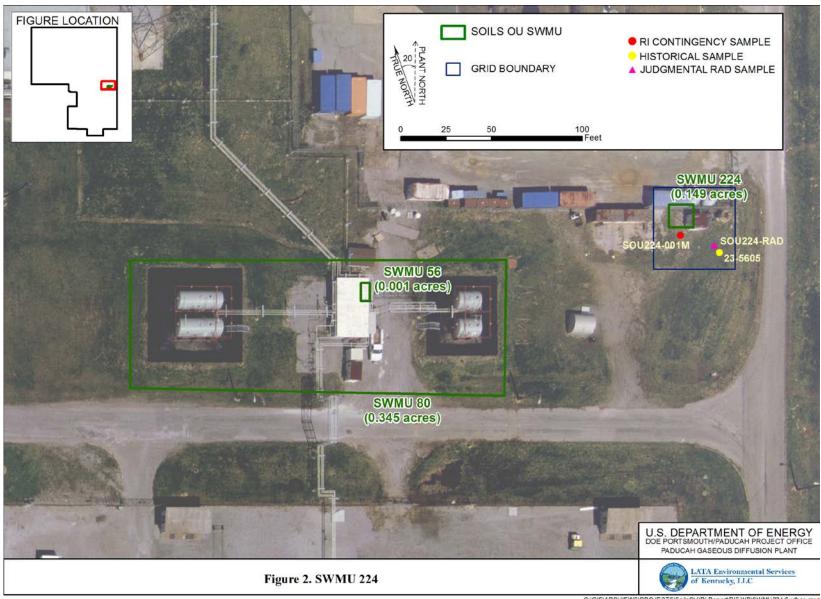
1.2.3 SWMU 74

This unit was deferred to this subsequent RI to further delineate nature and extent of contamination from the unit. After a site walkdown by the FFA parties on March 10, 2014, the parties proposed to defer SWMU 74 to the Soils and Slabs OU on the basis that the unit is located directly next to and includes a portion of the C-340 Building slab. No characterization activities will be conducted for this unit during this field investigation, and the unit will not be included in the RI report.

1.2.4 SWMU 226

This unit was deferred to this subsequent RI to further delineate extent of contamination to the east and west of the unit. After a site walkdown by the FFA parties on March 10, 2014, and further discussion during scoping, the parties proposed to defer SWMU 226 to the Soils and Slabs OU on the basis that the unit is located directly next to the C-745-B cylinder yard interfering with the GWS and the judgmental sample and could be recontaminated during D&D of the yard. No characterization activities will be conducted for this unit during this field investigation, and the unit will not be included in the RI report.

1.2.5 SWMU 224


SWMU 224 is considered adequately characterized, as determined in March 2014 scoping meetings between the FFA parties. Samples previously collected from the grid containing SWMU 224 (i.e., 224-001M, see Figure 2) will be used to define nature and extent and to perform a risk analysis. Existing contamination in the SWMU 224 area is assumed to be associated with SWMUs 56 and 80, which will be characterized further, as described in this addendum. This unit will be included in the RI report.

1.3 DEVIATIONS FROM THE JUNE 2010 SOILS OU RI/FS WORK PLAN

This work plan addendum describes how additional sampling will be performed for the previously mentioned Soils OU SWMUs/AOCs. Information not included in this SAP should be referenced from the June 2010 RI/FS Work Plan. Deviations to the June 2010 RI/FS Work Plan are documented in this section. Additional deviations are presented on a SWMU/AOC-specific basis in QAPP Worksheet #10 (Section 2).

1.3.1 Concrete and Asphalt

Previously, the work plan stated should any individual sample point within the grid be obstructed (such as by a building or concrete slab), then the nearest possible location will be substituted. If a suitable location (e.g., the entire quadrant of the grid) is not available, then the composite will consist of fewer than five points, as necessary. If an entire grid is obstructed, the composite sample will not be collected. In this addendum, concrete coring will be utilized to allow collection of soil samples below the concrete slabs for specific SWMUs/AOCs. If an entire grid is obstructed by concrete, soil sampling will begin immediately below the concrete is greater than 1-ft thick, then the 0 to 1 ft below ground surface (bgs) surface soil sample will not be collected because no surface soil, as defined during project scoping (i.e., 0–1 ft bgs), is present.

1.3.2 Gamma Walkover Survey Judgmental Grab Sample

In the 2010 RI/FS Work Plan (DOE 2010), judgmental grab samples (soil) were collected from the location of the single highest count per minute reading from the GWS. For this addendum, the method for determining the location from which a judgmental grab sample will be collected differs and is described in Appendix A.

1.3.3 XRF Analyses

In the 2010 RI/FS Work Plan (DOE 2010), soil samples were analyzed by X-ray fluorescence (XRF) for several metals, including antimony, barium, and cadmium. The data quality analysis in the 2013 RI Report stated that results for antimony, barium, and cadmium would not be used in that RI for any purpose (DOE 2013a). Because of this decision, antimony, barium, and cadmium will not be analyzed by XRF in this RI.

1.4 SWMU 225

The location of SWMU 225 was mapped incorrectly in the June 2010 RI/FS Work Plan (DOE 2010); as a result, an area to the west of the original SWMU location was sampled. Sampling results from the area indicate contamination. Based on this, SWMU 225 has been divided into SWMU 225-A and SWMU 225-B, where SWMU 225-A is the original SWMU location and SWMU 225-B is the new area located to the west. The characterization of SWMU 225-A is included within the scope of this addendum. SWMU 225-B was previously sampled during the 2010 RI; therefore, additional sampling will not be conducted at this unit. Data previously collected for SWMU 225-B will be included in the Soils OU RI 2 Report.

1.5 EXAMINATION OF SWMU 27

The Soils Operable Unit Remedial Investigation Report at the Paducah Gaseous Diffusion Plant Paducah, Kentucky, DOE/LX/07-0325&D2/R1 (DOE 2013a), states the following regarding SWMU 27:

Examination of the interior of the tank is necessary to support an NFA decision for SWMU 27. Future disposition of SWMU 27 will be based upon findings of the examination. The future disposition may include the following: alternative development in the FS, further sampling as part of the subsequent RI, or an NFA.

During field activities under this subsequent RI, SWMU 27 will be further investigated. The underground tank will be breached and an initial observation will be conducted to determine if the tank contains any material (i.e., concrete, sludge, liquid, etc.). If the tank has been filled with soil or concrete, the tank will be resealed and the unit will be recommended for a no further action (NFA) decision. If the tank has not been filled, an examination of the interior will be conducted using a recording device (i.e., camera, scope, etc.). If the tank is determined to contain sludge or liquid, a sample of the material will be collected and analyzed for metals, radionuclides, polychlorinated biphenyls (PCBs), volatile organic compounds (VOCs), and semivolatile organic compounds (SVOCs). The examination and analytical results will be documented in an addendum to the Soils OU RI Report (DOE 2013a). Based on the examination and analytical data, if available, the future disposition may include alternative development in an FS or an NFA.

All work related to SWMU 27 will be performed in a manner that prevents the risk of bodily harm to employees, other project personnel, and the general public and avoids damage to property or the environment. In 1989, a sludge sample collected from the tank was found to contain 365 mg/kg mercury. In 1992, sludge in the tank was removed and the sample collected indicated that the sludge contained trichloroethene, 1,1,1-trichloroethane, PCBs, total uranium, and technetium-99 (DOE 1999). Requirements will be followed for safe and compliant work associated with metals contamination, radiological contamination, PCB contamination, and other identified or unidentified hazards associated with this examination. In addition, federal and state environment, safety, and health (ES&H) regulations applicable to the examination will be implemented during the course of this work. Proper ES&H controls and monitoring shall be in place during the opening, examining, sampling, if required, and sealing of the tank. An activity hazard analysis/work control document will be developed to detail ES&H and compliance provisions beyond those established in the June 2010 RI/FS Work Plan.

1.6 RECHARACTERIZATION OF SWMU 1

SWMU 1, C-747-C Oil Land Farm, currently is being remediated as part of the Southwest Plume source action. Details regarding this action are provided in the Southwest Plume Sources SWMU 1 project documents. Because soils in the mixing area will be disturbed, the surface soils in that area will require recharacterization for use in the Soils OU. Surface soil sampling will occur following the completion of the source action once the soil has been respread. This sampling supports the requirement identified in the 2012 Remedial Design Support Investigation for SWMU 1 (DOE 2013b).

Revision Number: 2 **Revision Date:** 06/2014

2. QUALITY ASSURANCE PROJECT PLAN

The worksheets that follow are taken from the approved June 2010 RI/FS Work Plan. Updates have been made to necessary worksheets and are denoted with a revision number and revision date in the page header. For QAPP Worksheet #15, method detection limits (MDLs) and quantitation limits (QLs) may change based on the laboratory that is contracted for the Soils OU project. These limits will be part of the scope submitted for laboratory solicitation for the Soils OU project. As part of this scope, these limits will be a technical requirement used in evaluating laboratory award.

Revision Number: 2 Revision Date: 06/2014

QAPP Worksheet #1 Title Page

UFP-QAPP Manual Section 2.1:

Document Title: Quality Assurance Project Plan (QAPP) for the Remedial Investigation/Feasibility Study (RI/FS) for Soils Operable Unit Field Investigation at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

Lead Organization: U.S. Department of Energy (DOE)

Preparer's Name and Organizational Affiliation: Contractor

Preparer's Address, Telephone Number, and E-mail Address: 761 Veterans Avenue, Kevil, KY, 42053; (270) 441-5000

Preparation Date (Day/Month/Year): 06/2014

Document Control Number: DOE/LX/07-0120&D2/R2/A1

LATA Kentucky

Environmental Remediation

Project Manager

Mark J. Duff

LATA Kentucky

Regulatory Manager

Myrna Espinosa Redfield

LATA Kentucky

Environmental

Monitoring Manager

Signature

Lisa Crabtree

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #2 QAPP Identifying Information

UFP-OAPP Manual Section 2.2.4:

Site Name/Project Name: Paducah Gaseous Diffusion Plant

Site Location: Paducah, Kentucky **Site Number/Code:** KY8890008982

Contractor Name: LATA Environmental Services of Kentucky, LLC

Contractor Number: DE-AC30-10CC40020

Contract Title: Paducah Gaseous Diffusion Plant Paducah Environmental Remediation Project

Work Assignment Number: N/A

1. Identify guidance used to prepare QAPP:

Intergovernmental Data Quality Task Force, March 2005. The Uniform Federal Policy for Implementing Environmental Quality Systems, Version 2.0, 126 pages.

Intergovernmental Data Quality Task Force, March 2005. The Uniform Federal Policy for Quality Assurance Project Plans: Part 1 UFP QAPP Manual, Version 1.0, 177 pages (DTIC ADA 427785 or EPA-505-B-04-900A).

Intergovernmental Data Quality Task Force, March 2005. The Uniform Federal Policy for Quality Assurance Project Plans: Part 2A UFP QAPP Worksheets, Version 1.0, 44 pages.

Intergovernmental Data Quality Task Force, March 2005. The Uniform Federal Policy for Quality Assurance Project Plans: Part 2B Quality Assurance/Quality Control Compendium: Minimum QA/QC activities, Version 1.0, 76 pages.

2. Identify regulatory program: Comprehensive Environmental Response, Compensation, and

Liability Act (CERCLA) and Federal Facility Agreement for the

Paducah Gaseous Diffusion Plant, DOE/OR/07-1707 (FFA)

3. Identify approval entity: DOE, EPA Region 4, and Kentucky Department for Environmental

Protection (KDEP)

4. Indicate whether the QAPP is a generic or a project-specific QAPP (circle one).

5. List dates of scoping sessions that were held: March 2014 and April 2014

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #2 QAPP Identifying Information (Continued)

6. List dates and titles of QAPP documents written for previous site work, if applicable:

Title:	Approval Date:
Data and Documents Management and Quality Assurance Plan for Paducah Environmental Management and Enrichment Facilities, DOE/OR/07-1595&D2 (DOE 1998)	10/5/1998
Work Plan for the Soils Operable Unit Remedial Investigation/Feasibility Study at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (DOE/LX/07-0120&D2/R2) (DOE 2010)	10/6/2010
Paducah Gaseous Diffusion Plant Programmatic Quality Assurance Project Plan (DOE/LX/07-1269&D2/R1)	5/14/2013

- 7. List organizational partners (stakeholders) and connection with lead organization: DOE, EPA Region 4, KDEP
- 8. List data users: DOE, LATA Environmental Services, LLC, (LATA Kentucky), subcontractors, EPA Region 4, KDEP
- 9. If any required QAPP elements and required information are not applicable to the project, then indicate the omitted QAPP elements and required information on the attached table. Provide an explanation for their exclusion here.

Required QAPP Element(s) and Corresponding QAPP Section(s)	Required Information	Worksheet No.	Crosswalk to Related Documents
Proje	ect Management and Objective	S	
2.1 Title and Approval Page	- Title and Approval Page	1	
2.2 Document Format and Table of	- Table of Contents	2	
Contents	- QAPP Identifying		
2.2.1 Document Control Format	Information		
2.2.2 Document Control Numbering			
System			
2.2.3 Table of Contents			
2.2.4 QAPP Identifying Information			
2.3 Distribution List and Project Personnel	- Distribution List		
Sign-Off Sheet	- Project Personnel Sign-Off		
2.3.1 Distribution List	Sheet		
2.3.2 Project Personnel Sign-Off		3	
Sheet		4	

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #2 QAPP Identifying Information (Continued)

	Required QAPP Element(s) and Corresponding QAPP Section(s)	Required Information	Worksheet No.	Crosswalk to Related Documents
2.4	Project Organization	- Project Organizational Chart	_	
	2.4.1 Project Organizational Chart	- Communication Pathways	5	
	2.4.2 Communication Pathways	- Personnel Responsibilities and	6	
	2.4.3 Personnel Responsibilities and Qualifications	Qualifications Table - Special Personnel Training	7	
	2.4.4 Special Training Requirements and Certification	Requirements Table	8	
2.5	Project Planning/Problem Definition	- Project Planning Session		
	2.5.1 Project Planning (Scoping)	Documentation (including Data	9	
	2.5.2 Problem Definition, Site History,	Needs tables)	10	
	and Background	- Project Scoping Session		
	-	Participants Sheet		
		- Problem Definition, Site		
		History, and Background		
		- Site Maps (historical and		
		present)		
2.6	Project Quality Objectives (PQOs) and	- Site-Specific PQOs	11	
	Measurement Performance Criteria	_		
	2.6.1 Development of PQOs Using the	- Measurement Performance	12	
	Systematic Planning Process	Criteria Table		
	2.6.2 Measurement Performance			
	Criteria			
2.7	Secondary Data Evaluation	- Sources of Secondary Data and	13	
		Information		
		- Secondary Data Criteria and		
		Limitations Table		
2.8	Project Overview and Schedule	- Summary of Project Tasks	14	
	2.8.1 Project Overview	- Reference Limits and	15	
	2.8.2 Project Schedule	Evaluation Table		
		- Project Schedule/Timeline	16	
		Table		

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #2 QAPP Identifying Information (Continued)

Required QAPP Element(s) and Corresponding QAPP Section(s)	Required Information	Worksheet No.	Crosswalk to Related Documents
	Measurement/Data Acquisition		
3.1 Sampling Tasks	- Sampling Design and Rationale	17/18/19/20	
3.1.1 Sampling Process Design and	- Sample Location Map		
Rationale	- Sampling Locations and		
3.1.2 Sampling Procedures and	Methods/Standard Operating		
Requirements	Procedures (SOP) Requirements		
3.1.2.1 Sampling Collection	Table		
Procedures	- Analytical Methods/SOP		
3.1.2.2 Sample Containers,	Requirements Table		
Volume, and	- Field Quality Control Sample		
Preservation	Summary Table	21	
3.1.2.3 Equipment/Sample	- Sampling SOPs		
Containers Cleaning	- Project Sampling SOP References		
and Decontamination	Table	22	
Procedures	- Field Equipment Calibration,		
3.1.2.4 Field Equipment	Maintenance, Testing, and		
Calibration,	Inspection Table		
Maintenance, Testing,	<u>r</u>		
and Inspection			
Procedures			
3.1.2.5 Supply Inspection and			
Acceptance			
Procedures			
3.1.2.6 Field Documentation			
Procedures			
3.2 Analytical Tasks	- Analytical SOPs	23	
3.2.1 Analytical SOPs	- Analytical SOP References Table	23	
3.2.2 Analytical Instrument	- Analytical Instrument Calibration		
Calibration Procedures	Table		
3.2.3 Analytical Instrument and	- Analytical Instrument and	25	
Equipment Maintenance,	Equipment Maintenance, Testing,	23	
Testing, and Inspection	and Inspection Table		
Procedures	and inspection ruble		
3.2.4 Analytical Supply Inspection			
and Acceptance Procedures			
3.3 Sample Collection Documentation,	- Sample Collection Documentation	26	
Handling, Tracking, and Custody	Handling, Tracking, and Custody	20	
Procedures	SOPs		
3.3.1 Sample Collection	- Sample Container Identification	27	
Documentation	- Sample Container Identification - Sample Handling Flow Diagram	41	
3.3.2 Sample Handling and	- Example Chain-of-Custody Form		
	and Seal		
Tracking System	and Scal		
3.3.3 Sample Custody			

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #2 QAPP Identifying Information (Continued)

	Required QAPP Element(s) and Corresponding QAPP Section(s)	Required Information	Worksheet No.	Crosswalk to Related Documents
	Quality Control Samples 3.4.1 Sampling Quality Control Samples 3.4.2 Analytical Quality Control Samples	 Quality Control (QC) Samples Table Screening/Confirmatory Analysis Decision Tree 	28	
3.5	Data Management Tasks 3.5.1 Project Documentation and	- Project Documents and Records Table	29	
	Records 3.5.2 Data Package Deliverables 3.5.3 Data Reporting Formats 3.5.4 Data Handling and Management 3.5.5 Data Tracking and Control	- Analytical Services Table - Data Management SOPs	30	
	•	Assessment/Oversight		
4.1	Assessments and Response Actions 4.1.1 Planned Assessments	Assessments and Response ActionsPlanned Project Assessments Table	31	
	4.1.2 Assessment Findings and Corrective Action Responses	Audit ChecklistsAssessment Findings and Corrective Action Responses Table	32	
4.2	Quality Assurance (QA) Management Reports	- QA Management Reports Table Data Review	33	
5 1	Overview	Introductory Statement	34	
	Data Review Steps	- Verification (Step I) Process Table	34	
3.2	5.2.1 Step I: Verification 5.2.2 Step II: Validation	- Validation (Steps IIa and IIb) Process Table	35	
	5.2.2.1 Step IIa Validation Activities	- Validation (Steps IIa and IIb) Summary Table	36	
	5.2.2.2 Step IIb Validation Activities 5.2.3 Step III: Usability Assessment 5.2.3.1 Data Limitations and Actions from Usability Assessment 5.2.3.2 Activities	- Usability Assessment	37	
	Streamlining Data Review 5.3.1 Data Review Steps To Be Streamlined 5.3.2 Criteria for Streamlining Data Review 5.3.3 Amounts and Types of Data Appropriate for Streamlining	Not applicable	Not applicable	

Revision Date: 05/2010

QAPP Worksheet #3 Distribution List

UFP-QAPP Manual Section 2.3.1:

QAPP Recipients	Title	Organization	Telephone Number	Fax Number	E-mail Address	Document Control Number
The QAPP is submitted as a section of the RI/FS Work Plan; thus, it will be included on the RI/FS Work Plan distribution list.	N/A	N/A	N/A	N/A	N/A	N/A

N/A = not applicable

Revision Date: 05/2010

QAPP Worksheet #4-1 **Project Personnel Sign-Off Sheet**

UFP-QAPP Manual Section 2.3.2 Organization: Contractor

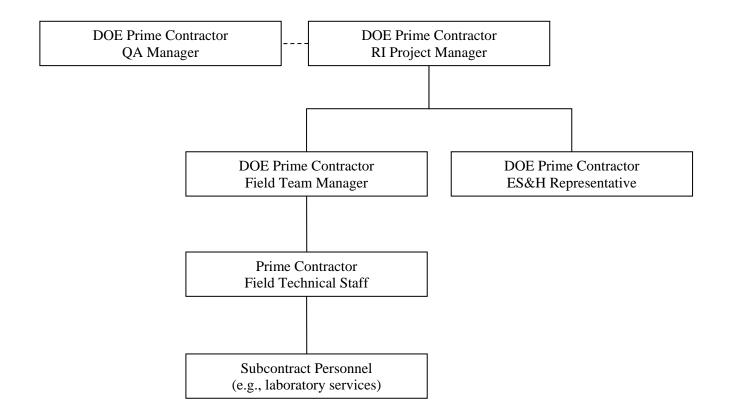
Project Personnel	Title	Telephone Number	Signature	Date QAPP Read
Contractor	ER/EM Director	N/A	Personnel will read and sign QAPP prior to mobilization.	N/A
Contractor	Project Manager	N/A	Personnel will read and sign QAPP prior to mobilization.	N/A
Contractor	Quality Assurance Manager	N/A	Personnel will read and sign QAPP prior to mobilization.	N/A
Contractor	Task Lead	N/A	Personnel will read and sign QAPP prior to mobilization.	
Contractor	Environmental Engineer	N/A	Personnel will read and sign QAPP prior to mobilization.	N/A
Contractor	Environmental Compliance and Protection Lead	N/A	Personnel will read and sign QAPP prior to mobilization.	N/A
Contractor	Environmental Sampling Lead	N/A	Personnel will read and sign QAPP prior to mobilization.	N/A
Contractor	QA Specialist	N/A	Personnel will read and sign QAPP N/A prior to mobilization.	
Contractor	Health and Safety Representative	N/A	Personnel will read and sign QAPP prior to mobilization.	N/A
Contractor	Waste Coordinator	N/A	Personnel will read and sign QAPP prior to mobilization.	N/A

N/A = not available

Revision Date: 05/2010

QAPP Worksheet #4-2 **Project Personnel Sign-Off Sheet**

Organization: Contractor/Subcontractor


Project Personnel	Title	Telephone Number	Signature	Date QAPP Read
N/A	N/A	N/A	N/A	N/A

N/A = not applicable

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #5 Project Organizational Chart

UFP-QAPP Manual Section 2.4.1

Revision Number: 1 Revision Date: 05/2010

QAPP Worksheet #6 Communication Pathways

UFP-QAPP Manual Section 2.4.2:

Note: Formal communications across company or regulatory boundaries occur via letter. Other forms of communication such as e-mail, verbal, meetings, etc., will occur throughout the project.

Communication Drivers	Responsible Entity	Name	Phone Number	Procedure (Timing, Pathways, etc.)
Federal Facility Agreement, DOE/OR/07-1707 (PRS-035)	DOE Paducah Site Lead	N/A	N/A	All formal communication among DOE, EPA, and the Kentucky Department for Environmental Protection
Federal Facility Agreement, DOE/OR/07-1707 (PRS-035)	DOE Paducah Environmental Restoration Project Manager	N/A	N/A	All formal communications between DOE and Contractor for Environmental Restoration Projects
All Project Requirements	Prime Contractor Site Manager	N/A	N/A	All formal communication between Contractor and DOE
All Project Requirements	Contractor ER/EM Director	N/A	N/A	All communications between the project and the Site Manager
All Project Requirements	Contractor ER/EM Deputy Director	N/A	N/A	All communications between the project and the Site Manager
All Project Requirements	Contractor Project Manager	N/A	N/A	All communication between the project and the ER/EM Director
Project Quality Assurance Requirements	Contractor QA Manager	N/A	N/A	All quality related communications between the QA Department and the ER/EM Director
Project Quality Assurance Requirements	Contractor QA Specialist	N/A	N/A	All project quality related communications between the QA Department and the Contractor Project Manager
FFA Compliance	Contractor FFA Project Manager	N/A	N/A	All internal communication regarding FFA compliance with the Contractor Project Manager
Sampling Requirements	Contractor Environmental Sampling Lead	N/A	N/A	All internal communication regarding field sampling with the Contractor Project Manager
Analytical Laboratory Interface	Contractor Lab Coordinator	N/A	N/A	All communication between Contractor and analytical laboratory
Waste Management Requirements	Contractor Waste Coordinator	N/A	N/A	All internal communication regarding waste project waste management with the Contractor Project Manager

Revision Date: 05/2010

QAPP Worksheet #6 **Communication Pathways (continued)**

Communication Drivers	Responsible Entity	Name	Phone Number	Procedure (Timing, Pathways, etc.)	
Environmental Compliance	Contractor Environmental	N/A	N/A	All internal correspondence regarding	
Requirements	Compliance Lead			environmental requirements and compliance	
				with the Contractor Project Manager	
Subcontractor Requirements (if	Contractor Senior	N/A	N/A	All correspondence between the project and	
applicable)	Subcontract Administrator			subcontractors, if applicable	
Health and Safety requirements	Contractor Health and Safety Representative	N/A	N/A	All internal communication regarding safety and health requirements with the Contractor	
	1			Project Manager	

N/A = not available, as personnel may change

Title: Soils Operable Unit RI/FS Work Plan **Revision Number:** 1

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #7 Personnel Responsibilities and Qualifications Table

UFP-QAPP Manual Section 2.4.3:

Name	Title	Organizational Affiliation	Responsibilities	Education and Experience Qualifications	
N/A	Paducah Site Lead	DOE	Overall site responsibility-	N/A	
			liaison with EPA and		
			Commonwealth of Kentucky		
N/A	Paducah Environmental Restoration Project	DOE	Environmental Restoration	N/A	
	Manager		project responsibility		
N/A	Paducah Site Manager (Acting)	Contractor	Contractor lead responsible for	N/A	
			site		
N/A	ER/EM Director	Contractor	Overall ER/EM project	N/A	
			responsibility		
N/A	Project Manager	Contractor	Overall soils/surface water	N/A	
			responsibility		
N/A	Quality Assurance Manager	Contractor	Overall project QA	N/A	
			responsibility		
N/A	Environmental Engineer	Contractor	Project coordination	N/A	
N/A	Federal Facility Agreement Project	Contractor	Project compliance with the	N/A	
	Manager		FFA		
N/A	Environmental Engineer	Contractor	Project SAP	N/A	
N/A	Environmental Compliance and Protection	Contractor	Project Environmental	N/A	
	Lead		Compliance Protection		
			responsibility		
N/A	Environmental Sampling Lead	Contractor	Project Sampling responsibility	N/A	
N/A	QA Specialist	Contractor	Project QA responsibility	N/A	
N/A	Health and Safety Representative	Contractor	Project Safety and Health	N/A	
	J		Responsibility		
N/A	Waste Coordinator	Contractor	Overall Project waste	N/A	
			management responsibility		
N/A	Data Validator	Independent, Third-Party	Performing fixed-base	N/A	
		Contractor	laboratory data validation		
			according to specified		
			procedures		

N/A = not available, as personnel may change

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #8 Special Personnel Training Requirements Table

UFP-QAPP Manual Section 2.4.4:

Project Function	Specialized Training – Title or Description of Course	Training Provider	Training Date	Personnel/Groups Receiving Training	Personnel Titles/ Organizational Affiliation	Location of Training Records/Certificates ¹
There will be no	N/A	N/A	N/A	N/A	N/A	N/A
specialized training						
required for this						
project.						
Training required						
for this project is						
standard training						
that personnel						
already have.						

¹ If training records and/or certificates are on file elsewhere, document their location in this column. If training records and/or certificates do not exist or are not available, then this should be noted. N/A = not applicable

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #9 Project Scoping Session Participants Sheet

UFP-QAPP Manual Section 2.5.1:

Project Name Soils Operable Unit Remedial Investigation/Feasibility
Study 2
Projected Date(s) of Sampling TBD
Project Manager Jennifer Watson

Site Name Paducah Gaseous Diffusion Plant
Site Location Paducah, KY

Date of Session: January 2014

Scoping Session Purpose: Discuss objectives and scope of project, work plan requirements, and deadlines

Position Title	Affiliation	Name	Phone #	E-mail Address	Project Role
Radiation Safety and Emergency Programs Manager	LATA Kentucky	Kelly Ausbrooks	(270) 441-5123	kelly.ausbrooks@lataky.com	Technical support
Health Physicist	LATA Kentucky	John Volpe	(502) 330-0222	john_volpe@bellsouth.net	Technical support
Scientist	LATA Kentucky	LeAnne Garner	(270) 441-5436	leanne.garner@lataky.com	Document preparation
Project Manager	LATA Kentucky	Jennifer Watson	(270) 441-5293	jennifer.watson@lataky.com	Project management
Manager of Projects	LATA Kentucky	Craig Jones	(270) 441-5114	craig.jones@lataky.com	Project management
Regulatory Manager	LATA Kentucky	Myrna Redfield	(270) 441-5113	myrna.redfield@lataky.com	Compliance support
Environmental Management Manager	LATA Kentucky	Lisa Crabtree	(270) 441-5135	lisa.crabtree@lataky.com	Laboratory/data support
Waste Disposition Manager	LATA Kentucky	Mike Zeiss	(270) 441-5106	mike.zeiss@lataky.com	Waste support
Site Operations and Maintenance Manager	LATA Kentucky	Tim Fralix	(270) 441-5025	tim.fralix@lataky.com	Work controls support
Environmental Reporting and Deliverable Quality Manager	LATA Kentucky	Jennifer Blewett	(270) 441-5070	jennifer.blewett@lataky.com	Document production
Project Management Office	LATA Kentucky	Linda Kobel	(770) 364-0336	linda.kobel@lataky.com	PM support
Business Manager	LATA Kentucky	Mark Cauley	(270) 441-5011	mark.cauley@lataky.com	Business support

Title: Soils Operable Unit RI/FS Work Plan **Revision Number:** 2

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #9 Project Scoping Session Participant Sheet (continued)

Name of Project: Soils OU RI 2

Date of Session: March—April 201

Date of Session: March–April 2014 **Scoping Session Purpose:** Discuss objectives and scope of project, work plan requirements, and deadlines

1 0 1	Scoping Session Purpose: Discuss objectives and scope of project, work plan requirements, and deadlines				
Name	Affiliation	Phone #	E-mail Address		
Jennifer Tufts	EPA	(404) 562-8513	tufts.jennifer@epa.gov		
Jon Richards	EAP	(404) 562-8648	richards.jon@epa.gov		
Todd Mullins	KDWM	(502) 564-8158	todd.mullins@ky.gov		
Gaye Brewer	KDWM	(270) 898-8468	gaye.brewer@ky.gov		
Nathan Garner	KYRHB	(502) 564-8390	nathan.garner@ky.gov		
Stephanie Brock	KYRHB	(502) 564-8390	stephaniec.brock@ky.gov		
Lisa Santoro	DOE	(270) 441-6804	lisa.santoro@lex.doe.gov		
Rich Bonczek	DOE	(859) 219-4051	rich.bonczek@lex.doe.gov		
Don Dihel	DOE	(270) 441-6824	don.dihel@lex.doe.gov		
Dennis Greene	Pro2Serve	(270) 441-6851	dennis.greene@lex.doe.gov		
Bobette Nourse	SMSI	(865) 712-2669	bobette.nourse@lex.doe.gov		
Martin Clauberg	SMSI	(865) 259-7155	martin.clauberg@lex.doe.gov		
Kelly Ausbrooks	LATA Kentucky	(270) 441-5123	kelly.ausbrooks@lataky.com		
John Volpe	LATA Kentucky	(502) 330-0222	john_volpe@bellsouth.net		
LeAnne Garner	LATA Kentucky	(270) 441-5436	leanne.garner@lataky.com		
Jennifer Watson	LATA Kentucky	(270) 441-5293	jennifer.watson@lataky.com		

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #10 Problem Definition

UFP-QAPP Manual Section 2.5.2:

The problem to be addressed by the project: The DOE, EPA, and Commonwealth of Kentucky have entered into an FFA agreement to investigate and, if warranted, remediate 86 areas (AOCs/SWMUs) of PGDP. The areas are listed in Section 1 of the RI/FS Work Plan. These investigations include collecting samples as noted in the work plan and analyzing the samples for field and laboratory analyses to identify the nature and extent of contamination. The soils in the various AOCs/SWMUs may have been contaminated through plant operations.

This addendum to the RI/FS Work Plan will address 12 SWMUs/AOCs identified during comment resolution of the Soils OU RI Report where data are absent or insufficient to fully characterize the nature and extent of contamination of the unit and to support remedy selection (DOE 2013a). The SWMUs/AOCs addressed by the addendum, their reason for deferal to a subsequent RI, and the activities to be performed are as follows. Maps showing sampling grids are presented following this table.

SWMU 13. This unit was deferred to this subsequent RI to further delineate the extent of contamination in surface soils. Activities to be conducted for this unit include a GWS, 1 judgmental sample, and grid-based composite sampling of surface soil. Surface soil samples will be collected from 158 grids over 14 exposure units. Figure 3 shows a map of the sampling grids. Subsurface characterization was determined to be delineated adequately by the SWMU 13 site evaluation. The SWMU 13 site evaluation concluded that no Burial Ground OU response action is required at SWMU 13; therefore, it was removed from Burial Grounds OU, but retained as part of Soils OU for investigation of surface soils.

SWMU 15. This unit was deferred to this subsequent RI to further delineate the extent of lead contamination to the east of the unit related to grid 015-037. Activities to be conducted for this unit include a judgmental grab sample and grid-based composite sampling of surface and shallow subsurface soil. Soil samples will be collected from one grid. Figure 4 shows a map of the sampling grids. If stepouts are required based on the criteria established in Section 9 of the June 2010 RI/FS Work Plan, they will be placed only to the north and south of the grid; they will not cross the ditch to the west of the grid. No additional GWS is required for this unit. The location of the judgmental grab sample will be selected using existing survey data following the protocol established in Section 1.3.2 of this addendum.

SWMU 26. This unit was deferred to this subsequent RI to further delineate the extent of contamination in surface soils. The activity to be conducted for this unit includes grid-based composite sampling of surface soil. Surface soil samples will be collected from 35 grids. Figure 5 shows a map of the sampling grids. Sampling of the entire SWMU will be conducted with the exception of grids within the gravel lot of the C-752 waste facility, in the grids within the footprint of the C-404 Hazardous Waste Landfill, within the ditch previously sampled by the Surface Water OU, or along the northern side of the North-South Diversion Ditch. No additional GWS or judgmental grab sample is required for this unit.

SWMU 77. This unit was deferred to this subsequent RI to further delineate the nature and extent of contamination of the unit. The activity to be

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #10 Problem Definition (Continued)

UFP-QAPP Manual Section 2.5.2:

conducted for this unit includes grid-based composite sampling of surface and shallow subsurface soil will be collected from one grid. The five-point composite will consist of two locations next to the pump station, two locations along the west wall of the unit, and one location within the grass area between the concrete pad and road on the east side of the unit. Figure 6 shows a map of the sampling grids. Analytical parameters for this unit will include pH. No additional GWS or judgmental grab sample is required for this unit.

SWMUs 56/80. This unit was deferred to this subsequent RI to further delineate the horizontal extend of PCBs and radionuclides south of the road and vertical extent of the unit. Activities to be conducted for this unit include a GWS and grid-based composite sampling of surface and shallow subsurface soil. Soil samples will be collected from 13 grids. One grid will be placed south of SWMU 224 encompassing the culvert. Three grids will be placed across the road to the south of the unit between the road and fence. One grid will be placed across the road to the east of the unit encompassing the culvert. These culverts and their associated ditches are not included under the SWOU. The remaining grids will encompass grid SOU080-002. No additional stepouts to the south with be implemented. Figure 7 shows a map of the sampling grids. A GWS will only be conducted at grid SOU080-002. The survey is being conducted to verify historical data from the Department of Justice location JP-0153. The survey data will be reviewed and discussed with EPA and KDEP to determine if further soil sampling is warranted.

AOC 204. This unit was deferred to this subsequent RI to further delineate the nature and extent of contamination of the unit. Activities to be conducted for this unit include a GWS and grid-based composite sampling of surface and shallow subsurface soil. The gamma walkover survey will be conducted in the northern portion of the unit between Outfall 010 and the wooded area within the unit. Soil samples will be collected from 186 grids over 21 exposure units. Figure 8 shows a map of the sampling grids. Sampling will not be conducted in the grids located in the removal action areas of Outfall 011 or in the areas along Outfall 010 previously sampled by the Surface Water OU.

SWMU 211-A. This unit was deferred to this subsequent RI to further delineate the extent of metal, PCBs, polycyclic aromatic hydrocarbons, and radionuclide contamination to the south and west of the unit related to grid SOU211-001G. Activities to be conducted for this unit include a judgmental grab sample and grid-based composite sampling of surface and shallow subsurface soil. Soil samples will be collected from eight grids. Sampling will follow the work plan except for the following:

- In grid SOU211-001G, samples will be collected from intervals 0 to 1 ft bgs, 1 to 4 ft bgs, and 4 to 7 ft bgs and analyzed for Total PCBs using PCB test kits. Additionally, sampling will extend below the defined 10 ft bgs in order to fully delineate the extent of PCBs found in the 7 to 10 ft bgs sample interval. Two additional soil intervals will be collected, 10 to 13 ft bgs and 13 to 16 ft bgs, and will be analyzed for Total PCBs using PCB test kits.
- The locations of the five-point composite for grid SOU211-001H are identified on Figure 9.

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #10 Problem Definition (Continued)

UFP-QAPP Manual Section 2.5.2:

A potential stepout is to the west of grid SOU211-001J. Figure 9 shows a map of the sampling grids.

SWMU 224. SWMU 224 was previously sampled and received a GWS during the 2010 RI; therefore, additional sampling will not be conducted at this unit. Data previously collected for SWMU 224, as discussed in Section 1.2.5, will be included in the Soils OU RI 2 Report.

SWMU 225-A. This unit was deferred to this subsequent RI to further delineate the nature and extent of contamination of the unit. The activity to be conducted for this unit includes surface soil sampling. The surface soil sample will consist of a 5-point composite from 0 to 6 inches bgs consistent with the sampling protocol for outside DOE Material Storage Areas (DMSAs) in the June 2010 RI/FS Work Plan collected at the gravel-soil interface next to the railroad. Figure 10 shows a map of the sampling grids. A GWS will not be conducted at this unit due to its proximity to a cylinder yard.

SWMU 225-B. SWMU 225-B was previously sampled during the 2010 RI; therefore, additional sampling will not be conducted at this unit. Data previously collected for SWMU 225-B will be included in the Soils OU RI 2 Report.

SWMU 229. This unit was deferred to this subsequent RI to further delineate the extent of radionuclide contamination to the south and east of the unit. The activity to be conducted for this unit includes a GWS with one judgmental sample.

AOC 565. This unit was deferred to this subsequent RI to further delineate the extent of radionuclide contamination to the north of the unit. The activity to be conducted for this unit includes a GWS with one judgmental sample. The survey will encompass the area to the north, south, and east of the location exhibiting elevated readings from which a judgmental sample was collected previously.

Addtionally, this addendum will address SWMU 1 and SWMU 27.

SWMU 1. Details regarding this action are provided in the Southwest Plume Sources SWMU 1 project documents. Because soils in the mixing area will be disturbed, the surface soils in that area will require recharacterization for use in the Soils OU. This sampling supports the requirement identified in the 2012 Remedial Design Support Investigation for SWMU 1 (DOE 2013b). The disturbed areas within the unit will be sampled using a grid-based composite technique. Only the Soils OU grids within the disturbed areas will be sampled. Approximately 28 grids will be sampled. The grids include SOU001-002, SOU001-003, SOU001-004, SOU001-005, SOU001-012, SOU001-013, SOU001-014, SOU001-015, SOU001-016, SOU001-017, SOU001-020, SOU001-021,

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #10 Problem Definition (Continued)

UFP-QAPP Manual Section 2.5.2:

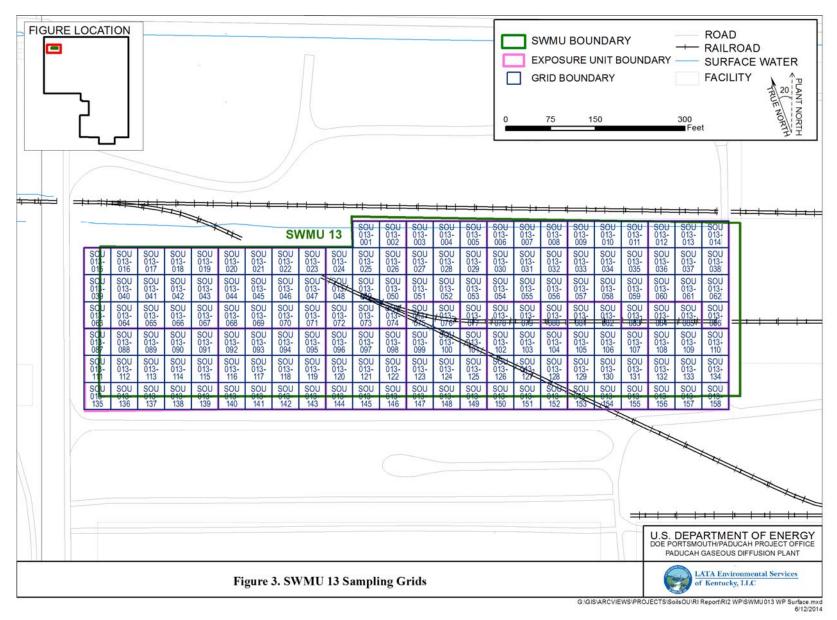
SOU001-023, SOU001-024, SOU001-025, SOU001-026, SOU001-027, SOU001-028, SOU001-029, SOU001-030, SOU001-031, SOU001-032, SOU001-033, SOU001-034, SOU001-035, SOU001-038, SOU001-039, and SOU001-040. Figure 11 shows a map of the sampling grids. Samples will be collected from the surface (0–1 ft bgs) and shallow subsurface (1–4 ft bgs). Samples will be submitted for field lab analysis of Resource Conservation and Recovery Act metals, plus uranium, by XRF and Total PCB by PCB test kits. Ten percent of the samples will be submitted for fixed-base laboratory confirmation and analyzed for metals, PCBs, radionuclides, and SVOCs. No GWS will be performed. All results from these field activities will be reported in an addendum to the Soils OU RI Report (DOE 2013a).

SWMU 27. SWMU 27 will be examined and sampled, if required as stated in the Soils OU RI Report (DOE 2013a). Parameters will include metals, PCBs, radionuclides, SVOCs, and VOCs. All results from these field activities will be reported in an addendum to the Soils OU RI Report. Based on the examination and analytical data, if available, the future disposition may include alternative development in the FS or an NFA.

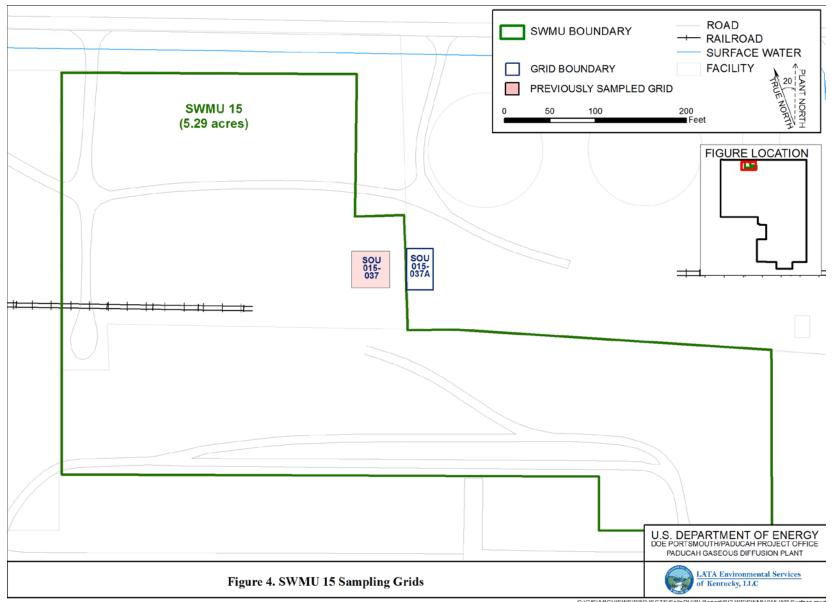
The environmental questions being asked: Are the AOCs/SWMUs contaminated and, if so, to what extent and with what contaminants?

Observations from any site reconnaissance reports: See SWMU Assessment Reports (SARs).

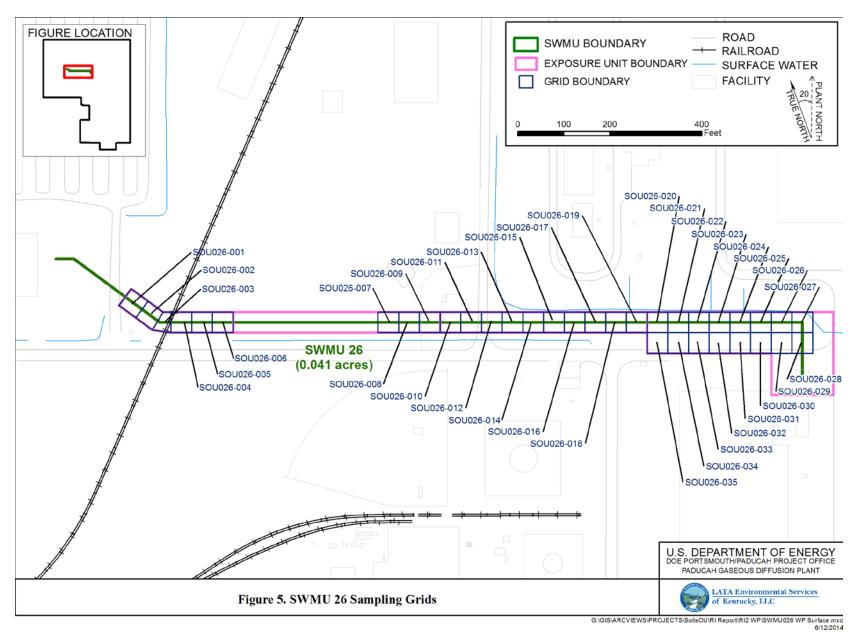
A synopsis of secondary data or information from site reports: See previously issued SARs for the areas to be addressed, Section 5 of the RI/FS Work Plan, and the Soils OU RI Report (DOE 2013a).

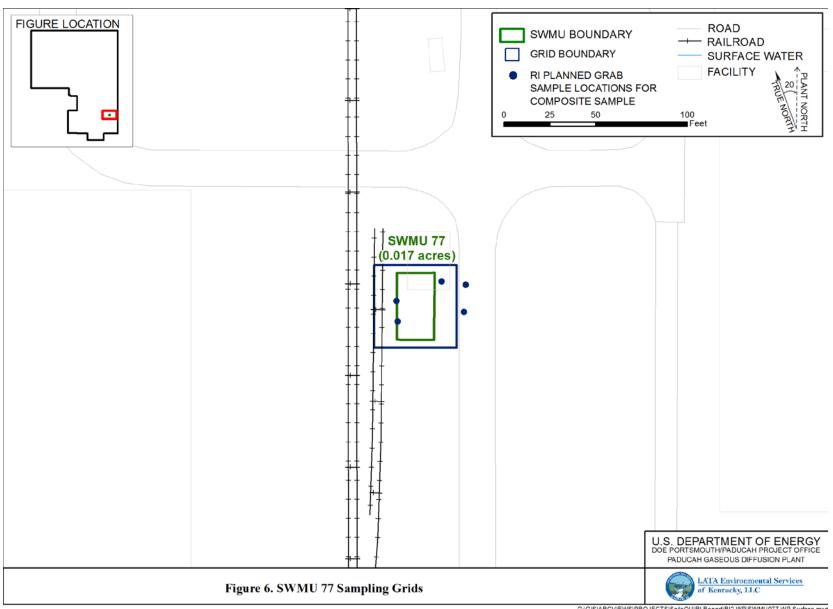

The possible classes of contaminants and the affected matrices:

See Section 5 of RI/FS Work Plan that provides information regarding the potential contaminants found within the soil matrices by AOC/SWMU.


The rationale for inclusion of chemical and nonchemical analyses: As noted in Sections 5 and 9 of the RI/FS Work Plan and the AOC/SARs, various chemical and radiological parameters will be analyzed to determine the nature and extent of contamination at each AOC/SWMU.

Information concerning various environmental indicators: Environmental indicators include metals, PCBs¹, and radiological parameters for PGDP contamination and are used as indicators for this project.


Project decision conditions ("If..., then..." statements): See Section 1 of the RI/FS Work Plan, which provides the data quality objectives. (DQOs) (if...then...statements).



Revision Number: 2 Revision Date: 06/2014

31

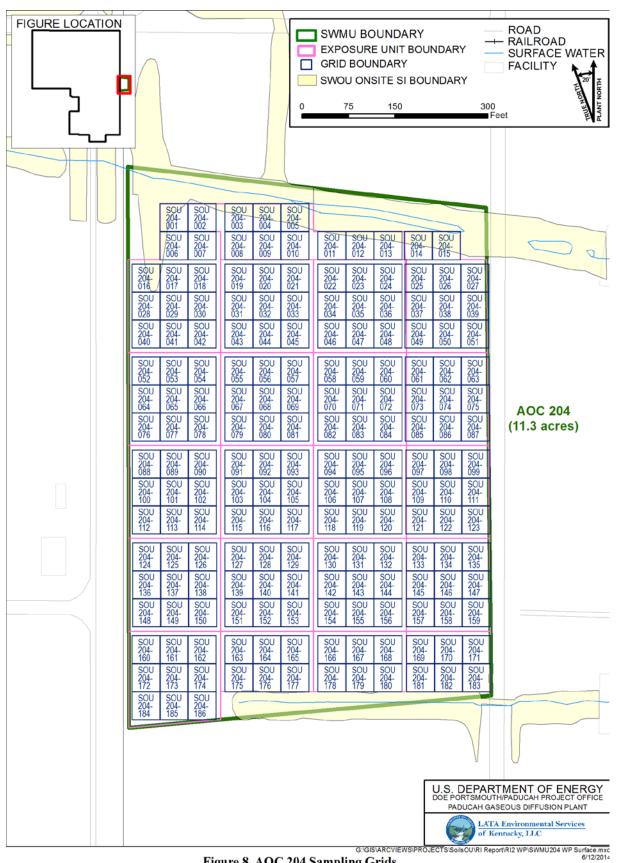
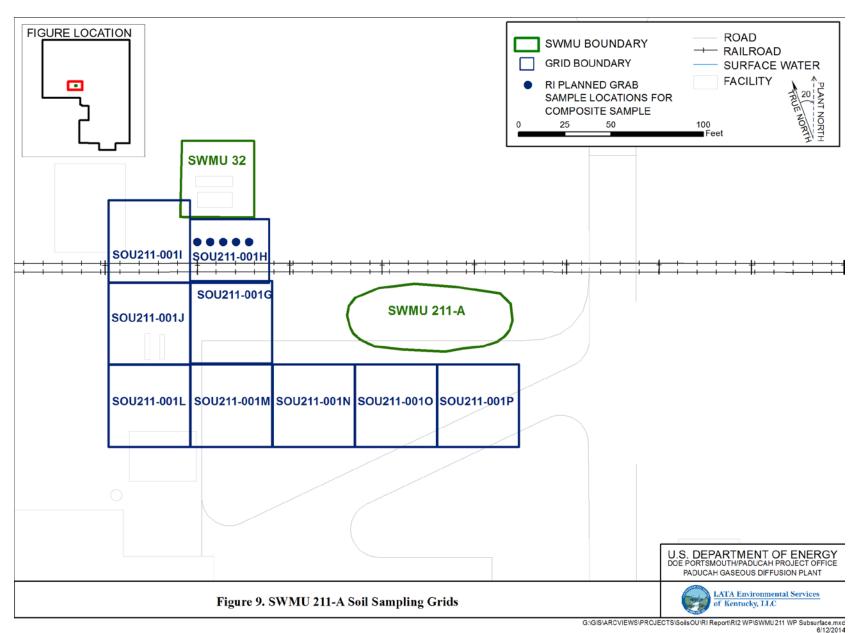
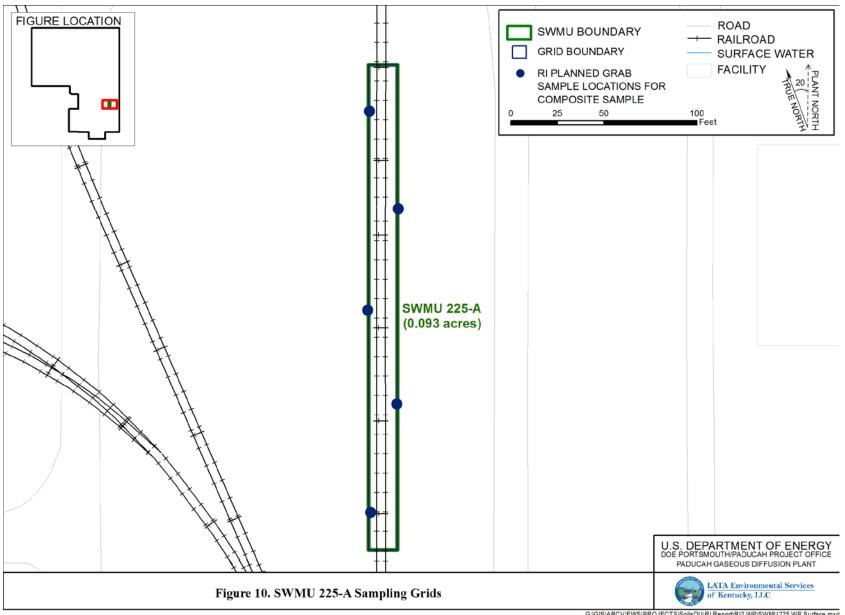
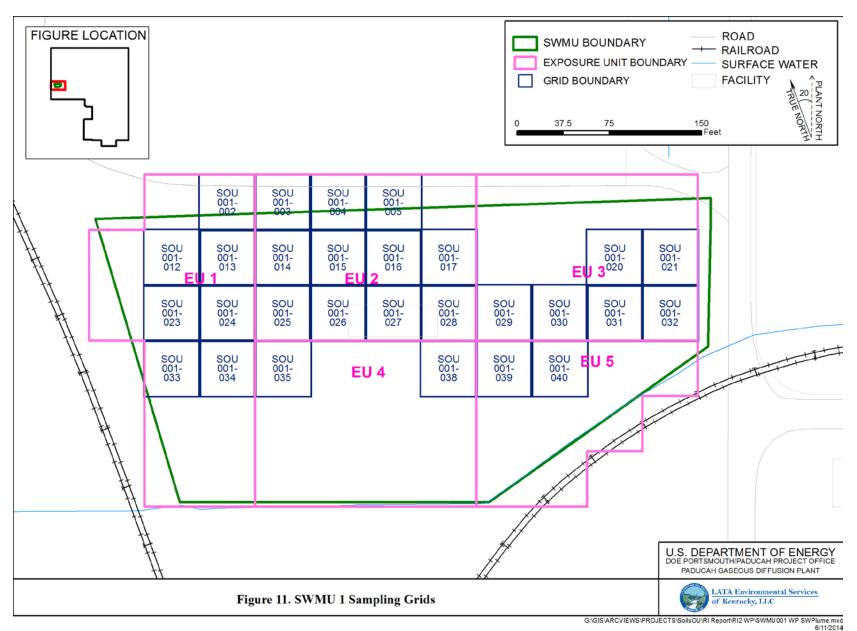





Figure 8. AOC 204 Sampling Grids

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #11 Project Quality Objectives/Systematic Planning Process Statements

UFP-QAPP Manual Section 2.6.1:

Who will use the data? DOE, KDEP, and EPA will use the environmental sampling data to determine the nature and extent of contamination and assess any potential risks to ecological and human health posed by the contamination.

What will the data be used for? To determine the nature and extent of contamination and complete a baseline human health risk assessment and a screening ecological risk assessment.

What type of data are needed? (target analytes, analytical groups, field screening, on-site analytical or off-site laboratory techniques, sampling techniques) Field screening data will be used to characterize metals, PCBs, and radiological contamination. Ten percent of the samples collected for field screening will be submitted to a fixed-base laboratory for analyses of target analytes listed on worksheet #10 and analyzed in a DOE Consolidated Audit Program (DOECAP) audited laboratory.

How "good" do the data need to be in order to support the environmental decision? The data need to be able to characterize and delineate the nature and extent of each SWMU/AOC. The data will be used to evaluate potential risks to ecological and human health. The acquired data must be of known quality to increase confidence that the SWMUs and AOCs are being and will be addressed appropriately.

How much data are needed? (number of samples for each analytical group, matrix, and concentration) Soil samples and radiological walkover data will be collected in accordance with Chapter 9 of the June 2010 RI/FS Work Plan.

Where, when, and how should the data be collected/generated? This investigation will evaluate 13 SWMUs/AOCs. The collection of field data and analytical data will enable DOE to increase confidence that SWMU/AOCs have been adequately characterized so that response actions can be planned. Soil samples and radiological walkover data will be collected in accordance with Chapter 9 of the June 2010 RI/FS Work Plan.

Field analysis will be completed for each collected soil sample using the following field analytical methods:

- Immunoassay/colorimetric method to measure soil PCB concentrations
- XRF technology to measure metals concentrations

A minimum of 10% of the soil samples will be submitted to a DOECAP audited laboratory.

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #11 Project Quality Objectives/Systematic Planning Process Statements (Continued)

Who will collect and generate the data? A sample team of individuals who are properly trained and skilled in the execution of the sampling procedures defined in this work plan will collect samples and perform the field screening measurements. The sample team members are responsible for safe conduct of work at all times and are responsible for collecting, preserving, handling, and storing samples in accordance with the provisions of the work plan. The sample team will perform radiological surveys and collect the soil samples following contractor sampling procedures.

How will the data be reported? Field data will be recorded on chain-of-custody forms, in field logbooks, and field data sheets. The fixed-base laboratory will provide data in an electronic data deliverable (EDD) format. Project data will be reported from the Paducah Oak Ridge Environmental Information System (OREIS).

How will the data be archived? Data will be archived in Paducah OREIS as required.

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #12-1 Measurement Performance Criteria Table

UFP-QAPP Manual Section 2.6.2:

Matrix	Soil/sediment				
Analytical Group ¹	Volatile Organic				
	Compounds				
Concentration Level	Low				
			Measurement	QC Sample and/or Activity	QC Sample Assesses Error
	Analytical	Data Quality	Performance	Used to Assess	for Sampling (S), Analytical
Sampling Procedure ²	Method/SOP ^{3, 4}	Indicators (DQIs)	Criteria	Measurement Performance	(A) or both (S&A)
	SW846-8260	Precision-Lab	RPD-22%	Laboratory Duplicates	A
		Precision	RPD-50%	Field Duplicates	S
		Accuracy/Bias	6	Laboratory Sample Spikes	A
		Accuracy/Bias-	No target	Method Blanks/Instrument	A
		Contamination	compounds > QL	Blanks	
		Accuracy/Bias	No target	Field Blanks	S
		Contamination	compounds > QL		
		Accuracy/Bias	No target	Trip Blanks	S
		Contamination	compounds > QL		
		Accuracy/Bias	No target	Equipment Rinseates	S
		Contamination	compounds > QL		
		Completeness ⁵	90%	Data completeness check	S&A

¹If information varies within an analytical group, separate by individual analyte.

² Reference number from QAPP Worksheet #21 (see Section 3.1.2).

³Reference number from QAPP Worksheet #23 (see Section 3.2).

⁴The most current version of the method will be used.

⁵Completeness is calculated as the number of samples planned to be collected divided by the number of sample results that were rejected.

⁶Percent recovery is laboratory-specific, calculated from studies performed every six months. Percent recovery ranges will be provided in the laboratory data packages based on the most current study.

Revision Number: 2 Revision Date: 06/2014

QAPP Worksheet #12-2 **Measurement Performance Criteria Table**

Matrix	Soil/sediment				
Analytical Group ¹	Semivolatile				
	Organic Compounds				
Concentration Level	Low				
Sampling Procedure ²	Analytical Method/SOP ^{3, 4}	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)
Sampling 1 rocedure	Memou/SOI	mulcators (DQIs)	Criteria	Weasurement 1 error mance	(A) of both (S&A)
	SW846-8270	Precision-Lab	RPD-38%	Laboratory Duplicates	A
		Precision	RPD-50%	Field Duplicates	S
		Accuracy/Bias	6	Laboratory Sample Spikes	A
		Accuracy/Bias-	No target	Method Blanks/Instrument	A
		Contamination	compounds > QL	Blanks	
		Accuracy/Bias	No target	Field Blanks	S
		Contamination	compounds > QL		
		Accuracy/Bias	No target	Equipment Rinseates	S
		Contamination	compounds > QL		
		Completeness ⁵	90%	Data completeness check	S&A

¹ If information varies within an analytical group, separate by individual analyte.

² Reference number from QAPP Worksheet #21 (see Section 3.1.2). ³ Reference number from QAPP Worksheet #23 (see Section 3.2).

⁴The most current version of the method will be used.

⁵Completeness is calculated as the number of samples planned to be collected divided by the number of sample results that were rejected.

⁶ Percent recovery is laboratory-specific, calculated from studies performed every six months. Percent recovery ranges will be provided in the laboratory data packages based on the most current study.

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #12-3 Measurement Performance Criteria Table

Matrix	Soil/sediment				
Analytical Group ¹	Metals (aluminum, antimony, barium, beryllium, calcium, chromium, iron, magnesium, manganese, molybdenum, nickel, sodium, vanadium, and zinc)				
Concentration Level	Low				
Sampling Procedure ²	Analytical Method/SOP ^{3, 4}	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)
	SW846-6020	Precision-Lab	RPD-20%	Laboratory Duplicates	A
		Accuracy/Bias	6	Laboratory Sample Spikes	A
		Accuracy/Bias- Contamination	No target compounds > QL	Method Blanks/Instrument Blanks	A
		Completeness ⁵	90%	Data completeness check	S&A

¹If information varies within an analytical group, separate by individual analyte.

² Reference number from QAPP Worksheet #21 (see Section 3.1.2).

³ Reference number from QAPP Worksheet #23 (see Section 3.2).

⁴The most current version of the method will be used.

⁵Completeness is calculated as the number of samples planned to be collected divided by the number of sample results that were rejected.

⁶ Percent recovery is laboratory-specific, calculated from studies performed every six months. Percent recovery ranges will be provided in the laboratory data packages based on the most current study.

Revision Number: 2 Revision Date: 06/2014

QAPP Worksheet #12-4 **Measurement Performance Criteria Table**

Matrix	Soil/sediment				
Analytical Group ¹ Concentration Level	Metals (arsenic, cadmium, cobalt, copper, lead, mercury, selenium, silver, thallium, uranium)				
Sampling Procedure ²	Analytical Method/SOP ^{3, 4}	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)
	SW846-6020	Precision–Lab	RPD-20%	Laboratory Duplicates	A
		Accuracy/Bias	6	Laboratory Sample Spikes	A
		Accuracy/Bias- Contamination	No target compounds > quantitation limit	Method Blanks/Instrument Blanks	A
		Completeness	90%	Data completeness check	S&A
	SW846-7471	Precision–Lab Accuracy/Bias	RPD-20%	Laboratory Duplicates Laboratory Sample Spikes	A A
		Accuracy/Bias- Contamination	No target compounds > QL	Method Blanks/Instrument Blanks	A
		Completeness ⁵	90%	Data completeness check	S&A

¹ If information varies within an analytical group, separate by individual analyte. ² Reference number from QAPP Worksheet #21 (see Section 3.1.2).

³ Reference number from QAPP Worksheet #23 (see Section 3.2).

⁴The most current version of the method will be used.

⁵Completeness is calculated as the number of samples planned to be collected divided by the number of sample results that were rejected.

⁶Percent recovery is laboratory-specific, calculated from studies performed every six months. Percent recovery ranges will be provided in the laboratory data packages based on the most current study.

Revision Number: 2 Revision Date: 06/2014

QAPP Worksheet #12-5 **Measurement Performance Criteria Table**

Matrix	Soil/sediment				
-					
Analytical Group ¹	PCBs				
Concentration Level	Low				
			Measurement	QC Sample and/or Activity	QC Sample Assesses Error
	Analytical	Data Quality	Performance	Used to Assess	for Sampling (S), Analytical
Sampling Procedure ²	Method/SOP ^{3, 4}	Indicators (DQIs)	Criteria	Measurement Performance	
	SW846-8082	Precision-Lab	RPD-43%	Laboratory Duplicates	A
		Accuracy/Bias	6	Laboratory Sample Spikes	A
		Accuracy/Bias-	No target	Method Blanks/Instrument	A
		Contamination	compounds > QL	Blanks	
		Completeness ⁵	90%	Data completeness check	S&A

¹If information varies within an analytical group, separate by individual analyte.

²Reference number from QAPP Worksheet #21 (see Section 3.1.2). ³Reference number from QAPP Worksheet #23 (see Section 3.2).

⁴The most current version of the method will be used.

⁵Completeness is calculated as the number of samples planned to be collected divided by the number of sample results that were rejected.

⁶ Percent recovery is laboratory-specific, calculated from studies performed every six months. Percent recovery ranges will be provided in the laboratory data packages based on the most current study.

Revision Number: 2 Revision Date: 06/2014

QAPP Worksheet #12-6 **Measurement Performance Criteria Table**

Matrix	Soil/sediment				
Analytical Group ¹	Radionuclides (Gross alpha and Gross beta)				
Concentration Level	Low				
Sampling Procedure ²	Analytical Method/SOP ^{3, 4}	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)
	EPA 900	Precision-Lab	RPD-30% (gross alpha)	Laboratory Duplicates	A
		Precision-Lab	RPD-25% (gross beta)	Laboratory Duplicates	A
		Precision	RPD-50%	Field Duplicates	S
		Accuracy/Bias	6	Laboratory Sample Spikes	A
		Accuracy/Bias- Contamination	No target compounds > QL	Method Blanks/Instrument Blanks	A
		Accuracy/Bias Contamination	No target compounds > QL	Field Blanks	S
		Accuracy/Bias Contamination	No target compounds > QL	Equipment Rinseates	S
		Completeness ⁵	90%	Data completeness check	S&A

¹ If information varies within an analytical group, separate by individual analyte.

² Reference number from QAPP Worksheet #21 (see Section 3.1.2).

³ Reference number from QAPP Worksheet #23 (see Section 3.2).

⁴The most current version of the method will be used.

⁵Completeness is calculated as the number of samples planned to be collected divided by the number of sample results that were rejected.

⁶ Percent recovery is laboratory-specific, calculated from studies performed every six months. Percent recovery ranges will be provided in the laboratory data packages based on the most current study.

Revision Number: 2 Revision Date: 06/2014

QAPP Worksheet #12-7 **Measurement Performance Criteria Table**

Matrix	Soil/sediment				
Analytical Group ¹	Radionuclides	-			
	(uranium-234,				
	uranium-235,				
	uranium-238)				
Concentration Level	Low				
Sampling Procedure ²	Analytical Method/SOP ^{3, 4}	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)
Sampling Frocedure	Memou/SOF	mulcators (DQIS)	Criteria	Weasurement Ferformance	(A) or both (S&A)
	Alpha spectroscopy	Precision-Lab	RPD-20%	Laboratory Duplicates	A
		Precision	RPD-50%	Field Duplicates	S
		Accuracy/Bias	6	Laboratory Sample Spikes	A
		Accuracy/Bias- Contamination	No target compounds > QL	Method Blanks/Instrument Blanks	A
		Accuracy/Bias Contamination	No target compounds > QL	Field Blanks	S
		Accuracy/Bias Contamination	No target compounds > QL	Equipment Rinseates	S
		Completeness ⁵	90%	Data completeness check	S&A

¹If information varies within an analytical group, separate by individual analyte.

² Reference number from QAPP Worksheet #21 (see Section 3.1.2). ³ Reference number from QAPP Worksheet #23 (see Section 3.2).

⁴The most current version of the method will be used.

⁵ Completeness is calculated as the number of samples planned to be collected divided by the number of sample results that were rejected.

⁶ Percent recovery is laboratory-specific, calculated from studies performed every six months. Percent recovery ranges will be provided in the laboratory data packages based on the most current study. Tracers/carriers tested by a radiochemical separations method are used to verify accuracy, if appropriate.

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #12-8 Measurement Performance Criteria Table

Matrix	Soil/sediment
Analytical Group ¹	Radionuclides
	(americium-241,
	neptunium-237,
	plutonium-238,
	plutonium-239/240,
	thorium-228,
	thorium-230,
	thorium-232)
Concentration Level	Low

Concenti ation Level	LOW				
Sampling Procedure ²	Analytical Method/SOP ^{3, 4}		Data Quality Indicators (DQIs) Measurement Performance Performance Criteria Measurement Performance Weasurement Performance		QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)
	Alpha spectroscopy	Precision–Lab	RPD-50%	Laboratory Duplicates	A
		Precision	RPD-50%	Field Duplicates	S
		Accuracy/Bias	6	Laboratory Sample Spikes	A
		Accuracy/Bias- Contamination	No target compounds > QL	Method Blanks/Instrument Blanks	A
		Accuracy/Bias Contamination	No target compounds > QL	Field Blanks	S
		Accuracy/Bias Contamination	No target compounds > QL	Equipment Rinseates	S
		Completeness ⁵	90%	Data completeness check	S&A

¹If information varies within an analytical group, separate by individual analyte.

² Reference number from QAPP Worksheet #21 (see Section 3.1.2).

³ Reference number from QAPP Worksheet #23 (see Section 3.2).

⁴The most current version of the method will be used.

⁵ Completeness is calculated as the number of samples planned to be collected divided by the number of sample results that were rejected.

⁶ Percent recovery is laboratory-specific, calculated from studies performed every six months. Percent recovery ranges will be provided in the laboratory data packages based on the most current study. Tracers/carriers tested by a radiochemical separations method are used to verify accuracy, if appropriate.

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #12-9 Measurement Performance Criteria Table

Matrix	Soil/sediment				
Analytical Group ¹	Radionuclides (cesium-137)				
Concentration Level	Low				
Sampling Procedure ²	Analytical Method/SOP ^{3, 4}	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	for Sampling (S), Analytical
	Gamma spectroscopy	Precision-Lab	RPD-50%	Laboratory Duplicates	A
		Precision	RPD-50%	Field Duplicates	S
		Accuracy/Bias	6	Laboratory Sample Spikes	A
		Accuracy/Bias- Contamination	No target compounds > QL	Method Blanks/Instrument Blanks	A
		Accuracy/Bias Contamination	No target compounds > QL	Field Blanks	S
		Accuracy/Bias Contamination	No target compounds > QL	Equipment Rinseates	S
		Completeness ⁵	90%	Data completeness check	S&A

¹If information varies within an analytical group, separate by individual analyte.

² Reference number from QAPP Worksheet #21 (see Section 3.1.2).

³ Reference number from QAPP Worksheet #23 (see Section 3.2).

⁴The most current version of the method will be used.

⁵ Completeness is calculated as the number of samples planned to be collected divided by the number of sample results that were rejected.

⁶ Percent recovery is laboratory-specific, calculated from studies performed every six months. Percent recovery ranges will be provided in the laboratory data packages based on the most current study. Tracers/carriers tested by a radiochemical separations method are used to verify accuracy, if appropriate.

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #12-10 Measurement Performance Criteria Table

Matrix	Soil/sediment				
Analytical Group ¹	Radionuclides (technetium-99)				
Concentration Level	Low				
Sampling Procedure ²	Analytical Method/SOP ^{3, 4}	Data Quality Indicators (DQIs)	Measurement Performance Criteria	QC Sample and/or Activity Used to Assess Measurement Performance	QC Sample Assesses Error for Sampling (S), Analytical (A) or both (S&A)
	Liquid scintillation	Precision–Lab	RPD-50%	Laboratory Duplicates	A
		Precision	RPD-50%	Field Duplicates	S
		Accuracy/Bias	6	Laboratory Sample Spikes	A
		Accuracy/Bias- Contamination	No target compounds > QL	Method Blanks/Instrument Blanks	A
		Accuracy/Bias Contamination	No target compounds > QL	Field Blanks	S
		Accuracy/Bias Contamination	No target compounds > QL	Equipment Rinseates	S
		Completeness ⁵	90%	Data completeness check	S&A

¹If information varies within an analytical group, separate by individual analyte.

² Reference number from QAPP Worksheet #21 (see Section 3.1.2).

³Reference number from QAPP Worksheet #23 (see Section 3.2).

⁴The most current version of the method will be used.

⁵ Completeness is calculated as the number of samples planned to be collected divided by the number of sample results that were rejected.

⁶ Percent recovery is laboratory-specific, calculated from studies performed every six months. Percent recovery ranges will be provided in the laboratory data packages based on the most current study. Tracers/carriers tested by a radiochemical separations method are used to verify accuracy, if appropriate.

Revision Number: 2 Revision Date: 06/2014

QAPP Worksheet #12-11 **Measurement Performance Criteria Table**

Matrix	Soil/sediment				
Analytical Group ¹	Metals (arsenic,				
	chromium, copper,				
	iron, lead,				
	manganese,				
	mercury,				
	molybdenum, nickel,				
	selenium, silver,				
	uranium, vanadium,				
	and zinc)				
Concentration Level	Moderate				
			Measurement	QC Sample and/or Activity	QC Sample Assesses Error
	Analytical	Data Quality	Performance	Used to Assess	for Sampling (S), Analytical
Sampling Procedure ²	Method/SOP ^{3, 4}	Indicators (DQIs)	Criteria	Measurement Performance	(A) or both (S&A)
	SW846-6200 (XRF)	Precision	RPD-50%	Field Duplicates	S
		Accuracy/Bias-	No target	Method Blanks/Instrument	A
		Contamination	compounds > QL	Blanks	
		Completeness ⁵	90%	Data completeness check	S&A

¹ If information varies within an analytical group, separate by individual analyte.

² Reference number from QAPP Worksheet #21 (see Section 3.1.2). ³ Reference number from QAPP Worksheet #23 (see Section 3.2).

⁴The most current version of the method will be used.

⁵Completeness is calculated as the number of samples planned to be collected divided by the number of sample results that were rejected.

Revision Number: 2 Revision Date: 06/2014

QAPP Worksheet #12-12 **Measurement Performance Criteria Table**

Matrix	Soil/sediment				
Analytical Group ¹	PCBs (test kits)				
Concentration Level	Low				
	Analytical	Data Quality	Measurement Performance	QC Sample and/or Activity Used to Assess	QC Sample Assesses Error for Sampling (S), Analytical
Sampling Procedure ²	Method/SOP ^{3, 4}	Indicators (DQIs)	Criteria	Measurement Performance	(A) or both (S&A)
	Manufacturer's instructions	Precision	RPD—≤50%	Field Duplicates	S
		Accuracy/Bias- Contamination	N/A	N/A	A
		Completeness ⁵	90%	Data completeness check	S&A

¹ If information varies within an analytical group, separate by individual analyte.

² Reference number from QAPP Worksheet #21 (see Section 3.1.2).

³ Reference number from QAPP Worksheet #23 (see Section 3.2).

⁴ The most current version of the method will be used.

⁵ Completeness is calculated as the number of samples planned to be collected divided by the number of sample results that were rejected.

Title: Soils Operable Unit RI/FS Work Plan **Revision Number:** 2

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #13 Secondary Data Criteria and Limitations Table

UFP-QAPP Manual Section 2.7:

Secondary Data	Data Source (Originating Organization, Report Title, and Date)	Data Generator(s) (Originating Org., Data Types, Data Generation/Collection Dates)	How Data Will Be Used	Limitations on Data Use
Appendix C "Analytical Data"; process knowledge	Data are from various sources, also see Section 5	DOE; previous analytical sampling/analysis results; contaminant conclusions based process knowledge	To determine whether SWMU is contaminated; to perform risk assessments and to provide input to the remedy alternatives	Radiological data should be evaluated for analytical limitations, data is used for planning purposes only

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #14 Summary of Project Tasks¹

UFP-QAPP Manual Section 2.8.1:

Sampling Tasks: See Worksheet #10.

Analysis Tasks: See Worksheet #18.

Quality Control Tasks: QC Samples: Worksheets #20 & 28; Equipment Calibration: Worksheets #22 & 24; Data Review/Validation: Worksheets #34, 35, 36, & 37.

Secondary Data: See Section 9 (Field Sampling Plan) of the RI/FS Work Plan. Project data will be reported from Paducah OREIS and also will be available in Portsmouth/Paducah Project Office Environmental Geographic Analytical Spatial Information System (PEGASIS), accessible at http://padgis.latakentucky.com/padgis/.

Data Management Tasks: See Section 12 (Data Management Implementation Plan) of the RI/FS Work Plan.

Documentation and Records: Documentation and Records will be per DOE Prime Contractor procedure PAD-DOC-1009, *Records Management, Administrative Records, and Document Control.* Also, see Section 12 (Data Management Implementation Plan) of the RI/FS Work Plan.

Assessment/Audit Tasks: Assessments and audits will be per DOE Prime Contractor procedure PAD-QAP-1420, *Conduct of Assessments*. Also, see Section 11 (Quality Assurance Project Plan) of the RI/FS Work Plan.

Data Review Tasks: Data review tasks will be per DOE Prime Contractor procedure PAD-ENM-5003, Quality Assured Data.

¹ It is understood that SOPs are contractor specific.

Title: Soils Operable Unit RI/FS Work Plan **Revision Number:** 1

Revision Date: 05/2010

QAPP Worksheet #15-1 **Reference Limits and Evaluation Table**

UFP-QAPP Manual Section 2.8.1:

Matrix: Soil/Sediment

Analytical Group: volatile organic compounds Concentration Level: low

		Project		Project Analytical Metl		d ² Achievable Laboratory Limits ³		
Analyte	CAS Number	Action Limit (µg/kg) ¹	Limit (µg/kg)	MDLs	Method QLs	MDLs	QLs	
Acetone	67-64-1	53,400	10	5	1	6.47	10	
Acrolein	107-02-8	4.29	10	5	1	2.901	4.29	
Acrylonitrile	107-13-1	64.5	10	5	1	1.126	10	
Benzene	71-43-2	327	10	5	1	0.253	10	
Bromodichloromethane	75-27-4	390	10	5	1	0.254	10	
Bromoform	75-25-2	13,800	10	5	1	0.366	10	
Bromomethane	74-83-9	186	10	5	1	0.396	10	
2-Butanone	78-93-3	153,000	10	5	1	0.389	10	
Carbon disulfide	75-15-0	15,700	10	5	1	0.369	10	
Carbon tetrachloride	56-23-5	97.8	10	5	1	0.360	10	
Chlorobenzene	108-90-7	4,470	10	5	1	0.382	10	
Chloroethane	75-00-3	978	10	5	1	0.382	10	
2-Chloroethyl vinyl ether	110-75-8	N/A	10	5	1	0.523	10	
Chloroform	67-66-3	18.2	10	5	1	0.092	10	
Chloromethane	74-87-3	884	10	5	1	0.553	10	
Dibromochloromethane	124-48-1	334	10	5	1	0.329	10	
Dibromomethane	74-95-3	3,170	10	5	1	0.405	10	
Dichlorodifluoromethane	75-71-8	5,200	10	5	1	0.449	10	
1,1-Dichloroethane	75-34-3	22,900	10	5	1	0.392	10	
1,2-Dichloroethane	107-06-2	152	10	5	1	0.372	10	
1,1-Dichloroethene	75-35-4	27.6	10	5	1	0.365	10	
cis-1,2-Dichloroethene	156-59-2	1,980	10	5	1	0.159	10	
trans-1,2-Dichloroethene	156-60-5	3,260	10	5	1	0.178	10	

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #15-1 Reference Limits and Evaluation Table (Continued)

Matrix: Soil/Sediment

Analytical Group: volatile organic compounds

Concentration Level: low

		Project Action Limit	Project Quantitation Limit	Analyti	ical Method ²	Achievable La	boratory Limits ³
Analyte	CAS Number	(μg/kg) ¹	Limit (μg/kg)	MDLs	Method QLs	MDLs	QLs
1,2-Dichloropropane	78-87-5	180	10	5	1	0.317	10
cis-1,3-Dichloropropene	10061-01-5	N/A	10	5	1	0.339	10
trans-1,3-Dichloropropene	10061-02-6	N/A	10	5	1	0.349	10
trans-1,4-Dichloro-2-butene (100)	110-57-6	N/A	10	5	1	0.397	10
Ethyl benzene	100-41-4	6,010	10	5	1	0.299	10
Ethyl methacrylate	97-63-2	99,700	10	5	1	0.240	10
Iodomethane	74-88-4	N/A	10	5	1	1.511	10
2-Hexanone	591-78-6	N/A	10	5	1	0.261	10
Methylene chloride	75-09-2	3,920	10	5	1	0.801	10
4-Methyl-2-pentanone	108-10-1	9,660	10	5	1	0.326	10
Styrene	100-42-5	128,000	10	5	1	0.347	10
1,1,1,2-Tetrachloroethane	630-20-6	1,430	10	5	1	0.238	10
1,1,2,2-Tetrachloroethane	79-34-5	145	10	5	1	0.272	10
Tetrachloroethene	127-18-4	1,170	10	5	1	0.280	10
Toluene	108-88-3	31,200	10	5	1	0.303	10
1,1,1-Trichloroethane	71-55-6	23,200	10	5	1	0.291	10
1,1,2-Trichloroethane	79-00-5	345	10	5	1	0.573	10
Trichloroethene	79-01-6	741	10	5	1	0.290	10
Trichlorofluoromethane	75-69-4	19,300	10	5	1	0.167	10
1,2,3-Trichloropropane	96-18-4	0.629	10	5	1	0.559	0.629
Vinyl acetate	108-05-4	21,300	10	5	1	0.305	10
Vinyl chloride	75-01-4	40	10	5	1	0.428	10
<i>m,p</i> -xylene	NS831	107,000	20	5	1	0.569	20
o-xylene	95-47-6	659,000	10	5	1	0.318	10

N/A = not available

¹ Project Action Limits shown are no action levels for the Child Resident scenario from the Risk Methods Document (DOE 2001). See Section 6.1.1 for additional information.

² Analytical MDLs and QLs are those documented in validated methods.

³ Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits will be part of the scope submitted for laboratory solicitation for the Soils OU project. As part of this scope, these limits will be a technical requirement used in evaluating laboratory award.

Title: Soils Operable Unit RI/FS Work Plan **Revision Number:** 1

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #15-2 Reference Limits and Evaluation Table

Matrix: Soil/Sediment

Analytical Group: semivolatile organic compounds

Concentration Level: low

		Project Action Limit	Project Quantitation Limit	Analytica	Analytical Method ²		Achievable Laboratory Limits ³	
Analyte	CAS Number	(μg/kg) ¹	Limit (μg/kg)	MDLs	Method QLs	MDLs	QLs	
1,2,4-Trichlorobenzene	120-82-1	12,200	660	660		33.3	660	
1,2-Dichlorobenzene	95-50-1	40,000	660	660		33.3	660	
1,3-Dichlorobenzene	541-73-1	997	660	660		33.3	660	
1,4-Dichlorobenzene	106-46-7	1,360	660	660		33.3	660	
2,4,5-Trichlorophenol	95-95-4	160,000	660	660		33.3	660	
2,4,6-Trichlorophenol	88-06-2	8,510	660	660		33.3	660	
2,4-Dichlorophenol	120-83-2	6,930	660	660		33.3	660	
2,4-Dimethylphenol	105-67-9	32,000	660	660		33.3	660	
2,4-Dinitrotoluene	121-14-2	209	660	660		33.3	209	
2,6-Dinitrotoluene	606-20-2	209	660	660		33.3	209	
2-Chloronaphthalene	91-58-7	33,800	660	660		33.3	660	
2-Chlorophenol	95-57-8	2,810	660	660		33.3	660	
2-Methylnaphthalene	91-57-6	N/A	660	660		33.3	660	
2-Nitrophenol	88-75-5	N/A	660	660		33.3	660	
4-Bromophenyl phenyl ether	101-55-3	N/A	660	660		33.3	660	

Revision Date: 05/2010

QAPP Worksheet #15-2 **Reference Limits and Evaluation Table (Continued)**

Matrix: Soil/Sediment

Analytical Group: semivolatile organic compounds Concentration Level: low

		Project	Project Quantitation	Analytic	cal Method ²	Achievable Lab	oratory Limits ³
Analyte	CAS Number	Action Limit (µg/kg) ¹	Limit (μg/kg)	MDLs	Method QLs	MDLs	QLs
4-Chlorophenylphenyl ether	7005-72-3	N/A	660	660		33.3	660
Acenaphthene	83-32-9	N/A	660	660		33.3	660
Acenaphthylene	208-96-8	N/A	660	660		33.3	660
Anthracene	120-12-7	526,000	660	660		33.3	660
Benz(a)anthracene	56-55-3	67	660	660		33.3	67
Benzo(a)pyrene	50-32-8	6.7	660	660		33.3	6.7
Benzo(b)fluoranthene	205-99-2	67	660	660		33.3	67
Benzo(ghi)perylene	191-24-2	N/A	660	660		33.3	660
Benzo(k)fluoranthene	207-08-9	670	660	660		33.3	660
bis(2-chloroethoxy)methane	111-91-1	N/A	660	660		33.3	660
bis(2-chloroethyl) ether	111-44-4	29	660	660		33.4	29
bis(2-chloroisopropyl) ether	108-60-1	1,340	660	660		33.3	660
bis(2-ethylhexyl)phthalate	117-81-7	2,840	660	660		43.3	660
Butyl benzyl phthalate	85-68-7	373,000	660	660		33.3	660
Chrysene	218-01-9	6,700	660	660		33.3	660
Dibenz(a,h)anthracene	53-70-3	6.7	660	660		33.3	6.7
Dibenzofuran	132-64-9	2,930	660	660		33.3	660
Diethylphthalate	84-66-2	1,970,000	660	660		33.3	660
Dimethylphthalate	131-11-3	24,600,000	660	660		33.3	660
Di-n-butylphthalate	84-74-2	264,000	660	660		33.3	660
Di-n-octylphthalate	117-84-0	49,200	660	660		33.3	660
Fluoranthene	206-44-0	34,300	660	660		33.3	660
Fluorene	86-73-7	50,100	660	660		33.3	660
Hexachlorobenzene	118-74-1	58.5	660	660		33.3	58.5
Hexachlorobutadiene	87-68-3	320	660	660		33.3	320
Hexachlorocyclopentadiene	77-47-4	9,590	660	660		330	660
Hexachloroethane	67-72-1	1,600	660	660		33.3	660
Indeno(1,2,3-cd)pyrene	193-39-5	67	660	660		33.3	67
Isophorone	78-59-1	98,500	660	660		33.3	660

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #15-2 Reference Limits and Evaluation Table (Continued)

Matrix: Soil/Sediment

Analytical Group: semivolatile organic compounds

Concentration Level: low

		Project	Project Quantitation	Analytica	al Method ²	Achievable Lab	oratory Limits ³
Analyte	CAS Number	Action Limit (μg/kg) ¹	Limit (µg/kg)	MDLs	Method QLs	MDLs	QLs
m,p-cresol		9,770 ⁴	660	660		66.6	660
Naphthalene	91-20-3	3,470	660	660		33.3	660
Nitrobenzene	98-95-3	492	660	660		33.3	660
N-Nitroso-di-n-propylamine	621-64-7	7.3	660	660		33.3	7.3
N-Nitrosodiphenylamine	86-30-6	10,400	660	660		33.3	660
o-cresol	95-48-7	79,900	660	660		33.3	660
Phenanthrene	85-01-8	N/A	660	660		33.3	660
Phenol	108-95-2	1,480,000	660	660		33.3	660
Pyrene	129-00-0	25,700	660	660		33.3	660
Pyridine	110-86-1	1,600	660	660		66.6	660
3,3'-Dichlorobenzidine	91-94-1	208	1,300	1 300		33.3	208
4-Chloro-3-methylphenol	59-50-7	N/A	1,300	1 300		33.3	1 300
4-Chloroaniline	106-47-8	6,390	1,300	1 300		33.3	1 300
Benzyl Alcohol	100-51-6	593,000	1,300	1 300		33.3	1 300
2,4-Dinitrophenol	51-28-5	5,280	3,300	3 300		330	3 300
2-Methyl-4,6-dinitrophenol	534-52-1	N/A	3,300	3 300		330	3 300
2-Nitroaniline	88-74-4	91.3	3,300	3 300		33.3	91.3
3-Nitroaniline	99-09-2	N/A	3,300	3 300		33.3	3 300
4-Nitroaniline	100-01-6	N/A	3,300	3 300		330	3 300
4-Nitrophenol	100-02-7	21,100	3,300	3 300		330	3 300
Benzoic Acid	65-85-0	10,600,000	3,300	3 300		330	3 300
Pentachlorophenol	87-86-5	646	3,300	3 300		330	646

¹ Project Action Limits shown are no action levels for the Child Resident scenario from the Risk Methods Document (DOE 2001). See Section 6.1.1 for additional information.

² Analytical MDLs and QLs are those documented in validated methods.

³ Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits will be part of the scope submitted for laboratory solicitation for the Soils OU project. As part of this scope, these limits will be a technical requirement used in evaluating laboratory award.

⁴Lowest no action limit among m-cresol and p-cresol was used.

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #15-3 Reference Limits and Evaluation Table

Matrix: Soil/Sediment Analytical Group: metals Concentration Level: low

		Project	Project Quantitation	Analytic	cal Method ²	Achievable Lal	oratory Limits ³
Analyte	CAS Number	Action Limit (mg/kg) ¹	Limit (mg/kg)	MDLs	Method QLs	MDLs	QLs
Aluminum	7429-90-5	732	20	20			20
Antimony	7440-36-0	0.0635	10	10		0.164	0.164
Arsenic	7440-38-2	0.132	1	1		0.203	0.203
Barium	7440-39-3	37	2.5	2.5		0.057	2.5
Beryllium	7440-41-7	0.16	0.5	0.5		0.011	0.16
Cadmium	7440-43-9	2.64	0.5	0.5		0.011	0.5
Chromium	7440-47-3	60.5	2.5	2.5		0.302	2.5
Copper	7440-50-8	68.1	2.5	2.5		0.0536	2.5
Iron	7439-89-6	314	20	20		3.30	20
Lead	7439-92-1	50	20	1		0.026	20
Manganese	7439-96-5	7.46	2.5	2.5		0.054	2.5
Mercury	7439-97-6	0.158	0.02	0.02		0.006	0.02
Molybdenum	7439-98-7	10.9	5	5		0.077	5
Nickel	7440-02-0	34	5	5		0.0822	5
Selenium	7782-49-2	12.1	1	1		0.045	1
Silver	7440-22-4	6.12	1	1		0.008	1
Thallium	7440-28-0	0.107^4	2	2		0.058	0.107
Uranium	7440-61-1	2.16	1	1		0.012	1
Vanadium	7440-62-2	0.562	2.5	2.5		0.735	0.735
Zinc	7440-66-6	401	20	20		1.33	20

¹ Project Action Limits shown are no action levels for the Child Resident scenario from the Risk Methods Document (DOE 2001). See Section 6.1.1 for additional information.

² Analytical MDLs and QLs are those documented in validated methods.

³ Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits will be part of the scope submitted for laboratory solicitation for the Soils OU project. As part of this scope, these limits will be a technical requirement used in evaluating laboratory award.

⁴ The no action level for thallium chloride was used.

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #15-4 Reference Limits and Evaluation Table

Matrix: Soil/Sediment

Analytical Group: radionuclides **Concentration Level:** low

		Project	Project Quantitation	Analytic	al Method ²	Achievable Lab	oratory Limits ³
Analyte	CAS Number	Action Limit (pCi/g) ¹	Limit (pCi/g)	MDCs	Method QLs	MDCs	QLs
Alpha Activity	12587-46-1	N/A	5	5		5	5
Beta Activity	12587-47-2	N/A	5	5		5	5
Americium-241	14596-10-2	0.836	0.05	3		0.05	0.05
Cesium-137	10045-97-3	0.0128	0.1	0.5		0.1	0.1
Neptunium-237	13994-20-2	0.0405	0.05	3		0.05	0.05
Plutonium-238	13981-16-3	2.27	0.05	6		0.05	0.05
Plutonium-239/240	N/A	2.22	0.05	4		0.05	0.05
Technetium-99	14133-76-7	67.4	1	8		1	1
Thorium-228	14274-82-9	0.00418	0.05	3		0.05	0.05
Thorium-230	14269-63-7	2.85	0.05	4		0.05	0.05
Thorium-232	N/A	2.61	0.05	3		0.05	0.05
Uranium-234	13966-29-5	3.81	0.15	3		0.15	0.15
Uranium-235	15117-96-1	0.0591	0.05	2		0.05	0.05
Uranium-238	24678-82-8	0.261	0.15	2		0.15	0.15

¹ Project Action Limits shown are no action levels for the Child Resident scenario from the Risk Methods Document (DOE 2001). See Section 6.1.1 for additional information.

² Analytical MDCs and QLs are those documented in validated methods.

³ Achievable MDCs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits will be part of the scope submitted for laboratory solicitation for the Soils OU project. As part of this scope, these limits will be a technical requirement used in evaluating laboratory award.

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #15-5 Reference Limits and Evaluation Table

Matrix: Soil/Sediment Analytical Group: PCBs Concentration Level: low

			Project	Analytica	al Method ²	Achievable Laboratory Limits ³		
		Project Action Limit	Quantitation Limit	Anarytica	I Wethou	Achievable Lab	Dratory Limits	
Analyte	CAS Number	$(mg/kg)^1$	(mg/kg)	MDLs	Method QLs	MDLs	QLs	
Aroclor-1016	12674-11-2	0.0574	0.1	0.1	N/A	5.39	57.4	
Aroclor-1221	11104-28-2	0.0574	0.1	0.1	N/A	5.39	57.4	
Aroclor-1232	11141-16-5	0.0574	0.1	0.1	N/A	5.39	57.4	
Aroclor-1242	53469-21-9	0.0574	0.1	0.1	N/A	5.39	57.4	
Aroclor-1248	12672-29-6	0.0574	0.1	0.1	N/A	5.39	57.4	
Aroclor-1254	11097-69-1	0.0388	0.1	0.1	N/A	6.13	57.4	
Aroclor-1260	11096-82-5	0.0574	0.1	0.1	N/A	6.13	57.4	
Total PCBs	1336-36-3	0.0574	0.1	0.1	N/A	51.47	57.4	

N/A = not available

9

¹ Project Action Limits shown are no action levels for the Child Resident scenario from the Risk Methods Document (DOE 2001). See Section 6.1.1 for additional information.

² Analytical MDLs and QLs are those documented in validated methods.

³ Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits will be part of the scope submitted for laboratory solicitation for the Soils OU project. As part of this scope, these limits will be a technical requirement used in evaluating laboratory award.

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #15-6 Reference Limits and Evaluation Table

Matrix: Soil/Sediment

Analytical Group: metals by XRF **Concentration Level:** low

		Project Action	Project coject Action Quantitation		al Method ²	Achievable Lal	Achievable Laboratory Limits ³	
Analyte	CAS Number	Limit (mg/kg) ¹	Limit (mg/kg)	MDLs	Method QLs	MDLs	QLs	
Arsenic	7440-38-2	11	11	11		11	N/A	
Chromium	7440-47-3	85	85	85		85	N/A	
Copper	7440-50-8	35	35	35		35	N/A	
Iron	7439-89-6	28,000	100	100		100	N/A	
Lead	7439-92-1	23	13	13		13	N/A	
Manganese	7439-96-5	820	85	85		85	N/A	
Mercury	7439-97-6	10	10	10		10	N/A	
Molybdenum	7439-98-7	830	15	15		15	N/A	
Nickel	7440-02-0	65	65	65		65	N/A	
Selenium	7782-49-2	20	20	20		20	N/A	
Silver	7440-22-4	10	10	10		10	N/A	
Uranium	7440-61-1	20	20	20		20	N/A	
Vanadium	7440-62-2	70	70	70		70	N/A	
Zinc	7440-66-6	60	25	25		25	N/A	

¹ These Project Action Limits are explained in Table 9.2 of the RI/FS Work Plan.

² Analytical MDLs and QLs are those documented in validated methods.

³ Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. MDLs and QLs may change based on the laboratory that is contracted for the Soils OU project. These limits will be part of the scope submitted for laboratory solicitation for the Soils OU project. As part of this scope, these limits will be a technical requirement used in evaluating laboratory award. The Soils OU project will choose a laboratory whose MDLs are less than the Project Action Limits.

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #15-7 Reference Limits and Evaluation Table

Matrix: Soil/Sediment

Analytical Group: PCBs by test kit

Concentration Level: low

	-	Project Action	Project Ouantitation	Analytical Method ²		Achievable Laboratory Limits ³	
		Limit	Limit				
Analyte	CAS Number	$(mg/kg)^1$	(mg/kg)	MDLs	Method QLs	MDLs	QLs
Total PCBs	1336-36-3	5	5	5		5	N/A

¹ These Project Action Limits are explained in Table 9.2.

² Analytical MDLs and QLs are those documented in validated methods.

³ Achievable MDLs and QLs are limits that an individual laboratory can achieve when performing a specific analytical method. These limits will be part of the scope submitted for laboratory solicitation for the Soils OU project. As part of this scope, these limits will be a technical requirement used in evaluating laboratory award.

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #16 Project Schedule/Timeline Table

UFP-QAPP Manual Section 2.8.2:

		Dates (M	M/DD/YY)		
Activities	Organization	Anticipated Date(s) of Initiation	Anticipated Date of Completion	Deliverable	Deliverable Due Date
Field work for RI 2	Soils OU	10/1/2014	4/9/2015	No	N/A
Submit RI 2 D1 RI Report	Soils OU	6/30/2015	6/30/2015	Yes	TBD
Fieldwork for SWMU 1 soil mixing area	Soils OU	4/6/2015	7/13/2015	No	N/A
Submit RI 1 D2/R1 RI Report Addendum	Soils OU	8/5/2015	8/5/2015	Yes	TBD

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #17 Sampling Design and Rationale

UFP-QAPP Manual Section 3.1.1:

Describe and provide a rationale for choosing the sampling approach (e.g., grid system, biased statistical approach):

The Soils OU SWMUs have been divided into 45 ft² grids and will be composite sampled as described in Section 9, "Field Sampling Plan." This approach allows for a non-biased statistical evaluation to determine if the exposure unit within the SWMU is contaminated.

Describe the sampling design and rationale in terms of what matrices will be sampled, what analytical groups will be analyzed and at what concentration levels, the sampling locations (including QC, critical, and background samples), the number of samples to be taken, and the sampling frequency (including seasonal considerations) [May refer to map or Worksheet #18 for details]:

Surface and subsurface soils will be sampled from Soils OU SWMUs that have not been adequately characterized previously. At each SWMU, a wide range of analyses will be collected: SVOCs, metals, and radionuclides. It is not known the levels of chemicals that will be detected at each SWMU. Available historical data has been provided in Appendix C. Additional information is available in Worksheet 18 and in Section 9, "Field Sampling Plan."

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #18-1 Sampling Locations and Methods/SOP Requirements Table

UFP-QAPP Manual Section 3.1.1:

Sampling Location/ID Number	Matrix	Depth (units)	Analytical Group	Concentration Level	Number of Samples (identify field duplicates)	Sampling SOP Reference ¹	Rationale for Sampling Location
SWMU 13	Soil	surface		See Appendix		See Worksheet	See Worksheet
			SVOCs	C of DOE/LX	14 + 1 field duplicate	#21, Ref. 6	#17, Section 9
			PCBs	07-0358 &	14 + 1 field duplicate	of DOE/LX/	of DOE/LX/
			Metals	D2/R1 for	14 + 1 field duplicate	07-0358 &	07-0358 &
			Radionuclides	available	$15^2 + 1$ field duplicate	D2/R1	D2/R1
			Metals by XRF	historical	158 + 8 field		
				information	duplicate		
			PCBs by test kit		158 + 8 field		
					duplicate		

¹ Specify the appropriate letter or number from the Project Sampling SOP References table (Worksheet #21).

² Includes judgmental grab sample.

Revision Number: 2 Revision Date: 06/2014

QAPP Worksheet #18-2 Sampling Locations and Methods/SOP Requirements Table

Sampling Location/ID Number	Matrix	Depth (units)	Analytical Group	Concentration Level	Number of Samples (identify field duplicates)	Sampling SOP Reference ¹	Rationale for Sampling Location
SWMU 15	Soil	surface		See Appendix		See Worksheet	See Worksheet
			SVOCs	C of DOE/LX/	1	#21, Ref. 6	#17, Section 9
			PCBs	07-0358&	1	of DOE/LX/	of DOE/LX/
			Metals	D2/R1 for	1	07-0358&	07-0358&
			Radionuclides	available	2^{2}	D2/R1	D2/R1
			Metals by XRF	historical	1 + 1 field duplicate		
			PCBs by test kit	information	1 + 1 field duplicate		
		shallow					
		subsurface	Metals by XRF		1 + 1 field duplicate		
			PCBs by test kit		1 + 1 field duplicate		

¹ Specify the appropriate letter or number from the Project Sampling SOP References table (Worksheet #21). ² Includes judgmental grab sample.

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #18-3 Sampling Locations and Methods/SOP Requirements Table

UFP-QAPP Manual Section 3.1.1:

Sampling Location/ID Number	Matrix	Depth (units)	Analytical Group	Concentration Level	Number of Samples (identify field duplicates)	Sampling SOP Reference ¹	Rationale for Sampling Location
SWMU 26	Soil	surface		See Appendix		See Worksheet	See Worksheet
			SVOCs	C of DOE/LX	4 + 1 field duplicate	#21, Ref. 6	#17, Section 9
			PCBs	07-0358&	4 + 1 field duplicate	of DOE/LX/	of DOE/LX/
			Metals	D2/R1 for	4 + 1 field duplicate	07-0358&	07-0358&
			Radionuclides	available	4 + 1 field duplicate	D2/R1	D2/R1
			Metals by XRF	historical	35 + 2 field duplicate		
				information			
			PCBs by test kit		35 + 2 field duplicate		

¹ Specify the appropriate letter or number from the Project Sampling SOP References table (Worksheet #21).

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #18-4 Sampling Locations and Methods/SOP Requirements Table

Sampling Location/ID Number	Matrix	Depth (units)	Analytical Group	Concentration Level	Number of Samples (identify field duplicates)	Sampling SOP Reference ¹	Rationale for Sampling Location
SWMU 77	Soil	surface		See Appendix		See Worksheet	See Worksheet
			SVOCs	C of DOE/LX	1	#21, Ref. 6	#17, Section 9
			PCBs	07-0358&	1	of DOE/LX/	of DOE/LX/
			Metals	D2/R1 for	1	07-0358&	07-0358&
			Radionuclides	available	1	D2/R1	D2/R1
			pН	historical	1		
			Metals by XRF	information	1 + 1 field duplicate		
			PCBs by test kit		1 + 1 field duplicate		
		shallow					
		subsurface	pН		1		
			Metals by XRF		1 + 1 field duplicate		
			PCBs by test kit		1 + 1 field duplicate		

¹ Specify the appropriate letter or number from the Project Sampling SOP References table (Worksheet #21).

Revision Date: 06/2014

QAPP Worksheet #18-5 Sampling Locations and Methods/SOP Requirements Table

Sampling Location/ID Number	Matrix	Depth (units)	Analytical Group	Concentration Level	Number of Samples (identify field duplicates)	Sampling SOP Reference ¹	Rationale for Sampling Location
SWMU 56/80	Soil	surface shallow subsurface	SVOCs PCBs Metals Radionuclides Metals by XRF PCBs by test kit SVOCs PCBs Metals Radionuclides Metals Radionuclides Metals by XRF	See Appendix C of DOE/LX 07-0358& D2/R1 for available historical information	1 1 2 ² 13 + 1 field duplicate 13 + 1 field duplicate 1 + 1 field duplicate	See Worksheet #21, Ref. 6 of DOE/LX/ 07-0358& D2/R1	See Worksheet #17, Section 9 of DOE/LX/ 07-0358& D2/R1
			PCBs by test kit		13 + 1 field duplicate		

¹ Specify the appropriate letter or number from the Project Sampling SOP References table (Worksheet #21). ² Includes judgmental grab sample.

Revision Date: 06/2014

QAPP Worksheet #18-6 Sampling Locations and Methods/SOP Requirements Table

Sampling Location/ID Number	Matrix	Depth (units)	Analytical Group	Concentration Level	Number of Samples (identify field duplicates)	Sampling SOP Reference ¹	Rationale for Sampling Location
AOC 204	Soil	surface		See Appendix		See Worksheet	See Worksheet
			SVOCs	C of DOE/LX/	21	#21, Ref. 6	#17, Section 9
			PCBs	07-0358&	21	of DOE/LX/	of DOE/LX/
			Metals	D2/R1 for	21	07-0358&	07-0358&
			Radionuclides	available	22^{2}	D2/R1	D2/R1
			Metals by XRF	historical	186 + 5 field		
					duplicates		
			PCBs by test kit	information	186 + 5 field		
					duplicates		
		shallow	VOCs		21 + 1 field duplicate		
		subsurface	SVOCs		21 + 1 field duplicate		
			PCBs		21 + 1 field duplicate		
			Metals		21 + 1 field duplicate		
			Radionuclides		21 + 1 field duplicate		
			Metals by XRF		186 + 5 field		
					duplicates		
			PCBs by test kit		186 + 5 field		
					duplicates		

¹ Specify the appropriate letter or number from the Project Sampling SOP References table (Worksheet #21).
² Includes judgmental grab sample.

Revision Number: 2 Revision Date: 06/2014

QAPP Worksheet #18-7 Sampling Locations and Methods/SOP Requirements Table

Sampling Location/ID Number	Matrix	Depth (units)	Analytical Group	Concentration Level	Number of Samples (identify field duplicates)	Sampling SOP Reference ¹	Rationale for Sampling Location
SWMU 211-A	Soil	shallow subsurface	Radionuclides Metals by XRF PCBs by test kit VOCs SVOCs PCBs Metals Radionuclides Metals by XRF PCBs by test kit	See Appendix C of DOE/LX 07-0358& D2/R1 for available historical information	1 ² 9 + 1 field duplicate 9 + 1 field duplicate 1 1 1 1 1 12 + 1 field duplicate ³	See Worksheet #21, Ref. 6 of DOE/LX/ 07-0358& D2/R1	See Worksheet #17, Section 9 of DOE/LX/ 07-0358& D2/R1
		Subsurface ⁴	PCBs by test kit		2		

¹ Specify the appropriate letter or number from the Project Sampling SOP References table (Worksheet #21). ² Judgmental grab sample.

³ Shallow subsurface includes sampling intervals 4 to 7 ft bgs for Grid SOU211-001G and intervals 4 to 7 ft bgs and 7 to 10 ft bgs for Grid SOU 211-001J.

⁴ Sampling intervals for subsurface include 10 to 13 ft bgs and 13 to 16 ft bgs; Grid SOU211-001G only.

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #18-8 Sampling Locations and Methods/SOP Requirements Table

Sampling Location/ID Number	Matrix	Depth (units)	Analytical Group	Concentration Level	Number of Samples (identify field duplicates)	Sampling SOP Reference ¹	Rationale for Sampling Location
SWMU 225-A	Soil	surface	SVOCs	See Appendix	1	See Worksheet	See Worksheet
			PCBs	C of DOE/LX	1	#21, Ref. 6	#17, Section 9
			Metals	07-0358&	1	of DOE/LX/	of DOE/LX/
			Radionuclides	D2/R1 for	1	07-0358&	07-0358&
			Metals by XRF	available	1 + 1 field duplicate	D2/R1	D2/R1
			PCBs by test kit	historical	1 + 1 field duplicate		
				information			

¹ Specify the appropriate letter or number from the Project Sampling SOP References table (Worksheet #21).

Revision Date: 06/2014

QAPP Worksheet #18-9 Sampling Locations and Methods/SOP Requirements Table

Sampling Location/ID Number	Matrix	Depth (units)	Analytical Group	Concentration Level	Number of Samples (identify field duplicates)	Sampling SOP Reference ¹	Rationale for Sampling Location
SWMU 229	Soil	surface	Radionuclides	See Appendix C of DOE/LX 07-0358& D2/R1 for available historical information	12	See Worksheet #21, Ref. 6 of DOE/LX/ 07-0358& D2/R1	See Worksheet #17, Section 9 of DOE/LX/ 07-0358& D2/R1

¹ Specify the appropriate letter or number from the Project Sampling SOP References table (Worksheet #21).
² Judgmental grab sample.

Revision Date: 06/2014

QAPP Worksheet #18-10 Sampling Locations and Methods/SOP Requirements Table

Sampling Location/ID Number	Matrix	Depth (units)	Analytical Group	Concentration Level	Number of Samples (identify field duplicates)	Sampling SOP Reference ¹	Rationale for Sampling Location
AOC 565	Soil	surface	Radionuclides	See Appendix C of DOE/LX 07-0358& D2/R1 for available historical information	12	See Worksheet #21, Ref. 6 of DOE/LX/ 07-0358& D2/R1	See Worksheet #17, Section 9 of DOE/LX/ 07-0358& D2/R1

¹ Specify the appropriate letter or number from the Project Sampling SOP References table (Worksheet #21).
² Judgmental grab sample.

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #18-11 Sampling Locations and Methods/SOP Requirements Table

Sampling Location/ID Number	Matrix	Depth (units)	Analytical Group	Concentration Level	Number of Samples (identify field duplicates)	Sampling SOP Reference ¹	Rationale for Sampling Location
SWMU 1	Soil	surface		See Appendix		See Worksheet	See Worksheet
			SVOCs	C of DOE/LX/	3	#21, Ref. 6	#17, Section 9
			PCBs	07-0358&	3	of DOE/LX/	of DOE/LX/
			Metals	D2/R1 for	3	07-0358&	07-0358&
			Radionuclides	available	3	D2/R1	D2/R1
			Metals by XRF	historical	28 + 3 field		
					duplicates		
			PCBs by test kit	information	28 + 3 field		
					duplicates		
		shallow	SVOCs		3		
		subsurface	PCBs		3		
			Metals		3		
			Radionuclides		3		
			Metals by XRF		28 + 3 field duplicate		
			PCBs by test kit		28 + 3 field duplicate		

¹ Specify the appropriate letter or number from the Project Sampling SOP References table (Worksheet #21).

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #18-12 Sampling Locations and Methods/SOP Requirements Table

Sampling Location/ID Number	Matrix	Depth (units)	Analytical Group	Concentration Level	Number of Samples (identify field duplicates)	Sampling SOP Reference ¹	Rationale for Sampling Location
SWMU 27	Sludge	N/A		See Appendix		See Worksheet	See Worksheet
			SVOCs	C of DOE/LX	1	#21, Ref. 6	#17, Section 9
			PCBs	07-0358&	1	of DOE/LX/	of DOE/LX/
			Metals	D2/R1 for	1	07-0358&	07-0358&
			Radionuclides	available	1	D2/R1	D2/R1
			VOCs	historical	1		
				information			

¹ Specify the appropriate letter or number from the Project Sampling SOP References table (Worksheet #21).

Revision Date: 05/2010

QAPP Worksheet #19 **Analytical SOP Requirements Table**

Matrix	Analytical Group	Concentration Level	Analytical and Preparation Method/SOP Reference ¹	Sample Volume ²	Containers (number, size, and type) ²	Preservation Requirements (chemical, temperature, light protected)	Maximum Holding Time (preparation/ analysis)
soil	Volatile organic compounds	low	SW846-8260			cool 4°C	14 days
soil	Semivolatile organic compounds	low	SW846-8270			cool 4°C	14 days until extraction/40 days
soil	PCBs	low	SW846-8082			cool 4°C	14 days until extraction/40 days
soil	Metals	low	SW846-6020, and -7471			cool 4°C	180 days (28 days for mercury)
soil	Radionuclides	low	see Worksheets #12-6 through #12-10			cool 4°C	180 days
soil	PCBs	low	test kit			cool 4°C	14 days until extraction/40 days
soil	Metals	low	SW846-6200 (XRF)			cool 4°C	180 days (28 days for mercury)

¹Specify the appropriate reference letter or number from the Analytical SOP References table (Worksheet #23).
² Sample volume and container requirements will be specified by the laboratory.

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #20 Field Quality Control Sample Summary Table

UFP-QAPP Manual Section 3.1.1:

Matrix	Analytical Group	Concentration Level	Analytical and Preparation SOP Reference	No. of Sampling Locations*	No. of Field Duplicate Pairs	Inorganic No. of MS	No. of Field Blanks	No. of Equip. Blanks	No. of PT Samples	Total No. of Samples to Lab
Soil	VOCs	Low	See	See	5%	5%	5%	5%	A	See
Soil	SVOCs	Low	Worksheet #12 See Worksheet #12	Worksheet #10 See Worksheet #10	5%	5%	5%	5%	A	Worksheet #18 See Worksheet #18
Soil	Metals	Low	See Worksheet #12	See Worksheet #10	5%	5%	5%	5%	A	See Worksheet #18
Soil	Radionuclides	Low	See Worksheet #12	See Worksheet #10	5%	5%	5%	5%	A	See Worksheet #18
Soil	PCBs	Low	See Worksheet #12	See Worksheet #10	5%	5%	5%	5%	A	See Worksheet #18
Soil	XRF	Low	See Worksheet #12	See Worksheet #10	5%	5%	5%	5%	A	See Worksheet #18
Soil	PCB Test Kits	Low	See Worksheet #12	See Worksheet #10	5%	5%	5%	5%	A	See Worksheet #18

^{*}Work package documents will identify the sampling locations, matrices, number of samples, and sample identification numbers for samples to be submitted to DOECAP-audited laboratory. This is not applicable for samples analyzed by field methods.

A = PT sample only will be collected when required by a specific project.

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #21 Project Sampling SOP References Table¹

UFP-QAPP Manual Section 3.1.2:

Reference Number	Title, Revision Date, and/or Number	Originating Organization	Equipment Type	Modified for Project Work? (Y/N)	Comments
1	PAD-ENM-0023, Composite Sampling ²	Contractor	Sampling	N	N/A
2	PAD-ENM-2300, Collection of Soil Samples	Contractor	Sampling	N	N/A
3	PAD-ENM-2700, Logbooks and Data Forms	Contractor	Sampling	N	N/A
4	PAD-ENM-2702, Decontamination of Sampling Equipment	Contractor	Sampling	N	N/A
5	PAD-ENM-2704, Trip, Equipment and Field Blank	Contractor	Sampling	N	N/A
6	PAD-ENM-2708, Chain-of-Custody Forms, Field Sample Logs, Sample Labels, and Custody Seals	Contractor	Sampling	N	N/A
7	PAD-ENM-5004, Sample Tracking, Lab Coordination, and Sample Handling Guidance	Contractor	Sampling	N	N/A
8	PAD-ENR-0034, XRF Field Lab Analysis of Soils	Contractor	Analytical	N	N/A

SOPs are posted to the LATA Kentucky intranet Web site. External FFA parties can access this site using remote access with privileges upon approval.

 $^{^{2}}$ For this project, all topsoil will be retained for sampling, and only vegetation and debris are to be removed, when necessary. N/A = not applicable

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #22 Field Equipment Calibration, Maintenance, Testing, and Inspection Table

UFP-QAPP Manual Section 3.1.2.4:

	nual Section 3.1.		1	1	1	1	T	1	1
Field	Calibration	Maintenance	Testing	Inspection	Frequency	Acceptance	Corrective	Responsible	SOP Reference ¹
Equipment	Activity	Activity	Activity	Activity		Criteria	Action	Person	
Ludlum Model	Annually or as	Annually or as	Daily	Upon receipt,	Daily prior	Pass/Fail	Service by	RCT	Manufacturer's
3, 12, 2221,	specified by	needed	prior to	successful	to use		manufacturer	Supervisor	specifications
and 2224 with	manufacturer		use	operation					
Ludlum Model									
43-5 Alpha									
Scintillator									
Ludlum Model	Annually or as	Annually or as	Daily	Upon receipt,	Daily prior	Pass/Fail	Service by	RCT	Manufacturer's
3, 12, 2221,	specified by	needed	prior to	successful	to use		manufacturer	Supervisor	specifications
and 2224 with	manufacturer		use	operation					
Ludlum Model									
44-9 Geiger-									
Müeller									
Detector									
Ludlum Model	Annually or as	•	Daily	Upon receipt,	Daily prior	Pass/Fail	Service by	RCT	Manufacturer's
2221 and 2224	specified by	needed	prior to	successful	to use		manufacturer	Supervisor	specifications
with Ludlum	manufacturer		use	operation					
Model 44-10									
Gamma									
Scintillator or									
FIDLER									
(For additional									
information,									
see									
Appendix A)									

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #22 Field Equipment Calibration, Maintenance, Testing, and Inspection Table (Continued)

UFP-QAPP Manual Section 3.1.2.4:

Field	Calibration	Maintenance	Testing	Inspection	Frequency	Acceptance	Corrective	Responsible	SOP Reference ¹
Equipment	Activity	Activity	Activity	Activity	Trequency	Criteria	Action	Person	SOT Reference
XRF	Contractor SOP and/or manufacturer's specifications, as appropriate	Manufacturer's specifications	Calibrate the detector using standards, instrument blanks, and method blanks	Manufacturer's specifications	Reanalyze the instrument blank once per 20 samples; standards will be reanalyzed every 4 hours during the day of	± 20% of the true value	Recalibrate the detector and reanalyze standards per manufacturer's instructions in the event that readings of standards exceed acceptance criteria	Field Team Leader	PAD-ENR-0034, XRF Field Lab Analysis of Soils
					operation				
Global Positioning System Gamma Ray Survey Instrumentation	Daily check of known point beginning and end of each field day	Per manufacturer's instructions	Measure known control points and compare values	Upon receipt, successful operation	Daily prior to use	Pass/Fail	Service by manufacturer	Field Team Leader	Manufacturer's specifications

¹ Specify the appropriate reference letter or number from the Project Sampling SOP References table (Worksheet #21).

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #23 Analytical SOP References Table

Reference Number ¹	Title, Revision Date, and/or Number	Definitive or Screening Data	Analytical Group	Instrument	Organization Performing Analysis	Modified for Project Work? (Y/N)
8260	Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Definitive	VOAs	GC/MS	TBD	TBD
8270	Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Definitive	SVOAs	GC/MS	TBD	TBD
8082	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	Definitive	PCBs	GC	TBD	TBD
6020	Inductively Coupled Plasma-Mass Spectrometry	Definitive	Metals	ICP-MS	TBD	TBD
7471	Mercury by Cold-Vapor Atomic Absorption	Definitive	Metals	AA	TBD	TBD
Gas Flow Proportional*	Gross Alpha and Beta Activity	Definitive	Rads	Gas flow proportional counter	TBD	TBD
Alpha Spec*	Alpha Spectrometry	Definitive	Rads	Alpha Spectrometry	TBD	TBD
Gamma Spec*	Gamma Spectrometry	Definitive	Rads	Gamma Spectrometry	TBD	TBD
Liquid Scintillation*	Tc-99 by Liquid Scintillation	Definitive	Rads	Liquid Scintillation	TBD	TBD
XRF	Metals by XRF	to be used as definitive	Metals	XRF	LATA Kentucky	TBD
PCB test kit	Manufacturer's instructions	Screening	PCBs	Test kits	LATA Kentucky	TBD

¹ Analysis will be by the most recent revision.

^{*}Analytical methods for radiochemistry parameters are laboratory-specific. Laboratory contracting will be subsequent to the completion of the RI/FS WP.

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #24 Analytical Instrument Calibration Table

	Calibration	Frequency of		Corrective Action	Person Responsible	1
Instrument	Procedure	Calibration	Acceptance Criteria	(CA)	for CA	SOP Reference ¹
The laboratory is						
responsible for						
maintaining						
instrument						
calibration						
information per their						
QA Plan. This						
information is						
audited annually by						
the DOECAP.						
Laboratory(s)						
contracted will be						
DOECAP certified.						

¹ Specify the appropriate reference letter or number from the Analytical SOP References table (Worksheet #23).

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #25 Analytical Instrument and Equipment Maintenance, Testing, and Inspection Table

Instrument/	Maintenance	Testing	Inspection		Acceptance	Corrective	Responsible	SOP
Equipment	Activity	Activity	Activity	Frequency	Criteria	Action	Person	Reference ¹
The laboratory								
is responsible								
for maintaining								
instrument and								
equipment								
maintenance,								
testing, and								
inspection								
information per								
their QA Plan.								
This								
information is								
audited								
annually by the								
DOECAP.								
Laboratory(s)								
contracted will								
be DOECAP								
certified.								

¹Specify the appropriate reference letter or number from the Analytical SOP References table (Worksheet #23).

Revision Number: 2 **Revision Date:** 06/2014

QAPP Worksheet #26 Sample Handling System

UFP-OAPP Manual Appendix A:

OFT-QATT Manual Appenaix A.							
SAMPLE COL	SAMPLE COLLECTION, PACKAGING, AND SHIPMENT						
Sample Collection (Personnel/Organization): Sampling Teams/DOE Prime Contractor and Subcontractors							
Sample Packaging (Personnel/Organization):	Sampling Teams/DOE Prime Contractor and Subcontractors						
Coordination of Shipment (Personnel/Organization):	Lab Coordinator/DOE Prime Contractor						
Type of Shipment/Carrier:	Direct Delivery or Overnight/Fed Ex						
SAN	MPLE RECEIPT AND ANALYSIS						
Sample Receipt (Personnel/Organization): Sample Management/Contracted Laboratory/Field Laboratory							
Sample Custody and Storage (Personnel/Organization): Sample Management/Contracted Laboratory/Field Laboratory							
Sample Preparation (Personnel/Organization): Analysts/Contracted Laboratory/Field Laboratory							
Sample Determinative Analysis (Personnel/Organization): Analysts/Contracted Laboratory/Field Laboratory							
	SAMPLE ARCHIVING						
Field Sample Storage (No. of days from sample collection):	6 months						
Sample Extract/Digestate Storage (No. of days from extract	ion/digestion): 120 days						
Biological Sample Storage (No. of days from sample collection	Biological Sample Storage (No. of days from sample collection): N/A						
SAMPLE DISPOSAL							
Personnel/Organization:	Waste Disposition/DOE Prime Contractor and Subcontractors						
Number of Days from Analysis	TBD						

N/A = not applicable

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #27 Sample Custody Requirements¹

Field Sample Custody Procedures (sample collection, packaging, shipment, and delivery to laboratory):

Field sample custody requirements will be per DOE prime contractor procedure PRS-ENM-5004, Sample Tracking, Lab Coordination, and Sample Handling Guidance.

Laboratory Sample Custody Procedures (receipt of samples, archiving, disposal).

Laboratory sample custody procedures are per the DOECAP certified laboratory sample custody procedures.

Sample Identification Procedures:

Sample identification requirements will be per DOE prime contractor project work plan.

Chain-of-custody Procedures:

Chain-of-custody requirements will be per DOE prime contractor procedure PRS-ENM-5004, Sample Tracking, Lab Coordination, and Sample Handling Guidance.

¹ It is understood that SOPs are contractor specific.

Revision Number: 2 Revision Date: 06/2014

QAPP Worksheet #28-1 Quality Control Requirements¹

UFP-OAPP Manual Section 3.4:

011 - Q111 1 Manual Section 3.4.					
Matrix	Soil/XRF				
Analytical Group	SMO/Field				
	Screenings				
Concentration	TBD				
Level					
Sampling SOP	See #21				
Analytical Method/	EPA methods				
SOP Reference					
Sampler's Name	TBD				
Field Sampling	DOE/Contractor				
Organization					
Analytical	SMO/Field				
Organization	Screenings				
No. of Sample	See RI/FS SAP				
Locations					

QC Sample:	Frequency/ Number	Method/SOP QC Acceptance Limits	Corrective Action	Person(s) Responsible for Corrective Action	Data Quality Indicator (DQI)	Measurement Performance Criteria
Duplicates	Minimum 5%	N/A	N/A	N/A	Precision	See PAD-ENM-5003, <i>Quality Assured Data Procedure</i>
Field Blanks	Minimum 5%	N/A	N/A	N/A	Accuracy/Bias (Contamination)	See PAD-ENM-5003, Quality Assured Data Procedure
Equipment Rinseates	Minimum 5%	N/A	N/A	N/A	Accuracy/Bias (Contamination)	See PAD-ENM-5003, Quality Assured Data Procedure
Instrument Blank	Per procedure PAD-ENR-0034 or manufacturer's guidance	PAD-ENR-0034	Check calibration instrument; reanalyze affected sample	Field technician	Accuracy	Per procedure PAD-ENM-5003, Quality Assured Data Procedure

¹ It is understood that SOPs are contractor specific.

Revision Date: 06/2014

QAPP Worksheet #28-2 Quality Control Requirements¹

UFP-QAPP Manual Section 3.4:

~ ~ ~ ~ · · · · · · · · · · · · · · · ·	· Seemon evii
Matrix	PCB Wipe
Analytical Group	SMO/Field
	Screenings
Concentration	TBD
Level	
Sampling SOP	See #21
Analytical Method/	EPA methods
SOP Reference	
Sampler's Name	TBD
Field Sampling	DOE/LATA
Organization	Kentucky
Analytical	SMO/Field
Organization	Screenings
No. of Sample	See RI/FS SAP
Locations	

QC Sample:	Frequency/ Number	Method/SOP QC Acceptance Limits	Corrective Action	Person(s) Responsible for Corrective Action	Data Quality Indicator (DQI)	Measurement Performance Criteria
Duplicates	Minimum 5%	N/A	N/A	N/A	Precision	See PAD-ENM-5003, Quality
						Assured Data Procedure

¹ It is understood that SOPs are contractor specific.

Revision Number: 2 Revision Date: 06/2014

QAPP Worksheet #28-3 Quality Control Requirements¹

UFP-QAPP Manual Section 3.4:

Matrix	Soil/PCB Test Kit
Analytical Group	SMO/Field
	Screenings
Concentration	TBD
Level	
Sampling SOP	See #21
Analytical Method/	Manufacturer
SOP Reference	methods
Sampler's Name	TBD
Field Sampling	DOE/LATA
Organization	Kentucky
Analytical	SMO/Field
Organization	Screenings
No. of Sample	See RI/FS SAP
Locations	

Locations						
QC Sample:	Frequency/ Number	Method/SOP QC Acceptance Limits	Corrective Action	Person(s) Responsible for Corrective Action	Data Quality Indicator (DQI)	Measurement Performance Criteria
Duplicates	Minimum 5%	N/A	N/A	N/A	Precision	See PAD-ENM-5003, Quality Assured Data Procedure

¹ It is understood that SOPs are contractor specific.

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #29 Project Documents and Records Table¹

UFP-QAPP Manual Section 3.5.1:

Sample Collection Documents and Records	On-site Analysis Documents and Records	Off-site Analysis Documents and Records	Data Assessment Documents and Records	Other
Data Logbooks and associated	Laboratory data packages,	OREIS database and	PRS-ENM-5003, att. G	Form QAP-E-004,
completed sampling forms,	OREIS database and	associated data packages	Data Assessment Review	Management/Independent
sample chains-of-custody	associated data packages		Checklist and Comment Form	Assessment Report

It is understood that SOPs are contractor specific.

Revision Number: 2 Revision Date: 06/2014

QAPP Worksheet #30 Analytical Services Table

Matrix	Analytical Group	Concentration Level	Sample Locations/ID Numbers	Analytical SOP*	Data Package Turnaround Time	Laboratory/Organization (Name and Address, Contact Person and Telephone Number)	Backup Laboratory/Organization (Name and Address, Contact Person and Telephone Number)
Soil	PCBs	Low	See Worksheet	See Worksheet #23	28-day	TBD	TBD
Soil	Metals	Low	#18	See Worksheet #23	28-day	TBD	TBD
Soil	Radionuclides	Low	For ID Numbers, see	See Worksheet #23	28-day	TBD	TBD
Soil	SVOCs	Low	Worksheet #27	See Worksheet #23	28-day	TBD	TBD
Soil	VOCs	Low		See Worksheet #23	28-day	TBD	TBD
Soil	PCB Test Kits	Low		See Worksheet #23	28-day	LATA Kentucky	TBD
Soil	XRF	Low		See Worksheet #23	28-day	LATA Kentucky	TBD

^{*}Analytical method SOPs for radiochemistry parameters are laboratory specific.

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #31 Planned Project Assessments Table

UFP-QAPP Manual Section 4.1.1:

Assessment Type	Frequency	Internal or External	Organization Performing Assessment	Person(s) Responsible for Performing Assessment (Title and Organizational Affiliation)	Person(s) Responsible for Responding to Assessment Findings (Title and Organizational Affiliation)	Person(s) Responsible for Identifying and Implementing Corrective Actions (CA) (Title and Organizational Affiliation)	Person(s) Responsible for Monitoring Effectiveness of CA (Title and Organizational Affiliation)
Independent Assessment/ Surveillance	Minimum of once per project (project duration estimated to be 4 months)	Internal	DOE Prime Contractor QA	QA Specialists	Project Manager	Project Management/QA Specialist	QA Specialist
Laboratory Audit	Annual	External	DOE Consolidated Audit Program (DOECAP)	Laboratory Assessor	Laboratory	Laboratory	DOECAP
Management Assessments	Minimum of once per project (project duration estimated to be 4 months)	Internal	Project Management	Project Management	Project Team	Project Management/QA Specialist	QA Specialist
Management By Walking Around (MBWA)	Monthly per project	Internal	Project Management	Project Management	Project Team	Project Management/QA Specialist	QA Specialist
MBWA Follow-up surveillances	Quarterly (if required)	Internal	Project Management	ER/EM Director, Project Manager or designee	Project Team	Project Management/QA Specialist	QA Specialist

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #32 Assessment Findings and Corrective Action Responses¹

UFP-QAPP Manual Section 4.1.2:

	Nature of	Individual(s) Notified		Nature of Corrective	Individual(s) Receiving Corrective Action	
Assessment	Deficiencies	of Findings (Name,	Timeframe of	Action Response	Response (Name, Title,	
Type	Documentation	Title, Organization)	Notification	Documentation	Org.)	Timeframe for Response
Management,	Form QAP-E-004,	Project Management,	Upon issuance of	E-QAP-0710, Issue	Action owner as	Fifteen days for initial
independent,	Management/	Issue Owner	Form QAP-E-004,	Identification Form	designated by issue	issue response, corrective
and	Independent		Management/	documents the issue	owner	action schedule determined
surveillances	Assessment		Independent	response and/or		by issue owner, per PRS-
	Report, and		Assessment	corrective actions		QAP-1210
	QAP-E-0710,		Report, form			
	Issue		E-QAP-0710,			
	Identification		Issue			
	Form		Identification			
			Form, will be			
			completed and			
			attached to the			
			assessment report			

¹ It is understood that SOPs are contractor specific.

Revision Date: 05/2010

QAPP Worksheet #33 **QA Management Reports Table**

UFP-QAPP Manual Section 4.2:

	Frequency (daily, weekly monthly, quarterly, annually,		Person(s) Responsible for Report Preparation (Title and	Report Recipient(s) (Title and Organizational
Type of Report	etc.)	Projected Delivery Date(s)	Organizational Affiliation)	Affiliation)
Management by Walking Around	Monthly	Last day of each month	Project Manager, Contractor	Contractor Management
	Minimum 2 (One management assessment report, one independent assessment report)	Prior to project termination		PM, QA, and Contractor Management

Revision Date: 05/2010

QAPP Worksheet #34 Verification (Step I) Process Table¹

X7 101 11 X	D 1.4	Internal/	Responsible for Verification (Name,
Verification Input	Description	External	Organization)
Field Logbooks	Field logbooks are verified per DOE prime contractor procedure PRS-	Internal	Project Management or designee,
	ENM-2700, Logbooks and Data Forms, and PRS-ENM-5003, Quality		Contractor
	Assured Data.		
Chains-of-custody	Chains-of-custody are controlled by DOE prime contractor procedure	Internal	Sample and Data Management,
	PRS-ENM-5004, Sample Tracking, Lab Coordination and Sample		Project Management, and QA
	Handling Guidance. Chains-of-custody will be included in data		Personnel, Contractor
	assessment packages for review as part of data verification and data		
	assessment.		
Field and Laboratory Data	Field and analytical data are verified and assessed per DOE prime	Internal	Sample and Data Management,
	contractor procedure PRS-ENM-5003, Quality Assured Data. Data		Project Management, and QA
	assessment packages will be created per this procedure. The data		Personnel, Contractor
	assessment packages will include field and analytical data, chains of		
	custody, data verification and assessment queries, and other project		
	specific information needed for personnel to adequately review the		
	package. Data assessment packages will be reviewed to document any		
	issues pertaining to the data and to indicate if data met the data quality		
	objectives of the project.		

¹ It is understood that SOPs are contractor specific.

Revision Date: 05/2010

QAPP Worksheet #35 Validation (Steps IIa and IIb) Process Table¹

Step IIa/IIb	Validation Input	Description	Responsible for Validation (Name, Organization)
IIa	Data Deliverables, Analytes, and Holding Times	The laboratory data documentation obtained will be contractual screened and will be included in the data assessment packages, per DOE prime contractor procedure PRS-ENM-5003, <i>Quality Assured Data</i> .	Sample and Data Management Personnel, Contractor
Па	Chain-of Custody, Sample Handling, Sampling Methods and Procedures, and Field Transcription	These items will be validated during the data assessment process as required by DOE prime contractor procedure PRS-ENM-5003, <i>Quality Assured Data</i> . The documentation of this validation will be included in the data assessment packages.	Project and QA Personnel, Contractor
IIa	Analytical Methods and Procedures, Laboratory Data Qualifiers, and Standards	These items will be reviewed during the data validation process as required by DOE prime contractor data validation procedures. Data validation will be performed in parallel with data assessment. The data validation report and data validation qualifiers will be considered when the data assessment process is being finalized.	Data Validation Subcontractor, Sample and Data Management, Project and QA Personnel, Contractor
IIa	Audits	The audit reports and accreditation and certification records for the laboratory supporting the projects will be considered in the bidding process.	Sample and Data Management Personnel, Contractor
IIb	Deviations and qualifiers from Step IIa	Any deviations and qualifiers resulting from Step IIa process will be documented in the data assessment packages.	Sample and Data Management, Project, and QA Personnel, Contractor
IIb	Sampling Plan, Sampling Procedures, Co-located Field Duplicates, Project Quantitation Limits, Confirmatory Analyses, Performance Criteria	These items will be evaluated as part of the data verification and data assessment process per DOE prime contractor procedure PRS-ENM-5003, <i>Quality Assured Data</i> . These items will be considered when evaluating whether the project met their Data Quality Objectives.	Sample and Data Management, Project, and QA Personnel, Contractor

¹ It is understood that SOPs are contractor specific.

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #36 Validation (Steps IIa and IIb) Summary Table¹

Step IIa/IIb	Matrix	Analytical Group	Concentration Level	Validation Criteria	Data Validator (title and organizational affiliation)
Ha/Hb	Soil	Semivolatile organic compounds	Low	DOE prime contractor procedure PRS-ENM- 5105, Volatile and Semivolatile Data Verification and Validation	TBD
IIa/IIb	Soil	Metals	Low	DOE prime contractor procedure PRS-ENM- 5107, Inorganic Data Verification and Validation	TBD
IIa/IIb	Soil	Radionuclides	Low	DOE prime contractor procedure PRS-ENM- 5102, Radiochemical Data Verification and Validation	TBD
IIa/IIb	Soil	PCBs	Low	DOE prime contractor procedure PRS-ENM- 0811, Pesticide and PCB Data Verification and Validation	TBD

¹ It is understood that SOPs are contractor specific.

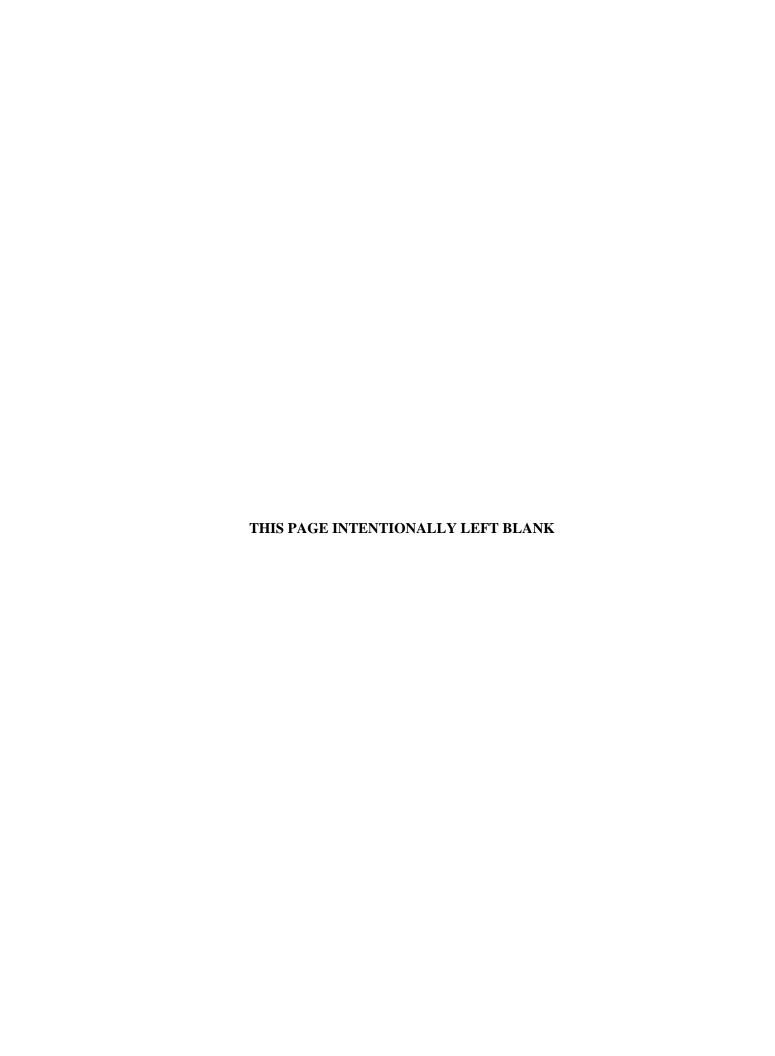
Title: Soils Operable Unit RI/FS Work Plan

Revision Number: 1 **Revision Date:** 05/2010

QAPP Worksheet #37 Usability Assessment¹

Summarize the usability assessment process and all procedures, including interim steps and any statistics, equations, and computer algorithms that will be used: Field and analytical data are verified and assessed per DOE prime contractor procedure PRS-ENM-5003, *Quality Assured Data*. Data assessment packages will be created per this procedure. Data assessment packages will include field and analytical data, chains-of-custody, data verification and assessment queries, and other project specific information needed for personnel to adequately review the package. Data assessment packages will be reviewed to document any issues pertaining to the data and to indicate if DQOs of the project were met.

Describe the evaluative procedures used to assess overall measurement error associated with the project: PARCCS parameters (precision, accuracy, representativeness, comparability, completeness, and sensitivity) will be evaluated per DOE prime contractor procedure PRS-ENM-5003, *Quality Assured Data*. This information will be included in the data assessment packages for review by project personnel. Data assessment can be used to document QC exceedances, trends, and/or bias in the data set. Data assessment also can be used to document any statistics used.


Identify the personnel responsible for performing the usability assessment: Project and QA Personnel.

Describe the documentation that will be generated during usability assessment and how usability assessment results will be presented so that they identify trends, relationships (correlations), and anomalies: Data assessment packages will be created, which will include data assessment comments/questions and laboratory comments. Data verification and assessment queries indicating any historical outliers and background soil exceedances also will be included in the data assessment packages.

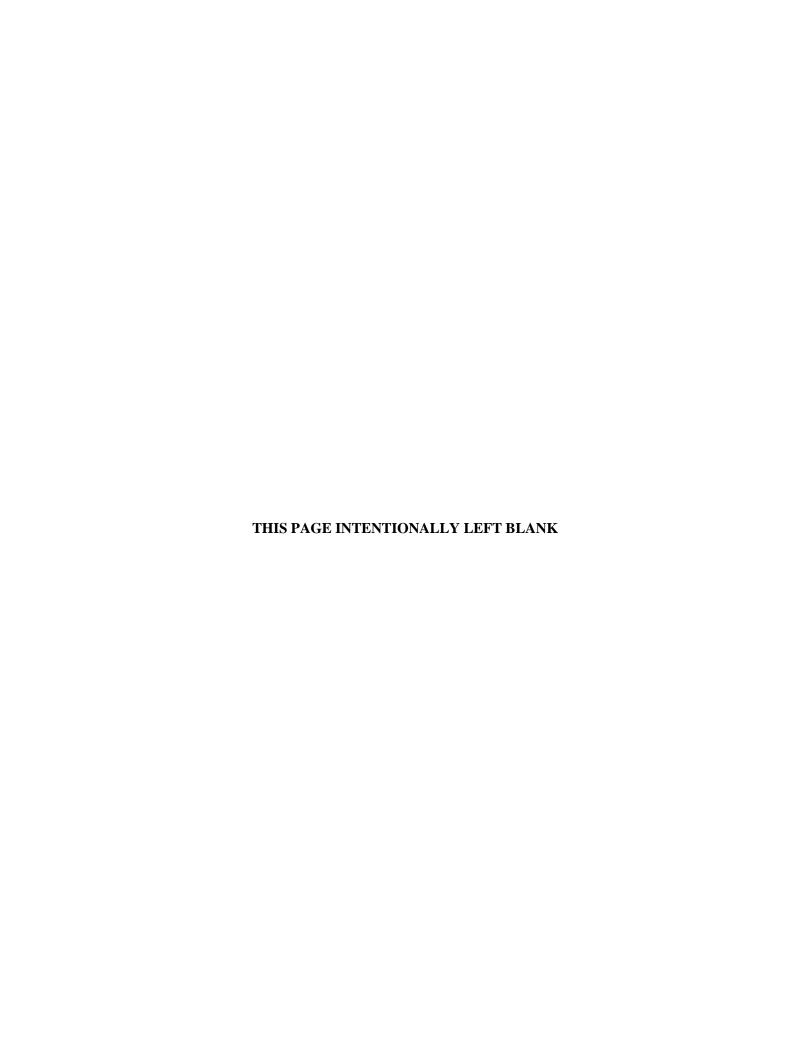
¹ It is understood that SOPs are contractor specific.

3. REFERENCES

- DOE (U.S. Department of Energy) 1998. Data and Documents Management and Quality Assurance Plan for Paducah Environmental Management and Enrichment Facilities, DOE/OR/07-1595&D2, U.S. Department of Energy, Paducah, KY, October.
- DOE 1999. WAGs 9 & 11 Site Evaluation Report at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/OR/07-1785&D2, U.S. Department of Energy, Paducah, KY, June.
- DOE 2001. Methods for Conducting Risk Assessments and Risk Evaluations at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Volume 1. Human Health, Volume 2. Ecological, DOE/OR/07-1506/V1&D2 and DOE/OR-07-1506/V2&D2, U.S. Department of Energy, Paducah, KY, December.
- DOE 2010. Work Plan for the Soils Operable Unit Remedial Investigation/Feasibility Study at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0120&D2/R2, U.S. Department of Energy, Paducah, KY, June.
- DOE 2013a. Soils Operable Unit Remedial Investigation Report at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0358&D2/R1, U.S. Department of Energy, Paducah, KY, February.
- DOE 2013b. Remedial Design Report In Situ Source Treatment Using Deep Soil Mixing for the Southwest Groundwater Plume Volatile Organic Compound Source at the C-747-C Oil Landfarm at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-1276&D2/R1, U.S. Department of Energy, Paducah, KY, September.
- DOE 2013c. Methods for Conducting Risk Assessments and Risk Evaluations at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Volume 1. Human Health, DOE/LX/07-0107&D2/R2/V1, U.S. Department of Energy, Paducah, KY, June.

APPENDIX A

SURVEY PLAN FOR SOILS OPERABLE UNIT SWMUs AND AOCs AT THE PADUCAH GASEOUS DIFFUSION PLANT


CONTENTS

TAB	ELES	A-5
FIGU	URES	A-5
ACR	ONYMS	A-7
A.1.	INTRODUCTION AND PURPOSE	A-9
A.2.	SITE DESCRIPTION AND HISTORY	A-9
A.3.	HISTORICAL DATA REVIEW	A-9
A.4.	GAMMA WALKOVER SURVEY AND DATA ASSESSMENT	A-13
	A.4.1 SURVEY INPUT PARAMETERS	A-13
	A.4.2 SURVEY QUALITY CONTROL	A-14
	A.4.3 DATA ASSESSMENT AND SELECTION OF SAMPLE LOCATION	A-14
A.5.	SURVEY PLAN SUMMARY	A-18
	A.5.1 FIELD APPROACH	A-18
	A.5.2 SAFETY HAZARDS	A-19
	A.5.3 SWMU/AOC LOCATIONS	A-19
	A.5.4 GWS	
	A.5.5 SEQUENCING OF WORK	A-19
A.6.	DATA MANAGEMENT	A-19
A.7.	ANALYSES AND DATA REPORTING SCHEDULE	A-20
A.8.	DATA REPORTING	A-20
	A.8.1 IN-PROCESS DATA REVIEW	
	A.8.2 DATA PRESENTATION METHODOLOGY	A-20
	A.8.3 DATA ARCHIVAL	A-20
A.9.	REFERENCES	A-21

TABLES

A.1.	Soils OU SWMUs/AOCs Identified for Further Characterization	A-9
	FIGURES	
A.1.	Soils OU RI 2 SWMUs/AOCs for GWS	A-10
A.2.		
A.3.	AOC 204 GWS Area Location	A-12
A.4.	Quality Control Area within KRCEE Demonstration Project Area	A-15
A.5.	GWS for AOC 492 and Adjacent Areas Using KRCEE Gross Count Data	A-16

ACRONYMS

AOC area of concern

CFR Code of Federal Regulations

cpm counts per minute

DMSA DOE Material Storage Area
DOE U.S. Department of Energy
DQO data quality objective

EPA U.S. Environmental Protection Agency

GWS gamma walkover survey

IMC Individual Measurement Comparison

KRCEE Kentucky Research Consortium for Energy and Environment

LATA Kentucky LATA Environmental Services of Kentucky, LLC

MARSSIM Multi-Agency Radiation Survey and Site Investigation Manual

MDA minimum detectable activity

OU operable unit

PGDP Paducah Gaseous Diffusion Plant

RI remedial investigation

SWMU solid waste management unit

TRU transuranic

A.1. INTRODUCTION AND PURPOSE

The Addendum to the Work Plan for the Soils Operable Unit Remedial Investigation/Feasibility Study at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, Remedial Investigation 2, Sampling and Analysis Plan was developed to define the field sampling for this subsequent remedial investigation (RI), known as Soils Operable Unit (OU) RI 2. Sixteen solid waste management units (SWMUs)/areas of concern (AOCs) were determined to require additional characterization subsequent to the Soils OU RI to delineate the extent of contamination at the Paducah Gaseous Diffusion Plant (PGDP). These SWMUs/AOCs are subject to an RI/Feasibility Study (FS). This survey plan supplements the approved RI/FS Work Plan for the Soils OU, which was completed in June 2010 (DOE 2010), and describes how the radiological gamma walkover survey (GWS) will be performed. Information not included in the Sampling and Analysis Plan should be referenced from the June 2010 RI/FS Work Plan.

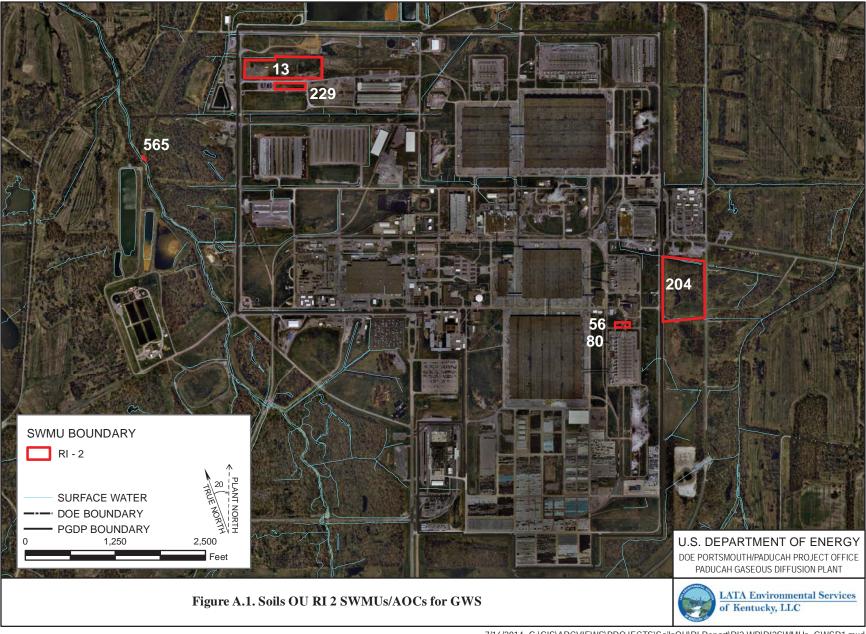
The purpose of this survey plan is to define the highest count rate area/location within a SWMU/AOC and sample the area/location with the highest count rate. Table A.1 presents the SWMUs and AOCs included for radiation survey under this Work Plan addendum. Figure A.1 shows the locations of the SWMUs and AOCs that will be evaluated by this survey plan. Figures A.2 and A.3 show the detailed areas for survey at SWMUs 56/80 and at AOC 204.

Table A.1. Soils OU SWMUs/AOCs Identified for Further Characterization

SWMU/AOC	Location	Description
13	C-746-P&P1	P&P1 Scrap Yards
15*	C-746-C	C Scrap Yard
56	C-540-A	PCB Staging Area
80	C-540	PCB Spill Site
204	Dyke Road	Historical Staging Area
211-A*	C-720	TCE Spill Site Northwest
229	C-746-F	DMSA OS-18
565	North of C-611 Water Treatment Plant	Rubble Area K

DMSA = DOE material storage area

PCB = polychlorinated biphenyl


A.2. SITE DESCRIPTION AND HISTORY

The PGDP site description and history can be found in Section 4 of the June 2010 RI/FS Work Plan (DOE 2010).

A.3. HISTORICAL DATA REVIEW

Radiological survey records and soil sampling data for the SWMUs and AOCs presented in Table A.1 have been reviewed and evaluated and considered in the design of this survey plan. Walkdowns of the units were conducted by the Federal Facility Agreement parties during March 2014 in support of this survey design.

^{*}No additional GWS is required for this unit. The location of the judgmental grab sample will be selected using existing survey data following the protocol established in this appendix.

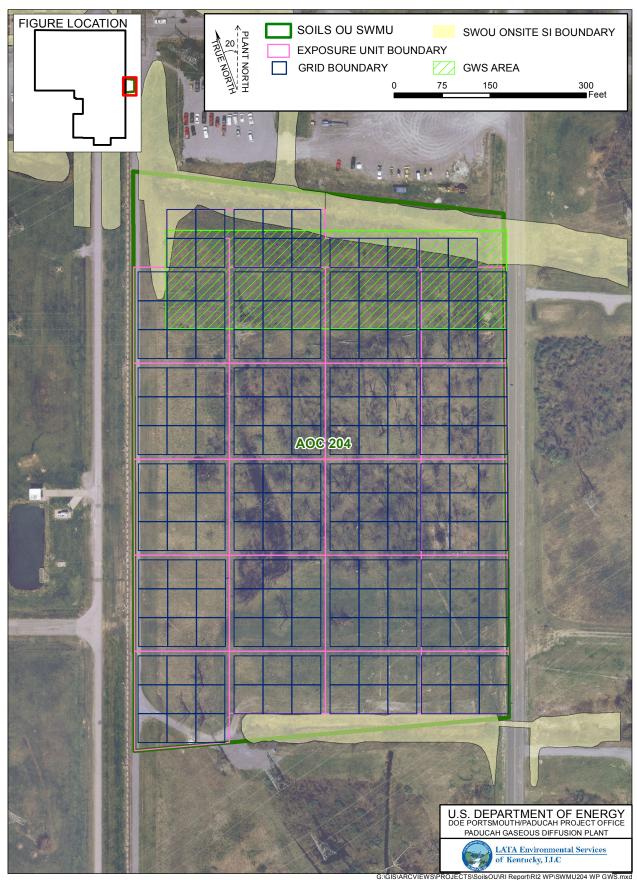


Figure A.3. AOC 204 GWS Area Location

5/5/2014

A.4. GAMMA WALKOVER SURVEY AND DATA ASSESSMENT

A.4.1 SURVEY INPUT PARAMETERS

For the purpose of the survey, the area/location with the highest count rate is used as the indicator for establishing the sampling location for radiological contaminants.

- Prior to a GWS of each SWMU/AOC, gamma ray dose rate measurements will be taken around the perimeter of the area.
- GWSs will be conducted by walking lines parallel to one other where possible, separated by approximately one meter.
- Stakes or other indicators will be used, as necessary, to ensure properly spaced lines.
- GWSs will be conducted at a progression rate of approximately one-half meter per second to ensure a data density of at least one measurement per square meter.
- The detector will be held approximately four to six inches above the ground and moved slowly in a serpentine fashion.
- Surface geometries and media other than soil (such as saturated soils, concrete and asphalt surfaces, etc.) that can impact GWS results will be noted.
- GWS data will be logged along with accompanying GPS information in State Plane Coordinates (in feet).
- The units of measurement for GWSs will be gross cpm.

Potential detectors include the following:

- REXON G5 FIDLER: Per the manufacturer's specification sheet, the REXON G5 FIDLER is a five-inch diameter by 1/16-inch thick sodium iodide (thallium) crystal coupled to a photo multiplier tube encased in a 0.020-inch thick aluminum housing. The crystal is optimized for low-energy X-ray and gamma radiation detection. Its recommended energy range is 15–1,000 keV. The ruggedized version of the G5 FIDLER has an aluminum, open-mesh, screen covering a 0.10-inch thick beryllium window.
- Ludlum Model 44-10: The Ludlum Model 44-10 consists of a two-inch diameter by two-inch tall sodium iodide (thallium) crystal coupled to a photo multiplier tube encased in a 0.062-inch thick aluminum housing. Its recommended energy range is 60–2000 keV. The probe weighs about 2.3 lb.

Both the Ludlum 44-10 and REXON G-5 FIDLER will be connected to a Ludlum Model 2221 digital ratemeter/scaler. The 2221 has adjustable settings that allow for specific energy pulses to be counted. In essence, the 2221 can be used as a kind of single-channel analyzer. This is useful when one has apriori knowledge about the makeup of the radiological constituents in the area being scanned. For example, if one is looking for Cs-137, then the energy range can be set to 662 + 30 keV so that only Cs-137 pulses are counted. In this case, the 2221 will be set to count all energy pulses rather than for a specific radionuclide. This will facilitate the use of the inflection point technique.

A.4.2 SURVEY QUALITY CONTROL

Prior to the start of surveys for SWMUs/AOCs with a radiation detector, ten measurements will be taken with a known source in a repeatable geometry. The ten measurements will be used to establish a quality control chart that provides mean and two standard deviations above and below the mean for the radiation detector dataset. At the beginning and end of each survey, the radiation detector will be checked with the original source in the original geometry used to establish the quality control chart. Detector response outside of two standard deviations based on the quality control chart will be evaluated to ensure the radiation detector is within the established control limits. Each radiation detector, used for survey of a SWMU/AOC, will have a quality control chart developed prior to use in the field.

Before radiation surveys of SWMUs/AOCs, field work is to begin with the calibration and assessment of all radiation detectors to be utilized for GWS of soils. A radiation survey instrument will be calibrated as described in American National Standards Institute standard N323A-1997. This step is necessary for establishing quality control for this survey plan. Figure A.4 illustrates the location of the area that is to be used to develop quality control for the radiation detectors. This area was chosen because a quality dataset from Kentucky Research Consortium for Energy and Environment (KRCEE's) 2008 Real Time Demonstration Project is available for the area (KRCEE 2008). Figure A.5 shows the GWS for the area using gross count data from KRCEE's 2008 Real Time Demonstration (KRCEE 2008). Prior to GWSs that are used to establish quality control for radiation detectors, gamma ray dose rate measurements are to be taken and recorded at the perimeter of the area to assess potential impacts from activities within the PGDP Limited Area. To establish quality control for the radiation detectors, a GWS for each detector is to be conducted for an area of 200 m² within the area shown in Figure A.4. The size of the areas is consistent with grids used for the Soil OU Work Plan (DOE 2010). GWS data for each radiation detector then is used to establish the quality control for the detectors. The GWS data is in cpm. If the quality control for a radiation detector falls outside its established two sigma control limit based on the mean, it will be rechecked to determine whether service or recalibration is needed for the radiation detector.

The 2008 KRCEE demonstration project provides an example of soil background cpm employing a FIDLER at PGDP. KRCEE, employing a FIDLER for a GWS, determined the soil background gross cpm was 8,628±679. Using KRCEE soil background with 8,628 cpm as an example, a progression rate of 0.5 meters per second, and the calculation methods found in NUREG-1507, this example yields a scanning minimum detectable concentration of approximately 7.5 pCi/g for U-238 and its daughters.

The soil background cpm for the KRCEE demonstration project represents a single location at PGDP that may not be representative of the anomalies being surveyed for the present project. The KRCEE demonstration project soil background cpm or any other PGDP soil background cpm should be used only as an example, and these soil background cpm levels should not be used to evaluate whether any anomalies being surveyed for this project exceed background cpm.

A.4.3 DATA ASSESSMENT AND SELECTION OF SAMPLE LOCATION

The following describes how the survey data will be evaluated and used to select a sample location.

- GWS data will be downloaded each day and the data will be evaluated the next business day, following completion of the anomaly survey and any confirmation survey.
- The GWS data will be overlaid on a map of the SWMU/AOC.

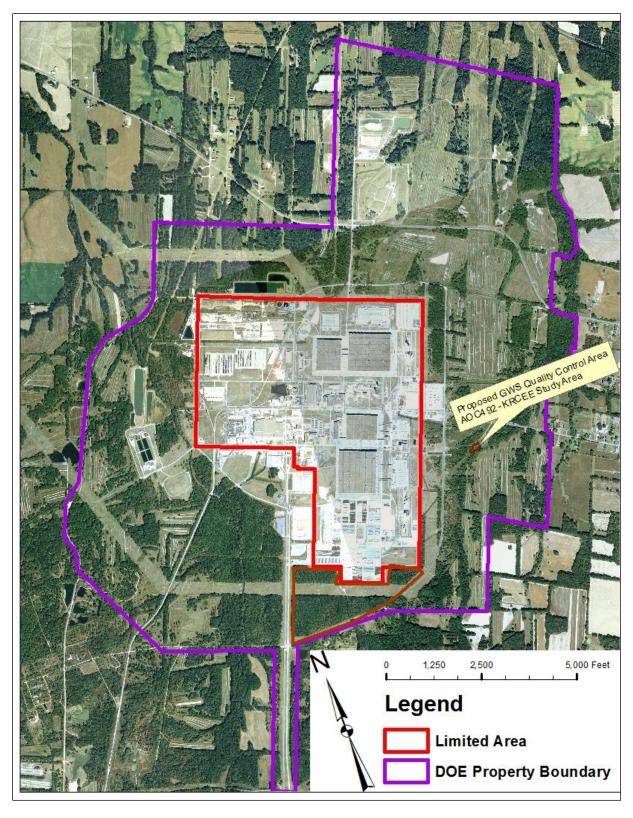


Figure A.4. Quality Control Area within KRCEE Demonstration Project Area

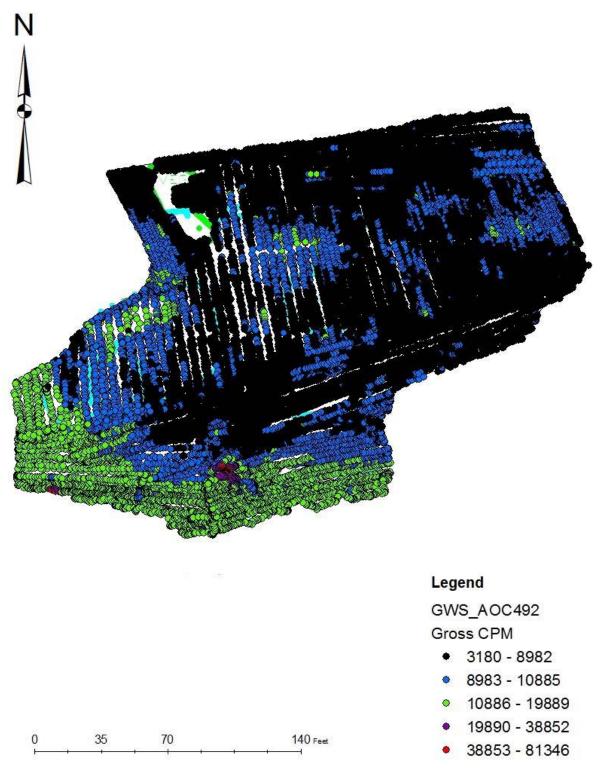


Figure A.5. GWS for AOC 492 and Adjacent Areas Using KRCEE Gross Count Data

- Areas of a SWMU/AOC where GWS data are incomplete or questionable because of GPS signal or incomplete coverage will undergo additional GWS.
- The GWS data for the SWMU/AOC will be analyzed using inflection point analysis.
- Probability Plots will used to determine whether a break/inflection point occurs in the data.
- Data above the break/inflection point will be mapped to determine the location of the data above the inflection point within the SWMU/AOC. The analysis may indicate:
 - Case 1: A SWMU/AOC with one area with a group of data points with elevated count rate,
 - Case 2: A SWMU/AOC with multiple areas with a group data points with elevated count rate,
 - Case 3: A SWMU/AOC with single area with a single data point with an elevated count rate (no adjacent points with elevated count rate data), or
 - Case 4: A SWMU/AOC with a combination of the above.
 - Case 5: If no inflection point is observed for the probability plot, data points above the 95th percent will be mapped and used, along with professional judgment, to determine the location for a judgmental sample.
- After survey data are mapped, sample locations will be determined in accordance with the following:
 - Case 1: A SWMU/AOC may have a single area with a group of elevated count rate data points. In this case, the sample area will be resurveyed (e.g., conformation) to determine the boundary of the area (e.g., count rates above the break/infection point) and the location with the highest count rate within the area. The location within the area with the highest count rate will be chosen for sampling.
 - Case 2: A SWMU/AOC may have multiple areas with a group of elevated count rate data points. The sample areas will be resurveyed (e.g., conformation) to determine the boundary of the each area (e.g., count rate above the break/infection point) and the location with the highest count rate within each area. From the areas, the area with the highest count rate will be chosen for sampling at the location with the highest count rate.
 - Case 3: A SWMU/AOC may have a single area with elevated count rate with no adjacent elevated points. The single location with the elevated count rate with no adjacent locations with elevated count rate will be resurveyed using a 5 m \times 5 m area centered on the single point. The location with the highest count rate within the 5 m \times 5 m area will be chosen for sampling.
 - Case 4: A SWMU/AOC may have single areas with a group of elevated count rate data points, multiple areas with a group of elevated count rate data points, and/or a single area with elevated count rate with no adjacent elevated points. Professional judgment will be used to determine sample location, with a focus on the location with the highest count rate.
 - Case 5: If no inflection point is observed for the probability plot, data points above the 95th percentile will be mapped and used, along with professional judgment, to determine the location for a judgmental sample.

- If the observed highest location is associated with debris within a SWMU/AOC, additional measurements will be conducted to determine if the elevated count rate is from debris or adjacent soil. These additional measurements will not be combined with the initial survey data for mapping or inflection point analysis. The sample location will be determined as discussed above.
- If the highest count rate is associated with debris, the debris will be moved, if possible, manually. The area under the debris will be surveyed. If moving the debris manually is not possible, the survey will be considered complete. Sample location will be determined as discussed above.
- After a sampling location within an anomaly has been determined, a discussion with the Commonwealth of Kentucky and EPA will be held to gain agreement of the sampling location. The Commonwealth of Kentucky and EPA will send agreement of the sampling location or a proposed alternate location within 3 business days. ¹ If there is continued disagreement of the sampling location, discussions will be held to determine an agreed upon location.
- Surveys will be conducted prior to sampling to ensure accurate sample placement.

A.5. SURVEY PLAN SUMMARY

This survey plan provides a systematic methodology for defining the criteria that the GWS and sample design should satisfy including types of analyses and measurements, when and where to collect perform measurements, and the decision errors. The survey plan summary is as follows:

- All GWS radiation detectors will be operated and maintained by qualified personnel, in accordance with LATA Kentucky's Radiation Safety Program procedures;
- Real-time logged GWS data will be downloaded immediately after completion of the GWS (within three business days) to ensure data are of sufficient quality and quantity to meet the intended use of the data;
- Radiation detectors will operate under daily quality control to ensure the detectors are operating within control limits; and
- GWS speed, detector height, and integration time shall be maintained throughout the survey to ensure the collection of at a minimum one measurement per square meter.

A.5.1 FIELD APPROACH

Upon receiving authorization from DOE, surveyors from LATA Kentucky will implement this survey plan. A survey team consisting of two surveyors will obtain the specified radiological measurements. The GWS supervisor will ensure that data from each SWMU/AOC are archived separately and the data files

¹ 3 business days is an expectation for scheduling purposes.

include all specified data. GWS will progress until completion. GWS operations will cease for inclement weather. GWS will not be conducted in areas of standing water.

A.5.2 SAFETY HAZARDS

Safety hazards likely to be encountered during the performance of this survey effort include insects (seasonal), wildlife (seasonal), vegetation, slips, trips, falls, heat/cold stress, falling debris, and driving hazards. All survey efforts conducted in support of this plan will be performed in accordance with established activity hazards analyses and work control documents. Surveyors will use the buddy system at all times and maintain radio communications with the GWS supervisor and the PGDP plant shift superintendent. Surveyors shall report his/her position to the GWS supervisor at regular intervals.

A.5.3 SWMU/AOC LOCATIONS

The SWMUs/AOCs selected for further evaluation are presented in Table A.1 and their locations are shown in Figure A.1.

A.5.4 GWS

GWS are performed by moving the detector in a serpentine pattern approximately 1-m wide, while advancing at a rate of approximately 0.5 m/sec. The sensitive area of the detector is maintained as close to the surface as practical, considering the surface conditions; 4 to 6 inches is a reasonable distance. Parallel scanning passes will be made across the SWMU/AOC where possible. The GWS coverage is based on guidance in MARSSIM for providing a high confidence level of collecting data for areas with elevated count rate.

A.5.5 SEQUENCING OF WORK

Upon receiving authorization from DOE, surveyors will begin implementing this survey plan. Data evaluation will be conducted in parallel with the collection effort to ensure a timely review of data and to ensure that data gaps are identified while the project is underway. Upon completion of the GWS and data collection for a SWMU/AOC, the project team will evaluate the data and determine whether further surveys of the SWMU/AOC are necessary.

A.6. DATA MANAGEMENT

Data collected in support of this effort shall be managed as follows.

- A new data file shall be created for each SWMU/AOC.
- If multiple instruments are used on an individual anomaly, unique data files for each instrument will be created.
- Data files shall include time stamps with both date and time collected.

- Data files shall include X and Y coordinates in State Plane Coordinate System (in ft).
- Data files shall be archived on the network in a dedicated folder. Access will be restricted to project team members.
- A written GWS record shall be prepared for each SWMU/AOC that includes data file name, instrument, surveyor, and area-specific information. The GWS also should include a narrative of any unusual condition or material noted for the SWMU/AOC. If sketches or photographs of the SWMUs/AOCs are produced, these shall be attached to the written survey record. A copy of the written survey record shall be provided to the project manager.
- A copy of the written survey shall be provided to the project manager.

A.7. ANALYSES AND DATA REPORTING SCHEDULE

Data will be reported in the Soils OU Phase II RI Report to be issued in accordance with the project schedule.

A.8. DATA REPORTING

The GWS supervisor shall routinely report the progress and results to the project manager. Data reporting shall include the number of completed GWS for SWMUs/AOCs, the number of anomaly surveys in progress, and the location of the highest count rate in each SWMU/AOC.

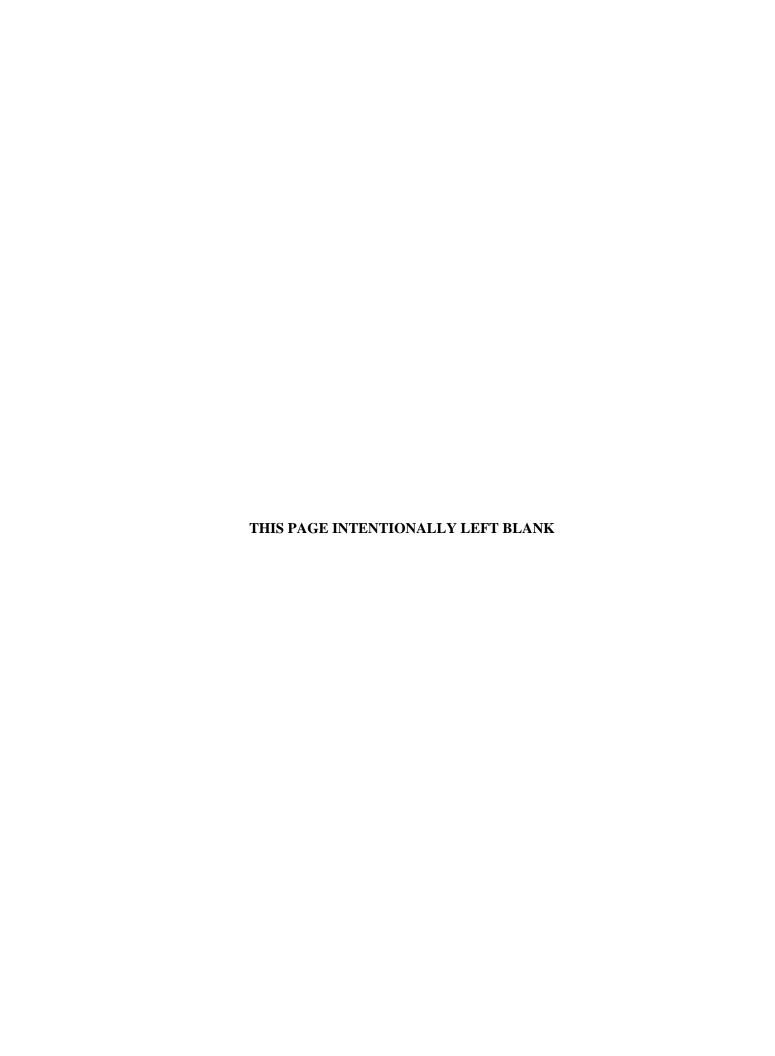
A.8.1 IN-PROCESS DATA REVIEW

The GWS supervisor routinely will review data to determine if the requirements of this survey plan are being met. Additionally, the review will ensure that data gaps are identified and corrected during the GWS of each SWMU/AOC.

A.8.2 DATA PRESENTATION METHODOLOGY

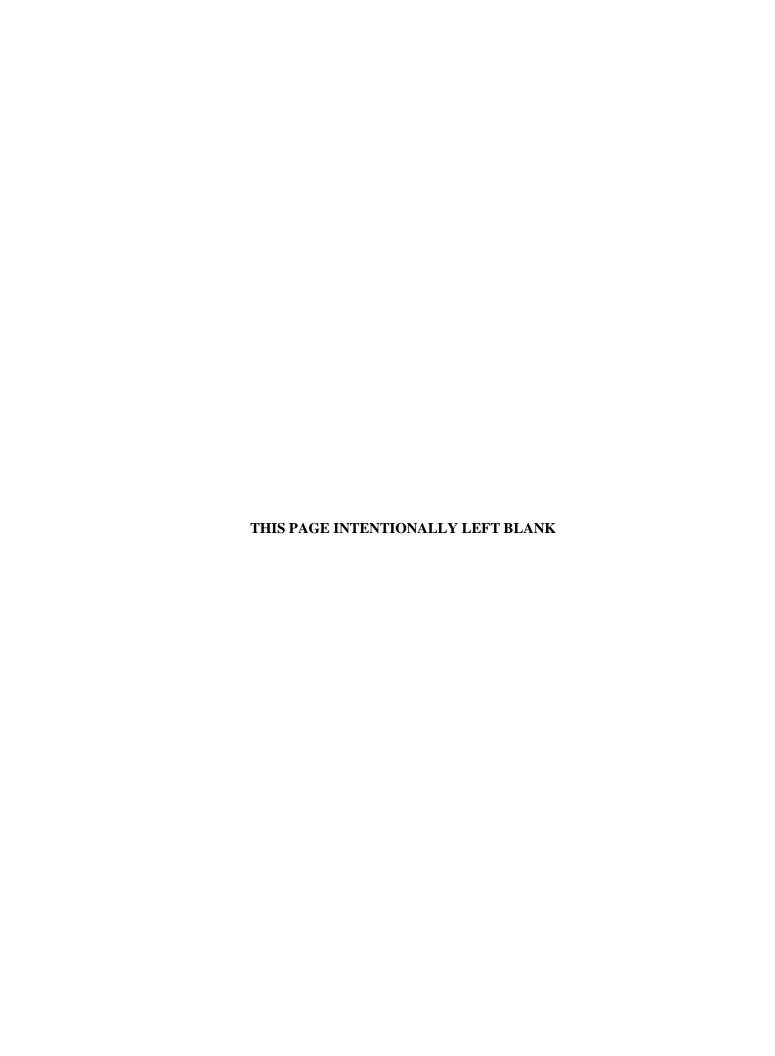
Data collected in support of this survey plan, including, but not limited to, GWS data, inflection point analysis, mapping of data, area of highest count rate, and quality control will be presented in a written report upon completion of the project. A copy of the written report will be included with the project final report.

A.8.3 DATA ARCHIVAL


Data files, written surveys, and instrument calibration records shall be archived electronically with the Soils OU project files.

A.9. REFERENCES

- DOE (U.S. Department of Energy) 2010. Work Plan for the Soils Operable Unit Remedial Investigation/Feasibility Study at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, DOE/LX/07-0120&D2/R2, U.S. Department of Energy, Paducah, KY, June.
- KRCEE (Kentucky Research Consortium for Energy and Environment) 2008. *Real Time Technology Application Demonstration Project Final Report at the Paducah Gaseous Diffusion Plant, Paducah*, Kentucky, UK/KRCEE DOC#. P18.32 2008, December.


APPENDIX B PROCEDURES CROSSWALK

PROCEDURES CROSSWALK

Phase 1 Work Plan Procedure Reference	Procedure Title	RI 2 SAP Addendum Procedure Reference
PRS-CDL-0029	Waste Management Plan for the Paducah Environmental	PAD-PLA-ENV-001
	Remediation Project	
PRS-DOC-1009	Records Management, Administrative Record, and Document Control	PAD-RM-1009
PRS-ENM-0811	Pesticide and PCB Data Verification and Validation	PAD-ENM-0811
PRS-ENM-1001	Transmitting Data to the Paducah Oak Ridge Environmental Information System (OREIS)	PAD-ENM-1001
PRS-ENM-2700	Logbooks and Data Forms	PAD-ENM-2700
PRS-ENM-2708	Chain-of-Custody forms, Field Sample Logs, Sample Labels, and Custody Seals	PAD-ENM-2708
PRS-ENM-5003	Quality Assured Data	PAD-ENM-5003
PRS-ENM-5004	Sample Tracking, Lab Coordination & Sample Handling Guidance	PAD-ENM-5004
PRS-ENM-5007	Data Management Coordination	PAD-ENM-5007
PRS-ENM-5102	Radiochemical Data Verification and Validation	PAD-ENM-5102
PRS-ENM-5105	Volatile and Semivolatile Data Verification and Validation	PAD-ENM-5105
PRS-ENM-5107	Inorganic Data Verification and Validation	PAD-ENM-5107
PRS-ESH-2007	Industrial Motorized Trucks (Forklifts)	PAD-SH-2007 ^a
PRS-QAP-1210	Issues Management Program	PAD-QA-1210 ^b
PRS-WCE-0044	Adherence to Performance Documents	PAD-WC-0044
PRS-WSD-0011	Waste Acceptance Criteria for the Treatment, Storage, and Disposal Facilities at the Paducah DOE Site	PAD-WD-0011
PRS-WSD-0019	On-Site Transfer and Movement of Waste Containers and Other Support Equipment	PAD-WD-0019
PRS-WSD-0307	Paducah Waste Characterization Sampling and Analysis Plan	PAD-PROJ-0307
PRS-WSD-0661	Transportation Safety Document for On-Site Transport within the PGDP	PAD-WD-0661
PRS-WSD-3010	Waste Generator Responsibilities for Temporary On-Site Storage of Regulated Waste Materials at Paducah	PAD-WD-3010
PRS-WSD-3012	Procurement, Inspection and Management of Items Critical for Paducah Off-Site Waste Shipments	PAD-QA-3012
PRS-WSD-3015	Waste Packaging	PAD-WD-3015

^a Procedure now is titled *Powered Industrial Trucks*. ^b Procedure now is titled *Issues Management*.

